WO2024185671A1 - Stacked-plate-type evaporator - Google Patents

Stacked-plate-type evaporator Download PDF

Info

Publication number
WO2024185671A1
WO2024185671A1 PCT/JP2024/007710 JP2024007710W WO2024185671A1 WO 2024185671 A1 WO2024185671 A1 WO 2024185671A1 JP 2024007710 W JP2024007710 W JP 2024007710W WO 2024185671 A1 WO2024185671 A1 WO 2024185671A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
heat transfer
fluid
transfer surface
side direction
Prior art date
Application number
PCT/JP2024/007710
Other languages
French (fr)
Japanese (ja)
Inventor
威一郎 川村
隆行 須山
Original Assignee
株式会社ティラド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ティラド filed Critical 株式会社ティラド
Publication of WO2024185671A1 publication Critical patent/WO2024185671A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings

Definitions

  • the present invention relates to improving the performance of an evaporator that is made up of multiple stacked cup-shaped plates with heat transfer surfaces that have a herringbone pattern formed by unevenness.
  • the plate of this evaporator is formed in a planar rectangle having a pair of opposing long sides and a pair of opposing short sides, and a pair of first through holes are arranged on one side of the short side direction, which is the direction in which the short sides extend, and a pair of second through holes are arranged on the other side of the short side direction, and are arranged apart in the long side direction.
  • the plate also has a heat transfer surface in the center of its plane, in which a herringbone pattern is formed by projections and recesses.
  • This evaporator has a core in which the plates are stacked so that the herringbone pattern of every other plate is oriented in the opposite direction, and first flow paths through which a first fluid flows and second flow paths through which a second fluid flows are alternately formed.
  • the objective of the present invention is to improve the overall performance of an evaporator having a heat transfer surface with a herringbone pattern.
  • the first invention to solve the above problem is: A cup-shaped plate 2 having a rectangular shape in plan view and a pair of opposing long sides and a pair of opposing short sides, A pair of first through holes 3a, 3b are arranged on one side of the short side direction of the plate 2, spaced apart from each other in the long side direction. A pair of second through holes 4a, 4b are arranged on the other side of the plate 2 in the short side direction and spaced apart in the long side direction.
  • the plate 2 has a heat transfer surface 1 having a herringbone pattern formed by projections and recesses in the center of its flat surface, The plates 2 are stacked so that the direction of the herringbone pattern is reversed for every other plate.
  • a plate-stacked evaporator having a core 5 in which first flow paths 3 through which a first fluid 6 flows and second flow paths 4 through which a second fluid 7 flows are alternately formed
  • the aspect ratio b/a is: 0.4 ⁇ b/a ⁇ 1.3
  • the pitch Wp (mm) of the herringbone-shaped uneven waves on the heat transfer surface 1 is 3mm ⁇ Wp ⁇ 4mm and
  • the angle of inclination W ⁇ (deg) between the straight line H parallel to the short side of the plane and the herringbone pattern is: 20° ⁇ W ⁇ ⁇ 40°
  • the second invention is the plate stacked type evaporator according to the first invention, 20° ⁇ W ⁇ ⁇ 30° This is a plate stack type evaporator.
  • the third invention is the plate stacked type evaporator according to the first or second invention
  • the first fluid 6 is a refrigerant used for air conditioning of a vehicle having an electric motor.
  • the second fluid 7 is a plate stacked evaporator, which is an LLC used for battery cooling in vehicles with electric motors.
  • the specifications of the plate having the heat transfer surface 1 on which the herringbone pattern is formed by the projections and recesses are as follows: 0.4 ⁇ b/a ⁇ 1.3 3mm ⁇ Wp ⁇ 4mm 20° ⁇ W ⁇ ⁇ 40° As a result, it is possible to obtain an evaporator with high overall performance in which pressure loss is suppressed, pressure resistance is ensured, and a sufficient amount of heat exchange is secured.
  • the first fluid 6 is a refrigerant used for air conditioning of a vehicle having an electric motor
  • the evaporator can be utilized for cooling the battery in the electric vehicle.
  • FIG. 2 is an exploded perspective view of a main portion of the plate stacked type evaporator of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • FIG. 2 is a plan view of a plate 2 constituting the evaporator.
  • FIG. 2 is a block diagram showing the flow paths of each fluid in an electric vehicle that uses the evaporator as a chiller.
  • 13 is a graph showing the relationship between the inclination angle W ⁇ of the waves of the herringbone pattern of the evaporator and the refrigerant pressure loss ratio, where the wave pitch Wp is 3 mm. Graph showing the same relationship, where the wave pitch Wp is 4 mm.
  • FIG. 13 is a graph showing the relationship between the inclination angle W ⁇ of the waves in the herringbone pattern of the evaporator and the heat exchange ratio, where the wave pitch Wp is 3 mm. Graph showing the same relationship, where the wave pitch Wp is 4 mm.
  • a plate 2 constituting the plate stacked type evaporator of the present invention is formed in a flat rectangular cup shape having a pair of opposing long sides and a pair of opposing short sides.
  • a pair of first through holes 3a, 3b are arranged on one side of the short side direction, which is the direction in which the short side extends
  • a pair of second through holes 4a, 4b are arranged on the other side of the short side direction, and are arranged on the other side of the short side
  • the plate 2 has a heat transfer surface 1 in which a herringbone pattern is formed by projections and recesses.
  • the longitudinal section of the herringbone pattern of the heat transfer surface 1 has a continuous corrugated pattern with a constant pitch.
  • the herringbone pattern formed on the heat transfer surface 1 has a V-shaped pattern 8 in a plan view.
  • an imaginary line connecting the centers of a pair of opposing short sides of plate 2 and parallel to the long side direction is defined as center line P
  • an imaginary line perpendicular to center line P and parallel to the short side direction is defined as straight line H
  • the apex of V-shaped pattern 8 is located on center line P, as shown in Figure 3.
  • the apex of the V-shaped pattern 8 faces the short side.
  • the plates 2 having the above structure are stacked so that the tops of the V-shaped patterns 8 of every other plate face in the opposite direction to form the core 5 of the plate stacking type evaporator, as shown in Fig. 1.
  • the core 5 is formed by stacking the first flow passages 3 through which the first fluid 6 flows and the second flow passages 4 through which the second fluid 7 flows, alternately.
  • An end plate 9 is disposed at the upper end of the core 5 , and a first fluid introduction passage 17 is disposed in the end plate 9 .
  • An inlet 17 a and an outlet 17 b of the first fluid introduction passage 17 communicate with each stage of the first flow passage 3 .
  • the first fluid 6 flows from an inlet 17a to each stage of the first flow passage 3 of the core 5 and flows out from an outlet 17b.
  • the second fluid 7 flows from a second fluid inlet 18 arranged in the end plate 9 to each stage of the second flow passage 4 and flows out from a second fluid outlet 19, as shown in FIG. Then, heat exchange takes place between the first fluid 6 and the second fluid 7 .
  • the flow of the first fluid 6 in each stage of the first flow path 3 includes a flow along the long side direction of the plate 2, a flow that flows in an arc toward the short side direction and then merges with the flow along the long side direction, etc.
  • the flow of the second fluid 7 in each stage of the second flow path 4 is similar.
  • the first fluid 6 and the second fluid 7 flow in opposite directions, but they may also flow in parallel.
  • the plate 2 of the evaporator is made of aluminum, an aluminum alloy, SUS, or the like.
  • This evaporator is suitable as a chiller for the cooling system of a battery in an electric vehicle, and when used as such a chiller, the first fluid 6 is a refrigerant used for air conditioning in a vehicle having an electric motor, and the second fluid 7 is an LLC used for cooling the battery in a vehicle having an electric motor.
  • FIG. 4 is a block diagram showing the flow paths of each fluid in an electric vehicle that uses the evaporator as a chiller.
  • the refrigerant of the first fluid 6 becomes a gas-liquid two-phase state through the expansion valve 12, is supplied to the first flow path 3 of the chiller core 5, and evaporates by absorbing heat from the second fluid 7.
  • the LLC of the second fluid 7 cooled by the chiller absorbs heat 14 from the battery 10 while flowing through the battery cooler 13, cooling it, and then returns to the second flow path 4 of the core 5.
  • the present invention is characterized by the aspect ratio (b/a) of the heat transfer surface 1 of the plate 2 and the specifications of the herringbone pattern on the heat transfer surface 1 (the pitch Wp (mm) of the herringbone-patterned concave-convex waves and the inclination angle W ⁇ (deg) of the herringbone pattern).
  • the aspect ratio (b/a) is the ratio of the length of the planar surface in the long side direction of the heat transfer surface 1 shown in FIG. 3 to the length of the planar surface in the short side direction of the heat transfer surface 1, and is in the range of 0.4 ⁇ b/a ⁇ 1.3.
  • the wave pitch Wp is the distance between convexities of the herringbone-like unevenness in Fig. 3.
  • the inclination angle W ⁇ is the inclination angle between the herringbone pattern and a straight line H parallel to the short side direction of the plane of the plate 2 in Fig. 3.
  • FIG. 5 and 6 are graphs showing the relationship between the inclination angle W ⁇ (horizontal axis) of the waves of the herringbone pattern of the evaporator and the refrigerant pressure loss ratio (vertical axis), where FIG. 5 shows the case where the wave pitch Wp is 3 mm, and FIG. 6 shows the case where the wave pitch Wp is 4 mm.
  • the refrigerant pressure loss when the inclination angle W ⁇ is 40° is set to 100% (reference).
  • W ⁇ changes from 20° to 10° the pressure loss increases by 4 to 6 times, which may cause a problem in controlling the circulation amount of the first fluid 6 by the expansion valve 12 that controls the circulation amount. Therefore, it is appropriate to set the lower limit of W ⁇ to 20°.
  • FIG. 7 and 8 are graphs showing the relationship between the inclination angle W ⁇ (horizontal axis) of the waves of the herringbone pattern of the same evaporator and the heat exchange ratio (vertical axis), where FIG. 7 shows the case where the wave pitch Wp is 3 mm, and FIG. 8 shows the case where the wave pitch Wp is 4 mm.
  • the amount of heat exchanged when the wave pitch Wp is 3 mm and the inclination angle W ⁇ is 20°, at which the heat exchange ratio is maximum, is set to 100% (reference).
  • W ⁇ As described above, a reasonable lower limit for W ⁇ is 20°, at which the heat exchange ratio is maximized. However, if W ⁇ is up to 30°, then in either case of FIG. 7 or FIG. 8, 60% or more of the maximum heat exchange ratio is ensured, and if W ⁇ is up to 40°, then 50% or more of the maximum heat exchange ratio is ensured, which is sufficient for practical use. Therefore, the upper limit of W ⁇ is preferably set to 40°, and more preferably to 30°.
  • the specifications of the heat transfer surface 1 on which the herringbone pattern of the plate 2 is formed which will be a high-performance evaporator overall, are as follows: In the range of aspect ratio b/a, 0.4 ⁇ b/a ⁇ 1.3, The range of the wave pitch Wp is 3 mm ⁇ Wp ⁇ 4 mm; The range of the inclination angle W ⁇ is 20° ⁇ W ⁇ 40°.
  • the present invention can be used in plate-stacked evaporators with a heat transfer surface that has a herringbone pattern formed by projections and recesses, and is particularly suitable for chillers in the cooling systems of batteries in electric vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

[Problem] To improve the integration performance of an evaporator having a heat transfer surface 1 in which a herringbone pattern is formed, in consideration of the amount of exchanged heat, pressure loss, and pressure resistance. [Solution] The specifications of a plate having a heat transfer surface 1 in which a herringbone pattern is formed by bumps and dips are defined such that: a length/width ratio b/a (aspect ratio) satisfies 0.4 ≤ b/a ≤ 1.3, where a is the planar length of the heat transfer surface 1 in the long-side direction, and b is the planar length of the heat transfer surface 1 in the short-side direction; the pitch Wp (mm) of waves in the herringbone-pattern bumps and dips on the heat transfer surface satisfies 3 mm ≤ Wb ≤ 4 mm; and the inclination angle Wθ (deg) formed by the herringbone pattern and a straight line H that is parallel to the short-side direction of the plane satisfies 20° ≤ Wθ ≤ 40°.

Description

プレート積層型蒸発器Plate stacking type evaporator
 本発明は、凹凸によりヘリンボーン状の模様が形成された伝熱面を有するカップ状のプレートを複数積層した蒸発器における性能の向上に関する。 The present invention relates to improving the performance of an evaporator that is made up of multiple stacked cup-shaped plates with heat transfer surfaces that have a herringbone pattern formed by unevenness.
 従来、プレート積層型蒸発器として、下記のものが知られている。
 この蒸発器のプレートは、対向する一対の長辺と、対向する一対の短辺とを有する平面長方形に形成されており、そのプレートには、短辺が伸びる方向である短辺方向の一方の側に、長辺方向に離間して一対の第1流通孔が配置され、短辺方向の他方の側に、長辺方向に離間して一対の第2流通孔が配置されている。また、そのプレートは、その平面の中央部に凹凸によってヘリンボーン状の模様が形成された伝熱面を有している。
 この蒸発器は、上記プレートが一枚おきにヘリンボーン状の模様の向きが逆向きとなるように積層され、第1流体が流通する第1流路と第2流体が流通する第2流路とが交互に形成されたコアを有する。
Conventionally, the following plate stack type evaporators have been known.
The plate of this evaporator is formed in a planar rectangle having a pair of opposing long sides and a pair of opposing short sides, and a pair of first through holes are arranged on one side of the short side direction, which is the direction in which the short sides extend, and a pair of second through holes are arranged on the other side of the short side direction, and are arranged apart in the long side direction. The plate also has a heat transfer surface in the center of its plane, in which a herringbone pattern is formed by projections and recesses.
This evaporator has a core in which the plates are stacked so that the herringbone pattern of every other plate is oriented in the opposite direction, and first flow paths through which a first fluid flows and second flow paths through which a second fluid flows are alternately formed.
 しかしながら、従来型のヘリンボーン状の模様が形成された伝熱面を有するプレート積層型蒸発器において、上述のように流通孔を配置した場合、交換熱量を増加させるために短辺方向へも流体が分散するようにヘリンボーン状の模様を調整すると、圧力損失が増加する傾向があり、また、ヘリンボーン状の模様はプレートの耐圧性にも影響する。
 ゆえに、交換熱量、圧力損失、および耐圧性を考慮した総合的に高性能な蒸発器が求められている。
However, in a conventional plate stacked evaporator having a heat transfer surface with a herringbone pattern, when the flow holes are arranged as described above, if the herringbone pattern is adjusted so that the fluid is dispersed in the short side direction to increase the amount of heat exchanged, the pressure loss tends to increase, and the herringbone pattern also affects the pressure resistance of the plate.
Therefore, there is a demand for an evaporator with high overall performance that takes into consideration the amount of heat exchanged, pressure loss, and pressure resistance.
 よって、本発明では、ヘリンボーン状の模様が形成された伝熱面を有する蒸発器の総合性能の向上を課題とする。 Therefore, the objective of the present invention is to improve the overall performance of an evaporator having a heat transfer surface with a herringbone pattern.
 上記課題を解決する第1の発明は、
 対向する一対の長辺と、対向する一対の短辺とを有する平面長方形のカップ状のプレート2において、
 プレート2の短辺が伸びる方向である短辺方向の一方の側には、長辺方向に離間して一対の第1流通孔3a、3bが配置され、
 プレート2の短辺方向の他方の側には、長辺方向に離間して一対の第2流通孔4a、4bが配置され、
 プレート2は、その平面の中央部に凹凸によってヘリンボーン状の模様が形成された伝熱面1を有し、
 プレート2が一枚おきに前記ヘリンボーン状の模様の向きが逆向きとなるように積層され、
 第1流体6が流通する第1流路3と第2流体7が流通する第2流路4とが交互に形成されたコア5が形成されたプレート積層型蒸発器において、
 前記伝熱面1における長辺方向の平面長さをaとし、短辺方向の平面長さをbとしたとき、それらの縦横比b/a(アスペクト比)が、
  0.4 ≦ b/a ≦ 1.3
 であり、
 伝熱面1のヘリンボーン状の凹凸の波のピッチWp(mm)が、
  3mm ≦ Wp ≦ 4mm
 であり、
 平面の短辺方向に平行な直線Hと、ヘリンボーン状の模様のなす傾斜角度Wθ(deg)が、
  20° ≦ Wθ ≦ 40°
 となるプレート積層型蒸発器である。
The first invention to solve the above problem is:
A cup-shaped plate 2 having a rectangular shape in plan view and a pair of opposing long sides and a pair of opposing short sides,
A pair of first through holes 3a, 3b are arranged on one side of the short side direction of the plate 2, spaced apart from each other in the long side direction.
A pair of second through holes 4a, 4b are arranged on the other side of the plate 2 in the short side direction and spaced apart in the long side direction.
The plate 2 has a heat transfer surface 1 having a herringbone pattern formed by projections and recesses in the center of its flat surface,
The plates 2 are stacked so that the direction of the herringbone pattern is reversed for every other plate.
In a plate-stacked evaporator having a core 5 in which first flow paths 3 through which a first fluid 6 flows and second flow paths 4 through which a second fluid 7 flows are alternately formed,
When the planar length of the heat transfer surface 1 in the long side direction is a and the planar length of the heat transfer surface 1 in the short side direction is b, the aspect ratio b/a is:
0.4 ≦ b/a ≦ 1.3
and
The pitch Wp (mm) of the herringbone-shaped uneven waves on the heat transfer surface 1 is
3mm≦Wp≦4mm
and
The angle of inclination Wθ (deg) between the straight line H parallel to the short side of the plane and the herringbone pattern is:
20° ≦ Wθ ≦ 40°
This is a plate stack type evaporator.
 第2の発明は、第1の発明に記載のプレート積層型蒸発器において、
 20° ≦ Wθ ≦ 30°
 となるプレート積層型蒸発器である。
The second invention is the plate stacked type evaporator according to the first invention,
20° ≦ Wθ ≦ 30°
This is a plate stack type evaporator.
 第3の発明は、第1または第2の発明に記載のプレート積層型蒸発器において、
 第1流体6は、電動機を有する車両の空調に用いる冷媒であり、
 第2流体7は、電動機を有する車両の電池冷却に用いるLLCである、プレート積層型蒸発器である。
The third invention is the plate stacked type evaporator according to the first or second invention,
The first fluid 6 is a refrigerant used for air conditioning of a vehicle having an electric motor.
The second fluid 7 is a plate stacked evaporator, which is an LLC used for battery cooling in vehicles with electric motors.
 上記第1の発明のように、凹凸によってヘリンボーン状の模様が形成された伝熱面1を有するプレートの仕様を、
 0.4 ≦ b/a ≦ 1.3
 3mm ≦ Wp ≦ 4mm
 20° ≦ Wθ ≦ 40°
 としたことにより、圧力損失が抑制され、耐圧性が確保された上で、十分な交換熱量が確保された総合的に高性能な蒸発器を得ることができる。
As in the first aspect of the present invention, the specifications of the plate having the heat transfer surface 1 on which the herringbone pattern is formed by the projections and recesses are as follows:
0.4 ≦ b/a ≦ 1.3
3mm≦Wp≦4mm
20° ≦ Wθ ≦ 40°
As a result, it is possible to obtain an evaporator with high overall performance in which pressure loss is suppressed, pressure resistance is ensured, and a sufficient amount of heat exchange is secured.
 さらに、上記第2の発明のように、
 20° ≦ Wθ ≦ 30°
 としたことにより、圧力損失が抑制され、耐圧性が確保された上で、より多くの交換熱量が確保された総合的に高性能な蒸発器を得ることができる。
Furthermore, as in the second aspect of the present invention,
20° ≦ Wθ ≦ 30°
As a result, it is possible to obtain an evaporator with high overall performance, in which pressure loss is suppressed, pressure resistance is ensured, and a larger amount of heat exchange is ensured.
 また、上記第3の発明のように、
 第1流体6を、電動機を有する車両の空調に用いる冷媒とし、
 第2流体7を、電動機を有する車両の電池冷却に用いるLLCとしたことにより、その蒸発器を電動車両における電池の冷却用として活用することができる。
In addition, as in the third aspect of the present invention,
The first fluid 6 is a refrigerant used for air conditioning of a vehicle having an electric motor,
By using the LLC used for cooling the battery of a vehicle having an electric motor as the second fluid 7, the evaporator can be utilized for cooling the battery in the electric vehicle.
本発明のプレート積層型蒸発器の要部分解斜視図。FIG. 2 is an exploded perspective view of a main portion of the plate stacked type evaporator of the present invention. 図1のII-II矢視断面図。FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 同蒸発器を構成するプレート2の平面図。FIG. 2 is a plan view of a plate 2 constituting the evaporator. 同蒸発器をチラーとして利用した電動車両の各流体の流路を示すブロック図。FIG. 2 is a block diagram showing the flow paths of each fluid in an electric vehicle that uses the evaporator as a chiller. 同蒸発器のヘリンボーン状の模様のなす波の傾斜角度Wθと、冷媒圧力損失比との関係を示すグラフであって、波のピッチWpが3mmであるもの。13 is a graph showing the relationship between the inclination angle Wθ of the waves of the herringbone pattern of the evaporator and the refrigerant pressure loss ratio, where the wave pitch Wp is 3 mm. 同関係を示すグラフであって、波のピッチWpが4mmであるもの。Graph showing the same relationship, where the wave pitch Wp is 4 mm. 同蒸発器のヘリンボーン状の模様のなす波の傾斜角度Wθと、交換熱量比との関係を示すグラフであって、波のピッチWpが3mmであるもの。13 is a graph showing the relationship between the inclination angle Wθ of the waves in the herringbone pattern of the evaporator and the heat exchange ratio, where the wave pitch Wp is 3 mm. 同関係を示すグラフであって、波のピッチWpが4mmであるもの。Graph showing the same relationship, where the wave pitch Wp is 4 mm.
 次に、図面に基づいて、本発明の実施例の形態につき説明する。
 本発明のプレート積層型蒸発器を構成するプレート2は、図1に示す如く、対向する一対の長辺と、対向する一対の短辺とを有する平面長方形のカップ状に形成されている。
 このプレート2には、図3に示す如く、短辺が伸びる方向である短辺方向の一方の側に、長辺方向に離間して一対の第1流通孔3a、3bが配置され、短辺方向の他方の側に、長辺方向に離間して一対の第2流通孔4a、4bが配置されている。また、そのプレート2の平面の中央部には、凹凸によってヘリンボーン状の模様が形成された伝熱面1を有している。
Next, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a plate 2 constituting the plate stacked type evaporator of the present invention is formed in a flat rectangular cup shape having a pair of opposing long sides and a pair of opposing short sides.
3, a pair of first through holes 3a, 3b are arranged on one side of the short side direction, which is the direction in which the short side extends, and a pair of second through holes 4a, 4b are arranged on the other side of the short side direction, and are arranged on the other side of the short side, and the plate 2 has a heat transfer surface 1 in which a herringbone pattern is formed by projections and recesses.
 図2に示す如く、伝熱面1のヘリンボーン状の模様の縦断面は、凹凸の波形が一定のピッチで連続して形成されている。また、図1および図3に示す如く、伝熱面1に形成されたヘリンボーン状の模様は、平面視でV字模様8である。
 ここで、プレート2の対向する一対の短辺の中央部どうしを結び、長辺方向に平行な仮想線を中心線Pとし、その中心線Pに直交し、短辺方向に平行な仮想線を直線Hとすると、この例では、図3に示す如く、V字模様8の頂部が中心線P上に位置する。
 そのV字模様8の頂部は短辺側に向いている。
As shown in Fig. 2, the longitudinal section of the herringbone pattern of the heat transfer surface 1 has a continuous corrugated pattern with a constant pitch. Also, as shown in Figs. 1 and 3, the herringbone pattern formed on the heat transfer surface 1 has a V-shaped pattern 8 in a plan view.
Here, if an imaginary line connecting the centers of a pair of opposing short sides of plate 2 and parallel to the long side direction is defined as center line P, and an imaginary line perpendicular to center line P and parallel to the short side direction is defined as straight line H, in this example, the apex of V-shaped pattern 8 is located on center line P, as shown in Figure 3.
The apex of the V-shaped pattern 8 faces the short side.
 上記の構造を有するプレート2が、図1に示す如く、一枚おきにV字模様8の頂部の向きが逆向きとなるように積層されプレート積層型蒸発器のコア5が形成されている。また、図2に示す如く、そのコア5には、第1流体6が流通する第1流路3と第2流体7が流通する第2流路4とが交互に積層されて形成されている。
 コア5の上端には端板9が配置され、その端板9に第1流体導入路17が配置され、第1流体導入路17の入口17aおよび出口17bは、第1流路3の各段に連通している。
 第1流体6は、図1及び図2に示す如く、入口17aからコア5の第1流路3の各段に流通して、出口17bから流出する。第2流体7は、図1に示す如く、端板9に配置された第2流体入口18から第2流路4の各段に流通して、第2流体出口19から流出する。
 そして、第1流体6と第2流体7との間で熱交換が行われる。
The plates 2 having the above structure are stacked so that the tops of the V-shaped patterns 8 of every other plate face in the opposite direction to form the core 5 of the plate stacking type evaporator, as shown in Fig. 1. Also, as shown in Fig. 2, the core 5 is formed by stacking the first flow passages 3 through which the first fluid 6 flows and the second flow passages 4 through which the second fluid 7 flows, alternately.
An end plate 9 is disposed at the upper end of the core 5 , and a first fluid introduction passage 17 is disposed in the end plate 9 . An inlet 17 a and an outlet 17 b of the first fluid introduction passage 17 communicate with each stage of the first flow passage 3 .
1 and 2, the first fluid 6 flows from an inlet 17a to each stage of the first flow passage 3 of the core 5 and flows out from an outlet 17b. The second fluid 7 flows from a second fluid inlet 18 arranged in the end plate 9 to each stage of the second flow passage 4 and flows out from a second fluid outlet 19, as shown in FIG.
Then, heat exchange takes place between the first fluid 6 and the second fluid 7 .
 第1流路3の各段の第1流体6の流れは、図1に示す如く、プレート2の長辺方向に沿った流れと、短辺方向に向けて弧状に流通してから長辺方向に沿った流れに合流する流れ等が存在する。第2流路4の各段の第2流体7の流れも同様である。
 この例では、第1流体6と第2流体7とは対向流となっているが、並行流であってもかまわない。
 蒸発器のプレート2は、アルミニウム、アルミニウム合金、SUS等で形成される。
1, the flow of the first fluid 6 in each stage of the first flow path 3 includes a flow along the long side direction of the plate 2, a flow that flows in an arc toward the short side direction and then merges with the flow along the long side direction, etc. The flow of the second fluid 7 in each stage of the second flow path 4 is similar.
In this example, the first fluid 6 and the second fluid 7 flow in opposite directions, but they may also flow in parallel.
The plate 2 of the evaporator is made of aluminum, an aluminum alloy, SUS, or the like.
 この蒸発器は、電動車両の電池の冷却系のチラーとして好適なものであり、そのチラーとして使用する場合、第1流体6は電動機を有する車両の空調に用いる冷媒であり、第2流体7は、電動機を有する車両の電池冷却に用いるLLCである。
 図4は、同蒸発器をチラーとして利用した電動車両の各流体の流路を示すブロック図である。
 第1流体6の冷媒は、膨張弁12を介して気液二相状態になり、チラーのコア5の第1流路3に供給され、第2流体7から熱を奪って蒸発する。チラーで冷却された第2流体7のLLCは、電池冷却器13を流通する間に、電池10から熱14を奪いそれを冷却した後、コア5の第2流路4に戻る。
This evaporator is suitable as a chiller for the cooling system of a battery in an electric vehicle, and when used as such a chiller, the first fluid 6 is a refrigerant used for air conditioning in a vehicle having an electric motor, and the second fluid 7 is an LLC used for cooling the battery in a vehicle having an electric motor.
FIG. 4 is a block diagram showing the flow paths of each fluid in an electric vehicle that uses the evaporator as a chiller.
The refrigerant of the first fluid 6 becomes a gas-liquid two-phase state through the expansion valve 12, is supplied to the first flow path 3 of the chiller core 5, and evaporates by absorbing heat from the second fluid 7. The LLC of the second fluid 7 cooled by the chiller absorbs heat 14 from the battery 10 while flowing through the battery cooler 13, cooling it, and then returns to the second flow path 4 of the core 5.
 本発明は、プレート2の伝熱面1のアスペクト比(b/a)、および伝熱面1におけるヘリンボーン状の模様の仕様(ヘリンボーン状の凹凸の波のピッチWp(mm)、ヘリンボーン状の模様のなす傾斜角度Wθ(deg))に特徴を有する。
 アスペクト比(b/a)は、図3に示す伝熱面1における長辺方向の平面長さをaとし、短辺方向の平面長さをbとしたとき、それらの縦横比であり、その範囲は、0.4 ≦ b/a ≦ 1.3である。
 波のピッチWpは、図3におけるヘリンボーン状の凹凸の波の凸と凸の間の距離である。傾斜角度Wθは、図3においてプレート2の平面の短辺方向に平行な直線Hと、ヘリンボーン状の模様のなす傾斜角度である。
The present invention is characterized by the aspect ratio (b/a) of the heat transfer surface 1 of the plate 2 and the specifications of the herringbone pattern on the heat transfer surface 1 (the pitch Wp (mm) of the herringbone-patterned concave-convex waves and the inclination angle Wθ (deg) of the herringbone pattern).
The aspect ratio (b/a) is the ratio of the length of the planar surface in the long side direction of the heat transfer surface 1 shown in FIG. 3 to the length of the planar surface in the short side direction of the heat transfer surface 1, and is in the range of 0.4≦b/a≦1.3.
The wave pitch Wp is the distance between convexities of the herringbone-like unevenness in Fig. 3. The inclination angle Wθ is the inclination angle between the herringbone pattern and a straight line H parallel to the short side direction of the plane of the plate 2 in Fig. 3.
 図5及び図6は、同蒸発器のヘリンボーン状の模様のなす波の傾斜角度Wθ(横軸)と、冷媒圧力損失比(縦軸)との関係を示すグラフであり、図5は、波のピッチWpが3mmの場合であり、図6は、波のピッチWpが4mmの場合である。
 なお、各図とも、傾斜角度Wθが40°のときの冷媒圧損を100%(基準)としている。
 Wθが20°から10°になると圧力損失は4~6倍になり、第1流体6の循環量を制御する膨張弁12による循環量制御に支障をきたすおそれがある。
 それゆえ、Wθの下限は20°とすることが妥当である。
5 and 6 are graphs showing the relationship between the inclination angle Wθ (horizontal axis) of the waves of the herringbone pattern of the evaporator and the refrigerant pressure loss ratio (vertical axis), where FIG. 5 shows the case where the wave pitch Wp is 3 mm, and FIG. 6 shows the case where the wave pitch Wp is 4 mm.
In each diagram, the refrigerant pressure loss when the inclination angle Wθ is 40° is set to 100% (reference).
When Wθ changes from 20° to 10°, the pressure loss increases by 4 to 6 times, which may cause a problem in controlling the circulation amount of the first fluid 6 by the expansion valve 12 that controls the circulation amount.
Therefore, it is appropriate to set the lower limit of Wθ to 20°.
 また、Wpを小さくすると、第1流体6の圧力損失が増加し、第1流路3における第1流体6の圧力が上昇することによって、その飽和温度も上昇し、第2流体7との温度差が小さくなり、交換熱量が低下するが、Wpが3mm未満となると低下が顕著となるので、Wpの下限は3mmとすることが妥当である。 In addition, when Wp is reduced, the pressure loss of the first fluid 6 increases, and as the pressure of the first fluid 6 in the first flow path 3 increases, its saturation temperature also increases, the temperature difference with the second fluid 7 decreases, and the amount of heat exchanged decreases. However, when Wp is less than 3 mm, the decrease becomes significant, so it is appropriate to set the lower limit of Wp at 3 mm.
 逆に、Wpを大きくすると、積層された上下のプレート2同士の伝熱面1における接合箇所が減少し、耐圧性が低下するので、常用圧力0.2MPaG ~ 0.4MPaGにおける耐圧性を確保するためには、Wpの上限は4mmとすることが妥当である。 Conversely, if Wp is increased, the number of joints on the heat transfer surface 1 between the upper and lower stacked plates 2 decreases, lowering pressure resistance, so in order to ensure pressure resistance at normal pressures of 0.2 MPaG to 0.4 MPaG, it is reasonable to set the upper limit of Wp at 4 mm.
 図7及び図8は、同蒸発器のヘリンボーン状の模様のなす波の傾斜角度Wθ(横軸)と、交換熱量比(縦軸)との関係を示すグラフであり、図7は、波のピッチWpが3mmの場合であり、図8は、波のピッチWpが4mmの場合である。
 なお、交換熱量比が最大となる、波のピッチWpが3mmで、傾斜角度Wθが20°のときの交換熱量を100%(基準)としている。
7 and 8 are graphs showing the relationship between the inclination angle Wθ (horizontal axis) of the waves of the herringbone pattern of the same evaporator and the heat exchange ratio (vertical axis), where FIG. 7 shows the case where the wave pitch Wp is 3 mm, and FIG. 8 shows the case where the wave pitch Wp is 4 mm.
The amount of heat exchanged when the wave pitch Wp is 3 mm and the inclination angle Wθ is 20°, at which the heat exchange ratio is maximum, is set to 100% (reference).
 上述のとおりWθの下限は20°が妥当であり、その時に交換熱量比は最大となるが、Wθが30°までであれば、図7、図8いずれの場合でも、交換熱量比の最大値の60%以上が確保され、Wθが40°までであれば、交換熱量比の最大値の50%以上が確保され実用に足る。
 よって、Wθの上限は40°とすることが好適であり、30°とすることがより好適である。
As described above, a reasonable lower limit for Wθ is 20°, at which the heat exchange ratio is maximized. However, if Wθ is up to 30°, then in either case of FIG. 7 or FIG. 8, 60% or more of the maximum heat exchange ratio is ensured, and if Wθ is up to 40°, then 50% or more of the maximum heat exchange ratio is ensured, which is sufficient for practical use.
Therefore, the upper limit of Wθ is preferably set to 40°, and more preferably to 30°.
 上述をまとめると、総合的に高性能な蒸発器となるプレート2のヘリンボーン状の模様が形成された伝熱面1の仕様は、
 アスペクト比b/aの範囲、 0.4 ≦ b/a ≦ 1.3 において、
 波のピッチWpの範囲は、 3mm ≦ Wp ≦ 4mm であり、
 傾斜角度Wθの範囲は、 20° ≦ Wθ ≦ 40°である。
To sum up the above, the specifications of the heat transfer surface 1 on which the herringbone pattern of the plate 2 is formed, which will be a high-performance evaporator overall, are as follows:
In the range of aspect ratio b/a, 0.4≦b/a≦1.3,
The range of the wave pitch Wp is 3 mm ≦ Wp ≦ 4 mm;
The range of the inclination angle Wθ is 20°≦Wθ≦40°.
 本発明は、凹凸によりヘリンボーン状の模様が形成された伝熱面を有するプレート積層型蒸発器に利用することができ、特に電動車両の電池の冷却系のチラーに、好適である。 The present invention can be used in plate-stacked evaporators with a heat transfer surface that has a herringbone pattern formed by projections and recesses, and is particularly suitable for chillers in the cooling systems of batteries in electric vehicles.
 1 伝熱面
 2 プレート
 3 第1流路
 3a 第1流通孔
 3b 第1流通孔
 4 第2流路
 4a 第2流通孔
 4b 第2流通孔
 5 コア
 6 第1流体
 7 第2流体
 8 V字模様
 9 端板
 10 電池
 11 コンプレッサ
 12 膨張弁
 13 電池冷却器
 14 放熱
 15 ファン
 16 放熱器
 17 第1流体導入路
 17a 入口
 17b 出口
 18 第2流体入口
 19 第2流体出口
 Wp 波のピッチ
 Wθ 傾斜角度
 a 伝熱面における長辺方向の平面長さ
 b 伝熱面における短辺方向の平面長さ
 b/a アスペクト比
 P 中心線
 H 直線
 
REFERENCE SIGNS LIST 1 heat transfer surface 2 plate 3 first flow path 3a first through hole 3b first through hole 4 second flow path 4a second through hole 4b second through hole 5 core 6 first fluid 7 second fluid 8 V-shaped pattern 9 end plate 10 battery 11 compressor 12 expansion valve 13 battery cooler 14 heat dissipation 15 fan 16 heat dissipator 17 first fluid introduction path 17a inlet 17b outlet 18 second fluid inlet 19 second fluid outlet Wp wave pitch Wθ inclination angle a planar length in the long side direction of the heat transfer surface b planar length in the short side direction of the heat transfer surface b/a aspect ratio P center line H straight line

Claims (3)

  1.  対向する一対の長辺と、対向する一対の短辺とを有する平面長方形のカップ状のプレート(2)において、
     プレート(2)の短辺が伸びる方向である短辺方向の一方の側には、長辺方向に離間して一対の第1流通孔(3a、3b)が配置され、
     プレート(2)の短辺方向の他方の側には、長辺方向に離間して一対の第2流通孔(4a、4b)が配置され、
     プレート(2)は、その平面の中央部に凹凸によってヘリンボーン状の模様が形成された伝熱面(1)を有し、
     プレート(2)が一枚おきに前記ヘリンボーン状の模様の向きが逆向きとなるように積層され、
     第1流体(6)が流通する第1流路(3)と第2流体(7)が流通する第2流路(4)とが交互に形成されたコア(5)が形成されたプレート積層型蒸発器において、
     前記伝熱面(1)における長辺方向の平面長さをaとし、短辺方向の平面長さをbとしたとき、それらの縦横比b/a(アスペクト比)が、
      0.4 ≦ b/a ≦ 1.3
     であり、
     伝熱面(1)のヘリンボーン状の凹凸の波のピッチWp(mm)が、
      3mm ≦ Wp ≦ 4mm
     であり、
     平面の短辺方向に平行な直線Hと、ヘリンボーン状の模様のなす傾斜角度Wθ(deg)が、
      20° ≦ Wθ ≦ 40°
     であるプレート積層型蒸発器。
    A flat rectangular cup-shaped plate (2) having a pair of opposing long sides and a pair of opposing short sides,
    A pair of first through holes (3a, 3b) are arranged on one side of the short side direction, which is the direction in which the short side of the plate (2) extends, and are spaced apart in the long side direction.
    A pair of second through holes (4a, 4b) are arranged on the other side of the short side of the plate (2) and spaced apart in the long side direction,
    The plate (2) has a heat transfer surface (1) having a herringbone pattern formed by projections and recesses in the center of its flat surface,
    The plates (2) are stacked so that the direction of the herringbone pattern is reversed for every other plate.
    A plate-stacked evaporator having a core (5) in which first flow paths (3) through which a first fluid (6) flows and second flow paths (4) through which a second fluid (7) flows are alternately formed,
    When the planar length of the heat transfer surface (1) in the long side direction is a and the planar length of the heat transfer surface (1) in the short side direction is b, the aspect ratio b/a between them is:
    0.4 ≦ b/a ≦ 1.3
    and
    The pitch Wp (mm) of the herringbone-shaped uneven waves on the heat transfer surface (1) is
    3mm≦Wp≦4mm
    and
    The angle of inclination Wθ (deg) between the straight line H parallel to the short side of the plane and the herringbone pattern is:
    20° ≦ Wθ ≦ 40°
    This is a plate stack type evaporator.
  2.  請求項1に記載のプレート積層型蒸発器において、
      20° ≦ Wθ ≦ 30°
     であるプレート積層型蒸発器。
    2. The plate stacked evaporator according to claim 1,
    20° ≦ Wθ ≦ 30°
    This is a plate stack type evaporator.
  3.  請求項1または請求項2に記載のプレート積層型蒸発器において、
     第1流体(6)は、電動機を有する車両の空調に用いる冷媒であり、
     第2流体(7)は、電動機を有する車両の電池冷却に用いるLLCである、プレート積層型蒸発器。
     
    The plate stacked type evaporator according to claim 1 or 2,
    The first fluid (6) is a refrigerant used for air conditioning of a vehicle having an electric motor,
    The second fluid (7) is an LLC used for battery cooling in vehicles with electric motors. A plate stacked evaporator.
PCT/JP2024/007710 2023-03-09 2024-03-01 Stacked-plate-type evaporator WO2024185671A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-036272 2023-03-09
JP2023036272 2023-03-09

Publications (1)

Publication Number Publication Date
WO2024185671A1 true WO2024185671A1 (en) 2024-09-12

Family

ID=92675079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/007710 WO2024185671A1 (en) 2023-03-09 2024-03-01 Stacked-plate-type evaporator

Country Status (1)

Country Link
WO (1) WO2024185671A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248392A (en) * 1998-02-27 1999-09-14 Daikin Ind Ltd Plate type heat exchanger
KR20080006122A (en) * 2006-07-11 2008-01-16 엘지전자 주식회사 Plate type heat exchanger and manufacturing process of the same of
JP2010078286A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Plate heat exchanger, and air conditioner mounted with the same
JP2011106764A (en) * 2009-11-19 2011-06-02 Mitsubishi Electric Corp Plate type heat exchanger and heat pump device
JP2012516990A (en) * 2009-02-04 2012-07-26 アルファ ラヴァル コーポレイト アクチボラゲット Plate heat exchanger
JP2020079693A (en) * 2018-11-13 2020-05-28 株式会社デンソー Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11248392A (en) * 1998-02-27 1999-09-14 Daikin Ind Ltd Plate type heat exchanger
KR20080006122A (en) * 2006-07-11 2008-01-16 엘지전자 주식회사 Plate type heat exchanger and manufacturing process of the same of
JP2010078286A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Plate heat exchanger, and air conditioner mounted with the same
JP2012516990A (en) * 2009-02-04 2012-07-26 アルファ ラヴァル コーポレイト アクチボラゲット Plate heat exchanger
JP2011106764A (en) * 2009-11-19 2011-06-02 Mitsubishi Electric Corp Plate type heat exchanger and heat pump device
JP2020079693A (en) * 2018-11-13 2020-05-28 株式会社デンソー Heat exchanger

Similar Documents

Publication Publication Date Title
US8061416B2 (en) Heat exchanger and method for the production thereof
US11254236B2 (en) High performance uniform temperature cold plate
JP5157681B2 (en) Stacked cooler
US10222141B2 (en) Stacking type header, heat exchanger and air-conditioning apparatus
US11300366B2 (en) Heat exchanger having an integrated suction gas heat exchanger
JP2000193390A (en) Plate-type heat exchanger
JP2008036650A (en) Method of manufacturing heat exchanger
US11536496B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2019193713A1 (en) Distributor and heat exchanger
JP2002130977A (en) Heat exchanger
WO2024185671A1 (en) Stacked-plate-type evaporator
WO2021154154A1 (en) A plate heat exchanger
CN117906410A (en) Heat exchanger and fin thereof
US12007183B2 (en) Heat exchanger
JP2002048491A (en) Heat exchanger for cooling
KR20220134758A (en) Cooling systems and methods
WO2023188885A1 (en) Heat exchanger and heat pump device for mobile body
JP3674054B2 (en) Evaporator
JP3805665B2 (en) Heat exchanger
WO2024024465A1 (en) Stacked plate heat exchanger
WO2023218621A1 (en) Heat exchanger and refrigeration cycle apparatus
JP5595064B2 (en) Plate heat exchanger and heat pump device
US12140387B2 (en) Plate heat exchanger
US12140356B2 (en) Refrigeration system and a method for controlling such a refrigeration system
US20240219125A1 (en) Low pressure drop integrated plate heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24767040

Country of ref document: EP

Kind code of ref document: A1