WO2024209921A1 - Steel material - Google Patents

Steel material Download PDF

Info

Publication number
WO2024209921A1
WO2024209921A1 PCT/JP2024/010558 JP2024010558W WO2024209921A1 WO 2024209921 A1 WO2024209921 A1 WO 2024209921A1 JP 2024010558 W JP2024010558 W JP 2024010558W WO 2024209921 A1 WO2024209921 A1 WO 2024209921A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
oxides
content
steel material
coarse
Prior art date
Application number
PCT/JP2024/010558
Other languages
French (fr)
Japanese (ja)
Inventor
裕紀 神谷
桂一 近藤
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024209921A1 publication Critical patent/WO2024209921A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies

Definitions

  • This disclosure relates to steel materials, and more particularly to steel materials suitable for use in oil wells.
  • oil wells The deepening of oil and gas wells (hereinafter, oil and gas wells will be collectively referred to simply as "oil wells") has created a demand for higher strength oil well steel materials, such as oil well steel pipes.
  • 80 ksi grade yield strength of 80 to less than 95 ksi, i.e., 552 to less than 655 MPa
  • 95 ksi grade yield strength of 95 to less than 110 ksi, i.e., 655 to less than 758 MPa
  • oil well steel materials are widely used, and recently there has been an increasing demand for 110 ksi grade (yield strength of 758 to less than 862 MPa) oil well steel materials.
  • Oil wells may further contain corrosive hydrogen sulfide gas (H 2 S) and carbon dioxide gas (CO 2 ). Therefore, steel materials expected to be used as oil well steel materials are required to have not only high strength but also excellent corrosion resistance. In addition, steel materials for oil wells are subjected to stress during use. Therefore, sulfide stress cracking resistance (hereinafter referred to as SSC resistance) has been used as an index of excellent corrosion resistance of steel materials for oil wells.
  • SSC resistance sulfide stress cracking resistance
  • Patent Document 1 JP 2006-28612 A
  • Patent Document 2 JP 2017-166060 A
  • the steel material disclosed in Patent Document 1 is a steel for steel pipes, and consists of, by mass%, C: 0.2-0.7%, Si: 0.01-0.8%, Mn: 0.1-1.5%, S: 0.005% or less, P: 0.03% or less, Al: 0.0005-0.1%, Ti: 0.005-0.05%, Ca: 0.0004-0.005%, N: 0.007% or less, Cr: 0.1-1.5%, Mo: 0.2-1.0%, with the balance being Fe and impurities.
  • This steel material further has a (Ca%)/(Al%) ratio of 0.55-1.72 and a (Ca%)/(Ti%) ratio of 0.7-19 in the non-metallic inclusions containing Ca, Al, Ti, N, O, and S.
  • Patent Document 1 states that this steel has a high yield strength of more than 758 MPa and excellent SSC resistance.
  • This steel material further contains 0.1 M23C6 type precipitates having a grain size of 1 ⁇ m or more per mm2 or less.
  • Patent Document 2 describes that this steel has a yield strength of 654 to 793 MPa and has excellent SSC resistance even in a high-pressure hydrogen sulfide environment.
  • the steel material disclosed in Patent Document 3 is a material for high-strength steel pipes for oil wells, and consists, by mass%, of C: 0.20-0.45%, Si: 0.05-0.40%, Mn: 0.3-0.9%, P: 0.015% or less, S: 0.005% or less, Al: 0.005-0.10%, N: 0.001-0.006%, Cr: 0.1-0.8%, Mo: 0.1-1.6%, V: 0.02-0.2%, Nb: 0.001-0.04%, B: 0.0003-0.0030%, O (oxygen): 0.0030% or less, and the balance being Fe and unavoidable impurities.
  • This steel further has a Rockwell hardness HRC that satisfies the formula (15.6 x [%C] + 29.2 ⁇ HRC ⁇ 60.5 x [%C] + 31.1).
  • Patent Document 3 states that this steel can produce steel pipes with a yield strength of 758 to less than 862 MPa and excellent SSC resistance.
  • JP 2006-28612 A International Publication No. 2008/123422 JP 2017-166060 A
  • the objective of this disclosure is to provide a steel material that combines high strength of 125 ksi or more (862 MPa or more) with excellent low-temperature toughness.
  • the steel material according to the present disclosure is In mass percent, C: 0.15-0.45%, Si: 0.05-1.00%, Mn: 0.05-1.00%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005-0.100%, Cr: 0.30-1.50%, Mo: 0.20-2.00%, Ti: 0.002 to 0.030%, Nb: 0.002-0.100%, B: 0.0005-0.0040%, N: 0.0100% or less, O: 0.0040% or less, V: 0 to 0.30%, Cu: 0 to 0.50%, Ni: 0 to 0.50%, W: 0-0.50%, Ca: 0-0.0100%, Mg: 0 to 0.0100%, Zr: 0 to 0.0100%, Rare earth elements: 0 to 0.0100%, and The balance is Fe and impurities, The yield strength is 862 to 1034 MPa; In the steel material, The Al content is 20% or more, the O content is 10% or more, and the number density of Al oxides
  • the steel material disclosed herein combines high strength of 125 ksi or more (862 MPa or more) with excellent low-temperature toughness.
  • FIG. 1 is a graph showing the relationship between the number density (pieces/200 mm2 ) of coarse Si oxides (Si oxides with a major axis of 5.0 ⁇ m or more) and the fracture appearance transition temperature (°C), which is an index of low-temperature toughness, for examples having a yield strength of less than 945 MPa among the present examples.
  • FIG. 2 is a graph showing the relationship between the number density (pieces/200 mm2 ) of coarse Si oxides (Si oxides with a major axis of 5.0 ⁇ m or more) and the fracture appearance transition temperature (°C), which is an index of low-temperature toughness, for the examples having a yield strength of 945 MPa or more among the present examples.
  • the inventors focused on the chemical composition and investigated how to obtain a steel material that combines a yield strength of 125 ksi or more with excellent low-temperature toughness.
  • the composition is, by mass%, C: 0.15-0.45%, Si: 0.05-1.00%, Mn: 0.05-1.00%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005-0.100%, Cr: 0.30-1.50%, Mo: 0.20-2.00%, Ti: 0.002-0.030%, Nb: 0.002-0.100%, B: 0.0005-0.0040%, N: 0.01 00% or less, O: 0.0040% or less, V: 0-0.30%, Cu: 0-0.50%, Ni: 0-0.50%, W: 0-0.50%, Ca: 0-0.0100%, Mg: 0-0.0100%, Zr: 0-0.0100%, rare earth elements: 0-0.0100%, and the balance being Fe and impurities, it is believed that
  • the inventors of the present invention investigated various methods for improving the low-temperature toughness of a steel material having the above-mentioned chemical composition and a yield strength of 125 ksi or more. Specifically, the inventors of the present invention considered that if coarse oxide-based inclusions could be reduced, it would be possible to improve the low-temperature toughness while maintaining the yield strength.
  • Al oxides mainly composed of Al2O3 tend to coarsen. Therefore, the inventors of the present invention first focused on the coarse Al oxides.
  • Al oxides are hard oxides and tend to reduce the toughness of the steel material.
  • the yield strength is increased to 125 ksi or more, the effect of coarse Al oxides tends to become apparent, and the low-temperature toughness tends to decrease significantly. Therefore, in the steel material according to this embodiment having the above-mentioned chemical composition and a yield strength of 125 ksi or more, the number density of coarse Al oxides is set to less than 30 particles/200 mm2 .
  • the present inventors have studied various methods for stably obtaining excellent low-temperature toughness for a steel material having the above-mentioned chemical composition, a yield strength of 125 ksi or more, and a number density of coarse Al oxides of less than 30/200 mm2 .
  • Si oxides particles having an Al content of less than 20%, a Si content of 20% or more, and an O content of 10% or more, in mass%.
  • Si oxides having a major axis of 5.0 ⁇ m or more are also referred to as “coarse Si oxides”.
  • coarse Si oxides and low-temperature toughness will be specifically described with reference to the drawings for a steel material having the above-mentioned chemical composition, a yield strength of 125 ksi or more, and a number density of coarse Al oxides of less than 30 particles/200 mm2 .
  • Fig. 1 is a diagram showing the relationship between the number density (pieces/200 mm2 ) of coarse Si oxides (Si oxides with a major axis of 5.0 ⁇ m or more) and the fracture transition temperature (°C), which is an index of low-temperature toughness, for examples having a yield strength of less than 945 MPa among the present examples.
  • Fig. 1 is a diagram showing the relationship between the number density (pieces/200 mm2 ) of coarse Si oxides (Si oxides with a major axis of 5.0 ⁇ m or more) and the fracture transition temperature (°C), which is an index of low-temperature toughness, for examples having a yield strength of less than 945 MPa among the present examples.
  • Fig. 1 is a diagram showing the relationship between the number density (pieces/200 mm2 ) of coarse Si oxides (Si oxides with a major axis of 5.0 ⁇ m or more) and the fracture transition temperature (°C), which is an index of low-temperatur
  • a yield strength of 862 to less than 945 MPa, and a number density of coarse Al oxides of less than 30 particles/200 mm2 if the number density of coarse Si oxides is 5 particles/200 mm2 or less , the fracture appearance transition temperature is ⁇ 50° C. or less, and excellent low-temperature toughness is exhibited.
  • Fig. 2 is a diagram showing the relationship between the number density (pieces/200 mm2 ) of coarse Si oxides (Si oxides with a major axis of 5.0 ⁇ m or more) and the fracture transition temperature (°C), which is an index of low temperature toughness, for examples having a yield strength of 945 MPa or more among the present examples.
  • Fig. 2 is a diagram showing the relationship between the number density (pieces/200 mm2 ) of coarse Si oxides (Si oxides with a major axis of 5.0 ⁇ m or more) and the fracture transition temperature (°C), which is an index of low temperature toughness, for examples having a yield strength of 945 MPa or more among the present examples.
  • Fig. 2 is a diagram showing the relationship between the number density (pieces/200 mm2 ) of coarse Si oxides (Si oxides with a major axis of 5.0 ⁇ m or more) and the fracture transition temperature (°C), which is an index of low temperature toughness, for examples
  • the steel has the above-mentioned chemical composition and a yield strength of 862 to 1034 MPa, the number density of coarse Al oxides is less than 30 particles/200 mm2, and the number density of coarse Si oxides is 5 particles/200 mm2 or less .
  • the steel according to this embodiment can achieve both a yield strength of 125 ksi or more and excellent low-temperature toughness.
  • the present inventors speculate that, by not only reducing the number density of coarse Al oxides to less than 30/200 mm 2 but also reducing the number density of coarse Si oxides to 5/200 mm 2 or less, excellent low-temperature toughness can be stably obtained even if the steel material has a yield strength of 125 ksi or more.
  • the low-temperature toughness of the steel material is improved by a mechanism different from that presumed by the present inventors.
  • a yield strength of 125 ksi or more, and a number density of coarse Al oxides of less than 30 particles/200 mm2 excellent low-temperature toughness can be obtained by setting the number density of coarse Si oxides to 5 particles/200 mm2 or less.
  • the gist of the steel material according to this embodiment which was completed based on the above findings, is as follows:
  • a steel material In mass percent, C: 0.15-0.45%, Si: 0.05-1.00%, Mn: 0.05-1.00%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005-0.100%, Cr: 0.30-1.50%, Mo: 0.20-2.00%, Ti: 0.002 to 0.030%, Nb: 0.002-0.100%, B: 0.0005-0.0040%, N: 0.0100% or less, O: 0.0040% or less, V: 0 to 0.30%, Cu: 0 to 0.50%, Ni: 0 to 0.50%, W: 0-0.50%, Ca: 0-0.0100%, Mg: 0 to 0.0100%, Zr: 0 to 0.0100%, Rare earth elements: 0 to 0.0100%, and The balance is Fe and impurities, The yield strength is 862 to 1034 MPa; In the steel material, The Al content is 20% or more, the O content is 10% or more, and the number density of Al oxides having a
  • the steel material according to [1] or [2] is a seamless steel pipe. Steel.
  • the shape of the steel material according to this embodiment is not particularly limited.
  • the steel material according to this embodiment may be a steel pipe, a round bar (solid material), or a steel plate.
  • round bar means a steel bar with a circular cross section perpendicular to the axial direction.
  • the steel pipe may be a seamless steel pipe or a welded steel pipe.
  • C 0.15-0.45% Carbon (C) improves the hardenability of steel and increases its strength. C also promotes the spheroidization of carbides during tempering in the manufacturing process, improving the low-temperature toughness of steel. If the C content is too low, If the C content is too high, the above-mentioned effect cannot be sufficiently obtained even if the contents of the other elements are within the ranges of this embodiment. Even if the amount of C is less than 100%, the amount of carbides becomes too large, and the low-temperature toughness of the steel material decreases. Therefore, the C content is 0.15 to 0.45%.
  • the preferable lower limit of the C content is 0.18%.
  • the upper limit of the C content is preferably 0.40%, more preferably 0.38%. %, more preferably 0.35%, and even more preferably 0.30%.
  • Si 0.05-1.00% Silicon (Si) deoxidizes steel. If the Si content is too low, the above effect cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. If the amount is too high, even if the contents of other elements are within the range of this embodiment, a large number of coarse Si oxides are generated, which may reduce the low-temperature toughness of the steel material.
  • the lower limit of the Si content is preferably 0.10%, more preferably 0.15%, and even more preferably 0.20%.
  • the upper limit is 0.85%, more preferably 0.75%, even more preferably 0.60%, even more preferably 0.50%, and even more preferably 0.40%.
  • Mn 0.05-1.00%
  • Manganese (Mn) deoxidizes steel. Mn also improves the hardenability of steel. If the Mn content is too low, the above effects will not be achieved even if the contents of other elements are within the range of this embodiment. On the other hand, if the Mn content is too high, even if the contents of other elements are within the range of this embodiment, coarse sulfide-based inclusions are generated, and the low-temperature toughness of the steel material is deteriorated. Therefore, the Mn content is 0.05 to 1.00%.
  • the lower limit of the Mn content is preferably 0.06%, more preferably 0.08%, and even more preferably 0.10%.
  • the upper limit of the Mn content is preferably 0.90%, more preferably 0.80%, even more preferably 0.70%, even more preferably 0.60%, and still more preferably 0.80%. is 0.50%, and more preferably 0.45%.
  • Phosphorus (P) is an impurity. That is, the lower limit of the P content is more than 0%. If the P content is too high, even if the contents of other elements are within the range of this embodiment, P will segregate at the grain boundaries, and the low-temperature toughness of the steel material will decrease. Therefore, the P content is 0.030% or less.
  • the preferred upper limit of the P content is 0.025%, more preferably 0.020%, more preferably 0.015%, and even more preferably 0.010%.
  • the P content is preferably as low as possible. However, an extreme reduction in the P content significantly increases the manufacturing cost. Therefore, in consideration of industrial production, the preferred lower limit of the P content is 0.001%, more preferably 0.002%, and even more preferably 0.003%.
  • S 0.0050% or less Sulfur (S) is an impurity. That is, the lower limit of the S content is more than 0%. If the S content is too high, even if the contents of other elements are within the range of this embodiment, S will segregate at the grain boundaries, and the low-temperature toughness of the steel material will decrease. Therefore, the S content is 0.0050% or less.
  • the preferred upper limit of the S content is 0.0040%, more preferably 0.0030%, more preferably 0.0020%, and even more preferably 0.0015%.
  • the S content is preferably as low as possible. However, an extreme reduction in the S content significantly increases the manufacturing cost. Therefore, in consideration of industrial production, the preferred lower limit of the S content is 0.0001%, more preferably 0.0002%, and even more preferably 0.0003%.
  • Al 0.005-0.100%
  • Aluminum (Al) deoxidizes steel. If the Al content is too low, the above effects are not sufficiently obtained even if the contents of other elements are within the range of this embodiment, and the low temperature toughness of the steel material is deteriorated. On the other hand, if the Al content is too high, even if the contents of other elements are within the range of this embodiment, a large number of coarse Al oxides are generated, and the low-temperature toughness of the steel material is reduced.
  • the Al content is 0.005 to 0.100%.
  • the lower limit of the Al content is preferably 0.010%, more preferably 0.015%, and further preferably 0.020%.
  • the upper limit of the content is preferably 0.080%, more preferably 0.060%, still more preferably 0.040%, and still more preferably 0.035%.
  • the content of "acid-soluble Al" means the content of "sol. Al".
  • Chromium (Cr) improves the hardenability of steel. Cr also improves the tempering softening resistance of steel and enables high-temperature tempering. As a result, the low-temperature toughness of the steel is improved. If the Cr content is too low, other On the other hand, if the Cr content is too high, the above effect cannot be sufficiently obtained even if the other element contents are within the ranges of this embodiment. However, the low-temperature toughness of the steel material decreases. Therefore, the Cr content is 0.30 to 1.50%.
  • the lower limit of the Cr content is preferably 0.35%, and more preferably 0.40%.
  • the upper limit of the Cr content is preferably 1.40%, more preferably 1.30%, even more preferably 1.20%, and still more preferably 1. It is preferably 10%, and more preferably 1.05%.
  • Mo 0.20 ⁇ 2.00% Molybdenum (Mo) improves the hardenability of steel. Mo also improves the tempering softening resistance of steel and enables high-temperature tempering. As a result, the low-temperature toughness of steel is improved. If the Mo content is too low, other Even if the content of Mo is within the range of this embodiment, the above effect cannot be sufficiently obtained. On the other hand, if the Mo content is too high, the above effect saturates. Therefore, the Mo content is set to 0.20 The lower limit of the Mo content is preferably 0.22%, more preferably 0.25%, even more preferably 0.30%, and still more preferably 0.40%.
  • the upper limit of the Mo content is preferably 1.80%, more preferably 1.50%, and even more preferably 0.60%.
  • the Mo content is preferably 0.60%, more preferably 1.40%, and even more preferably 1.30%.
  • the yield strength is 945 MPa or more
  • the lower limit of the Mo content is 0.40%. preferable.
  • Titanium (Ti) combines with N to form nitrides, which refines the grains of steel through a pinning effect, thereby increasing the strength of the steel. If the Ti content is too low, the other element contents On the other hand, if the Ti content is too high, the Ti nitrided steel cannot be obtained sufficiently even if the contents of the other elements are within the range of the present embodiment.
  • the Ti content is preferably 0.002 to 0.030%.
  • the lower limit of the Ti content is preferably 0.003%, and more preferably 0.
  • the upper limit of the Ti content is preferably 0.028%, more preferably 0.025%, still more preferably 0.023%, still more preferably 0.020%, and still more preferably 0.025%.
  • the content is preferably 0.018%, more preferably 0.015%, more preferably 0.010%, and even more preferably 0.008%.
  • Niobium (Nb) combines with C and/or N to form carbides, nitrides, or carbonitrides (hereinafter referred to as "carbonitrides, etc.”). Carbonitrides, etc., have a pinning effect that causes the crystals of steel to be pinned. Nb also forms fine carbides during tempering, improving the tempering softening resistance of steel and increasing the strength of steel. If the Nb content is too low, it will be difficult to obtain the same results as other elements. Even if the content is within the range of this embodiment, the above-mentioned effects cannot be sufficiently obtained.
  • the Nb content is 0.002 to 0.100%.
  • the preferred lower limit of the Nb content is 0.005%.
  • the content is more preferably 0.010%, more preferably 0.015%, more preferably 0.020%, and even more preferably 0.025%.
  • the upper limit of the Nb content is preferably 0.080%, more preferably 0.060%, further preferably 0.040%, and further preferably 0.035%.
  • B 0.0005-0.0040% Boron (B) dissolves in steel to improve the hardenability of the steel and to increase the strength of the steel. If the B content is too low, even if the contents of other elements are within the range of this embodiment, the above-mentioned On the other hand, if the B content is too high, even if the contents of other elements are within the range of this embodiment, coarse nitrides are formed, and the low-temperature toughness of the steel material is reduced. Therefore, the B content is 0.0005 to 0.0040%.
  • the lower limit of the B content is preferably 0.0006%, more preferably 0.0008%, and even more preferably 0.0010%.
  • the upper limit of the B content is preferably 0.0035%, more preferably 0.0030%, even more preferably 0.0025%, even more preferably 0.0020%, and even more preferably It is 0.0015%.
  • N Nitrogen (N) is inevitably contained. That is, the lower limit of the N content is more than 0%. N combines with Ti to form nitrides, and the grains of the steel are refined by the pinning effect. As a result, the strength of the steel is increased. However, if the N content is too high, even if the contents of other elements are within the range of this embodiment, coarse nitrides are formed, and the low-temperature toughness of the steel is reduced. Therefore, the N content is 0.0100% or less. The preferred upper limit of the N content is 0.0080%, more preferably 0.0060%, more preferably 0.0050%, more preferably 0.0045%, and more preferably 0.0040%.
  • the lower limit of the N content is preferably 0.0005%, more preferably 0.0010%, still more preferably 0.0015%, still more preferably 0.0020%, still more preferably 0.0025%, and still more preferably 0.0030%.
  • Oxygen (O) is an impurity. That is, the lower limit of the O content is more than 0%. If the O content is too high, even if the contents of other elements are within the range of this embodiment, coarse oxides are formed, and the low-temperature toughness of the steel material decreases. Therefore, the O content is 0.0040% or less.
  • the preferred upper limit of the O content is 0.0035%, more preferably 0.0030%, more preferably 0.0025%, and even more preferably 0.0020%.
  • the O content is preferably as low as possible. However, an extreme reduction in the O content significantly increases the manufacturing cost. Therefore, in consideration of industrial production, the preferred lower limit of the O content is 0.0001%, more preferably 0.0002%, and even more preferably 0.0003%.
  • the remainder of the chemical composition of the steel material according to this embodiment is composed of Fe and impurities.
  • impurities refer to substances that are mixed in from raw materials such as ore and scrap, or from the manufacturing environment, during the industrial production of steel material, and are acceptable to the extent that they do not adversely affect the steel material according to this embodiment.
  • the chemical composition of the above-mentioned steel material may further contain V instead of a portion of Fe.
  • V 0 to 0.30%
  • Vanadium (V) is an optional element and may not be contained. That is, the V content may be 0%.
  • V forms carbonitrides and the like. Carbonitrides and the like have a pinning effect to refine the grains of the steel material and increase the low-temperature toughness of the steel material. V also forms fine carbides during tempering to increase the tempering softening resistance of the steel material and increase the strength of the steel material. If even a small amount of V is contained, the above effect can be obtained to a certain extent. However, if the V content is too high, even if the contents of other elements are within the range of this embodiment, excessive carbonitrides and the like are generated, and the low-temperature toughness of the steel material decreases.
  • the V content is 0 to 0.30%.
  • the preferred lower limit of the V content is more than 0%, more preferably 0.01%, more preferably 0.03%, more preferably 0.05%, and more preferably 0.08%.
  • the preferred upper limit of the V content is 0.25%, more preferably 0.20%, and more preferably 0.15%.
  • the lower limit of the V content is preferably 0.01%.
  • the chemical composition of the above-mentioned steel material may further contain, in place of a portion of Fe, one or more elements selected from the group consisting of Cu and Ni. All of these elements are optional elements, and improve the hardenability of the steel material.
  • Cu 0-0.50% Copper (Cu) is an optional element and may not be contained. That is, the Cu content may be 0%. When contained, Cu enhances the hardenability of the steel material and increases the strength of the steel material. If even a small amount of Cu is contained, the above effect can be obtained to some extent. However, if the Cu content is too high, the hardenability of the steel material is low even if the contents of other elements are within the range of this embodiment.
  • the Cu content is preferably 0% to 0.50%.
  • the lower limit of the Cu content is preferably more than 0%, more preferably 0.01%, and even more preferably 0.01%.
  • the upper limit of the Cu content is preferably 0.35%, more preferably 0.25%, and even more preferably 0.15%. %, more preferably 0.10%, and even more preferably 0.05%.
  • Ni 0-0.50%
  • Nickel (Ni) is an optional element and may not be contained. That is, the Ni content may be 0%. When contained, Ni enhances the hardenability of the steel material and increases the strength of the steel material. Ni also dissolves in steel and improves the low-temperature toughness of the steel. Even if even a small amount of Ni is contained, these effects can be obtained to a certain extent. However, if the Ni content is too high, the low-temperature toughness of the steel will be reduced. Even if the amount is within the range of this embodiment, local corrosion is promoted and the low-temperature toughness of the steel material is reduced. Therefore, the Ni content is 0 to 0.50%.
  • the upper limit of the Ni content is preferably 0.30%, more preferably 0.20%. , more preferably 0.10%, and even more preferably 0.05%.
  • the chemical composition of the above-mentioned steel may further contain W instead of part of the Fe.
  • W 0 to 0.50%
  • Tungsten (W) is an optional element and may not be contained. That is, the W content may be 0%.
  • W forms a protective corrosion film in a sour environment and suppresses the penetration of hydrogen into the steel material. This increases the low-temperature toughness of the steel material. If even a small amount of W is contained, the above effect can be obtained to a certain extent. However, if the W content is too high, even if the contents of other elements are within the range of this embodiment, coarse carbides are generated in the steel material, and the low-temperature toughness of the steel material decreases. Therefore, the W content is 0 to 0.50%.
  • the preferred lower limit of the W content is more than 0%, more preferably 0.01%, more preferably 0.03%, and even more preferably 0.05%.
  • the preferred upper limit of the W content is less than 0.50%, and more preferably 0.48%.
  • the chemical composition of the above-mentioned steel material may further contain, in place of a portion of Fe, one or more elements selected from the group consisting of Ca, Mg, Zr, and rare earth elements. All of these elements are optional elements, and render the S in the steel material harmless as sulfides. As a result, these elements increase the low-temperature toughness of the steel material.
  • Ca 0 ⁇ 0.0100% Calcium (Ca) is an optional element and may not be contained. That is, the Ca content may be 0%. When contained, Ca converts S in the steel into sulfides and renders the steel harmless. Even if even a small amount of Ca is contained, the above effect can be obtained to some extent. However, if the Ca content is too high, even if the contents of other elements are within the range of this embodiment, the steel material The oxides in the steel become coarse, and the low temperature toughness of the steel material decreases. Therefore, the Ca content is 0 to 0.0100%.
  • the lower limit of the Ca content is preferably more than 0%, and more preferably less than 0.
  • the upper limit of the Ca content is preferably 0.0040%, more preferably 0.0025%, and even more preferably 0.0001%, 0.0003%, and even more preferably 0.0006%.
  • the content is preferably 0.0020%, and more preferably 0.0015%.
  • Mg 0-0.0100%
  • Magnesium (Mg) is an optional element and may not be contained. That is, the Mg content may be 0%. When contained, Mg converts S in the steel into sulfides to be harmless, and the steel Even if even a small amount of Mg is contained, the above effect can be obtained to some extent. However, if the Mg content is too high, even if the contents of other elements are within the range of this embodiment, the low-temperature toughness of the steel material may be improved. The oxides in the steel become coarse, and the low-temperature toughness of the steel material decreases. Therefore, the Mg content is 0 to 0.0100%.
  • the lower limit of the Mg content is preferably more than 0%, and more preferably 0.
  • the upper limit of the Mg content is preferably 0.0040%, more preferably 0.0025%, and even more preferably 0.0001%, 0.0003%, and even more preferably 0.0006%.
  • the content is preferably 0.0020%, and more preferably 0.0015%.
  • Zr Zirconium
  • Zr Zirconium
  • the Zr content may be 0%.
  • Zr renders S in the steel material harmless as sulfides, and the steel material Even if even a small amount of Zr is contained, the above effect can be obtained to some extent.
  • the Zr content is too high, even if the contents of other elements are within the range of this embodiment, the low-temperature toughness of the steel material may be improved. The oxides in the steel become coarse, and the low temperature toughness of the steel material decreases. Therefore, the Zr content is 0 to 0.0100%.
  • the lower limit of the Zr content is preferably more than 0%, and more preferably 0.
  • the upper limit of the Zr content is preferably 0.0040%, more preferably 0.0025%, and even more preferably 0.0001%, more preferably 0.0003%, and even more preferably 0.0006%.
  • the content is preferably 0.0020%, more preferably 0.0015%, and even more preferably 0.0010%.
  • Rare earth elements are optional elements and may not be contained. That is, the REM content may be 0%. When contained, REM converts S in the steel into harmless sulfides, REM improves the low-temperature toughness of steel. REM also binds to P in the steel and suppresses the segregation of P at the grain boundaries. Therefore, the decrease in low-temperature toughness of steel caused by the segregation of P is suppressed. If even a small amount of REM is contained, the above effect can be obtained to some extent even if the contents of other elements are within the range of this embodiment. However, if the REM content is too high, the contents of other elements may be insufficient.
  • the REM content is 0 to 0.0100%.
  • the preferable lower limit of the REM content is It is more than 0%, more preferably 0.0001%, more preferably 0.0003%, and even more preferably 0.0006%.
  • the upper limit of the REM content is preferably 0.0040%, more preferably 0.0025%, still more preferably 0.0020%, and still more preferably 0.0015%.
  • REM refers to one or more elements selected from the group consisting of scandium (Sc), atomic number 21; yttrium (Y), atomic number 39; and the lanthanides lanthanum (La), atomic number 57, to lutetium (Lu), atomic number 71.
  • the REM content in this specification refers to the total content of these elements.
  • the yield strength of the steel material according to this embodiment is 862 to 1034 MPa (125 to 150 ksi).
  • the yield strength in this specification means the stress at 0.65% elongation (0.65% proof stress) obtained in a tensile test at room temperature (25 ° C.) in accordance with ASTM E8 / E8M (2021) when the yield strength is less than 862 to 945 MPa.
  • the yield strength in this specification means the stress at 0.7% total elongation (0.7% total elongation proof stress) obtained in a tensile test at room temperature (25 ° C.) in accordance with ASTM E8 / E8M (2021) when the yield strength is 945 to 1034 MPa.
  • the steel material according to this embodiment has the above-mentioned chemical composition and satisfies the number density of the coarse Al oxides and the number density of the coarse Si oxides described later, so that it has excellent low-temperature toughness even if the yield strength is 862 to 1034 MPa.
  • the yield strength of the steel material according to this embodiment is determined by the following method. First, a round bar test piece is prepared from the steel material according to this embodiment. If the steel material is a steel plate, the round bar test piece is prepared from the center of the plate thickness. In this case, the axial direction of the round bar test piece is parallel to the rolling direction of the steel plate. If the steel material is a steel pipe, the round bar test piece is prepared from the center of the wall thickness. In this case, the axial direction of the round bar test piece is parallel to the axial direction of the steel pipe. If the steel material is a round bar, the round bar test piece is prepared from the R/2 position.
  • the R/2 position means the center position of the radius R in a cross section perpendicular to the axial direction of the round bar.
  • the axial direction of the round bar test piece is parallel to the axial direction of the round bar.
  • the size of the round bar test piece is, for example, 8.9 mm in parallel part diameter and 35.6 mm in gauge length.
  • a tensile test is carried out at room temperature (25°C) in air in accordance with a method conforming to ASTM E8/E8M (2021). If the obtained stress at 0.65% elongation (0.65% yield strength) is less than 862 to 945 MPa, the 0.65% yield strength is defined as the yield strength (MPa). If the obtained stress at 0.7% total elongation (0.7% total elongation yield strength) is 945 to 1034 MPa, the 0.7% total elongation yield strength is defined as the yield strength (MPa). Note that in this embodiment, the yield strength (MPa) is calculated by rounding the obtained value to the nearest tenth.
  • the steel material according to this embodiment has the above-mentioned chemical composition and a yield strength of 862 to 1034 MPa, and furthermore, the number density of the coarse Al oxides is less than 30 particles/200 mm2 .
  • particles having an Al content of 20% or more and an O content of 10% or more, in mass% are also referred to as "Al oxides”.
  • Al oxides having a major axis of 5.0 ⁇ m or more are also referred to as "coarse Al oxides”.
  • coarse Al oxides refer to particles having an Al content of 20% or more, an O content of 10% or more, and a major axis of 5.0 ⁇ m or more, in mass%.
  • the preferred upper limit of the number density of the coarse Al oxides is 28 pieces/200 mm 2 , more preferably 26 pieces/200 mm 2 , more preferably 25 pieces/200 mm 2 , and even more preferably 22 pieces/200 mm 2 .
  • the lower limit of the number density of the coarse Al oxides is not particularly limited, and may be 0 pieces/200 mm 2 .
  • the lower limit of the number density of the coarse Al oxides may be, for example, 5 pieces/200 mm 2 , 7 pieces/200 mm 2 , or 9 pieces/200 mm 2 . A method for determining the number density of the coarse Al oxides will be described later.
  • the steel material according to the present embodiment has the above-mentioned chemical composition and a yield strength of 862 to 1034 MPa, the number density of the coarse Al oxides is less than 30 pieces/200 mm2 , and the number density of the coarse Si oxides is 5 pieces/200 mm2 or less.
  • particles having an Al content of less than 20%, a Si content of 20% or more, and an O content of 10% or more, in mass% are also referred to as "Si oxides”.
  • Si oxides having a major axis of 5.0 ⁇ m or more are also referred to as "coarse Si oxides”.
  • coarse Si oxides refer to particles having an Al content of less than 20%, a Si content of 20% or more, an O content of 10% or more, and a major axis of 5.0 ⁇ m or more, in mass%.
  • Si oxides have not been paid much attention to because of their small number.
  • the steel has a high yield strength of 125 ksi or more
  • the coarse Al oxides not only the coarse Al oxides but also the coarse Si oxides with a small number may easily cause a decrease in low-temperature toughness. Therefore, by making the number density of the coarse Al oxides less than 30 pieces/200 mm 2 and making the number density of the coarse Si oxides 5 pieces/200 mm 2 or less, it is possible to stably obtain excellent low-temperature toughness even if the yield strength is increased to 125 ksi or more.
  • the steel material according to this embodiment has the above-mentioned chemical composition and a yield strength of 862 to 1034 MPa, and the number density of the coarse Al oxides in the steel material is less than 30 pieces/200 mm 2 , and further, the number density of the coarse Si oxides is 5 pieces/200 mm 2 or less.
  • the preferred upper limit of the number density of the coarse Si oxides is 4 pieces/200 mm2 , and more preferably 3 pieces/200 mm2 .
  • the lower limit of the number density of the coarse Si oxides is not particularly limited, and may be 0 pieces/200 mm2 .
  • the lower limit of the number density of the coarse Si oxides may be, for example, 1 piece/200 mm2 .
  • the number density of coarse Al oxides and the number density of coarse Si oxides in the steel material can be found by the following method.
  • a test piece is prepared from the steel material according to this embodiment, with the observation surface being a surface including the rolling direction and the reduction direction.
  • the steel material is a steel plate
  • a test piece is prepared from the center of the plate thickness, with the observation surface being a surface including the rolling direction and the plate thickness direction.
  • the steel material is a steel pipe
  • a test piece is prepared from the center of the plate thickness, with the observation surface being a surface including the pipe axial direction and the pipe radial direction.
  • the steel material is round bar
  • a test piece is prepared that includes the R/2 position in the center, with the observation surface being a surface including the axial direction and the radial direction.
  • the observation surface of the prepared test piece is polished to a mirror finish, and then the measurement is performed.
  • the area of the observation surface is not limited, but is, for example, 300 mm 2 (20 mm ⁇ 15 mm).
  • the number of Al oxides with a major axis of 5.0 ⁇ m or more is determined on the observation surface.
  • the number of Si oxides with a major axis of 5.0 ⁇ m or more is determined on the observation surface.
  • the particles on the observation surface are first identified from the contrast. An element concentration analysis (EDS analysis) is performed on each identified particle.
  • the acceleration voltage is set to 20 kV
  • the target elements are quantified as N, O, Mg, Al, Si, P, S, Ca, Ti, Cr, Mn, Fe, Cu, Zr, and Nb.
  • the particle is identified as "Al oxide”.
  • the particle is identified as a "Si oxide”.
  • Al oxides identified on the observation surface Al oxides with a major axis of 5.0 ⁇ m or more (coarse Al oxides) are identified, and the total number of coarse Al oxides is calculated. Furthermore, among the Si oxides identified on the observation surface, Si oxides with a major axis of 5.0 ⁇ m or more (coarse Si oxides) are identified, and the total number of coarse Si oxides is calculated.
  • the major axes of Al oxides and Si oxides can be calculated by well-known methods. In this specification, the major axes of Al oxides and Si oxides refer to the longest line segment among the line segments connecting any two points on the periphery of Al oxides and Si oxides on the observation surface.
  • the number density of the coarse Al oxides is calculated based on the total number of the coarse Al oxides and the total area of the observation surface. Furthermore, the number density of the coarse Si oxides (pieces/200 mm 2 ) is calculated based on the total number of the coarse Si oxides and the total area of the observation surface. In this embodiment, the number density of the coarse Al oxides (pieces/200 mm 2 ) and the number density of the coarse Si oxides (pieces/200 mm 2 ) are both calculated by rounding off the obtained values to the first decimal place.
  • the number density of the coarse Al oxides and the coarse Si oxides can be measured using a device (SEM-EDS device) in which a composition analysis function is provided to a scanning electron microscope.
  • SEM-EDS device for example, an automatic analyzer manufactured by FEI (ASPEX) under the product name: Metals Quality Analyzer can be used.
  • the steel material according to the present embodiment has the above-mentioned chemical composition, a yield strength of 862 to 1034 MPa, a number density of coarse Al oxides of less than 30/200 mm2 , and a number density of coarse Si oxides of 5/200 mm2 or less.
  • the steel material according to the present embodiment has excellent low-temperature toughness even when the yield strength is 125 ksi or more.
  • having excellent low-temperature toughness is determined by a Charpy impact test in accordance with ASTM E23 (2016) described below.
  • a full-size or sub-size V-notch test piece is prepared from the steel material according to this embodiment in accordance with API 5CT (2019).
  • the rolling direction of the steel plate is defined as the "L direction” (Longitudinal)
  • the plate width direction of the steel plate is defined as the “T direction” (Transverse).
  • the pipe diameter direction of the steel pipe is defined as the "C direction”
  • the pipe axial direction of the steel pipe is defined as the "L direction”
  • the direction perpendicular to the C direction and the L direction is defined as the "T direction”.
  • the cross-sectional radial direction of the round bar is defined as the "C direction”
  • the axial direction of the round bar is defined as the “L direction”
  • the direction perpendicular to the C direction and the L direction is defined as the "T direction”.
  • a Charpy impact test is performed on the prepared V-notch test specimen in accordance with ASTM E23 (2016). Specifically, the test temperature is set to eight levels (-120°C, -100°C, -80°C, -60°C, -40°C, -20°C, 0°C, and 20°C) that are changed by 20°C in the range of -120 to 20°C.
  • the Charpy impact test is performed using two test specimens for each test temperature. Under the above conditions, the brittle fracture rate (%) of the test specimen after the test at each temperature is obtained. An approximation curve is obtained by plotting the test temperature (°C) and the obtained brittle fracture rate (%).
  • the temperature (°C) at which the brittle fracture rate becomes 50% is obtained and defined as the fracture transition temperature (°C).
  • the fracture transition temperature (°C) is obtained by rounding the obtained value to one decimal place.
  • excellent low-temperature toughness is defined according to the range of yield strength. Specifically, if the yield strength is less than 862-945 MPa and the fracture transition temperature is -50°C or lower, it is determined to have excellent low-temperature toughness. Also, if the yield strength is 945-1034 MPa and the fracture transition temperature is -40°C or lower, it is determined to have excellent low-temperature toughness.
  • the microstructure of the steel material according to this embodiment has a total volume fraction of tempered martensite and tempered bainite of 90% or more.
  • the remainder of the microstructure is, for example, ferrite or pearlite. If the microstructure of the steel material having the above-mentioned chemical composition contains a total volume fraction of tempered martensite and tempered bainite of 90% or more, it can achieve both a yield strength of 125 ksi or more and excellent low-temperature toughness, provided that other configurations of this embodiment are satisfied.
  • the microstructure has a total volume fraction of tempered martensite and tempered bainite of 90% or more.
  • a test piece having an observation surface is prepared from the steel material according to this embodiment. If the steel material is a steel plate, a test piece is prepared from the center of the plate thickness, with the observation surface being a surface including the rolling direction and the plate thickness direction. If the steel material is a steel pipe, a test piece is prepared from the center of the wall thickness, with the observation surface being a surface including the pipe axial direction and the pipe radial direction. If the steel material is round bar, a test piece is prepared that includes the R/2 position in the center, with the observation surface being a surface including the axial direction and the radial direction.
  • the observation surface of the test piece is polished to a mirror finish, and then immersed in a nital etching solution for about 10 seconds to reveal the structure by etching.
  • the etched observation surface is observed in 10 fields of view as secondary electron images using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the field area is, for example, 0.01 mm 2 (magnification 1000 times).
  • tempered martensite and tempered bainite are identified from the contrast.
  • the area ratio of the identified tempered martensite and tempered bainite is obtained.
  • the method for obtaining the area ratio is not particularly limited, and a well-known method may be used.
  • the area ratio of tempered martensite and tempered bainite can be obtained by image analysis.
  • the arithmetic average value of the area ratios of tempered martensite and tempered bainite obtained in all fields of view is defined as the volume ratio of tempered martensite and tempered bainite.
  • a method for manufacturing a steel material according to this embodiment will be described. Below, a method for manufacturing a seamless steel pipe will be described as an example of a steel material according to this embodiment.
  • the method for manufacturing a seamless steel pipe includes a process for preparing a material (steelmaking process), a process for hot working the material to manufacture a mother pipe (hot working process), and a process for quenching and tempering the mother pipe to produce a seamless steel pipe (quenching process and tempering process). Note that the manufacturing method according to this embodiment is not limited to the manufacturing method described below. Each process will be described in detail below.
  • Stepmaking process In the steelmaking process, first, molten pig iron produced by a known method is refined in a converter (primary refining). The molten steel produced by the primary refining is then subjected to secondary refining. In the secondary refining, alloy elements are added to adjust the composition, to produce molten steel that satisfies the above-mentioned chemical composition.
  • Secondary refining involves, for example, RH (Ruhrstahl-Hausen) vacuum degassing treatment. After that, final adjustment of the alloy components is made. In secondary refining, combined refining may also be performed. In this case, prior to the RH vacuum degassing treatment, for example, a refining treatment using LF (Ladle Furnace) or VAD (Vacuum Arc Degassing) is performed.
  • Materials are manufactured using molten steel that has undergone secondary refinement. Specifically, cast pieces (slabs, blooms, or billets) are manufactured by continuous casting using molten steel that has undergone secondary refinement. In continuous casting, molten steel is first poured from a ladle into a tundish. At this time, packing sand is usually enclosed in the nozzle of the ladle to seal it. For this reason, packing sand may be mixed in with the molten steel from the ladle to the tundish. Also, when manufacturing materials having the above-mentioned chemical composition, silicon oxides may be used as packing sand. In this case, there is a concern that silicon oxides may be introduced into the manufactured material.
  • the molten steel and the Si oxide are separated.
  • the method of separating the Si oxide is not particularly limited, but the following method can be used, for example.
  • a tilted metal plate is placed below the nozzle of the ladle and above the opening of the tundish.
  • the Si oxide is discharged from the nozzle first, followed by the molten steel.
  • the Si oxide is lighter than the molten steel. Therefore, the Si oxide discharged from the nozzle is guided out of the opening of the tundish along the tilt of the metal plate.
  • the tilt of the metal plate may be provided, for example, by placing a metal plate processed into a cone shape without a bottom so that its apex is directly below the nozzle of the ladle, or by other methods. Furthermore, a single metal plate may be used, or multiple metal plates may be used in a stack. Furthermore, the thickness of the metal plate is not particularly limited, but is, for example, about 1 to 10 mm.
  • the metal plate in this embodiment is preferably a metal plate made of alloy elements contained in the molten steel.
  • an aluminum plate can be used as a metal plate made of alloy elements contained in the molten steel.
  • an aluminum plate means a metal plate made of aluminum and the remainder made of impurities.
  • the metal plate is removed from below the nozzle.
  • the method for removing the metal plate from below the nozzle is not particularly limited, but for example, a hole may be formed in part of the metal plate and the metal plate may be removed using a rod with a hook at its tip. In this case, the hook at the tip of the rod can be hooked into the hole in the metal plate and the rod can be pulled to remove the metal plate.
  • the Si oxide can be separated from the molten steel and the molten steel can be introduced into the tundish.
  • the method for separating the Si oxide from the molten steel is not limited to the above method.
  • the casting method is not particularly limited, but may be, for example, a continuous casting method.
  • a continuous casting method When producing the material by continuous casting, it is preferable to carry out the following method.
  • the casting speed in the continuous casting machine is preferably 1.0 to 3.0 m/min. If the casting speed is too slow, an accumulation zone of Al oxides may form in the material. In this case, the produced steel material will contain a large amount of coarse Al oxides, and the low-temperature toughness of the steel material will decrease. On the other hand, if the casting speed is too fast, the Al oxides may not float to the surface, and a large amount of Al oxide may remain in the material. In this case, the produced steel material will contain a large amount of coarse Al oxides, and the low-temperature toughness of the steel material will decrease. Therefore, the casting speed in the continuous casting machine is preferably 1.0 to 3.0 m/min.
  • the prepared material is hot worked to produce an intermediate steel material.
  • the intermediate steel material corresponds to a mother pipe.
  • the heating temperature is not particularly limited, but is, for example, 1100 to 1300°C.
  • the billet extracted from the heating furnace is hot worked to produce a mother pipe (seamless steel pipe).
  • the method of hot working is not particularly limited, and may be a well-known method.
  • the Mannesmann process may be carried out as hot working to manufacture a blank tube.
  • a round billet is pierced and rolled using a piercing machine.
  • the piercing ratio is not particularly limited, but is, for example, 1.0 to 4.0.
  • the pierced and rolled round billet is further hot rolled using a mandrel mill, reducer, sizing mill, etc. to produce a blank tube.
  • the cumulative reduction in area during the hot working process is, for example, 20 to 70%.
  • the blank pipe may be produced by forging using the Erhardt method or the like.
  • the blank pipe is produced by the above process. There are no particular limitations on the thickness of the blank pipe, but it is, for example, 9 to 60 mm.
  • the material is first heated in a heating furnace.
  • the heating temperature is not particularly limited, but is, for example, 1100 to 1300°C.
  • the material extracted from the heating furnace is subjected to hot processing to produce intermediate steel material with a circular cross section perpendicular to the axial direction.
  • the hot processing is, for example, blooming using a blooming mill, or hot rolling using a continuous rolling mill.
  • a continuous rolling mill has an alternating arrangement of horizontal stands having a pair of grooved rolls arranged side by side in the vertical direction, and vertical stands having a pair of grooved rolls arranged side by side in the horizontal direction.
  • the material is first heated in a heating furnace.
  • the heating temperature is not particularly limited, but is, for example, 1100 to 1300°C.
  • the material extracted from the heating furnace is hot-rolled using a blooming mill and a continuous rolling mill to produce intermediate steel material in the shape of a steel plate.
  • the blank pipe produced by hot working may be air-cooled (as-rolled).
  • the blank pipe produced by hot working may be quenched directly after hot working without being cooled to room temperature, or it may be quenched after being reheated after hot working.
  • SR stress relief annealing
  • the prepared material is hot worked to produce intermediate steel.
  • the quenching process is described in detail below.
  • quenching In the quenching process, quenching is performed on the prepared intermediate steel material (blank pipe).
  • quenching means rapidly cooling the intermediate steel material at the A3 point or higher.
  • the preferred quenching temperature is 800 to 1000°C. If the quenching temperature is too high, the prior ⁇ grains may become coarse, and the low-temperature toughness of the steel material may decrease. Therefore, the quenching temperature is preferably 800 to 1000°C.
  • the quenching temperature corresponds to the surface temperature of the intermediate steel material measured by a thermometer installed at the outlet of the equipment that performs the final hot processing, when quenching is performed directly after hot processing. Furthermore, when quenching is performed after supplementary heating or reheating after hot processing, the quenching temperature corresponds to the temperature of the furnace in which supplementary heating or reheating is performed.
  • the quenching method involves continuously cooling the intermediate steel material (bare pipe) from the quenching start temperature, and continuously lowering the surface temperature of the raw pipe.
  • the method of continuous cooling is not particularly limited, and any well-known method may be used.
  • the method of continuous cooling is a method of cooling the raw pipe by immersing it in a water tank, or a method of accelerating cooling the raw pipe by shower water cooling or mist cooling.
  • the microstructure will not be mainly martensite and bainite, and the mechanical properties specified in this embodiment (yield strength of 862 to 1034 MPa) will not be obtained. In this case, excellent low-temperature toughness will also not be obtained.
  • the intermediate steel is quenched during quenching.
  • the average cooling rate in the range of the surface temperature of the intermediate steel (blank tube) during quenching from 800 to 500°C is defined as the cooling rate during quenching CR 800-500 .
  • the cooling rate during quenching CR 800-500 is determined from the temperature measured at the location that is cooled the slowest in the cross section of the intermediate steel to be quenched (for example, the center of the thickness of the intermediate steel when both surfaces are forcibly cooled).
  • the cooling rate CR 800-500 during quenching is preferably 300° C./min or more.
  • the lower limit of the cooling rate CR 800-500 during quenching is more preferably 450° C./min, and even more preferably 600° C./min.
  • the upper limit of the cooling rate CR 800-500 during quenching is not particularly specified, but is, for example, 60,000° C./min.
  • the blank tube is heated in the austenite region multiple times and then quenched.
  • the austenite grains before quenching are refined, thereby improving the low-temperature toughness of the steel.
  • quenching multiple times heating in the austenite region may be repeated multiple times, or by normalizing and quenching, heating in the austenite region may be repeated multiple times.
  • Quenching and tempering which will be described later, may also be combined and performed multiple times. In other words, quenching and tempering may be performed multiple times. In this case, the low-temperature toughness of the steel is further improved.
  • the tempering process is described in detail below.
  • tempering process In the tempering process, the blank pipe that has been quenched is tempered.
  • tempering means reheating the quenched intermediate steel material at a temperature lower than the A c1 point and holding the material at that temperature.
  • the tempering temperature corresponds to the furnace temperature when the quenched intermediate steel material is heated and held at that temperature.
  • the tempering time means the time from when the temperature of the intermediate steel material reaches a predetermined tempering temperature to when the intermediate steel material is extracted from the heat treatment furnace.
  • the tempering temperature is adjusted appropriately depending on the chemical composition of the seamless steel pipe and the yield strength to be obtained.
  • the tempering temperature is adjusted to adjust the yield strength of the seamless steel pipe to 862 to 1034 MPa. It is of course possible for a person skilled in the art to adjust the yield strength of the seamless steel pipe to 862 to 1034 MPa by adjusting the tempering temperature.
  • the preferred tempering temperature is 580 to 690°C.
  • the tempering time is preferably 10 to 90 minutes.
  • a more preferable lower limit of the tempering time is 15 minutes.
  • a more preferable upper limit of the tempering time is 80 minutes.
  • the steel material according to this embodiment can be manufactured by the above manufacturing method.
  • a method for manufacturing a seamless steel pipe has been described as one example.
  • the steel material according to this embodiment may be a steel plate or other shape.
  • a manufacturing method for a steel plate or other shape also includes, for example, a preparation step, a quenching step, and a tempering step.
  • the above manufacturing method is one example, and the steel material may be manufactured by other manufacturing methods.
  • Example 1 steel materials with a yield strength of 862 to less than 945 MPa were investigated. Specifically, molten steel was produced having the chemical composition shown in Tables 1-1 and 1-2. Note that "-" in Table 1-2 means that the content of each element is at the impurity level. Specifically, the V content, Cu content, Ni content, and W content of Steel A were rounded to the nearest two decimal places and were 0%. Furthermore, the Ca content, Mg content, Zr content, and rare earth element (REM) content of Steel A were rounded to the nearest five decimal places and were 0%.
  • REM rare earth element
  • the above molten steel was used to manufacture a round billet by continuous casting.
  • a metal plate processed into a bottomless cone shape was placed above the opening of the tundish so that its apex was directly below the nozzle of the ladle.
  • Table 2 shows whether or not a metal plate of the above shape was placed above the opening of the tundish. Specifically, when a metal plate of the above shape was placed above the opening of the tundish, "A” is indicated in the "Metal Plate” column of Table 2. When a metal plate of the above shape was not placed above the opening of the tundish, "B” is indicated in the "Metal Plate” column of Table 2.
  • the metal plate of the above shape placed above the opening of the tundish was an aluminum plate. Specifically, three aluminum plates with a thickness of 2 mm were used in a stack. When a metal plate was placed, after the silicon oxide was discharged from the nozzle and before the molten steel was discharged, the metal plate was removed from below the nozzle using a rod with a hook formed at its tip. Furthermore, the molten steel was cast into a round billet at the casting speed shown in Table 2. At this time, electromagnetic stirring was performed in the mold at the current value shown in Table 2.
  • the manufactured round billets of test numbers 1 to 20 were held at 1250°C for 1 hour, and then hot rolling was performed by the Mannesmann-mandrel method to manufacture mother pipes (seamless steel pipes) of test numbers 1 to 20. Furthermore, the obtained mother pipes of test numbers 1 to 20 were quenched. Specifically, the mother pipes of test numbers 1 to 20 were held at the temperature (°C) for the time (minutes) shown in the "Quenching process" column in Table 2, and then quenched by shower water cooling. In addition, the cooling rate during quenching CR 800-500 in test numbers 1 to 20 was in the range of 480 to 30000°C/min.
  • the quenching temperature (°C) shown in Table 2 was the temperature (°C) of the heat treatment furnace in which the mother pipe was heated. Furthermore, the quenching time (minutes) shown in Table 2 was the time (minutes) during which the mother pipe was held at the quenching temperature.
  • the obtained blank pipes of test numbers 1 to 20 were tempered. Specifically, blank pipes of test numbers 1 to 20 were tempered by holding them at the temperature (°C) for the time (minutes) listed in the "Tempering process" column of Table 2.
  • the tempering temperature (°C) listed in Table 2 is the temperature (°C) of the tempering furnace in which the blank pipes were heated.
  • the tempering time (minutes) listed in Table 2 is the time (minutes) the blank pipes were held at the tempering temperature.
  • the number densities (pieces/200 mm 2 ) of the coarse Al oxides thus obtained are shown in the "coarse Al oxides (pieces/200 mm 2 )" column of Table 3.
  • the number densities (pieces/200 mm 2 ) of the coarse Si oxides thus obtained are shown in the "coarse Si oxides (pieces/200 mm 2 )" column of Table 3.
  • a Charpy impact test was performed on the seamless steel pipes of test numbers 1 to 20 to evaluate the low temperature toughness.
  • a full-size V-notch test piece was prepared from the center of the wall thickness of the seamless steel pipes of test numbers 1 to 20.
  • the longitudinal direction of the test piece was parallel to the circumferential direction of the pipe.
  • the circumferential direction of the pipe means a direction perpendicular to both the axial direction and the radial direction of the seamless steel pipe.
  • the notch surface of the test piece was perpendicular to the axial direction of the seamless steel pipe.
  • a Charpy impact test was performed under the above conditions in accordance with ASTM E23 (2016) to determine the brittle fracture rate (%) of test numbers 1 to 20.
  • the temperature (°C) at which the brittle fracture rate becomes 50% was determined from the approximation curve of the plot of the test temperature (°C) and the brittle fracture rate (%), and was taken as the fracture transition temperature (°C).
  • the obtained fracture transition temperatures (°C) are shown in Table 3.
  • the seamless steel pipes of test numbers 1 to 12 had appropriate chemical compositions, and the manufacturing methods also satisfied the above-mentioned preferred conditions.
  • the seamless steel pipes had a yield strength of 862 to less than 945 MPa, a number density of coarse Al oxides of less than 30 pieces/200 mm2 , and a number density of coarse Si oxides of 5 pieces/200 mm2 or less.
  • the seamless steel pipes had a fracture transition temperature of -50°C or less in the Charpy impact test. That is, the seamless steel pipes of test numbers 1 to 12 had a yield strength of 862 to less than 945 MPa and excellent low-temperature toughness. It was determined that the sum of the volume fractions of tempered martensite and tempered bainite in the microstructure of these seamless steel pipes was 90% or more.
  • the seamless steel pipe of test number 18 had too high an O content.
  • the fracture transition temperature of this seamless steel pipe exceeded -50°C in the Charpy impact test, and it did not have excellent low-temperature toughness.
  • the seamless steel pipe of test number 19 had too low a Mo content.
  • the fracture transition temperature of this seamless steel pipe exceeded -50°C in the Charpy impact test, and it did not have excellent low-temperature toughness.
  • the seamless steel pipe of test number 20 had too high a S content.
  • the fracture transition temperature of this seamless steel pipe exceeded -50°C in the Charpy impact test, and it did not have excellent low-temperature toughness.
  • Example 2 steel materials with yield strengths of 945 to 1034 MPa were investigated. Specifically, molten steels were produced having the chemical compositions shown in Tables 4-1 and 4-2. Note that "-" in Table 4-2 means that the content of each element is at the impurity level. Specifically, the Cu content, Ni content, and W content of Steel A were rounded to the nearest two decimal places and were 0%. Furthermore, the Ca content, Mg content, Zr content, and rare earth element (REM) content of Steel A were rounded to the nearest five decimal places and were 0%.
  • REM rare earth element
  • a round billet was produced by continuous casting using the above molten steel.
  • a metal plate processed into a bottomless cone shape was placed above the opening of the tundish so that its apex was directly below the nozzle of the ladle.
  • Table 5 shows whether or not a metal plate of the above shape was placed above the opening of the tundish. Specifically, when a metal plate of the above shape was placed above the opening of the tundish, "A” is indicated in the "Metal Plate” column of Table 5. When a metal plate of the above shape was not placed above the opening of the tundish, "B” is indicated in the “Metal Plate” column of Table 5.
  • the metal plate of the above shape placed above the opening of the tundish was an aluminum plate. Specifically, three aluminum plates with a thickness of 2 mm were used in a stack. When a metal plate was placed, after the Si oxide was discharged from the nozzle and before the molten steel was discharged, the metal plate was removed from below the nozzle using a rod with a hook formed at its tip. Furthermore, the molten steel was cast into a round billet at the casting speed shown in Table 5. At this time, electromagnetic stirring was performed in the mold at the current value shown in Table 5.
  • the manufactured round billets of test numbers 21 to 38 were held at 1250°C for 1 hour, and then hot rolling was performed by the Mannesmann-mandrel method to manufacture mother pipes (seamless steel pipes) of test numbers 21 to 38. Furthermore, the obtained mother pipes of test numbers 21 to 38 were quenched. Specifically, the mother pipes of test numbers 21 to 38 were held at the temperature (°C) for the time (minutes) shown in the "Quenching process" column in Table 5, and then quenched by shower water cooling. In addition, the cooling rate during quenching CR 800-500 in test numbers 21 to 38 was in the range of 480 to 30,000°C/min.
  • the quenching temperature (°C) shown in Table 5 was the temperature (°C) of the heat treatment furnace in which the mother pipe was heated. Furthermore, the quenching time (minutes) shown in Table 5 was the time (minutes) during which the mother pipe was held at the quenching temperature.
  • the obtained blank pipes of test numbers 21 to 38 were tempered in the same manner as in Example 1. Specifically, blank pipes of test numbers 21 to 38 were tempered by holding them at the temperature (°C) for the time (minutes) listed in the "Tempering process” column of Table 5.
  • the tempering temperature (°C) listed in Table 5 is the temperature (°C) of the tempering furnace in which the blank pipes were heated.
  • the tempering time (minutes) listed in Table 5 is the time (minutes) during which the blank pipes were held at the tempering temperature.
  • the number densities (pieces/200 mm 2 ) of the coarse Al oxides thus obtained are shown in the "Coarse Al oxides (pieces/200 mm 2 )" column of Table 6.
  • the number densities (pieces/200 mm 2 ) of the coarse Si oxides thus obtained are shown in the "Coarse Si oxides (pieces/200 mm 2 )" column of Table 6.
  • a Charpy impact test was performed on the seamless steel pipes of test numbers 21 to 38 to evaluate their low-temperature toughness.
  • Full-size V-notch test pieces were prepared from the center of the wall thickness of the seamless steel pipes of test numbers 21 to 38.
  • the longitudinal direction of the test piece was parallel to the circumferential direction of the pipe.
  • the circumferential direction of the pipe means a direction perpendicular to both the axial direction and the radial direction of the seamless steel pipe.
  • the notch surface of the test piece was perpendicular to the axial direction of the seamless steel pipe.
  • a Charpy impact test was performed under the above conditions in accordance with ASTM E23 (2016) to determine the brittle fracture rate (%) of test numbers 21 to 38.
  • the temperature (°C) at which the brittle fracture rate becomes 50% was determined from the approximation curve of the plot of the test temperature (°C) and the brittle fracture rate (%), and was taken as the fracture transition temperature (°C).
  • the obtained fracture transition temperatures (°C) are shown in Table 6.
  • the seamless steel pipes of test numbers 21 to 32 had appropriate chemical compositions, and the manufacturing methods also satisfied the above-mentioned preferred conditions. As a result, these seamless steel pipes had a yield strength of 945 to 1034 MPa, a number density of coarse Al oxides of less than 30 pieces/200 mm2 , and a number density of coarse Si oxides of 5 pieces/200 mm2 or less . As a result, these seamless steel pipes had a fracture transition temperature of -40°C or less in a Charpy impact test. That is, the seamless steel pipes of test numbers 21 to 32 had a yield strength of 945 to 1034 MPa and excellent low-temperature toughness. It was determined that the sum of the volume fractions of tempered martensite and tempered bainite in the microstructure of these seamless steel pipes was 90% or more.
  • the seamless steel pipe of test number 37 had too high an O content.
  • the fracture transition temperature of this seamless steel pipe exceeded -40°C in the Charpy impact test, and it did not have excellent low-temperature toughness.
  • the seamless steel pipe of test number 38 had too high a S content.
  • the fracture transition temperature of this seamless steel pipe exceeded -40°C in the Charpy impact test, and it did not have excellent low-temperature toughness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided is a steel material having both high strength of at least 125 ksi and excellent low-temperature toughness. This steel material contains, in mass%, 0.15-0.45% of C, 0.05-1.00% of Si, 0.05-1.00% of Mn, 0.030% or less of P, 0.0050% or less of S, 0.005-0.100% of Al, 0.30-1.50% of Cr, 0.20-2.00% of Mo, 0.002-0.030% of Ti, 0.002-0.100% of Nb, 0.0005-0.0040% of B, 0.0100% or less of N, and 0.0040% or less of O, with the remainder comprising Fe and impurities, and has a yield strength of 862-1034 MPa. In the steel material, the number density of Al oxides having a major axis of at least 5.0 μm is less than 30 counts/200 mm2, and the number density of Si oxides having a major axis of at least 5.0 μm is 5 counts/200 mm2 or less.

Description

鋼材Steel
 本開示は鋼材に関し、さらに詳しくは、油井での使用に適した鋼材に関する。 This disclosure relates to steel materials, and more particularly to steel materials suitable for use in oil wells.
 油井及びガス井(以下、油井及びガス井を総称して、単に「油井」という)の深井戸化により、油井用鋼管に代表される油井用鋼材の高強度化が要求されている。具体的には、80ksi級(降伏強度が80~95ksi未満、つまり、552~655MPa未満)や、95ksi級(降伏強度が95~110ksi未満、つまり、655~758MPa未満)の油井用鋼材が広く利用されており、最近ではさらに、110ksi級(降伏強度が758~862MPa未満)の油井用鋼材が求められ始めている。 The deepening of oil and gas wells (hereinafter, oil and gas wells will be collectively referred to simply as "oil wells") has created a demand for higher strength oil well steel materials, such as oil well steel pipes. Specifically, 80 ksi grade (yield strength of 80 to less than 95 ksi, i.e., 552 to less than 655 MPa) and 95 ksi grade (yield strength of 95 to less than 110 ksi, i.e., 655 to less than 758 MPa) oil well steel materials are widely used, and recently there has been an increasing demand for 110 ksi grade (yield strength of 758 to less than 862 MPa) oil well steel materials.
 油井ではさらに、腐食性を有する硫化水素ガス(H2S)や炭酸ガス(CO2)等を含有する場合がある。そのため、油井用鋼材としての使用が想定される鋼材には、高強度だけでなく、優れた耐食性も求められる。また、油井用鋼材では、使用中の鋼材には応力が負荷される。そのため、油井用鋼材の優れた耐食性の指標として耐硫化物応力割れ性(耐Sulfide Stress Cracking性:以下、耐SSC性という)が用いられてきた。 Oil wells may further contain corrosive hydrogen sulfide gas (H 2 S) and carbon dioxide gas (CO 2 ). Therefore, steel materials expected to be used as oil well steel materials are required to have not only high strength but also excellent corrosion resistance. In addition, steel materials for oil wells are subjected to stress during use. Therefore, sulfide stress cracking resistance (hereinafter referred to as SSC resistance) has been used as an index of excellent corrosion resistance of steel materials for oil wells.
 鋼材の強度と耐SSC性とを高める技術が、特開2006-28612号公報(特許文献1)、国際公開第2008/123422号(特許文献2)、及び、特開2017-166060号公報(特許文献3)に提案されている。 Technologies for improving the strength and SSC resistance of steel materials have been proposed in JP 2006-28612 A (Patent Document 1), WO 2008/123422 A (Patent Document 2), and JP 2017-166060 A (Patent Document 3).
 特許文献1に開示される鋼材は、鋼管用鋼であって、質量%で、C:0.2~0.7%、Si:0.01~0.8%、Mn:0.1~1.5%、S:0.005%以下、P:0.03%以下、Al:0.0005~0.1%、Ti:0.005~0.05%、Ca:0.0004~0.005%、N:0.007%以下、Cr:0.1~1.5%、Mo:0.2~1.0%、残部がFe及び不純物からなる。この鋼材はさらに、Ca、Al、Ti、N、O及びSを含む非金属介在物の介在物中の(Ca%)/(Al%)が0.55~1.72、かつ、(Ca%)/(Ti%)が0.7~19である。この鋼材は、758MPaを超える高い降伏強度と、優れた耐SSC性とを有する、と特許文献1には記載されている。 The steel material disclosed in Patent Document 1 is a steel for steel pipes, and consists of, by mass%, C: 0.2-0.7%, Si: 0.01-0.8%, Mn: 0.1-1.5%, S: 0.005% or less, P: 0.03% or less, Al: 0.0005-0.1%, Ti: 0.005-0.05%, Ca: 0.0004-0.005%, N: 0.007% or less, Cr: 0.1-1.5%, Mo: 0.2-1.0%, with the balance being Fe and impurities. This steel material further has a (Ca%)/(Al%) ratio of 0.55-1.72 and a (Ca%)/(Ti%) ratio of 0.7-19 in the non-metallic inclusions containing Ca, Al, Ti, N, O, and S. Patent Document 1 states that this steel has a high yield strength of more than 758 MPa and excellent SSC resistance.
 特許文献2に開示される鋼材は、低合金鋼であって、質量%で、C:0.10~0.20%、Si:0.05~1.0%、Mn:0.05~1.5%、Cr:1.0~2.0%、Mo:0.05~2.0%、Al:0.10%以下、及び、Ti:0.002~0.05%を含有し、かつ、Ceq(=C+(Mn/6)+(Cr+Mo+V)/5)が0.65以上であり、残部がFe及び不純物からなり、不純物中において、P:0.025%以下、S:0.010%以下、N:0.007%以下、B:0.0003%未満である。この鋼材はさらに、粒径が1μm以上のM236型析出物が0.1個/mm2以下である。この鋼材は、654~793MPaの降伏強度を有し、高圧の硫化水素環境でも優れた耐SSC性を有する、と特許文献2には記載されている。 The steel material disclosed in Patent Document 2 is a low alloy steel containing, by mass%, C: 0.10-0.20%, Si: 0.05-1.0%, Mn: 0.05-1.5%, Cr: 1.0-2.0%, Mo: 0.05-2.0%, Al: 0.10% or less, and Ti: 0.002-0.05%, with Ceq (=C+(Mn/6)+(Cr+Mo+V)/5) being 0.65 or more, the balance being Fe and impurities, with the impurities being P: 0.025% or less, S: 0.010% or less, N: 0.007% or less, and B: less than 0.0003%. This steel material further contains 0.1 M23C6 type precipitates having a grain size of 1 μm or more per mm2 or less. Patent Document 2 describes that this steel has a yield strength of 654 to 793 MPa and has excellent SSC resistance even in a high-pressure hydrogen sulfide environment.
 特許文献3に開示される鋼材は、高強度油井用鋼管用素材であって、質量%で、C:0.20~0.45%、Si:0.05~0.40%、Mn:0.3~0.9%、P:0.015%以下、S:0.005%以下、Al:0.005~0.10%、N:0.001~0.006%、Cr:0.1~0.8%、Mo:0.1~1.6%、V:0.02~0.2%、Nb:0.001~0.04%、B:0.0003~0.0030%、O(酸素):0.0030%以下、残部がFe及び不可避的不純物からなる。この鋼材はさらに、ロックウェル硬さHRCが式(15.6×[%C]+29.2≦HRC<60.5×[%C]+31.1)を満たす。この鋼材によれば、758~862MPa未満の降伏強度と、優れた耐SSC性とを有する鋼管が得られる、と特許文献3には記載されている。 The steel material disclosed in Patent Document 3 is a material for high-strength steel pipes for oil wells, and consists, by mass%, of C: 0.20-0.45%, Si: 0.05-0.40%, Mn: 0.3-0.9%, P: 0.015% or less, S: 0.005% or less, Al: 0.005-0.10%, N: 0.001-0.006%, Cr: 0.1-0.8%, Mo: 0.1-1.6%, V: 0.02-0.2%, Nb: 0.001-0.04%, B: 0.0003-0.0030%, O (oxygen): 0.0030% or less, and the balance being Fe and unavoidable impurities. This steel further has a Rockwell hardness HRC that satisfies the formula (15.6 x [%C] + 29.2 ≦ HRC < 60.5 x [%C] + 31.1). Patent Document 3 states that this steel can produce steel pipes with a yield strength of 758 to less than 862 MPa and excellent SSC resistance.
特開2006-28612号公報JP 2006-28612 A 国際公開第2008/123422号International Publication No. 2008/123422 特開2017-166060号公報JP 2017-166060 A
 近年さらに、海面下の深井戸についても開発が活発になってきている。具体的に、水深2000m以上のいわゆる深海の海底油田への使用が想定された油井用鋼材には、たとえば、125ksi以上の高い強度(降伏強度が125ksi以上、つまり、862MPa以上)が求められる。このような深海の海底油田はさらに、水温が低い。そのため、このような深海の海底油田への使用が想定された油井用鋼材には、低温靭性も求められる。しかしながら、鋼材の降伏強度を高めれば、鋼材の低温靭性の低下が懸念される。 In recent years, there has also been active development of deep wells below sea level. Specifically, oil well steel materials intended for use in so-called deep sea oil fields at depths of 2000m or more are required to have high strength, for example, of 125ksi or more (yield strength of 125ksi or more, i.e. 862MPa or more). The water temperature in such deep sea oil fields is even lower. For this reason, low-temperature toughness is also required for oil well steel materials intended for use in such deep sea oil fields. However, there is concern that increasing the yield strength of the steel will result in a decrease in the low-temperature toughness of the steel.
 つまり、このような過酷な環境での使用が想定された油井用鋼材には、125ksi以上の高い強度と、優れた低温靭性との両立が求められる。一方、上記特許文献1~3では、125ksi以上の高い強度と、優れた低温靭性とを両立することについて、検討されていない。 In other words, oil well steel materials intended for use in such harsh environments are required to have both high strength of 125 ksi or more and excellent low-temperature toughness. However, the above Patent Documents 1 to 3 do not consider achieving both high strength of 125 ksi or more and excellent low-temperature toughness.
 本開示の目的は、125ksi以上(862MPa以上)の高い強度と、優れた低温靭性とを両立する鋼材を提供することである。 The objective of this disclosure is to provide a steel material that combines high strength of 125 ksi or more (862 MPa or more) with excellent low-temperature toughness.
 本開示による鋼材は、
 質量%で、
 C:0.15~0.45%、
 Si:0.05~1.00%、
 Mn:0.05~1.00%、
 P:0.030%以下、
 S:0.0050%以下、
 Al:0.005~0.100%、
 Cr:0.30~1.50%、
 Mo:0.20~2.00%、
 Ti:0.002~0.030%、
 Nb:0.002~0.100%、
 B:0.0005~0.0040%、
 N:0.0100%以下、
 O:0.0040%以下、
 V:0~0.30%、
 Cu:0~0.50%、
 Ni:0~0.50%、
 W:0~0.50%、
 Ca:0~0.0100%、
 Mg:0~0.0100%、
 Zr:0~0.0100%、
 希土類元素:0~0.0100%、及び、
 残部がFe及び不純物からなり、
 降伏強度が862~1034MPaであり、
 前記鋼材中において、
 質量%で、Al含有量が20%以上であり、O含有量が10%以上であり、長径が5.0μm以上のAl酸化物の個数密度が、30個/200mm2未満であり、
 質量%で、Al含有量が20%未満であり、Si含有量が20%以上であり、O含有量が10%以上であり、長径が5.0μm以上のSi酸化物の個数密度が、5個/200mm2以下である。
The steel material according to the present disclosure is
In mass percent,
C: 0.15-0.45%,
Si: 0.05-1.00%,
Mn: 0.05-1.00%,
P: 0.030% or less,
S: 0.0050% or less,
Al: 0.005-0.100%,
Cr: 0.30-1.50%,
Mo: 0.20-2.00%,
Ti: 0.002 to 0.030%,
Nb: 0.002-0.100%,
B: 0.0005-0.0040%,
N: 0.0100% or less,
O: 0.0040% or less,
V: 0 to 0.30%,
Cu: 0 to 0.50%,
Ni: 0 to 0.50%,
W: 0-0.50%,
Ca: 0-0.0100%,
Mg: 0 to 0.0100%,
Zr: 0 to 0.0100%,
Rare earth elements: 0 to 0.0100%, and
The balance is Fe and impurities,
The yield strength is 862 to 1034 MPa;
In the steel material,
The Al content is 20% or more, the O content is 10% or more, and the number density of Al oxides having a major axis of 5.0 μm or more is less than 30 pieces/200 mm2 , in terms of mass%,
In terms of mass%, the Al content is less than 20%, the Si content is 20% or more, the O content is 10% or more, and the number density of Si oxides having a major axis of 5.0 μm or more is 5 pieces/200 mm2 or less.
 本開示による鋼材は、125ksi以上(862MPa以上)の高い強度と、優れた低温靭性とを両立できる。 The steel material disclosed herein combines high strength of 125 ksi or more (862 MPa or more) with excellent low-temperature toughness.
図1は、本実施例のうち降伏強度が945MPa未満の実施例について、粗大Si酸化物(長径が5.0μm以上のSi酸化物)の個数密度(個/200mm2)と、低温靭性の指標である破面遷移温度(℃)との関係を示す図である。FIG. 1 is a graph showing the relationship between the number density (pieces/200 mm2 ) of coarse Si oxides (Si oxides with a major axis of 5.0 μm or more) and the fracture appearance transition temperature (°C), which is an index of low-temperature toughness, for examples having a yield strength of less than 945 MPa among the present examples. 図2は、本実施例のうち降伏強度が945MPa以上の実施例について、粗大Si酸化物(長径が5.0μm以上のSi酸化物)の個数密度(個/200mm2)と、低温靭性の指標である破面遷移温度(℃)との関係を示す図である。FIG. 2 is a graph showing the relationship between the number density (pieces/200 mm2 ) of coarse Si oxides (Si oxides with a major axis of 5.0 μm or more) and the fracture appearance transition temperature (°C), which is an index of low-temperature toughness, for the examples having a yield strength of 945 MPa or more among the present examples.
 まず本発明者らは、化学組成に着目して、125ksi以上の降伏強度と、優れた低温靭性とを両立する鋼材を得ることを検討した。その結果、本発明者らは、質量%で、C:0.15~0.45%、Si:0.05~1.00%、Mn:0.05~1.00%、P:0.030%以下、S:0.0050%以下、Al:0.005~0.100%、Cr:0.30~1.50%、Mo:0.20~2.00%、Ti:0.002~0.030%、Nb:0.002~0.100%、B:0.0005~0.0040%、N:0.0100%以下、O:0.0040%以下、V:0~0.30%、Cu:0~0.50%、Ni:0~0.50%、W:0~0.50%、Ca:0~0.0100%、Mg:0~0.0100%、Zr:0~0.0100%、希土類元素:0~0.0100%、及び、残部がFe及び不純物からなる鋼材であれば、125ksi以上の降伏強度と、優れた低温靭性とを両立できる可能性があると考えた。 First, the inventors focused on the chemical composition and investigated how to obtain a steel material that combines a yield strength of 125 ksi or more with excellent low-temperature toughness. As a result, the inventors discovered that the composition is, by mass%, C: 0.15-0.45%, Si: 0.05-1.00%, Mn: 0.05-1.00%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005-0.100%, Cr: 0.30-1.50%, Mo: 0.20-2.00%, Ti: 0.002-0.030%, Nb: 0.002-0.100%, B: 0.0005-0.0040%, N: 0.01 00% or less, O: 0.0040% or less, V: 0-0.30%, Cu: 0-0.50%, Ni: 0-0.50%, W: 0-0.50%, Ca: 0-0.0100%, Mg: 0-0.0100%, Zr: 0-0.0100%, rare earth elements: 0-0.0100%, and the balance being Fe and impurities, it is believed that a steel material consisting of this may be able to achieve both a yield strength of 125 ksi or more and excellent low-temperature toughness.
 次に本発明者らは、上述の化学組成と、125ksi以上の降伏強度とを有する鋼材について、低温靭性を高める手法を種々検討した。具体的に本発明者らは、粗大な酸化物系介在物を低減できれば、降伏強度を維持したまま、低温靭性を高められる可能性があると考えた。ここで、上述の化学組成を有する鋼材では、Al23を主体とするAl酸化物が粗大化しやすい。そのため、まず本発明者らは、粗大なAl酸化物に着目した。 Next, the inventors of the present invention investigated various methods for improving the low-temperature toughness of a steel material having the above-mentioned chemical composition and a yield strength of 125 ksi or more. Specifically, the inventors of the present invention considered that if coarse oxide-based inclusions could be reduced, it would be possible to improve the low-temperature toughness while maintaining the yield strength. Here, in a steel material having the above-mentioned chemical composition, Al oxides mainly composed of Al2O3 tend to coarsen. Therefore, the inventors of the present invention first focused on the coarse Al oxides.
 本発明者らによる検討の結果、上述の化学組成と、125ksi以上の降伏強度とを有する鋼材では、長径が5.0μm以上のAl酸化物の個数密度が30個/200mm2未満であれば、低温靭性を高められる可能性があることが明らかになった。ここで、本明細書では、質量%で、Al含有量が20%以上であり、O含有量が10%以上の粒子を「Al酸化物」ともいう。本明細書ではさらに、長径が5.0μm以上のAl酸化物を「粗大Al酸化物」ともいう。 As a result of studies by the present inventors, it has become clear that in a steel material having the above-mentioned chemical composition and a yield strength of 125 ksi or more, if the number density of Al oxides having a major axis of 5.0 μm or more is less than 30 particles/200 mm2 , low-temperature toughness may be improved. Herein, particles having an Al content of 20% or more and an O content of 10% or more, in mass%, are also referred to as "Al oxides". Furthermore, in this specification, Al oxides having a major axis of 5.0 μm or more are also referred to as "coarse Al oxides".
 ここで、Al酸化物は硬質な酸化物であり、鋼材の靭性を低下させやすい。特に、125ksi以上にまで降伏強度を高めた場合、粗大Al酸化物の影響が顕在化しやすく、低温靭性が顕著に低下しやすい。そこで、上述の化学組成と、125ksi以上の降伏強度とを有する本実施形態による鋼材では、粗大Al酸化物の個数密度を30個/200mm2未満とする。 Here, Al oxides are hard oxides and tend to reduce the toughness of the steel material. In particular, when the yield strength is increased to 125 ksi or more, the effect of coarse Al oxides tends to become apparent, and the low-temperature toughness tends to decrease significantly. Therefore, in the steel material according to this embodiment having the above-mentioned chemical composition and a yield strength of 125 ksi or more, the number density of coarse Al oxides is set to less than 30 particles/200 mm2 .
 一方、上述の化学組成を有し、粗大Al酸化物の個数密度が30個/200mm2未満の鋼材であっても、125ksi以上の降伏強度を有する場合、安定して優れた低温靭性を得られない場合があった。そこで本発明者らは、上述の化学組成と、125ksi以上の降伏強度とを有し、粗大Al酸化物の個数密度が30個/200mm2未満の鋼材について、優れた低温靭性を安定して得るための手法を種々検討した。本発明者らによる詳細な検討の結果、上述の化学組成と、125ksi以上の降伏強度とを有し、粗大Al酸化物の個数密度が30個/200mm2未満の鋼材では、鋼材中の粗大Al酸化物だけでなく、粗大なSi酸化物も低減できれば、優れた低温靭性を安定して得られる可能性があることが明らかになった。 On the other hand, even if a steel material has the above-mentioned chemical composition and the number density of coarse Al oxides is less than 30/200 mm2 , when the steel material has a yield strength of 125 ksi or more, it may not be possible to stably obtain excellent low-temperature toughness. Therefore, the present inventors have studied various methods for stably obtaining excellent low-temperature toughness for a steel material having the above-mentioned chemical composition, a yield strength of 125 ksi or more, and a number density of coarse Al oxides of less than 30/200 mm2 . As a result of detailed studies by the present inventors, it has become clear that in a steel material having the above-mentioned chemical composition, a yield strength of 125 ksi or more, and a number density of coarse Al oxides of less than 30/200 mm2 , if not only the coarse Al oxides but also the coarse Si oxides in the steel material can be reduced, excellent low-temperature toughness may be stably obtained.
 ここで、本明細書では、質量%で、Al含有量が20%未満であり、Si含有量が20%以上であり、O含有量が10%以上の粒子を「Si酸化物」ともいう。本明細書ではさらに、長径が5.0μm以上のSi酸化物を「粗大Si酸化物」ともいう。以下、上述の化学組成と、125ksi以上の降伏強度とを有し、粗大Al酸化物の個数密度が30個/200mm2未満の鋼材について、粗大Si酸化物と、低温靭性との関係について、図面を用いて具体的に説明する。 Here, in this specification, particles having an Al content of less than 20%, a Si content of 20% or more, and an O content of 10% or more, in mass%, are also referred to as "Si oxides". In this specification, Si oxides having a major axis of 5.0 μm or more are also referred to as "coarse Si oxides". Hereinafter, the relationship between coarse Si oxides and low-temperature toughness will be specifically described with reference to the drawings for a steel material having the above-mentioned chemical composition, a yield strength of 125 ksi or more, and a number density of coarse Al oxides of less than 30 particles/200 mm2 .
 図1は、本実施例のうち降伏強度が945MPa未満の実施例について、粗大Si酸化物(長径が5.0μm以上のSi酸化物)の個数密度(個/200mm2)と、低温靭性の指標である破面遷移温度(℃)との関係を示す図である。図1は、後述する実施例のうち、上述の化学組成を満たし、862~945MPa未満の降伏強度を有し、粗大Al酸化物の個数密度が30個/200mm2未満の鋼材について、後述する方法で求めた粗大Si酸化物の個数密度(個/200mm2)と、後述する方法で求めた破面遷移温度(℃)とを用いて作成した。 Fig. 1 is a diagram showing the relationship between the number density (pieces/200 mm2 ) of coarse Si oxides (Si oxides with a major axis of 5.0 µm or more) and the fracture transition temperature (°C), which is an index of low-temperature toughness, for examples having a yield strength of less than 945 MPa among the present examples. Fig. 1 was created using the number density (pieces/200 mm2 ) of coarse Si oxides determined by a method described later and the fracture transition temperature (°C) determined by a method described later for steel materials that satisfy the above-mentioned chemical composition, have a yield strength of less than 862 to 945 MPa, and have a number density of coarse Al oxides of less than 30 pieces/200 mm2 among the examples described later.
 図1を参照して、上述の化学組成と、862~945MPa未満の降伏強度とを有し、粗大Al酸化物の個数密度が30個/200mm2未満の鋼材では、粗大Si酸化物の個数密度が5個/200mm2以下であれば、破面遷移温度が-50℃以下となり、優れた低温靭性を示した。 Referring to FIG. 1, in a steel material having the above-mentioned chemical composition, a yield strength of 862 to less than 945 MPa, and a number density of coarse Al oxides of less than 30 particles/200 mm2 , if the number density of coarse Si oxides is 5 particles/200 mm2 or less , the fracture appearance transition temperature is −50° C. or less, and excellent low-temperature toughness is exhibited.
 さらに、図2は、本実施例のうち降伏強度が945MPa以上の実施例について、粗大Si酸化物(長径が5.0μm以上のSi酸化物)の個数密度(個/200mm2)と、低温靭性の指標である破面遷移温度(℃)との関係を示す図である。図2は、後述する実施例のうち、上述の化学組成を満たし、945~1034MPaの降伏強度を有し、粗大Al酸化物の個数密度が30個/200mm2未満の鋼材について、後述する方法で求めた粗大Si酸化物の個数密度(個/200mm2)と、後述する方法で求めた破面遷移温度(℃)とを用いて作成した。 Furthermore, Fig. 2 is a diagram showing the relationship between the number density (pieces/200 mm2 ) of coarse Si oxides (Si oxides with a major axis of 5.0 µm or more) and the fracture transition temperature (°C), which is an index of low temperature toughness, for examples having a yield strength of 945 MPa or more among the present examples. Fig. 2 was created using the number density (pieces/200 mm2) of coarse Si oxides determined by a method described later and the fracture transition temperature (°C) determined by a method described later for steel materials that satisfy the above-mentioned chemical composition, have a yield strength of 945 to 1034 MPa, and have a number density of coarse Al oxides of less than 30 pieces/200 mm2 among the examples described later.
 図2を参照して、上述の化学組成と、945~1034MPaの降伏強度とを有し、粗大Al酸化物の個数密度が30個/200mm2未満の鋼材では、粗大Si酸化物の個数密度が5個/200mm2以下であれば、破面遷移温度が-40℃以下となり、優れた低温靭性を示した。 Referring to FIG. 2 , in a steel material having the above-mentioned chemical composition and a yield strength of 945 to 1034 MPa, in which the number density of coarse Al oxides is less than 30 particles/200 mm2, if the number density of coarse Si oxides is 5 particles/200 mm2 or less , the fracture appearance transition temperature is −40° C. or less, and excellent low-temperature toughness is exhibited.
 したがって、本実施形態では、上述の化学組成と、862~1034MPaの降伏強度とを有し、粗大Al酸化物の個数密度を30個/200mm2未満とし、さらに、粗大Si酸化物の個数密度を5個/200mm2以下とする。その結果、本実施形態による鋼材は、125ksi以上の降伏強度と、優れた低温靭性とを両立することができる。 Therefore, in this embodiment, the steel has the above-mentioned chemical composition and a yield strength of 862 to 1034 MPa, the number density of coarse Al oxides is less than 30 particles/200 mm2, and the number density of coarse Si oxides is 5 particles/200 mm2 or less . As a result, the steel according to this embodiment can achieve both a yield strength of 125 ksi or more and excellent low-temperature toughness.
 粗大Si酸化物の個数密度を低減することによって、鋼材の低温靭性が高められる理由について、詳細は明らかになっていない。しかしながら、本発明者らは次のように推察している。上述の化学組成を有する鋼材を製造する場合、製鋼工程において、主としてアルミニウム(Al)による脱酸が実施される。そのため、上述の化学組成を有する鋼材では、Al23に代表されるAl酸化物について検討され、数の少ないSi酸化物には着目されてこなかった。しかしながら、125ksi以上にまで降伏強度を高めた場合、粗大Al酸化物だけでなく、数の少ない粗大Si酸化物であっても、低温靭性の低下が顕在化しやすい可能性がある。そのため、粗大Al酸化物の個数密度を30個/200mm2未満にするだけでなく、粗大Si酸化物の個数密度を5個/200mm2以下にもすることで、125ksi以上の降伏強度を有していても、優れた低温靭性を安定して得られるのではないか、と本発明者らは推察している。 The reason why the low-temperature toughness of steel is improved by reducing the number density of coarse Si oxides has not been clarified in detail. However, the present inventors speculate as follows. When manufacturing a steel material having the above-mentioned chemical composition, deoxidation with aluminum (Al) is mainly performed in the steelmaking process. Therefore, in the steel material having the above-mentioned chemical composition, Al oxides represented by Al 2 O 3 have been studied, and Si oxides having a small number of oxides have not been paid attention to. However, when the yield strength is increased to 125 ksi or more, there is a possibility that the decrease in low-temperature toughness is likely to be evident not only for coarse Al oxides but also for coarse Si oxides having a small number of oxides. Therefore, the present inventors speculate that, by not only reducing the number density of coarse Al oxides to less than 30/200 mm 2 but also reducing the number density of coarse Si oxides to 5/200 mm 2 or less, excellent low-temperature toughness can be stably obtained even if the steel material has a yield strength of 125 ksi or more.
 なお、本発明者らの推察とは異なるメカニズムによって、鋼材の低温靭性が高まっている可能性はあり得る。しかしながら、上述の化学組成と、125ksi以上の降伏強度とを有し、粗大Al酸化物の個数密度が30個/200mm2未満の鋼材では、粗大Si酸化物の個数密度を5個/200mm2以下とすることで、優れた低温靭性が得られることは、後述の実施例によって証明されている。 It is possible that the low-temperature toughness of the steel material is improved by a mechanism different from that presumed by the present inventors. However, it has been demonstrated by the examples described later that in a steel material having the above-mentioned chemical composition, a yield strength of 125 ksi or more, and a number density of coarse Al oxides of less than 30 particles/200 mm2 , excellent low-temperature toughness can be obtained by setting the number density of coarse Si oxides to 5 particles/200 mm2 or less.
 以上の知見に基づいて完成した本実施形態による鋼材の要旨は、次のとおりである。 The gist of the steel material according to this embodiment, which was completed based on the above findings, is as follows:
 [1]
 鋼材であって、
 質量%で、
 C:0.15~0.45%、
 Si:0.05~1.00%、
 Mn:0.05~1.00%、
 P:0.030%以下、
 S:0.0050%以下、
 Al:0.005~0.100%、
 Cr:0.30~1.50%、
 Mo:0.20~2.00%、
 Ti:0.002~0.030%、
 Nb:0.002~0.100%、
 B:0.0005~0.0040%、
 N:0.0100%以下、
 O:0.0040%以下、
 V:0~0.30%、
 Cu:0~0.50%、
 Ni:0~0.50%、
 W:0~0.50%、
 Ca:0~0.0100%、
 Mg:0~0.0100%、
 Zr:0~0.0100%、
 希土類元素:0~0.0100%、及び、
 残部がFe及び不純物からなり、
 降伏強度が862~1034MPaであり、
 前記鋼材中において、
 質量%で、Al含有量が20%以上であり、O含有量が10%以上であり、長径が5.0μm以上のAl酸化物の個数密度が、30個/200mm2未満であり、
 質量%で、Al含有量が20%未満であり、Si含有量が20%以上であり、O含有量が10%以上であり、長径が5.0μm以上のSi酸化物の個数密度が、5個/200mm2以下である、
 鋼材。
[1]
A steel material,
In mass percent,
C: 0.15-0.45%,
Si: 0.05-1.00%,
Mn: 0.05-1.00%,
P: 0.030% or less,
S: 0.0050% or less,
Al: 0.005-0.100%,
Cr: 0.30-1.50%,
Mo: 0.20-2.00%,
Ti: 0.002 to 0.030%,
Nb: 0.002-0.100%,
B: 0.0005-0.0040%,
N: 0.0100% or less,
O: 0.0040% or less,
V: 0 to 0.30%,
Cu: 0 to 0.50%,
Ni: 0 to 0.50%,
W: 0-0.50%,
Ca: 0-0.0100%,
Mg: 0 to 0.0100%,
Zr: 0 to 0.0100%,
Rare earth elements: 0 to 0.0100%, and
The balance is Fe and impurities,
The yield strength is 862 to 1034 MPa;
In the steel material,
The Al content is 20% or more, the O content is 10% or more, and the number density of Al oxides having a major axis of 5.0 μm or more is less than 30 pieces/200 mm2 , in terms of mass%,
In terms of mass%, the Al content is less than 20%, the Si content is 20% or more, the O content is 10% or more, and the number density of Si oxides having a major axis of 5.0 μm or more is 5 pieces/200 mm2 or less.
Steel.
 [2]
 [1]に記載の鋼材であって、
 V:0.01~0.30%、
 Cu:0.01~0.50%、
 Ni:0.01~0.50%、
 W:0.01~0.50%、
 Ca:0.0001~0.0100%、
 Mg:0.0001~0.0100%、
 Zr:0.0001~0.0100%、及び、
 希土類元素:0.0001~0.0100%からなる群から選択される1元素以上を含有する、
 鋼材。
[2]
The steel material according to [1],
V: 0.01-0.30%,
Cu: 0.01 to 0.50%,
Ni: 0.01-0.50%,
W: 0.01-0.50%,
Ca: 0.0001-0.0100%,
Mg: 0.0001 to 0.0100%,
Zr: 0.0001 to 0.0100%, and
Rare earth elements: containing one or more elements selected from the group consisting of 0.0001 to 0.0100%;
Steel.
 [3]
 [1]又は[2]に記載の鋼材であって、
 前記鋼材は継目無鋼管である、
 鋼材。
[3]
The steel material according to [1] or [2],
The steel material is a seamless steel pipe.
Steel.
 本実施形態による鋼材の形状は特に限定されない。本実施形態による鋼材は、鋼管であってもよく、丸鋼(中実材)であってもよく、鋼板であってもよい。なお、丸鋼とは、軸方向に垂直な断面が円形状の棒鋼を意味する。また、鋼管は継目無鋼管であってもよく、溶接鋼管であってもよい。 The shape of the steel material according to this embodiment is not particularly limited. The steel material according to this embodiment may be a steel pipe, a round bar (solid material), or a steel plate. Note that round bar means a steel bar with a circular cross section perpendicular to the axial direction. The steel pipe may be a seamless steel pipe or a welded steel pipe.
 以下、本実施形態による鋼材について詳述する。元素に関する「%」は、特に断りがない限り、質量%を意味する。 The steel material according to this embodiment will be described in detail below. Unless otherwise specified, "%" for elements means mass %.
 [化学組成]
 本実施形態による鋼材の化学組成は、次の元素を含有する。
[Chemical composition]
The chemical composition of the steel material according to this embodiment contains the following elements.
 C:0.15~0.45%
 炭素(C)は鋼材の焼入れ性を高め、鋼材の強度を高める。Cはさらに、製造工程中の焼戻しにおいて、炭化物の球状化を促進し、鋼材の低温靭性を高める。C含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、C含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、炭化物が多くなりすぎ、鋼材の低温靭性が低下する。したがって、C含有量は0.15~0.45%である。C含有量の好ましい下限は0.18%であり、さらに好ましくは0.20%であり、さらに好ましくは0.22%であり、さらに好ましくは0.25%である。C含有量の好ましい上限は0.40%であり、さらに好ましくは0.38%であり、さらに好ましくは0.35%であり、さらに好ましくは0.30%である。
C: 0.15-0.45%
Carbon (C) improves the hardenability of steel and increases its strength. C also promotes the spheroidization of carbides during tempering in the manufacturing process, improving the low-temperature toughness of steel. If the C content is too low, If the C content is too high, the above-mentioned effect cannot be sufficiently obtained even if the contents of the other elements are within the ranges of this embodiment. Even if the amount of C is less than 100%, the amount of carbides becomes too large, and the low-temperature toughness of the steel material decreases. Therefore, the C content is 0.15 to 0.45%. The preferable lower limit of the C content is 0.18%. The upper limit of the C content is preferably 0.40%, more preferably 0.38%. %, more preferably 0.35%, and even more preferably 0.30%.
 Si:0.05~1.00%
 ケイ素(Si)は、鋼を脱酸する。Si含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Si含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大Si酸化物が多数生成して、鋼材の低温靭性が低下する場合がある。したがって、Si含有量は0.05~1.00%である。好ましいSi含有量の下限は0.10%であり、さらに好ましくは0.15%であり、さらに好ましくは0.20%である。Si含有量の好ましい上限は0.85%であり、さらに好ましくは0.75%であり、さらに好ましくは0.60%であり、さらに好ましくは0.50%であり、さらに好ましくは0.40%である。
Si: 0.05-1.00%
Silicon (Si) deoxidizes steel. If the Si content is too low, the above effect cannot be sufficiently obtained even if the contents of other elements are within the range of this embodiment. If the amount is too high, even if the contents of other elements are within the range of this embodiment, a large number of coarse Si oxides are generated, which may reduce the low-temperature toughness of the steel material. The lower limit of the Si content is preferably 0.10%, more preferably 0.15%, and even more preferably 0.20%. The upper limit is 0.85%, more preferably 0.75%, even more preferably 0.60%, even more preferably 0.50%, and even more preferably 0.40%.
 Mn:0.05~1.00%
 マンガン(Mn)は鋼を脱酸する。Mnはさらに、鋼材の焼入れ性を高める。Mn含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Mn含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大な硫化物系介在物が生成して、鋼材の低温靭性が低下する。したがって、Mn含有量は0.05~1.00%である。Mn含有量の好ましい下限は0.06%であり、さらに好ましくは0.08%であり、さらに好ましくは0.10%である。Mn含有量の好ましい上限は0.90%であり、さらに好ましくは0.80%であり、さらに好ましくは0.70%であり、さらに好ましくは0.60%であり、さらに好ましくは0.50%であり、さらに好ましくは0.45%である。
Mn: 0.05-1.00%
Manganese (Mn) deoxidizes steel. Mn also improves the hardenability of steel. If the Mn content is too low, the above effects will not be achieved even if the contents of other elements are within the range of this embodiment. On the other hand, if the Mn content is too high, even if the contents of other elements are within the range of this embodiment, coarse sulfide-based inclusions are generated, and the low-temperature toughness of the steel material is deteriorated. Therefore, the Mn content is 0.05 to 1.00%. The lower limit of the Mn content is preferably 0.06%, more preferably 0.08%, and even more preferably 0.10%. The upper limit of the Mn content is preferably 0.90%, more preferably 0.80%, even more preferably 0.70%, even more preferably 0.60%, and still more preferably 0.80%. is 0.50%, and more preferably 0.45%.
 P:0.030%以下
 燐(P)は不純物である。すなわち、P含有量の下限は0%超である。P含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Pが粒界に偏析し、鋼材の低温靭性が低下する。したがって、P含有量は0.030%以下である。P含有量の好ましい上限は0.025%であり、さらに好ましくは0.020%であり、さらに好ましくは0.015%であり、さらに好ましくは0.010%である。P含有量はなるべく低い方が好ましい。ただし、P含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
P: 0.030% or less Phosphorus (P) is an impurity. That is, the lower limit of the P content is more than 0%. If the P content is too high, even if the contents of other elements are within the range of this embodiment, P will segregate at the grain boundaries, and the low-temperature toughness of the steel material will decrease. Therefore, the P content is 0.030% or less. The preferred upper limit of the P content is 0.025%, more preferably 0.020%, more preferably 0.015%, and even more preferably 0.010%. The P content is preferably as low as possible. However, an extreme reduction in the P content significantly increases the manufacturing cost. Therefore, in consideration of industrial production, the preferred lower limit of the P content is 0.001%, more preferably 0.002%, and even more preferably 0.003%.
 S:0.0050%以下
 硫黄(S)は不純物である。すなわち、S含有量の下限は0%超である。S含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Sが粒界に偏析し、鋼材の低温靭性が低下する。したがって、S含有量は0.0050%以下である。S含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0015%である。S含有量はなるべく低い方が好ましい。ただし、S含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、S含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0003%である。
S: 0.0050% or less Sulfur (S) is an impurity. That is, the lower limit of the S content is more than 0%. If the S content is too high, even if the contents of other elements are within the range of this embodiment, S will segregate at the grain boundaries, and the low-temperature toughness of the steel material will decrease. Therefore, the S content is 0.0050% or less. The preferred upper limit of the S content is 0.0040%, more preferably 0.0030%, more preferably 0.0020%, and even more preferably 0.0015%. The S content is preferably as low as possible. However, an extreme reduction in the S content significantly increases the manufacturing cost. Therefore, in consideration of industrial production, the preferred lower limit of the S content is 0.0001%, more preferably 0.0002%, and even more preferably 0.0003%.
 Al:0.005~0.100%
 アルミニウム(Al)は鋼を脱酸する。Al含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られず、鋼材の低温靭性が低下する。一方、Al含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大Al酸化物が多数生成して、鋼材の低温靭性が低下する。したがって、Al含有量は0.005~0.100%である。Al含有量の好ましい下限は0.010%であり、さらに好ましくは0.015%であり、さらに好ましくは0.020%である。Al含有量の好ましい上限は0.080%であり、さらに好ましくは0.060%であり、さらに好ましくは0.040%であり、さらに好ましくは0.035%である。本明細書にいう「Al」含有量は「酸可溶Al」、つまり、「sol.Al」の含有量を意味する。
Al: 0.005-0.100%
Aluminum (Al) deoxidizes steel. If the Al content is too low, the above effects are not sufficiently obtained even if the contents of other elements are within the range of this embodiment, and the low temperature toughness of the steel material is deteriorated. On the other hand, if the Al content is too high, even if the contents of other elements are within the range of this embodiment, a large number of coarse Al oxides are generated, and the low-temperature toughness of the steel material is reduced. The Al content is 0.005 to 0.100%. The lower limit of the Al content is preferably 0.010%, more preferably 0.015%, and further preferably 0.020%. The upper limit of the content is preferably 0.080%, more preferably 0.060%, still more preferably 0.040%, and still more preferably 0.035%. The content of "acid-soluble Al" means the content of "sol. Al".
 Cr:0.30~1.50%
 クロム(Cr)は鋼材の焼入れ性を高める。Crはさらに、鋼材の焼戻し軟化抵抗を高め、高温焼戻しを可能にする。その結果、鋼材の低温靭性が高まる。Cr含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Cr含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の低温靭性が低下する。したがって、Cr含有量は0.30~1.50%である。Cr含有量の好ましい下限は0.35%であり、さらに好ましくは0.40%であり、さらに好ましくは0.50%である。Cr含有量の好ましい上限は1.40%であり、さらに好ましくは1.30%であり、さらに好ましくは1.20%であり、さらに好ましくは1.10%であり、さらに好ましくは1.05%である。
Cr: 0.30~1.50%
Chromium (Cr) improves the hardenability of steel. Cr also improves the tempering softening resistance of steel and enables high-temperature tempering. As a result, the low-temperature toughness of the steel is improved. If the Cr content is too low, other On the other hand, if the Cr content is too high, the above effect cannot be sufficiently obtained even if the other element contents are within the ranges of this embodiment. However, the low-temperature toughness of the steel material decreases. Therefore, the Cr content is 0.30 to 1.50%. The lower limit of the Cr content is preferably 0.35%, and more preferably 0.40%. The upper limit of the Cr content is preferably 1.40%, more preferably 1.30%, even more preferably 1.20%, and still more preferably 1. It is preferably 10%, and more preferably 1.05%.
 Mo:0.20~2.00%
 モリブデン(Mo)は鋼材の焼入れ性を高める。Moはさらに、鋼材の焼戻し軟化抵抗を高め、高温焼戻しを可能にする。その結果、鋼材の低温靭性が高まる。Mo含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Mo含有量が高すぎれば、上記効果が飽和する。したがって、Mo含有量は0.20~2.00%である。Mo含有量の好ましい下限は0.22%であり、さらに好ましくは0.25%であり、さらに好ましくは0.30%であり、さらに好ましくは0.40%であり、さらに好ましくは0.45%であり、さらに好ましくは0.50%であり、さらに好ましくは0.60%である。Mo含有量の好ましい上限は1.80%であり、さらに好ましくは1.60%であり、さらに好ましくは1.40%であり、さらに好ましくは1.30%である。なお、降伏強度が945MPa以上の場合、Mo含有量の下限は0.40%であるのが好ましい。
Mo: 0.20~2.00%
Molybdenum (Mo) improves the hardenability of steel. Mo also improves the tempering softening resistance of steel and enables high-temperature tempering. As a result, the low-temperature toughness of steel is improved. If the Mo content is too low, other Even if the content of Mo is within the range of this embodiment, the above effect cannot be sufficiently obtained. On the other hand, if the Mo content is too high, the above effect saturates. Therefore, the Mo content is set to 0.20 The lower limit of the Mo content is preferably 0.22%, more preferably 0.25%, even more preferably 0.30%, and still more preferably 0.40%. The upper limit of the Mo content is preferably 1.80%, more preferably 1.50%, and even more preferably 0.60%. The Mo content is preferably 0.60%, more preferably 1.40%, and even more preferably 1.30%. When the yield strength is 945 MPa or more, the lower limit of the Mo content is 0.40%. preferable.
 Ti:0.002~0.030%
 チタン(Ti)はNと結合して窒化物を形成し、ピンニング効果により鋼材の結晶粒を微細化する。その結果、鋼材の強度が高まる。Ti含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Ti含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Ti窒化物が粗大化して、鋼材の低温靭性が低下する。したがって、Ti含有量は0.002~0.030%である。Ti含有量の好ましい下限は0.003%であり、さらに好ましくは0.004%である。Ti含有量の好ましい上限は0.028%であり、さらに好ましくは0.025%であり、さらに好ましくは0.023%であり、さらに好ましくは0.020%であり、さらに好ましくは0.018%であり、さらに好ましくは0.015%であり、さらに好ましくは0.010%であり、さらに好ましくは0.008%である。
Ti: 0.002-0.030%
Titanium (Ti) combines with N to form nitrides, which refines the grains of steel through a pinning effect, thereby increasing the strength of the steel. If the Ti content is too low, the other element contents On the other hand, if the Ti content is too high, the Ti nitrided steel cannot be obtained sufficiently even if the contents of the other elements are within the range of the present embodiment. The Ti content is preferably 0.002 to 0.030%. The lower limit of the Ti content is preferably 0.003%, and more preferably 0. The upper limit of the Ti content is preferably 0.028%, more preferably 0.025%, still more preferably 0.023%, still more preferably 0.020%, and still more preferably 0.025%. The content is preferably 0.018%, more preferably 0.015%, more preferably 0.010%, and even more preferably 0.008%.
 Nb:0.002~0.100%
 ニオブ(Nb)はC及び/又はNと結合して、炭化物、窒化物又は炭窒化物(以下、「炭窒化物等」という)を形成する。炭窒化物等はピンニング効果により、鋼材の結晶粒を微細化し、鋼材の低温靭性を高める。Nbはさらに、焼戻し時に微細な炭化物を形成して鋼材の焼戻し軟化抵抗を高め、鋼材の強度を高める。Nb含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Nb含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、炭窒化物等が過剰に生成して、鋼材の低温靭性が低下する。したがって、Nb含有量は0.002~0.100%である。Nb含有量の好ましい下限は0.005%であり、さらに好ましくは0.010%であり、さらに好ましくは0.015%であり、さらに好ましくは0.020%であり、さらに好ましくは0.025%である。Nb含有量の好ましい上限は0.080%であり、さらに好ましくは0.060%であり、さらに好ましくは0.040%であり、さらに好ましくは0.035%である。
Nb: 0.002-0.100%
Niobium (Nb) combines with C and/or N to form carbides, nitrides, or carbonitrides (hereinafter referred to as "carbonitrides, etc."). Carbonitrides, etc., have a pinning effect that causes the crystals of steel to be pinned. Nb also forms fine carbides during tempering, improving the tempering softening resistance of steel and increasing the strength of steel. If the Nb content is too low, it will be difficult to obtain the same results as other elements. Even if the content is within the range of this embodiment, the above-mentioned effects cannot be sufficiently obtained. On the other hand, if the Nb content is too high, even if the contents of other elements are within the range of this embodiment, Carbonitrides and the like are formed in excess, which reduces the low-temperature toughness of the steel material. Therefore, the Nb content is 0.002 to 0.100%. The preferred lower limit of the Nb content is 0.005%. The content is more preferably 0.010%, more preferably 0.015%, more preferably 0.020%, and even more preferably 0.025%. The upper limit of the Nb content is preferably 0.080%, more preferably 0.060%, further preferably 0.040%, and further preferably 0.035%.
 B:0.0005~0.0040%
 ホウ素(B)は鋼に固溶して鋼材の焼入れ性を高め、鋼材の強度を高める。B含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、B含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大な窒化物が生成して、鋼材の低温靭性が低下する。したがって、B含有量は0.0005~0.0040%である。B含有量の好ましい下限は0.0006%であり、さらに好ましくは0.0008%であり、さらに好ましくは0.0010%である。B含有量の好ましい上限は0.0035%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0015%である。
B: 0.0005-0.0040%
Boron (B) dissolves in steel to improve the hardenability of the steel and to increase the strength of the steel. If the B content is too low, even if the contents of other elements are within the range of this embodiment, the above-mentioned On the other hand, if the B content is too high, even if the contents of other elements are within the range of this embodiment, coarse nitrides are formed, and the low-temperature toughness of the steel material is reduced. Therefore, the B content is 0.0005 to 0.0040%. The lower limit of the B content is preferably 0.0006%, more preferably 0.0008%, and even more preferably 0.0010%. The upper limit of the B content is preferably 0.0035%, more preferably 0.0030%, even more preferably 0.0025%, even more preferably 0.0020%, and even more preferably It is 0.0015%.
 N:0.0100%以下
 窒素(N)は不可避に含有される。すなわち、N含有量の下限は0%超である。NはTiと結合して窒化物を形成し、ピンニング効果により、鋼材の結晶粒を微細化する。その結果、鋼材の強度が高まる。しかしながら、N含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大な窒化物が形成され、鋼材の低温靭性が低下する。したがって、N含有量は0.0100%以下である。N含有量の好ましい上限は0.0080%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0045%であり、さらに好ましくは0.0040%である。上記効果をより有効に得るためのN含有量の好ましい下限は0.0005%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0015%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0030%である。
N: 0.0100% or less Nitrogen (N) is inevitably contained. That is, the lower limit of the N content is more than 0%. N combines with Ti to form nitrides, and the grains of the steel are refined by the pinning effect. As a result, the strength of the steel is increased. However, if the N content is too high, even if the contents of other elements are within the range of this embodiment, coarse nitrides are formed, and the low-temperature toughness of the steel is reduced. Therefore, the N content is 0.0100% or less. The preferred upper limit of the N content is 0.0080%, more preferably 0.0060%, more preferably 0.0050%, more preferably 0.0045%, and more preferably 0.0040%. In order to more effectively obtain the above-mentioned effects, the lower limit of the N content is preferably 0.0005%, more preferably 0.0010%, still more preferably 0.0015%, still more preferably 0.0020%, still more preferably 0.0025%, and still more preferably 0.0030%.
 O:0.0040%以下
 酸素(O)は不純物である。すなわち、O含有量の下限は0%超である。O含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物が形成し、鋼材の低温靭性が低下する。したがって、O含有量は0.0040%以下である。O含有量の好ましい上限は0.0035%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%である。O含有量はなるべく低い方が好ましい。ただし、O含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、O含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0003%である。
O: 0.0040% or less Oxygen (O) is an impurity. That is, the lower limit of the O content is more than 0%. If the O content is too high, even if the contents of other elements are within the range of this embodiment, coarse oxides are formed, and the low-temperature toughness of the steel material decreases. Therefore, the O content is 0.0040% or less. The preferred upper limit of the O content is 0.0035%, more preferably 0.0030%, more preferably 0.0025%, and even more preferably 0.0020%. The O content is preferably as low as possible. However, an extreme reduction in the O content significantly increases the manufacturing cost. Therefore, in consideration of industrial production, the preferred lower limit of the O content is 0.0001%, more preferably 0.0002%, and even more preferably 0.0003%.
 本実施形態による鋼材の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、又は、製造環境などから混入されるものであって、本実施形態による鋼材に悪影響を与えない範囲で許容されるものを意味する。 The remainder of the chemical composition of the steel material according to this embodiment is composed of Fe and impurities. Here, impurities refer to substances that are mixed in from raw materials such as ore and scrap, or from the manufacturing environment, during the industrial production of steel material, and are acceptable to the extent that they do not adversely affect the steel material according to this embodiment.
 [任意元素]
 上述の鋼材の化学組成はさらに、Feの一部に代えて、Vを含有してもよい。
[Optional element]
The chemical composition of the above-mentioned steel material may further contain V instead of a portion of Fe.
 V:0~0.30%
 バナジウム(V)は任意元素であり、含有されなくてもよい。すなわち、V含有量は0%であってもよい。含有される場合、Vは炭窒化物等を形成する。炭窒化物等はピンニング効果により、鋼材の結晶粒を微細化し、鋼材の低温靭性を高める。Vはさらに、焼戻し時に微細な炭化物を形成して鋼材の焼戻し軟化抵抗を高め、鋼材の強度を高める。Vが少しでも含有されれば、上記効果がある程度得られる。しかしながら、V含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、炭窒化物等が過剰に生成して、鋼材の低温靭性が低下する。したがって、V含有量は0~0.30%である。V含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%であり、さらに好ましくは0.08%である。V含有量の好ましい上限は0.25%であり、さらに好ましくは0.20%であり、さらに好ましくは0.15%である。なお、降伏強度が945MPa以上の場合、V含有量の下限は0.01%であるのが好ましい。
V: 0 to 0.30%
Vanadium (V) is an optional element and may not be contained. That is, the V content may be 0%. When contained, V forms carbonitrides and the like. Carbonitrides and the like have a pinning effect to refine the grains of the steel material and increase the low-temperature toughness of the steel material. V also forms fine carbides during tempering to increase the tempering softening resistance of the steel material and increase the strength of the steel material. If even a small amount of V is contained, the above effect can be obtained to a certain extent. However, if the V content is too high, even if the contents of other elements are within the range of this embodiment, excessive carbonitrides and the like are generated, and the low-temperature toughness of the steel material decreases. Therefore, the V content is 0 to 0.30%. The preferred lower limit of the V content is more than 0%, more preferably 0.01%, more preferably 0.03%, more preferably 0.05%, and more preferably 0.08%. The preferred upper limit of the V content is 0.25%, more preferably 0.20%, and more preferably 0.15%. When the yield strength is 945 MPa or more, the lower limit of the V content is preferably 0.01%.
 上述の鋼材の化学組成はさらに、Feの一部に代えて、Cu、及び、Niからなる群から選択される1元素以上を含有してもよい。これらの元素はいずれも任意元素であり、鋼材の焼入れ性を高める。 The chemical composition of the above-mentioned steel material may further contain, in place of a portion of Fe, one or more elements selected from the group consisting of Cu and Ni. All of these elements are optional elements, and improve the hardenability of the steel material.
 Cu:0~0.50%
 銅(Cu)は任意元素であり、含有されなくてもよい。すなわち、Cu含有量は0%であってもよい。含有される場合、Cuは鋼材の焼入れ性を高め、鋼材の強度を高める。Cuが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Cu含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の焼入れ性が高くなりすぎ、鋼材の低温靭性が低下する。したがって、Cu含有量は0~0.50%である。Cu含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.03%である。Cu含有量の好ましい上限は0.35%であり、さらに好ましくは0.25%であり、さらに好ましくは0.15%であり、さらに好ましくは0.10%であり、さらに好ましくは0.05%である。
Cu: 0-0.50%
Copper (Cu) is an optional element and may not be contained. That is, the Cu content may be 0%. When contained, Cu enhances the hardenability of the steel material and increases the strength of the steel material. If even a small amount of Cu is contained, the above effect can be obtained to some extent. However, if the Cu content is too high, the hardenability of the steel material is low even if the contents of other elements are within the range of this embodiment. The Cu content is preferably 0% to 0.50%. The lower limit of the Cu content is preferably more than 0%, more preferably 0.01%, and even more preferably 0.01%. The upper limit of the Cu content is preferably 0.35%, more preferably 0.25%, and even more preferably 0.15%. %, more preferably 0.10%, and even more preferably 0.05%.
 Ni:0~0.50%
 ニッケル(Ni)は任意元素であり、含有されなくてもよい。すなわち、Ni含有量は0%であってもよい。含有される場合、Niは鋼材の焼入れ性を高め、鋼材の強度を高める。Niはさらに、鋼に固溶して、鋼材の低温靭性を高める。Niが少しでも含有されれば、これらの効果がある程度得られる。しかしながら、Ni含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、局部的な腐食が促進され、鋼材の低温靭性が低下する。したがって、Ni含有量は0~0.50%である。Ni含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%である。Ni含有量の好ましい上限は0.30%であり、さらに好ましくは0.20%であり、さらに好ましくは0.10%であり、さらに好ましくは0.05%である。
Ni: 0-0.50%
Nickel (Ni) is an optional element and may not be contained. That is, the Ni content may be 0%. When contained, Ni enhances the hardenability of the steel material and increases the strength of the steel material. Ni also dissolves in steel and improves the low-temperature toughness of the steel. Even if even a small amount of Ni is contained, these effects can be obtained to a certain extent. However, if the Ni content is too high, the low-temperature toughness of the steel will be reduced. Even if the amount is within the range of this embodiment, local corrosion is promoted and the low-temperature toughness of the steel material is reduced. Therefore, the Ni content is 0 to 0.50%. The upper limit of the Ni content is preferably 0.30%, more preferably 0.20%. , more preferably 0.10%, and even more preferably 0.05%.
 上述の鋼材の化学組成はさらに、Feの一部に代えて、Wを含有してもよい。 The chemical composition of the above-mentioned steel may further contain W instead of part of the Fe.
 W:0~0.50%
 タングステン(W)は任意元素であり、含有されなくてもよい。すなわち、W含有量は0%であってもよい。含有される場合、Wはサワー環境において、保護性の腐食被膜を形成し、鋼材への水素の侵入を抑制する。これにより、鋼材の低温靭性を高める。Wが少しでも含有されれば、上記効果がある程度得られる。しかしながら、W含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中に粗大な炭化物が生成して、鋼材の低温靭性が低下する。したがって、W含有量は0~0.50%である。W含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。W含有量の好ましい上限は0.50%未満であり、さらに好ましくは0.48%である。
W: 0 to 0.50%
Tungsten (W) is an optional element and may not be contained. That is, the W content may be 0%. When W is contained, W forms a protective corrosion film in a sour environment and suppresses the penetration of hydrogen into the steel material. This increases the low-temperature toughness of the steel material. If even a small amount of W is contained, the above effect can be obtained to a certain extent. However, if the W content is too high, even if the contents of other elements are within the range of this embodiment, coarse carbides are generated in the steel material, and the low-temperature toughness of the steel material decreases. Therefore, the W content is 0 to 0.50%. The preferred lower limit of the W content is more than 0%, more preferably 0.01%, more preferably 0.03%, and even more preferably 0.05%. The preferred upper limit of the W content is less than 0.50%, and more preferably 0.48%.
 上述の鋼材の化学組成はさらに、Feの一部に代えて、Ca、Mg、Zr、及び、希土類元素からなる群から選択される1元素以上を含有してもよい。これらの元素はいずれも任意元素であり、鋼材中のSを硫化物として無害化する。その結果、これらの元素は鋼材の低温靭性を高める。 The chemical composition of the above-mentioned steel material may further contain, in place of a portion of Fe, one or more elements selected from the group consisting of Ca, Mg, Zr, and rare earth elements. All of these elements are optional elements, and render the S in the steel material harmless as sulfides. As a result, these elements increase the low-temperature toughness of the steel material.
 Ca:0~0.0100%
 カルシウム(Ca)は任意元素であり、含有されなくてもよい。すなわち、Ca含有量は0%であってもよい。含有される場合、Caは鋼材中のSを硫化物として無害化し、鋼材の低温靭性を高める。Caが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ca含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の酸化物が粗大化して、鋼材の低温靭性が低下する。したがって、Ca含有量は0~0.0100%である。Ca含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0006%である。Ca含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0015%である。
Ca: 0~0.0100%
Calcium (Ca) is an optional element and may not be contained. That is, the Ca content may be 0%. When contained, Ca converts S in the steel into sulfides and renders the steel harmless. Even if even a small amount of Ca is contained, the above effect can be obtained to some extent. However, if the Ca content is too high, even if the contents of other elements are within the range of this embodiment, the steel material The oxides in the steel become coarse, and the low temperature toughness of the steel material decreases. Therefore, the Ca content is 0 to 0.0100%. The lower limit of the Ca content is preferably more than 0%, and more preferably less than 0. The upper limit of the Ca content is preferably 0.0040%, more preferably 0.0025%, and even more preferably 0.0001%, 0.0003%, and even more preferably 0.0006%. The content is preferably 0.0020%, and more preferably 0.0015%.
 Mg:0~0.0100%
 マグネシウム(Mg)は任意元素であり、含有されなくてもよい。すなわち、Mg含有量は0%であってもよい。含有される場合、Mgは鋼材中のSを硫化物として無害化し、鋼材の低温靭性を高める。Mgが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Mg含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の酸化物が粗大化して、鋼材の低温靭性が低下する。したがって、Mg含有量は0~0.0100%である。Mg含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0006%である。Mg含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0015%である。
Mg: 0-0.0100%
Magnesium (Mg) is an optional element and may not be contained. That is, the Mg content may be 0%. When contained, Mg converts S in the steel into sulfides to be harmless, and the steel Even if even a small amount of Mg is contained, the above effect can be obtained to some extent. However, if the Mg content is too high, even if the contents of other elements are within the range of this embodiment, the low-temperature toughness of the steel material may be improved. The oxides in the steel become coarse, and the low-temperature toughness of the steel material decreases. Therefore, the Mg content is 0 to 0.0100%. The lower limit of the Mg content is preferably more than 0%, and more preferably 0. The upper limit of the Mg content is preferably 0.0040%, more preferably 0.0025%, and even more preferably 0.0001%, 0.0003%, and even more preferably 0.0006%. The content is preferably 0.0020%, and more preferably 0.0015%.
 Zr:0~0.0100%
 ジルコニウム(Zr)は任意元素であり、含有されなくてもよい。すなわち、Zr含有量は0%であってもよい。含有される場合、Zrは鋼材中のSを硫化物として無害化し、鋼材の低温靭性を高める。Zrが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Zr含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の酸化物が粗大化して、鋼材の低温靭性が低下する。したがって、Zr含有量は0~0.0100%である。Zr含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0006%である。Zr含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0015%であり、さらに好ましくは0.0010%である。
Zr: 0~0.0100%
Zirconium (Zr) is an optional element and may not be contained. That is, the Zr content may be 0%. When contained, Zr renders S in the steel material harmless as sulfides, and the steel material Even if even a small amount of Zr is contained, the above effect can be obtained to some extent. However, if the Zr content is too high, even if the contents of other elements are within the range of this embodiment, the low-temperature toughness of the steel material may be improved. The oxides in the steel become coarse, and the low temperature toughness of the steel material decreases. Therefore, the Zr content is 0 to 0.0100%. The lower limit of the Zr content is preferably more than 0%, and more preferably 0. The upper limit of the Zr content is preferably 0.0040%, more preferably 0.0025%, and even more preferably 0.0001%, more preferably 0.0003%, and even more preferably 0.0006%. The content is preferably 0.0020%, more preferably 0.0015%, and even more preferably 0.0010%.
 希土類元素(REM):0~0.0100%
 希土類元素(REM)は任意元素であり、含有されなくてもよい。すなわち、REM含有量は0%であってもよい。含有される場合、REMは鋼材中のSを硫化物として無害化し、鋼材の低温靭性を高める。REMはさらに、鋼材中のPと結合して、結晶粒界におけるPの偏析を抑制する。そのため、Pの偏析に起因した鋼材の低温靭性の低下が抑制される。REMが少しでも含有されれば、他の元素含有量が本実施形態の範囲内であっても、上記効果がある程度得られる。しかしながら、REM含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の酸化物が粗大化して、鋼材の低温靭性が低下する。したがって、REM含有量は0~0.0100%である。REM含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0006%である。REM含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0015%である。
Rare earth elements (REM): 0 to 0.0100%
Rare earth elements (REM) are optional elements and may not be contained. That is, the REM content may be 0%. When contained, REM converts S in the steel into harmless sulfides, REM improves the low-temperature toughness of steel. REM also binds to P in the steel and suppresses the segregation of P at the grain boundaries. Therefore, the decrease in low-temperature toughness of steel caused by the segregation of P is suppressed. If even a small amount of REM is contained, the above effect can be obtained to some extent even if the contents of other elements are within the range of this embodiment. However, if the REM content is too high, the contents of other elements may be insufficient. Even within the range of the embodiment, the oxides in the steel material become coarse and the low-temperature toughness of the steel material decreases. Therefore, the REM content is 0 to 0.0100%. The preferable lower limit of the REM content is It is more than 0%, more preferably 0.0001%, more preferably 0.0003%, and even more preferably 0.0006%. The upper limit of the REM content is preferably 0.0040%, more preferably 0.0025%, still more preferably 0.0020%, and still more preferably 0.0015%.
 なお、本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及び、ランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)からなる群から選択される1種以上の元素を意味する。また、本明細書におけるREM含有量とは、これら元素の合計含有量を意味する。 In this specification, REM refers to one or more elements selected from the group consisting of scandium (Sc), atomic number 21; yttrium (Y), atomic number 39; and the lanthanides lanthanum (La), atomic number 57, to lutetium (Lu), atomic number 71. In addition, the REM content in this specification refers to the total content of these elements.
 [降伏強度]
 本実施形態による鋼材の降伏強度は862~1034MPa(125~150ksi)である。本明細書でいう降伏強度は、降伏強度が862~945MPa未満の場合、ASTM E8/E8M(2021)に準拠した常温(25℃)での引張試験で得られた0.65%伸び時の応力(0.65%耐力)を意味する。本明細書でいう降伏強度は、降伏強度が945~1034MPaの場合、ASTM E8/E8M(2021)に準拠した常温(25℃)での引張試験で得られた0.7%全伸び時の応力(0.7%全伸び耐力)を意味する。本実施形態による鋼材は、上述の化学組成を有し、後述する粗大Al酸化物の個数密度、及び、粗大Si酸化物の個数密度を満たすことで、降伏強度が862~1034MPaであっても、優れた低温靭性を有する。
[Yield strength]
The yield strength of the steel material according to this embodiment is 862 to 1034 MPa (125 to 150 ksi). The yield strength in this specification means the stress at 0.65% elongation (0.65% proof stress) obtained in a tensile test at room temperature (25 ° C.) in accordance with ASTM E8 / E8M (2021) when the yield strength is less than 862 to 945 MPa. The yield strength in this specification means the stress at 0.7% total elongation (0.7% total elongation proof stress) obtained in a tensile test at room temperature (25 ° C.) in accordance with ASTM E8 / E8M (2021) when the yield strength is 945 to 1034 MPa. The steel material according to this embodiment has the above-mentioned chemical composition and satisfies the number density of the coarse Al oxides and the number density of the coarse Si oxides described later, so that it has excellent low-temperature toughness even if the yield strength is 862 to 1034 MPa.
 本実施形態による鋼材の降伏強度は、次の方法で求める。まず、本実施形態による鋼材から、丸棒試験片を作製する。鋼材が鋼板の場合、板厚中央部から丸棒試験片を作製する。この場合、丸棒試験片の軸方向は、鋼板の圧延方向に平行な方向とする。鋼材が鋼管の場合、肉厚中央部から丸棒試験片を作製する。この場合、丸棒試験片の軸方向は、鋼管の管軸方向に平行な方向とする。鋼材が丸鋼である場合、R/2位置から丸棒試験片を作製する。本明細書において、R/2位置とは、丸鋼の軸方向に垂直な断面における半径Rの中心位置を意味する。この場合、丸棒試験片の軸方向は、丸鋼の軸方向に平行な方向とする。丸棒試験片の大きさは、たとえば、平行部直径8.9mm、標点距離35.6mmである。 The yield strength of the steel material according to this embodiment is determined by the following method. First, a round bar test piece is prepared from the steel material according to this embodiment. If the steel material is a steel plate, the round bar test piece is prepared from the center of the plate thickness. In this case, the axial direction of the round bar test piece is parallel to the rolling direction of the steel plate. If the steel material is a steel pipe, the round bar test piece is prepared from the center of the wall thickness. In this case, the axial direction of the round bar test piece is parallel to the axial direction of the steel pipe. If the steel material is a round bar, the round bar test piece is prepared from the R/2 position. In this specification, the R/2 position means the center position of the radius R in a cross section perpendicular to the axial direction of the round bar. In this case, the axial direction of the round bar test piece is parallel to the axial direction of the round bar. The size of the round bar test piece is, for example, 8.9 mm in parallel part diameter and 35.6 mm in gauge length.
 作製された丸棒試験片を用いて、ASTM E8/E8M(2021)に準拠した方法で、常温(25℃)、大気中で引張試験を実施する。得られた0.65%伸び時の応力(0.65%耐力)が862~945MPa未満の場合、0.65%耐力を降伏強度(MPa)と定義する。得られた0.7%全伸び時の応力(0.7%全伸び耐力)が945~1034MPaの場合、0.7%全伸び耐力を降伏強度(MPa)と定義する。なお、本実施形態において降伏強度(MPa)は、得られた数値の小数第一位を四捨五入して求める。  Using the prepared round bar test specimen, a tensile test is carried out at room temperature (25°C) in air in accordance with a method conforming to ASTM E8/E8M (2021). If the obtained stress at 0.65% elongation (0.65% yield strength) is less than 862 to 945 MPa, the 0.65% yield strength is defined as the yield strength (MPa). If the obtained stress at 0.7% total elongation (0.7% total elongation yield strength) is 945 to 1034 MPa, the 0.7% total elongation yield strength is defined as the yield strength (MPa). Note that in this embodiment, the yield strength (MPa) is calculated by rounding the obtained value to the nearest tenth.
 [粗大Al酸化物の個数密度]
 本実施形態による鋼材は、上述の化学組成と、862~1034MPaの降伏強度を有し、さらに、粗大Al酸化物の個数密度が30個/200mm2未満である。上述のとおり、本明細書では、質量%で、Al含有量が20%以上であり、O含有量が10%以上の粒子を「Al酸化物」ともいう。上述のとおり、本明細書ではさらに、長径が5.0μm以上のAl酸化物を「粗大Al酸化物」ともいう。つまり、粗大Al酸化物とは、質量%で、Al含有量が20%以上であり、O含有量が10%以上であり、長径が5.0μm以上の粒子を意味する。
[Number density of coarse Al oxide particles]
The steel material according to this embodiment has the above-mentioned chemical composition and a yield strength of 862 to 1034 MPa, and furthermore, the number density of the coarse Al oxides is less than 30 particles/200 mm2 . As described above, in this specification, particles having an Al content of 20% or more and an O content of 10% or more, in mass%, are also referred to as "Al oxides". As described above, in this specification, Al oxides having a major axis of 5.0 μm or more are also referred to as "coarse Al oxides". In other words, coarse Al oxides refer to particles having an Al content of 20% or more, an O content of 10% or more, and a major axis of 5.0 μm or more, in mass%.
 上述のとおり、上述の化学組成を有する鋼材を製造する場合、製鋼工程において、主としてアルミニウム(Al)による脱酸が実施される。そのため、上述の化学組成を有する鋼材では、Al酸化物が多数形成されやすい。さらに、Al酸化物は硬質な酸化物であり、鋼材の靭性を低下させやすい。特に、125ksi以上の高い降伏強度を有する場合、粗大Al酸化物の影響が顕在化しやすく、低温靭性が顕著に低下しやすくなる。そこで、上述の化学組成と、862~1034MPaの降伏強度とを有する本実施形態による鋼材では、粗大Al酸化物の個数密度を30個/200mm2未満とする。 As described above, when manufacturing a steel material having the above-mentioned chemical composition, deoxidation is mainly performed with aluminum (Al) in the steelmaking process. Therefore, a large number of Al oxides are likely to be formed in the steel material having the above-mentioned chemical composition. Furthermore, Al oxides are hard oxides and tend to reduce the toughness of the steel material. In particular, when the steel material has a high yield strength of 125 ksi or more, the effect of coarse Al oxides tends to become apparent, and the low-temperature toughness tends to decrease significantly. Therefore, in the steel material according to this embodiment having the above-mentioned chemical composition and a yield strength of 862 to 1034 MPa, the number density of coarse Al oxides is set to less than 30 pieces/200 mm2 .
 本実施形態において、粗大Al酸化物の個数密度の好ましい上限は28個/200mm2であり、さらに好ましくは26個/200mm2であり、さらに好ましくは25個/200mm2であり、さらに好ましくは22個/200mm2である。本実施形態において、粗大Al酸化物の個数密度の下限は特に限定されず、0個/200mm2であってもよい。粗大Al酸化物の個数密度の下限は、たとえば、5個/200mm2であってもよく、7個/200mm2であってもよく、9個/200mm2であってもよい。粗大Al酸化物の個数密度を求める方法は、後述する。 In this embodiment, the preferred upper limit of the number density of the coarse Al oxides is 28 pieces/200 mm 2 , more preferably 26 pieces/200 mm 2 , more preferably 25 pieces/200 mm 2 , and even more preferably 22 pieces/200 mm 2 . In this embodiment, the lower limit of the number density of the coarse Al oxides is not particularly limited, and may be 0 pieces/200 mm 2 . The lower limit of the number density of the coarse Al oxides may be, for example, 5 pieces/200 mm 2 , 7 pieces/200 mm 2 , or 9 pieces/200 mm 2 . A method for determining the number density of the coarse Al oxides will be described later.
 [粗大Si酸化物の個数密度]
 本実施形態による鋼材は、上述の化学組成と、862~1034MPaの降伏強度を有し、粗大Al酸化物の個数密度が30個/200mm2未満であり、さらに、粗大Si酸化物の個数密度が5個/200mm2以下である。上述のとおり、本明細書では、質量%で、Al含有量が20%未満であり、Si含有量が20%以上であり、O含有量が10%以上の粒子を「Si酸化物」ともいう。上述のとおり、本明細書ではさらに、長径が5.0μm以上のSi酸化物を「粗大Si酸化物」ともいう。つまり、粗大Si酸化物とは、質量%で、Al含有量が20%未満であり、Si含有量が20%以上であり、O含有量が10%以上であり、長径が5.0μm以上の粒子を意味する。
[Number density of coarse Si oxide particles]
The steel material according to the present embodiment has the above-mentioned chemical composition and a yield strength of 862 to 1034 MPa, the number density of the coarse Al oxides is less than 30 pieces/200 mm2 , and the number density of the coarse Si oxides is 5 pieces/200 mm2 or less. As described above, in this specification, particles having an Al content of less than 20%, a Si content of 20% or more, and an O content of 10% or more, in mass%, are also referred to as "Si oxides". As described above, in this specification, Si oxides having a major axis of 5.0 μm or more are also referred to as "coarse Si oxides". In other words, coarse Si oxides refer to particles having an Al content of less than 20%, a Si content of 20% or more, an O content of 10% or more, and a major axis of 5.0 μm or more, in mass%.
 上述のとおり、これまでSi酸化物は、その数の少なさから着目されてこなかった。しかしながら、125ksi以上の高い降伏強度を有する場合、粗大Al酸化物だけでなく、数の少ない粗大Si酸化物であっても、低温靭性の低下が顕在化しやすい可能性がある。そのため、粗大Al酸化物の個数密度を30個/200mm2未満にするだけでなく、粗大Si酸化物の個数密度を5個/200mm2以下にもすることで、125ksi以上にまで降伏強度を高めても、優れた低温靭性を安定して得られる可能性がある。そこで、本実施形態による鋼材は、上述の化学組成と、862~1034MPaの降伏強度とを有し、鋼材中の粗大Al酸化物の個数密度が30個/200mm2未満とし、さらに、粗大Si酸化物の個数密度が5個/200mm2以下とする。 As described above, Si oxides have not been paid much attention to because of their small number. However, when the steel has a high yield strength of 125 ksi or more, not only the coarse Al oxides but also the coarse Si oxides with a small number may easily cause a decrease in low-temperature toughness. Therefore, by making the number density of the coarse Al oxides less than 30 pieces/200 mm 2 and making the number density of the coarse Si oxides 5 pieces/200 mm 2 or less, it is possible to stably obtain excellent low-temperature toughness even if the yield strength is increased to 125 ksi or more. Therefore, the steel material according to this embodiment has the above-mentioned chemical composition and a yield strength of 862 to 1034 MPa, and the number density of the coarse Al oxides in the steel material is less than 30 pieces/200 mm 2 , and further, the number density of the coarse Si oxides is 5 pieces/200 mm 2 or less.
 本実施形態において、粗大Si酸化物の個数密度の好ましい上限は4個/200mm2であり、さらに好ましくは3個/200mm2である。本実施形態において、粗大Si酸化物の個数密度の下限は特に限定されず、0個/200mm2であってもよい。粗大Si酸化物の個数密度の下限は、たとえば、1個/200mm2であってもよい。 In this embodiment, the preferred upper limit of the number density of the coarse Si oxides is 4 pieces/200 mm2 , and more preferably 3 pieces/200 mm2 . In this embodiment, the lower limit of the number density of the coarse Si oxides is not particularly limited, and may be 0 pieces/200 mm2 . The lower limit of the number density of the coarse Si oxides may be, for example, 1 piece/200 mm2 .
 本実施形態において、鋼材中の粗大Al酸化物の個数密度、及び、粗大Si酸化物の個数密度は、次の方法で求めることができる。まず、本実施形態による鋼材から、圧延方向及び圧下方向を含む面を観察面とする試験片を作製する。具体的に、鋼材が鋼板の場合、板厚中央部から、圧延方向と板厚方向とを含む面を観察面とする試験片を作製する。鋼材が鋼管の場合、肉厚中央部から、管軸方向と管径方向とを含む面を観察面とする試験片を作製する。鋼材が丸鋼である場合、R/2位置を中央に含み、軸方向と径方向とを含む面を観察面とする試験片を作製する。 In this embodiment, the number density of coarse Al oxides and the number density of coarse Si oxides in the steel material can be found by the following method. First, a test piece is prepared from the steel material according to this embodiment, with the observation surface being a surface including the rolling direction and the reduction direction. Specifically, if the steel material is a steel plate, a test piece is prepared from the center of the plate thickness, with the observation surface being a surface including the rolling direction and the plate thickness direction. If the steel material is a steel pipe, a test piece is prepared from the center of the plate thickness, with the observation surface being a surface including the pipe axial direction and the pipe radial direction. If the steel material is round bar, a test piece is prepared that includes the R/2 position in the center, with the observation surface being a surface including the axial direction and the radial direction.
 作製した試験片の観察面を鏡面に研磨した後、測定を行う。観察面の面積は限定されないが、たとえば、300mm2(20mm×15mm)とする。観察面において、長径が5.0μm以上のAl酸化物の個数を求める。観察面においてさらに、長径が5.0μm以上のSi酸化物の個数を求める。具体的には、まず観察面における粒子をコントラストから特定する。特定した各粒子について、元素濃度分析(EDS分析)を実施する。EDS分析では、加速電圧を20kVとし、対象元素をN、O、Mg、Al、Si、P、S、Ca、Ti、Cr、Mn、Fe、Cu、Zr、Nbとして定量する。各粒子のEDS分析結果に基づいて、質量%でAl含有量が20%以上であり、かつ、O含有量が10%以上である場合、その粒子を「Al酸化物」と特定する。各粒子のEDS分析結果に基づいてさらに、質量%でAl含有量が20%未満であり、Si含有量が20%以上であり、かつ、O含有量が10%以上である場合、その粒子を「Si酸化物」と特定する。 The observation surface of the prepared test piece is polished to a mirror finish, and then the measurement is performed. The area of the observation surface is not limited, but is, for example, 300 mm 2 (20 mm × 15 mm). The number of Al oxides with a major axis of 5.0 μm or more is determined on the observation surface. Furthermore, the number of Si oxides with a major axis of 5.0 μm or more is determined on the observation surface. Specifically, the particles on the observation surface are first identified from the contrast. An element concentration analysis (EDS analysis) is performed on each identified particle. In the EDS analysis, the acceleration voltage is set to 20 kV, and the target elements are quantified as N, O, Mg, Al, Si, P, S, Ca, Ti, Cr, Mn, Fe, Cu, Zr, and Nb. Based on the EDS analysis results of each particle, if the Al content is 20% or more and the O content is 10% or more by mass%, the particle is identified as "Al oxide". Based on the EDS analysis results of each particle, if the Al content is less than 20%, the Si content is 20% or more, and the O content is 10% or more, in mass%, the particle is identified as a "Si oxide".
 観察面において特定されたAl酸化物のうち、長径が5.0μm以上のAl酸化物(粗大Al酸化物)を特定し、粗大Al酸化物の総個数を求める。さらに、観察面において特定されたSi酸化物のうち、長径が5.0μm以上のSi酸化物(粗大Si酸化物)を特定し、粗大Si酸化物の総個数を求める。なお、Al酸化物及びSi酸化物の長径は、周知の方法で求めることができる。また、本明細書において、Al酸化物及びSi酸化物の長径とは、観察面において、Al酸化物及びSi酸化物の外周上の任意の2点を結ぶ線分のうち、最長の線分を意味する。 Among the Al oxides identified on the observation surface, Al oxides with a major axis of 5.0 μm or more (coarse Al oxides) are identified, and the total number of coarse Al oxides is calculated. Furthermore, among the Si oxides identified on the observation surface, Si oxides with a major axis of 5.0 μm or more (coarse Si oxides) are identified, and the total number of coarse Si oxides is calculated. The major axes of Al oxides and Si oxides can be calculated by well-known methods. In this specification, the major axes of Al oxides and Si oxides refer to the longest line segment among the line segments connecting any two points on the periphery of Al oxides and Si oxides on the observation surface.
 粗大Al酸化物の総個数と、観察面の総面積とに基づいて、粗大Al酸化物の個数密度(個/200mm2)を求める。さらに、粗大Si酸化物の総個数と、観察面の総面積とに基づいて、粗大Si酸化物の個数密度(個/200mm2)を求める。なお、本実施形態において、粗大Al酸化物の個数密度(個/200mm2)、及び、粗大Si酸化物の個数密度(個/200mm2)はいずれも、得られた数値の小数第一位を四捨五入して求める。また、粗大Al酸化物及び粗大Si酸化物の個数密度の測定は、走査電子顕微鏡に組成分析機能を付与された装置(SEM-EDS装置)を用いて行うことができる。SEM-EDS装置としてたとえば、FEI(ASPEX)社製の自動分析装置である商品名:Metals Quality Analyzerを用いることができる。 The number density of the coarse Al oxides (pieces/200 mm 2 ) is calculated based on the total number of the coarse Al oxides and the total area of the observation surface. Furthermore, the number density of the coarse Si oxides (pieces/200 mm 2 ) is calculated based on the total number of the coarse Si oxides and the total area of the observation surface. In this embodiment, the number density of the coarse Al oxides (pieces/200 mm 2 ) and the number density of the coarse Si oxides (pieces/200 mm 2 ) are both calculated by rounding off the obtained values to the first decimal place. Furthermore, the number density of the coarse Al oxides and the coarse Si oxides can be measured using a device (SEM-EDS device) in which a composition analysis function is provided to a scanning electron microscope. As the SEM-EDS device, for example, an automatic analyzer manufactured by FEI (ASPEX) under the product name: Metals Quality Analyzer can be used.
 [低温靭性]
 本実施形態による鋼材は、上述の化学組成と、862~1034MPaの降伏強度を有し、粗大Al酸化物の個数密度が30個/200mm2未満であり、さらに、粗大Si酸化物の個数密度が5個/200mm2以下である。その結果、本実施形態による鋼材は、降伏強度が125ksi以上であっても、優れた低温靭性を有する。本実施形態において、優れた低温靭性を有するとは、以下に記載のASTM E23(2018)に準拠したシャルピー衝撃試験によって判断される。
[Low temperature toughness]
The steel material according to the present embodiment has the above-mentioned chemical composition, a yield strength of 862 to 1034 MPa, a number density of coarse Al oxides of less than 30/200 mm2 , and a number density of coarse Si oxides of 5/200 mm2 or less. As a result, the steel material according to the present embodiment has excellent low-temperature toughness even when the yield strength is 125 ksi or more. In the present embodiment, having excellent low-temperature toughness is determined by a Charpy impact test in accordance with ASTM E23 (2018) described below.
 まず、本実施形態による鋼材から、API 5CT(2019)に準拠して、フルサイズ又はサブサイズのVノッチ試験片を作製する。ここで、鋼材が鋼板の場合、鋼板の圧延方向を「L方向」(Longitudinal)と定義し、鋼板の板幅方向を「T方向」(Transverse)と定義する。鋼材が鋼管の場合、鋼管の管径方向を「C方向」と定義し、鋼管の管軸方向を「L方向」と定義し、C方向とL方向とに垂直な方向を「T方向」と定義する。鋼材が丸鋼の場合、丸鋼の断面径方向を「C方向」と定義し、丸鋼の軸方向を「L方向」と定義し、C方向とL方向とに垂直な方向を「T方向」と定義する。 First, a full-size or sub-size V-notch test piece is prepared from the steel material according to this embodiment in accordance with API 5CT (2019). Here, when the steel material is a steel plate, the rolling direction of the steel plate is defined as the "L direction" (Longitudinal), and the plate width direction of the steel plate is defined as the "T direction" (Transverse). When the steel material is a steel pipe, the pipe diameter direction of the steel pipe is defined as the "C direction", the pipe axial direction of the steel pipe is defined as the "L direction", and the direction perpendicular to the C direction and the L direction is defined as the "T direction". When the steel material is a round bar, the cross-sectional radial direction of the round bar is defined as the "C direction", the axial direction of the round bar is defined as the "L direction", and the direction perpendicular to the C direction and the L direction is defined as the "T direction".
 作製されたVノッチ試験片に対して、ASTM E23(2018)に準拠してシャルピー衝撃試験を実施する。具体的に、試験温度は、-120~20℃の範囲を20℃ずつ変化させた8水準(-120℃、-100℃、-80℃、-60℃、-40℃、-20℃、0℃、及び、20℃)とする。試験温度ごとに試験片を2本ずつ用いて、シャルピー衝撃試験を実施する。以上の条件にて、各温度における試験後の試験片の脆性破面率(%)を求める。試験温度(℃)と得られた脆性破面率(%)とをプロットして、近似曲線を得る。得られた近似曲線から、脆性破面率が50%になる温度(℃)を求め、破面遷移温度(℃)と定義する。なお、本実施形態において破面遷移温度(℃)は、得られた数値の小数第一位を四捨五入して求める。  A Charpy impact test is performed on the prepared V-notch test specimen in accordance with ASTM E23 (2018). Specifically, the test temperature is set to eight levels (-120°C, -100°C, -80°C, -60°C, -40°C, -20°C, 0°C, and 20°C) that are changed by 20°C in the range of -120 to 20°C. The Charpy impact test is performed using two test specimens for each test temperature. Under the above conditions, the brittle fracture rate (%) of the test specimen after the test at each temperature is obtained. An approximation curve is obtained by plotting the test temperature (°C) and the obtained brittle fracture rate (%). From the obtained approximation curve, the temperature (°C) at which the brittle fracture rate becomes 50% is obtained and defined as the fracture transition temperature (°C). In this embodiment, the fracture transition temperature (°C) is obtained by rounding the obtained value to one decimal place.
 本実施形態では、「優れた低温靭性」を、降伏強度の範囲に応じて定義する。具体的に、降伏強度が862~945MPa未満の場合、破面遷移温度が-50℃以下であれば、優れた低温靭性を有すると判断する。また、降伏強度が945~1034MPaの場合、破面遷移温度が-40℃以下であれば、優れた低温靭性を有すると判断する。 In this embodiment, "excellent low-temperature toughness" is defined according to the range of yield strength. Specifically, if the yield strength is less than 862-945 MPa and the fracture transition temperature is -50°C or lower, it is determined to have excellent low-temperature toughness. Also, if the yield strength is 945-1034 MPa and the fracture transition temperature is -40°C or lower, it is determined to have excellent low-temperature toughness.
 [ミクロ組織]
 本実施形態による鋼材のミクロ組織は、焼戻しマルテンサイト及び焼戻しベイナイトの体積率の合計が90%以上である。ミクロ組織の残部はたとえば、フェライト、又は、パーライトである。上述の化学組成を有する鋼材のミクロ組織が、焼戻しマルテンサイト及び焼戻しベイナイトの体積率の合計が90%以上を含有すれば、本実施形態の他の構成を満たすことを条件に、125ksi以上の降伏強度と、優れた低温靭性とを両立できる。すなわち、本実施形態では、鋼材が125ksi以上の降伏強度と、優れた低温靭性とを両立していれば、ミクロ組織は焼戻しマルテンサイト及び焼戻しベイナイトの体積率の合計が90%以上であると判断する。
[Microstructure]
The microstructure of the steel material according to this embodiment has a total volume fraction of tempered martensite and tempered bainite of 90% or more. The remainder of the microstructure is, for example, ferrite or pearlite. If the microstructure of the steel material having the above-mentioned chemical composition contains a total volume fraction of tempered martensite and tempered bainite of 90% or more, it can achieve both a yield strength of 125 ksi or more and excellent low-temperature toughness, provided that other configurations of this embodiment are satisfied. That is, in this embodiment, if the steel material achieves both a yield strength of 125 ksi or more and excellent low-temperature toughness, it is determined that the microstructure has a total volume fraction of tempered martensite and tempered bainite of 90% or more.
 なお、焼戻しマルテンサイト及び焼戻しベイナイトの体積率を観察により求める場合、以下の方法で求めることができる。まず、本実施形態による鋼材から、観察面を有する試験片を作製する。鋼材が鋼板の場合、板厚中央部から、圧延方向と板厚方向とを含む面を観察面とする試験片を作製する。鋼材が鋼管の場合、肉厚中央部から、管軸方向と管径方向とを含む面を観察面とする試験片を作製する。鋼材が丸鋼である場合、R/2位置を中央に含み、軸方向と径方向とを含む面を観察面とする試験片を作製する。 When the volume fraction of tempered martensite and tempered bainite is determined by observation, it can be determined by the following method. First, a test piece having an observation surface is prepared from the steel material according to this embodiment. If the steel material is a steel plate, a test piece is prepared from the center of the plate thickness, with the observation surface being a surface including the rolling direction and the plate thickness direction. If the steel material is a steel pipe, a test piece is prepared from the center of the wall thickness, with the observation surface being a surface including the pipe axial direction and the pipe radial direction. If the steel material is round bar, a test piece is prepared that includes the R/2 position in the center, with the observation surface being a surface including the axial direction and the radial direction.
 試験片の観察面を鏡面に研磨した後、ナイタール腐食液に10秒程度浸漬して、エッチングによる組織現出を行う。エッチングした観察面を、走査電子顕微鏡(SEM:Scanning Electron Microscope)を用いて、二次電子像にて10視野観察する。視野面積は、たとえば、0.01mm2(倍率1000倍)である。各視野において、コントラストから焼戻しマルテンサイト及び焼戻しベイナイトを特定する。特定した焼戻しマルテンサイト及び焼戻しベイナイトの面積率を求める。面積率を求める方法は特に限定されず、周知の方法でよい。たとえば、画像解析によって、焼戻しマルテンサイト及び焼戻しベイナイトの面積率を求めることができる。本実施形態では、全ての視野で求めた、焼戻しマルテンサイト及び焼戻しベイナイトの面積率の算術平均値を、焼戻しマルテンサイト及び焼戻しベイナイトの体積率と定義する。 The observation surface of the test piece is polished to a mirror finish, and then immersed in a nital etching solution for about 10 seconds to reveal the structure by etching. The etched observation surface is observed in 10 fields of view as secondary electron images using a scanning electron microscope (SEM). The field area is, for example, 0.01 mm 2 (magnification 1000 times). In each field of view, tempered martensite and tempered bainite are identified from the contrast. The area ratio of the identified tempered martensite and tempered bainite is obtained. The method for obtaining the area ratio is not particularly limited, and a well-known method may be used. For example, the area ratio of tempered martensite and tempered bainite can be obtained by image analysis. In this embodiment, the arithmetic average value of the area ratios of tempered martensite and tempered bainite obtained in all fields of view is defined as the volume ratio of tempered martensite and tempered bainite.
 [製造方法]
 本実施形態による鋼材の製造方法を説明する。以下、本実施形態による鋼材の一例として、継目無鋼管の製造方法を説明する。継目無鋼管の製造方法は、素材を準備する工程(製鋼工程)と、素材を熱間加工して素管を製造する工程(熱間加工工程)と、素管に対して焼入れ及び焼戻しを実施して、継目無鋼管とする工程(焼入れ工程及び焼戻し工程)とを備える。なお、本実施形態による製造方法は、以下に説明する製造方法に限定されない。以下、各工程について詳述する。
[Production method]
A method for manufacturing a steel material according to this embodiment will be described. Below, a method for manufacturing a seamless steel pipe will be described as an example of a steel material according to this embodiment. The method for manufacturing a seamless steel pipe includes a process for preparing a material (steelmaking process), a process for hot working the material to manufacture a mother pipe (hot working process), and a process for quenching and tempering the mother pipe to produce a seamless steel pipe (quenching process and tempering process). Note that the manufacturing method according to this embodiment is not limited to the manufacturing method described below. Each process will be described in detail below.
 [製鋼工程]
 製鋼工程では、初めに、周知の方法で製造された溶銑に対して、転炉での精錬(一次精錬)を実施する。一次精錬された溶鋼に対して、二次精錬を実施する。二次精錬において、成分調整の合金元素の添加を実施して、上述の化学組成を満たす溶鋼を製造する。
[Steelmaking process]
In the steelmaking process, first, molten pig iron produced by a known method is refined in a converter (primary refining). The molten steel produced by the primary refining is then subjected to secondary refining. In the secondary refining, alloy elements are added to adjust the composition, to produce molten steel that satisfies the above-mentioned chemical composition.
 二次精錬は、たとえば、RH(Ruhrstahl-Hausen)真空脱ガス処理を実施する。その後、合金成分の最終調整を行う。二次精錬では、複合精錬を実施してもよい。この場合、RH真空脱ガス処理の前にたとえば、LF(Ladle Furnace)、又は、VAD(Vacuum Arc Degassing)を用いた精錬処理を実施する。 Secondary refining involves, for example, RH (Ruhrstahl-Hausen) vacuum degassing treatment. After that, final adjustment of the alloy components is made. In secondary refining, combined refining may also be performed. In this case, prior to the RH vacuum degassing treatment, for example, a refining treatment using LF (Ladle Furnace) or VAD (Vacuum Arc Degassing) is performed.
 二次精錬が実施された溶鋼を用いて、素材を製造する。具体的には、二次精錬が実施された溶鋼を用いて連続鋳造法により鋳片(スラブ、ブルーム、又は、ビレット)を製造する。連続鋳造法では、まず、取鍋からタンディッシュへ溶鋼を注入する。このとき、取鍋のノズルを封止するため、ノズルには通常、詰め砂が封入されている。そのため、取鍋からタンディッシュへ、溶鋼と一緒に詰め砂が混入する場合がある。また、上述の化学組成を有する素材を製造する際、詰め砂としてSi酸化物が用いられる場合がある。この場合、製造された素材には、Si酸化物が導入される懸念がある。  Materials are manufactured using molten steel that has undergone secondary refinement. Specifically, cast pieces (slabs, blooms, or billets) are manufactured by continuous casting using molten steel that has undergone secondary refinement. In continuous casting, molten steel is first poured from a ladle into a tundish. At this time, packing sand is usually enclosed in the nozzle of the ladle to seal it. For this reason, packing sand may be mixed in with the molten steel from the ladle to the tundish. Also, when manufacturing materials having the above-mentioned chemical composition, silicon oxides may be used as packing sand. In this case, there is a concern that silicon oxides may be introduced into the manufactured material.
 そこで、本実施形態では、取鍋のノズルに封入されるSi酸化物がタンディッシュ内に導入されるのを防止するため、溶鋼と、Si酸化物とを分離する。Si酸化物を分離する方法は特に限定されないが、たとえば、次の方法を用いることができる。取鍋のノズルの下方であって、タンディッシュの開口部の上方に、傾斜をつけた金属板を配置する。取鍋のノズルを開放した際、まず、Si酸化物がノズルから排出され、続いて溶鋼が排出される。ここで、Si酸化物は溶鋼と比較して軽い。そのため、ノズルから排出されるSi酸化物は、金属板の傾斜に沿って、タンディッシュの開口部の外へと誘導される。金属板の傾斜は、たとえば、底面の無い錐体状に加工した金属板を、取鍋のノズルの直下に頂点が来るように配置することによって設けられてもよく、他の方法によって設けられてもよい。また、金属板は1枚で用いてもよく、複数の金属板を重ねて用いてもよい。さらに、金属板の厚さは特に限定されないが、たとえば、1~10mm程度である。 In this embodiment, therefore, in order to prevent the Si oxide sealed in the nozzle of the ladle from being introduced into the tundish, the molten steel and the Si oxide are separated. The method of separating the Si oxide is not particularly limited, but the following method can be used, for example. A tilted metal plate is placed below the nozzle of the ladle and above the opening of the tundish. When the nozzle of the ladle is opened, the Si oxide is discharged from the nozzle first, followed by the molten steel. Here, the Si oxide is lighter than the molten steel. Therefore, the Si oxide discharged from the nozzle is guided out of the opening of the tundish along the tilt of the metal plate. The tilt of the metal plate may be provided, for example, by placing a metal plate processed into a cone shape without a bottom so that its apex is directly below the nozzle of the ladle, or by other methods. Furthermore, a single metal plate may be used, or multiple metal plates may be used in a stack. Furthermore, the thickness of the metal plate is not particularly limited, but is, for example, about 1 to 10 mm.
 ノズルからSi酸化物が排出された後、溶鋼が排出される。このとき、ノズルから排出される溶鋼は、金属板とともに開口部を通ってタンディッシュへ導入される。すなわち、本実施形態において、金属板の一部又は全部はタンディッシュへ導入され、溶鋼に混入してもよい。そのため、本実施形態における金属板は、溶鋼に含まれる合金元素からなる金属板とするのが好ましい。溶鋼に含まれる合金元素からなる金属板として、たとえば、アルミニウム板を用いることができる。なお、本明細書において、アルミニウム板とは、アルミニウム及び残部が不純物からなる金属板を意味する。 After the Si oxides are discharged from the nozzle, the molten steel is discharged. At this time, the molten steel discharged from the nozzle is introduced into the tundish through the opening together with the metal plate. That is, in this embodiment, a part or all of the metal plate may be introduced into the tundish and mixed into the molten steel. Therefore, the metal plate in this embodiment is preferably a metal plate made of alloy elements contained in the molten steel. For example, an aluminum plate can be used as a metal plate made of alloy elements contained in the molten steel. In this specification, an aluminum plate means a metal plate made of aluminum and the remainder made of impurities.
 好ましくは、ノズルからSi酸化物が排出された後、溶鋼が排出される前に、ノズルの下方から金属板を除去する。この場合、金属板に付着したSi酸化物が溶鋼に混入するのを防ぐことができる。なお、金属板をノズルの下方から除去する方法は特に限定されないが、たとえば、金属板の一部に孔を形成しておき、先端にフックが形成された棒を用いて除去してもよい。この場合、棒の先端のフックを金属板の孔に引っ掛け、棒を引っ張ることによって金属板を除去することができる。以上の方法により、Si酸化物を溶鋼から分離して、溶鋼をタンディッシュへ導入することができる。なお、Si酸化物を溶鋼から分離する方法は、上述の方法に限定されない。 Preferably, after the Si oxide is discharged from the nozzle and before the molten steel is discharged, the metal plate is removed from below the nozzle. In this case, it is possible to prevent the Si oxide adhering to the metal plate from being mixed into the molten steel. The method for removing the metal plate from below the nozzle is not particularly limited, but for example, a hole may be formed in part of the metal plate and the metal plate may be removed using a rod with a hook at its tip. In this case, the hook at the tip of the rod can be hooked into the hole in the metal plate and the rod can be pulled to remove the metal plate. By the above method, the Si oxide can be separated from the molten steel and the molten steel can be introduced into the tundish. The method for separating the Si oxide from the molten steel is not limited to the above method.
 次に、準備された溶鋼を鋳造して、素材を製造する。鋳造する方法は、特に限定されないが、たとえば、連続鋳造法である。連続鋳造法により素材を製造する場合、次の方法で実施するのが好ましい。 Then, the prepared molten steel is cast to produce the material. The casting method is not particularly limited, but may be, for example, a continuous casting method. When producing the material by continuous casting, it is preferable to carry out the following method.
 連続鋳造機における鋳造速度は1.0~3.0m/分とするのが好ましい。鋳造速度が遅すぎれば、素材中にAl酸化物の集積帯が形成する場合がある。この場合、製造された鋼材中に粗大Al酸化物が多数含有し、鋼材の低温靭性が低下する。一方、鋳造速度が速すぎれば、Al酸化物が浮上できず、素材中に多数のAl酸化物が残存する場合がある。この場合、製造された鋼材中に粗大Al酸化物が多数含有し、鋼材の低温靭性が低下する。したがって、連続鋳造機における鋳造速度は、1.0~3.0m/分とするのが好ましい。 The casting speed in the continuous casting machine is preferably 1.0 to 3.0 m/min. If the casting speed is too slow, an accumulation zone of Al oxides may form in the material. In this case, the produced steel material will contain a large amount of coarse Al oxides, and the low-temperature toughness of the steel material will decrease. On the other hand, if the casting speed is too fast, the Al oxides may not float to the surface, and a large amount of Al oxide may remain in the material. In this case, the produced steel material will contain a large amount of coarse Al oxides, and the low-temperature toughness of the steel material will decrease. Therefore, the casting speed in the continuous casting machine is preferably 1.0 to 3.0 m/min.
 連続鋳造法により素材を製造する場合さらに、鋳型内において、溶鋼を電磁撹拌するのが好ましい。具体的には、鋳型内の電磁撹拌を、電流値330~450Aとして実施することにより、素材中にAl酸化物の集積帯が形成されにくくなる。鋳型内での電磁撹拌における電流値が低すぎれば、溶鋼の撹拌が不足して、素材中にAl酸化物の集積帯が形成する場合がある。この場合、製造された鋼材中に粗大Al酸化物が多数含有し、鋼材の低温靭性が低下する。一方、鋳型内での電磁撹拌における電流値が高すぎれば、製造設備に負荷がかかりすぎる場合がある。したがって、本実施形態では、鋳型内の電磁撹拌を、電流値330~450Aとするのが好ましい。以上の方法により、溶鋼を鋳造して、素材を製造する。 When manufacturing a material by continuous casting, it is preferable to further electromagnetically stir the molten steel in the mold. Specifically, by carrying out electromagnetic stirring in the mold at a current value of 330 to 450 A, it becomes difficult for an accumulation band of Al oxide to form in the material. If the current value of the electromagnetic stirring in the mold is too low, the stirring of the molten steel is insufficient, and an accumulation band of Al oxide may form in the material. In this case, the manufactured steel material contains a large amount of coarse Al oxides, and the low-temperature toughness of the steel material decreases. On the other hand, if the current value of the electromagnetic stirring in the mold is too high, the manufacturing equipment may be overloaded. Therefore, in this embodiment, it is preferable to set the current value of the electromagnetic stirring in the mold to 330 to 450 A. Molten steel is cast by the above method to manufacture the material.
 [熱間加工工程]
 熱間加工工程では、準備された素材を熱間加工して中間鋼材を製造する。鋼材が継目無鋼管である場合、中間鋼材は素管に相当する。始めに、ビレットを加熱炉で加熱する。加熱温度は特に限定されないが、たとえば、1100~1300℃である。加熱炉から抽出されたビレットに対して熱間加工を実施して、素管(継目無鋼管)を製造する。熱間加工の方法は、特に限定されず、周知の方法でよい。
[Hot processing process]
In the hot working process, the prepared material is hot worked to produce an intermediate steel material. When the steel material is a seamless steel pipe, the intermediate steel material corresponds to a mother pipe. First, the billet is heated in a heating furnace. The heating temperature is not particularly limited, but is, for example, 1100 to 1300°C. The billet extracted from the heating furnace is hot worked to produce a mother pipe (seamless steel pipe). The method of hot working is not particularly limited, and may be a well-known method.
 たとえば、熱間加工としてマンネスマン法を実施して、素管を製造してもよい。この場合、穿孔機により丸ビレットを穿孔圧延する。穿孔圧延する場合、穿孔比は特に限定されないが、たとえば、1.0~4.0である。穿孔圧延された丸ビレットをさらに、マンドレルミル、レデューサー、サイジングミル等により熱間圧延して素管にする。熱間加工工程での累積の減面率はたとえば、20~70%である。 For example, the Mannesmann process may be carried out as hot working to manufacture a blank tube. In this case, a round billet is pierced and rolled using a piercing machine. When piercing and rolling, the piercing ratio is not particularly limited, but is, for example, 1.0 to 4.0. The pierced and rolled round billet is further hot rolled using a mandrel mill, reducer, sizing mill, etc. to produce a blank tube. The cumulative reduction in area during the hot working process is, for example, 20 to 70%.
 他の熱間加工方法を実施して、ビレットから素管を製造してもよい。たとえば、カップリングのように短尺の厚肉鋼材である場合、エルハルト法等の鍛造により素管を製造してもよい。以上の工程により素管が製造される。素管の肉厚は特に限定されないが、たとえば、9~60mmである。 Other hot working methods may be used to produce a blank pipe from the billet. For example, in the case of short, thick-walled steel material such as a coupling, the blank pipe may be produced by forging using the Erhardt method or the like. The blank pipe is produced by the above process. There are no particular limitations on the thickness of the blank pipe, but it is, for example, 9 to 60 mm.
 鋼材が丸鋼の場合、初めに、素材を加熱炉で加熱する。加熱温度は特に限定されないが、たとえば、1100~1300℃である。加熱炉から抽出された素材に対して熱間加工を実施して、軸方向に垂直な断面が円形の中間鋼材を製造する。熱間加工はたとえば、分塊圧延機による分塊圧延、又は、連続圧延機による熱間圧延である。連続圧延機は、上下方向に並んで配置された一対の孔型ロールを有する水平スタンドと、水平方向に並んで配置された一対の孔型ロールを有する垂直スタンドとが交互に配列されている。 When the steel material is round steel, the material is first heated in a heating furnace. The heating temperature is not particularly limited, but is, for example, 1100 to 1300°C. The material extracted from the heating furnace is subjected to hot processing to produce intermediate steel material with a circular cross section perpendicular to the axial direction. The hot processing is, for example, blooming using a blooming mill, or hot rolling using a continuous rolling mill. A continuous rolling mill has an alternating arrangement of horizontal stands having a pair of grooved rolls arranged side by side in the vertical direction, and vertical stands having a pair of grooved rolls arranged side by side in the horizontal direction.
 鋼材が鋼板の場合、初めに、素材を加熱炉で加熱する。加熱温度は特に限定されないが、たとえば、1100~1300℃である。加熱炉から抽出された素材に対して、分塊圧延機、及び、連続圧延機を用いて熱間圧延を実施して、鋼板形状の中間鋼材を製造する。 When the steel material is a steel plate, the material is first heated in a heating furnace. The heating temperature is not particularly limited, but is, for example, 1100 to 1300°C. The material extracted from the heating furnace is hot-rolled using a blooming mill and a continuous rolling mill to produce intermediate steel material in the shape of a steel plate.
 熱間加工により製造された素管は空冷されてもよい(As-Rolled)。熱間加工により製造された素管は、常温まで冷却せずに、熱間加工後に直接焼入れを実施してもよく、熱間加工後に補熱(再加熱)した後、焼入れを実施してもよい。  The blank pipe produced by hot working may be air-cooled (as-rolled). The blank pipe produced by hot working may be quenched directly after hot working without being cooled to room temperature, or it may be quenched after being reheated after hot working.
 熱間加工後に直接焼入れ、又は、補熱した後焼入れを実施する場合、焼入れ途中に冷却の停止、又は、緩冷却を実施してもよい。この場合、素管に焼割れが発生するのを抑制できる。熱間加工後に直接焼入れ、又は、補熱した後焼入れを実施する場合さらに、焼入れ後であって次工程の熱処理前に、応力除去焼鈍(SR)を実施してもよい。この場合、素管の残留応力が除去される。 When quenching is performed directly after hot working, or after quenching with additional heating, cooling may be stopped midway through quenching, or slow cooling may be performed. In this case, the occurrence of quench cracks in the blank tube can be suppressed. When quenching is performed directly after hot working, or after quenching with additional heating, stress relief annealing (SR) may also be performed after quenching and before the next heat treatment step. In this case, residual stress in the blank tube is removed.
 以上のとおり、熱間加工工程では、準備された素材を熱間加工して、中間鋼材を製造する。以下、焼入れ工程について詳述する。 As described above, in the hot working process, the prepared material is hot worked to produce intermediate steel. The quenching process is described in detail below.
 [焼入れ工程]
 焼入れ工程では、準備された中間鋼材(素管)に対して、焼入れを実施する。本明細書において、「焼入れ」とは、A3点以上の中間鋼材を急冷することを意味する。好ましい焼入れ温度は800~1000℃である。焼入れ温度が高すぎれば、旧γ粒の結晶粒が粗大になり、鋼材の低温靭性が低下する場合がある。したがって、焼入れ温度は800~1000℃であるのが好ましい。
[Quenching process]
In the quenching process, quenching is performed on the prepared intermediate steel material (blank pipe). In this specification, "quenching" means rapidly cooling the intermediate steel material at the A3 point or higher. The preferred quenching temperature is 800 to 1000°C. If the quenching temperature is too high, the prior γ grains may become coarse, and the low-temperature toughness of the steel material may decrease. Therefore, the quenching temperature is preferably 800 to 1000°C.
 本明細書において、焼入れ温度とは、熱間加工後に直接焼入れを実施する場合、最終の熱間加工を実施する装置の出側に設置された温度計で測定された、中間鋼材の表面温度に相当する。焼入れ温度とはさらに、熱間加工後に補熱又は再加熱した後、焼入れを実施する場合、補熱又は再加熱を実施する炉の温度に相当する。 In this specification, the quenching temperature corresponds to the surface temperature of the intermediate steel material measured by a thermometer installed at the outlet of the equipment that performs the final hot processing, when quenching is performed directly after hot processing. Furthermore, when quenching is performed after supplementary heating or reheating after hot processing, the quenching temperature corresponds to the temperature of the furnace in which supplementary heating or reheating is performed.
 焼入れ方法はたとえば、焼入れ開始温度から中間鋼材(素管)を連続的に冷却し、素管の表面温度を連続的に低下させる。連続冷却処理の方法は特に限定されず、周知の方法でよい。連続冷却処理の方法はたとえば、水槽に素管を浸漬して冷却する方法や、シャワー水冷又はミスト冷却により素管を加速冷却する方法である。 The quenching method, for example, involves continuously cooling the intermediate steel material (bare pipe) from the quenching start temperature, and continuously lowering the surface temperature of the raw pipe. The method of continuous cooling is not particularly limited, and any well-known method may be used. For example, the method of continuous cooling is a method of cooling the raw pipe by immersing it in a water tank, or a method of accelerating cooling the raw pipe by shower water cooling or mist cooling.
 焼入れ時の冷却速度が遅すぎれば、マルテンサイト及びベイナイト主体のミクロ組織とならず、本実施形態で規定する機械的特性(862~1034MPaの降伏強度)が得られない。この場合さらに、優れた低温靭性が得られない。 If the cooling rate during quenching is too slow, the microstructure will not be mainly martensite and bainite, and the mechanical properties specified in this embodiment (yield strength of 862 to 1034 MPa) will not be obtained. In this case, excellent low-temperature toughness will also not be obtained.
 したがって、上述のとおり、本実施形態による鋼材の製造方法では、焼入れ時に中間鋼材を急冷する。具体的には、焼入れ工程において、焼入れ時の中間鋼材(素管)の表面温度が800~500℃の範囲における平均冷却速度を、焼入れ時冷却速度CR800-500と定義する。より具体的には、焼入れ時冷却速度CR800-500は、焼入れされる中間鋼材の断面内で最も遅く冷却される部位(たとえば、両表面を強制冷却する場合、中間鋼材厚さの中心部)において測定された温度から決定される。 Therefore, as described above, in the steel manufacturing method according to this embodiment, the intermediate steel is quenched during quenching. Specifically, in the quenching process, the average cooling rate in the range of the surface temperature of the intermediate steel (blank tube) during quenching from 800 to 500°C is defined as the cooling rate during quenching CR 800-500 . More specifically, the cooling rate during quenching CR 800-500 is determined from the temperature measured at the location that is cooled the slowest in the cross section of the intermediate steel to be quenched (for example, the center of the thickness of the intermediate steel when both surfaces are forcibly cooled).
 好ましい焼入れ時冷却速度CR800-500は300℃/分以上である。より好ましい焼入れ時冷却速度CR800-500の下限は450℃/分であり、さらに好ましくは600℃/分である。焼入れ時冷却速度CR800-500の上限は特に規定しないが、たとえば、60000℃/分である。 The cooling rate CR 800-500 during quenching is preferably 300° C./min or more. The lower limit of the cooling rate CR 800-500 during quenching is more preferably 450° C./min, and even more preferably 600° C./min. The upper limit of the cooling rate CR 800-500 during quenching is not particularly specified, but is, for example, 60,000° C./min.
 好ましくは、素管に対してオーステナイト域での加熱を複数回実施した後、焼入れを実施する。この場合、焼入れ前のオーステナイト粒が微細化されるため、鋼材の低温靭性が高まる。複数回焼入れを実施することにより、オーステナイト域での加熱を複数回繰り返してもよいし、焼準及び焼入れを実施することにより、オーステナイト域での加熱を複数回繰り返してもよい。また、焼入れと後述する焼戻しとを組合せて、複数回実施してもよい。すなわち、複数回の焼入れ焼戻しを実施してもよい。この場合、鋼材の低温靭性がさらに高まる。以下、焼戻し工程について詳述する。 Preferably, the blank tube is heated in the austenite region multiple times and then quenched. In this case, the austenite grains before quenching are refined, thereby improving the low-temperature toughness of the steel. By quenching multiple times, heating in the austenite region may be repeated multiple times, or by normalizing and quenching, heating in the austenite region may be repeated multiple times. Quenching and tempering, which will be described later, may also be combined and performed multiple times. In other words, quenching and tempering may be performed multiple times. In this case, the low-temperature toughness of the steel is further improved. The tempering process is described in detail below.
 [焼戻し工程]
 焼戻し工程では、上述の焼入れが実施された素管に対して、焼戻しを実施する。本明細書において、「焼戻し」とは、焼入れ後の中間鋼材をAc1点未満の温度で再加熱して、保持することを意味する。ここで、焼戻し温度とは、焼入れ後の中間鋼材を加熱して、保持する際の炉の温度に相当する。焼戻し時間とは、中間鋼材の温度が所定の焼戻し温度に到達してから、熱処理炉から抽出されるまでの時間を意味する。
[Tempering process]
In the tempering process, the blank pipe that has been quenched is tempered. In this specification, "tempering" means reheating the quenched intermediate steel material at a temperature lower than the A c1 point and holding the material at that temperature. The tempering temperature corresponds to the furnace temperature when the quenched intermediate steel material is heated and held at that temperature. The tempering time means the time from when the temperature of the intermediate steel material reaches a predetermined tempering temperature to when the intermediate steel material is extracted from the heat treatment furnace.
 焼戻し温度は、継目無鋼管の化学組成、及び、得ようとする降伏強度に応じて適宜調整する。つまり、本実施形態の化学組成を有する素管に対して、焼戻し温度を調整して、継目無鋼管の降伏強度を862~1034MPaに調整する。なお、当業者であれば、焼戻し温度を調整して、継目無鋼管の降伏強度を862~1034MPaに調整することは、当然に可能である。具体的に、本実施形態による焼戻し工程において、好ましい焼戻し温度は580~690℃である。 The tempering temperature is adjusted appropriately depending on the chemical composition of the seamless steel pipe and the yield strength to be obtained. In other words, for a blank pipe having the chemical composition of this embodiment, the tempering temperature is adjusted to adjust the yield strength of the seamless steel pipe to 862 to 1034 MPa. It is of course possible for a person skilled in the art to adjust the yield strength of the seamless steel pipe to 862 to 1034 MPa by adjusting the tempering temperature. Specifically, in the tempering process according to this embodiment, the preferred tempering temperature is 580 to 690°C.
 焼戻し時間が短すぎれば、焼戻しマルテンサイト及び焼戻しベイナイト主体のミクロ組織が得られない場合がある。一方、焼戻し時間が長すぎれば、上記効果は飽和する。したがって、本実施形態の焼戻し工程において、焼戻し時間は10~90分とするのが好ましい。焼戻し時間のより好ましい下限は15分である。焼戻し時間のより好ましい上限は80分である。 If the tempering time is too short, a microstructure mainly composed of tempered martensite and tempered bainite may not be obtained. On the other hand, if the tempering time is too long, the above effects saturate. Therefore, in the tempering process of this embodiment, the tempering time is preferably 10 to 90 minutes. A more preferable lower limit of the tempering time is 15 minutes. A more preferable upper limit of the tempering time is 80 minutes.
 以上の製造方法によって、本実施形態による鋼材を製造することができる。なお、上述の製造方法では、一例として継目無鋼管の製造方法を説明した。しかしながら、本実施形態による鋼材は、鋼板や他の形状であってもよい。鋼板や他の形状の製造方法も、上述の製造方法と同様に、たとえば、準備工程と、焼入れ工程と、焼戻し工程とを備える。さらに、上述の製造方法は一例であり、他の製造方法によって製造されてもよい。 The steel material according to this embodiment can be manufactured by the above manufacturing method. Note that in the above manufacturing method, a method for manufacturing a seamless steel pipe has been described as one example. However, the steel material according to this embodiment may be a steel plate or other shape. Similar to the above manufacturing method, a manufacturing method for a steel plate or other shape also includes, for example, a preparation step, a quenching step, and a tempering step. Furthermore, the above manufacturing method is one example, and the steel material may be manufactured by other manufacturing methods.
 以下、実施例によって本発明をさらに具体的に説明する。 The present invention will be explained in more detail below with reference to examples.
 実施例1では、降伏強度が862~945MPa未満の鋼材について調査した。具体的に、表1-1及び表1-2に示す化学組成を有する溶鋼を製造した。なお、表1-2中の「-」は、各元素の含有量が不純物レベルであることを意味する。具体的に、鋼AのV含有量、Cu含有量、Ni含有量、及び、W含有量は、小数第三位を四捨五入して、0%であったことを意味する。さらに、鋼AのCa含有量、Mg含有量、Zr含有量、及び、希土類元素(REM)含有量は、小数第五位を四捨五入して、0%であったことを意味する。 In Example 1, steel materials with a yield strength of 862 to less than 945 MPa were investigated. Specifically, molten steel was produced having the chemical composition shown in Tables 1-1 and 1-2. Note that "-" in Table 1-2 means that the content of each element is at the impurity level. Specifically, the V content, Cu content, Ni content, and W content of Steel A were rounded to the nearest two decimal places and were 0%. Furthermore, the Ca content, Mg content, Zr content, and rare earth element (REM) content of Steel A were rounded to the nearest five decimal places and were 0%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記溶鋼を用いて、連続鋳造法によって丸ビレットを製造した。連続鋳造法において、取鍋からタンディッシュへ溶鋼を注入する際、タンディッシュの開口部上方に、底面の無い錐体状に加工した金属板を、取鍋のノズルの直下に頂点が来るように配置した。タンディッシュの開口部上方に、上記形状の金属板を配置したか否かを、表2に示す。具体的に、タンディッシュの開口部上方に、上記形状の金属板を配置した場合、表2の「金属板」欄に「A」と示す。タンディッシュの開口部上方に、上記形状の金属板を配置しなかった場合、表2の「金属板」欄に「B」と示す。なお、タンディッシュの開口部上方に配置した、上記形状の金属板は、アルミニウム板とした。具体的に、厚さ2mmのアルミニウム板を3枚重ねて使用した。また、金属板を配置した場合、ノズルからSi酸化物が排出された後、溶鋼が排出される前に、先端にフックの形成された棒を用いてノズルの下方から金属板を除去した。さらに、表2に記載の鋳造速度で、溶鋼から丸ビレットに鋳造した。なお、このとき、鋳型内に対して、表2に記載の電流値で電磁撹拌を実施した。 The above molten steel was used to manufacture a round billet by continuous casting. In the continuous casting process, when molten steel was poured from the ladle into the tundish, a metal plate processed into a bottomless cone shape was placed above the opening of the tundish so that its apex was directly below the nozzle of the ladle. Table 2 shows whether or not a metal plate of the above shape was placed above the opening of the tundish. Specifically, when a metal plate of the above shape was placed above the opening of the tundish, "A" is indicated in the "Metal Plate" column of Table 2. When a metal plate of the above shape was not placed above the opening of the tundish, "B" is indicated in the "Metal Plate" column of Table 2. The metal plate of the above shape placed above the opening of the tundish was an aluminum plate. Specifically, three aluminum plates with a thickness of 2 mm were used in a stack. When a metal plate was placed, after the silicon oxide was discharged from the nozzle and before the molten steel was discharged, the metal plate was removed from below the nozzle using a rod with a hook formed at its tip. Furthermore, the molten steel was cast into a round billet at the casting speed shown in Table 2. At this time, electromagnetic stirring was performed in the mold at the current value shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 製造した試験番号1~20の丸ビレットを1250℃で1時間保持した後、マンネスマン-マンドレル方式による熱間圧延を実施して、試験番号1~20の素管(継目無鋼管)を製造した。さらに、得られた試験番号1~20の素管に対して、焼入れを実施した。具体的には、試験番号1~20の素管を、表2の「焼入れ工程」欄に記載の温度(℃)で時間(分)だけ保持した後、シャワー水冷による焼入れを実施した。なお、試験番号1~20において、焼入れ時冷却速度CR800-500は、いずれも480~30000℃/分の範囲内であった。ここで、表2に記載の焼入れの温度(℃)は、素管を加熱した熱処理炉の温度(℃)とした。さらに、表2に記載の焼入れの時間(分)は、素管を焼入れ温度で保持した時間(分)とした。 The manufactured round billets of test numbers 1 to 20 were held at 1250°C for 1 hour, and then hot rolling was performed by the Mannesmann-mandrel method to manufacture mother pipes (seamless steel pipes) of test numbers 1 to 20. Furthermore, the obtained mother pipes of test numbers 1 to 20 were quenched. Specifically, the mother pipes of test numbers 1 to 20 were held at the temperature (°C) for the time (minutes) shown in the "Quenching process" column in Table 2, and then quenched by shower water cooling. In addition, the cooling rate during quenching CR 800-500 in test numbers 1 to 20 was in the range of 480 to 30000°C/min. Here, the quenching temperature (°C) shown in Table 2 was the temperature (°C) of the heat treatment furnace in which the mother pipe was heated. Furthermore, the quenching time (minutes) shown in Table 2 was the time (minutes) during which the mother pipe was held at the quenching temperature.
 得られた試験番号1~20の素管に対して、焼戻しを実施した。具体的には、試験番号1~20の素管を、表2の「焼戻し工程」欄に記載の温度(℃)で時間(分)だけ保持する焼戻しを実施した。ここで、表2に記載の焼戻しの温度(℃)は、素管を加熱した焼戻し炉の温度(℃)とした。さらに、表2に記載の焼戻しの時間(分)は、素管を焼戻し温度で保持した時間(分)とした。以上の製造工程により、試験番号1~20の継目無鋼管を得た。 The obtained blank pipes of test numbers 1 to 20 were tempered. Specifically, blank pipes of test numbers 1 to 20 were tempered by holding them at the temperature (°C) for the time (minutes) listed in the "Tempering process" column of Table 2. Here, the tempering temperature (°C) listed in Table 2 is the temperature (°C) of the tempering furnace in which the blank pipes were heated. Furthermore, the tempering time (minutes) listed in Table 2 is the time (minutes) the blank pipes were held at the tempering temperature. Through the above manufacturing process, seamless steel pipes of test numbers 1 to 20 were obtained.
 [評価試験]
 上記の焼戻し後の試験番号1~20の継目無鋼管に対して、以下に説明する引張試験、粗大Al酸化物及び粗大Si酸化物の個数密度測定試験、及び、シャルピー衝撃試験を実施した。
[Evaluation test]
The seamless steel pipes of test numbers 1 to 20 after tempering were subjected to a tensile test, a test for measuring the number density of coarse Al oxides and coarse Si oxides, and a Charpy impact test, which will be described below.
 [引張試験]
 試験番号1~20の継目無鋼管に対して、引張試験を実施して、降伏強度を求めた。引張試験はASTM E8/E8M(2021)に準拠して行った。試験番号1~20の継目無鋼管の肉厚中央部から、平行部直径8.9mm、標点距離35.6mmの丸棒試験片を作製した。丸棒試験片の軸方向は、継目無鋼管の管軸方向と平行であった。作製した丸棒試験片を用いて、常温(25℃)、大気中にて引張試験を実施して、試験番号1~20の継目無鋼管の降伏強度(MPa)を得た。なお、本実施例では、引張試験で得られた0.65%伸び時の応力(0.65%耐力)を、降伏強度と定義した。得られた降伏強度(MPa)を「YS(MPa)」として表3に示す。
[Tensile test]
A tensile test was performed on the seamless steel pipes of test numbers 1 to 20 to determine the yield strength. The tensile test was performed in accordance with ASTM E8/E8M (2021). Round bar test pieces with a parallel part diameter of 8.9 mm and a gauge length of 35.6 mm were prepared from the center of the wall thickness of the seamless steel pipes of test numbers 1 to 20. The axial direction of the round bar test pieces was parallel to the axial direction of the seamless steel pipes. Using the prepared round bar test pieces, a tensile test was performed at room temperature (25 ° C.) in air to obtain the yield strength (MPa) of the seamless steel pipes of test numbers 1 to 20. In this example, the stress at 0.65% elongation (0.65% proof stress) obtained in the tensile test was defined as the yield strength. The obtained yield strength (MPa) is shown in Table 3 as "YS (MPa)".
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [粗大Al酸化物及び粗大Si酸化物の個数密度測定試験]
 試験番号1~20の継目無鋼管に対して、粗大Al酸化物及び粗大Si酸化物の個数密度測定試験を実施して、長径5.0μm以上のAl酸化物(粗大Al酸化物)、及び、長径5.0μm以上のSi酸化物(粗大Si酸化物)の個数密度を求めた。試験番号1~20の継目無鋼管の肉厚中央部から作製した試験片を用いて、上述の方法で、粗大Al酸化物及び粗大Si酸化物の個数密度を求めた。得られた粗大Al酸化物の個数密度(個/200mm2)を、表3の「粗大Al酸化物(個/200mm2)」欄に示す。得られた粗大Si酸化物の個数密度(個/200mm2)を、表3の「粗大Si酸化物(個/200mm2)」欄に示す。
[Measurement test of number density of coarse Al oxides and coarse Si oxides]
A number density measurement test of coarse Al oxides and coarse Si oxides was carried out on the seamless steel pipes of test numbers 1 to 20 to determine the number density of Al oxides (coarse Al oxides) having a major axis of 5.0 μm or more and Si oxides (coarse Si oxides) having a major axis of 5.0 μm or more. The number densities of coarse Al oxides and coarse Si oxides were determined by the above-mentioned method using test pieces prepared from the central part of the wall thickness of the seamless steel pipes of test numbers 1 to 20. The number densities (pieces/200 mm 2 ) of the coarse Al oxides thus obtained are shown in the "coarse Al oxides (pieces/200 mm 2 )" column of Table 3. The number densities (pieces/200 mm 2 ) of the coarse Si oxides thus obtained are shown in the "coarse Si oxides (pieces/200 mm 2 )" column of Table 3.
 [シャルピー衝撃試験]
 試験番号1~20の継目無鋼管に対して、シャルピー衝撃試験を実施して、低温靭性を評価した。試験番号1~20の継目無鋼管の肉厚中央部から、フルサイズのVノッチ試験片を作製した。試験片の長手方向は管周方向と平行であった。なお、管周方向とは、継目無鋼管の管軸方向及び管径方向のいずれにも垂直な方向を意味する。試験片のノッチ面は、継目無鋼管の管軸方向と垂直であった。上述の条件でASTM E23(2018)に準拠したシャルピー衝撃試験を実施して、試験番号1~20の脆性破面率(%)を求めた。試験温度(℃)と脆性破面率(%)とのプロットの近似曲線から、脆性破面率が50%になる温度(℃)を求め、破面遷移温度(℃)とした。得られた破面遷移温度(℃)を表3に示す。
[Charpy impact test]
A Charpy impact test was performed on the seamless steel pipes of test numbers 1 to 20 to evaluate the low temperature toughness. A full-size V-notch test piece was prepared from the center of the wall thickness of the seamless steel pipes of test numbers 1 to 20. The longitudinal direction of the test piece was parallel to the circumferential direction of the pipe. The circumferential direction of the pipe means a direction perpendicular to both the axial direction and the radial direction of the seamless steel pipe. The notch surface of the test piece was perpendicular to the axial direction of the seamless steel pipe. A Charpy impact test was performed under the above conditions in accordance with ASTM E23 (2018) to determine the brittle fracture rate (%) of test numbers 1 to 20. The temperature (°C) at which the brittle fracture rate becomes 50% was determined from the approximation curve of the plot of the test temperature (°C) and the brittle fracture rate (%), and was taken as the fracture transition temperature (°C). The obtained fracture transition temperatures (°C) are shown in Table 3.
 [評価結果]
 表1-1、表1-2、表2、及び、表3を参照して、試験番号1~12の継目無鋼管の化学組成は適切であり、製造方法も上述の好ましい条件を満たしていた。その結果、これらの継目無鋼管は、降伏強度が862~945MPa未満であり、粗大Al酸化物の個数密度が30個/200mm2未満であり、さらに、粗大Si酸化物の個数密度が5個/200mm2以下であった。その結果、これらの継目無鋼管は、シャルピー衝撃試験において破面遷移温度が-50℃以下となった。すなわち、試験番号1~12の継目無鋼管は、862~945MPa未満の降伏強度と、優れた低温靭性とを有していた。なお、これらの継目無鋼管は、ミクロ組織において、焼戻しマルテンサイト及び焼戻しベイナイトの体積率の合計が90%以上であると判断した。
[Evaluation Results]
With reference to Tables 1-1, 1-2, 2, and 3, the seamless steel pipes of test numbers 1 to 12 had appropriate chemical compositions, and the manufacturing methods also satisfied the above-mentioned preferred conditions. As a result, the seamless steel pipes had a yield strength of 862 to less than 945 MPa, a number density of coarse Al oxides of less than 30 pieces/200 mm2 , and a number density of coarse Si oxides of 5 pieces/200 mm2 or less. As a result, the seamless steel pipes had a fracture transition temperature of -50°C or less in the Charpy impact test. That is, the seamless steel pipes of test numbers 1 to 12 had a yield strength of 862 to less than 945 MPa and excellent low-temperature toughness. It was determined that the sum of the volume fractions of tempered martensite and tempered bainite in the microstructure of these seamless steel pipes was 90% or more.
 一方、試験番号13及び14の継目無鋼管は、製鋼工程における鋳造速度が速すぎた。その結果、これらの継目無鋼管は、粗大Al酸化物の個数密度が30個/200mm2以上となった。その結果、これらの継目無鋼管は、シャルピー衝撃試験において破面遷移温度が-50℃を超え、優れた低温靭性を有していなかった。 On the other hand, the casting speed in the steelmaking process of the seamless steel pipes of test numbers 13 and 14 was too fast. As a result, the number density of coarse Al oxides in these seamless steel pipes was 30/200 mm2 or more . As a result, the fracture transition temperature of these seamless steel pipes exceeded -50°C in the Charpy impact test, and they did not have excellent low-temperature toughness.
 試験番号15~17の継目無鋼管は、製鋼工程において金属板を使用しなかった。その結果、これらの継目無鋼管は、粗大Si酸化物の個数密度が5個/200mm2を超えた。その結果、これらの継目無鋼管は、シャルピー衝撃試験において破面遷移温度が-50℃を超え、優れた低温靭性を有していなかった。 For the seamless steel pipes of test numbers 15 to 17, no metal plate was used in the steelmaking process. As a result, the number density of coarse Si oxides in these seamless steel pipes exceeded 5 pieces/200 mm2 . As a result, the fracture appearance transition temperature of these seamless steel pipes exceeded -50°C in the Charpy impact test, and they did not have excellent low-temperature toughness.
 試験番号18の継目無鋼管は、O含有量が高すぎた。その結果、この継目無鋼管は、シャルピー衝撃試験において破面遷移温度が-50℃を超え、優れた低温靭性を有していなかった。 The seamless steel pipe of test number 18 had too high an O content. As a result, the fracture transition temperature of this seamless steel pipe exceeded -50°C in the Charpy impact test, and it did not have excellent low-temperature toughness.
 試験番号19の継目無鋼管は、Mo含有量が低すぎた。その結果、この継目無鋼管は、シャルピー衝撃試験において破面遷移温度が-50℃を超え、優れた低温靭性を有していなかった。 The seamless steel pipe of test number 19 had too low a Mo content. As a result, the fracture transition temperature of this seamless steel pipe exceeded -50°C in the Charpy impact test, and it did not have excellent low-temperature toughness.
 試験番号20の継目無鋼管は、S含有量が高すぎた。その結果、この継目無鋼管は、シャルピー衝撃試験において破面遷移温度が-50℃を超え、優れた低温靭性を有していなかった。 The seamless steel pipe of test number 20 had too high a S content. As a result, the fracture transition temperature of this seamless steel pipe exceeded -50°C in the Charpy impact test, and it did not have excellent low-temperature toughness.
 実施例2では、降伏強度が945~1034MPaの鋼材について調査した。具体的に、表4-1及び表4-2に示す化学組成を有する溶鋼を製造した。なお、表4-2中の「-」は、各元素の含有量が不純物レベルであることを意味する。具体的に、鋼AのCu含有量、Ni含有量、及び、W含有量は、小数第三位を四捨五入して、0%であったことを意味する。さらに、鋼AのCa含有量、Mg含有量、Zr含有量、及び、希土類元素(REM)含有量は、小数第五位を四捨五入して、0%であったことを意味する。 In Example 2, steel materials with yield strengths of 945 to 1034 MPa were investigated. Specifically, molten steels were produced having the chemical compositions shown in Tables 4-1 and 4-2. Note that "-" in Table 4-2 means that the content of each element is at the impurity level. Specifically, the Cu content, Ni content, and W content of Steel A were rounded to the nearest two decimal places and were 0%. Furthermore, the Ca content, Mg content, Zr content, and rare earth element (REM) content of Steel A were rounded to the nearest five decimal places and were 0%.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例1と同様に、上記溶鋼を用いて、連続鋳造法によって丸ビレットを製造した。連続鋳造法において、取鍋からタンディッシュへ溶鋼を注入する際、タンディッシュの開口部上方に、底面の無い錐体状に加工した金属板を、取鍋のノズルの直下に頂点が来るように配置した。タンディッシュの開口部上方に、上記形状の金属板を配置したか否かを、表5に示す。具体的に、タンディッシュの開口部上方に、上記形状の金属板を配置した場合、表5の「金属板」欄に「A」と示す。タンディッシュの開口部上方に、上記形状の金属板を配置しなかった場合、表5の「金属板」欄に「B」と示す。なお、タンディッシュの開口部上方に配置した、上記形状の金属板は、アルミニウム板とした。具体的に、厚さ2mmのアルミニウム板を3枚重ねて使用した。また、金属板を配置した場合、ノズルからSi酸化物が排出された後、溶鋼が排出される前に、先端にフックの形成された棒を用いてノズルの下方から金属板を除去した。さらに、表5に記載の鋳造速度で、溶鋼から丸ビレットに鋳造した。なお、このとき、鋳型内に対して、表5に記載の電流値で電磁撹拌を実施した。 Similar to Example 1, a round billet was produced by continuous casting using the above molten steel. In the continuous casting method, when pouring molten steel from the ladle into the tundish, a metal plate processed into a bottomless cone shape was placed above the opening of the tundish so that its apex was directly below the nozzle of the ladle. Table 5 shows whether or not a metal plate of the above shape was placed above the opening of the tundish. Specifically, when a metal plate of the above shape was placed above the opening of the tundish, "A" is indicated in the "Metal Plate" column of Table 5. When a metal plate of the above shape was not placed above the opening of the tundish, "B" is indicated in the "Metal Plate" column of Table 5. The metal plate of the above shape placed above the opening of the tundish was an aluminum plate. Specifically, three aluminum plates with a thickness of 2 mm were used in a stack. When a metal plate was placed, after the Si oxide was discharged from the nozzle and before the molten steel was discharged, the metal plate was removed from below the nozzle using a rod with a hook formed at its tip. Furthermore, the molten steel was cast into a round billet at the casting speed shown in Table 5. At this time, electromagnetic stirring was performed in the mold at the current value shown in Table 5.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例1と同様に、製造した試験番号21~38の丸ビレットを1250℃で1時間保持した後、マンネスマン-マンドレル方式による熱間圧延を実施して、試験番号21~38の素管(継目無鋼管)を製造した。さらに、得られた試験番号21~38の素管に対して、焼入れを実施した。具体的には、試験番号21~38の素管を、表5の「焼入れ工程」欄に記載の温度(℃)で時間(分)だけ保持した後、シャワー水冷による焼入れを実施した。なお、試験番号21~38において、焼入れ時冷却速度CR800-500は、いずれも480~30000℃/分の範囲内であった。ここで、表5に記載の焼入れの温度(℃)は、素管を加熱した熱処理炉の温度(℃)とした。さらに、表5に記載の焼入れの時間(分)は、素管を焼入れ温度で保持した時間(分)とした。 As in Example 1, the manufactured round billets of test numbers 21 to 38 were held at 1250°C for 1 hour, and then hot rolling was performed by the Mannesmann-mandrel method to manufacture mother pipes (seamless steel pipes) of test numbers 21 to 38. Furthermore, the obtained mother pipes of test numbers 21 to 38 were quenched. Specifically, the mother pipes of test numbers 21 to 38 were held at the temperature (°C) for the time (minutes) shown in the "Quenching process" column in Table 5, and then quenched by shower water cooling. In addition, the cooling rate during quenching CR 800-500 in test numbers 21 to 38 was in the range of 480 to 30,000°C/min. Here, the quenching temperature (°C) shown in Table 5 was the temperature (°C) of the heat treatment furnace in which the mother pipe was heated. Furthermore, the quenching time (minutes) shown in Table 5 was the time (minutes) during which the mother pipe was held at the quenching temperature.
 得られた試験番号21~38の素管に対して、実施例1と同様に、焼戻しを実施した。具体的には、試験番号21~38の素管を、表5の「焼戻し工程」欄に記載の温度(℃)で時間(分)だけ保持する焼戻しを実施した。ここで、表5に記載の焼戻しの温度(℃)は、素管を加熱した焼戻し炉の温度(℃)とした。さらに、表5に記載の焼戻しの時間(分)は、素管を焼戻し温度で保持した時間(分)とした。以上の製造工程により、試験番号21~38の継目無鋼管を得た。 The obtained blank pipes of test numbers 21 to 38 were tempered in the same manner as in Example 1. Specifically, blank pipes of test numbers 21 to 38 were tempered by holding them at the temperature (°C) for the time (minutes) listed in the "Tempering process" column of Table 5. Here, the tempering temperature (°C) listed in Table 5 is the temperature (°C) of the tempering furnace in which the blank pipes were heated. Furthermore, the tempering time (minutes) listed in Table 5 is the time (minutes) during which the blank pipes were held at the tempering temperature. Through the above manufacturing process, seamless steel pipes of test numbers 21 to 38 were obtained.
 [評価試験]
 上記の焼戻し後の試験番号21~38の継目無鋼管に対して、以下に説明する引張試験、粗大Al酸化物及び粗大Si酸化物の個数密度測定試験、及び、シャルピー衝撃試験を実施した。
[Evaluation test]
The seamless steel pipes of test numbers 21 to 38 after tempering were subjected to a tensile test, a test for measuring the number density of coarse Al oxides and coarse Si oxides, and a Charpy impact test, which will be described below.
 [引張試験]
 試験番号21~38の継目無鋼管に対して、引張試験を実施して、降伏強度を求めた。引張試験はASTM E8/E8M(2021)に準拠して行った。試験番号21~38の継目無鋼管の肉厚中央部から、平行部直径8.9mm、標点距離35.6mmの丸棒試験片を作製した。丸棒試験片の軸方向は、継目無鋼管の管軸方向と平行であった。作製した丸棒試験片を用いて、常温(25℃)、大気中にて引張試験を実施して、試験番号21~38の継目無鋼管の降伏強度(MPa)を得た。なお、本実施例では、引張試験で得られた0.7%全伸び時の応力(0.7%全伸び耐力)を、降伏強度と定義した。得られた降伏強度(MPa)を「YS(MPa)」として表6に示す。
[Tensile test]
A tensile test was performed on the seamless steel pipes of test numbers 21 to 38 to determine the yield strength. The tensile test was performed in accordance with ASTM E8/E8M (2021). Round bar test pieces with a parallel part diameter of 8.9 mm and a gauge length of 35.6 mm were prepared from the center of the wall thickness of the seamless steel pipes of test numbers 21 to 38. The axial direction of the round bar test pieces was parallel to the pipe axial direction of the seamless steel pipes. Using the prepared round bar test pieces, a tensile test was performed at room temperature (25 ° C.) in air to obtain the yield strength (MPa) of the seamless steel pipes of test numbers 21 to 38. In this example, the stress at 0.7% total elongation (0.7% total elongation yield strength) obtained in the tensile test was defined as the yield strength. The obtained yield strength (MPa) is shown in Table 6 as "YS (MPa)".
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 [粗大Al酸化物及び粗大Si酸化物の個数密度測定試験]
 試験番号21~38の継目無鋼管に対して、粗大Al酸化物及び粗大Si酸化物の個数密度測定試験を実施して、長径5.0μm以上のAl酸化物(粗大Al酸化物)、及び、長径5.0μm以上のSi酸化物(粗大Si酸化物)の個数密度を求めた。試験番号21~38の継目無鋼管の肉厚中央部から作製した試験片を用いて、上述の方法で、粗大Al酸化物及び粗大Si酸化物の個数密度を求めた。得られた粗大Al酸化物の個数密度(個/200mm2)を、表6の「粗大Al酸化物(個/200mm2)」欄に示す。得られた粗大Si酸化物の個数密度(個/200mm2)を、表6の「粗大Si酸化物(個/200mm2)」欄に示す。
[Measurement test of number density of coarse Al oxides and coarse Si oxides]
A number density measurement test of coarse Al oxides and coarse Si oxides was carried out on the seamless steel pipes of test numbers 21 to 38 to determine the number density of Al oxides (coarse Al oxides) with a major axis of 5.0 μm or more and Si oxides (coarse Si oxides) with a major axis of 5.0 μm or more. The number densities of coarse Al oxides and coarse Si oxides were determined by the above-mentioned method using test pieces prepared from the central part of the wall thickness of the seamless steel pipes of test numbers 21 to 38. The number densities (pieces/200 mm 2 ) of the coarse Al oxides thus obtained are shown in the "Coarse Al oxides (pieces/200 mm 2 )" column of Table 6. The number densities (pieces/200 mm 2 ) of the coarse Si oxides thus obtained are shown in the "Coarse Si oxides (pieces/200 mm 2 )" column of Table 6.
 [シャルピー衝撃試験]
 試験番号21~38の継目無鋼管に対して、シャルピー衝撃試験を実施して、低温靭性を評価した。試験番号21~38の継目無鋼管の肉厚中央部から、フルサイズのVノッチ試験片を作製した。試験片の長手方向は管周方向と平行であった。なお、管周方向とは、継目無鋼管の管軸方向及び管径方向のいずれにも垂直な方向を意味する。試験片のノッチ面は、継目無鋼管の管軸方向と垂直であった。上述の条件でASTM E23(2018)に準拠したシャルピー衝撃試験を実施して、試験番号21~38の脆性破面率(%)を求めた。試験温度(℃)と脆性破面率(%)とのプロットの近似曲線から、脆性破面率が50%になる温度(℃)を求め、破面遷移温度(℃)とした。得られた破面遷移温度(℃)を表6に示す。
[Charpy impact test]
A Charpy impact test was performed on the seamless steel pipes of test numbers 21 to 38 to evaluate their low-temperature toughness. Full-size V-notch test pieces were prepared from the center of the wall thickness of the seamless steel pipes of test numbers 21 to 38. The longitudinal direction of the test piece was parallel to the circumferential direction of the pipe. The circumferential direction of the pipe means a direction perpendicular to both the axial direction and the radial direction of the seamless steel pipe. The notch surface of the test piece was perpendicular to the axial direction of the seamless steel pipe. A Charpy impact test was performed under the above conditions in accordance with ASTM E23 (2018) to determine the brittle fracture rate (%) of test numbers 21 to 38. The temperature (°C) at which the brittle fracture rate becomes 50% was determined from the approximation curve of the plot of the test temperature (°C) and the brittle fracture rate (%), and was taken as the fracture transition temperature (°C). The obtained fracture transition temperatures (°C) are shown in Table 6.
 [評価結果]
 表4-1、表4-2、表5、及び、表6を参照して、試験番号21~32の継目無鋼管の化学組成は適切であり、製造方法も上述の好ましい条件を満たしていた。その結果、これらの継目無鋼管は、降伏強度が945~1034MPaであり、粗大Al酸化物の個数密度が30個/200mm2未満であり、さらに、粗大Si酸化物の個数密度が5個/200mm2以下であった。その結果、これらの継目無鋼管は、シャルピー衝撃試験において破面遷移温度が-40℃以下となった。すなわち、試験番号21~32の継目無鋼管は、945~1034MPaの降伏強度と、優れた低温靭性とを有していた。なお、これらの継目無鋼管は、ミクロ組織において、焼戻しマルテンサイト及び焼戻しベイナイトの体積率の合計が90%以上であると判断した。
[Evaluation Results]
With reference to Tables 4-1, 4-2, 5, and 6, the seamless steel pipes of test numbers 21 to 32 had appropriate chemical compositions, and the manufacturing methods also satisfied the above-mentioned preferred conditions. As a result, these seamless steel pipes had a yield strength of 945 to 1034 MPa, a number density of coarse Al oxides of less than 30 pieces/200 mm2 , and a number density of coarse Si oxides of 5 pieces/200 mm2 or less . As a result, these seamless steel pipes had a fracture transition temperature of -40°C or less in a Charpy impact test. That is, the seamless steel pipes of test numbers 21 to 32 had a yield strength of 945 to 1034 MPa and excellent low-temperature toughness. It was determined that the sum of the volume fractions of tempered martensite and tempered bainite in the microstructure of these seamless steel pipes was 90% or more.
 一方、試験番号33及び34の継目無鋼管は、製鋼工程における鋳造速度が速すぎた。その結果、これらの継目無鋼管は、粗大Al酸化物の個数密度が30個/200mm2以上となった。その結果、これらの継目無鋼管は、シャルピー衝撃試験において破面遷移温度が-40℃を超え、優れた低温靭性を有していなかった。 On the other hand, the casting speed in the steelmaking process of the seamless steel pipes of test numbers 33 and 34 was too fast. As a result, the number density of coarse Al oxides in these seamless steel pipes was 30/200 mm2 or more . As a result, the fracture transition temperature of these seamless steel pipes exceeded -40°C in the Charpy impact test, and they did not have excellent low-temperature toughness.
 試験番号35及び36の継目無鋼管は、製鋼工程において金属板を使用しなかった。その結果、これらの継目無鋼管は、粗大Si酸化物の個数密度が5個/200mm2を超えた。その結果、これらの継目無鋼管は、シャルピー衝撃試験において破面遷移温度が-40℃を超え、優れた低温靭性を有していなかった。 For the seamless steel pipes of test numbers 35 and 36, no metal plate was used in the steelmaking process. As a result, the number density of coarse Si oxides in these seamless steel pipes exceeded 5 pieces/200 mm2 . As a result, the fracture appearance transition temperature of these seamless steel pipes exceeded -40°C in the Charpy impact test, and they did not have excellent low-temperature toughness.
 試験番号37の継目無鋼管は、O含有量が高すぎた。その結果、この継目無鋼管は、シャルピー衝撃試験において破面遷移温度が-40℃を超え、優れた低温靭性を有していなかった。 The seamless steel pipe of test number 37 had too high an O content. As a result, the fracture transition temperature of this seamless steel pipe exceeded -40°C in the Charpy impact test, and it did not have excellent low-temperature toughness.
 試験番号38の継目無鋼管は、S含有量が高すぎた。その結果、この継目無鋼管は、シャルピー衝撃試験において破面遷移温度が-40℃を超え、優れた低温靭性を有していなかった。 The seamless steel pipe of test number 38 had too high a S content. As a result, the fracture transition temperature of this seamless steel pipe exceeded -40°C in the Charpy impact test, and it did not have excellent low-temperature toughness.
 以上、本開示の実施の形態を説明した。しかしながら、上述した実施の形態は本開示を実施するための例示に過ぎない。したがって、本開示は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。 The above describes the embodiments of the present disclosure. However, the above-described embodiments are merely examples for implementing the present disclosure. Therefore, the present disclosure is not limited to the above-described embodiments, and can be implemented by modifying the above-described embodiments as appropriate within the scope of the spirit of the present disclosure.

Claims (3)

  1.  鋼材であって、
     質量%で、
     C:0.15~0.45%、
     Si:0.05~1.00%、
     Mn:0.05~1.00%、
     P:0.030%以下、
     S:0.0050%以下、
     Al:0.005~0.100%、
     Cr:0.30~1.50%、
     Mo:0.20~2.00%、
     Ti:0.002~0.030%、
     Nb:0.002~0.100%、
     B:0.0005~0.0040%、
     N:0.0100%以下、
     O:0.0040%以下、
     V:0~0.30%、
     Cu:0~0.50%、
     Ni:0~0.50%、
     W:0~0.50%、
     Ca:0~0.0100%、
     Mg:0~0.0100%、
     Zr:0~0.0100%、
     希土類元素:0~0.0100%、及び、
     残部がFe及び不純物からなり、
     降伏強度が862~1034MPaであり、
     前記鋼材中において、
     質量%で、Al含有量が20%以上であり、O含有量が10%以上であり、長径が5.0μm以上のAl酸化物の個数密度が、30個/200mm2未満であり、
     質量%で、Al含有量が20%未満であり、Si含有量が20%以上であり、O含有量が10%以上であり、長径が5.0μm以上のSi酸化物の個数密度が、5個/200mm2以下である、
     鋼材。
    A steel material,
    In mass percent,
    C: 0.15-0.45%,
    Si: 0.05-1.00%,
    Mn: 0.05-1.00%,
    P: 0.030% or less,
    S: 0.0050% or less,
    Al: 0.005-0.100%,
    Cr: 0.30-1.50%,
    Mo: 0.20-2.00%,
    Ti: 0.002 to 0.030%,
    Nb: 0.002 to 0.100%,
    B: 0.0005-0.0040%,
    N: 0.0100% or less,
    O: 0.0040% or less,
    V: 0-0.30%,
    Cu: 0 to 0.50%,
    Ni: 0 to 0.50%,
    W: 0-0.50%,
    Ca: 0-0.0100%,
    Mg: 0 to 0.0100%,
    Zr: 0 to 0.0100%,
    Rare earth elements: 0 to 0.0100%, and
    The balance is Fe and impurities,
    The yield strength is 862 to 1034 MPa;
    In the steel material,
    The Al content is 20% or more, the O content is 10% or more, and the number density of Al oxides having a major axis of 5.0 μm or more is less than 30 pieces/200 mm2 , in terms of mass%,
    In terms of mass%, the Al content is less than 20%, the Si content is 20% or more, the O content is 10% or more, and the number density of Si oxides having a major axis of 5.0 μm or more is 5 pieces/200 mm2 or less.
    Steel.
  2.  請求項1に記載の鋼材であって、
     V:0.01~0.30%、
     Cu:0.01~0.50%、
     Ni:0.01~0.50%、
     W:0.01~0.50%、
     Ca:0.0001~0.0100%、
     Mg:0.0001~0.0100%、
     Zr:0.0001~0.0100%、及び、
     希土類元素:0.0001~0.0100%からなる群から選択される1元素以上を含有する、
     鋼材。
    The steel material according to claim 1,
    V: 0.01-0.30%,
    Cu: 0.01 to 0.50%,
    Ni: 0.01-0.50%,
    W: 0.01-0.50%,
    Ca: 0.0001-0.0100%,
    Mg: 0.0001 to 0.0100%,
    Zr: 0.0001 to 0.0100%, and
    Rare earth elements: containing one or more elements selected from the group consisting of 0.0001 to 0.0100%;
    Steel.
  3.  請求項1又は請求項2に記載の鋼材であって、
     前記鋼材は継目無鋼管である、
     鋼材。
    The steel material according to claim 1 or 2,
    The steel material is a seamless steel pipe.
    Steel.
PCT/JP2024/010558 2023-04-06 2024-03-18 Steel material WO2024209921A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023-061982 2023-04-06
JP2023061982 2023-04-06
JP2023128481 2023-08-07
JP2023-128481 2023-08-07

Publications (1)

Publication Number Publication Date
WO2024209921A1 true WO2024209921A1 (en) 2024-10-10

Family

ID=92972065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/010558 WO2024209921A1 (en) 2023-04-06 2024-03-18 Steel material

Country Status (1)

Country Link
WO (1) WO2024209921A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254051A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Continuous casting method
WO2017149571A1 (en) * 2016-02-29 2017-09-08 Jfeスチール株式会社 Low-alloy, high-strength seamless steel pipe for oil well
WO2018074109A1 (en) * 2016-10-17 2018-04-26 Jfeスチール株式会社 High-strength seamless steel pipe for oil well and method for producing same
WO2019131035A1 (en) * 2017-12-26 2019-07-04 Jfeスチール株式会社 Low alloy high strength seamless steel pipe for oil wells
WO2023157897A1 (en) * 2022-02-17 2023-08-24 日本製鉄株式会社 Steel material suitable for use in sour environments

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254051A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Continuous casting method
WO2017149571A1 (en) * 2016-02-29 2017-09-08 Jfeスチール株式会社 Low-alloy, high-strength seamless steel pipe for oil well
WO2018074109A1 (en) * 2016-10-17 2018-04-26 Jfeスチール株式会社 High-strength seamless steel pipe for oil well and method for producing same
WO2019131035A1 (en) * 2017-12-26 2019-07-04 Jfeスチール株式会社 Low alloy high strength seamless steel pipe for oil wells
WO2023157897A1 (en) * 2022-02-17 2023-08-24 日本製鉄株式会社 Steel material suitable for use in sour environments

Similar Documents

Publication Publication Date Title
JP6677310B2 (en) Steel materials and steel pipes for oil wells
KR101830023B1 (en) Spring steel and method for producing same
JP6229640B2 (en) Seamless steel pipe and manufacturing method thereof
WO2020067247A1 (en) Martensitic stainless steel material
CA3039038A1 (en) Steel material, oil-well steel pipe, and method for producing steel material
CN109563578B (en) Steel for induction hardening
JP7364962B2 (en) steel material
JP7036238B2 (en) Steel material suitable for use in sour environment
JP7173405B2 (en) Martensitic stainless steel material
CA3016288A1 (en) Steel material and oil-well steel pipe
EP4134462A1 (en) Martensitic stainless seamless steel pipe
JP6733808B2 (en) Wire rod and flat steel wire
JP7406177B1 (en) Steel suitable for use in sour environments
JP7239086B1 (en) Martensitic stainless steel pipe
JP6996641B2 (en) Seamless steel pipe suitable for use in sour environments
JP7036237B2 (en) Steel material suitable for use in sour environment
WO2024209921A1 (en) Steel material
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
JP2024148631A (en) Steel
JP7564499B1 (en) Steel
JP7445173B2 (en) steel material
JP7534676B2 (en) Steel
JP2024125075A (en) Steel
WO2023054586A1 (en) Martensitic stainless steel pipe
WO2024214486A1 (en) Steel material