WO2024019122A1 - Dry etching method for carbon atom-containing film - Google Patents
Dry etching method for carbon atom-containing film Download PDFInfo
- Publication number
- WO2024019122A1 WO2024019122A1 PCT/JP2023/026644 JP2023026644W WO2024019122A1 WO 2024019122 A1 WO2024019122 A1 WO 2024019122A1 JP 2023026644 W JP2023026644 W JP 2023026644W WO 2024019122 A1 WO2024019122 A1 WO 2024019122A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon atom
- etching
- containing film
- opening
- dry etching
- Prior art date
Links
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 122
- 238000000034 method Methods 0.000 title claims abstract description 59
- 238000001312 dry etching Methods 0.000 title claims abstract description 46
- 125000004432 carbon atom Chemical group C* 0.000 title abstract description 10
- 238000005530 etching Methods 0.000 claims abstract description 128
- 239000007789 gas Substances 0.000 claims abstract description 81
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims abstract description 46
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 29
- 239000001301 oxygen Substances 0.000 claims abstract description 29
- 150000001721 carbon Chemical group 0.000 claims description 115
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 24
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 20
- 239000000377 silicon dioxide Substances 0.000 claims description 11
- 235000012239 silicon dioxide Nutrition 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims 1
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 6
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
Definitions
- the present disclosure relates to a method of dry etching a film containing carbon atoms.
- Patent Document 1 has room for improvement in terms of improving the etching rate of the carbonaceous layer.
- the present disclosure has been made in view of the above problems, and aims to provide a method for dry etching a carbon atom-containing film that can improve the etching rate of the carbon atom-containing film.
- the inventors of the present disclosure have determined that while controlling the anisotropy (aspect ratio) of the opening of the carbon atom-containing film after etching, the gas added to oxygen during etching of the carbon atom-containing film is changed from carbonyl sulfide to carbonyl dioxide. It was unexpectedly discovered that the above problems could be solved by using sulfur, leading to the present disclosure.
- one aspect of the present disclosure is a dry etching method for a carbon atom-containing film, the method comprising etching a carbon atom-containing film with an etching gas, the method comprising using a mixed gas containing at least oxygen and sulfur dioxide as a carbon atom-containing film.
- a step of introducing a mixed gas into an etching chamber in which a structure including a containing film and a mask having a first opening is arranged, and generating plasma gas by converting the mixed gas into plasma in the etching chamber, and an etching step of etching the carbon atom-containing film of the structure using the plasma gas to form a second opening, and in the etching step, the aspect ratio defined by the following formula (1) is A method of dry etching a carbon atom-containing film is provided, in which the second opening is formed to have a diameter of 1 to 40. Aspect ratio L2/L1...(1) (In the formula (1), L1 represents the design width of the first opening, and L2 represents the depth of the second opening.)
- the carbon atom-containing film is etched with a plasma gas of a mixed gas containing oxygen and sulfur dioxide while controlling the aspect ratio during etching within the above range.
- the etching rate for a carbon atom-containing film can be improved compared to the case where a carbon atom-containing film is etched with a plasma gas of a mixed gas containing carbonyl sulfide.
- the aspect ratio may be 4 to 40.
- the shape of the first opening may be a trench or a hole.
- the carbon atom-containing film may include amorphous carbon.
- the mask may include an oxygen-containing material.
- the oxygen-containing material may be silicon dioxide.
- the thickness of the carbon atom-containing film may be 10.0 ⁇ m or less.
- the thickness of the mask may be 0.01 times or more the thickness of the carbon atom-containing film.
- the thickness of the mask may be 0.5 times or less the thickness of the carbon atom-containing film.
- the content of sulfur dioxide in the total volume of the sulfur dioxide and oxygen may be 20 to 40% by volume.
- a method for dry etching a carbon atom-containing film that can improve the etching rate of the carbon atom-containing film.
- FIG. 2 is a cross-sectional view illustrating an example of a structure before an etching step in the dry etching method for a carbon atom-containing film according to the present disclosure.
- FIG. 2 is a schematic diagram showing an etching chamber in which the structure of FIG. 1 is placed.
- FIG. 2 is a cross-sectional view illustrating an example of a structure after an etching step of the dry etching method for a carbon atom-containing film according to the present disclosure.
- 4 is a partially enlarged view of the mask and carbon atom-containing film in FIG. 3.
- FIG. 2 is a graph showing the results of plotting the etching rate against the aspect ratio of the second opening of the carbon atom-containing film in Examples 1 to 3 and Comparative Examples 1 to 3.
- FIG. 1 is a cross-sectional view showing an example of a structure before the etching process of the dry etching method for a carbon atom-containing film of the present disclosure
- FIG. 2 is a schematic diagram showing an etching chamber in which the structure shown in FIG. 1 is arranged.
- 3 is a cross-sectional view showing an example of a structure after the etching process of the dry etching method for a carbon atom-containing film of the present disclosure
- FIG. 4 is a partially enlarged view of the carbon atom-containing film in FIG.
- the method of dry etching a carbon atom-containing film according to the present disclosure is a method of etching a carbon atom-containing film 20 containing carbon atoms with an etching gas, in which a mixed gas G containing at least oxygen and sulfur dioxide is applied to the carbon atom-containing film 20. , and a step of introducing a mixed gas into the etching chamber 1 in which the structure 100 including the mask 30 having the first opening 31 is arranged, and converting the mixed gas G into plasma in the etching chamber 1 to generate plasma gas. , and an etching step of etching the carbon atom-containing film 20 of the structure 100 using this plasma gas to form the second opening 21 (see FIGS. 1 to 3).
- the second opening 21 is formed so that the aspect ratio defined by the following formula (1) is 1 to 40.
- Aspect ratio L2/L1...(1) (In the above formula (1), L1 represents the design width of the first opening 31, and L2 represents the depth of the second opening 21.)
- the carbon atom-containing film 20 is etched with a plasma gas of a mixed gas G containing oxygen and sulfur dioxide while controlling the aspect ratio during etching within the above range.
- the etching rate for the carbon atom-containing film 20 can be improved compared to the case where the carbon atom-containing film 20 is etched with a plasma gas of a mixed gas G containing oxygen and carbonyl sulfide.
- the structure 100 includes a carbon atom-containing film 20 containing carbon atoms, and a mask 30 having a first opening 31.
- the structure 100 may further include a support 10 that supports the carbon atom-containing film 20, as shown in FIG. In this case, the carbon atom-containing film 20 is placed between the mask 30 and the support 10. Further, the structure 100 may further include an intermediate film (not shown) between the support body 10 and the carbon atom-containing film 20.
- the support body 10 is not particularly limited as long as it is a member that supports the carbon atom-containing film 20, examples of the material constituting the support body 10 include silicon, germanium, and the like. Among them, silicon is preferred. In this case, since the bandgap is wide, durability under high pressure is further improved.
- the thickness of the support 10 is not particularly limited, but may be 254 ⁇ m or more, or 520 ⁇ m or more. When the thickness of the support 10 is 254 ⁇ m or more, the mechanical strength is further improved. Moreover, the thickness of the support body 10 may be 795 ⁇ m or less, or may be 725 ⁇ m or less. When the thickness of the support 10 is 795 ⁇ m or less, the structure 100 can be easily cut into wafers of a predetermined size. (intermediate film) Examples of the intermediate film include silica (SiO 2 ), silicon nitride (Si 3 N 4 ), amorphous silicon (a:Si), and polycrystalline silicon (poly:Si).
- the carbon atom-containing film 20 is not particularly limited as long as it contains carbon atoms.
- the carbon atom-containing film 20 may be an inorganic carbon film such as amorphous carbon, or may be an organic polymer film such as a resist film or a polyimide film.
- the etching selectivity i.e., the ratio of the etching speed Vc of the carbon atom-containing film to the etching speed Vm of the mask
- the etching selectivity is increased when transferring the pattern to the carbon atom-containing film 20. Can be done.
- the thickness of the carbon atom-containing film 20 is not particularly limited, but may be 0.1 ⁇ m or more, or 0.5 ⁇ m or more. When the thickness of the carbon atom-containing film 20 is 0.1 ⁇ m or more, if an intermediate film is laminated as a layer to be etched under the carbon atom-containing film 20, the carbon atom-containing film 20 can act as a mask for the layer to be etched. It becomes possible to demonstrate the functions of Further, the thickness of the carbon atom-containing film 20 may be 10.0 ⁇ m or less, or may be 5.0 ⁇ m or less. When the thickness of the carbon atom-containing film 20 is 10.0 ⁇ m or less, the carbon atom-containing film 20 becomes difficult to collapse after etching.
- the mask 30 has a first opening 31 that allows the etching gas to pass through and guide it to the carbon atom-containing film 20 .
- the first opening 31 may be a trench or a hole.
- the mask 30 has a lower etching rate with an etching gas than the carbon atom-containing film 20, and such a mask 30 preferably contains an oxygen-containing material. In this case, the etching rate by the etching gas becomes low.
- the oxygen-containing material include silicon dioxide and silicon oxynitride. Among them, silicon dioxide is preferred from the viewpoint of economy.
- the thickness of the mask 30 is not particularly limited, but may be 0.01 times or more, or 0.05 times or more, the thickness of the carbon atom-containing film 20. When the thickness of the mask 30 is 0.01 times or more the thickness of the carbon atom-containing film 20, anisotropic etching of the carbon atom-containing film 20 becomes possible. Further, the thickness of the mask 30 may be 0.5 times or less, or 0.2 times or less, the thickness of the carbon atom-containing film 20. When the thickness of the mask 30 is 0.5 times or less than the thickness of the carbon atom-containing film 20, the carbon atom-containing film 20 becomes difficult to collapse after etching.
- the etching chamber 1 is a container in which the carbon atom-containing film 20 is etched by a plasma gas in which a mixed gas G containing oxygen and sulfur dioxide is turned into plasma, and constitutes a part of an etching apparatus.
- etching equipment include microwave ECR plasma etching equipment, capacitively coupled plasma (CCP) etching equipment, and inductively coupled plasma (ICP) etching equipment, but etching equipment is not limited to these. It's not something you can do.
- Mixed gas G contains oxygen and sulfur dioxide.
- the content of sulfur dioxide in the total volume of oxygen and sulfur dioxide is not particularly limited as long as it is larger than 0% by volume, but may be 20 to 40% by volume, or may be 25 to 35% by volume. .
- the etching rate for the carbon atom-containing film 20 can be more effectively improved.
- the flow rate of the mixed gas G when introduced into the etching chamber 1 may be 0.1 mL/min or more, 1 mL/min or more, or 10 mL/min or more. When the flow rate of the mixed gas G is 1 mL/min or more, it becomes possible to efficiently generate ions and radicals necessary for etching the carbon atom-containing film 20.
- the flow rate of the mixed gas G when introduced into the etching chamber 1 may be 10000 mL/min or less, 1000 mL/min or less, or 100 mL/min or less. When the flow rate of the mixed gas G is 10,000 mL/min or less, the degree of vacuum in the etching apparatus can be easily maintained at a low pressure.
- the mixed gas G is turned into plasma in the etching chamber 1 to generate plasma gas, and the carbon atom-containing film 20 of the structure 100 is etched using this plasma gas to form the second opening 21. It is a process.
- the structure 100 becomes a structure 200 through the etching process.
- the pressure inside the etching chamber 1 during dry etching may be between 0.1 mTorr and 100 mTorr, and may also be between 0.1 mTorr and 100 mTorr. When the pressure inside the etching chamber 1 is between 0.1 mTorr and 100 mTorr, the pressure is low, so it becomes possible to perform excellent shape control on the second opening 21.
- the antenna power is not particularly limited, but may be 50 to 1000 W, or 100 to 800 W. It may be 200 to 600W. By setting the antenna power to 50 to 1000 W, the carbon atom-containing film 20 can be etched at high speed and anisotropically.
- ICP inductively coupled plasma
- bias power When an inductively coupled plasma (ICP) etching device is used as the etching device, the bias power is not particularly limited, but may be 10 W or more, 25 W or more, 50 W or more. It may be. By setting the bias power to 10 W or more, it becomes easier to increase the aspect ratio. Further, the bias power may be 500W or less, 300W or less, or 200W or less. By setting the bias power to 500 W or less, it becomes easier to appropriately control dry etching.
- ICP inductively coupled plasma
- the shape of the second opening 21 of the carbon atom-containing film 20 after etching is the same as the shape of the first opening 31. That is, when the first opening 31 is a trench, the second opening 21 is also a trench, and when the first opening 31 is a hole, the second opening 21 is also a hole.
- the aspect ratio after etching is not particularly limited as long as it is 1 to 40, but may be 4 to 40, 5 to 40, or 5 to 25.
- the etching rate for the carbon atom-containing film 20 can be improved compared to the case where the carbon atom-containing film 20 is etched with a plasma gas of a mixed gas containing oxygen and carbonyl sulfide.
- the aspect ratio is 1 or more, so that the carbon atom-containing film 20 can be used as a mask during etching of the lower layer, for example. It becomes easier to show the effect.
- the lower layer include silica (SiO 2 ), silicon nitride (Si 3 N 4 ), amorphous silicon (a:Si), and polycrystalline silicon (poly:Si).
- the aspect ratio is expressed by the above formula (1). That is, the aspect ratio refers to the ratio (L2/L1) of the depth (L2) of the second opening 21 to the designed width (L1) of the first opening 31 (see FIG. 4).
- the design width of the first opening 31 refers to the length of the first opening 31 along the interface between the carbon atom-containing film 20 and the mask 30 in the cross section of the mask 30.
- the cross section of the mask 30 refers to a cross section along a surface perpendicular to the longitudinal direction of the trench and along the thickness direction of the mask 30.
- the depth of the second opening 21 is the length from the interface between the carbon atom-containing film 20 and the mask 30 to the bottom surface of the second opening 21 in the cross section of the carbon atom-containing film 20. 20 along the thickness direction.
- Analytical instruments for confirming etching performance include SEM (scanning electron microscope) and TEM (transmission electron microscope), but analytical instruments are particularly limited as long as they are capable of confirming etching speed and occurrence of bowing. It's not a thing.
- a method for dry etching a carbon atom-containing film which comprises etching a carbon atom-containing film with an etching gas, wherein a mixed gas containing at least oxygen and sulfur dioxide is etched into the carbon atom-containing film and the carbon atom-containing film. a step of introducing a mixed gas into an etching chamber in which a structure including a mask having one opening is placed; a step of introducing a mixed gas into an etching chamber in which a structure including a mask having one opening; a plasma gas is generated by converting the mixed gas into plasma in the etching chamber; and the plasma gas is used in the etching process.
- [5] The method for dry etching a carbon atom-containing film according to any one of [1] to [4], wherein the mask contains an oxygen-containing material.
- [6] The method for dry etching a carbon atom-containing film according to [5], wherein the oxygen-containing material is silicon dioxide.
- [7] The method for dry etching a carbon atom-containing film according to any one of [1] to [6], wherein the thickness of the carbon atom-containing film is 10.0 ⁇ m or less.
- [8] The method for dry etching a carbon atom-containing film according to any one of [1] to [7], wherein the thickness of the mask is 0.01 times or more the thickness of the carbon atom-containing film.
- Example 1 First, a laminate consisting of a Si substrate as a support and an amorphous carbon film (thickness: about 700 nm) as a carbon atom-containing film was prepared. Then, on the amorphous carbon film of this laminate, a mask pattern as a first opening is formed by lithography, and a silicon dioxide film having a silicon film as an underlying layer (total thickness of silicon film and silicon dioxide film: approx. 50 nm) was placed as a mask, and a 20 mm square structure was prepared (see FIG. 1).
- the mask pattern of the mask is a trench pattern
- the trench design width (design width of the first opening) L1 is 80 nm
- the mask design width (design width of the actual part of the mask other than the first opening (trench pattern) is 80 nm.
- the width (width between the two)) was 80 nm (see FIG. 1).
- the structure obtained as described above was attached to a wafer having a diameter of 150 mm, and the wafer was placed on a processing stage in an etching chamber of an etching apparatus.
- an inductively coupled plasma (ICP) etching apparatus product name "NLD6000", manufactured by ULVAC) was used as the etching apparatus.
- dry etching of the amorphous carbon film was performed as follows. That is, the vacuum pressure in the etching chamber was set to 3.8 mTorr, the antenna power was set to 400 W, and the bias power was set to 100 W, and a mixed gas was introduced into the etching chamber at a flow rate of 50 mL/min to generate plasma gas as an etching gas. The amorphous carbon film was dry etched using this plasma gas to form a trench pattern as a second opening in the amorphous carbon film. In this way, dry etching of the carbon atom-containing film was completed.
- the mixed gas is composed of a mixed gas of oxygen and sulfur dioxide
- the etching time is 2 minutes and 30 seconds
- the content of sulfur dioxide in the total volume of oxygen and sulfur dioxide is 30% by volume (oxygen content
- the ratio was 70% by volume).
- the second opening was formed so that the etching depth L2 was 600 nm, that is, the aspect ratio was 7.5. Note that the aspect ratio was calculated using the following formula (1).
- Aspect ratio Etching depth L2 (nm) ⁇ Trench design width L1 (nm)...(1) After the etching was completed, the cross section of the amorphous carbon film was observed using a SEM (product name "SU8230", manufactured by Hitachi High-Tech Corporation), and the etching depth (L2) of the trench pattern formed in the amorphous carbon film was actually confirmed.
- the actual value of the etching depth L2 was 599 nm, and the etching rate was 240 nm/min as shown in Table 1. Note that the aspect ratio based on the actually measured value of the etching depth L2 was 7.5.
- Example 1 Dry etching of the amorphous carbon film was performed in the same manner as in Example 1 except that the mixed gas, etching time, and aspect ratio were as shown in Table 1. Then, the etching rate was calculated. The results are shown in Table 1. As shown in Table 1, the etching rate was 170 nm/min.
- the thickness of the amorphous carbon film of the laminate is approximately 2400 nm
- the thickness of the silicon dioxide film having a silicon film as a lower layer is approximately 350 nm
- the trench design width (the Using a mask with a mask design width (design width of one opening) L1 of 80 nm and a mask design width (design width of the actual part of the mask other than the first opening) W of 320 nm, the mixed gas, etching time, and aspect ratio are shown in Table 2.
- Dry etching of the amorphous carbon film was carried out in the same manner as in Example 1 except that the procedure was as shown in . Then, the etching rate was calculated. The results are shown in Table 2. As shown in Table 2, the etching rate was 154 nm/min.
- Example 2 Dry etching of the amorphous carbon film was performed in the same manner as in Example 2 except that the mixed gas, etching time, and aspect ratio were as shown in Table 2. Then, the etching rate was calculated. The results are shown in Table 2. As shown in Table 2, the etching rate was 107 nm/min.
- the thickness of the amorphous carbon film of the laminate is approximately 2400 nm
- the thickness of the silicon dioxide film having a silicon film as a lower layer is approximately 350 nm
- the trench design width (the Using a mask in which the design width (design width of one opening) L1 is 80 nm and the mask design width (design width of the actual part of the mask other than the first opening) W is 320 nm
- the mixed gas, etching time, and aspect ratio are shown in Table 3.
- Dry etching of the amorphous carbon film was carried out in the same manner as in Example 1 except that the procedure was as shown in . Then, the etching rate was calculated. The results are shown in Table 3. As shown in Table 3, the etching rate was 123 nm/min.
- Example 3 Dry etching of the amorphous carbon film was performed in the same manner as in Example 3 except that the mixed gas, etching time, and aspect ratio were as shown in Table 3. Then, the etching rate was calculated. The results are shown in Table 3. As shown in Table 3, the etching rate was 88 nm/min.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
Abstract
This dry etching method for a carbon atom-containing film involves using an etching gas to etch a carbon atom-containing film which contains carbon atoms. This method includes: a mixed gas introduction step in which a mixed gas containing at least oxygen and sulfur dioxide is introduced to an etching chamber in which disposed is a structure comprising a carbon atom-containing film, and a mask having a first opening portion; and an etching step in which the mixed gas is turned into a plasma inside the etching chamber to produce a plasma gas, and using this plasma gas as an etching gas, the carbon atom-containing film of the structure is etched to form a second opening portion. In the etching step, the second opening portion is formed so that an aspect ratio of 1-40 is achieved.
Description
本開示は、炭素原子含有膜のドライエッチング方法に関する。
The present disclosure relates to a method of dry etching a film containing carbon atoms.
半導体集積回路においては、素子の微細化および積層化が進んでおり、半導体集積回路の製造には、被エッチング膜をパターニングするためにフォトレジストなどのマスクを用いて、被エッチング膜に、開口が小さくアスペクト比の大きい深いホールやトレンチを高精度かつ高速に加工する技術が求められている。
このような技術として、例えば特許文献1に記載の方法が知られている。同公報では、酸素に硫化カルボニルを添加した混合ガスのプラズマガスを、炭素を含む炭素質層のエッチングガスとして用いることで、加工精度が向上することが報告されている。 In semiconductor integrated circuits, the miniaturization and lamination of elements are progressing, and in the manufacture of semiconductor integrated circuits, a mask such as a photoresist is used to pattern the film to be etched, and openings are created in the film to be etched. There is a need for technology that can process small, deep holes and trenches with large aspect ratios with high precision and high speed.
As such a technique, for example, the method described inPatent Document 1 is known. The publication reports that processing accuracy is improved by using a plasma gas, which is a mixed gas of oxygen and carbonyl sulfide, as an etching gas for a carbonaceous layer containing carbon.
このような技術として、例えば特許文献1に記載の方法が知られている。同公報では、酸素に硫化カルボニルを添加した混合ガスのプラズマガスを、炭素を含む炭素質層のエッチングガスとして用いることで、加工精度が向上することが報告されている。 In semiconductor integrated circuits, the miniaturization and lamination of elements are progressing, and in the manufacture of semiconductor integrated circuits, a mask such as a photoresist is used to pattern the film to be etched, and openings are created in the film to be etched. There is a need for technology that can process small, deep holes and trenches with large aspect ratios with high precision and high speed.
As such a technique, for example, the method described in
しかしながら、上記特許文献1に記載の方法は、炭素質層のエッチング速度の向上の点で改善の余地を有していた。
However, the method described in Patent Document 1 has room for improvement in terms of improving the etching rate of the carbonaceous layer.
本開示は、上記課題に鑑みてなされたものであり、炭素原子含有膜に対するエッチング速度を向上させることができる炭素原子含有膜のドライエッチング方法を提供することを目的とする。
The present disclosure has been made in view of the above problems, and aims to provide a method for dry etching a carbon atom-containing film that can improve the etching rate of the carbon atom-containing film.
本開示の発明者らは、エッチング後の炭素原子含有膜の開口部の異方性(アスペクト比)を制御しながら、炭素原子含有膜のエッチング時の酸素への添加ガスを、硫化カルボニルから二酸化硫黄にすることで、意外にも上記課題を解決し得ることを見出し、本開示に至った。
The inventors of the present disclosure have determined that while controlling the anisotropy (aspect ratio) of the opening of the carbon atom-containing film after etching, the gas added to oxygen during etching of the carbon atom-containing film is changed from carbonyl sulfide to carbonyl dioxide. It was unexpectedly discovered that the above problems could be solved by using sulfur, leading to the present disclosure.
すなわち、本開示の一側面は、炭素原子を含有する炭素原子含有膜をエッチングガスによりエッチングする炭素原子含有膜のドライエッチング方法であって、少なくとも酸素及び二酸化硫黄を含む混合ガスを、上記炭素原子含有膜、および、第1開口部を有するマスク、を備える構造体が配置されたエッチングチャンバーに導入する混合ガス導入工程と、上記混合ガスを上記エッチングチャンバー内でプラズマ化してプラズマガスを発生させ、このプラズマガスを用いて、上記構造体の上記炭素原子含有膜をエッチングして第2開口部を形成するエッチング工程とを含み、上記エッチング工程において、下記式(1)で定義されるアスペクト比が1~40となるように上記第2開口部を形成する、炭素原子含有膜のドライエッチング方法を提供する。
アスペクト比=L2/L1・・・(1)
(前記式(1)中、L1は、前記第1開口部の設計幅を表し、L2は、前記第2開口部の深さを表す。) That is, one aspect of the present disclosure is a dry etching method for a carbon atom-containing film, the method comprising etching a carbon atom-containing film with an etching gas, the method comprising using a mixed gas containing at least oxygen and sulfur dioxide as a carbon atom-containing film. a step of introducing a mixed gas into an etching chamber in which a structure including a containing film and a mask having a first opening is arranged, and generating plasma gas by converting the mixed gas into plasma in the etching chamber, and an etching step of etching the carbon atom-containing film of the structure using the plasma gas to form a second opening, and in the etching step, the aspect ratio defined by the following formula (1) is A method of dry etching a carbon atom-containing film is provided, in which the second opening is formed to have a diameter of 1 to 40.
Aspect ratio = L2/L1...(1)
(In the formula (1), L1 represents the design width of the first opening, and L2 represents the depth of the second opening.)
アスペクト比=L2/L1・・・(1)
(前記式(1)中、L1は、前記第1開口部の設計幅を表し、L2は、前記第2開口部の深さを表す。) That is, one aspect of the present disclosure is a dry etching method for a carbon atom-containing film, the method comprising etching a carbon atom-containing film with an etching gas, the method comprising using a mixed gas containing at least oxygen and sulfur dioxide as a carbon atom-containing film. a step of introducing a mixed gas into an etching chamber in which a structure including a containing film and a mask having a first opening is arranged, and generating plasma gas by converting the mixed gas into plasma in the etching chamber, and an etching step of etching the carbon atom-containing film of the structure using the plasma gas to form a second opening, and in the etching step, the aspect ratio defined by the following formula (1) is A method of dry etching a carbon atom-containing film is provided, in which the second opening is formed to have a diameter of 1 to 40.
Aspect ratio = L2/L1...(1)
(In the formula (1), L1 represents the design width of the first opening, and L2 represents the depth of the second opening.)
上記炭素原子含有膜のドライエッチング方法によれば、エッチング時のアスペクト比を上記範囲に制御しながら、酸素及び二酸化硫黄を含む混合ガスのプラズマガスで炭素原子含有膜をエッチングすることで、酸素及び硫化カルボニルを含む混合ガスのプラズマガスで炭素原子含有膜をエッチングする場合に比べて、炭素原子含有膜に対するエッチング速度を向上させることができる。
According to the dry etching method for a carbon atom-containing film, the carbon atom-containing film is etched with a plasma gas of a mixed gas containing oxygen and sulfur dioxide while controlling the aspect ratio during etching within the above range. The etching rate for a carbon atom-containing film can be improved compared to the case where a carbon atom-containing film is etched with a plasma gas of a mixed gas containing carbonyl sulfide.
上記アスペクト比は4~40であってもよい。
The aspect ratio may be 4 to 40.
上記第1開口部の形状はトレンチまたはホールであってもよい。
The shape of the first opening may be a trench or a hole.
上記炭素原子含有膜はアモルファスカーボンを含んでもよい。
The carbon atom-containing film may include amorphous carbon.
上記マスクは、酸素含有材料を含んでよい。
The mask may include an oxygen-containing material.
上記酸素含有材料は二酸化珪素であってよい。
上記炭素原子含有膜の厚さは、10.0μm以下であってよい。
上記マスクの厚さは、上記炭素原子含有膜の厚さの0.01倍以上であってよい。
上記マスクの厚さは、上記炭素原子含有膜の厚さの0.5倍以下であってよい。 The oxygen-containing material may be silicon dioxide.
The thickness of the carbon atom-containing film may be 10.0 μm or less.
The thickness of the mask may be 0.01 times or more the thickness of the carbon atom-containing film.
The thickness of the mask may be 0.5 times or less the thickness of the carbon atom-containing film.
上記炭素原子含有膜の厚さは、10.0μm以下であってよい。
上記マスクの厚さは、上記炭素原子含有膜の厚さの0.01倍以上であってよい。
上記マスクの厚さは、上記炭素原子含有膜の厚さの0.5倍以下であってよい。 The oxygen-containing material may be silicon dioxide.
The thickness of the carbon atom-containing film may be 10.0 μm or less.
The thickness of the mask may be 0.01 times or more the thickness of the carbon atom-containing film.
The thickness of the mask may be 0.5 times or less the thickness of the carbon atom-containing film.
上記混合ガスにおいて、上記二酸化硫黄及び酸素の合計体積中のニ酸化硫黄の含有率が20~40体積%であってよい。
In the mixed gas, the content of sulfur dioxide in the total volume of the sulfur dioxide and oxygen may be 20 to 40% by volume.
本開示によれば、炭素原子含有膜に対するエッチング速度を向上させることができる炭素原子含有膜のドライエッチング方法が提供される。
According to the present disclosure, a method for dry etching a carbon atom-containing film is provided that can improve the etching rate of the carbon atom-containing film.
以下、本開示の炭素原子含有膜のドライエッチング方法の実施形態について図1~図4を参照しながら詳細に説明する。ただし、本開示は以下の実施形態に限定されるものではない。
Hereinafter, embodiments of the method of dry etching a carbon atom-containing film of the present disclosure will be described in detail with reference to FIGS. 1 to 4. However, the present disclosure is not limited to the following embodiments.
図1は、本開示の炭素原子含有膜のドライエッチング方法のエッチング工程前の構造体の一例を示す断面図、図2は、図1の構造体が配置されたエッチングチャンバーを示す概略図、図3は、本開示の炭素原子含有膜のドライエッチング方法のエッチング工程後の構造体の一例を示す断面図、図4は、図3の炭素原子含有膜の部分拡大図である。
本開示の炭素原子含有膜のドライエッチング方法は、炭素原子を含有する炭素原子含有膜20をエッチングガスによりエッチングする方法であり、少なくとも酸素及び二酸化硫黄を含む混合ガスGを、炭素原子含有膜20、及び、第1開口部31を有するマスク30を備える構造体100が配置されたエッチングチャンバー1に導入する混合ガス導入工程と、混合ガスGをエッチングチャンバー1内でプラズマ化してプラズマガスを発生させ、このプラズマガスを用いて、構造体100の炭素原子含有膜20をエッチングして第2開口部21を形成するエッチング工程とを含む(図1~3参照)。そして、エッチング工程において、下記式(1)で定義されるアスペクト比が1~40となるように第2開口部21が形成される。
アスペクト比=L2/L1・・・(1)
(上記式(1)中、L1は、第1開口部31の設計幅を表し、L2は、第2開口部21の深さを表す。) FIG. 1 is a cross-sectional view showing an example of a structure before the etching process of the dry etching method for a carbon atom-containing film of the present disclosure, and FIG. 2 is a schematic diagram showing an etching chamber in which the structure shown in FIG. 1 is arranged. 3 is a cross-sectional view showing an example of a structure after the etching process of the dry etching method for a carbon atom-containing film of the present disclosure, and FIG. 4 is a partially enlarged view of the carbon atom-containing film in FIG.
The method of dry etching a carbon atom-containing film according to the present disclosure is a method of etching a carbon atom-containingfilm 20 containing carbon atoms with an etching gas, in which a mixed gas G containing at least oxygen and sulfur dioxide is applied to the carbon atom-containing film 20. , and a step of introducing a mixed gas into the etching chamber 1 in which the structure 100 including the mask 30 having the first opening 31 is arranged, and converting the mixed gas G into plasma in the etching chamber 1 to generate plasma gas. , and an etching step of etching the carbon atom-containing film 20 of the structure 100 using this plasma gas to form the second opening 21 (see FIGS. 1 to 3). Then, in the etching process, the second opening 21 is formed so that the aspect ratio defined by the following formula (1) is 1 to 40.
Aspect ratio = L2/L1...(1)
(In the above formula (1), L1 represents the design width of thefirst opening 31, and L2 represents the depth of the second opening 21.)
本開示の炭素原子含有膜のドライエッチング方法は、炭素原子を含有する炭素原子含有膜20をエッチングガスによりエッチングする方法であり、少なくとも酸素及び二酸化硫黄を含む混合ガスGを、炭素原子含有膜20、及び、第1開口部31を有するマスク30を備える構造体100が配置されたエッチングチャンバー1に導入する混合ガス導入工程と、混合ガスGをエッチングチャンバー1内でプラズマ化してプラズマガスを発生させ、このプラズマガスを用いて、構造体100の炭素原子含有膜20をエッチングして第2開口部21を形成するエッチング工程とを含む(図1~3参照)。そして、エッチング工程において、下記式(1)で定義されるアスペクト比が1~40となるように第2開口部21が形成される。
アスペクト比=L2/L1・・・(1)
(上記式(1)中、L1は、第1開口部31の設計幅を表し、L2は、第2開口部21の深さを表す。) FIG. 1 is a cross-sectional view showing an example of a structure before the etching process of the dry etching method for a carbon atom-containing film of the present disclosure, and FIG. 2 is a schematic diagram showing an etching chamber in which the structure shown in FIG. 1 is arranged. 3 is a cross-sectional view showing an example of a structure after the etching process of the dry etching method for a carbon atom-containing film of the present disclosure, and FIG. 4 is a partially enlarged view of the carbon atom-containing film in FIG.
The method of dry etching a carbon atom-containing film according to the present disclosure is a method of etching a carbon atom-containing
Aspect ratio = L2/L1...(1)
(In the above formula (1), L1 represents the design width of the
上記炭素原子含有膜のドライエッチング方法によれば、エッチング時のアスペクト比を上記の範囲に制御しながら、酸素及び二酸化硫黄を含む混合ガスGのプラズマガスで炭素原子含有膜20をエッチングすることで、酸素及び硫化カルボニルを含む混合ガスGのプラズマガスで炭素原子含有膜20をエッチングする場合に比べて、炭素原子含有膜20に対するエッチング速度を向上させることができる。
According to the dry etching method for a carbon atom-containing film, the carbon atom-containing film 20 is etched with a plasma gas of a mixed gas G containing oxygen and sulfur dioxide while controlling the aspect ratio during etching within the above range. The etching rate for the carbon atom-containing film 20 can be improved compared to the case where the carbon atom-containing film 20 is etched with a plasma gas of a mixed gas G containing oxygen and carbonyl sulfide.
以下、上記混合ガス導入工程及びエッチング工程について詳細に説明する。
Hereinafter, the mixed gas introduction step and etching step will be described in detail.
<混合ガス導入工程>
構造体100は、炭素原子を含有する炭素原子含有膜20、および、第1開口部31を有するマスク30を備える。構造体100は、図1に示すように、炭素原子含有膜20を支持する支持体10をさらに備えてもよい。この場合、炭素原子含有膜20は、マスク30と支持体10との間に配置される。また、構造体100は、支持体10と炭素原子含有膜20との間に中間膜(図示せず)をさらに備えてもよい。 <Mixed gas introduction process>
Thestructure 100 includes a carbon atom-containing film 20 containing carbon atoms, and a mask 30 having a first opening 31. The structure 100 may further include a support 10 that supports the carbon atom-containing film 20, as shown in FIG. In this case, the carbon atom-containing film 20 is placed between the mask 30 and the support 10. Further, the structure 100 may further include an intermediate film (not shown) between the support body 10 and the carbon atom-containing film 20.
構造体100は、炭素原子を含有する炭素原子含有膜20、および、第1開口部31を有するマスク30を備える。構造体100は、図1に示すように、炭素原子含有膜20を支持する支持体10をさらに備えてもよい。この場合、炭素原子含有膜20は、マスク30と支持体10との間に配置される。また、構造体100は、支持体10と炭素原子含有膜20との間に中間膜(図示せず)をさらに備えてもよい。 <Mixed gas introduction process>
The
(支持体)
支持体10は、炭素原子含有膜20を支持する部材であれば特に制限されるものではないが、支持体10を構成する材料としては、例えばシリコン、ゲルマニウムなどが挙げられる。中でも、シリコンが好ましい。この場合、バンドギャップが広いため高圧下における耐久性がより向上する。 (Support)
Although thesupport body 10 is not particularly limited as long as it is a member that supports the carbon atom-containing film 20, examples of the material constituting the support body 10 include silicon, germanium, and the like. Among them, silicon is preferred. In this case, since the bandgap is wide, durability under high pressure is further improved.
支持体10は、炭素原子含有膜20を支持する部材であれば特に制限されるものではないが、支持体10を構成する材料としては、例えばシリコン、ゲルマニウムなどが挙げられる。中でも、シリコンが好ましい。この場合、バンドギャップが広いため高圧下における耐久性がより向上する。 (Support)
Although the
支持体10の厚さは、特に制限されるものではないが、254μm以上であってよく、520μm以上であってもよい。支持体10の厚さが254μm以上であると、機械的強度がより向上する。また、支持体10の厚さは、795μm以下であってよく、725μm以下であってもよい。支持体10の厚さが795μm以下であると、構造体100を所定サイズのウエハーにカットし易くなる。
(中間膜)
中間膜としては、シリカ(SiO2)、窒化ケイ素(Si3N4)、アモルファスシリコン(a:Si)や多結晶シリコン(poly:Si)などが挙げられる。 The thickness of thesupport 10 is not particularly limited, but may be 254 μm or more, or 520 μm or more. When the thickness of the support 10 is 254 μm or more, the mechanical strength is further improved. Moreover, the thickness of the support body 10 may be 795 μm or less, or may be 725 μm or less. When the thickness of the support 10 is 795 μm or less, the structure 100 can be easily cut into wafers of a predetermined size.
(intermediate film)
Examples of the intermediate film include silica (SiO 2 ), silicon nitride (Si 3 N 4 ), amorphous silicon (a:Si), and polycrystalline silicon (poly:Si).
(中間膜)
中間膜としては、シリカ(SiO2)、窒化ケイ素(Si3N4)、アモルファスシリコン(a:Si)や多結晶シリコン(poly:Si)などが挙げられる。 The thickness of the
(intermediate film)
Examples of the intermediate film include silica (SiO 2 ), silicon nitride (Si 3 N 4 ), amorphous silicon (a:Si), and polycrystalline silicon (poly:Si).
(炭素原子含有膜)
炭素原子含有膜20は、炭素原子を含有する膜であれば特に制限されるものではない。炭素原子含有膜20は、アモルファスカーボン等の無機系カーボン膜でよく、レジスト膜やポリイミド系膜等の有機高分子膜であってもよい。炭素原子含有膜20がアモルファスカーボンであると、炭素原子含有膜20にパターンを転写する際にエッチング選択比(すなわちマスクのエッチング速度Vmに対する炭素原子含有膜のエッチング速度Vcの比)を大きくすることができる。 (carbon atom-containing film)
The carbon atom-containingfilm 20 is not particularly limited as long as it contains carbon atoms. The carbon atom-containing film 20 may be an inorganic carbon film such as amorphous carbon, or may be an organic polymer film such as a resist film or a polyimide film. When the carbon atom-containing film 20 is amorphous carbon, the etching selectivity (i.e., the ratio of the etching speed Vc of the carbon atom-containing film to the etching speed Vm of the mask) is increased when transferring the pattern to the carbon atom-containing film 20. Can be done.
炭素原子含有膜20は、炭素原子を含有する膜であれば特に制限されるものではない。炭素原子含有膜20は、アモルファスカーボン等の無機系カーボン膜でよく、レジスト膜やポリイミド系膜等の有機高分子膜であってもよい。炭素原子含有膜20がアモルファスカーボンであると、炭素原子含有膜20にパターンを転写する際にエッチング選択比(すなわちマスクのエッチング速度Vmに対する炭素原子含有膜のエッチング速度Vcの比)を大きくすることができる。 (carbon atom-containing film)
The carbon atom-containing
炭素原子含有膜20の厚さは、特に制限されるものではないが、0.1μm以上であってよく、0.5μm以上であってもよい。炭素原子含有膜20の厚さが0.1μm以上であると、炭素原子含有膜20の下層に中間膜が被エッチング層として積層されていた場合、炭素原子含有膜20が被エッチング層のマスクとしての機能を示すことが可能となる。また、炭素原子含有膜20の厚さは、10.0μm以下であってよく、5.0μm以下であってもよい。炭素原子含有膜20の厚さが10.0μm以下であると、エッチング後の炭素原子含有膜20が倒れ難くなる。
The thickness of the carbon atom-containing film 20 is not particularly limited, but may be 0.1 μm or more, or 0.5 μm or more. When the thickness of the carbon atom-containing film 20 is 0.1 μm or more, if an intermediate film is laminated as a layer to be etched under the carbon atom-containing film 20, the carbon atom-containing film 20 can act as a mask for the layer to be etched. It becomes possible to demonstrate the functions of Further, the thickness of the carbon atom-containing film 20 may be 10.0 μm or less, or may be 5.0 μm or less. When the thickness of the carbon atom-containing film 20 is 10.0 μm or less, the carbon atom-containing film 20 becomes difficult to collapse after etching.
(マスク)
マスク30は、エッチングガスを通過させて炭素原子含有膜20に導く第1開口部31を有する。第1開口部31は、トレンチでよく、ホールでもよい。マスク30は、炭素原子含有膜20よりもエッチングガスによるエッチング速度が低いものであることが好ましく、このようなマスク30としては、酸素含有材料を含むことが好ましい。この場合、エッチングガスによるエッチング速度が低くなる。酸素含有材料としては、二酸化珪素、酸窒化珪素などが挙げられる。中でも、経済性の観点から、二酸化珪素が好ましい。 (mask)
Themask 30 has a first opening 31 that allows the etching gas to pass through and guide it to the carbon atom-containing film 20 . The first opening 31 may be a trench or a hole. It is preferable that the mask 30 has a lower etching rate with an etching gas than the carbon atom-containing film 20, and such a mask 30 preferably contains an oxygen-containing material. In this case, the etching rate by the etching gas becomes low. Examples of the oxygen-containing material include silicon dioxide and silicon oxynitride. Among them, silicon dioxide is preferred from the viewpoint of economy.
マスク30は、エッチングガスを通過させて炭素原子含有膜20に導く第1開口部31を有する。第1開口部31は、トレンチでよく、ホールでもよい。マスク30は、炭素原子含有膜20よりもエッチングガスによるエッチング速度が低いものであることが好ましく、このようなマスク30としては、酸素含有材料を含むことが好ましい。この場合、エッチングガスによるエッチング速度が低くなる。酸素含有材料としては、二酸化珪素、酸窒化珪素などが挙げられる。中でも、経済性の観点から、二酸化珪素が好ましい。 (mask)
The
マスク30の厚さは、特に制限されるものではないが、炭素原子含有膜20の厚さの0.01倍以上であってよく、0.05倍以上であってもよい。マスク30の厚さが炭素原子含有膜20の厚さの0.01倍以上であると、炭素原子含有膜20の異方性エッチングが可能となる。また、マスク30の厚さは、炭素原子含有膜20の厚さの0.5倍以下であってよく、0.2倍以下であってもよい。マスク30の厚さが炭素原子含有膜20の厚さの0.5倍以下であると、エッチング後において炭素原子含有膜20が倒れ難くなる。
The thickness of the mask 30 is not particularly limited, but may be 0.01 times or more, or 0.05 times or more, the thickness of the carbon atom-containing film 20. When the thickness of the mask 30 is 0.01 times or more the thickness of the carbon atom-containing film 20, anisotropic etching of the carbon atom-containing film 20 becomes possible. Further, the thickness of the mask 30 may be 0.5 times or less, or 0.2 times or less, the thickness of the carbon atom-containing film 20. When the thickness of the mask 30 is 0.5 times or less than the thickness of the carbon atom-containing film 20, the carbon atom-containing film 20 becomes difficult to collapse after etching.
(エッチングチャンバー)
エッチングチャンバー1は、酸素及び二酸化硫黄を含む混合ガスGがプラズマ化されるプラズマガスにより炭素原子含有膜20のエッチングが行われる容器であり、エッチング装置の一部を構成する。
エッチング装置としては、マイクロ波ECRプラズマ方式のエッチング装置、容量結合型プラズマ方式(CCP)のエッチング装置、誘導結合型プラズマ方式(ICP)のエッチング装置などが挙げられるが、エッチング装置はこれらに限定されるものではない。 (etching chamber)
Theetching chamber 1 is a container in which the carbon atom-containing film 20 is etched by a plasma gas in which a mixed gas G containing oxygen and sulfur dioxide is turned into plasma, and constitutes a part of an etching apparatus.
Examples of etching equipment include microwave ECR plasma etching equipment, capacitively coupled plasma (CCP) etching equipment, and inductively coupled plasma (ICP) etching equipment, but etching equipment is not limited to these. It's not something you can do.
エッチングチャンバー1は、酸素及び二酸化硫黄を含む混合ガスGがプラズマ化されるプラズマガスにより炭素原子含有膜20のエッチングが行われる容器であり、エッチング装置の一部を構成する。
エッチング装置としては、マイクロ波ECRプラズマ方式のエッチング装置、容量結合型プラズマ方式(CCP)のエッチング装置、誘導結合型プラズマ方式(ICP)のエッチング装置などが挙げられるが、エッチング装置はこれらに限定されるものではない。 (etching chamber)
The
Examples of etching equipment include microwave ECR plasma etching equipment, capacitively coupled plasma (CCP) etching equipment, and inductively coupled plasma (ICP) etching equipment, but etching equipment is not limited to these. It's not something you can do.
(混合ガス)
混合ガスGは、酸素及び二酸化硫黄を含む。酸素及び二酸化硫黄の合計体積中の二酸化硫黄の含有率は0体積%より大きければ特に制限されるものではないが、20~40体積%であってよく、25~35体積%であってもよい。
酸素及び二酸化硫黄の合計体積中の二酸化硫黄の含有率が20~40体積%の範囲内にあると、炭素原子含有膜20に対するエッチング速度をより効果的に向上させることができる。 (mixed gas)
Mixed gas G contains oxygen and sulfur dioxide. The content of sulfur dioxide in the total volume of oxygen and sulfur dioxide is not particularly limited as long as it is larger than 0% by volume, but may be 20 to 40% by volume, or may be 25 to 35% by volume. .
When the content of sulfur dioxide in the total volume of oxygen and sulfur dioxide is within the range of 20 to 40% by volume, the etching rate for the carbon atom-containingfilm 20 can be more effectively improved.
混合ガスGは、酸素及び二酸化硫黄を含む。酸素及び二酸化硫黄の合計体積中の二酸化硫黄の含有率は0体積%より大きければ特に制限されるものではないが、20~40体積%であってよく、25~35体積%であってもよい。
酸素及び二酸化硫黄の合計体積中の二酸化硫黄の含有率が20~40体積%の範囲内にあると、炭素原子含有膜20に対するエッチング速度をより効果的に向上させることができる。 (mixed gas)
Mixed gas G contains oxygen and sulfur dioxide. The content of sulfur dioxide in the total volume of oxygen and sulfur dioxide is not particularly limited as long as it is larger than 0% by volume, but may be 20 to 40% by volume, or may be 25 to 35% by volume. .
When the content of sulfur dioxide in the total volume of oxygen and sulfur dioxide is within the range of 20 to 40% by volume, the etching rate for the carbon atom-containing
エッチングチャンバー1に導入する際の上記混合ガスGの流量は、0.1mL/min以上であってよく、1mL/min以上であってもよく、10mL/min以上であってもよい。混合ガスGの流量が1mL/min以上であると、炭素原子含有膜20のエッチングに必要なイオンやラジカルを効率的に生成することが可能となる。
エッチングチャンバー1に導入する際の上記混合ガスGの流量は、10000mL/min以下であってよく、1000mL/min以下であってもよく、100mL/min以下であってもよい。混合ガスGの流量が10000mL/min以下であると、エッチング装置の真空度を低圧で保持し易くなる。 The flow rate of the mixed gas G when introduced into theetching chamber 1 may be 0.1 mL/min or more, 1 mL/min or more, or 10 mL/min or more. When the flow rate of the mixed gas G is 1 mL/min or more, it becomes possible to efficiently generate ions and radicals necessary for etching the carbon atom-containing film 20.
The flow rate of the mixed gas G when introduced into theetching chamber 1 may be 10000 mL/min or less, 1000 mL/min or less, or 100 mL/min or less. When the flow rate of the mixed gas G is 10,000 mL/min or less, the degree of vacuum in the etching apparatus can be easily maintained at a low pressure.
エッチングチャンバー1に導入する際の上記混合ガスGの流量は、10000mL/min以下であってよく、1000mL/min以下であってもよく、100mL/min以下であってもよい。混合ガスGの流量が10000mL/min以下であると、エッチング装置の真空度を低圧で保持し易くなる。 The flow rate of the mixed gas G when introduced into the
The flow rate of the mixed gas G when introduced into the
<エッチング工程>
エッチング工程は、混合ガスGをエッチングチャンバー1内でプラズマ化してプラズマガスを発生させ、このプラズマガスを用いて、構造体100の炭素原子含有膜20をエッチングして第2開口部21を形成する工程である。エッチング工程により構造体100は構造体200となる。 <Etching process>
In the etching process, the mixed gas G is turned into plasma in theetching chamber 1 to generate plasma gas, and the carbon atom-containing film 20 of the structure 100 is etched using this plasma gas to form the second opening 21. It is a process. The structure 100 becomes a structure 200 through the etching process.
エッチング工程は、混合ガスGをエッチングチャンバー1内でプラズマ化してプラズマガスを発生させ、このプラズマガスを用いて、構造体100の炭素原子含有膜20をエッチングして第2開口部21を形成する工程である。エッチング工程により構造体100は構造体200となる。 <Etching process>
In the etching process, the mixed gas G is turned into plasma in the
(エッチングチャンバー内の圧力)
ドライエッチングを行う際のエッチングチャンバー1内の圧力は、0.1mTorr~100Torrであってよく、0.1mTorr~100mTorrであってもよい。エッチングチャンバー1内の圧力が0.1mTorr~100mTorrであると、圧力が低いため、第2開口部21に対し優れた形状制御を行うことが可能となる。 (Pressure inside the etching chamber)
The pressure inside theetching chamber 1 during dry etching may be between 0.1 mTorr and 100 mTorr, and may also be between 0.1 mTorr and 100 mTorr. When the pressure inside the etching chamber 1 is between 0.1 mTorr and 100 mTorr, the pressure is low, so it becomes possible to perform excellent shape control on the second opening 21.
ドライエッチングを行う際のエッチングチャンバー1内の圧力は、0.1mTorr~100Torrであってよく、0.1mTorr~100mTorrであってもよい。エッチングチャンバー1内の圧力が0.1mTorr~100mTorrであると、圧力が低いため、第2開口部21に対し優れた形状制御を行うことが可能となる。 (Pressure inside the etching chamber)
The pressure inside the
(アンテナ電力)
エッチング装置として、誘導結合型プラズマ方式(ICP)のエッチング装置が用いられる場合、アンテナ電力は、特に制限されるものではないが、50~1000Wであってよく、100~800Wであってもよく、200~600Wであってもよい。アンテナ電力を50~1000Wとすることで、炭素原子含有膜20を高速かつ異方的にエッチングできる。 (antenna power)
When an inductively coupled plasma (ICP) etching device is used as the etching device, the antenna power is not particularly limited, but may be 50 to 1000 W, or 100 to 800 W. It may be 200 to 600W. By setting the antenna power to 50 to 1000 W, the carbon atom-containingfilm 20 can be etched at high speed and anisotropically.
エッチング装置として、誘導結合型プラズマ方式(ICP)のエッチング装置が用いられる場合、アンテナ電力は、特に制限されるものではないが、50~1000Wであってよく、100~800Wであってもよく、200~600Wであってもよい。アンテナ電力を50~1000Wとすることで、炭素原子含有膜20を高速かつ異方的にエッチングできる。 (antenna power)
When an inductively coupled plasma (ICP) etching device is used as the etching device, the antenna power is not particularly limited, but may be 50 to 1000 W, or 100 to 800 W. It may be 200 to 600W. By setting the antenna power to 50 to 1000 W, the carbon atom-containing
(バイアス電力)
エッチング装置として、誘導結合型プラズマ方式(ICP)のエッチング装置が用いられる場合、バイアス電力は、特に制限されるものではないが、10W以上であってよく、25W以上であってもよく、50W以上であってもよい。バイアス電力を10W以上とすることで、アスペクト比を大きくしやすくなる。
また、バイアス電力は、500W以下であってよく、300W以下であってもよく、200W以下であってもよい。バイアス電力を500W以下とすることで、ドライエッチングを適切に制御し易くなる。 (bias power)
When an inductively coupled plasma (ICP) etching device is used as the etching device, the bias power is not particularly limited, but may be 10 W or more, 25 W or more, 50 W or more. It may be. By setting the bias power to 10 W or more, it becomes easier to increase the aspect ratio.
Further, the bias power may be 500W or less, 300W or less, or 200W or less. By setting the bias power to 500 W or less, it becomes easier to appropriately control dry etching.
エッチング装置として、誘導結合型プラズマ方式(ICP)のエッチング装置が用いられる場合、バイアス電力は、特に制限されるものではないが、10W以上であってよく、25W以上であってもよく、50W以上であってもよい。バイアス電力を10W以上とすることで、アスペクト比を大きくしやすくなる。
また、バイアス電力は、500W以下であってよく、300W以下であってもよく、200W以下であってもよい。バイアス電力を500W以下とすることで、ドライエッチングを適切に制御し易くなる。 (bias power)
When an inductively coupled plasma (ICP) etching device is used as the etching device, the bias power is not particularly limited, but may be 10 W or more, 25 W or more, 50 W or more. It may be. By setting the bias power to 10 W or more, it becomes easier to increase the aspect ratio.
Further, the bias power may be 500W or less, 300W or less, or 200W or less. By setting the bias power to 500 W or less, it becomes easier to appropriately control dry etching.
(第2開口部)
エッチング後の炭素原子含有膜20の第2開口部21の形状は、第1開口部31の形状と同一である。すなわち、第1開口部31がトレンチである場合には、第2開口部21もトレンチであり、第1開口部31がホールである場合には第2開口部21もホールである。 (Second opening)
The shape of thesecond opening 21 of the carbon atom-containing film 20 after etching is the same as the shape of the first opening 31. That is, when the first opening 31 is a trench, the second opening 21 is also a trench, and when the first opening 31 is a hole, the second opening 21 is also a hole.
エッチング後の炭素原子含有膜20の第2開口部21の形状は、第1開口部31の形状と同一である。すなわち、第1開口部31がトレンチである場合には、第2開口部21もトレンチであり、第1開口部31がホールである場合には第2開口部21もホールである。 (Second opening)
The shape of the
エッチング後のアスペクト比は1~40であれば特に限定されるものではないが、4~40であってもよく、5~40であってもよく、5~25であってもよい。
アスペクト比が40以下であることで、酸素及び硫化カルボニルを含む混合ガスのプラズマガスで炭素原子含有膜20をエッチングする場合に比べて、炭素原子含有膜20に対するエッチング速度を向上させることができる。なお、炭素原子含有膜20に対してマスク30と反対側に層(下層)が設けられている場合、アスペクト比が1以上であることで、例えば炭素原子含有膜20が下層のエッチング時にマスクとして効果を示し易くなる。下層としては、シリカ(SiO2)、窒化ケイ素(Si3N4)、アモルファスシリコン(a:Si)や多結晶シリコン(poly:Si)などが挙げられる。 The aspect ratio after etching is not particularly limited as long as it is 1 to 40, but may be 4 to 40, 5 to 40, or 5 to 25.
When the aspect ratio is 40 or less, the etching rate for the carbon atom-containingfilm 20 can be improved compared to the case where the carbon atom-containing film 20 is etched with a plasma gas of a mixed gas containing oxygen and carbonyl sulfide. Note that when a layer (lower layer) is provided on the opposite side of the mask 30 to the carbon atom-containing film 20, the aspect ratio is 1 or more, so that the carbon atom-containing film 20 can be used as a mask during etching of the lower layer, for example. It becomes easier to show the effect. Examples of the lower layer include silica (SiO 2 ), silicon nitride (Si 3 N 4 ), amorphous silicon (a:Si), and polycrystalline silicon (poly:Si).
アスペクト比が40以下であることで、酸素及び硫化カルボニルを含む混合ガスのプラズマガスで炭素原子含有膜20をエッチングする場合に比べて、炭素原子含有膜20に対するエッチング速度を向上させることができる。なお、炭素原子含有膜20に対してマスク30と反対側に層(下層)が設けられている場合、アスペクト比が1以上であることで、例えば炭素原子含有膜20が下層のエッチング時にマスクとして効果を示し易くなる。下層としては、シリカ(SiO2)、窒化ケイ素(Si3N4)、アモルファスシリコン(a:Si)や多結晶シリコン(poly:Si)などが挙げられる。 The aspect ratio after etching is not particularly limited as long as it is 1 to 40, but may be 4 to 40, 5 to 40, or 5 to 25.
When the aspect ratio is 40 or less, the etching rate for the carbon atom-containing
ここで、アスペクト比とは、上記式(1)で表される。すなわち、アスペクト比とは、第1開口部31の設計幅(L1)に対する第2開口部21の深さ(L2)の比(L2/L1)をいう(図4参照)。第1開口部31の設計幅とは、マスク30の断面における炭素原子含有膜20とマスク30との界面に沿った第1開口部31の長さをいう。ここで、マスク30の第1開口部31がトレンチパターンである場合には、マスク30の断面は、トレンチの長手方向に直交しかつマスク30の厚さ方向に沿った面に沿った断面をいう。第2開口部21の深さとは、炭素原子含有膜20の断面において、炭素原子含有膜20とマスク30との界面から第2開口部21の底面までの長さであって、炭素原子含有膜20の厚さ方向に沿った長さをいう。
Here, the aspect ratio is expressed by the above formula (1). That is, the aspect ratio refers to the ratio (L2/L1) of the depth (L2) of the second opening 21 to the designed width (L1) of the first opening 31 (see FIG. 4). The design width of the first opening 31 refers to the length of the first opening 31 along the interface between the carbon atom-containing film 20 and the mask 30 in the cross section of the mask 30. Here, when the first opening 31 of the mask 30 is a trench pattern, the cross section of the mask 30 refers to a cross section along a surface perpendicular to the longitudinal direction of the trench and along the thickness direction of the mask 30. . The depth of the second opening 21 is the length from the interface between the carbon atom-containing film 20 and the mask 30 to the bottom surface of the second opening 21 in the cross section of the carbon atom-containing film 20. 20 along the thickness direction.
エッチング性能を確認する分析機器としては、SEM(走査電子顕微鏡)及びTEM(透過電子顕微鏡)が挙げられるが、分析機器は、エッチング速度やボーイングの発生状況を確認できる装置であれば特に限定されるものではない。
Analytical instruments for confirming etching performance include SEM (scanning electron microscope) and TEM (transmission electron microscope), but analytical instruments are particularly limited as long as they are capable of confirming etching speed and occurrence of bowing. It's not a thing.
なお、本開示の要旨は以下のとおりである。
[1]炭素原子を含有する炭素原子含有膜をエッチングガスによりエッチングする炭素原子含有膜のドライエッチング方法であって、少なくとも酸素及び二酸化硫黄を含む混合ガスを、前記炭素原子含有膜、および、第1開口部を有するマスク、を備える構造体が配置されたエッチングチャンバーに導入する混合ガス導入工程と、前記混合ガスを前記エッチングチャンバー内でプラズマ化してプラズマガスを発生させ、このプラズマガスを前記エッチングガスとして用いて、前記構造体の前記炭素原子含有膜をエッチングして第2開口部を形成するエッチング工程とを含み、前記エッチング工程において、アスペクト比が1~40となるように前記第2開口部を形成する、炭素原子含有膜のドライエッチング方法。
[2]前記アスペクト比が4~40である、[1]に記載の炭素原子含有膜のドライエッチング方法。
[3]前記第1開口部の形状がトレンチまたはホールである、[1]又は[2]に記載の炭素原子含有膜のドライエッチング方法。
[4]前記炭素原子含有膜がアモルファスカーボンを含む、[1]~[3]のいずれかに記載の炭素原子含有膜のドライエッチング方法。
[5]前記マスクが酸素含有材料を含む、[1]~[4]のいずれかに記載の炭素原子含有膜のドライエッチング方法。
[6]前記酸素含有材料が二酸化珪素である、[5]に記載の炭素原子含有膜のドライエッチング方法。
[7]前記炭素原子含有膜の厚さが、10.0μm以下である、[1]~[6]のいずれかに記載の炭素原子含有膜のドライエッチング方法。
[8]前記マスクの厚さが、前記炭素原子含有膜の厚さの0.01倍以上である、[1]~[7]のいずれかに記載の炭素原子含有膜のドライエッチング方法。
[9]前記マスクの厚さが、前記炭素原子含有膜の厚さの0.5倍以下である、[1]~[8]のいずれかに記載の炭素原子含有膜のドライエッチング方法。
[10]前記混合ガスにおいて、前記二酸化硫黄及び前記酸素の合計体積中の前記ニ酸化硫黄の含有率が20~40体積%である、[1]~[9]のいずれかに記載の炭素原子含有膜のドライエッチング方法。 The gist of the present disclosure is as follows.
[1] A method for dry etching a carbon atom-containing film, which comprises etching a carbon atom-containing film with an etching gas, wherein a mixed gas containing at least oxygen and sulfur dioxide is etched into the carbon atom-containing film and the carbon atom-containing film. a step of introducing a mixed gas into an etching chamber in which a structure including a mask having one opening is placed; a step of introducing a mixed gas into an etching chamber in which a structure including a mask having one opening; a plasma gas is generated by converting the mixed gas into plasma in the etching chamber; and the plasma gas is used in the etching process. an etching step of etching the carbon atom-containing film of the structure using a gas to form a second opening; A method of dry etching a carbon atom-containing film to form a part.
[2] The method for dry etching a carbon atom-containing film according to [1], wherein the aspect ratio is 4 to 40.
[3] The method of dry etching a carbon atom-containing film according to [1] or [2], wherein the first opening has a shape of a trench or a hole.
[4] The method of dry etching a carbon atom-containing film according to any one of [1] to [3], wherein the carbon atom-containing film contains amorphous carbon.
[5] The method for dry etching a carbon atom-containing film according to any one of [1] to [4], wherein the mask contains an oxygen-containing material.
[6] The method for dry etching a carbon atom-containing film according to [5], wherein the oxygen-containing material is silicon dioxide.
[7] The method for dry etching a carbon atom-containing film according to any one of [1] to [6], wherein the thickness of the carbon atom-containing film is 10.0 μm or less.
[8] The method for dry etching a carbon atom-containing film according to any one of [1] to [7], wherein the thickness of the mask is 0.01 times or more the thickness of the carbon atom-containing film.
[9] The method for dry etching a carbon atom-containing film according to any one of [1] to [8], wherein the thickness of the mask is 0.5 times or less the thickness of the carbon atom-containing film.
[10] The carbon atom according to any one of [1] to [9], wherein in the mixed gas, the content of the sulfur dioxide in the total volume of the sulfur dioxide and the oxygen is 20 to 40% by volume. Dry etching method for containing film.
[1]炭素原子を含有する炭素原子含有膜をエッチングガスによりエッチングする炭素原子含有膜のドライエッチング方法であって、少なくとも酸素及び二酸化硫黄を含む混合ガスを、前記炭素原子含有膜、および、第1開口部を有するマスク、を備える構造体が配置されたエッチングチャンバーに導入する混合ガス導入工程と、前記混合ガスを前記エッチングチャンバー内でプラズマ化してプラズマガスを発生させ、このプラズマガスを前記エッチングガスとして用いて、前記構造体の前記炭素原子含有膜をエッチングして第2開口部を形成するエッチング工程とを含み、前記エッチング工程において、アスペクト比が1~40となるように前記第2開口部を形成する、炭素原子含有膜のドライエッチング方法。
[2]前記アスペクト比が4~40である、[1]に記載の炭素原子含有膜のドライエッチング方法。
[3]前記第1開口部の形状がトレンチまたはホールである、[1]又は[2]に記載の炭素原子含有膜のドライエッチング方法。
[4]前記炭素原子含有膜がアモルファスカーボンを含む、[1]~[3]のいずれかに記載の炭素原子含有膜のドライエッチング方法。
[5]前記マスクが酸素含有材料を含む、[1]~[4]のいずれかに記載の炭素原子含有膜のドライエッチング方法。
[6]前記酸素含有材料が二酸化珪素である、[5]に記載の炭素原子含有膜のドライエッチング方法。
[7]前記炭素原子含有膜の厚さが、10.0μm以下である、[1]~[6]のいずれかに記載の炭素原子含有膜のドライエッチング方法。
[8]前記マスクの厚さが、前記炭素原子含有膜の厚さの0.01倍以上である、[1]~[7]のいずれかに記載の炭素原子含有膜のドライエッチング方法。
[9]前記マスクの厚さが、前記炭素原子含有膜の厚さの0.5倍以下である、[1]~[8]のいずれかに記載の炭素原子含有膜のドライエッチング方法。
[10]前記混合ガスにおいて、前記二酸化硫黄及び前記酸素の合計体積中の前記ニ酸化硫黄の含有率が20~40体積%である、[1]~[9]のいずれかに記載の炭素原子含有膜のドライエッチング方法。 The gist of the present disclosure is as follows.
[1] A method for dry etching a carbon atom-containing film, which comprises etching a carbon atom-containing film with an etching gas, wherein a mixed gas containing at least oxygen and sulfur dioxide is etched into the carbon atom-containing film and the carbon atom-containing film. a step of introducing a mixed gas into an etching chamber in which a structure including a mask having one opening is placed; a step of introducing a mixed gas into an etching chamber in which a structure including a mask having one opening; a plasma gas is generated by converting the mixed gas into plasma in the etching chamber; and the plasma gas is used in the etching process. an etching step of etching the carbon atom-containing film of the structure using a gas to form a second opening; A method of dry etching a carbon atom-containing film to form a part.
[2] The method for dry etching a carbon atom-containing film according to [1], wherein the aspect ratio is 4 to 40.
[3] The method of dry etching a carbon atom-containing film according to [1] or [2], wherein the first opening has a shape of a trench or a hole.
[4] The method of dry etching a carbon atom-containing film according to any one of [1] to [3], wherein the carbon atom-containing film contains amorphous carbon.
[5] The method for dry etching a carbon atom-containing film according to any one of [1] to [4], wherein the mask contains an oxygen-containing material.
[6] The method for dry etching a carbon atom-containing film according to [5], wherein the oxygen-containing material is silicon dioxide.
[7] The method for dry etching a carbon atom-containing film according to any one of [1] to [6], wherein the thickness of the carbon atom-containing film is 10.0 μm or less.
[8] The method for dry etching a carbon atom-containing film according to any one of [1] to [7], wherein the thickness of the mask is 0.01 times or more the thickness of the carbon atom-containing film.
[9] The method for dry etching a carbon atom-containing film according to any one of [1] to [8], wherein the thickness of the mask is 0.5 times or less the thickness of the carbon atom-containing film.
[10] The carbon atom according to any one of [1] to [9], wherein in the mixed gas, the content of the sulfur dioxide in the total volume of the sulfur dioxide and the oxygen is 20 to 40% by volume. Dry etching method for containing film.
以下、実施例および比較例を挙げて本開示について更に具体的に説明する。ただし、本開示は以下の実施例に限定されるものではない。
Hereinafter, the present disclosure will be described in more detail with reference to Examples and Comparative Examples. However, the present disclosure is not limited to the following examples.
[実施例1]
まず、支持体としてのSi基板、及び、炭素原子含有膜としてのアモルファスカーボン膜(厚さ:約700nm)からなる積層体を用意した。そして、この積層体のアモルファスカーボン膜の上に、リソグラフィーで第1開口部としてのマスクパターンが形成された、下層に珪素膜を有する二酸化珪素膜(珪素膜及び二酸化珪素膜の合計厚さ:約50nm)をマスクとして配置し、20mm角の構造体を用意した(図1参照)。このとき、マスクのマスクパターンはトレンチパターンであり、トレンチ設計幅(第1開口部の設計幅)L1は80nm、マスク設計幅(マスクのうち第1開口部以外の実体部分の設計幅(トレンチパターン同士間の幅))Wは80nmとした(図1参照)。そして、直径150mmのウエハーに、上記のようにして得られた構造体を貼り付けて、エッチング装置のエッチングチャンバー内にある処理ステージ上に設置した。このとき、エッチング装置としては、誘導結合型プラズマ方式(ICP)のエッチング装置(製品名「NLD6000」、アルバック社製)を用いた。
そして、以下のようにしてアモルファスカーボン膜のドライエッチングを実施した。すなわち、エッチングチャンバー内の真空圧を3.8mTorr、アンテナ電力を400W、バイアス電力を100Wに設定し、エッチングチャンバー内に混合ガスを50mL/minの流量で導入してプラズマガスをエッチングガスとして発生させ、このプラズマガスによりアモルファスカーボン膜のドライエッチングを行い、アモルファスカーボン膜に第2開口部としてのトレンチパターンを形成した。こうして炭素原子含有膜のドライエッチングが完了した。
このとき、混合ガスは、酸素及び二酸化硫黄の混合ガスで構成され、エッチング時間は2分30秒であり、酸素及び二酸化硫黄の合計体積中の二酸化硫黄の含有率は30体積%(酸素の含有率は70体積%)とした。また、第2開口部は、エッチング深さL2が600nmとなるように、すなわちアスペクト比が7.5となるように形成した。なお、アスペクト比は下式(1)より算出した。
アスペクト比=エッチング深さL2(nm)÷トレンチ設計幅L1(nm)・・・(1)
エッチング完了後、アモルファスカーボン膜の断面をSEM(製品名「SU8230」、日立ハイテク社製)で観察し、アモルファスカーボン膜に形成されたトレンチパターンのエッチング深さ(L2)を実際に確認したところ、エッチング深さL2の実測値は599nmであり、エッチング速度は、表1に示すとおり240nm/minであった。なお、エッチング深さL2の実測値に基づくアスペクト比は7.5であった。
また、アモルファスカーボン膜の断面をSEMで観察する際、第2開口部を確認したところ、第2開口部の内壁面は、あまりエッチングされておらず、ボーイングの発生が抑制されており、異方性の高いエッチングが進行していることが分かった。 [Example 1]
First, a laminate consisting of a Si substrate as a support and an amorphous carbon film (thickness: about 700 nm) as a carbon atom-containing film was prepared. Then, on the amorphous carbon film of this laminate, a mask pattern as a first opening is formed by lithography, and a silicon dioxide film having a silicon film as an underlying layer (total thickness of silicon film and silicon dioxide film: approx. 50 nm) was placed as a mask, and a 20 mm square structure was prepared (see FIG. 1). At this time, the mask pattern of the mask is a trench pattern, the trench design width (design width of the first opening) L1 is 80 nm, and the mask design width (design width of the actual part of the mask other than the first opening (trench pattern) is 80 nm. The width (width between the two)) was 80 nm (see FIG. 1). Then, the structure obtained as described above was attached to a wafer having a diameter of 150 mm, and the wafer was placed on a processing stage in an etching chamber of an etching apparatus. At this time, an inductively coupled plasma (ICP) etching apparatus (product name "NLD6000", manufactured by ULVAC) was used as the etching apparatus.
Then, dry etching of the amorphous carbon film was performed as follows. That is, the vacuum pressure in the etching chamber was set to 3.8 mTorr, the antenna power was set to 400 W, and the bias power was set to 100 W, and a mixed gas was introduced into the etching chamber at a flow rate of 50 mL/min to generate plasma gas as an etching gas. The amorphous carbon film was dry etched using this plasma gas to form a trench pattern as a second opening in the amorphous carbon film. In this way, dry etching of the carbon atom-containing film was completed.
At this time, the mixed gas is composed of a mixed gas of oxygen and sulfur dioxide, the etching time is 2 minutes and 30 seconds, and the content of sulfur dioxide in the total volume of oxygen and sulfur dioxide is 30% by volume (oxygen content The ratio was 70% by volume). Further, the second opening was formed so that the etching depth L2 was 600 nm, that is, the aspect ratio was 7.5. Note that the aspect ratio was calculated using the following formula (1).
Aspect ratio = Etching depth L2 (nm) ÷ Trench design width L1 (nm)...(1)
After the etching was completed, the cross section of the amorphous carbon film was observed using a SEM (product name "SU8230", manufactured by Hitachi High-Tech Corporation), and the etching depth (L2) of the trench pattern formed in the amorphous carbon film was actually confirmed. The actual value of the etching depth L2 was 599 nm, and the etching rate was 240 nm/min as shown in Table 1. Note that the aspect ratio based on the actually measured value of the etching depth L2 was 7.5.
In addition, when observing the cross section of the amorphous carbon film with SEM, we confirmed that the inner wall surface of the second opening was not etched much, and the occurrence of bowing was suppressed, making it anisotropic. It was found that highly sensitive etching was progressing.
まず、支持体としてのSi基板、及び、炭素原子含有膜としてのアモルファスカーボン膜(厚さ:約700nm)からなる積層体を用意した。そして、この積層体のアモルファスカーボン膜の上に、リソグラフィーで第1開口部としてのマスクパターンが形成された、下層に珪素膜を有する二酸化珪素膜(珪素膜及び二酸化珪素膜の合計厚さ:約50nm)をマスクとして配置し、20mm角の構造体を用意した(図1参照)。このとき、マスクのマスクパターンはトレンチパターンであり、トレンチ設計幅(第1開口部の設計幅)L1は80nm、マスク設計幅(マスクのうち第1開口部以外の実体部分の設計幅(トレンチパターン同士間の幅))Wは80nmとした(図1参照)。そして、直径150mmのウエハーに、上記のようにして得られた構造体を貼り付けて、エッチング装置のエッチングチャンバー内にある処理ステージ上に設置した。このとき、エッチング装置としては、誘導結合型プラズマ方式(ICP)のエッチング装置(製品名「NLD6000」、アルバック社製)を用いた。
そして、以下のようにしてアモルファスカーボン膜のドライエッチングを実施した。すなわち、エッチングチャンバー内の真空圧を3.8mTorr、アンテナ電力を400W、バイアス電力を100Wに設定し、エッチングチャンバー内に混合ガスを50mL/minの流量で導入してプラズマガスをエッチングガスとして発生させ、このプラズマガスによりアモルファスカーボン膜のドライエッチングを行い、アモルファスカーボン膜に第2開口部としてのトレンチパターンを形成した。こうして炭素原子含有膜のドライエッチングが完了した。
このとき、混合ガスは、酸素及び二酸化硫黄の混合ガスで構成され、エッチング時間は2分30秒であり、酸素及び二酸化硫黄の合計体積中の二酸化硫黄の含有率は30体積%(酸素の含有率は70体積%)とした。また、第2開口部は、エッチング深さL2が600nmとなるように、すなわちアスペクト比が7.5となるように形成した。なお、アスペクト比は下式(1)より算出した。
アスペクト比=エッチング深さL2(nm)÷トレンチ設計幅L1(nm)・・・(1)
エッチング完了後、アモルファスカーボン膜の断面をSEM(製品名「SU8230」、日立ハイテク社製)で観察し、アモルファスカーボン膜に形成されたトレンチパターンのエッチング深さ(L2)を実際に確認したところ、エッチング深さL2の実測値は599nmであり、エッチング速度は、表1に示すとおり240nm/minであった。なお、エッチング深さL2の実測値に基づくアスペクト比は7.5であった。
また、アモルファスカーボン膜の断面をSEMで観察する際、第2開口部を確認したところ、第2開口部の内壁面は、あまりエッチングされておらず、ボーイングの発生が抑制されており、異方性の高いエッチングが進行していることが分かった。 [Example 1]
First, a laminate consisting of a Si substrate as a support and an amorphous carbon film (thickness: about 700 nm) as a carbon atom-containing film was prepared. Then, on the amorphous carbon film of this laminate, a mask pattern as a first opening is formed by lithography, and a silicon dioxide film having a silicon film as an underlying layer (total thickness of silicon film and silicon dioxide film: approx. 50 nm) was placed as a mask, and a 20 mm square structure was prepared (see FIG. 1). At this time, the mask pattern of the mask is a trench pattern, the trench design width (design width of the first opening) L1 is 80 nm, and the mask design width (design width of the actual part of the mask other than the first opening (trench pattern) is 80 nm. The width (width between the two)) was 80 nm (see FIG. 1). Then, the structure obtained as described above was attached to a wafer having a diameter of 150 mm, and the wafer was placed on a processing stage in an etching chamber of an etching apparatus. At this time, an inductively coupled plasma (ICP) etching apparatus (product name "NLD6000", manufactured by ULVAC) was used as the etching apparatus.
Then, dry etching of the amorphous carbon film was performed as follows. That is, the vacuum pressure in the etching chamber was set to 3.8 mTorr, the antenna power was set to 400 W, and the bias power was set to 100 W, and a mixed gas was introduced into the etching chamber at a flow rate of 50 mL/min to generate plasma gas as an etching gas. The amorphous carbon film was dry etched using this plasma gas to form a trench pattern as a second opening in the amorphous carbon film. In this way, dry etching of the carbon atom-containing film was completed.
At this time, the mixed gas is composed of a mixed gas of oxygen and sulfur dioxide, the etching time is 2 minutes and 30 seconds, and the content of sulfur dioxide in the total volume of oxygen and sulfur dioxide is 30% by volume (oxygen content The ratio was 70% by volume). Further, the second opening was formed so that the etching depth L2 was 600 nm, that is, the aspect ratio was 7.5. Note that the aspect ratio was calculated using the following formula (1).
Aspect ratio = Etching depth L2 (nm) ÷ Trench design width L1 (nm)...(1)
After the etching was completed, the cross section of the amorphous carbon film was observed using a SEM (product name "SU8230", manufactured by Hitachi High-Tech Corporation), and the etching depth (L2) of the trench pattern formed in the amorphous carbon film was actually confirmed. The actual value of the etching depth L2 was 599 nm, and the etching rate was 240 nm/min as shown in Table 1. Note that the aspect ratio based on the actually measured value of the etching depth L2 was 7.5.
In addition, when observing the cross section of the amorphous carbon film with SEM, we confirmed that the inner wall surface of the second opening was not etched much, and the occurrence of bowing was suppressed, making it anisotropic. It was found that highly sensitive etching was progressing.
[比較例1]
混合ガス、エッチング時間及びアスペクト比を表1に示すとおりとしたこと以外は実施例1と同様にしてアモルファスカーボン膜のドライエッチングを行った。そして、エッチング速度を算出した。結果を表1に示す。表1に示すとおり、エッチング速度は170nm/minであった。 [Comparative example 1]
Dry etching of the amorphous carbon film was performed in the same manner as in Example 1 except that the mixed gas, etching time, and aspect ratio were as shown in Table 1. Then, the etching rate was calculated. The results are shown in Table 1. As shown in Table 1, the etching rate was 170 nm/min.
混合ガス、エッチング時間及びアスペクト比を表1に示すとおりとしたこと以外は実施例1と同様にしてアモルファスカーボン膜のドライエッチングを行った。そして、エッチング速度を算出した。結果を表1に示す。表1に示すとおり、エッチング速度は170nm/minであった。 [Comparative example 1]
Dry etching of the amorphous carbon film was performed in the same manner as in Example 1 except that the mixed gas, etching time, and aspect ratio were as shown in Table 1. Then, the etching rate was calculated. The results are shown in Table 1. As shown in Table 1, the etching rate was 170 nm/min.
[実施例2]
積層体のアモルファスカーボン膜の厚さを約2400nmとし、マスクとして、下層に珪素膜を有する二酸化珪素膜の厚さ(珪素膜及び二酸化珪素膜の合計厚さ)が約350nm、トレンチ設計幅(第1開口部の設計幅)L1が80nm、マスク設計幅(マスクのうち第一開口部以外の実体部分の設計幅)Wが320nmであるマスクを用い、混合ガス、エッチング時間及びアスペクト比を表2に示すとおりとしたこと以外は実施例1と同様にしてアモルファスカーボン膜のドライエッチングを行った。そして、エッチング速度を算出した。結果を表2に示す。表2に示すとおり、エッチング速度は154nm/minであった。 [Example 2]
The thickness of the amorphous carbon film of the laminate is approximately 2400 nm, the thickness of the silicon dioxide film having a silicon film as a lower layer (the total thickness of the silicon film and the silicon dioxide film) is approximately 350 nm, and the trench design width (the Using a mask with a mask design width (design width of one opening) L1 of 80 nm and a mask design width (design width of the actual part of the mask other than the first opening) W of 320 nm, the mixed gas, etching time, and aspect ratio are shown in Table 2. Dry etching of the amorphous carbon film was carried out in the same manner as in Example 1 except that the procedure was as shown in . Then, the etching rate was calculated. The results are shown in Table 2. As shown in Table 2, the etching rate was 154 nm/min.
積層体のアモルファスカーボン膜の厚さを約2400nmとし、マスクとして、下層に珪素膜を有する二酸化珪素膜の厚さ(珪素膜及び二酸化珪素膜の合計厚さ)が約350nm、トレンチ設計幅(第1開口部の設計幅)L1が80nm、マスク設計幅(マスクのうち第一開口部以外の実体部分の設計幅)Wが320nmであるマスクを用い、混合ガス、エッチング時間及びアスペクト比を表2に示すとおりとしたこと以外は実施例1と同様にしてアモルファスカーボン膜のドライエッチングを行った。そして、エッチング速度を算出した。結果を表2に示す。表2に示すとおり、エッチング速度は154nm/minであった。 [Example 2]
The thickness of the amorphous carbon film of the laminate is approximately 2400 nm, the thickness of the silicon dioxide film having a silicon film as a lower layer (the total thickness of the silicon film and the silicon dioxide film) is approximately 350 nm, and the trench design width (the Using a mask with a mask design width (design width of one opening) L1 of 80 nm and a mask design width (design width of the actual part of the mask other than the first opening) W of 320 nm, the mixed gas, etching time, and aspect ratio are shown in Table 2. Dry etching of the amorphous carbon film was carried out in the same manner as in Example 1 except that the procedure was as shown in . Then, the etching rate was calculated. The results are shown in Table 2. As shown in Table 2, the etching rate was 154 nm/min.
[比較例2]
混合ガス、エッチング時間及びアスペクト比を表2に示すとおりとしたこと以外は実施例2と同様にしてアモルファスカーボン膜のドライエッチングを行った。そして、エッチング速度を算出した。結果を表2に示す。表2に示すとおり、エッチング速度は107nm/minであった。 [Comparative example 2]
Dry etching of the amorphous carbon film was performed in the same manner as in Example 2 except that the mixed gas, etching time, and aspect ratio were as shown in Table 2. Then, the etching rate was calculated. The results are shown in Table 2. As shown in Table 2, the etching rate was 107 nm/min.
混合ガス、エッチング時間及びアスペクト比を表2に示すとおりとしたこと以外は実施例2と同様にしてアモルファスカーボン膜のドライエッチングを行った。そして、エッチング速度を算出した。結果を表2に示す。表2に示すとおり、エッチング速度は107nm/minであった。 [Comparative example 2]
Dry etching of the amorphous carbon film was performed in the same manner as in Example 2 except that the mixed gas, etching time, and aspect ratio were as shown in Table 2. Then, the etching rate was calculated. The results are shown in Table 2. As shown in Table 2, the etching rate was 107 nm/min.
[実施例3]
積層体のアモルファスカーボン膜の厚さを約2400nmとし、マスクとして、下層に珪素膜を有する二酸化珪素膜の厚さ(珪素膜及び二酸化珪素膜の合計厚さ)が約350nm、トレンチ設計幅(第1開口部の設計幅)L1が80nm、マスク設計幅(マスクのうち第一開口部以外の実体部分の設計幅)Wが320nmであるマスクを用い、混合ガス、エッチング時間及びアスペクト比を表3に示すとおりとしたこと以外は実施例1と同様にしてアモルファスカーボン膜のドライエッチングを行った。そして、エッチング速度を算出した。結果を表3に示す。表3に示すとおり、エッチング速度は123nm/minであった。 [Example 3]
The thickness of the amorphous carbon film of the laminate is approximately 2400 nm, the thickness of the silicon dioxide film having a silicon film as a lower layer (the total thickness of the silicon film and the silicon dioxide film) is approximately 350 nm, and the trench design width (the Using a mask in which the design width (design width of one opening) L1 is 80 nm and the mask design width (design width of the actual part of the mask other than the first opening) W is 320 nm, the mixed gas, etching time, and aspect ratio are shown in Table 3. Dry etching of the amorphous carbon film was carried out in the same manner as in Example 1 except that the procedure was as shown in . Then, the etching rate was calculated. The results are shown in Table 3. As shown in Table 3, the etching rate was 123 nm/min.
積層体のアモルファスカーボン膜の厚さを約2400nmとし、マスクとして、下層に珪素膜を有する二酸化珪素膜の厚さ(珪素膜及び二酸化珪素膜の合計厚さ)が約350nm、トレンチ設計幅(第1開口部の設計幅)L1が80nm、マスク設計幅(マスクのうち第一開口部以外の実体部分の設計幅)Wが320nmであるマスクを用い、混合ガス、エッチング時間及びアスペクト比を表3に示すとおりとしたこと以外は実施例1と同様にしてアモルファスカーボン膜のドライエッチングを行った。そして、エッチング速度を算出した。結果を表3に示す。表3に示すとおり、エッチング速度は123nm/minであった。 [Example 3]
The thickness of the amorphous carbon film of the laminate is approximately 2400 nm, the thickness of the silicon dioxide film having a silicon film as a lower layer (the total thickness of the silicon film and the silicon dioxide film) is approximately 350 nm, and the trench design width (the Using a mask in which the design width (design width of one opening) L1 is 80 nm and the mask design width (design width of the actual part of the mask other than the first opening) W is 320 nm, the mixed gas, etching time, and aspect ratio are shown in Table 3. Dry etching of the amorphous carbon film was carried out in the same manner as in Example 1 except that the procedure was as shown in . Then, the etching rate was calculated. The results are shown in Table 3. As shown in Table 3, the etching rate was 123 nm/min.
[比較例3]
混合ガス、エッチング時間及びアスペクト比を表3に示すとおりとしたこと以外は実施例3と同様にしてアモルファスカーボン膜のドライエッチングを行った。そして、エッチング速度を算出した。結果を表3に示す。表3に示すとおり、エッチング速度は88nm/minであった。
[Comparative example 3]
Dry etching of the amorphous carbon film was performed in the same manner as in Example 3 except that the mixed gas, etching time, and aspect ratio were as shown in Table 3. Then, the etching rate was calculated. The results are shown in Table 3. As shown in Table 3, the etching rate was 88 nm/min.
混合ガス、エッチング時間及びアスペクト比を表3に示すとおりとしたこと以外は実施例3と同様にしてアモルファスカーボン膜のドライエッチングを行った。そして、エッチング速度を算出した。結果を表3に示す。表3に示すとおり、エッチング速度は88nm/minであった。
Dry etching of the amorphous carbon film was performed in the same manner as in Example 3 except that the mixed gas, etching time, and aspect ratio were as shown in Table 3. Then, the etching rate was calculated. The results are shown in Table 3. As shown in Table 3, the etching rate was 88 nm/min.
表1~3に示す結果に基づき、実施例1~3及び比較例1~3におけるアスペクト比に対してエッチング速度をプロットした結果を図5に示す。
図5に示す結果より、アスペクト比がほぼ同様である場合には、炭素原子含有膜をドライエッチングする際、硫化カルボニルを含む混合ガスよりも二酸化硫黄を含む混合ガスの方が、エッチング速度が向上していることが分かる。 Based on the results shown in Tables 1 to 3, the etching rate was plotted against the aspect ratio in Examples 1 to 3 and Comparative Examples 1 to 3, and the results are shown in FIG.
From the results shown in Figure 5, when the aspect ratios are almost the same, when dry etching a carbon atom-containing film, a mixed gas containing sulfur dioxide improves the etching rate than a mixed gas containing carbonyl sulfide. I know what you're doing.
図5に示す結果より、アスペクト比がほぼ同様である場合には、炭素原子含有膜をドライエッチングする際、硫化カルボニルを含む混合ガスよりも二酸化硫黄を含む混合ガスの方が、エッチング速度が向上していることが分かる。 Based on the results shown in Tables 1 to 3, the etching rate was plotted against the aspect ratio in Examples 1 to 3 and Comparative Examples 1 to 3, and the results are shown in FIG.
From the results shown in Figure 5, when the aspect ratios are almost the same, when dry etching a carbon atom-containing film, a mixed gas containing sulfur dioxide improves the etching rate than a mixed gas containing carbonyl sulfide. I know what you're doing.
1…エッチングチャンバー、10…支持体、20…炭素原子含有膜、21…第2開口部、30…マスク、31…第1開口部、100…構造体、200…構造体、L1…第1開口部の設計幅、L2…第2開口部の深さ、W…マスク設計幅(マスクのうち第1開口部以外の実体部分の幅)、G…混合ガス。
DESCRIPTION OFSYMBOLS 1... Etching chamber, 10... Support, 20... Carbon atom-containing film, 21... Second opening, 30... Mask, 31... First opening, 100... Structure, 200... Structure, L1... First opening L2... Depth of the second opening, W... Mask design width (width of the actual portion of the mask other than the first opening), G... Mixed gas.
DESCRIPTION OF
Claims (10)
- 炭素原子を含有する炭素原子含有膜をエッチングガスによりエッチングする炭素原子含有膜のドライエッチング方法であって、
少なくとも酸素及び二酸化硫黄を含む混合ガスを、前記炭素原子含有膜、および、第1開口部を有するマスク、を備える構造体が配置されたエッチングチャンバーに導入する混合ガス導入工程と、
前記混合ガスを前記エッチングチャンバー内でプラズマ化してプラズマガスを発生させ、このプラズマガスを前記エッチングガスとして用いて、前記構造体の前記炭素原子含有膜をエッチングして第2開口部を形成するエッチング工程とを含み、
前記エッチング工程において、下記式(1)で定義されるアスペクト比が1~40となるように前記第2開口部を形成する、炭素原子含有膜のドライエッチング方法。
アスペクト比=L2/L1・・・(1)
(前記式(1)中、L1は、前記第1開口部の設計幅を表し、L2は、前記第2開口部の深さを表す。) A method for dry etching a carbon atom-containing film, the method comprising etching a carbon atom-containing film with an etching gas, the method comprising:
A mixed gas introducing step of introducing a mixed gas containing at least oxygen and sulfur dioxide into an etching chamber in which a structure including the carbon atom-containing film and a mask having a first opening is disposed;
Etching in which the mixed gas is turned into plasma in the etching chamber to generate a plasma gas, and the carbon atom-containing film of the structure is etched using the plasma gas as the etching gas to form a second opening. including the process,
A dry etching method for a carbon atom-containing film, wherein in the etching step, the second opening is formed so that the aspect ratio defined by the following formula (1) is 1 to 40.
Aspect ratio = L2/L1...(1)
(In the formula (1), L1 represents the design width of the first opening, and L2 represents the depth of the second opening.) - 前記アスペクト比が4~40である、請求項1に記載の炭素原子含有膜のドライエッチング方法。 The method for dry etching a carbon atom-containing film according to claim 1, wherein the aspect ratio is 4 to 40.
- 前記第1開口部の形状がトレンチまたはホールである、請求項1に記載の炭素原子含有膜のドライエッチング方法。 The method of dry etching a carbon atom-containing film according to claim 1, wherein the first opening has a shape of a trench or a hole.
- 前記炭素原子含有膜がアモルファスカーボンを含む、請求項1に記載の炭素原子含有膜のドライエッチング方法。 The method for dry etching a carbon atom-containing film according to claim 1, wherein the carbon atom-containing film contains amorphous carbon.
- 前記マスクが酸素含有材料を含む、請求項1に記載の炭素原子含有膜のドライエッチング方法。 The method for dry etching a carbon atom-containing film according to claim 1, wherein the mask includes an oxygen-containing material.
- 前記酸素含有材料が二酸化珪素である、請求項5に記載の炭素原子含有膜のドライエッチング方法。 The method for dry etching a carbon atom-containing film according to claim 5, wherein the oxygen-containing material is silicon dioxide.
- 前記炭素原子含有膜の厚さが、10.0μm以下である、請求項1に記載の炭素原子含有膜のドライエッチング方法。 The method of dry etching a carbon atom-containing film according to claim 1, wherein the thickness of the carbon atom-containing film is 10.0 μm or less.
- 前記マスクの厚さが、前記炭素原子含有膜の0.01倍以上である、請求項1に記載の炭素原子含有膜のドライエッチング方法。 The method for dry etching a carbon atom-containing film according to claim 1, wherein the thickness of the mask is 0.01 times or more that of the carbon atom-containing film.
- 前記マスクの厚さが、前記炭素原子含有膜の0.5倍以下である、請求項1に記載の炭素原子含有膜のドライエッチング方法。 The method for dry etching a carbon atom-containing film according to claim 1, wherein the thickness of the mask is 0.5 times or less that of the carbon atom-containing film.
- 前記混合ガスにおいて、前記二酸化硫黄及び前記酸素の合計体積中の前記二酸化硫黄の含有率が20~40体積%である、請求項1~9のいずれか一項に記載の炭素原子含有膜のドライエッチング方法。 Drying a carbon atom-containing film according to any one of claims 1 to 9, wherein in the mixed gas, the content of the sulfur dioxide in the total volume of the sulfur dioxide and the oxygen is 20 to 40% by volume. Etching method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-117494 | 2022-07-22 | ||
JP2022117494 | 2022-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024019122A1 true WO2024019122A1 (en) | 2024-01-25 |
Family
ID=89617847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/026644 WO2024019122A1 (en) | 2022-07-22 | 2023-07-20 | Dry etching method for carbon atom-containing film |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202414577A (en) |
WO (1) | WO2024019122A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008512002A (en) * | 2004-09-02 | 2008-04-17 | マイクロン テクノロジー,インコーポレイテッド | Integrated circuit manufacturing method using pitch multiplication |
JP2012204668A (en) * | 2011-03-25 | 2012-10-22 | Tokyo Electron Ltd | Plasma etching method and storage medium |
US20170125260A1 (en) * | 2015-11-04 | 2017-05-04 | Lam Research Corporation | Methods and Systems for Advanced Ion Control for Etching Processes |
JP2018200925A (en) * | 2017-05-25 | 2018-12-20 | 東京エレクトロン株式会社 | Etching method and etching device |
US20220189781A1 (en) * | 2020-12-11 | 2022-06-16 | Tokyo Electron Limited | Non-Atomic Layer Deposition (ALD) Method of Forming Sidewall Passivation Layer During High Aspect Ratio Carbon Layer Etch |
-
2023
- 2023-07-20 WO PCT/JP2023/026644 patent/WO2024019122A1/en unknown
- 2023-07-20 TW TW112127216A patent/TW202414577A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008512002A (en) * | 2004-09-02 | 2008-04-17 | マイクロン テクノロジー,インコーポレイテッド | Integrated circuit manufacturing method using pitch multiplication |
JP2012204668A (en) * | 2011-03-25 | 2012-10-22 | Tokyo Electron Ltd | Plasma etching method and storage medium |
US20170125260A1 (en) * | 2015-11-04 | 2017-05-04 | Lam Research Corporation | Methods and Systems for Advanced Ion Control for Etching Processes |
JP2018200925A (en) * | 2017-05-25 | 2018-12-20 | 東京エレクトロン株式会社 | Etching method and etching device |
US20220189781A1 (en) * | 2020-12-11 | 2022-06-16 | Tokyo Electron Limited | Non-Atomic Layer Deposition (ALD) Method of Forming Sidewall Passivation Layer During High Aspect Ratio Carbon Layer Etch |
Also Published As
Publication number | Publication date |
---|---|
TW202414577A (en) | 2024-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009076661A (en) | Method for manufacturing semiconductor device | |
Kim et al. | Study on the etching characteristics of amorphous carbon layer in oxygen plasma with carbonyl sulfide | |
JP2008177596A (en) | Method for manufacturing semiconductor integrated circuit device | |
CN108780749B (en) | Plasma etching method | |
Kim et al. | Study on contact distortion during high aspect ratio contact SiO2 etching | |
KR100592841B1 (en) | Precise patterning of high-k films | |
JP2006024730A (en) | Manufacturing method of semiconductor device | |
KR20020060957A (en) | Method of etching carbon-containing silicon oxide films | |
CN111213224B (en) | Etching method and semiconductor manufacturing method | |
US8084319B2 (en) | Precisely tuning feature sizes on hard masks via plasma treatment | |
WO2024019122A1 (en) | Dry etching method for carbon atom-containing film | |
JP2004505464A (en) | Method for removing organic residues from semiconductor structures | |
WO2024019123A1 (en) | Method for dry etching carbon atom-containing film | |
JP2007123399A (en) | Dry etching method | |
TWI833930B (en) | Dry etching method and semiconductor device manufacturing method | |
Tsutsumi et al. | Fabrication technology of ultrafine SiO 2 masks and Si nanowires using oxidation of vertical sidewalls of a poly-Si layer | |
JP4173454B2 (en) | Manufacturing method of semiconductor integrated circuit device | |
WO2024019124A1 (en) | Dry etching method for carbon atom–containing film | |
CN114843177A (en) | Manufacturing method of trench Schottky structure | |
US7091081B2 (en) | Method for patterning a semiconductor region | |
JP4874119B2 (en) | Method for reducing seed layer topography in a BICMOS process | |
JP2007027180A (en) | Semiconductor device and its manufacturing method | |
JP2001024058A (en) | Method for formation of contact hole | |
US20240096640A1 (en) | High Aspect Ratio Contact (HARC) Etch | |
Kim et al. | Infinitely high etch selectivity during CH2F2/H2 dual-frequency capacitively coupled plasma etching of silicon nitride to chemical vapor-deposited aC |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23843045 Country of ref document: EP Kind code of ref document: A1 |