WO2024228377A1 - Method for producing ethylene-vinyl alcohol copolymer - Google Patents
Method for producing ethylene-vinyl alcohol copolymer Download PDFInfo
- Publication number
- WO2024228377A1 WO2024228377A1 PCT/JP2024/016633 JP2024016633W WO2024228377A1 WO 2024228377 A1 WO2024228377 A1 WO 2024228377A1 JP 2024016633 W JP2024016633 W JP 2024016633W WO 2024228377 A1 WO2024228377 A1 WO 2024228377A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- evac
- solution
- mol
- ethylene
- vinyl acetate
- Prior art date
Links
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 title claims abstract description 81
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 238000007127 saponification reaction Methods 0.000 claims abstract description 75
- 239000002904 solvent Substances 0.000 claims abstract description 53
- 239000003054 catalyst Substances 0.000 claims abstract description 41
- 239000005038 ethylene vinyl acetate Substances 0.000 claims abstract description 21
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims abstract description 21
- 239000003513 alkali Substances 0.000 claims abstract description 18
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 57
- 238000000034 method Methods 0.000 claims description 33
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 13
- 239000005977 Ethylene Substances 0.000 claims description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 150000001298 alcohols Chemical class 0.000 claims 1
- 239000000243 solution Substances 0.000 description 80
- UFRKOOWSQGXVKV-UHFFFAOYSA-N ethene;ethenol Chemical compound C=C.OC=C UFRKOOWSQGXVKV-UHFFFAOYSA-N 0.000 description 72
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 72
- 239000000047 product Substances 0.000 description 39
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 27
- 239000008188 pellet Substances 0.000 description 22
- 238000001035 drying Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 6
- -1 acrylic acid Chemical class 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010924 continuous production Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000005453 pelletization Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-DYCDLGHISA-N trifluoroacetic acid-d1 Chemical compound [2H]OC(=O)C(F)(F)F DTQVDTLACAAQTR-DYCDLGHISA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical group 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012934 organic peroxide initiator Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- GRONZTPUWOOUFQ-UHFFFAOYSA-M sodium;methanol;hydroxide Chemical compound [OH-].[Na+].OC GRONZTPUWOOUFQ-UHFFFAOYSA-M 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Abstract
The method for producing an ethylene-vinyl alcohol copolymer has a step (I) in which an ethylene-vinyl acetate copolymer in a solution of an ethylene-vinyl acetate copolymer is saponified using an alkali catalyst to obtain a solution of a saponified ethylene-vinyl acetate copolymer having a degree of saponification of from 10 mol% to less than 60 mol% and a step (II) in which the solution of the saponified ethylene-vinyl acetate copolymer is supplied to top of a tower reactor (A), solvent vapor is supplied to the lower part and discharged from the top, and an alkali catalyst is supplied below the location at which the solution of the saponified ethylene-vinyl acetate copolymer is supplied to further saponify the saponified ethylene-vinyl acetate copolymer, and a solution of an ethylene-vinyl alcohol copolymer having a degree of saponification of from 99 mol% to 100 mol% obtained is removed from the tower bottom. According to this production method, even when an ethylene-vinyl alcohol copolymer is produced continuously for a long period of time, the ethylene-vinyl acetate copolymer can be saponified efficiently, so that the ethylene-vinyl alcohol copolymer can be produced at good productivity.
Description
本発明は、エチレン-ビニルアルコール共重合体の製造方法に関する。
The present invention relates to a method for producing an ethylene-vinyl alcohol copolymer.
エチレン-ビニルアルコール共重合体(以下、「EVOH」と略記することがある)は、酸素遮蔽性、耐油性、非帯電性、機械強度等に優れた有用な高分子材料であり、フィルム、シート、容器など各種包装材料等として広く用いられている。
Ethylene-vinyl alcohol copolymer (hereinafter sometimes abbreviated as "EVOH") is a useful polymeric material with excellent oxygen barrier properties, oil resistance, antistatic properties, mechanical strength, etc., and is widely used as a variety of packaging materials such as films, sheets, and containers.
EVOHは、エチレン-酢酸ビニル共重合体(以下、EVAcと略記することがある)をアルカリ触媒などでけん化して製造することが従来からなされており、EVOHの生産性や品質を向上させるため、当該けん化工程を改良する方法が提案されている。
EVOH has traditionally been produced by saponifying ethylene-vinyl acetate copolymer (hereinafter sometimes abbreviated as EVAc) using an alkaline catalyst, and methods have been proposed to improve the saponification process in order to increase the productivity and quality of EVOH.
例えば、特許文献1には、(1)塔型反応器を用いて、アルコール溶媒中でエチレン含量15~60モル%のEVAcをアルカリ触媒にてけん化度が70~98モル%になるまでけん化を行い、EVAc部分けん化物溶液を得る工程、(2)塔型反応器を用いて、上記EVAc部分けん化物溶液に水又は水/アルコールを加えて混合溶液を形成させ、アルカリ触媒の存在下に再けん化を行い、酢酸ビニル成分のけん化度が99.4モル%以上の高けん化度EVAcけん化物溶液を得る工程、(3)上記高けん化度EVAcけん化物溶液を、凝固浴中に押し出し析出させ、酸処理する工程を有する、EVAcけん化物の製造方法が記載されている。このような方法によれば、均一で、尚且つ溶融成形性の優れたEVAcけん化物のペレットが得られるとされている。
For example, Patent Document 1 describes a method for producing saponified EVAc, which includes the steps of: (1) using a tower reactor to saponify EVAc with an ethylene content of 15 to 60 mol% in an alcohol solvent with an alkaline catalyst until the degree of saponification reaches 70 to 98 mol%, thereby obtaining a partially saponified EVAc solution; (2) using a tower reactor to add water or water/alcohol to the partially saponified EVAc solution to form a mixed solution, which is then resaponified in the presence of an alkaline catalyst, thereby obtaining a highly saponified EVAc solution in which the vinyl acetate component has a degree of saponification of 99.4 mol% or more; and (3) extruding the highly saponified EVAc solution into a coagulation bath to precipitate the solution, followed by acid treatment. This method is said to produce pellets of saponified EVAc that are uniform and have excellent melt moldability.
特許文献2には、EVAc溶液に対して、アルカリ触媒を加えて混合した後、得られたけん化度が5mol%以下であるEVAc溶液を塔式反応器の塔上部に供給し、塔下部から溶媒蒸気を供給して、塔上部から溶媒蒸気を排出するとともに、前記EVAc溶液を供給する位置より下部からアルカリ触媒を供給してEVAcをけん化するEVAcけん化物の製造方法が記載されている。当該製造方法では、不純物であるビニルエステル類やその副生物であるアセトアルデヒドを予め除去した後にEVAcをけん化反応に供することで、EVAcけん化物の着色を抑制することができると記載されている。
Patent Document 2 describes a method for producing a saponified EVAc product in which an alkali catalyst is added to and mixed with an EVAc solution, the resulting EVAc solution having a degree of saponification of 5 mol% or less is supplied to the top of a tower reactor, solvent vapor is supplied from the bottom of the tower, the solvent vapor is discharged from the top of the tower, and an alkali catalyst is supplied from below the position where the EVAc solution is supplied to saponify the EVAc. It is described that this production method can suppress coloration of the saponified EVAc product by first removing impurities such as vinyl esters and their by-product acetaldehyde before subjecting the EVAc to a saponification reaction.
しかしながら、特許文献1に記載された方法では、再けん化時に、塔型反応器から溶媒とともにEVAcけん化物も排出されて生産効率が低下する原因となっていた。また、特許文献2に記載された方法では、長期間連続的にEVOHを製造した際に、けん化用の塔型反応器中でEVAc部分けん化物が固まることがあり、生産効率が低下する原因となっていた。
However, in the method described in Patent Document 1, during resaponification, the EVAc saponified product is discharged from the tower reactor along with the solvent, which causes a decrease in production efficiency. In addition, in the method described in Patent Document 2, when EVOH is produced continuously over a long period of time, the partially saponified EVAc product can solidify in the tower reactor used for saponification, which causes a decrease in production efficiency.
本発明は上記課題を解決するためになされたものであり、EVAcを効率よくけん化することができる、生産性の高いEVOHの製造方法を提供することを目的とする。
The present invention has been made to solve the above problems, and aims to provide a highly productive method for producing EVOH that can efficiently saponify EVAc.
上記課題は、EVAcの溶液中のEVAcをアルカリ触媒を用いてけん化して、けん化度10mol%以上60mol%未満であるEVAc部分けん化物の溶液を得る工程(I)及び前記EVAc部分けん化物の溶液を塔式反応器(A)の塔上部に供給し、溶媒蒸気を塔下部に供給して、塔上部から排出するとともに、アルカリ触媒を、塔式反応器(A)の、前記EVAc部分けん化物の溶液を供給する位置より下部に供給して、前記EVAc部分けん化物をさらにけん化した後、得られたけん化度99mol%以上100mol%以下であるEVOHの溶液を塔底部から取り出す工程(II)を有する、EVOHの製造方法を提供することによって解決される。
The above problem is solved by providing a method for producing EVOH, which includes a step (I) of saponifying EVAc in a solution of EVAc using an alkaline catalyst to obtain a solution of partially saponified EVAc having a degree of saponification of 10 mol% or more and less than 60 mol%, and a step (II) of supplying the solution of partially saponified EVAc to the top of a tower reactor (A), supplying solvent vapor to the bottom of the tower and discharging it from the top of the tower, and supplying an alkaline catalyst to the tower reactor (A) below the position where the solution of partially saponified EVAc is supplied, thereby further saponifying the partially saponified EVAc, and then withdrawing the resulting solution of EVOH having a degree of saponification of 99 mol% or more and 100 mol% or less from the bottom of the tower.
このとき、工程(I)で得られるEVAc部分けん化物のけん化度が10mol%以上50mol%未満であることが好ましい。工程(I)で用いられるEVAcのエチレン単位含有量が10mol%以上60mol%未満であることも好ましい。工程(I)で用いられるEVAcの溶液の溶媒及び工程(II)で用いられる溶媒蒸気がアルコールであることが好ましく、メタノールであることがより好ましい。工程(I)で用いられるEVAcの溶液の濃度が60質量%以下であることも好ましい。工程(II)における、塔式反応器(A)に供給される溶媒蒸気の量が、塔式反応器(A)に供給されるEVAc部分けん化物100質量部に対して、50質量部以上500質量部未満であることも好ましい。工程(I)において、EVAcの溶液とアルカリ触媒とを非塔式の混合器にて混合することで、けん化度10mol%以上60mol%未満であるEVAc部分けん化物の溶液を得ることも好ましい。
In this case, it is preferable that the degree of saponification of the EVAc partially saponified product obtained in step (I) is 10 mol% or more and less than 50 mol%. It is also preferable that the ethylene unit content of the EVAc used in step (I) is 10 mol% or more and less than 60 mol%. The solvent of the EVAc solution used in step (I) and the solvent vapor used in step (II) are preferably alcohol, more preferably methanol. It is also preferable that the concentration of the EVAc solution used in step (I) is 60 mass% or less. It is also preferable that the amount of solvent vapor supplied to the tower reactor (A) in step (II) is 50 mass parts or more and less than 500 mass parts per 100 mass parts of the EVAc partially saponified product supplied to the tower reactor (A). In step (I), it is also preferable to mix the EVAc solution with the alkali catalyst in a non-tower mixer to obtain a solution of partially saponified EVAc having a degree of saponification of 10 mol% or more and less than 60 mol%.
本発明の製造方法によれば、長期間連続的にEVOHを製造した場合であっても、EVAcを効率よくけん化することができるため、EVOHを生産性よく製造できる。
The manufacturing method of the present invention allows EVAc to be efficiently saponified, even when EVOH is produced continuously over a long period of time, making it possible to produce EVOH with high productivity.
本発明は、EVAcの溶液中のEVAcをアルカリ触媒を用いてけん化して、けん化度10mol%以上60mol%未満であるEVAc部分けん化物の溶液を得る工程(I)及び前記EVAc部分けん化物の溶液を塔式反応器(A)の塔上部に供給し、溶媒蒸気を塔下部に供給して、塔上部から排出するとともに、アルカリ触媒を、塔式反応器(A)の、前記EVAc部分けん化物の溶液を供給する位置より下部に供給して、前記EVAc部分けん化物をさらにけん化した後、得られたけん化度99mol%以上100mol%以下であるEVOHの溶液を塔底部から取り出す工程(II)を有する、EVOHの製造方法である。このような製造方法によれば、長期間連続的にEVOHを製造した場合であっても、EVAcを効率よくけん化することができるため、EVOHを生産性よく製造できる。
The present invention is a method for producing EVOH, comprising the steps of (I) saponifying EVAc in a solution of EVAc using an alkaline catalyst to obtain a solution of EVAc partially saponified product having a degree of saponification of 10 mol% or more and less than 60 mol%, and (II) supplying the solution of the partially saponified EVAc to the top of a tower reactor (A), supplying solvent vapor to the bottom of the tower and discharging it from the top of the tower, and supplying an alkaline catalyst to the tower reactor (A) below the position where the solution of the partially saponified EVAc is supplied, thereby further saponifying the partially saponified EVAc, and then withdrawing the resulting solution of EVOH having a degree of saponification of 99 mol% or more and 100 mol% or less from the bottom of the tower. According to this production method, EVAc can be efficiently saponified even when EVOH is produced continuously for a long period of time, and therefore EVOH can be produced with high productivity.
工程(I)において、EVAcの溶液(EVAcが溶解した溶液)中のEVAcをアルカリ触媒を用いてけん化させることにより、EVAc部分けん化物の溶液を得る。
In step (I), the EVAc in the EVAc solution (a solution in which EVAc is dissolved) is saponified using an alkaline catalyst to obtain a solution of partially saponified EVAc.
工程(I)で用いられるEVAcは、一般的な方法に従い、エチレンと酢酸ビニルとを共重合させることにより製造すればよい。重合法、溶媒などに制限はないが、メタノールを溶媒とする溶液重合が好適である。重合触媒としては、ラジカル開始剤、例えば、各種のアゾニトリル系開始剤、有機過酸化物系開始剤を使用できる。また、本発明の効果を阻害しない範囲であれば、前記EVAcには、エチレン、酢酸ビニルと共重合し得る、エチレン及び酢酸ビニル以外の他の単量体(例えば、プロピレンなどのα-オレフィン、アクリル酸などの不飽和酸、各種ニトリル、各種アミド)を含有していてもよい。前記EVAc中の前記他の単量体由来の単位の含有量は、通常、10mol%以下である。
EVAc used in step (I) may be produced by copolymerizing ethylene and vinyl acetate according to a general method. There are no limitations on the polymerization method or solvent, but solution polymerization using methanol as the solvent is preferred. As the polymerization catalyst, a radical initiator, for example, various azonitrile initiators and organic peroxide initiators, can be used. In addition, the EVAc may contain other monomers other than ethylene and vinyl acetate that can be copolymerized with ethylene and vinyl acetate (for example, α-olefins such as propylene, unsaturated acids such as acrylic acid, various nitriles, and various amides) within a range that does not impair the effects of the present invention. The content of units derived from the other monomers in the EVAc is usually 10 mol% or less.
工程(I)で用いられるEVAcのエチレン単位含有量が5mol%以上70mol%未満であることが好ましい。当該エチレン単位含有量が5mol%未満の場合、工程(II)において、塔式反応器(A)中のEVAc部分けん化物が析出して棚板の孔を塞ぐことなどにより圧力が上昇することにより、連続運転可能な期間が短くなるおそれがある。前記エチレン単位含有量は10mol%以上がより好ましく、15mol%以上がさらに好ましく、20mol%以上が特に好ましい。一方、前記エチレン単位含有量が70mol%以上の場合、得られるEVOHのガスバリア性が低下するおそれがある。前記エチレン単位含有量は65mol%以下がより好ましく、60mol%以下がさらに好ましく、55mol%以下が特に好ましい。
The ethylene unit content of the EVAc used in step (I) is preferably 5 mol% or more and less than 70 mol%. If the ethylene unit content is less than 5 mol%, in step (II), the partially saponified EVAc in the tower reactor (A) may precipitate and block the holes in the shelves, causing an increase in pressure, which may shorten the period during which continuous operation is possible. The ethylene unit content is more preferably 10 mol% or more, even more preferably 15 mol% or more, and particularly preferably 20 mol% or more. On the other hand, if the ethylene unit content is 70 mol% or more, the gas barrier properties of the resulting EVOH may be reduced. The ethylene unit content is more preferably 65 mol% or less, even more preferably 60 mol% or less, and particularly preferably 55 mol% or less.
前記EVAcの溶液の溶媒はEVAcを溶解可能なものであれば特に限定されないが、アルコールが好ましい。溶媒としてアルコールを用いた場合、EVAcのけん化反応はEVAcの酢酸エステル基とアルコール系化合物とのエステル交換反応によって進行するのでアルカリ触媒の使用を少量に抑えることができ、効率よくけん化反応を進めることができる。当該アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノールなどが挙げられ、メタノールが好ましい。
The solvent for the EVAc solution is not particularly limited as long as it can dissolve EVAc, but alcohol is preferred. When alcohol is used as the solvent, the saponification reaction of EVAc proceeds through an ester exchange reaction between the acetate ester group of EVAc and an alcohol-based compound, so the amount of alkaline catalyst used can be kept to a small amount, and the saponification reaction can proceed efficiently. Examples of the alcohol include methanol, ethanol, 1-propanol, and 2-propanol, with methanol being preferred.
前記EVAcの溶液における、EVAcの濃度は特に限定されないが、70質量%以下が好ましい。前記濃度が70質量%を超える場合、EVAcの溶液とアルカリ触媒とを均一に混合するのが難しくなるおそれや、工程(II)において、塔式反応器(A)中のEVAc部分けん化物が析出して棚板の孔を塞ぐことなどにより圧力が上昇することにより、連続運転可能な期間が短くなるおそれがある。EVAcの濃度は、60質量%以下がより好ましい。一方、生産性の点から、EVAcの濃度は、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましく、40質量%以上が特に好ましい。
The concentration of EVAc in the EVAc solution is not particularly limited, but is preferably 70% by mass or less. If the concentration exceeds 70% by mass, it may be difficult to mix the EVAc solution and the alkaline catalyst uniformly, or in step (II), the pressure may increase due to the precipitation of the partially saponified EVAc in the tower reactor (A) blocking the holes in the shelves, shortening the period during which continuous operation is possible. The concentration of EVAc is more preferably 60% by mass or less. On the other hand, from the viewpoint of productivity, the concentration of EVAc is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, and particularly preferably 40% by mass or more.
前記アルカリ触媒としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属水酸化物;ナトリウムメトキシド、ナトリウムエトキシド、カリウムt-ブトキシドなどのアルカリ金属アルコキシドなどの化合物が挙げられ、中でも、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、ナトリウムエトキシドが好ましく、水酸化ナトリウムがより好ましい。前記アルカリ触媒はそのまま用いてもよいし、溶液として用いてもよい。溶液として用いる場合の溶媒は、前記EVAcの溶液と同様のものを用いることができる。
The alkali catalyst may be a compound such as an alkali metal hydroxide, such as sodium hydroxide, potassium hydroxide, or lithium hydroxide; or an alkali metal alkoxide, such as sodium methoxide, sodium ethoxide, or potassium t-butoxide; among these, sodium hydroxide, potassium hydroxide, sodium methoxide, or sodium ethoxide is preferred, and sodium hydroxide is more preferred. The alkali catalyst may be used as it is, or may be used as a solution. When used as a solution, the solvent may be the same as that of the EVAc solution.
前記EVAcの溶液と前記アルカリ触媒とを混合することにより、混合液中の前記EVAcをけん化させる。このときの混合方法は特に限定されないが、スタティックミキサー、メカニカルスターラー、ダイナミックミキサー等の非塔式反応器、塔式反応器等の混合機を用いる方法が挙げられる。混合効率に優れる点から、前記混合機として、非塔式反応器が好ましく、中でも、スタティックミキサーがより好ましい。
The EVAc solution is mixed with the alkali catalyst to saponify the EVAc in the mixed solution. The mixing method is not particularly limited, but examples include a method using a mixer such as a static mixer, a mechanical stirrer, a dynamic mixer, or other non-tower reactor, or a tower reactor. From the viewpoint of excellent mixing efficiency, a non-tower reactor is preferred as the mixer, and among them, a static mixer is more preferred.
前記EVAcと前記アルカリ触媒を含有する前記混合液中の前記アルカリ触媒の濃度は、0.005~1mol/Lが好ましい。前記濃度が0.005mol/L未満の場合、EVAcが十分にけん化されないおそれがある。前記濃度は0.01mol/L以上がより好ましく、0.05mol/L以上がさらに好ましく、0.1mol/L以上が特に好ましい。一方、前記濃度が1mol/Lを越える場合、得られるEVAc部分けん化物のけん化度が高くなりすぎるおそれがある。前記濃度は、0.5mol/L以下がより好ましく、0.3mol/L以下がさらに好ましい。
The concentration of the alkaline catalyst in the mixed solution containing the EVAc and the alkaline catalyst is preferably 0.005 to 1 mol/L. If the concentration is less than 0.005 mol/L, the EVAc may not be sufficiently saponified. The concentration is more preferably 0.01 mol/L or more, even more preferably 0.05 mol/L or more, and particularly preferably 0.1 mol/L or more. On the other hand, if the concentration exceeds 1 mol/L, the degree of saponification of the resulting partially saponified EVAc may be too high. The concentration is more preferably 0.5 mol/L or less, and even more preferably 0.3 mol/L or less.
EVAcの溶液と前記アルカリ触媒の混合時間は特に限定されないが、1~100分が好ましい。前記混合時間が1分未満の場合、EVAcが十分にけん化されないおそれがある。前記混合時間は3分以上がより好ましく、5分以上がさらに好ましい。一方、前記混合時間が100分を超える場合、生産効率が低下するおそれや、EVAc部分けん化物のけん化度が高くなりすぎるおそれがある。前記混合時間は50分以下がより好ましく、30分以下がさらに好ましい。
The mixing time of the EVAc solution and the alkaline catalyst is not particularly limited, but is preferably 1 to 100 minutes. If the mixing time is less than 1 minute, the EVAc may not be sufficiently saponified. The mixing time is more preferably 3 minutes or more, and even more preferably 5 minutes or more. On the other hand, if the mixing time exceeds 100 minutes, there is a risk that the production efficiency may decrease or the degree of saponification of the partially saponified EVAc may be too high. The mixing time is more preferably 50 minutes or less, and even more preferably 30 minutes or less.
EVAcの溶液と前記アルカリ触媒を混合している間の混合液の温度は10~80℃が好ましい。前記温度は、20℃以上がより好ましく、30℃以上がさらに好ましく、40℃以上がよりさらに好ましく、50℃以上が特に好ましい。一方、前記温度は、70℃以下がより好ましい。
The temperature of the mixture during mixing of the EVAc solution with the alkali catalyst is preferably 10 to 80°C. The temperature is more preferably 20°C or higher, even more preferably 30°C or higher, even more preferably 40°C or higher, and particularly preferably 50°C or higher. On the other hand, the temperature is more preferably 70°C or lower.
EVAcの溶液と前記アルカリ触媒を混合することにより得られるEVAc部分けん化物のけん化度は10mol%以上60mol%未満であることが必要である。このように、EVAcを所定のけん化度にけん化しておくことで、このとき副生するアルデヒド等の不純物が縮合する前に工程(II)の塔上部より溶媒とともに排出されるため、着色の少ないEVOHが得られる。EVAc部分けん化物のけん化度が10mol%未満の場合においては、工程(II)において、EVAc部分けん化物のけん化度が上昇するにつれて溶液粘度の上昇が見られ、高粘度化により流動性が悪くなる。一方、前記EVAc部分けん化物のけん化度が10mol%以上の場合においては、溶液粘度がEVAcの溶液と同程度になり、工程(II)において、さらにけん化度が上昇するにつれて驚くべきことに低粘度化するため、長期間連続的にEVOHを製造した際でも、塔式反応器(A)中のEVAc部分けん化物が固まり難くなる。そのため、棚板の孔が塞がれることなどによる圧力の上昇が抑制されるため、効率よくEVOHを製造できる。前記けん化度は、11mol%以上がより好ましく、12mol%以上がさらに好ましく、13mol%以上が特に好ましい。一方、前記けん化度が60mol%未満であることにより、工程(II)において、溶媒蒸気とともに前記EVAc部分けん化物が塔式反応器(A)から排出されることが抑制される。前記けん化度は、55mol%以下がより好ましく、50mol%以下がさらに好ましい。
The degree of saponification of the partially saponified EVAc obtained by mixing the EVAc solution with the alkaline catalyst must be 10 mol% or more and less than 60 mol%. In this way, by saponifying EVAc to a predetermined degree of saponification, impurities such as aldehydes that are by-produced during this process are discharged together with the solvent from the top of the tower in step (II) before they condense, resulting in EVOH with little coloration. When the degree of saponification of the partially saponified EVAc is less than 10 mol%, an increase in solution viscosity is observed in step (II) as the degree of saponification of the partially saponified EVAc increases, and the high viscosity results in poor flowability. On the other hand, when the saponification degree of the EVAc partially saponified product is 10 mol% or more, the solution viscosity becomes similar to that of the EVAc solution, and surprisingly, as the saponification degree increases in step (II), the viscosity decreases. Therefore, even when EVOH is continuously produced for a long period of time, the EVAc partially saponified product in the tower reactor (A) is less likely to solidify. Therefore, the pressure increase caused by the holes in the shelf being blocked is suppressed, and EVOH can be produced efficiently. The saponification degree is more preferably 11 mol% or more, even more preferably 12 mol% or more, and particularly preferably 13 mol% or more. On the other hand, when the saponification degree is less than 60 mol%, the EVAc partially saponified product is suppressed from being discharged from the tower reactor (A) together with the solvent vapor in step (II). The saponification degree is more preferably 55 mol% or less, and even more preferably 50 mol% or less.
工程(II)において、前記EVAc部分けん化物の溶液を塔式反応器(A)の塔上部に供給し、溶媒蒸気を塔下部に供給して、塔上部から排出するとともに、アルカリ触媒を、塔式反応器(A)の、前記EVAc部分けん化物の溶液を供給する位置より下部に供給して、前記EVAc部分けん化物をさらにけん化した後、得られたけん化度99mol%以上100mol%以下であるEVOHの溶液を塔底部から取り出す。このように工程(II)において、前記EVAc部分けん化物を再けん化することにより、高けん化度のEVOHが得られる。
In step (II), the solution of the EVAc partial saponification product is supplied to the top of the tower reactor (A), solvent vapor is supplied to the bottom of the tower and discharged from the top of the tower, and an alkali catalyst is supplied to the tower reactor (A) below the position where the solution of the EVAc partial saponification product is supplied to further saponify the EVAc partial saponification product, and the resulting solution of EVOH having a saponification degree of 99 mol% or more and 100 mol% or less is taken out from the bottom of the tower. In this way, in step (II), the EVAc partial saponification product is resaponified to obtain EVOH with a high degree of saponification.
図1は、後述する実施例で使用された塔式反応器(A)の模式図である。図1を参照して工程(II)を説明する。工程(I)で得られた前記EVAc部分けん化物の溶液を塔式反応器(A)の塔上部に供給する。図1では、塔上部のEVAc部分けん化物溶液供給口2から塔式反応器(A)に前記EVAc部分けん化物の溶液を供給している。そして、塔上部の前記EVAc部分けん化物の溶液を供給する位置より下部にアルカリ触媒を供給する。図1では、EVAc部分けん化物溶液供給口2より下部に設置されたアルカリ触媒供給口3から塔式反応器(A)内にアルカリ触媒を供給している。また、溶媒蒸気を塔下部に供給して、塔上部から排出する。溶媒蒸気を供給する位置は、後述するEVOHの溶液を取り出す位置より上部が好ましい。溶媒蒸気を排出する位置は、EVAc部分けん化物の溶液に残存するアルデヒド等の不純物をさらに効率的に除去できる観点から、EVAc部分けん化物の溶液を供給する位置よりも上部が好ましい。同様の観点から、溶媒蒸気を排出する位置が塔頂部であることも好ましい。図1では、塔下部の溶媒蒸気吹込み口4から溶媒蒸気を吹き込み、塔頂部の溶媒蒸気排出口1から溶媒蒸気が排出される。
Figure 1 is a schematic diagram of a tower reactor (A) used in the examples described later. Step (II) will be described with reference to Figure 1. The solution of the EVAc partial saponification product obtained in step (I) is supplied to the top of the tower reactor (A). In Figure 1, the solution of the EVAc partial saponification product is supplied to the tower reactor (A) from an EVAc partial saponification product solution supply port 2 at the top of the tower. An alkaline catalyst is supplied to a position below the position at the top of the tower where the solution of the EVAc partial saponification product is supplied. In Figure 1, an alkaline catalyst is supplied into the tower reactor (A) from an alkaline catalyst supply port 3 installed below the EVAc partial saponification product solution supply port 2. Solvent vapor is also supplied to the bottom of the tower and discharged from the top of the tower. The position at which the solvent vapor is supplied is preferably above the position at which the EVOH solution described later is taken out. The position from which the solvent vapor is discharged is preferably above the position from which the solution of the partially saponified EVAc is supplied, from the viewpoint of more efficiently removing impurities such as aldehyde remaining in the solution of the partially saponified EVAc. From the same viewpoint, it is also preferable that the position from which the solvent vapor is discharged is the top of the tower. In FIG. 1, the solvent vapor is blown in from the solvent vapor inlet 4 at the bottom of the tower, and the solvent vapor is discharged from the solvent vapor outlet 1 at the top of the tower.
塔上部に供給された前記EVAc部分けん化物の溶液は塔式反応器(A)の上部から底部に搬送される。塔上部に供給された前記EVAc部分けん化物の溶液は、前記溶媒蒸気と接触して、副生するアルデヒドや酢酸エステル等が塔上部(溶媒蒸気排出口1)から前記溶媒蒸気とともに排出される。そして、前記アルカリ触媒が供給される位置(アルカリ触媒供給口3)まで搬送された前記EVAc部分けん化物の溶液は前記アルカリ触媒と接触して、前記EVAc部分けん化物の再けん化が行われた後、塔底部(EVOH溶液出口5)からEVOHの溶液が取り出される。塔上部の前記EVAc部分けん化物の溶液を供給する位置より下部にアルカリ触媒を供給することにより、塔上部で予め前記EVAc部分けん化物の溶液に残存するアルデヒド等の不純物を前記溶媒蒸気により除去した後、再けん化することができる。これにより、再けん化時における、前記EVAc部分けん化物の着色が抑制される。
The solution of the EVAc partial saponification product supplied to the top of the tower is transported from the top to the bottom of the tower reactor (A). The solution of the EVAc partial saponification product supplied to the top of the tower comes into contact with the solvent vapor, and by-products such as aldehydes and acetate esters are discharged from the top of the tower (solvent vapor outlet 1) together with the solvent vapor. The solution of the EVAc partial saponification product transported to the position where the alkaline catalyst is supplied (alkaline catalyst supply port 3) comes into contact with the alkaline catalyst, and the EVAc partial saponification product is re-saponified, and then the EVOH solution is taken out from the bottom of the tower (EVOH solution outlet 5). By supplying the alkaline catalyst below the position where the solution of the EVAc partial saponification product is supplied at the top of the tower, impurities such as aldehydes remaining in the solution of the EVAc partial saponification product can be removed in advance by the solvent vapor at the top of the tower, and then the EVAc partial saponification product can be re-saponified. This suppresses coloration of the EVAc partial saponification product during re-saponification.
工程(II)において、アルカリ触媒は工程(I)と同様のものが使用される。また、前記溶媒蒸気は、工程(I)で用いられるEVAcの溶液の溶媒と同様のものが使用される。なお、工程(II)で使用される溶媒について、工程(II)では、EVAcの部分けん化物のけん化度を99mol%以上となるまでけん化反応を行う必要があるが、溶媒に水を多く含む反応系においては酢酸エステルの加水分解反応が支配的となり、けん化反応を効率的に進めることが難しくなる場合があり、けん化度を高めるためにアルカリ触媒の使用量が増える場合がある。したがって、工程(II)で使用される溶媒は水を含まないことが好ましいが、水を含む場合、その含有量は、アルカリ触媒の使用量を少なくする観点から1.5質量%以下が好ましく、1質量%以下がより好ましく、0.8質量%以下がさらに好ましい。工程(II)で使用される溶媒の含水量が前記上限以下であると、得られるEVOHに含まれる触媒残渣の量が少なくなり、その結果、熱安定性の低下等を抑制することができるため好ましい。工程(II)に供される前記EVAc部分けん化物の溶液中の前記EVAc部分けん化物の濃度は、特に限定されないが、70質量%以下が好ましい。前記濃度が70質量%を超える場合、塔式反応器(A)中のEVAc部分けん化物が析出して棚板の孔を塞ぐことなどによって圧力が上昇することにより、連続運転可能な期間が短くなるおそれがある。前記EVAc部分けん化物の濃度は、60質量%以下がより好ましい。一方、生産性の点から、前記EVAc部分けん化物の濃度は、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましく、40質量%以上が特に好ましい。
In step (II), the same alkali catalyst as in step (I) is used. The same solvent vapor as that of the EVAc solution used in step (I) is used. Regarding the solvent used in step (II), the saponification reaction must be carried out until the degree of saponification of the partially saponified EVAc reaches 99 mol% or more. In a reaction system containing a large amount of water in the solvent, the hydrolysis reaction of the acetate ester becomes dominant, which may make it difficult to efficiently proceed with the saponification reaction, and the amount of the alkali catalyst used may increase in order to increase the degree of saponification. Therefore, it is preferable that the solvent used in step (II) does not contain water, but if it does contain water, its content is preferably 1.5 mass% or less, more preferably 1 mass% or less, and even more preferably 0.8 mass% or less, from the viewpoint of reducing the amount of the alkali catalyst used. If the water content of the solvent used in step (II) is equal to or less than the upper limit, the amount of catalyst residue contained in the obtained EVOH is reduced, and as a result, deterioration of thermal stability, etc. can be suppressed, which is preferable. The concentration of the EVAc partial saponification product in the solution of the EVAc partial saponification product provided in step (II) is not particularly limited, but is preferably 70% by mass or less. If the concentration exceeds 70% by mass, the EVAc partial saponification product in the tower reactor (A) may precipitate and block the holes in the shelves, causing an increase in pressure, which may shorten the period during which continuous operation is possible. The concentration of the EVAc partial saponification product is more preferably 60% by mass or less. On the other hand, from the viewpoint of productivity, the concentration of the EVAc partial saponification product is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, and particularly preferably 40% by mass or more.
一般に、けん化反応が進行すると、EVAc部分けん化物の溶媒への溶解性が低下するため、工程(II)における塔式反応器(A)を加圧して高温で反応を行うことが好ましい。塔式反応器(A)の圧力は、0.1~1.0MPaが好ましい。前記圧力は0.8MPa以下がより好ましく、0.6MPa以下がさらに好ましく、0.55MPa以下が特に好ましい。前記圧力は0.2MPa以上であってもよい。
Generally, as the saponification reaction progresses, the solubility of the partially saponified EVAc in the solvent decreases, so it is preferable to pressurize the tower reactor (A) in step (II) and carry out the reaction at a high temperature. The pressure in the tower reactor (A) is preferably 0.1 to 1.0 MPa. The pressure is more preferably 0.8 MPa or less, even more preferably 0.6 MPa or less, and particularly preferably 0.55 MPa or less. The pressure may be 0.2 MPa or more.
塔式反応器(A)の温度は、60~180℃が好ましい。反応効率を高める点から、当該温度は、70℃以上がより好ましく、80℃以上がさらに好ましく、90℃以上が特に好ましい。一方、塔式反応器(A)の温度は、150℃以下がより好ましく、140℃以下がさらに好ましく、130℃以下が特に好ましい。
The temperature of the tower reactor (A) is preferably 60 to 180°C. From the viewpoint of increasing the reaction efficiency, the temperature is more preferably 70°C or higher, even more preferably 80°C or higher, and particularly preferably 90°C or higher. On the other hand, the temperature of the tower reactor (A) is more preferably 150°C or lower, even more preferably 140°C or lower, and particularly preferably 130°C or lower.
工程(II)における、塔式反応器(A)に供給される溶媒蒸気の量が、塔式反応器(A)に供給されるEVAc部分けん化物100質量部に対して、50質量部以上500質量部未満が好ましい。前記溶媒蒸気の量が50質量部未満の場合、EVAc部分けん化物中のアルデヒドなどの不純物が十分に除去されず、得られるEVOHが着色するおそれがある。前記溶媒蒸気の量は、60質量部以上がより好ましい。一方、前記溶媒蒸気の量が500質量部以上の場合、EVAc部分けん化物が前記溶媒蒸気とともに排出されるおそれがある。前記溶媒蒸気の量は300質量部以下がより好ましく、200質量部以下がさらに好ましく、150質量部以下がよりさらに好ましく、100質量部以下が特に好ましい。また、溶媒蒸気の温度は、例えば、塔内の圧力における溶媒の沸点程度とすればよい。
In step (II), the amount of solvent vapor supplied to the tower reactor (A) is preferably 50 parts by mass or more and less than 500 parts by mass relative to 100 parts by mass of the EVAc partially saponified product supplied to the tower reactor (A). If the amount of the solvent vapor is less than 50 parts by mass, impurities such as aldehydes in the EVAc partially saponified product may not be sufficiently removed, and the resulting EVOH may be colored. The amount of the solvent vapor is more preferably 60 parts by mass or more. On the other hand, if the amount of the solvent vapor is 500 parts by mass or more, the EVAc partially saponified product may be discharged together with the solvent vapor. The amount of the solvent vapor is more preferably 300 parts by mass or less, even more preferably 200 parts by mass or less, even more preferably 150 parts by mass or less, and particularly preferably 100 parts by mass or less. The temperature of the solvent vapor may be, for example, about the boiling point of the solvent at the pressure inside the tower.
工程(II)におけるアルカリ触媒の添加量は、EVAc部分けん化物100質量部に対して、0.01~10質量部が好ましい。当該添加量は、0.05質量部以上がより好ましく、0.1質量部以上がさらに好ましく、0.3質量部以上が特に好ましい。一方、前記添加量は、5質量部以下がより好ましく、3質量部以下がさらに好ましい。
The amount of the alkali catalyst added in step (II) is preferably 0.01 to 10 parts by mass per 100 parts by mass of the EVAc partially saponified product. The amount is more preferably 0.05 parts by mass or more, even more preferably 0.1 parts by mass or more, and particularly preferably 0.3 parts by mass or more. On the other hand, the amount is more preferably 5 parts by mass or less, and even more preferably 3 parts by mass or less.
上述した本発明の製造方法により、35日以上、工程(II)の塔式反応器(A)を連続運転して、EVOHを連続的に製造することが好ましい。これにより、EVOHをさらに効率的に製造することができる。EVOHを連続的に製造する日数は、40日以上がより好ましく、45日以上がさらに好ましく、50日以上がよりさらに好ましく、55日以上が特に好ましい。
According to the above-mentioned production method of the present invention, it is preferable to continuously operate the tower reactor (A) in step (II) for 35 days or more to continuously produce EVOH. This allows EVOH to be produced more efficiently. The number of days for continuous production of EVOH is more preferably 40 days or more, even more preferably 45 days or more, even more preferably 50 days or more, and particularly preferably 55 days or more.
工程(II)により得られたEVOHの溶液は、公知の方法でペレット化することが好ましい。ペレット化する方法としては、EVOH溶液を冷却凝固させて切断する方法、EVOHを押出機で溶融混練してから吐出して切断する方法などが挙げられる。EVOHの切断方法としては、EVOHをストランド状に押し出してからペレタイザーで切断する方法、ダイスから吐出したEVOHをセンターホットカット方式やアンダーウォーターカット方式などで切断する方法などが具体例として挙げられる。EVOH溶液がペレット化されると、含水EVOHペレットとなる。
The EVOH solution obtained in step (II) is preferably pelletized by a known method. Examples of pelletization methods include a method in which the EVOH solution is cooled and solidified, and then cut, and a method in which the EVOH is melt-kneaded in an extruder, then discharged, and then cut. Specific examples of methods for cutting EVOH include a method in which EVOH is extruded into strands and then cut with a pelletizer, and a method in which EVOH is discharged from a die and then cut using a center hot cut method or an underwater cut method. When the EVOH solution is pelletized, it becomes hydrous EVOH pellets.
EVOH溶液を冷却凝固させて含水EVOHペレットを得た場合、かかる含水EVOHペレットは、公知の方法で洗浄、脱液することが好ましい。また、公知の方法でホウ素化合物、アルカリ金属塩、アルカリ土類金属塩などを含む溶液に浸漬させて、含水EVOH中に係る化合物を含有させる化学処理を行うことが好ましい。これらの化合物を含有させると、EVOH成形体の機械的特性、熱安定性などを改善することができる。また、EVOHを溶融混練してペレタイズして含水EVOHを得た場合は、EVOHの洗浄、脱液、化学処理を押出機中で行ってもよい。
When the EVOH solution is cooled and solidified to obtain hydrous EVOH pellets, it is preferable to wash and deliquor the hydrous EVOH pellets by a known method. It is also preferable to perform a chemical treatment by immersing the pellets in a solution containing a boron compound, an alkali metal salt, an alkaline earth metal salt, or the like by a known method to incorporate the relevant compound into the hydrous EVOH. Incorporating these compounds can improve the mechanical properties and thermal stability of the EVOH molded body. When the hydrous EVOH is obtained by melt-kneading and pelletizing EVOH, the EVOH may be washed, deliquored, and chemically treated in an extruder.
得られた含水EVOHペレットを、公知の方法で乾燥することで、EVOHペレットを得ることができる。乾燥後のEVOHペレットの含水率は0.5質量%以下とすることが好ましい。乾燥方法は特に限定されず、空気乾燥もしくは窒素乾燥と組合せた静置乾燥法、流動乾燥法、または真空乾燥法などが挙げられるが、幾つかの乾燥方法を組み合わせた多段階の乾燥が好ましく、予備乾燥と本乾燥を備える多段乾燥であることがより好ましい。
EVOH pellets can be obtained by drying the obtained hydrous EVOH pellets by a known method. It is preferable that the moisture content of the EVOH pellets after drying is 0.5 mass% or less. There are no particular limitations on the drying method, and examples include stationary drying combined with air drying or nitrogen drying, fluidized drying, and vacuum drying, but multi-stage drying combining several drying methods is preferable, and multi-stage drying including preliminary drying and main drying is more preferable.
こうして得られるEVOHのけん化度の範囲は99mol%以上100mol%以下である必要がある。本発明の製造方法によれば、このような高けん化度のEVOHを効率よく製造することができる。前記けん化度は、99.3mol%以上が好ましく、99.5mol%以上がより好ましく、99.7mol%以上がさらに好ましい。
The saponification degree of the EVOH thus obtained must be in the range of 99 mol% or more and 100 mol% or less. According to the manufacturing method of the present invention, EVOH with such a high saponification degree can be efficiently manufactured. The saponification degree is preferably 99.3 mol% or more, more preferably 99.5 mol% or more, and even more preferably 99.7 mol% or more.
前記EVOHのイエローインデックス(YI)は、20以下が好ましく、15以下がより好ましく、13以下がさらに好ましく、9.5以下が特に好ましい。本発明の製造方法によれば、このような着色の少ないEVOHを効率よく製造することができる。
The yellow index (YI) of the EVOH is preferably 20 or less, more preferably 15 or less, even more preferably 13 or less, and particularly preferably 9.5 or less. According to the manufacturing method of the present invention, such EVOH with little coloring can be efficiently manufactured.
本発明の方法により得られたEVOHはフィルム、シート、容器、パイプ、繊維等、各種の成形物に成形することができる。
The EVOH obtained by the method of the present invention can be molded into various molded products such as films, sheets, containers, pipes, and fibers.
以下、実施例を用いてさらに具体的に説明する。
The following provides a more detailed explanation using examples.
[評価方法]
(1)工程(I)後のEVAc部分けん化物のけん化度
実施例及び比較例で得られた工程(I)後のEVAc部分けん化物溶液を、ロータリーエバポレーターで濃縮した後、減圧下、40℃で10時間乾燥させて乾燥EVAc部分けん化物を得た。得られた乾燥EVAc部分けん化物20mgをCDCl36mLに溶解した後、下記の測定条件で1H-NMRの測定を行い、3.1~4.1ppmに観測されるビニルアルコール単位のメチン水素(けん化された部位)の積分値と4.5~5.2ppmに観測される酢酸ビニル単位のメチン水素(未けん化部位)の積分値の比からけん化度を求めた。
(測定条件)
装置名:日本電子製 超電導核磁気共鳴装置Lambda 500
観測周波数:500MHz
測定温度:25℃
積算回数:1024回 [Evaluation method]
(1) Degree of Saponification of Partially Saponified EVAc After Step (I) The partially saponified EVAc solution after step (I) obtained in the Examples and Comparative Examples was concentrated using a rotary evaporator and then dried under reduced pressure at 40° C. for 10 hours to obtain a dry partially saponified EVAc. 20 mg of the resulting dry partially saponified EVAc was dissolved in 6 mL of CDCl 3 and subjected to 1 H-NMR measurement under the following measurement conditions, and the degree of saponification was calculated from the ratio of the integral value of the methine hydrogen of the vinyl alcohol unit (saponified site) observed at 3.1 to 4.1 ppm to the integral value of the methine hydrogen of the vinyl acetate unit (unsaponified site) observed at 4.5 to 5.2 ppm.
(Measurement conditions)
Device name: JEOL superconducting nuclear magnetic resonance device Lambda 500
Observation frequency: 500MHz
Measurement temperature: 25°C
Number of times of accumulation: 1024 times
(1)工程(I)後のEVAc部分けん化物のけん化度
実施例及び比較例で得られた工程(I)後のEVAc部分けん化物溶液を、ロータリーエバポレーターで濃縮した後、減圧下、40℃で10時間乾燥させて乾燥EVAc部分けん化物を得た。得られた乾燥EVAc部分けん化物20mgをCDCl36mLに溶解した後、下記の測定条件で1H-NMRの測定を行い、3.1~4.1ppmに観測されるビニルアルコール単位のメチン水素(けん化された部位)の積分値と4.5~5.2ppmに観測される酢酸ビニル単位のメチン水素(未けん化部位)の積分値の比からけん化度を求めた。
(測定条件)
装置名:日本電子製 超電導核磁気共鳴装置Lambda 500
観測周波数:500MHz
測定温度:25℃
積算回数:1024回 [Evaluation method]
(1) Degree of Saponification of Partially Saponified EVAc After Step (I) The partially saponified EVAc solution after step (I) obtained in the Examples and Comparative Examples was concentrated using a rotary evaporator and then dried under reduced pressure at 40° C. for 10 hours to obtain a dry partially saponified EVAc. 20 mg of the resulting dry partially saponified EVAc was dissolved in 6 mL of CDCl 3 and subjected to 1 H-NMR measurement under the following measurement conditions, and the degree of saponification was calculated from the ratio of the integral value of the methine hydrogen of the vinyl alcohol unit (saponified site) observed at 3.1 to 4.1 ppm to the integral value of the methine hydrogen of the vinyl acetate unit (unsaponified site) observed at 4.5 to 5.2 ppm.
(Measurement conditions)
Device name: JEOL superconducting nuclear magnetic resonance device Lambda 500
Observation frequency: 500MHz
Measurement temperature: 25°C
Number of times of accumulation: 1024 times
(2)EVOHのけん化度
実施例及び比較例において、製造を開始して3日後に得られた乾燥EVOHペレットを粉砕して、得られた粉末20mgを重ジメチルスルホキシド/重トリフルオロ酢酸の混合溶液(質量比:重ジメチルスルホキシド/重トリフルオロ酢酸=95:5)6mLに溶解した後、下記の測定条件で1H-NMRの測定を行い、3.1~4.1ppmに観測されるビニルアルコール単位のメチン水素の積分値(けん化された部位)と1.9~2.0ppmに観測される酢酸ビニル単位のメチル基水素(未けん化部位)の積分値の比からけん化度を求めた。
(測定条件)
装置名:日本電子製 超電導核磁気共鳴装置Lambda 500
観測周波数:500MHz
測定温度:80℃
積算回数:128回 (2) Saponification Degree of EVOH In the Examples and Comparative Examples, dried EVOH pellets obtained 3 days after the start of production were pulverized, and 20 mg of the obtained powder was dissolved in 6 mL of a mixed solution of deuterated dimethyl sulfoxide/deuterated trifluoroacetic acid (mass ratio: deuterated dimethyl sulfoxide/deuterated trifluoroacetic acid=95:5), and then 1 H-NMR measurement was performed under the measurement conditions described below. The saponification degree was calculated from the ratio of the integral value of the methine hydrogen of the vinyl alcohol unit observed at 3.1 to 4.1 ppm (saponified site) to the integral value of the methyl group hydrogen of the vinyl acetate unit observed at 1.9 to 2.0 ppm (unsaponified site).
(Measurement conditions)
Device name: JEOL superconducting nuclear magnetic resonance device Lambda 500
Observation frequency: 500MHz
Measurement temperature: 80°C
Number of times accumulated: 128
実施例及び比較例において、製造を開始して3日後に得られた乾燥EVOHペレットを粉砕して、得られた粉末20mgを重ジメチルスルホキシド/重トリフルオロ酢酸の混合溶液(質量比:重ジメチルスルホキシド/重トリフルオロ酢酸=95:5)6mLに溶解した後、下記の測定条件で1H-NMRの測定を行い、3.1~4.1ppmに観測されるビニルアルコール単位のメチン水素の積分値(けん化された部位)と1.9~2.0ppmに観測される酢酸ビニル単位のメチル基水素(未けん化部位)の積分値の比からけん化度を求めた。
(測定条件)
装置名:日本電子製 超電導核磁気共鳴装置Lambda 500
観測周波数:500MHz
測定温度:80℃
積算回数:128回 (2) Saponification Degree of EVOH In the Examples and Comparative Examples, dried EVOH pellets obtained 3 days after the start of production were pulverized, and 20 mg of the obtained powder was dissolved in 6 mL of a mixed solution of deuterated dimethyl sulfoxide/deuterated trifluoroacetic acid (mass ratio: deuterated dimethyl sulfoxide/deuterated trifluoroacetic acid=95:5), and then 1 H-NMR measurement was performed under the measurement conditions described below. The saponification degree was calculated from the ratio of the integral value of the methine hydrogen of the vinyl alcohol unit observed at 3.1 to 4.1 ppm (saponified site) to the integral value of the methyl group hydrogen of the vinyl acetate unit observed at 1.9 to 2.0 ppm (unsaponified site).
(Measurement conditions)
Device name: JEOL superconducting nuclear magnetic resonance device Lambda 500
Observation frequency: 500MHz
Measurement temperature: 80°C
Number of times accumulated: 128
(3)工程(II)における塔式反応器(A)の塔底圧力
実施例及び比較例の工程(II)で用いられる塔式反応器(A)[棚段塔(けん化塔、総段数21段)]の塔底部(1段目下部)に設置された圧力計により塔底部の圧力を測定した。EVOHの製造開始から3日後における塔底部の圧力を表1に示す。 (3) Pressure at the bottom of the tower reactor (A) in step (II) The pressure at the bottom of the tower was measured with a pressure gauge installed at the bottom (lower part of the first plate) of the tower reactor (A) [plate tower (saponification tower, total number of plates: 21)] used in step (II) in the Examples and Comparative Examples. The pressure at the bottom of the tower three days after the start of EVOH production is shown in Table 1.
実施例及び比較例の工程(II)で用いられる塔式反応器(A)[棚段塔(けん化塔、総段数21段)]の塔底部(1段目下部)に設置された圧力計により塔底部の圧力を測定した。EVOHの製造開始から3日後における塔底部の圧力を表1に示す。 (3) Pressure at the bottom of the tower reactor (A) in step (II) The pressure at the bottom of the tower was measured with a pressure gauge installed at the bottom (lower part of the first plate) of the tower reactor (A) [plate tower (saponification tower, total number of plates: 21)] used in step (II) in the Examples and Comparative Examples. The pressure at the bottom of the tower three days after the start of EVOH production is shown in Table 1.
(4)連続製造日数
実施例及び比較例において、EVOHの製造を連続的に実施した際に、上記評価方法(3)のとおり測定される塔底部の圧力が0.52MPaを超えた時点で製造を停止し、製造開始から製造停止までの日数を連続製造日数とした。 (4) Continuous Production Days In the Examples and Comparative Examples, when EVOH was continuously produced, the production was stopped when the pressure at the bottom of the tower measured in accordance with the above evaluation method (3) exceeded 0.52 MPa, and the number of days from the start of production to the stop of production was recorded as the continuous production days.
実施例及び比較例において、EVOHの製造を連続的に実施した際に、上記評価方法(3)のとおり測定される塔底部の圧力が0.52MPaを超えた時点で製造を停止し、製造開始から製造停止までの日数を連続製造日数とした。 (4) Continuous Production Days In the Examples and Comparative Examples, when EVOH was continuously produced, the production was stopped when the pressure at the bottom of the tower measured in accordance with the above evaluation method (3) exceeded 0.52 MPa, and the number of days from the start of production to the stop of production was recorded as the continuous production days.
(5)工程(II)の留出液
実施例及び比較例に記載されるEVOHの製造開始から3日後において、工程(II)において塔頂部より混合蒸気として排出(留出)したものが凝縮した留出液について、白濁の有無及び樹脂の有無を目視で確認し、下記基準で評価した。評価がDであるものは生産効率が悪いと判断した。
評価:基準
A:無色透明
B:僅かに白濁
C:著しく白濁
D:樹脂有り
(6)EVOHの黄色度評価
実施例及び比較例において、製造を開始して3日後に得られた乾燥EVOHペレットのYI(黄色度、イエローインデックス)をJIS-K-7103に準じて測定した。 (5) Distillate of step (II) Three days after the start of the production of EVOH described in the Examples and Comparative Examples, the distillate condensed from the mixed vapor discharged (distilled) from the top of the tower in step (II) was visually inspected for the presence or absence of turbidity and resin, and was evaluated according to the following criteria. A grade of D was determined to be poor in production efficiency.
Evaluation: Criteria A: Colorless and transparent B: Slightly cloudy C: Extremely cloudy D: Resin present (6) Evaluation of Yellowness of EVOH In the Examples and Comparative Examples, the YI (yellowness index) of the dried EVOH pellets obtained 3 days after the start of production was measured in accordance with JIS-K-7103.
実施例及び比較例に記載されるEVOHの製造開始から3日後において、工程(II)において塔頂部より混合蒸気として排出(留出)したものが凝縮した留出液について、白濁の有無及び樹脂の有無を目視で確認し、下記基準で評価した。評価がDであるものは生産効率が悪いと判断した。
評価:基準
A:無色透明
B:僅かに白濁
C:著しく白濁
D:樹脂有り
(6)EVOHの黄色度評価
実施例及び比較例において、製造を開始して3日後に得られた乾燥EVOHペレットのYI(黄色度、イエローインデックス)をJIS-K-7103に準じて測定した。 (5) Distillate of step (II) Three days after the start of the production of EVOH described in the Examples and Comparative Examples, the distillate condensed from the mixed vapor discharged (distilled) from the top of the tower in step (II) was visually inspected for the presence or absence of turbidity and resin, and was evaluated according to the following criteria. A grade of D was determined to be poor in production efficiency.
Evaluation: Criteria A: Colorless and transparent B: Slightly cloudy C: Extremely cloudy D: Resin present (6) Evaluation of Yellowness of EVOH In the Examples and Comparative Examples, the YI (yellowness index) of the dried EVOH pellets obtained 3 days after the start of production was measured in accordance with JIS-K-7103.
[実施例1]
(工程I)
エチレン単位含有量が44mol%であり、酢酸ビニル単位含有量が56mol%であるEVAcをメタノールに溶解させた濃度57質量%のEVAcメタノール溶液と、濃度120g/Lの水酸化ナトリウムを含むメタノール溶液とを体積比95:5の割合でスタティックミキサーにて60℃で10分間混合し、EVAc部分けん化物溶液を得た。得られたEVAc部分けん化物溶液について、上記評価方法(1)に記載の方法に従いけん化度を測定した。結果を表1に示す。 [Example 1]
(Step I)
A 57% by mass EVAc methanol solution, in which EVAc having an ethylene unit content of 44 mol% and a vinyl acetate unit content of 56 mol% was dissolved in methanol, was mixed with a 120 g/L sodium hydroxide methanol solution in a volume ratio of 95:5 at 60° C. for 10 minutes in a static mixer to obtain a partially saponified EVAc solution. The degree of saponification of the obtained partially saponified EVAc solution was measured according to the method described in the above evaluation method (1). The results are shown in Table 1.
(工程I)
エチレン単位含有量が44mol%であり、酢酸ビニル単位含有量が56mol%であるEVAcをメタノールに溶解させた濃度57質量%のEVAcメタノール溶液と、濃度120g/Lの水酸化ナトリウムを含むメタノール溶液とを体積比95:5の割合でスタティックミキサーにて60℃で10分間混合し、EVAc部分けん化物溶液を得た。得られたEVAc部分けん化物溶液について、上記評価方法(1)に記載の方法に従いけん化度を測定した。結果を表1に示す。 [Example 1]
(Step I)
A 57% by mass EVAc methanol solution, in which EVAc having an ethylene unit content of 44 mol% and a vinyl acetate unit content of 56 mol% was dissolved in methanol, was mixed with a 120 g/L sodium hydroxide methanol solution in a volume ratio of 95:5 at 60° C. for 10 minutes in a static mixer to obtain a partially saponified EVAc solution. The degree of saponification of the obtained partially saponified EVAc solution was measured according to the method described in the above evaluation method (1). The results are shown in Table 1.
(工程II)
続いて、工程(I)で得られたEVAc部分けん化物メタノール溶液を塔式反応器(A)(棚段塔(けん化塔、総段数21段)、塔内径140mm、高さ4700mm)を用いてさらにけん化した。図1は、前記塔式反応器(A)の模式図である。塔内温度118℃である当該塔式反応器(A)のEVAc部分けん化物溶液供給口2から20段目の棚板に8kg/hの速度でEVAc部分けん化物メタノール溶液を連続的に供給した。溶媒蒸気吹込み口4から1段目下部に、塔式反応器(A)に供給されるEVAc部分けん化物100質量部に対して、75質量部となる量のメタノール蒸気を連続的に供給した。アルカリ触媒供給口3から14段目の棚板に、塔式反応器(A)に供給されるEVAc部分けん化物100質量部に対して、1質量部となる量の水酸化ナトリウムを含むメタノール溶液を連続的に供給した。また、副生する酢酸メチルやアルデヒドを過剰なメタノールとともに混合蒸気として塔頂部(溶媒蒸気排出口1)から留出させ、塔底部(EVOH溶液出口5)よりEVOHメタノール溶液を得た。上記評価方法(3)~(5)に記載の方法に従い、工程(II)における、塔底圧力、連続製造日数及び留出液の評価を行った。結果を表1に示す。 (Step II)
Subsequently, the partially saponified EVAc methanol solution obtained in step (I) was further saponified using a tower reactor (A) (plate tower (saponification tower, total number of stages: 21), tower inner diameter: 140 mm, height: 4700 mm). FIG. 1 is a schematic diagram of the tower reactor (A). The partially saponified EVAc methanol solution was continuously supplied to the 20th plate of the tower reactor (A) at a rate of 8 kg/h from the partially saponified EVAcsolution supply port 2 at a tower temperature of 118° C. Methanol vapor was continuously supplied from the solvent vapor supply port 4 to the lower part of the first plate in an amount of 75 parts by mass relative to 100 parts by mass of the partially saponified EVAc supplied to the tower reactor (A). A methanol solution containing sodium hydroxide in an amount of 1 part by mass relative to 100 parts by mass of the partially saponified EVAc supplied to the tower reactor (A) was continuously supplied to the 14th plate from the alkali catalyst supply port 3. Also, by-products such as methyl acetate and aldehyde were distilled as mixed vapor together with excess methanol from the top of the tower (solvent vapor outlet 1), and an EVOH methanol solution was obtained from the bottom of the tower (EVOH solution outlet 5). The bottom pressure, number of continuous production days, and distillate in step (II) were evaluated according to the methods described in the above evaluation methods (3) to (5). The results are shown in Table 1.
続いて、工程(I)で得られたEVAc部分けん化物メタノール溶液を塔式反応器(A)(棚段塔(けん化塔、総段数21段)、塔内径140mm、高さ4700mm)を用いてさらにけん化した。図1は、前記塔式反応器(A)の模式図である。塔内温度118℃である当該塔式反応器(A)のEVAc部分けん化物溶液供給口2から20段目の棚板に8kg/hの速度でEVAc部分けん化物メタノール溶液を連続的に供給した。溶媒蒸気吹込み口4から1段目下部に、塔式反応器(A)に供給されるEVAc部分けん化物100質量部に対して、75質量部となる量のメタノール蒸気を連続的に供給した。アルカリ触媒供給口3から14段目の棚板に、塔式反応器(A)に供給されるEVAc部分けん化物100質量部に対して、1質量部となる量の水酸化ナトリウムを含むメタノール溶液を連続的に供給した。また、副生する酢酸メチルやアルデヒドを過剰なメタノールとともに混合蒸気として塔頂部(溶媒蒸気排出口1)から留出させ、塔底部(EVOH溶液出口5)よりEVOHメタノール溶液を得た。上記評価方法(3)~(5)に記載の方法に従い、工程(II)における、塔底圧力、連続製造日数及び留出液の評価を行った。結果を表1に示す。 (Step II)
Subsequently, the partially saponified EVAc methanol solution obtained in step (I) was further saponified using a tower reactor (A) (plate tower (saponification tower, total number of stages: 21), tower inner diameter: 140 mm, height: 4700 mm). FIG. 1 is a schematic diagram of the tower reactor (A). The partially saponified EVAc methanol solution was continuously supplied to the 20th plate of the tower reactor (A) at a rate of 8 kg/h from the partially saponified EVAc
(EVOHペレットの製造)
工程(II)で得られたEVOHメタノール溶液に、工程(II)で塔式反応器(A)に供給した水酸化ナトリウムと等モル量の酢酸を加え、残存していた水酸化ナトリウムを中和した。次いで、共重合体濃度が40質量%となるまで溶液を濃縮した。この溶液を口径3.5mmのノズルから5℃に保持したメタノール―水混合溶媒(メタノール/水=10/90重量比)中に押し出してストランド状に凝固させ、カッターで切断することで含水EVOHペレットを得た。さらに、このペレットを大量の0.1g/Lの酢酸水溶液に投入して洗浄し、残存していたメタノールと酢酸ナトリウムを除いた後60℃で5時間乾燥し、さらに110℃で10時間乾燥することにより、乾燥EVOHペレットを得た。得られた乾燥EVOHペレットについて、上記評価方法(2)及び(6)に記載の方法に従い、けん化度及び黄色度を測定した。結果を表1に示す。 (Production of EVOH pellets)
To the EVOH methanol solution obtained in step (II), acetic acid was added in an amount equal to the molar amount of sodium hydroxide supplied to the tower reactor (A) in step (II) to neutralize the remaining sodium hydroxide. Next, the solution was concentrated until the copolymer concentration reached 40% by mass. This solution was extruded from a nozzle with a diameter of 3.5 mm into a methanol-water mixed solvent (methanol/water = 10/90 weight ratio) kept at 5 ° C. to solidify into a strand shape, and cut with a cutter to obtain hydrous EVOH pellets. Furthermore, the pellets were washed by putting them into a large amount of 0.1 g/L acetic acid aqueous solution, and the remaining methanol and sodium acetate were removed, and then the pellets were dried at 60 ° C. for 5 hours, and further dried at 110 ° C. for 10 hours to obtain dried EVOH pellets. The saponification degree and yellowness of the obtained dried EVOH pellets were measured according to the methods described in the above evaluation methods (2) and (6). The results are shown in Table 1.
工程(II)で得られたEVOHメタノール溶液に、工程(II)で塔式反応器(A)に供給した水酸化ナトリウムと等モル量の酢酸を加え、残存していた水酸化ナトリウムを中和した。次いで、共重合体濃度が40質量%となるまで溶液を濃縮した。この溶液を口径3.5mmのノズルから5℃に保持したメタノール―水混合溶媒(メタノール/水=10/90重量比)中に押し出してストランド状に凝固させ、カッターで切断することで含水EVOHペレットを得た。さらに、このペレットを大量の0.1g/Lの酢酸水溶液に投入して洗浄し、残存していたメタノールと酢酸ナトリウムを除いた後60℃で5時間乾燥し、さらに110℃で10時間乾燥することにより、乾燥EVOHペレットを得た。得られた乾燥EVOHペレットについて、上記評価方法(2)及び(6)に記載の方法に従い、けん化度及び黄色度を測定した。結果を表1に示す。 (Production of EVOH pellets)
To the EVOH methanol solution obtained in step (II), acetic acid was added in an amount equal to the molar amount of sodium hydroxide supplied to the tower reactor (A) in step (II) to neutralize the remaining sodium hydroxide. Next, the solution was concentrated until the copolymer concentration reached 40% by mass. This solution was extruded from a nozzle with a diameter of 3.5 mm into a methanol-water mixed solvent (methanol/water = 10/90 weight ratio) kept at 5 ° C. to solidify into a strand shape, and cut with a cutter to obtain hydrous EVOH pellets. Furthermore, the pellets were washed by putting them into a large amount of 0.1 g/L acetic acid aqueous solution, and the remaining methanol and sodium acetate were removed, and then the pellets were dried at 60 ° C. for 5 hours, and further dried at 110 ° C. for 10 hours to obtain dried EVOH pellets. The saponification degree and yellowness of the obtained dried EVOH pellets were measured according to the methods described in the above evaluation methods (2) and (6). The results are shown in Table 1.
(実施例2、5、比較例1~4)
工程(I)における水酸化ナトリウムの濃度を調整して、得られるEVAc部分けん化物のけん化度が表1に記載の通りとなるように変更した以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Examples 2 and 5, Comparative Examples 1 to 4)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that the concentration of sodium hydroxide in step (I) was adjusted so that the degree of saponification of the resulting partially saponified EVAc product would be as shown in Table 1. The results are shown in Table 1.
工程(I)における水酸化ナトリウムの濃度を調整して、得られるEVAc部分けん化物のけん化度が表1に記載の通りとなるように変更した以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Examples 2 and 5, Comparative Examples 1 to 4)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that the concentration of sodium hydroxide in step (I) was adjusted so that the degree of saponification of the resulting partially saponified EVAc product would be as shown in Table 1. The results are shown in Table 1.
(実施例3、6、7)
表1に記載のエチレン単位含有量を有するEVAcを用い、工程(I)における水酸化ナトリウムの濃度を調整して得られるEVAc部分けん化物のけん化度が表1に記載の通りとなるように調整した以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Examples 3, 6, and 7)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that EVAc having an ethylene unit content shown in Table 1 was used and the concentration of sodium hydroxide in step (I) was adjusted so that the degree of saponification of the partially saponified EVAc obtained was as shown in Table 1. The results are shown in Table 1.
表1に記載のエチレン単位含有量を有するEVAcを用い、工程(I)における水酸化ナトリウムの濃度を調整して得られるEVAc部分けん化物のけん化度が表1に記載の通りとなるように調整した以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Examples 3, 6, and 7)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that EVAc having an ethylene unit content shown in Table 1 was used and the concentration of sodium hydroxide in step (I) was adjusted so that the degree of saponification of the partially saponified EVAc obtained was as shown in Table 1. The results are shown in Table 1.
(実施例4、10、11)
工程(II)で塔式反応器(A)に供給するメタノール蒸気の供給量を表1に記載の通りとなるように変更した以外は、実施例1と同様の方法でEVOHペレットを作製し評価した。結果を表1に示す。 (Examples 4, 10, and 11)
EVOH pellets were produced and evaluated in the same manner as in Example 1, except that the amount of methanol vapor supplied to the tower reactor (A) in the step (II) was changed as shown in Table 1. The results are shown in Table 1.
工程(II)で塔式反応器(A)に供給するメタノール蒸気の供給量を表1に記載の通りとなるように変更した以外は、実施例1と同様の方法でEVOHペレットを作製し評価した。結果を表1に示す。 (Examples 4, 10, and 11)
EVOH pellets were produced and evaluated in the same manner as in Example 1, except that the amount of methanol vapor supplied to the tower reactor (A) in the step (II) was changed as shown in Table 1. The results are shown in Table 1.
(実施例8)
工程(I)及び工程(II)でメタノールの代わりにエタノールを溶媒として用いた以外は、実施例1と同様の方法でEVOHペレットを作製し評価した。結果を表1に示す。 (Example 8)
EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that ethanol was used as the solvent instead of methanol in steps (I) and (II). The results are shown in Table 1.
工程(I)及び工程(II)でメタノールの代わりにエタノールを溶媒として用いた以外は、実施例1と同様の方法でEVOHペレットを作製し評価した。結果を表1に示す。 (Example 8)
EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that ethanol was used as the solvent instead of methanol in steps (I) and (II). The results are shown in Table 1.
(実施例9)
工程(I)において、用いるEVAcメタノール溶液の濃度を表1に記載の通りとなるように変更するとともに、得られるEVAc部分けん化物のけん化度が表1に記載の通りとなるように水酸化ナトリウムの濃度を調整した以外は、実施例1と同様の方法でEVOHペレットを作製し評価した。結果を表1に示す。 (Example 9)
EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that in step (I), the concentration of the EVAc methanol solution used was changed as shown in Table 1, and the concentration of sodium hydroxide was adjusted so that the degree of saponification of the resulting partially saponified EVAc product was as shown in Table 1. The results are shown in Table 1.
工程(I)において、用いるEVAcメタノール溶液の濃度を表1に記載の通りとなるように変更するとともに、得られるEVAc部分けん化物のけん化度が表1に記載の通りとなるように水酸化ナトリウムの濃度を調整した以外は、実施例1と同様の方法でEVOHペレットを作製し評価した。結果を表1に示す。 (Example 9)
EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that in step (I), the concentration of the EVAc methanol solution used was changed as shown in Table 1, and the concentration of sodium hydroxide was adjusted so that the degree of saponification of the resulting partially saponified EVAc product was as shown in Table 1. The results are shown in Table 1.
(実施例12、13)
工程(I)における混合方法を、表1に記載の通りに変更した以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Examples 12 and 13)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that the mixing method in step (I) was changed as shown in Table 1. The results are shown in Table 1.
工程(I)における混合方法を、表1に記載の通りに変更した以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Examples 12 and 13)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that the mixing method in step (I) was changed as shown in Table 1. The results are shown in Table 1.
1 溶媒蒸気排出口
2 EVAc部分けん化物溶液供給口
3 アルカリ触媒供給口
4 溶媒蒸気吹込み口
5 EVOH溶液出口
1Solvent vapor outlet 2 EVAc partially saponified solution supply port 3 Alkaline catalyst supply port 4 Solvent vapor blowing port 5 EVOH solution outlet
2 EVAc部分けん化物溶液供給口
3 アルカリ触媒供給口
4 溶媒蒸気吹込み口
5 EVOH溶液出口
1
Claims (8)
- エチレン-酢酸ビニル共重合体の溶液中のエチレン-酢酸ビニル共重合体をアルカリ触媒を用いてけん化して、けん化度10mol%以上60mol%未満であるエチレン-酢酸ビニル共重合体部分けん化物の溶液を得る工程(I)及び
前記エチレン-酢酸ビニル共重合体部分けん化物の溶液を塔式反応器(A)の塔上部に供給し、
溶媒蒸気を塔下部に供給して、塔上部から排出するとともに、
アルカリ触媒を、塔式反応器(A)の、前記エチレン-酢酸ビニル共重合体部分けん化物の溶液を供給する位置より下部に供給して、前記エチレン-酢酸ビニル共重合体部分けん化物をさらにけん化した後、得られたけん化度99mol%以上100mol%以下であるエチレン-ビニルアルコール共重合体の溶液を塔底部から取り出す工程(II)を有する、エチレン-ビニルアルコール共重合体の製造方法。 (I) a step of saponifying the ethylene-vinyl acetate copolymer in the ethylene-vinyl acetate copolymer solution using an alkali catalyst to obtain a solution of a partially saponified ethylene-vinyl acetate copolymer having a saponification degree of 10 mol % or more and less than 60 mol %; and (B) a step of supplying the partially saponified ethylene-vinyl acetate copolymer solution to an upper portion of a tower reactor (A),
Solvent vapor is supplied to the bottom of the column and discharged from the top of the column.
The method for producing an ethylene-vinyl alcohol copolymer comprises a step (II) of supplying an alkali catalyst to a column reactor (A) below a position where the solution of the partially saponified ethylene-vinyl acetate copolymer is supplied, thereby further saponifying the partially saponified ethylene-vinyl acetate copolymer, and then withdrawing the obtained solution of an ethylene-vinyl alcohol copolymer having a saponification degree of 99 mol % or more and 100 mol % or less from the column bottom. - 工程(I)で得られるエチレン-酢酸ビニル共重合体部分けん化物のけん化度が10mol%以上50mol%未満である、請求項1に記載の製造方法。 The method of claim 1, wherein the degree of saponification of the partially saponified ethylene-vinyl acetate copolymer obtained in step (I) is 10 mol% or more and less than 50 mol%.
- 工程(I)で用いられるエチレン-酢酸ビニル共重合体のエチレン単位含有量が10mol%以上60mol%未満である、請求項1又は2に記載の製造方法。 The method according to claim 1 or 2, wherein the ethylene unit content of the ethylene-vinyl acetate copolymer used in step (I) is 10 mol% or more and less than 60 mol%.
- 工程(I)で用いられるエチレン-酢酸ビニル共重合体の溶液の溶媒及び工程(II)で用いられる溶媒蒸気がアルコールである、請求項1又は2に記載の製造方法。 The method according to claim 1 or 2, wherein the solvent for the ethylene-vinyl acetate copolymer solution used in step (I) and the solvent vapor used in step (II) are alcohols.
- 前記アルコールがメタノールである、請求項4に記載の製造方法。 The method of claim 4, wherein the alcohol is methanol.
- 工程(I)で用いられるエチレン-酢酸ビニル共重合体の溶液の濃度が60質量%以下である、請求項1又は2に記載の製造方法。 The method according to claim 1 or 2, wherein the concentration of the ethylene-vinyl acetate copolymer solution used in step (I) is 60% by mass or less.
- 工程(II)における、塔式反応器(A)に供給される溶媒蒸気の量が、塔式反応器(A)に供給されるエチレン-酢酸ビニル共重合体部分けん化物100質量部に対して、50質量部以上500質量部未満である、請求項1又は2に記載の製造方法。 The method according to claim 1 or 2, wherein the amount of solvent vapor supplied to the tower reactor (A) in step (II) is 50 parts by mass or more and less than 500 parts by mass per 100 parts by mass of the partially saponified ethylene-vinyl acetate copolymer supplied to the tower reactor (A).
- 工程(I)において、エチレン-酢酸ビニル共重合体の溶液とアルカリ触媒とを非塔式の混合器にて混合することで、けん化度10mol%以上60mol%未満であるエチレン-酢酸ビニル共重合体部分けん化物の溶液を得る、請求項1又は2に記載の製造方法。 The method according to claim 1 or 2, in which in step (I), a solution of ethylene-vinyl acetate copolymer and an alkali catalyst are mixed in a non-tower mixer to obtain a solution of partially saponified ethylene-vinyl acetate copolymer having a degree of saponification of 10 mol% or more and less than 60 mol%.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-075468 | 2023-05-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024228377A1 true WO2024228377A1 (en) | 2024-11-07 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5179309B2 (en) | Process for producing saponified ethylene-vinyl acetate copolymer | |
JP4953528B2 (en) | Process for producing water-containing composition of ethylene-vinyl alcohol copolymer | |
KR100666889B1 (en) | Polyvinyl alcohol polymer production and polyvinyl alcohol polymer | |
US7683135B2 (en) | Ethylene-vinyl alcohol based copolymer and method for production thereof | |
JP4330253B2 (en) | Process for producing ethylene-vinyl acetate copolymer and saponified product thereof | |
EP0495495B1 (en) | Process for producing ethylene-vinyl ester copolymers, process for producing ethylene-vinyl alcohol copolymers and process for producing shaped articles | |
EP1645574B9 (en) | The process for continuously producing ethylene-vinyl acetate copolymer and reaction system | |
JP4674004B2 (en) | Process for producing ethylene-vinyl acetate copolymer and saponified product thereof | |
JPWO2018003884A1 (en) | Resin composition, extrusion molded article, injection molded article and blow molded article | |
WO2024228377A1 (en) | Method for producing ethylene-vinyl alcohol copolymer | |
JP2011202052A (en) | Modified ethylene-vinyl alcohol copolymer, and composition containing the same | |
JP4746290B2 (en) | Process for producing modified ethylene-vinyl alcohol copolymer | |
EP1184394A1 (en) | Method for producing saponified ethylene-vinyl acetate copolymer | |
EP1621310B1 (en) | A method of producing ethylene-vinyl alcohol copolymer pellet | |
US6716930B2 (en) | Method for processing ethylene-vinyl alcohol copolymer solution | |
JP4077318B2 (en) | Process for producing saponified ethylene-vinyl acetate copolymer | |
JP4393684B2 (en) | Method for producing ethylene-vinyl alcohol copolymer pellets | |
JP2661654B2 (en) | Method for producing ethylene-vinyl ester copolymer | |
JP2024005772A (en) | Method for producing pellets of ethylene-vinyl ester copolymer saponification product | |
WO2023058761A1 (en) | Pellet containing ethylene-vinyl alcohol copolymer and method for producing same | |
JP2024005771A (en) | Method for producing pellets of ethylene-vinyl ester copolymer saponification product | |
JPH0559116A (en) | Production of ethylene-vinyl alcohol copolymer | |
JP2916440B2 (en) | Method for producing molded article of ethylene-vinyl alcohol copolymer | |
JP2024034799A (en) | Method for producing pellet containing modified ethylene-vinyl copolymer | |
JP3743696B2 (en) | Process for producing saponified ethylene-vinyl acetate copolymer |