WO2024218909A1 - Quantum computing system, quantum computing device, quantum computing method, and program - Google Patents

Quantum computing system, quantum computing device, quantum computing method, and program Download PDF

Info

Publication number
WO2024218909A1
WO2024218909A1 PCT/JP2023/015642 JP2023015642W WO2024218909A1 WO 2024218909 A1 WO2024218909 A1 WO 2024218909A1 JP 2023015642 W JP2023015642 W JP 2023015642W WO 2024218909 A1 WO2024218909 A1 WO 2024218909A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
quantum
quantum computing
error
error rate
Prior art date
Application number
PCT/JP2023/015642
Other languages
French (fr)
Japanese (ja)
Inventor
薫 山本
傑 遠藤
泰成 鈴木
裕己 徳永
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2023/015642 priority Critical patent/WO2024218909A1/en
Publication of WO2024218909A1 publication Critical patent/WO2024218909A1/en

Links

Images

Definitions

  • This disclosure relates to a quantum computing system, a quantum computing device, a quantum computing method, and a program.
  • the controlled NOT gate (hereafter also referred to as the CNOT gate) is an essential gate for enabling arbitrary quantum computation, and methods for implementing a highly accurate CNOT gate are being researched.
  • This disclosure has been made in consideration of the above points, and provides technology that can execute a non-local CNOT gate with high accuracy.
  • a quantum computing system is a quantum computing system including a plurality of quantum computing devices, each of which has a sharing unit that shares a two-qubit state with other quantum computing devices, the two-qubit state having a fidelity to the error Bell state equal to or greater than a predetermined value, a twirling operation unit that performs a twirling operation on the two-qubit state to create a predetermined state, an error rate estimation unit that estimates the error rate of the predetermined state, a quantum circuit execution unit that executes a quantum circuit including a nonlocal CNOT gate realized by a LOCC operation on the predetermined state, and an error removal unit that removes errors in the nonlocal CNOT gate based on the error rate.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of a quantum computing system according to an embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an example of the configuration of a quantum computing device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of a control device according to the present embodiment.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of a control device according to the present embodiment.
  • 1 is a flowchart showing a quantum computing process in Example 1.
  • 13 is a flowchart showing a quantum computing process in Example 2.
  • Non-Patent Document 1 Two representative methods for implementing a highly accurate nonlocal CNOT gate are known: the method described in Non-Patent Document 1 and the method described in Non-Patent Document 2.
  • Non-Patent Document 1 involves sharing in advance an entangled state called a Bell state between quantum computers located at distant locations, and executing a CNOT gate using local operations within each quantum computer and classical communication between the quantum computers.
  • LOCC Local operation and classical communication
  • Non-Patent Document 1 Because errors generally exist in Bell states that can be shared in advance, the method described in Non-Patent Document 1 first performs an operation called entanglement distillation (Reference 1) to create a Bell state with fewer errors from multiple Bell states using the LOCC operation. This has the disadvantages that a large number of Bell states are required in the entanglement distillation process and that the distillation protocol takes time to execute. On the other hand, compared to the method described in Non-Patent Document 2, it has the advantage that the number of calculations does not increase exponentially with respect to the accuracy of the CNOT gate.
  • Non-Patent Document 2 is a method of executing a pseudo CNOT gate using only LOCC operations in quantum computers located at different locations. This method has the advantage of not requiring prior sharing of Bell states or entanglement distillation, but has the disadvantage that the number of calculations required to obtain calculation results of the same accuracy increases exponentially compared to the method described in Non-Patent Document 1.
  • Non-Patent Document 1 the method described in Non-Patent Document 1 and the method described in Non-Patent Document 2 each have their own advantages and disadvantages.
  • a quantum computing system 1 capable of executing a highly accurate nonlocal CNOT gate using an intermediate method between these two methods will be described.
  • the quantum computing system 1 when executing a quantum circuit in which the number of calculations required to execute a nonlocal CNOT gate using only LOCC operations is too high while sharing a large number of Bell states and entanglement distillation is not desired, the quantum computing system 1 according to this embodiment can be used to eliminate the time cost required for entanglement distillation while also reducing the number of calculations required for the quantum circuit. Note that the following embodiment assumes a case in which quantum computation is performed to find some expected value using a quantum circuit including a nonlocal CNOT gate.
  • Fig. 1 An example of the overall configuration of a quantum computing system 1 according to this embodiment is shown in Fig. 1.
  • the quantum computing system 1 according to this embodiment includes a plurality of quantum computing devices 10.
  • each quantum computing device 10 is communicatively connected via a communication network 20 including, for example, a LAN (Local Area Network) or the like.
  • the quantum computing device 10 may be called, for example, a "quantum computer” or a "quantum computing node”.
  • quantum computing device 10-1 when distinguishing between the multiple quantum computing devices 10, they will be referred to as “quantum computing device 10-2,” etc.
  • quantum computing system 1 is assumed to be composed of two quantum computing devices 10, quantum computing device 10-1 and quantum computing device 10-2.
  • the embodiment described below can be similarly applied to a quantum computing system 1 composed of three or more quantum computing devices 10.
  • Fig. 2 An example of the configuration of the quantum computing device 10 according to this embodiment is shown in Fig. 2. As shown in Fig. 2, the quantum computing device 10 according to this embodiment includes a control device 100 and a quantum processor 200.
  • the control device 100 realizes quantum computation by communicating with other control devices 100 (classical communication) and controlling the quantum processor 200. That is, to realize quantum computation, the control device 100 communicates with other control devices 100 (classical communication), transmits control signals to the quantum processor 200, and obtains computation results from the quantum processor 200.
  • the control device 100 is realized, for example, by a classical computer.
  • the quantum processor 200 configures a quantum two-level system called a qubit or quantum bit (physical quantum bit), and performs initialization, gate operations (e.g., unitary transformation, etc.), physical operations, etc. on the qubit.
  • a quantum two-level system called a qubit or quantum bit (physical quantum bit)
  • initialization e.g., unitary transformation, etc.
  • gate operations e.g., unitary transformation, etc.
  • physical operations e.g., unitary transformation, etc.
  • any physical system may be used.
  • superconducting circuits, ion traps, photons, quantum dots, etc. may be used as the physical system.
  • control device 100 included in quantum computing device 10-1 when distinguishing between the control device 100 included in quantum computing device 10-1 and the control device 100 included in quantum computing device 10-2, the control device 100 included in quantum computing device 10-1 will be referred to as the “control device 100-1,” and the control device 100 included in quantum computing device 10-2 will be referred to as the “control device 100-2.”
  • quantum processor 200 the quantum processor 200 included in quantum computing device 10-1 will be referred to as the “quantum processor 200-1”
  • quantum processor 200 included in quantum computing device 10-2 will be referred to as the “quantum processor 200-2.”
  • the control device 100 includes an input device 101, a display device 102, an external I/F 103, a communication I/F 104, a RAM (Random Access Memory) 105, a ROM (Read Only Memory) 106, an auxiliary storage device 107, and a processor 108.
  • the control device 100 includes an input device 101, a display device 102, an external I/F 103, a communication I/F 104, a RAM (Random Access Memory) 105, a ROM (Read Only Memory) 106, an auxiliary storage device 107, and a processor 108.
  • Each of these pieces of hardware is connected to each other via a bus 109 so as to be able to communicate with each other.
  • the input device 101 is, for example, a keyboard, a mouse, a touch panel, a physical button, etc.
  • the display device 102 is, for example, a display, a display panel, etc. Note that the control device 100 does not have to have at least one of the input device 101 and the display device 102, for example.
  • the external I/F 103 is an interface with external devices such as a recording medium 103a.
  • recording media 103a include a CD (Compact Disc), a DVD (Digital Versatile Disk), an SD memory card (Secure Digital memory card), and a USB (Universal Serial Bus) memory card.
  • the communication I/F 104 is an interface for transmitting and receiving data (classical communication) with other control devices 100, and transmitting and receiving various signals with the quantum processor 200.
  • the RAM 105 is a volatile semiconductor memory (storage device) that temporarily stores programs and data.
  • the ROM 106 is a non-volatile semiconductor memory (storage device) that can store programs and data even when the power is turned off.
  • the auxiliary storage device 107 is a non-volatile storage device (storage device) such as a HDD (Hard Disk Drive), SSD (Solid State Drive), flash memory, etc.
  • the processor 108 is an arithmetic device such as a CPU (Central Processing Unit), etc.
  • control device 100 may have multiple auxiliary storage devices 107 or multiple processors 108, may not have some of the hardware shown in the figure, or may have various hardware other than the hardware shown in the figure.
  • Fig. 4 An example of the functional configuration of the control device 100 according to this embodiment is shown in Fig. 4.
  • the control device 100 according to this embodiment has a quantum computing control unit 110 and a storage unit 120.
  • the quantum computing control unit 110 is realized, for example, by a process in which one or more programs installed in the control device 100 are executed by the processor 108 or the like.
  • the storage unit 120 is realized, for example, by the RAM 105, the auxiliary storage device 107, or the like.
  • the quantum computing control unit 110 realizes quantum computing to find a certain expected value using a quantum circuit including a non-local CNOT gate by communicating with other control devices 100 (classical communication) and controlling the quantum processor 200.
  • the storage unit 120 stores information necessary for the quantum computation performed by the quantum computation control unit 110.
  • the quantum computing control unit 110 includes a state sharing unit 111, a twirling operation unit 112, an error rate estimation unit 113, a quantum circuit execution unit 114, and an error removal unit 115.
  • the state sharing unit 111 shares a Bell state with other quantum computing devices 10 by a known method. Generally, an error may exist in this Bell state.
  • the twirling operation unit 112 performs an operation called a twirling operation on the Bell state.
  • the error rate estimation unit 113 estimates the error rate of the state after the twirling operation.
  • the quantum circuit execution unit 114 executes a quantum circuit including a nonlocal CNOT gate.
  • the quantum circuit execution unit 114 executes the nonlocal CNOT gate by performing a LOCC operation on the state after the twirling operation.
  • the error elimination unit 115 eliminates errors in the non-local CNOT gate executed by the quantum circuit execution unit 114 based on the error rate estimated by the error rate estimation unit 113. This allows for the expected value of the quantum circuit from which errors have been eliminated (or, more accurately, reduced).
  • the quantum computing control unit 110 possessed by the control device 100-1 when distinguishing between the quantum computing control unit 110 possessed by the control device 100-1 and the quantum computing control unit 110 possessed by the control device 100-2, the quantum computing control unit 110 possessed by the control device 100-1 will be referred to as the “quantum computing control unit 110-1,” and the quantum computing control unit 110 possessed by the control device 100-2 will be referred to as the “quantum computing control unit 110-2.”
  • the memory unit 120 the memory unit 120 possessed by the control device 100-1 will be referred to as the “memory unit 120-1," and the memory unit 120 possessed by the control device 100-2 will be referred to as the “memory unit 120-2.”
  • the state sharing unit 111 is represented as “state sharing unit 111-1” and “state sharing unit 111-2”
  • the twirling operation unit 112 is represented as “twirling operation unit 112-1” and “twirling operation unit 112-2”
  • the error rate estimation unit 113 is represented as "error rate
  • Example 1 The quantum computing process in the first embodiment will be described with reference to FIG.
  • the state sharing unit 111-1 of the quantum computing control unit 110-1 and the state sharing unit 111-2 of the quantum computing control unit 110-2 share the two-qubit state between the quantum processor 200-1 and the quantum processor 200-2 by a known method (step S101).
  • this two-qubit state may be any state as long as the fidelity with the following error-free Bell state is 0.5 or more.
  • 0.5 is just an example and is not limited to this.
  • the twirling operation unit 112-1 of the quantum computing control unit 110-1 and the twirling operation unit 112-2 of the quantum computing control unit 110-2 perform an operation called twirling (Reference 1) in which four types of local gates are randomly applied to the state shared in the above step S101, to create a state called a Bell diagonalized state (step S102).
  • twirling Reference 1
  • the Bell diagonalized state is shared between the quantum processor 200-1 and the quantum processor 200-2.
  • the above B i represents an operation of simultaneously performing a ⁇ /2 rotation operation R i ( ⁇ /2) around a local i ⁇ x, y, z ⁇ axis on the state of quantum processor 200-1 and the state of quantum processor 200-2. Note that the following means that an A gate is applied to the state (qubit) of quantum processor 200-1, and a B gate is applied to the state (qubit) of quantum processor 200-2.
  • the density matrix of the state after the twirling operation in step S102 above is as follows:
  • the error rate estimation unit 113-1 of the quantum computing control unit 110-1 and the error rate estimation unit 113-2 of the quantum computing control unit 110-2 estimate the error rate of the Bell diagonalized state (step S103).
  • the error rate estimation unit 113 may obtain the error rate by normal tomography, but may also estimate the error rate by, for example, steps 11 to 15, 21 to 25, and 31 to 35 below.
  • Step 11 The error rate estimation unit 113-1 prepares the state
  • Step 12 The error rate estimation units 113-1 and 113-2 apply a CNOT gate n times in succession to the Bell diagonalization state shared in step S102 above using the LOCC operation.
  • n is a multiple of 2.
  • Step 13 The error rate estimation unit 113-1 measures the state of the quantum processor 200-1 in the
  • Step 14 The error rate estimation units 113-1 and 113-2 repeat steps 11 to 13 above to obtain the expected value of the state of quantum processor 200-1 and the expected value of the state of quantum processor 200-2, respectively.
  • This expected value f(n, ⁇ ) is theoretically expressed by the following formula.
  • the number of times steps 11 to 13 are repeated may be determined according to the desired accuracy.
  • Step 15 The error rate estimation units 113-1 and 113-2 execute the above steps 11 to 14 for different values of n, and fit the resulting expected values to the theoretical formula shown in Equation 6 above to find ⁇ x + ⁇ y .
  • Step 21 The error rate estimation unit 113-1 prepares the state
  • Step 22 The error rate estimation units 113-1 and 113-2 apply a CNOT gate n times in succession to the Bell diagonalization state shared in step S102 above using the LOCC operation.
  • n is a multiple of 2.
  • Step 23 The error rate estimation unit 113-1 measures the state of the quantum processor 200-1 in the
  • Step 24 The error rate estimation units 113-1 and 113-2 repeat steps 21 to 23 above to obtain the expected value of the state of quantum processor 200-1 and the expected value of the state of quantum processor 200-2, respectively.
  • This expected value f(n, ⁇ ) is theoretically expressed by the following formula.
  • the number of times steps 21 to 23 are repeated may be determined according to the desired accuracy.
  • Step 25 The error rate estimation units 113-1 and 113-2 execute the above steps 21 to 24 for different values of n, and fit the resulting expected values to the theoretical formula shown in Equation 7 above to find ⁇ y + ⁇ z .
  • Step 31 The error rate estimation unit 113-1 prepares the state
  • Step 32 The error rate estimation units 113-1 and 113-2 apply a CNOT gate n times in succession to the Bell diagonalization state shared in step S102 above using the LOCC operation.
  • n is a multiple of 2.
  • Step 33 The error rate estimation unit 113-1 measures the state of the quantum processor 200-1 in the
  • Step 34 The error rate estimation units 113-1 and 113-2 repeat steps 31 to 33 above to obtain the expected value of the state of quantum processor 200-1 and the expected value of the state of quantum processor 200-2, respectively.
  • This expected value f(n, ⁇ ) is theoretically expressed by the following formula.
  • the number of times steps 31 to 33 are repeated may be determined according to the desired accuracy.
  • Step 35 The error rate estimation units 113-1 and 113-2 execute the above steps 31 to 34 for different n, and find ⁇ z + ⁇ x by fitting the expected values obtained as a result, ⁇ x + ⁇ y obtained in the above steps 11 to 15, and ⁇ y + ⁇ z obtained in the above steps 21 to 25 to the theoretical formula shown in the above equation 8.
  • the quantum circuit execution unit 114-1 of the quantum computing control unit 110-1 and the quantum circuit execution unit 114-2 of the quantum computing control unit 110-2 execute a quantum circuit including a nonlocal CNOT gate (step S104).
  • the quantum circuit execution unit 114-1 and the quantum circuit execution unit 114-2 execute the nonlocal CNOT gate by performing a LOCC operation on the Bell diagonalized state. Note that errors may exist in the nonlocal CNOT gate.
  • the error elimination unit 115-1 of the quantum computing control unit 110-1 and the error elimination unit 115-2 of the quantum computing control unit 110-2 retroactively eliminate (reduce) the errors in the nonlocal CNOT gate executed in step S104 above based on the error rate estimated in step S103 above (step S105).
  • the error elimination unit 115 reduces the errors using, for example, a probabilistic error elimination method (Reference 2).
  • the error elimination unit 115 may reduce the errors using the following steps 41 to 43.
  • Step 41 Error elimination units 115-1 and 115-2 insert an I(x)I gate with probability p II / ⁇ , an I(x)X gate with probability
  • I represents an identity operation (an operation that does nothing).
  • step 41 When inserting a gate (operation) in step 41 above, classical communication is performed between error removal unit 115-1 and error removal unit 115-2. This is because one error removal unit 115 needs to transmit the type of gate operation selected to the other error removal unit 115.
  • Step 42 Error elimination units 115-1 and 115-2 multiply the measurement results of the quantum circuit by ⁇ for the number of times an I(x)I gate was inserted, by p IX ⁇ /
  • Step 43 Error elimination units 115-1 and 115-2 repeat steps 41 and 42 above to find the weighted expectation of the quantum circuit. This weighted expectation is the expectation of the quantum circuit with reduced errors in the nonlocal CNOT gate.
  • the number of times steps 41 and 42 are repeated may be determined according to the desired accuracy.
  • classical communication is performed between error elimination units 115-1 and 115-2. This is to obtain the weights of the expected values calculated by error elimination units 115-1 and 115-2.
  • Example 2 The quantum computing process in the second embodiment will be described with reference to FIG.
  • the state sharing unit 111-1 of the quantum computing control unit 110-1 and the state sharing unit 111-2 of the quantum computing control unit 110-2 share the two-qubit state between the quantum processor 200-1 and the quantum processor 200-2 by a known method (step S201).
  • this two-qubit state may be any state as long as the fidelity with respect to the error-free Bell state shown in the above equation 1 is 0.5 or more.
  • 0.5 is just an example and is not limited to this.
  • twirling operation unit 112-1 of quantum computing control unit 110-1 and twirling operation unit 112-2 of quantum computing control unit 110-2 perform an operation called twirling (Reference 1) in which 12 types of local gates are randomly applied to the state shared in step S202 above, creating a state called a Werner state (step S202).
  • twirling Reference 1
  • the Werner state is shared between quantum processor 200-1 and quantum processor 200-2.
  • Bi is as shown in the above formula 2 .
  • the density matrix of the state after the twirling operation in step S202 above is as follows:
  • the state represented by the above density matrix is called the Werner state, where ⁇ is the error rate.
  • the error rate estimation unit 113-1 of the quantum computing control unit 110-1 and the error rate estimation unit 113-2 of the quantum computing control unit 110-2 estimate the error rate of the Werner state (step S203).
  • the error rate estimation unit 113 may obtain the error rate by normal tomography, but may also estimate the error rate by, for example, steps 51 to 55 below.
  • Step 51 The error rate estimation unit 113-1 prepares the state
  • Step 52 The error rate estimation units 113-1 and 113-2 apply a CNOT gate n times in succession to the Werner state shared in step S202 above using the LOCC operation.
  • n is a multiple of 2.
  • Step 53 The error rate estimation unit 113-1 measures the state of the quantum processor 200-1 in the
  • Step 54 The error rate estimation units 113-1 and 113-2 repeat steps 51 to 53 above to obtain the expected value of the state of quantum processor 200-1 and the expected value of the state of quantum processor 200-2, respectively.
  • This expected value f(n, ⁇ ) is theoretically expressed by the following formula.
  • the number of times steps 51 to 53 are repeated may be determined according to the desired accuracy.
  • Step 55 The error rate estimation unit 113-1 and the error rate estimation unit 113-2 execute steps 51 to 54 for different values of n, and calculate the error rate ⁇ by fitting each expected value obtained as a result to the theoretical formula shown in equation 11 above.
  • the quantum circuit execution unit 114-1 of the quantum computing control unit 110-1 and the quantum circuit execution unit 114-2 of the quantum computing control unit 110-2 execute a quantum circuit including a nonlocal CNOT gate (step S204).
  • the quantum circuit execution unit 114-1 and the quantum circuit execution unit 114-2 execute the nonlocal CNOT gate by performing a LOCC operation on the Werner state. Note that errors may exist in the nonlocal CNOT gate.
  • the error elimination unit 115-1 of the quantum computing control unit 110-1 and the error elimination unit 115-2 of the quantum computing control unit 110-2 retroactively eliminate (reduce) the errors in the nonlocal CNOT gate executed in step S204 above based on the error rate ⁇ estimated in step S203 above (step S205).
  • the error elimination unit 115 reduces the errors using, for example, a probabilistic error elimination method (Reference 2).
  • the error elimination unit 115 may reduce the errors using the following steps 61 to 63.
  • Step 61 Error elimination units 115-1 and 115-2 apply the identity operation with probability (3- ⁇ )/(3+2 ⁇ ) and the I(x)X, Z(x)X, and Z(x)I gates with probability ⁇ /(3+2 ⁇ ) after the nonlocal CNOT gate in the quantum circuit.
  • step 61 When inserting a gate (operation) in step 61 above, classical communication is performed between error removal unit 115-1 and error removal unit 115-2. This is because one error removal unit 115 needs to transmit the type of gate operation selected to the other error removal unit 115.
  • Step 62 Error elimination units 115-1 and 115-2 multiply the measurement results of the quantum circuit by ⁇ for the number of times an identity operation was performed, and by - ⁇ for the number of times an I(x)X, Z(x)X, or Z(x)I gate was inserted.
  • Step 63 Error elimination units 115-1 and 115-2 repeat steps 61 and 62 above to find the weighted expectation of the quantum circuit. This weighted expectation is the expectation of the quantum circuit with reduced errors in the nonlocal CNOT gate.
  • the number of times steps 61 and 62 are repeated may be determined according to the desired accuracy.
  • classical communication is performed between error elimination units 115-1 and 115-2. This is to obtain the weights of the expected values calculated by error elimination units 115-1 and 115-2.
  • the quantum computing system 1 shares a Bell state in which an error may exist among a plurality of quantum computing devices 10, and reduces the error of the nonlocal CNOT gate derived from the error of the Bell state by an error suppression method (e.g., a probabilistic error elimination method, etc.) after the fact.
  • an error suppression method e.g., a probabilistic error elimination method, etc.
  • the error rate of the Bell state is obtained by a method such as tomography. This makes it possible to execute a desired quantum circuit including a nonlocal CNOT gate.
  • the quantum computing system 1 makes it possible to reduce the number of times the quantum circuit is executed to obtain an expected value with sufficient accuracy, and since distillation is not required, it is also possible to reduce the cost required for distillation of erroneous Bell states. Therefore, for example, in cases where one does not want to consume a large number of Bell states and does not want to perform entanglement distillation, which takes time to execute, but executing a CNOT gate with local operations requires a large number of executions of the quantum circuit, by using the quantum computing system 1 according to this embodiment, it is possible to execute a non-local CNOT gate with a small number of executions of the quantum circuit while reducing the cost of entanglement distillation.
  • Reference 1 C. H. Bennett, DP DiVincenzo, J. A. Smolin, and W. K. Wootters, "Mixed-state entanglement and quantum error correction", Physical Review A 54, 3824 (1996).
  • Reference 2 S. Endo, S. C. Benjamin, and Y. Li, “Practical Quantum Error Mitigation for Near-Future Applications", Physical Review X 8, 031027 (2016).
  • Quantum computing device 100 Control device 101 Input device 102 Display device 103 External I/F 103a Recording medium 104 Communication I/F 105 RAM 106 ROM 107 Auxiliary storage device 108 Processor 109 Bus 110 Quantum computation control unit 111 State sharing unit 112 Twirl operation unit 113 Error rate estimation unit 114 Quantum circuit execution unit 115 Error removal unit 120 Storage unit 200 Quantum processor

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

A quantum computing system according to one aspect of the present disclosure includes a plurality of quantum computing devices. The quantum computing devices each include: a sharing unit that shares a two-qubit state in which fidelity between an error and a Bell state is equal to a prescribed value or greater with respect to another quantum computing device; a Twirling operation unit that performs a Twirling operation on the two-qubit state so as to achieve a prescribed state; an error rate estimation unit that estimates an error rate for the prescribed state; a quantum circuit execution unit that executes a quantum circuit including a non-local CNOT gate realized by an LOCC operation with respect to the prescribed state; and an error removal unit that removes an error of the non-local CNOT gate on the basis of the error rate.

Description

量子計算システム、量子計算装置、量子計算方法、及びプログラムQuantum computing system, quantum computing device, quantum computing method, and program
 本開示は、量子計算システム、量子計算装置、量子計算方法、及びプログラムに関する。 This disclosure relates to a quantum computing system, a quantum computing device, a quantum computing method, and a program.
 量子情報処理において、制御NOTゲート(以下、CNOTゲートともいう。)は、任意の量子計算を可能にするために不可欠なゲートであり、高精度なCNOTゲートの実行方法が研究されている。 In quantum information processing, the controlled NOT gate (hereafter also referred to as the CNOT gate) is an essential gate for enabling arbitrary quantum computation, and methods for implementing a highly accurate CNOT gate are being researched.
 一方で、現在の量子計算機のキュービット数は未だ少ないため、少数のキュービットをそれぞれ備えた複数の量子計算機を用いて実効的に多数のキュービット数を作る分散量子計算が考えられている。分散量子計算では一般に量子計算機同士が離れた地点にあるため、これらの量子計算機間のキュービット同士のCNOTゲート(これは、非局所CNOTゲートとも呼ばれる。)を精度良く実行することが不可欠である。精度の良い非局所CNOTゲートの代表的な実行方法としては、非特許文献1に記載されている手法と非特許文献2に記載されている手法の2つが知られている。 On the other hand, because the number of qubits in current quantum computers is still small, distributed quantum computing is being considered, in which multiple quantum computers, each equipped with a small number of qubits, are used to effectively create a large number of qubits. In distributed quantum computing, quantum computers are generally located far apart from each other, so it is essential to execute a CNOT gate (also called a nonlocal CNOT gate) between the qubits of these quantum computers with high accuracy. Two representative methods of executing a nonlocal CNOT gate with high accuracy are known: the method described in Non-Patent Document 1 and the method described in Non-Patent Document 2.
 しかしながら、非特許文献1に記載されている手法と非特許文献2に記載されている手法はいずれもメリット・デメリットがあり、両手法の中間的な手法は存在しない。 However, both the method described in Non-Patent Document 1 and the method described in Non-Patent Document 2 have advantages and disadvantages, and there is no intermediate method between the two methods.
 本開示は、上記の点に鑑みてなされたもので、精度の良い非局所CNOTゲートを実行できる技術を提供する。 This disclosure has been made in consideration of the above points, and provides technology that can execute a non-local CNOT gate with high accuracy.
 本開示の一態様による量子計算システムは、複数の量子計算装置が含まれる量子計算システムであって、前記量子計算装置は、他の量子計算装置との間でエラーがベル状態との忠実度が所定の値以上の2キュービット状態を共有する共有部と、前記2キュービット状態に対してTwirling操作を行って所定の状態にするTwirling操作部と、前記所定の状態のエラー率を推定するエラー率推定部と、前記所定の状態に対するLOCC操作によって実現される非局所CNOTゲートを含む量子回路を実行する量子回路実行部と、前記エラー率に基づいて、前記非局所CNOTゲートのエラーを除去するエラー除去部と、を有する。 A quantum computing system according to one aspect of the present disclosure is a quantum computing system including a plurality of quantum computing devices, each of which has a sharing unit that shares a two-qubit state with other quantum computing devices, the two-qubit state having a fidelity to the error Bell state equal to or greater than a predetermined value, a twirling operation unit that performs a twirling operation on the two-qubit state to create a predetermined state, an error rate estimation unit that estimates the error rate of the predetermined state, a quantum circuit execution unit that executes a quantum circuit including a nonlocal CNOT gate realized by a LOCC operation on the predetermined state, and an error removal unit that removes errors in the nonlocal CNOT gate based on the error rate.
 精度の良い非局所CNOTゲートを実行できる技術が提供される。 Technology is provided that can execute non-local CNOT gates with high accuracy.
本実施形態に係る量子計算システムの全体構成例を示す図である。1 is a diagram illustrating an example of the overall configuration of a quantum computing system according to an embodiment of the present invention. 本実施形態に係る量子計算装置の構成例を示す図である。FIG. 1 is a diagram illustrating an example of the configuration of a quantum computing device according to an embodiment of the present invention. 本実施形態に係る制御装置のハードウェア構成例を示す図である。FIG. 2 is a diagram illustrating an example of a hardware configuration of a control device according to the present embodiment. 本実施形態に係る制御装置の機能構成例を示す図である。FIG. 2 is a diagram illustrating an example of a functional configuration of a control device according to the present embodiment. 実施例1における量子計算処理を示すフローチャートである。1 is a flowchart showing a quantum computing process in Example 1. 実施例2における量子計算処理を示すフローチャートである。13 is a flowchart showing a quantum computing process in Example 2.
 以下、本発明の一実施形態について説明する。 Below, one embodiment of the present invention will be described.
 <非局所CNOTゲートの代表的な実行方法>
 精度の良い非局所CNOTゲートの代表的な実行方法としては、非特許文献1に記載されている手法と非特許文献2に記載されている手法の2つが知られている。
<Typical implementation of non-local CNOT gate>
Two representative methods for implementing a highly accurate nonlocal CNOT gate are known: the method described in Non-Patent Document 1 and the method described in Non-Patent Document 2.
 非特許文献1に記載されている手法は、互いに離れた地点にある量子計算機間でベル状態と呼ばれるエンタングルした状態を予め共有しておき、それぞれの量子計算機内での局所操作と量子計算機間の古典通信によってCNOTゲートを実行する方法である。以下、量子計算機内での局所操作と量子計算機間の古典通信とをまとめてLOCC(Local operation and classical communication)操作と呼ぶ。 The method described in Non-Patent Document 1 involves sharing in advance an entangled state called a Bell state between quantum computers located at distant locations, and executing a CNOT gate using local operations within each quantum computer and classical communication between the quantum computers. Hereinafter, local operations within a quantum computer and classical communication between quantum computers will be collectively referred to as LOCC (Local operation and classical communication) operations.
 予め共有できるベル状態には一般にエラーが存在するため、非特許文献1に記載されている手法では、まずエンタングルメント蒸留(参考文献1)という操作を行って、複数のベル状態からよりエラーの少ないベル状態をLOCC操作によって作り出している。このため、エンタングルメント蒸留の過程で大量のベル状態が必要であり、かつ、蒸留プロトコルの実行に時間が掛かるというデメリットがある。一方で、非特許文献2に記載されている手法と比較して、CNOTゲートの精度に対して計算回数が指数関数的に増加しないというメリットがある。 Because errors generally exist in Bell states that can be shared in advance, the method described in Non-Patent Document 1 first performs an operation called entanglement distillation (Reference 1) to create a Bell state with fewer errors from multiple Bell states using the LOCC operation. This has the disadvantages that a large number of Bell states are required in the entanglement distillation process and that the distillation protocol takes time to execute. On the other hand, compared to the method described in Non-Patent Document 2, it has the advantage that the number of calculations does not increase exponentially with respect to the accuracy of the CNOT gate.
 非特許文献2に記載されている手法は、互いに離れた地点にある量子計算機内でそれぞれLOCC操作のみで疑似的にCNOTゲートを実行する方法である。この手法は、事前のベル状態の共有やエンタングルメント蒸留の必要がないというメリットがある一方で、非特許文献1に記載されている手法と比較して同じ精度の計算結果を得るための計算回数が指数関数的に増加するというデメリットがある。 The method described in Non-Patent Document 2 is a method of executing a pseudo CNOT gate using only LOCC operations in quantum computers located at different locations. This method has the advantage of not requiring prior sharing of Bell states or entanglement distillation, but has the disadvantage that the number of calculations required to obtain calculation results of the same accuracy increases exponentially compared to the method described in Non-Patent Document 1.
 このように、非特許文献1に記載されている手法と非特許文献2に記載されている手法にはそれぞれメリット・デメリットがある。 As such, the method described in Non-Patent Document 1 and the method described in Non-Patent Document 2 each have their own advantages and disadvantages.
 そこで、以下の実施形態では、これら2つの手法の中間的な手法により精度の良い非局所CNOTゲートを実行することが可能な量子計算システム1について説明する。例えば、大量のベル状態の共有とエンタングルメント蒸留を行いたくない一方で、LOCC操作のみで非局所CNOTゲートを実行するには計算回数が多すぎるような量子回路を実行する場合に、本実施形態に係る量子計算システム1を用いることで、エンタングルメント蒸留に要する時間コストを不要としつつ、かつ、量子回路の計算回数も少なくすることができる。なお、以下の実施形態では、非局所CNOTゲートを含む量子回路によって何等かの期待値を求める量子計算を行う場合を想定する。 Then, in the following embodiment, a quantum computing system 1 capable of executing a highly accurate nonlocal CNOT gate using an intermediate method between these two methods will be described. For example, when executing a quantum circuit in which the number of calculations required to execute a nonlocal CNOT gate using only LOCC operations is too high while sharing a large number of Bell states and entanglement distillation is not desired, the quantum computing system 1 according to this embodiment can be used to eliminate the time cost required for entanglement distillation while also reducing the number of calculations required for the quantum circuit. Note that the following embodiment assumes a case in which quantum computation is performed to find some expected value using a quantum circuit including a nonlocal CNOT gate.
 <量子計算システム1の全体構成例>
 本実施形態に係る量子計算システム1の全体構成例を図1に示す。図1に示すように、本実施形態に係る量子計算システム1には、複数の量子計算装置10が含まれている。また、各量子計算装置10は、例えば、LAN(Local area network)等を含む通信ネットワーク20を介して通信可能に接続される。なお、量子計算装置10は、例えば、「量子計算機」や「量子計算ノード」等と呼ばれてもよい。
<Example of overall configuration of quantum computing system 1>
An example of the overall configuration of a quantum computing system 1 according to this embodiment is shown in Fig. 1. As shown in Fig. 1, the quantum computing system 1 according to this embodiment includes a plurality of quantum computing devices 10. In addition, each quantum computing device 10 is communicatively connected via a communication network 20 including, for example, a LAN (Local Area Network) or the like. Note that the quantum computing device 10 may be called, for example, a "quantum computer" or a "quantum computing node".
 以下、複数の量子計算装置10の各々を区別する場合は、「量子計算装置10-1」、「量子計算装置10-2」等と表すことにする。また、以下では、一例として、量子計算システム1は量子計算装置10-1と量子計算装置10-2の2台の量子計算装置10で構成されているものとする。ただし、以下で説明する実施形態は、3台以上の量子計算装置10で構成される量子計算システム1に対しても同様に適用することが可能である。 Hereinafter, when distinguishing between the multiple quantum computing devices 10, they will be referred to as "quantum computing device 10-1," "quantum computing device 10-2," etc. In addition, in the following, as an example, the quantum computing system 1 is assumed to be composed of two quantum computing devices 10, quantum computing device 10-1 and quantum computing device 10-2. However, the embodiment described below can be similarly applied to a quantum computing system 1 composed of three or more quantum computing devices 10.
 <量子計算装置10の構成例>
 本実施形態に係る量子計算装置10の構成例を図2に示す。図2に示すように、本実施形態に係る量子計算装置10には、制御装置100と、量子プロセッサ200とが含まれる。
<Configuration Example of Quantum Computing Device 10>
An example of the configuration of the quantum computing device 10 according to this embodiment is shown in Fig. 2. As shown in Fig. 2, the quantum computing device 10 according to this embodiment includes a control device 100 and a quantum processor 200.
 制御装置100は、他の制御装置100との間の通信(古典通信)と量子プロセッサ200の制御により量子計算を実現する。すなわち、制御装置100は、量子計算の実現のために、他の制御装置100との間で通信(古典通信)を行ったり、量子プロセッサ200に対して制御信号を送信したり、量子プロセッサ200から計算結果を取得したりする。なお、制御装置100は、例えば、古典コンピュータ等により実現される。 The control device 100 realizes quantum computation by communicating with other control devices 100 (classical communication) and controlling the quantum processor 200. That is, to realize quantum computation, the control device 100 communicates with other control devices 100 (classical communication), transmits control signals to the quantum processor 200, and obtains computation results from the quantum processor 200. The control device 100 is realized, for example, by a classical computer.
 量子プロセッサ200は、キュービット又は量子ビット(物理量子ビット)と呼ばれる量子2準位系を構成すると共に、キュービットに対して、初期化、ゲート操作(例えば、ユニタリ変換等)、物理演算等を行う。キュービットを実現するための物理系は特に限定されず、どのような物理系が使用されてもよい。例えば、物理系として、超伝導回路、イオントラップ、光子、量子ドット等を使用することができる。 The quantum processor 200 configures a quantum two-level system called a qubit or quantum bit (physical quantum bit), and performs initialization, gate operations (e.g., unitary transformation, etc.), physical operations, etc. on the qubit. There are no particular limitations on the physical system for realizing the qubit, and any physical system may be used. For example, superconducting circuits, ion traps, photons, quantum dots, etc. may be used as the physical system.
 以下、量子計算装置10-1に含まれる制御装置100と量子計算装置10-2に含まれる制御装置100とを区別する場合は、量子計算装置10-1に含まれる制御装置100を「制御装置100-1」、量子計算装置10-2に含まれる制御装置100を「制御装置100-2」と表す。量子プロセッサ200についても同様に、量子計算装置10-1に含まれる量子プロセッサ200を「量子プロセッサ200-1」、量子計算装置10-2に含まれる量子プロセッサ200を「量子プロセッサ200-2」と表す。 Hereinafter, when distinguishing between the control device 100 included in quantum computing device 10-1 and the control device 100 included in quantum computing device 10-2, the control device 100 included in quantum computing device 10-1 will be referred to as the "control device 100-1," and the control device 100 included in quantum computing device 10-2 will be referred to as the "control device 100-2." Similarly, for the quantum processor 200, the quantum processor 200 included in quantum computing device 10-1 will be referred to as the "quantum processor 200-1," and the quantum processor 200 included in quantum computing device 10-2 will be referred to as the "quantum processor 200-2."
 <制御装置100のハードウェア構成例>
 本実施形態に係る制御装置100のハードウェア構成例を図3に示す。図3に示すように、本実施形態に係る制御装置100は、入力装置101と、表示装置102と、外部I/F103と、通信I/F104と、RAM(Random Access Memory)105と、ROM(Read Only Memory)106と、補助記憶装置107と、プロセッサ108とを有する。これらの各ハードウェアは、それぞれがバス109を介して通信可能に接続される。
<Example of hardware configuration of control device 100>
An example of a hardware configuration of the control device 100 according to this embodiment is shown in Fig. 3. As shown in Fig. 3, the control device 100 according to this embodiment includes an input device 101, a display device 102, an external I/F 103, a communication I/F 104, a RAM (Random Access Memory) 105, a ROM (Read Only Memory) 106, an auxiliary storage device 107, and a processor 108. Each of these pieces of hardware is connected to each other via a bus 109 so as to be able to communicate with each other.
 入力装置101は、例えば、キーボード、マウス、タッチパネル、物理ボタン等である。表示装置102は、例えば、ディスプレイ、表示パネル等である。なお、制御装置100は、例えば、入力装置101及び表示装置102のうちの少なくとも一方を有していなくてもよい。 The input device 101 is, for example, a keyboard, a mouse, a touch panel, a physical button, etc. The display device 102 is, for example, a display, a display panel, etc. Note that the control device 100 does not have to have at least one of the input device 101 and the display device 102, for example.
 外部I/F103は、記録媒体103a等の外部装置とのインタフェースである。記録媒体103aとしては、例えば、CD(Compact Disc)、DVD(Digital Versatile Disk)、SDメモリカード(Secure Digital memory card)、USB(Universal Serial Bus)メモリカード等が挙げられる。 The external I/F 103 is an interface with external devices such as a recording medium 103a. Examples of recording media 103a include a CD (Compact Disc), a DVD (Digital Versatile Disk), an SD memory card (Secure Digital memory card), and a USB (Universal Serial Bus) memory card.
 通信I/F104は、他の制御装置100との間でデータの送受信(古典通信)を行ったり、量子プロセッサ200との間で各種信号の送受信を行ったりするためのインタフェースである。RAM105は、プログラムやデータを一時保持する揮発性の半導体メモリ(記憶装置)である。ROM106は、電源を切ってもプログラムやデータを保持することができる不揮発性の半導体メモリ(記憶装置)である。補助記憶装置107は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、フラッシュメモリ等の不揮発性の記憶装置(ストレージ装置)である。プロセッサ108は、例えば、CPU(Central Processing Unit)等の演算装置である。 The communication I/F 104 is an interface for transmitting and receiving data (classical communication) with other control devices 100, and transmitting and receiving various signals with the quantum processor 200. The RAM 105 is a volatile semiconductor memory (storage device) that temporarily stores programs and data. The ROM 106 is a non-volatile semiconductor memory (storage device) that can store programs and data even when the power is turned off. The auxiliary storage device 107 is a non-volatile storage device (storage device) such as a HDD (Hard Disk Drive), SSD (Solid State Drive), flash memory, etc. The processor 108 is an arithmetic device such as a CPU (Central Processing Unit), etc.
 なお、図3に示すハードウェア構成は一例であって、制御装置100のハードウェア構成はこれに限られるものではない。例えば、制御装置100は、複数の補助記憶装置107や複数のプロセッサ108を有していてもよいし、図示したハードウェアの一部を有していなくてもよいし、図示したハードウェア以外の種々のハードウェアを有していてもよい。 Note that the hardware configuration shown in FIG. 3 is an example, and the hardware configuration of the control device 100 is not limited to this. For example, the control device 100 may have multiple auxiliary storage devices 107 or multiple processors 108, may not have some of the hardware shown in the figure, or may have various hardware other than the hardware shown in the figure.
 <制御装置100の機能構成例>
 本実施形態に係る制御装置100の機能構成例を図4に示す。図4に示すように、本実施形態に係る制御装置100は、量子計算制御部110と、記憶部120とを有する。量子計算制御部110は、例えば、制御装置100にインストールされた1以上のプログラムが、プロセッサ108等に実行させる処理により実現される。また、記憶部120は、例えば、RAM105や補助記憶装置107等により実現される。
<Example of functional configuration of control device 100>
An example of the functional configuration of the control device 100 according to this embodiment is shown in Fig. 4. As shown in Fig. 4, the control device 100 according to this embodiment has a quantum computing control unit 110 and a storage unit 120. The quantum computing control unit 110 is realized, for example, by a process in which one or more programs installed in the control device 100 are executed by the processor 108 or the like. The storage unit 120 is realized, for example, by the RAM 105, the auxiliary storage device 107, or the like.
 量子計算制御部110は、他の制御装置100との間の通信(古典通信)と量子プロセッサ200の制御により、非局所CNOTゲートを含む量子回路によって或る所定の期待値を求める量子計算を実現する。 The quantum computing control unit 110 realizes quantum computing to find a certain expected value using a quantum circuit including a non-local CNOT gate by communicating with other control devices 100 (classical communication) and controlling the quantum processor 200.
 記憶部120は、量子計算制御部110によって実現される量子計算のために必要な情報を記憶する。 The storage unit 120 stores information necessary for the quantum computation performed by the quantum computation control unit 110.
 ここで、量子計算制御部110には、状態共有部111と、Twirling操作部112と、エラー率推定部113と、量子回路実行部114と、エラー除去部115とが含まれる。状態共有部111は、他の量子計算装置10との間で既知の手法によりベル状態を共有する。なお、一般に、このベル状態にはエラーが存在し得る。Twirling操作部112は、ベル状態に対してTwirling操作と呼ばれる操作を実行する。エラー率推定部113は、Twirling操作後の状態のエラー率を推定する。量子回路実行部114は、非局所CNOTゲートを含む量子回路を実行する。このとき、量子回路実行部114は、Twirling操作後の状態に対してLOCC操作を行うことにより非局所CNOTゲートを実行する。エラー除去部115は、エラー率推定部113によって推定されたエラー率に基づいて、量子回路実行部114によって実行された非局所CNOTゲートのエラーを除去する。これにより、エラーが除去(より正確にはエラーが低減)された量子回路の期待値が得られる。 Here, the quantum computing control unit 110 includes a state sharing unit 111, a twirling operation unit 112, an error rate estimation unit 113, a quantum circuit execution unit 114, and an error removal unit 115. The state sharing unit 111 shares a Bell state with other quantum computing devices 10 by a known method. Generally, an error may exist in this Bell state. The twirling operation unit 112 performs an operation called a twirling operation on the Bell state. The error rate estimation unit 113 estimates the error rate of the state after the twirling operation. The quantum circuit execution unit 114 executes a quantum circuit including a nonlocal CNOT gate. At this time, the quantum circuit execution unit 114 executes the nonlocal CNOT gate by performing a LOCC operation on the state after the twirling operation. The error elimination unit 115 eliminates errors in the non-local CNOT gate executed by the quantum circuit execution unit 114 based on the error rate estimated by the error rate estimation unit 113. This allows for the expected value of the quantum circuit from which errors have been eliminated (or, more accurately, reduced).
 以下、制御装置100-1が有する量子計算制御部110と制御装置100-2が有する量子計算制御部110とを区別する場合は、制御装置100-1が有する量子計算制御部110を「量子計算制御部110-1」、制御装置100-2が有する量子計算制御部110を「量子計算制御部110-2」と表す。記憶部120についても同様に、制御装置100-1が有する記憶部120を「記憶部120-1」、制御装置100-2が有する記憶部120を「記憶部120-2」と表す。量子計算制御部110に含まれる各部についても同様に、これら各部を量子計算制御部110-1と量子計算制御部110-2の間で区別する場合は、状態共有部111に関しては「状態共有部111-1」、「状態共有部111-2」と表し、Twirling操作部112に関しては「Twirling操作部112-1」、「Twirling操作部112-2」と表し、エラー率推定部113に関しては「エラー率推定部113-1」、「エラー率推定部113-2」と表し、量子回路実行部114に関しては「量子回路実行部114-1」、「量子回路実行部114-2」と表し、エラー除去部115に関しては「エラー除去部115-1」、「エラー除去部115-2」と表す。 Hereinafter, when distinguishing between the quantum computing control unit 110 possessed by the control device 100-1 and the quantum computing control unit 110 possessed by the control device 100-2, the quantum computing control unit 110 possessed by the control device 100-1 will be referred to as the "quantum computing control unit 110-1," and the quantum computing control unit 110 possessed by the control device 100-2 will be referred to as the "quantum computing control unit 110-2." Similarly, for the memory unit 120, the memory unit 120 possessed by the control device 100-1 will be referred to as the "memory unit 120-1," and the memory unit 120 possessed by the control device 100-2 will be referred to as the "memory unit 120-2." Similarly, when distinguishing between the quantum computing control unit 110-1 and the quantum computing control unit 110-2, the state sharing unit 111 is represented as "state sharing unit 111-1" and "state sharing unit 111-2", the twirling operation unit 112 is represented as "twirling operation unit 112-1" and "twirling operation unit 112-2", the error rate estimation unit 113 is represented as "error rate estimation unit 113-1" and "error rate estimation unit 113-2", the quantum circuit execution unit 114 is represented as "quantum circuit execution unit 114-1" and "quantum circuit execution unit 114-2", and the error elimination unit 115 is represented as "error elimination unit 115-1" and "error elimination unit 115-2".
 <量子計算処理>
 以下、本実施形態に係る量子計算処理の実施例1及び2について説明する。
<Quantum computing processing>
Hereinafter, examples 1 and 2 of the quantum computing process according to this embodiment will be described.
  ≪実施例1≫
 実施例1における量子計算処理について、図5を参照しながら説明する。
Example 1
The quantum computing process in the first embodiment will be described with reference to FIG.
 まず、量子計算制御部110-1の状態共有部111-1と量子計算制御部110-2の状態共有部111-2は、量子プロセッサ200-1と量子プロセッサ200-2の間で既知の手法により2キュービット状態を共有する(ステップS101)。ここで、この2キュービット状態は、以下のエラーがないベル状態とのフィデリティー(忠実度)が0.5以上であればどのような状態でもよい。ただし、0.5は一例であって、これに限定されるものではない。 First, the state sharing unit 111-1 of the quantum computing control unit 110-1 and the state sharing unit 111-2 of the quantum computing control unit 110-2 share the two-qubit state between the quantum processor 200-1 and the quantum processor 200-2 by a known method (step S101). Here, this two-qubit state may be any state as long as the fidelity with the following error-free Bell state is 0.5 or more. However, 0.5 is just an example and is not limited to this.
Figure JPOXMLDOC01-appb-M000001
 次に、量子計算制御部110-1のTwirling操作部112-1と量子計算制御部110-2のTwirling操作部112-2は、上記のステップS101で共有した状態に対して4種類の局所ゲートをランダムにかけるTwirling(参考文献1)という操作を行い、ベル対角化状態と呼ばれる状態にする(ステップS102)。これにより、量子プロセッサ200-1と量子プロセッサ200-2の間でベル対角化状態が共有される。
Figure JPOXMLDOC01-appb-M000001
Next, the twirling operation unit 112-1 of the quantum computing control unit 110-1 and the twirling operation unit 112-2 of the quantum computing control unit 110-2 perform an operation called twirling (Reference 1) in which four types of local gates are randomly applied to the state shared in the above step S101, to create a state called a Bell diagonalized state (step S102). As a result, the Bell diagonalized state is shared between the quantum processor 200-1 and the quantum processor 200-2.
 ここで、上記の4種類のゲート操作は、恒等操作(ゲートをかけない)、B、B、Bである。また、i=x,y,zに対して、Bは以下である。 Here, the above four types of gate operations are identity operation (no gate), BxBx , ByBy , and BzBz . Furthermore, for i=x, y, z , B i is as follows:
Figure JPOXMLDOC01-appb-M000002
 上記のBは、量子プロセッサ200-1の状態と量子プロセッサ200-2の状態に対して同時に局所的なi∈{x,y,z}軸回りのπ/2回転操作R(π/2)をかける操作を表す。なお、以下は、量子プロセッサ200-1の状態(キュービット)に対してAゲートを、量子プロセッサ200-2の状態(キュービット)に対してBゲートをそれぞれかけることを意味する。
Figure JPOXMLDOC01-appb-M000002
The above B i represents an operation of simultaneously performing a π/2 rotation operation R i (π/2) around a local iε{x, y, z} axis on the state of quantum processor 200-1 and the state of quantum processor 200-2. Note that the following means that an A gate is applied to the state (qubit) of quantum processor 200-1, and a B gate is applied to the state (qubit) of quantum processor 200-2.
Figure JPOXMLDOC01-appb-M000003
 以下、本明細書のテキスト中では、上記の数3を「A(×)B」と表すことにする。
Figure JPOXMLDOC01-appb-M000003
Hereinafter, in the text of this specification, the above formula 3 will be expressed as "A(x)B".
 なお、上記のTwirling操作の際には、Twirling操作部112-1とTwirling操作部112-2との間で古典通信が行われる。これは、一方のTwirling操作部112が選択したゲート操作の種類を他方のTwirling操作部112に送信する必要があるためである。 Note that during the above Twirl operation, classical communication is carried out between the Twirl operation unit 112-1 and the Twirl operation unit 112-2. This is because the type of gate operation selected by one Twirl operation unit 112 needs to be transmitted to the other Twirl operation unit 112.
 上記のステップS102におけるTwirling操作後の状態の密度行列は、以下となる。 The density matrix of the state after the twirling operation in step S102 above is as follows:
Figure JPOXMLDOC01-appb-M000004
 上記の密度行列によって表現される状態はベル対角化状態と呼ばれる(参考文献1)。ただし、|φ〉、|φ〉、|φ〉はそれぞれ以下である。
Figure JPOXMLDOC01-appb-M000004
The state represented by the above density matrix is called the Bell diagonalized state (Reference 1), where |φ x 〉, |φ y 〉, and |φ z 〉 are as follows,
Figure JPOXMLDOC01-appb-M000005
 ここで、ε、ε、εはそれぞれの状態に対応するエラー率であり、ε=ε+ε+εは理想のベル状態からのエラー率を表す。
Figure JPOXMLDOC01-appb-M000005
Here, ε x , ε y , and ε z are error rates corresponding to the respective states, and ε=ε xyz represents the error rate from an ideal Bell state.
 次に、量子計算制御部110-1のエラー率推定部113-1と量子計算制御部110-2のエラー率推定部113-2は、上記のベル対角化状態のエラー率を推定する(ステップS103)。エラー率推定部113は、通常のトモグラフィーによりエラー率を求めてもよいが、例えば、以下の手順11~手順15、手順21~手順25及び手順31~手順35によりエラー率を推定してもよい。 Next, the error rate estimation unit 113-1 of the quantum computing control unit 110-1 and the error rate estimation unit 113-2 of the quantum computing control unit 110-2 estimate the error rate of the Bell diagonalized state (step S103). The error rate estimation unit 113 may obtain the error rate by normal tomography, but may also estimate the error rate by, for example, steps 11 to 15, 21 to 25, and 31 to 35 below.
 手順11:エラー率推定部113-1は量子プロセッサ200-1に状態|0〉を準備し、同様にエラー率推定部113-2は量子プロセッサ200-2に状態|0〉を準備する。 Step 11: The error rate estimation unit 113-1 prepares the state |0> in the quantum processor 200-1, and similarly the error rate estimation unit 113-2 prepares the state |0> in the quantum processor 200-2.
 手順12:エラー率推定部113-1とエラー率推定部113-2は、上記のステップS102で共有したベル対角化状態に対して、LOCC操作でCNOTゲートをn回連続でかける。ただし、nは2の倍数であるものとする。 Step 12: The error rate estimation units 113-1 and 113-2 apply a CNOT gate n times in succession to the Bell diagonalization state shared in step S102 above using the LOCC operation. Here, n is a multiple of 2.
 手順13:エラー率推定部113-1は量子プロセッサ200-1の状態を|0〉、|1〉基底で測定(Z測定)し、同様にエラー率推定部113-2は量子プロセッサ200-2の状態を|0〉、|1〉基底で測定(Z測定)する。 Step 13: The error rate estimation unit 113-1 measures the state of the quantum processor 200-1 in the |0> and |1> bases (Z measurement), and similarly the error rate estimation unit 113-2 measures the state of the quantum processor 200-2 in the |0> and |1> bases (Z measurement).
 手順14:エラー率推定部113-1とエラー率推定部113-2は上記の手順11~手順13を繰り返し、それぞれ量子プロセッサ200-1の状態の期待値と量子プロセッサ200-2の状態の期待値を求める。この期待値f(n,ε)は理論的に以下の式で表される。 Step 14: The error rate estimation units 113-1 and 113-2 repeat steps 11 to 13 above to obtain the expected value of the state of quantum processor 200-1 and the expected value of the state of quantum processor 200-2, respectively. This expected value f(n, ε) is theoretically expressed by the following formula.
Figure JPOXMLDOC01-appb-M000006
 なお、上記の手順11~手順13の繰り返し回数は所望の精度に応じて決定すればよい。
Figure JPOXMLDOC01-appb-M000006
The number of times steps 11 to 13 are repeated may be determined according to the desired accuracy.
 手順15:エラー率推定部113-1とエラー率推定部113-2は、異なるnに対して上記の手順11~手順14を実行し、その結果得られた各期待値を上記の数6に示す理論式にフィッティングすることによりε+εを求める。 Step 15: The error rate estimation units 113-1 and 113-2 execute the above steps 11 to 14 for different values of n, and fit the resulting expected values to the theoretical formula shown in Equation 6 above to find ε xy .
 手順21:エラー率推定部113-1は量子プロセッサ200-1に状態|+〉を準備し、同様にエラー率推定部113-2は量子プロセッサ200-2に状態|+〉を準備する。 Step 21: The error rate estimation unit 113-1 prepares the state |+> in the quantum processor 200-1, and similarly, the error rate estimation unit 113-2 prepares the state |+> in the quantum processor 200-2.
 手順22:エラー率推定部113-1とエラー率推定部113-2は、上記のステップS102で共有したベル対角化状態に対して、LOCC操作でCNOTゲートをn回連続でかける。ただし、nは2の倍数であるものとする。 Step 22: The error rate estimation units 113-1 and 113-2 apply a CNOT gate n times in succession to the Bell diagonalization state shared in step S102 above using the LOCC operation. Here, n is a multiple of 2.
 手順23:エラー率推定部113-1は量子プロセッサ200-1の状態を|+〉、|-〉基底で測定(X測定)し、同様にエラー率推定部113-2は量子プロセッサ200-2の状態を|+〉、|-〉基底で測定(X測定)する。 Step 23: The error rate estimation unit 113-1 measures the state of the quantum processor 200-1 in the |+> and |-> basis (X measurement), and similarly the error rate estimation unit 113-2 measures the state of the quantum processor 200-2 in the |+> and |-> basis (X measurement).
 手順24:エラー率推定部113-1とエラー率推定部113-2は上記の手順21~手順23を繰り返し、それぞれ量子プロセッサ200-1の状態の期待値と量子プロセッサ200-2の状態の期待値を求める。この期待値f(n,ε)は理論的に以下の式で表される。 Step 24: The error rate estimation units 113-1 and 113-2 repeat steps 21 to 23 above to obtain the expected value of the state of quantum processor 200-1 and the expected value of the state of quantum processor 200-2, respectively. This expected value f(n, ε) is theoretically expressed by the following formula.
Figure JPOXMLDOC01-appb-M000007
 なお、上記の手順21~手順23の繰り返し回数は所望の精度に応じて決定すればよい。
Figure JPOXMLDOC01-appb-M000007
The number of times steps 21 to 23 are repeated may be determined according to the desired accuracy.
 手順25:エラー率推定部113-1とエラー率推定部113-2は、異なるnに対して上記の手順21~手順24を実行し、その結果得られた各期待値を上記の数7に示す理論式にフィッティングすることによりε+εを求める。 Step 25: The error rate estimation units 113-1 and 113-2 execute the above steps 21 to 24 for different values of n, and fit the resulting expected values to the theoretical formula shown in Equation 7 above to find ε yz .
 手順31:エラー率推定部113-1は量子プロセッサ200-1に状態|0〉を準備し、一方で、エラー率推定部113-2は量子プロセッサ200-2に状態|+〉を準備する。 Step 31: The error rate estimation unit 113-1 prepares the state |0> in the quantum processor 200-1, while the error rate estimation unit 113-2 prepares the state |+> in the quantum processor 200-2.
 手順32::エラー率推定部113-1とエラー率推定部113-2は、上記のステップS102で共有したベル対角化状態に対して、LOCC操作でCNOTゲートをn回連続でかける。ただし、nは2の倍数であるものとする。 Step 32: The error rate estimation units 113-1 and 113-2 apply a CNOT gate n times in succession to the Bell diagonalization state shared in step S102 above using the LOCC operation. Here, n is a multiple of 2.
 手順33:エラー率推定部113-1は量子プロセッサ200-1の状態を|0〉、|1〉基底で測定(Z測定)し、一方で、エラー率推定部113-2は量子プロセッサ200-2の状態を|+〉、|-〉基底で測定(X測定)する。 Step 33: The error rate estimation unit 113-1 measures the state of the quantum processor 200-1 in the |0> and |1> basis (Z measurement), while the error rate estimation unit 113-2 measures the state of the quantum processor 200-2 in the |+> and |-> basis (X measurement).
 手順34:エラー率推定部113-1とエラー率推定部113-2は上記の手順31~手順33を繰り返し、それぞれ量子プロセッサ200-1の状態の期待値と量子プロセッサ200-2の状態の期待値を求める。この期待値f(n,ε)は理論的に以下の式で表される。 Step 34: The error rate estimation units 113-1 and 113-2 repeat steps 31 to 33 above to obtain the expected value of the state of quantum processor 200-1 and the expected value of the state of quantum processor 200-2, respectively. This expected value f(n, ε) is theoretically expressed by the following formula.
Figure JPOXMLDOC01-appb-M000008
 なお、上記の手順31~手順33の繰り返し回数は所望の精度に応じて決定すればよい。
Figure JPOXMLDOC01-appb-M000008
The number of times steps 31 to 33 are repeated may be determined according to the desired accuracy.
 手順35:エラー率推定部113-1とエラー率推定部113-2は、異なるnに対して上記の手順31~手順34を実行し、その結果得られた各期待値と、上記の手順11~手順15で得られたε+εと、上記の手順21~手順25で得られたε+εとを上記の数8に示す理論式にフィッティングすることによりε+εを求める。 Step 35: The error rate estimation units 113-1 and 113-2 execute the above steps 31 to 34 for different n, and find ε z + ε x by fitting the expected values obtained as a result, ε x + ε y obtained in the above steps 11 to 15, and ε y + ε z obtained in the above steps 21 to 25 to the theoretical formula shown in the above equation 8.
 次に、量子計算制御部110-1の量子回路実行部114-1と量子計算制御部110-2の量子回路実行部114-2は、非局所CNOTゲートを含む量子回路を実行する(ステップS104)。このとき、量子回路実行部114-1と量子回路実行部114-2は、ベル対角化状態に対してLOCC操作を行うことにより非局所CNOTゲートを実行する。なお、非局所CNOTゲートにはエラーが存在し得ることに留意されたい。 Next, the quantum circuit execution unit 114-1 of the quantum computing control unit 110-1 and the quantum circuit execution unit 114-2 of the quantum computing control unit 110-2 execute a quantum circuit including a nonlocal CNOT gate (step S104). At this time, the quantum circuit execution unit 114-1 and the quantum circuit execution unit 114-2 execute the nonlocal CNOT gate by performing a LOCC operation on the Bell diagonalized state. Note that errors may exist in the nonlocal CNOT gate.
 そして、量子計算制御部110-1のエラー除去部115-1と量子計算制御部110-2のエラー除去部115-2は、上記のステップS103で推定されたエラー率に基づいて、上記のステップS104で実行された非局所CNOTゲートのエラーを事後的に除去(低減)する(ステップS105)。エラー除去部115は、例えば、確率的エラー消去法(参考文献2)によりエラーを低減する。確率的エラー消去法を用いる場合、エラー除去部115は、以下の手順41~手順43によりエラーを低減すればよい。 Then, the error elimination unit 115-1 of the quantum computing control unit 110-1 and the error elimination unit 115-2 of the quantum computing control unit 110-2 retroactively eliminate (reduce) the errors in the nonlocal CNOT gate executed in step S104 above based on the error rate estimated in step S103 above (step S105). The error elimination unit 115 reduces the errors using, for example, a probabilistic error elimination method (Reference 2). When using the probabilistic error elimination method, the error elimination unit 115 may reduce the errors using the following steps 41 to 43.
 手順41:エラー除去部115-1とエラー除去部115-2は、当該量子回路中の非局所CNOTゲートの後に、確率pII/γでI(×)Iゲートを、確率|pIX|/γでI(×)Xゲートを、確率|pZX|でZ(×)Xゲートを、確率|pZI|/γでZ(×)Iゲートを挿入する。ここで、pII、pIX、pZX、pZI、γはそれぞれ以下である。 Step 41: Error elimination units 115-1 and 115-2 insert an I(x)I gate with probability p II /γ, an I(x)X gate with probability |p IX |/γ, a Z(x)X gate with probability |p ZX |, and a Z(x)I gate with probability |p ZI |/γ after the nonlocal CNOT gate in the quantum circuit, where p II , p IX , p ZX , p ZI , and γ are as follows, respectively.
Figure JPOXMLDOC01-appb-M000009
 また、Iは恒等操作(何もしない操作)を表す。
Figure JPOXMLDOC01-appb-M000009
Also, I represents an identity operation (an operation that does nothing).
 なお、上記の手順41でゲート(操作)を挿入する際には、エラー除去部115-1とエラー除去部115-2との間で古典通信が行われる。これは、一方のエラー除去部115が選択したゲート操作の種類を他方のエラー除去部115に送信する必要があるためである。 When inserting a gate (operation) in step 41 above, classical communication is performed between error removal unit 115-1 and error removal unit 115-2. This is because one error removal unit 115 needs to transmit the type of gate operation selected to the other error removal unit 115.
 手順42:エラー除去部115-1とエラー除去部115-2は、量子回路の測定結果に対して、I(×)Iゲートが挿入された回数だけγを、I(×)Xゲートが挿入された回数だけpIXγ/|pIX|を、Z(×)Xゲートが挿入された回数だけpZXγ/|pZX|を、Z(×)Iゲートが挿入された回数だけpZIγ/|pZI|をそれぞれ乗じる。 Step 42: Error elimination units 115-1 and 115-2 multiply the measurement results of the quantum circuit by γ for the number of times an I(x)I gate was inserted, by p IX γ/|p IX | for the number of times an I(x)X gate was inserted, by p ZX γ/|p ZX | for the number of times a Z(x)X gate was inserted, and by p ZI γ/|p ZI | for the number of times a Z(x)I gate was inserted.
 手順43:エラー除去部115-1とエラー除去部115-2は、上記の手順41~手順42を繰り返し、当該量子回路の重み付き期待値を求める。この重み付き期待値が、非局所CNOTゲートのエラーを低減した量子回路の期待値になっている。 Step 43: Error elimination units 115-1 and 115-2 repeat steps 41 and 42 above to find the weighted expectation of the quantum circuit. This weighted expectation is the expectation of the quantum circuit with reduced errors in the nonlocal CNOT gate.
 なお、上記の手順41~手順42の繰り返し回数は所望の精度に応じて決定すればよい。また、上記の重み付き期待値を求める際には、エラー除去部115-1とエラー除去部115-2との間で古典通信が行われる。これは、エラー除去部115-1とエラー除去部115-2がそれぞれ求めた期待値の重みをとるためである。 The number of times steps 41 and 42 are repeated may be determined according to the desired accuracy. When calculating the weighted expected value, classical communication is performed between error elimination units 115-1 and 115-2. This is to obtain the weights of the expected values calculated by error elimination units 115-1 and 115-2.
  ≪実施例2≫
 実施例2における量子計算処理について、図6を参照しながら説明する。
Example 2
The quantum computing process in the second embodiment will be described with reference to FIG.
 まず、量子計算制御部110-1の状態共有部111-1と量子計算制御部110-2の状態共有部111-2は、量子プロセッサ200-1と量子プロセッサ200-2の間で既知の手法により2キュービット状態を共有する(ステップS201)。ここで、この2キュービット状態は、図5のステップS101と同様に、上記の数1に示すエラーがないベル状態とのフィデリティー(忠実度)が0.5以上であればどのような状態でもよい。ただし、0.5は一例であって、これに限定されるものではない。 First, the state sharing unit 111-1 of the quantum computing control unit 110-1 and the state sharing unit 111-2 of the quantum computing control unit 110-2 share the two-qubit state between the quantum processor 200-1 and the quantum processor 200-2 by a known method (step S201). Here, as in step S101 of FIG. 5, this two-qubit state may be any state as long as the fidelity with respect to the error-free Bell state shown in the above equation 1 is 0.5 or more. However, 0.5 is just an example and is not limited to this.
 次に、量子計算制御部110-1のTwirling操作部112-1と量子計算制御部110-2のTwirling操作部112-2は、上記のステップS202で共有した状態に対して12種類の局所ゲートをランダムにかけるTwirling(参考文献1)という操作を行い、Werner状態と呼ばれる状態にする(ステップS202)。これにより、量子プロセッサ200-1と量子プロセッサ200-2の間でWerner状態が共有される。 Next, twirling operation unit 112-1 of quantum computing control unit 110-1 and twirling operation unit 112-2 of quantum computing control unit 110-2 perform an operation called twirling (Reference 1) in which 12 types of local gates are randomly applied to the state shared in step S202 above, creating a state called a Werner state (step S202). As a result, the Werner state is shared between quantum processor 200-1 and quantum processor 200-2.
 ここで、上記の12種類のゲート操作は、恒等操作(ゲートをかけない)、B、B、B、B、B、B、B、B、B、B、Bである。また、i=x,y,zに対して、Bは上記の数2に示した通りである。 Here, the above 12 types of gate operations are identity operation (no gate), BxBx , ByBy , BzBz, BxBy , ByBz , BzBx , ByBx , BxByBx , ByBzByBz , BzBxBzBx , ByBxByBx , and ByBxByBx for i = x, y , z . Bi is as shown in the above formula 2 .
 なお、上記のTwirling操作の際には、Twirling操作部112-1とTwirling操作部112-2との間で古典通信が行われる。これは、一方のTwirling操作部112が選択したゲート操作の種類を他方のTwirling操作部112に送信する必要があるためである。 Note that during the above Twirl operation, classical communication is carried out between the Twirl operation unit 112-1 and the Twirl operation unit 112-2. This is because the type of gate operation selected by one Twirl operation unit 112 needs to be transmitted to the other Twirl operation unit 112.
 上記のステップS202におけるTwirling操作後の状態の密度行列は、以下となる。 The density matrix of the state after the twirling operation in step S202 above is as follows:
Figure JPOXMLDOC01-appb-M000010
 上記の密度行列によって表現される状態はWerner状態と呼ばれる。ここで、εはエラー率である。
Figure JPOXMLDOC01-appb-M000010
The state represented by the above density matrix is called the Werner state, where ε is the error rate.
 次に、量子計算制御部110-1のエラー率推定部113-1と量子計算制御部110-2のエラー率推定部113-2は、上記のWerner状態のエラー率を推定する(ステップS203)。エラー率推定部113は、通常のトモグラフィーによりエラー率を求めてもよいが、例えば、以下の手順51~手順55によりエラー率を推定してもよい。 Next, the error rate estimation unit 113-1 of the quantum computing control unit 110-1 and the error rate estimation unit 113-2 of the quantum computing control unit 110-2 estimate the error rate of the Werner state (step S203). The error rate estimation unit 113 may obtain the error rate by normal tomography, but may also estimate the error rate by, for example, steps 51 to 55 below.
 手順51:エラー率推定部113-1は量子プロセッサ200-1に状態|+〉を準備し、同様にエラー率推定部113-2は量子プロセッサ200-2に状態|+〉を準備する。 Step 51: The error rate estimation unit 113-1 prepares the state |+> in the quantum processor 200-1, and similarly the error rate estimation unit 113-2 prepares the state |+> in the quantum processor 200-2.
 手順52:エラー率推定部113-1とエラー率推定部113-2は、上記のステップS202で共有したWerner状態に対して、LOCC操作でCNOTゲートをn回連続でかける。ただし、nは2の倍数であるものとする。 Step 52: The error rate estimation units 113-1 and 113-2 apply a CNOT gate n times in succession to the Werner state shared in step S202 above using the LOCC operation. Here, n is a multiple of 2.
 手順53:エラー率推定部113-1は量子プロセッサ200-1の状態を|+〉、|-〉基底で測定(X測定)し、同様にエラー率推定部113-2は量子プロセッサ200-2の状態を|+〉、|-〉基底で測定(X測定)する。 Step 53: The error rate estimation unit 113-1 measures the state of the quantum processor 200-1 in the |+> and |-> basis (X measurement), and similarly the error rate estimation unit 113-2 measures the state of the quantum processor 200-2 in the |+> and |-> basis (X measurement).
 手順54:エラー率推定部113-1とエラー率推定部113-2は上記の手順51~手順53を繰り返し、それぞれ量子プロセッサ200-1の状態の期待値と量子プロセッサ200-2の状態の期待値を求める。この期待値f(n,ε)は理論的に以下の式で表される。 Step 54: The error rate estimation units 113-1 and 113-2 repeat steps 51 to 53 above to obtain the expected value of the state of quantum processor 200-1 and the expected value of the state of quantum processor 200-2, respectively. This expected value f(n, ε) is theoretically expressed by the following formula.
Figure JPOXMLDOC01-appb-M000011
 なお、上記の手順51~手順53の繰り返し回数は所望の精度に応じて決定すればよい。
Figure JPOXMLDOC01-appb-M000011
The number of times steps 51 to 53 are repeated may be determined according to the desired accuracy.
 手順55:エラー率推定部113-1とエラー率推定部113-2は、異なるnに対して上記の手順51~手順54を実行し、その結果得られた各期待値を上記の数11に示す理論式にフィッティングすることによりエラー率εを求める。 Step 55: The error rate estimation unit 113-1 and the error rate estimation unit 113-2 execute steps 51 to 54 for different values of n, and calculate the error rate ε by fitting each expected value obtained as a result to the theoretical formula shown in equation 11 above.
 次に、量子計算制御部110-1の量子回路実行部114-1と量子計算制御部110-2の量子回路実行部114-2は、非局所CNOTゲートを含む量子回路を実行する(ステップS204)。このとき、量子回路実行部114-1と量子回路実行部114-2は、Werner状態に対してLOCC操作を行うことにより非局所CNOTゲートを実行する。なお、非局所CNOTゲートにはエラーが存在し得ることに留意されたい。 Next, the quantum circuit execution unit 114-1 of the quantum computing control unit 110-1 and the quantum circuit execution unit 114-2 of the quantum computing control unit 110-2 execute a quantum circuit including a nonlocal CNOT gate (step S204). At this time, the quantum circuit execution unit 114-1 and the quantum circuit execution unit 114-2 execute the nonlocal CNOT gate by performing a LOCC operation on the Werner state. Note that errors may exist in the nonlocal CNOT gate.
 そして、量子計算制御部110-1のエラー除去部115-1と量子計算制御部110-2のエラー除去部115-2は、上記のステップS203で推定されたエラー率εに基づいて、上記のステップS204で実行された非局所CNOTゲートのエラーを事後的に除去(低減)する(ステップS205)。エラー除去部115は、例えば、確率的エラー消去法(参考文献2)によりエラーを低減する。確率的エラー消去法を用いる場合、エラー除去部115は、以下の手順61~手順63によりエラーを低減すればよい。 Then, the error elimination unit 115-1 of the quantum computing control unit 110-1 and the error elimination unit 115-2 of the quantum computing control unit 110-2 retroactively eliminate (reduce) the errors in the nonlocal CNOT gate executed in step S204 above based on the error rate ε estimated in step S203 above (step S205). The error elimination unit 115 reduces the errors using, for example, a probabilistic error elimination method (Reference 2). When using the probabilistic error elimination method, the error elimination unit 115 may reduce the errors using the following steps 61 to 63.
 手順61:エラー除去部115-1とエラー除去部115-2は、当該量子回路中の非局所CNOTゲートの後に、確率(3-ε)/(3+2ε)で恒等操作、確率ε/(3+2ε)でI(×)X、Z(×)X、Z(×)Iゲートをかける。 Step 61: Error elimination units 115-1 and 115-2 apply the identity operation with probability (3-ε)/(3+2ε) and the I(x)X, Z(x)X, and Z(x)I gates with probability ε/(3+2ε) after the nonlocal CNOT gate in the quantum circuit.
 なお、上記の手順61でゲート(操作)を挿入する際には、エラー除去部115-1とエラー除去部115-2との間で古典通信が行われる。これは、一方のエラー除去部115が選択したゲート操作の種類を他方のエラー除去部115に送信する必要があるためである。 When inserting a gate (operation) in step 61 above, classical communication is performed between error removal unit 115-1 and error removal unit 115-2. This is because one error removal unit 115 needs to transmit the type of gate operation selected to the other error removal unit 115.
 手順62:エラー除去部115-1とエラー除去部115-2は、量子回路の測定結果に対して、恒等操作がされた回数だけγを、I(×)X、Z(×)X、Z(×)Iゲートが挿入された回数だけ-γをそれぞれ乗じる。 Step 62: Error elimination units 115-1 and 115-2 multiply the measurement results of the quantum circuit by γ for the number of times an identity operation was performed, and by -γ for the number of times an I(x)X, Z(x)X, or Z(x)I gate was inserted.
 手順63:エラー除去部115-1とエラー除去部115-2は、上記の手順61~手順62を繰り返し、当該量子回路の重み付き期待値を求める。この重み付き期待値が、非局所CNOTゲートのエラーを低減した量子回路の期待値になっている。 Step 63: Error elimination units 115-1 and 115-2 repeat steps 61 and 62 above to find the weighted expectation of the quantum circuit. This weighted expectation is the expectation of the quantum circuit with reduced errors in the nonlocal CNOT gate.
 なお、上記の手順61~手順62の繰り返し回数は所望の精度に応じて決定すればよい。また、上記の重み付き期待値を求める際には、エラー除去部115-1とエラー除去部115-2との間で古典通信が行われる。これは、エラー除去部115-1とエラー除去部115-2がそれぞれ求めた期待値の重みをとるためである。 The number of times steps 61 and 62 are repeated may be determined according to the desired accuracy. When calculating the weighted expected value, classical communication is performed between error elimination units 115-1 and 115-2. This is to obtain the weights of the expected values calculated by error elimination units 115-1 and 115-2.
 <まとめ>
 以上のように、本実施形態に係る量子計算システム1は、複数の量子計算装置10間でエラーが存在し得るベル状態を共有し、エラー抑制法(例えば、確率的エラー消去法等)により、ベル状態のエラー由来の非局所CNOTゲートのエラーを事後的に低減する。また、このとき、確率的エラー消去法等のエラー抑制法を用いるために、ベル状態のエラー率をトモグラフィー等の方法により得ている。これにより、非局所CNOTゲートを含む所望の量子回路を実行することが可能となる。
<Summary>
As described above, the quantum computing system 1 according to the present embodiment shares a Bell state in which an error may exist among a plurality of quantum computing devices 10, and reduces the error of the nonlocal CNOT gate derived from the error of the Bell state by an error suppression method (e.g., a probabilistic error elimination method, etc.) after the fact. In addition, in order to use an error suppression method such as a probabilistic error elimination method, the error rate of the Bell state is obtained by a method such as tomography. This makes it possible to execute a desired quantum circuit including a nonlocal CNOT gate.
 本実施形態に係る量子計算システム1によれば、非特許文献2に記載されている手法と比較して、十分な精度で期待値を得るための量子回路の実行回数を少なくすることが可能となり、かつ、蒸留も不要であるためエラーがあるベル状態の蒸留に要するコストも削減することが可能になる。このため、例えば、大量のベル状態を消費したくなく、かつ、実行に時間が掛かるエンタングルメント蒸留を行いたくないが、局所的な操作でCNOTゲートを実行するには量子回路の実行回数が多きる、というような場合に、本実施形態に係る量子計算システム1を用いることにより、エンタングルメント蒸留のコストを削減しつつ、かつ、量子回路の実行回数は少なく非局所CNOTゲートを実行することが可能となる。 Compared to the method described in Non-Patent Document 2, the quantum computing system 1 according to this embodiment makes it possible to reduce the number of times the quantum circuit is executed to obtain an expected value with sufficient accuracy, and since distillation is not required, it is also possible to reduce the cost required for distillation of erroneous Bell states. Therefore, for example, in cases where one does not want to consume a large number of Bell states and does not want to perform entanglement distillation, which takes time to execute, but executing a CNOT gate with local operations requires a large number of executions of the quantum circuit, by using the quantum computing system 1 according to this embodiment, it is possible to execute a non-local CNOT gate with a small number of executions of the quantum circuit while reducing the cost of entanglement distillation.
 本発明は、具体的に開示された上記の実施形態に限定されるものではなく、請求の範囲の記載から逸脱することなく、種々の変形や変更、既知の技術との組み合わせ等が可能である。 The present invention is not limited to the specifically disclosed embodiments above, and various modifications, changes, and combinations with known technologies are possible without departing from the scope of the claims.
 [参考文献]
 参考文献1:C. H. Bennett, D.P. DiVincenzo, J. A. Smolin, and W. K. Wootters, "Mixed-state entanglement and quantum error correction", Physical Review A 54, 3824 (1996).
 参考文献2:S. Endo, S. C. Benjamin, and Y. Li, "Practical Quantum Error Mitigation for Near-Future Applications", Physical Review X 8, 031027 (2018).
[References]
Reference 1: C. H. Bennett, DP DiVincenzo, J. A. Smolin, and W. K. Wootters, "Mixed-state entanglement and quantum error correction", Physical Review A 54, 3824 (1996).
Reference 2: S. Endo, S. C. Benjamin, and Y. Li, "Practical Quantum Error Mitigation for Near-Future Applications", Physical Review X 8, 031027 (2018).
 1    量子計算システム
 10   量子計算装置
 100  制御装置
 101  入力装置
 102  表示装置
 103  外部I/F
 103a 記録媒体
 104  通信I/F
 105  RAM
 106  ROM
 107  補助記憶装置
 108  プロセッサ
 109  バス
 110  量子計算制御部
 111  状態共有部
 112  Twirling操作部
 113  エラー率推定部
 114  量子回路実行部
 115  エラー除去部
 120  記憶部
 200  量子プロセッサ
REFERENCE SIGNS LIST 1 Quantum computing system 10 Quantum computing device 100 Control device 101 Input device 102 Display device 103 External I/F
103a Recording medium 104 Communication I/F
105 RAM
106 ROM
107 Auxiliary storage device 108 Processor 109 Bus 110 Quantum computation control unit 111 State sharing unit 112 Twirl operation unit 113 Error rate estimation unit 114 Quantum circuit execution unit 115 Error removal unit 120 Storage unit 200 Quantum processor

Claims (7)

  1.  複数の量子計算装置が含まれる量子計算システムであって、
     前記量子計算装置は、
     他の量子計算装置との間でエラーがベル状態との忠実度が所定の値以上の2キュービット状態を共有する共有部と、
     前記2キュービット状態に対してTwirling操作を行って所定の状態にするTwirling操作部と、
     前記所定の状態のエラー率を推定するエラー率推定部と、
     前記所定の状態に対するLOCC操作によって実現される非局所CNOTゲートを含む量子回路を実行する量子回路実行部と、
     前記エラー率に基づいて、前記非局所CNOTゲートのエラーを除去するエラー除去部と、
     を有する量子計算システム。
    A quantum computing system including a plurality of quantum computing devices,
    The quantum computing device includes:
    A sharing unit that shares a two-qubit state with another quantum computing device, the two-qubit state having a fidelity to the error Bell state of a predetermined value or more;
    A twirling operation unit that performs a twirling operation on the two-qubit state to make it a predetermined state;
    an error rate estimation unit that estimates an error rate in the predetermined state;
    a quantum circuit execution unit that executes a quantum circuit including a nonlocal CNOT gate realized by a LOCC operation on the predetermined state;
    an error removal unit that removes errors in the non-local CNOT gate based on the error rate;
    A quantum computing system having
  2.  前記エラー除去部は、
     前記エラー率を使用した確率的エラー消去法により、前記非局所CNOTゲートのエラーを除去する、請求項1に記載の量子計算システム。
    The error elimination unit is
    The quantum computing system of claim 1 , wherein the error of the nonlocal CNOT gate is eliminated by a probabilistic error elimination method using the error rate.
  3.  前記所定の状態は、ベル対角化状態又はWerner状態である、請求項1又は2に記載の量子計算システム。 The quantum computing system of claim 1 or 2, wherein the predetermined state is a Bell diagonalized state or a Werner state.
  4.  前記エラー率推定部は、
     前記ベル対角化状態又はWerner状態に対するトモグラフィーにより、又は、前記ベル対角化状態又はWerner状態の測定によって得られる期待値を理論式にフィッティングすることにより、前記エラー率を推定する、請求項3に記載の量子計算システム。
    The error rate estimation unit
    4. The quantum computing system according to claim 3, wherein the error rate is estimated by tomography of the Bell diagonalized state or the Werner state, or by fitting an expectation value obtained by measuring the Bell diagonalized state or the Werner state to a theoretical formula.
  5.  通信ネットワークを介して他の量子計算装置と接続される量子計算装置であって、
     前記他の量子計算装置との間でエラーがベル状態との忠実度が所定の値以上の2キュービット状態を共有する共有部と、
     前記2キュービット状態に対してTwirling操作を行って所定の状態にするTwirling操作部と、
     前記所定の状態のエラー率を推定するエラー率推定部と、
     前記所定の状態に対するLOCC操作によって実現される非局所CNOTゲートを含む量子回路を実行する量子回路実行部と、
     前記エラー率に基づいて、前記非局所CNOTゲートのエラーを除去するエラー除去部と、
     を有する量子計算装置。
    A quantum computing device connected to other quantum computing devices via a communication network,
    a sharing unit that shares a two-qubit state with the other quantum computing device, the two-qubit state having a fidelity to an error-free Bell state of a predetermined value or more;
    A twirling operation unit that performs a twirling operation on the two-qubit state to make it a predetermined state;
    an error rate estimation unit that estimates an error rate in the predetermined state;
    a quantum circuit execution unit that executes a quantum circuit including a nonlocal CNOT gate realized by a LOCC operation on the predetermined state;
    an error removal unit that removes errors in the non-local CNOT gate based on the error rate;
    A quantum computing device having
  6.  複数の量子計算装置が含まれる量子計算システムに用いられる量子計算方法であって、
     前記量子計算装置が、
     他の量子計算装置との間でエラーがベル状態との忠実度が所定の値以上の2キュービット状態を共有する共有手順と、
     前記2キュービット状態に対してTwirling操作を行って所定の状態にするTwirling操作手順と、
     前記所定の状態のエラー率を推定するエラー率推定手順と、
     前記所定の状態に対するLOCC操作によって実現される非局所CNOTゲートを含む量子回路を実行する量子回路実行手順と、
     前記エラー率に基づいて、前記非局所CNOTゲートのエラーを除去するエラー除去手順と、
     を実行する量子計算方法。
    A quantum computing method used in a quantum computing system including a plurality of quantum computing devices, comprising:
    The quantum computing device comprises:
    A sharing procedure for sharing a two-qubit state with another quantum computing device, the two-qubit state having a fidelity to the error-free Bell state of a predetermined value or more;
    A twirling operation procedure for performing a twirling operation on the two-qubit state to make it a predetermined state;
    an error rate estimation step of estimating an error rate of the predetermined state;
    a quantum circuit execution procedure for executing a quantum circuit including a nonlocal CNOT gate realized by a LOCC operation on the predetermined state;
    an error removal procedure for removing errors in the non-local CNOT gate based on the error rate;
    A quantum computing method for performing
  7.  通信ネットワークを介して他の量子計算装置と接続される量子計算装置に、
     前記他の量子計算装置との間でエラーがベル状態との忠実度が所定の値以上の2キュービット状態を共有する共有手順と、
     前記2キュービット状態に対してTwirling操作を行って所定の状態にするTwirling操作手順と、
     前記所定の状態のエラー率を推定するエラー率推定手順と、
     前記所定の状態に対するLOCC操作によって実現される非局所CNOTゲートを含む量子回路を実行する量子回路実行手順と、
     前記エラー率に基づいて、前記非局所CNOTゲートのエラーを除去するエラー除去手順と、
     を実行させるプログラム。
    A quantum computing device that is connected to other quantum computing devices via a communication network,
    a sharing procedure for sharing a two-qubit state having a fidelity to an error-free Bell state of a predetermined value or more with the other quantum computing device;
    A twirling operation procedure for performing a twirling operation on the two-qubit state to make it a predetermined state;
    an error rate estimation step of estimating an error rate of the predetermined state;
    a quantum circuit execution procedure for executing a quantum circuit including a nonlocal CNOT gate realized by a LOCC operation on the predetermined state;
    an error removal procedure for removing errors in the non-local CNOT gate based on the error rate;
    A program that executes the following.
PCT/JP2023/015642 2023-04-19 2023-04-19 Quantum computing system, quantum computing device, quantum computing method, and program WO2024218909A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/015642 WO2024218909A1 (en) 2023-04-19 2023-04-19 Quantum computing system, quantum computing device, quantum computing method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/015642 WO2024218909A1 (en) 2023-04-19 2023-04-19 Quantum computing system, quantum computing device, quantum computing method, and program

Publications (1)

Publication Number Publication Date
WO2024218909A1 true WO2024218909A1 (en) 2024-10-24

Family

ID=93152122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015642 WO2024218909A1 (en) 2023-04-19 2023-04-19 Quantum computing system, quantum computing device, quantum computing method, and program

Country Status (1)

Country Link
WO (1) WO2024218909A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170034759A (en) * 2015-09-21 2017-03-29 한양대학교 에리카산학협력단 Method of distillating quantum entanglement comprising, quantun repeater and method for relaing quantun using the same
CN112529199A (en) * 2020-12-23 2021-03-19 北京百度网讯科技有限公司 Entangled quantum state purification method, device, equipment, storage medium and product
US20220269974A1 (en) * 2019-07-17 2022-08-25 President And Fellows Of Harvard College Nanophotonic quantum memory
US20220416907A1 (en) * 2021-06-29 2022-12-29 Purdue Research Foundation Method and system for sharing quantum entanglement between distant nodes without quantum memories

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170034759A (en) * 2015-09-21 2017-03-29 한양대학교 에리카산학협력단 Method of distillating quantum entanglement comprising, quantun repeater and method for relaing quantun using the same
US20220269974A1 (en) * 2019-07-17 2022-08-25 President And Fellows Of Harvard College Nanophotonic quantum memory
CN112529199A (en) * 2020-12-23 2021-03-19 北京百度网讯科技有限公司 Entangled quantum state purification method, device, equipment, storage medium and product
US20220416907A1 (en) * 2021-06-29 2022-12-29 Purdue Research Foundation Method and system for sharing quantum entanglement between distant nodes without quantum memories

Similar Documents

Publication Publication Date Title
CN111611610B (en) Federal learning information processing method, system, storage medium, program, and terminal
Liu et al. Operational resource theory of quantum channels
CN112534448B (en) Multi-qubit control
KR102601510B1 (en) Fault tolerance calculation methods, apparatus, devices and chips for quantum Clifford circuits
Pascuzzi et al. Computationally efficient zero-noise extrapolation for quantum-gate-error mitigation
WO2023010694A1 (en) Quantum state preparation circuit generation method and apparatus, chip, device, and program product
Isaila et al. Collective I/O tuning using analytical and machine learning models
US11494684B2 (en) Short-depth syndrome extraction circuits for Calderbank Shor Steane (CSS) stabilizer codes
US11646880B2 (en) Secret computation method, secret computation system, secret computation apparatus, and program
JP7226562B2 (en) Secret softmax function calculation system, secret softmax function calculation device, secret softmax function calculation method, secret neural network calculation system, secret neural network learning system, program
CN111461335A (en) Noise-containing single-quantum logic gate implementation method and device based on MPI (Multi-processor interface) multi-process
WO2024218909A1 (en) Quantum computing system, quantum computing device, quantum computing method, and program
WO2023022870A1 (en) Systems and methods for providing data privacy using federated learning
EP4210031A1 (en) Secure computation system, secure computation device, secure computation method, and program
Chaurra-Gutierrez et al. QIST: One-dimensional quantum integer wavelet S-transform
CN115329971B (en) Method and device for eliminating amplitude damping noise, electronic equipment and medium
Huang Remote state preparation using positive operator-valued measures
Liu et al. Quantum network coding utilizing quantum discord resource fully
Bolokian et al. A bidirectional quantum remote state preparation scheme and its performance analysis in noisy environments
EP4268143A1 (en) Short-depth syndrome extraction circuits in 2d quantum architectures for hypergraph product codes
Mummadi et al. Quantum cost optimization algorithm for entanglement-based asymmetric quantum error correction
Thotakura et al. Quantum state transfer: interplay between gate and readout errors
WO2023188257A1 (en) Secret global model calculation device, local model registration method, and program
Zhang et al. Quantifying the information distribution of quantum information masking
WO2023188259A1 (en) Secret global model computation device, secret global module computation system configuration method, and program