WO2024014473A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2024014473A1
WO2024014473A1 PCT/JP2023/025696 JP2023025696W WO2024014473A1 WO 2024014473 A1 WO2024014473 A1 WO 2024014473A1 JP 2023025696 W JP2023025696 W JP 2023025696W WO 2024014473 A1 WO2024014473 A1 WO 2024014473A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
layer
wiring
dielectric constant
semiconductor
Prior art date
Application number
PCT/JP2023/025696
Other languages
French (fr)
Japanese (ja)
Inventor
文悟 田中
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024014473A1 publication Critical patent/WO2024014473A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Definitions

  • the present disclosure relates to a semiconductor device.
  • Patent Document 1 discloses a ladder resistance circuit including a plurality of series resistors connected in series with each other and a voltage dividing resistor connecting a voltage dividing point of the plurality of series resistors to a connection point of a high voltage battery;
  • a power supply device is disclosed that detects the voltage of a battery unit using a voltage detection circuit including a /D converter.
  • a semiconductor device includes an element insulating layer having a front surface and a back surface opposite to the front surface, and one or more semiconductor resistance layers provided in the element insulating layer,
  • the semiconductor resistance layer includes a resistor back surface facing the back surface in the thickness direction of the element insulating layer, a resistor surface opposite to the resistor back surface, and a resistor side surface connecting the resistor back surface and the resistor surface.
  • the element insulating layer includes a first insulating layer, a second insulating layer laminated on the first insulating layer and having a higher dielectric constant than the first insulating layer, and a second insulating layer laminated on the second insulating layer.
  • the third insulating layer is provided in contact with the third insulating layer.
  • a semiconductor device includes an element insulating layer, one or more semiconductor resistance layers provided in the element insulating layer, and electrically connected to the semiconductor resistance layer in the element insulating layer, a wiring layer disposed opposite to the semiconductor resistance layer in the thickness direction of the element insulating layer, the wiring layer having a wiring surface facing the semiconductor resistance layer in the thickness direction of the element insulation layer;
  • the element insulating layer includes a wiring back surface opposite to the wiring surface, and a wiring side surface connecting the wiring front surface and the wiring back surface, and the element insulating layer is laminated on a fourth insulating layer and the fourth insulating layer, a fifth insulating layer having a higher dielectric constant than the fourth insulating layer; and a low dielectric constant insulating layer laminated on the fifth insulating layer and having a lower dielectric constant than the fifth insulating layer,
  • the wiring layer is laminated on the fifth insulating layer, and is provided in the low dielectric constant insulating layer with the back surface of the wiring in contact with the
  • electric field concentration can be alleviated.
  • FIG. 1 is a schematic plan view of a semiconductor device according to a first embodiment.
  • FIG. 2 is a schematic plan view of a first chip and a second chip in the semiconductor device of FIG. 1.
  • FIG. 3 is a schematic plan view of the semiconductor resistance layer in the first chip.
  • FIG. 4 is a schematic cross-sectional view showing the semiconductor resistance layer and its surroundings in the first chip.
  • FIG. 5 is an enlarged cross-sectional view of the semiconductor resistance layer and its surroundings in FIG. 4.
  • FIG. 6 is a schematic cross-sectional view showing the wiring layer and its surroundings in the first chip.
  • FIG. 7 is a schematic cross-sectional view of the first chip taken along line F7-F7 in FIG. FIG.
  • FIG. 8 is a schematic cross-sectional view showing an example of the manufacturing process of the semiconductor device of the first embodiment.
  • FIG. 9 is a schematic cross-sectional view showing the manufacturing process following FIG. 8.
  • FIG. 10 is a schematic cross-sectional view showing the manufacturing process following FIG. 9.
  • FIG. 11 is a schematic cross-sectional view showing the manufacturing process following FIG. 10.
  • FIG. 12 is a schematic cross-sectional view showing the manufacturing process following FIG. 11.
  • FIG. 13 is a schematic cross-sectional view showing the manufacturing process following FIG. 12.
  • FIG. 14 is a schematic cross-sectional view showing the manufacturing process following FIG. 13.
  • FIG. 15 is a schematic cross-sectional view showing the manufacturing process following FIG. 14.
  • FIG. 16 is a schematic cross-sectional view showing the manufacturing process following FIG. 15.
  • FIG. 15 is a schematic cross-sectional view showing the manufacturing process following FIG. 14.
  • FIG. 17 is a schematic cross-sectional view showing the semiconductor resistance layer and its surroundings in the first chip in the semiconductor device of the second embodiment.
  • FIG. 18 is a schematic cross-sectional view showing the wiring layer and its surroundings in the first chip.
  • FIG. 19 is a schematic cross-sectional view showing a terminal, a semiconductor resistance layer, a wiring layer, and their surroundings in the first chip.
  • FIG. 20 is a schematic cross-sectional view showing the semiconductor resistance layer and its surroundings in the first chip in the semiconductor device of the third embodiment.
  • FIG. 21 is a schematic cross-sectional view showing the wiring layer and its surroundings in the first chip.
  • FIG. 22 is a schematic cross-sectional view showing a terminal, a semiconductor resistance layer, a wiring layer, and their surroundings in the first chip.
  • FIG. 23 is a schematic cross-sectional view showing a terminal, a semiconductor resistance layer, a wiring layer, and their surroundings in a first chip of a semiconductor device according to a modification.
  • FIG. 24 is a schematic cross-sectional view showing a wiring layer, a semiconductor resistance layer, and their surroundings in a first chip of a semiconductor device according to a modification.
  • FIGS. 1 to 16 show an example of the manufacturing process of the semiconductor device 10.
  • planar view refers to viewing the semiconductor device 10 in the Z-axis direction of the mutually orthogonal XYZ axes shown in FIG. Furthermore, regarding the semiconductor device 10 shown in FIG. 4, the +Z direction is defined as top, the -Z direction as bottom, the +X direction as right, and the -X direction as left. Unless otherwise specified, “planar view” refers to viewing the semiconductor device 10 from above along the Z-axis.
  • FIG. 1 schematically shows the overall configuration of a semiconductor device 10 according to the first embodiment.
  • FIG. 2 schematically shows the electrical configuration and electrical connection structure of each of the first chip 14 and the second chip 15, which will be described later, of the semiconductor device 10.
  • components inside the sealing resin 16, which will be described later are shown with solid lines.
  • internal components of the first chip 14 and the second chip 15 are shown with solid lines in order to easily understand the drawing.
  • the semiconductor device 10 includes a frame 11, a die pad 12, a plurality of (seven in the first embodiment) leads 13A to 13G, a first chip 14 mounted on the frame 11, and a die pad 12. 12, wires W1 to W11, and a sealing resin 16 for sealing these.
  • the first chip 14 corresponds to an "insulating chip".
  • the sealing resin 16 is formed into a flat plate shape.
  • the shape of the sealing resin 16 in plan view is rectangular.
  • the sealing resin 16 has first to fourth resin side surfaces 16A to 16D.
  • the first resin side surface 16A and the second resin side surface 16B constitute both end surfaces of the sealing resin 16 in the X-axis direction.
  • the first resin side surface 16A constitutes an end surface of the sealing resin 16 in the -X direction
  • the second resin side surface 16B constitutes an end surface of the sealing resin 16 in the +X direction.
  • the third resin side surface 16C and the fourth resin side surface 16D constitute both end surfaces of the sealing resin 16 in the Y-axis direction.
  • the third resin side surface 16C constitutes an end surface of the sealing resin 16 in the -Y direction
  • the fourth resin side surface 16D constitutes an end surface of the sealing resin 16 in the +Y direction.
  • the frame 11 and die pad 12 are arranged apart from each other in the X-axis direction.
  • the X-axis direction is the direction in which the frame 11 and die pad 12 are arranged.
  • the frame 11 is arranged closer to the first resin side surface 16A than the die pad 12.
  • Frame 11, die pad 12, and leads 13A to 13G are each made of a metal material such as copper (Cu) or aluminum (Al).
  • the frame 11 includes a die pad portion 11A and a lead portion 11B.
  • the die pad section 11A and the lead section 11B are integrally formed.
  • the die pad portion 11A is a portion on which the first chip 14 is mounted, and supports the first chip 14.
  • the die pad portion 11A is spaced apart from the first resin side surface 16A toward the second resin side surface 16B.
  • the die pad portion 11A has a rectangular shape in plan view, with the Y-axis direction being the longitudinal direction and the X-axis direction being the lateral direction. In other words, the die pad portion 11A is formed so that the dimension in the arrangement direction of the frame 11 and the die pad 12 is shortened.
  • the lead portion 11B includes an end portion of the die pad portion 11A in the Y-axis direction that is closer to the third resin side surface 16C, and an end portion of the die pad portion 11A in the X-axis direction that is closer to the first resin side surface 16A. It is connected to the corner part consisting of the end part of.
  • the lead portion 11B extends along the X-axis direction toward the first resin side surface 16A with respect to the die pad portion 11A.
  • the die pad 12 is located closer to the second resin side surface 16B than the frame 11, and is spaced apart from the second resin side surface 16B toward the first resin side surface 16A.
  • the die pad 12 is a portion on which the second chip 15 is mounted, and supports the second chip 15.
  • the die pad 12 has a rectangular shape in plan view, with the Y-axis direction being the longitudinal direction and the X-axis direction being the lateral direction. That is, the die pad 12 is formed so that the dimension in the arrangement direction of the frame 11 and the die pad 12 is shortened.
  • the leads 13A to 13G are distributed and arranged at both ends of the sealing resin 16 in the X-axis direction. More specifically, the lead 13A is arranged at the end of the sealing resin 16 on the first resin side surface 16A side. Each of the leads 13B to 13G is arranged at the end of the sealing resin 16 on the second resin side surface 16B side.
  • the leads 13A are arranged closer to the first resin side surface 16A than the die pad portion 11A.
  • the lead 13A is spaced apart from the die pad portion 11A in the X-axis direction. Further, the lead 13A is arranged apart from the lead portion 11B in the Y-axis direction.
  • the lead 13A is arranged at a position that overlaps with the end on the fourth resin side surface 16D side of both ends in the Y-axis direction of the die pad portion 11A when viewed from the X-axis direction.
  • Each of the leads 13B to 13G is arranged closer to the second resin side surface 16B than the die pad 12.
  • Each of the leads 13B to 13G is arranged apart from the die pad 12 in the X-axis direction.
  • the leads 13B to 13G are arranged spaced apart from each other in the Y-axis direction.
  • the leads 13B to 13G are arranged in the order of lead 13B, lead 13C, lead 13D, lead 13E, lead 13F, and lead 13G from the fourth resin side surface 16D to the third resin side surface 16C.
  • the distance between the lead 13A and the lead portion 11B in the Y-axis direction is greater than the distance between adjacent leads in the Y-axis direction among the leads 13B to 13G.
  • the first chip 14 mounted on the die pad portion 11A of the frame 11 is formed into a flat plate shape.
  • the shape of the first chip 14 in a plan view is a rectangular shape whose longitudinal direction is in the Y-axis direction and whose transverse direction is in the X-axis direction. That is, the first chip 14 is formed so that the dimensions in the arrangement direction of the frame 11 and die pad 12 are shortened.
  • the first chip 14 includes a plurality of terminals P1 to P5.
  • the terminals P1 and P2 are provided at the end of the first chip 14 in the X-axis direction that is closer to the first resin side surface 16A.
  • the terminal P1 is provided in the first chip 14 near the lead 13A.
  • the terminal P2 is provided in the first chip 14 near the lead portion 11B.
  • the terminals P3 to P5 are provided at the end closer to the second chip 15 of both ends of the first chip 14 in the X-axis direction.
  • the terminals P3 to P5 are arranged apart from each other in the Y-axis direction.
  • the second chip 15 mounted on the die pad 12 is formed into a flat plate shape.
  • the shape of the second chip 15 in plan view is a rectangular shape in which the Y-axis direction is the longitudinal direction and the X-axis direction is the lateral direction. In other words, the second chip 15 is formed so that the dimensions in the arrangement direction of the frame 11 and the die pad 12 are shortened.
  • the second chip 15 includes a plurality of terminals Q1 to Q9.
  • the terminals Q1 to Q3 are provided at the end closer to the first chip 14 of both ends of the second chip 15 in the X-axis direction.
  • the terminals Q1 to Q3 are arranged spaced apart from each other in the Y-axis direction.
  • the terminals Q4 to Q9 are provided at the end closer to the second resin side surface 16B of both ends of the second chip 15 in the X-axis direction.
  • the terminals Q4 to Q9 are arranged spaced apart from each other in the Y-axis direction.
  • the terminal P1 of the first chip 14 is electrically connected to the lead 13A by a wire W1.
  • Terminal P2 is electrically connected to lead portion 11B by wire W2.
  • a high voltage generating section VT is electrically connected to the lead 13A and the lead section 11B.
  • the high voltage generator VT is, for example, a DC power supply.
  • the positive electrode of the high voltage generating section VT is electrically connected to the lead 13A, and the negative electrode of the high voltage generating section VT is electrically connected to the lead section 11B.
  • Terminals P3 to P5 of the first chip 14 and terminals Q1 to Q3 of the second chip 15 are individually electrically connected by wires W3 to W5.
  • Terminals Q4 to Q9 are individually electrically connected to leads 13B to 13G by wires W6 to W11.
  • the terminals P1 and P2 constitute high voltage side terminals
  • the terminals P3 to P5 constitute low voltage side terminals. That is, the terminal electrically connected to the lead 13A and the lead portion 11B constitutes a high voltage side terminal, and the terminal electrically connected to the second chip 15 constitutes a low voltage side terminal.
  • the die pad section 11A of the frame 11 electrically connected to the high voltage generating section VT constitutes a high voltage side die pad
  • the die pad 12 constitutes a low voltage side die pad. Therefore, the dielectric strength voltage between the terminals P3 to P5 and the substrate 30 is higher than that between the terminals P1, P2 and the substrate 30. In one example, the dielectric strength voltage between the terminals P3 to P5 and the substrate 30 is about 3850V in DC voltage, and the dielectric strength voltage between the terminals P1, P2 and the substrate 30 is about 1400V in DC power supply.
  • the first chip 14 includes first to fourth resistance circuits 14A to 14D for stepping down the high voltage of the high voltage generating section VT (see FIG. 1).
  • the first resistance circuit 14A includes a resistance value RA
  • the second resistance circuit 14B includes a resistance value RB
  • the third resistance circuit 14C includes a resistance value RC
  • the fourth resistance circuit 14D includes a resistance value RD.
  • the resistance value RB is smaller than the resistance value RA.
  • the ratio of the resistance value RB to the resistance value RA (RB/RA) is set in advance.
  • Resistance value RC is smaller than resistance value RD.
  • the ratio of the resistance value RC to the resistance value RD (RC/RD) is set in advance.
  • the ratio (RB/RA) and the ratio (RC/RD) are set to the same predetermined value (for example, 1/999).
  • the first to fourth resistance circuits 14A to 14D are connected in series. Each of the first to fourth resistance circuits 14A to 14D has a first end and a second end. The first end of the first resistance circuit 14A is electrically connected to the terminal P1, and the second end of the first resistance circuit 14A is electrically connected to the first end of the second resistance circuit 14B. There is. A connection point between the first resistance circuit 14A and the second resistance circuit 14B is electrically connected to the terminal P3. The second end of the second resistance circuit 14B is electrically connected to the first end of the third resistance circuit 14C. A connection point between the second resistance circuit 14B and the third resistance circuit 14C is electrically connected to the terminal P4.
  • the second end of the third resistance circuit 14C is electrically connected to the first end of the fourth resistance circuit 14D.
  • a connection point between the third resistance circuit 14C and the fourth resistance circuit 14D is electrically connected to the terminal P5.
  • the second end of the fourth resistance circuit 14D is electrically connected to the terminal P2.
  • the second chip 15 includes a voltage detection circuit 15A.
  • Voltage detection circuit 15A includes an operational amplifier.
  • Voltage detection circuit 15A is electrically connected to terminals Q1 to Q3.
  • the terminal Q1 is electrically connected to the terminal P3 of the first chip 14 by a wire W3
  • the terminal Q2 is electrically connected to the terminal P4 of the first chip 14 by a wire W4
  • the terminal Q3 is electrically connected to the terminal P3 of the first chip 14 by a wire W5. It is electrically connected to terminal P5 of. Therefore, the voltage detection circuit 15A connects the connection point between the first resistance circuit 14A and the second resistance circuit 14B, the connection point between the second resistance circuit 14B and the third resistance circuit 14C, and the connection point between the third resistance circuit 14C and the third resistance circuit 14C.
  • the voltage between the connection point and the four-resistance circuit 14D is detected.
  • the terminals Q4 to Q9 (leads 13B to 13G (see FIG. 1)) are used to supply power supply voltage to the operational amplifier in the second chip 15 and to output the output signal of the voltage detection circuit 15A.
  • FIG. 3 shows a schematic planar structure of the first chip 14 including the first to fourth resistance circuits 14A to 14D (see FIG. 2) of the first chip 14 described above.
  • the first chip 14 includes a plurality of unit semiconductor resistance layers (hereinafter referred to as "semiconductor resistance layers 20").
  • Each semiconductor resistance layer 20 extends along the X-axis direction. In other words, each semiconductor resistance layer 20 extends in the lateral direction of the first chip 14.
  • the plurality of semiconductor resistance layers 20 are arranged to be aligned with each other in the X-axis direction and spaced apart from each other in the Y-axis direction. In other words, the plurality of semiconductor resistance layers 20 are spaced apart from each other in the longitudinal direction of the first chip 14 .
  • the plurality of semiconductor resistance layers 20 are used as constituent elements of the first to fourth resistance circuits 14A to 14D.
  • the plurality of semiconductor resistance layers 20 can be divided into first to fourth resistance regions R1 to R4 as a plurality of resistance regions.
  • the first to fourth resistance regions R1 to R4 are arranged in the order of resistance regions R1, R2, R3, and R4 from the +Y direction to the -Y direction.
  • the first resistance region R1 is a region forming the first resistance circuit 14A
  • the second resistance region R2 is a region forming the second resistance circuit 14B
  • the third resistance region R3 is a region forming the third resistance circuit 14C.
  • the fourth resistance region R4 is a region constituting the fourth resistance circuit 14D.
  • the number of semiconductor resistance layers 20 in each of the first to fourth resistance regions R1 to R4 is individually set. In the first embodiment, the number of semiconductor resistance layers 20 in the first resistance region R1 and the fourth resistance region R4 is the same. The number of semiconductor resistance layers 20 in the second resistance region R2 and the third resistance region R3 is the same. The number of semiconductor resistance layers 20 in the first and fourth resistance regions R1 and R4 is greater than the number of semiconductor resistance layers 20 in the second and third resistance regions R2 and R3. Note that the number of semiconductor resistance layers 20 in each of the first to fourth resistance regions R1 to R4 is not limited to that in the first embodiment, and can be changed arbitrarily.
  • each end of the semiconductor resistance layer 20 in the odd-numbered row from the end in the +Y direction in the -X direction is connected to the semiconductor resistance layer 20 in the -Y direction. It is electrically connected to the ends in the ⁇ X direction of even-numbered rows of semiconductor resistance layers 20 adjacent to each other in the direction. Furthermore, each of the +X direction ends of the even-numbered semiconductor resistance layers 20 from the +Y-direction end corresponds to the +X-direction ends of the odd-numbered semiconductor resistance layers 20 adjacent to the semiconductor resistance layer 20 in the ⁇ Y direction. electrically connected to the As a result, all the semiconductor resistance layers 20 in the first to fourth resistance regions R1 to R4 are connected in series.
  • the semiconductor resistance layer 20 in the first row from the end in the +Y direction of the first resistance region R1 and the terminal P1 are connected by a wiring 21.
  • the wiring 21 is connected to the end in the +X direction of the semiconductor resistance layer 20 in the first row from the end in the +Y direction of the first resistance region R1.
  • the semiconductor resistance layer 20 in the first row from the end in the +Y direction of the second resistance region R2 and the terminal P3 are connected by a wiring 22.
  • the wiring 22 is connected to the end in the +X direction of the semiconductor resistance layer 20 in the first row from the end in the +Y direction of the second resistance region R2.
  • the semiconductor resistance layer 20 in the first row from the end in the -Y direction of the second resistance region R2, the semiconductor resistance layer 20 in the first row from the end in the +Y direction of the third resistance region R3, and the terminal P4 are connected by wiring 23. It is connected.
  • the wiring 23 is located at the end in the +X direction of the semiconductor resistance layer 20 in the first row from the end in the ⁇ Y direction of the second resistance region R2 and in the semiconductor resistance layer 20 in the first row from the end in the +Y direction of the third resistance region R3. It is connected to the.
  • the semiconductor resistance layer 20 in the first row from the end in the -Y direction of the third resistance region R3 and the terminal P5 are connected by a wiring 24.
  • the wiring 24 is connected to the end in the +X direction of the semiconductor resistance layer 20 in the first row from the end in the ⁇ Y direction of the third resistance region R3.
  • the semiconductor resistance layer 20 in the first row from the end in the -Y direction of the fourth resistance region R4 and the terminal P2 are connected by a wiring 25.
  • the wiring 25 is connected to the end in the +X direction of the semiconductor resistance layer 20 in the first row from the end in the ⁇ Y direction of the fourth resistance region R4.
  • FIGS. 4 to 7 show a cross-sectional structure of the first chip 14.
  • FIG. 4 shows a cross-sectional structure of a region including four semiconductor resistance layers 20 adjacent to each other in the Y-axis direction in the first resistance region R1, taken along the YZ plane.
  • FIG. 5 shows an enlarged structure of the four semiconductor resistance layers 20 of FIG. 4 and their surroundings.
  • FIG. 6 shows a cross-sectional structure obtained by cutting an end in the +X direction along the YZ plane in a region including four semiconductor resistance layers 20 adjacent to each other in the Y-axis direction in the first resistance region R1.
  • FIG. 7 shows a cross-sectional structure of the first chip 14 taken along line F7-F7 in FIG.
  • the first chip 14 includes a substrate 30 and an element insulating layer 40 formed on the substrate 30.
  • the substrate 30 is formed of, for example, a semiconductor substrate.
  • the thickness of the substrate 30 is, for example, about 300 ⁇ m.
  • the substrate 30 is a semiconductor substrate made of a material containing Si.
  • the substrate 30 may be a semiconductor substrate made of a wide bandgap semiconductor or a compound semiconductor.
  • the substrate 30 may be an insulating substrate formed of a material containing glass or an insulating substrate formed of a material containing ceramics such as alumina.
  • a wide band gap semiconductor is a semiconductor substrate having a band gap of 2.0 eV or more.
  • the wide bandgap semiconductor may be SiC (silicon carbide).
  • the compound semiconductor may be a III-V compound semiconductor.
  • the compound semiconductor may include at least one of AlN (aluminum nitride), InN (indium nitride), GaN (gallium nitride), and GaAs (gallium arsenide).
  • the element insulating layer 40 has an element front surface 41 and an element back surface 42 facing oppositely to each other in the Z-axis direction.
  • the Z-axis direction corresponds to the "thickness direction of the element insulating layer”.
  • the back surface 42 of the element is in contact with the substrate 30.
  • the element surface 41 is a surface opposite to the substrate 30 in the Z-axis direction.
  • Terminals P1 to P5 (see FIG. 3) and a passivation film 43 are formed on the element insulating layer 40.
  • Terminals P1 to P5 are formed on the element surface 41 of the element insulating layer 40.
  • Terminals P1 to P5 are made of Ti (titanium), TiN (titanium nitride), Ta (tantalum), TaN (tantalum nitride), Au (gold), Ag (silver), Cu (copper), Al (aluminum), Ni ( One or more of nickel), Pd (palladium), and W (tungsten) is selected as appropriate.
  • the terminals P1 to P5 are formed of a material containing Al.
  • FIG. 7 shows a structure in which a terminal P1 is formed on the element surface 41.
  • the terminal P1 is covered with a passivation film 43.
  • the passivation film 43 has an opening 43X that exposes the terminal P1.
  • the passivation film 43 has an opening 43X that exposes the terminals P2 to P5 shown in FIGS. 1 to 3.
  • Terminals P1-P5 therefore include exposed surfaces for connecting wires W1-W5 (see FIG. 1). In this way, the terminals P1 to P5 constitute electrode pads.
  • the passivation film 43 is formed on the element surface 41 of the element insulating layer 40.
  • the passivation film 43 is a surface protection film of the first chip 14, and is formed of a material containing SiN, for example.
  • the material constituting the passivation film 43 can be changed arbitrarily, and may be formed of a material containing SiO 2 , for example.
  • the passivation film 43 may have a laminated structure of a plurality of films, for example, a laminated structure of a film formed of a material containing SiN and a film formed of a material containing SiO2 .
  • the element insulating layer 40 includes a substrate-side insulating layer 50 provided on the substrate 30, a wiring-side insulating layer 60 laminated on the substrate-side insulating layer 50, and a resistance-side insulating layer laminated on the wiring-side insulating layer 60. layer 70.
  • the substrate-side insulating layer 50 includes a plurality of first substrate-side insulating layers 51 and a second substrate-side insulating layer 52 formed on the plurality of first substrate-side insulating layers 51.
  • the plurality of first substrate side insulating layers 51 and the plurality of second substrate side insulating layers 52 are alternately stacked one by one in the Z-axis direction.
  • the first substrate side insulating layer 51 is formed of a material containing SiN (silicon nitride), SiC, SiCN (nitrogen-doped silicon carbide), or the like.
  • the first substrate-side insulating layer 51 may be a SiN-based insulating film.
  • the first substrate side insulating layer 51 is formed of a material containing SiN.
  • the first substrate-side insulating layer 51 is, for example, an insulating layer having a different composition from the second substrate-side insulating layer 52, and is a film having stress opposite to that of the second substrate-side insulating layer 52.
  • the first substrate side insulating layer 51 may be, for example, a nitride film having tensile stress.
  • the second substrate side insulating layer 52 is an oxide film formed of a material containing SiO 2 (silicon oxide).
  • the film thickness of the second substrate side insulating layer 52 is thicker than the film thickness of the first substrate side insulating layer 51.
  • the first substrate side insulating layer 51 has a thickness of 50 nm or more and less than 1000 nm.
  • the second substrate side insulating layer 52 has a thickness of 500 nm or more and 5000 nm or less.
  • the first substrate side insulating layer 51 has a thickness of about 300 nm
  • the second substrate side insulating layer 52 has a thickness of about 2000 nm.
  • the reason why the first substrate-side insulating layer 51 and the second substrate-side insulating layer 52 are laminated alternately is to prevent the warpage of the substrate 30 caused by the film formation of the second substrate-side insulating layer 52 from the first substrate-side insulating layer 51. This is because the substrate-side insulating layer 50 can be formed thickly by controlling the film formation. In the first embodiment, the substrate-side insulating layer 50 has a thickness of about 13.5 ⁇ m.
  • the ratio of the film thickness of the first substrate side insulating layer 51 to the film thickness of the second substrate side insulating layer 52 in the drawings is the actual film thickness of the first substrate side insulating layer 51. and the film thickness of the second substrate side insulating layer 52 are different.
  • the thicknesses of both the first substrate side insulating layer 51 and the second substrate side insulating layer 52 are thickened. are doing. Therefore, the number of laminated layers of the first substrate side insulating layer 51 and the second substrate side insulating layer 52 shown in FIG. 4 indicates the actual number of laminated layers of the first substrate side insulating layer 51 and the second substrate side insulating layer 52. It's not a thing.
  • the resistance side insulating layer 70 is an insulating layer in which the semiconductor resistance layer 20 is embedded.
  • the resistance side insulating layer 70 includes a first insulating layer 71, a second insulating layer 72 laminated on the first insulating layer 71, and a third insulating layer 73 laminated on the second insulating layer 72. .
  • the semiconductor resistance layer 20 is stacked on the second insulating layer 72 and covered with the third insulating layer 73. Therefore, as shown in FIG. 4, the plurality of semiconductor resistance layers 20 are arranged at the same position in the Z-axis direction.
  • the semiconductor resistance layer 20 is formed into a flat plate shape with the thickness direction in the Z-axis direction.
  • the thickness of the semiconductor resistance layer 20 is thinner than the width (length in the X-axis direction) of the semiconductor resistance layer 20.
  • the semiconductor resistance layer 20 has a thickness smaller than each of the first to third insulating layers 71 to 73.
  • the thickness of the semiconductor resistance layer 20 is, for example, 1 nm or more and 100 nm or less. In the first embodiment, the thickness of the semiconductor resistance layer 20 is approximately 2.5 nm.
  • the semiconductor resistance layer 20 is formed of a material containing, for example, CrSi (chromium silicon).
  • the semiconductor resistance layer 20 includes a resistor back surface 27 facing the element back surface 42 of the element insulating layer 40 in the Z-axis direction, a resistor surface 28 on the opposite side to the resistor back surface 27, and a resistor back surface 27 and the resistor back surface 28. and a resistive side surface 29 connected to the surface 28.
  • both the resistance back surface 27 and the resistance surface 28 are surfaces along the XY plane.
  • the resistance side surface 29 is a surface that intersects both the resistance back surface 27 and the resistance surface 28.
  • the resistance side surface 29 is a surface perpendicular to both the resistance back surface 27 and the resistance surface 28.
  • the semiconductor resistance layer 20 is provided within the third insulating layer 73 with the resistor back surface 27 in contact with the second insulating layer 72 . That is, the semiconductor resistance layer 20 is sandwiched between the second insulating layer 72 and the third insulating layer 73. Both resistive surface 28 and resistive side 29 are in contact with third insulating layer 73 .
  • the wiring-side insulating layer 60 is an insulating layer in which a plurality of wiring layers 80 are embedded.
  • the wiring side insulating layer 60 includes a fourth insulating layer 61, a fifth insulating layer 62 laminated on the fourth insulating layer 61, and a sixth insulating layer 63 laminated on the fifth insulating layer 62. .
  • the plurality of wiring layers 80 are stacked on the fifth insulating layer 62 and covered with the sixth insulating layer 63. In the illustrated example, the plurality of wiring layers 80 are arranged at the same position in the Z direction.
  • the wiring layer 80 includes, for example, the wirings 21 to 25 shown in FIG. Since the wiring layer 80 is embedded in the wiring side insulating layer 60, it is arranged closer to the substrate 30 (see FIG. 4) than the semiconductor resistance layer 20 embedded in the resistance side insulating layer 70 in the Z-axis direction.
  • the wiring layer 80 is formed in a flat plate shape with the thickness direction in the Z-axis direction.
  • the thickness of the wiring layer 80 is thinner than the width of the wiring layer 80 (the length in the direction perpendicular to the direction in which the wiring layer 80 extends in plan view).
  • the thickness of the wiring layer 80 is thicker than the thickness of the semiconductor resistance layer 20.
  • the thickness of the wiring layer 80 is thicker than the thickness of each of the fifth insulating layer 62 and the sixth insulating layer 63.
  • the thickness of the wiring layer 80 is thinner than the thickness of the fourth insulating layer 61.
  • the wiring layer 80 one or more of Ti, TiN, Ta, TaN, Au, Ag, Cu, Al, and W is appropriately selected.
  • the wiring layer 80 is formed of a material containing Al.
  • the wiring layer 80 electrically connects two semiconductor resistance layers 20 adjacent in the Y-axis direction. More specifically, the wiring layer 80 is formed to overlap both of the two semiconductor resistance layers 20.
  • Each semiconductor resistance layer 20 and wiring layer 80 are connected by two vias 90.
  • the via 90 extends in the Z-axis direction, which is the thickness direction of the element insulating layer 40. More specifically, the via 90 is in contact with both the semiconductor resistance layer 20 and the wiring layer 80 by penetrating the first insulating layer 71, the second insulating layer 72, and the sixth insulating layer 63 in the Z-axis direction. ing.
  • the via 90 one or more of Ti, TiN, Ta, TaN, Au, Ag, Cu, Al, and W is appropriately selected.
  • the via 90 is formed of a material containing W. Note that the number of vias 90 can be changed arbitrarily.
  • the wiring layer 80 includes a wiring back surface 81 facing the element back surface 42 (see FIG. 4) of the element insulating layer 40 in the Z-axis direction, a wiring surface 82 opposite to the wiring back surface 81, and the wiring back surface 81 and the wiring surface 82. and a wiring side surface 83 that connects.
  • the wiring back surface 81 faces the opposite side from the semiconductor resistance layer 20 in the Z-axis direction.
  • both the wiring back surface 81 and the wiring front surface 82 are surfaces along the XY plane.
  • the wiring side surface 83 is a surface that intersects both the wiring back surface 81 and the wiring front surface 82.
  • the wiring side surface 83 is a surface perpendicular to both the wiring back surface 81 and the wiring front surface 82.
  • the wiring layer 80 is provided in the sixth insulating layer 63 with the wiring back surface 81 in contact with the fifth insulating layer 62. That is, the wiring layer 80 is sandwiched between the fifth insulating layer 62 and the sixth insulating layer 63. Both the wiring surface 82 and the wiring side surface 83 are in contact with the sixth insulating layer 63.
  • the element insulating layer 40 including the resistance-side insulating layer 70 and the wiring-side insulating layer 60 includes a structure that alleviates electric field concentration generated in the semiconductor resistance layer 20.
  • the element insulating layer 40 includes a first insulating layer 71, a second insulating layer 72, and a sixth insulating layer 63 as a structure that alleviates electric field concentration in the semiconductor resistance layer 20.
  • Both the first insulating layer 71 and the second insulating layer 72 are arranged between the semiconductor resistance layer 20 and the wiring layer 80 in the Z-axis direction.
  • the sixth insulating layer 63 is arranged closer to the substrate 30 than both the first insulating layer 71 and the second insulating layer 72.
  • the first insulating layer 71 is stacked on the sixth insulating layer 63.
  • the first insulating layer 71 is in contact with the sixth insulating layer 63.
  • the second insulating layer 72 in contact with the semiconductor resistance layer 20 is formed of a material containing, for example, SiN. Therefore, the dielectric constant of the second insulating layer 72 is about 7. In the illustrated example, the thickness of the second insulating layer 72 is thinner than both the thickness of the first insulating layer 71 and the thickness of the sixth insulating layer 63.
  • the first insulating layer 71 is spaced apart from the semiconductor resistance layer 20 in the Z-axis direction with the second insulating layer 72 interposed therebetween.
  • the first insulating layer 71 is spaced apart from the wiring layer 80 in the Z-axis direction with the sixth insulating layer 63 interposed therebetween.
  • the first insulating layer 71 has a lower dielectric constant than the second insulating layer 72.
  • the dielectric constant of the first insulating layer 71 is greater than 3.8 and less than 7. In one example, the dielectric constant of the first insulating layer 71 may be greater than 4 and less than 7.
  • the first insulating layer 71 is made of a material containing SiON. Therefore, the dielectric constant of the first insulating layer 71 is adjusted according to the concentration of N (nitrogen) in SiON.
  • the first insulating layer 71 has a thinner thickness than the sixth insulating layer 63.
  • the sixth insulating layer 63 is spaced apart from the semiconductor resistance layer 20 in the Z-axis direction.
  • the sixth insulating layer 63 has a lower dielectric constant than the first insulating layer 71.
  • the sixth insulating layer 63 is made of a material containing SiO 2 . Therefore, the dielectric constant of the sixth insulating layer 63 is about 3.8.
  • the sixth insulating layer 63 is an insulating layer that relaxes the electric field of the semiconductor resistance layer 20 and covers the wiring layer 80.
  • the thickness of the region of the sixth insulating layer 63 where the wiring layer 80 is not arranged is thicker than the thickness of each of the first insulating layer 71 and the second insulating layer 72.
  • the sixth insulating layer 63 corresponds to a "low dielectric constant insulating layer".
  • the second insulating layer 72 , the first insulating layer 71 , and the sixth insulating layer 63 are arranged in this order from the semiconductor resistance layer 20 toward the substrate 30 in the structure that alleviates the electric field concentration on the semiconductor resistance layer 20 .
  • the structure is such that the relative dielectric constant decreases from the semiconductor resistance layer 20 toward the substrate 30 as a structure for alleviating electric field concentration on the semiconductor resistance layer 20 .
  • the third insulating layer 73 covering the semiconductor resistance layer 20 has a lower dielectric constant than the second insulating layer 72.
  • the third insulating layer 73 may have a lower dielectric constant than the first insulating layer 71.
  • the third insulating layer 73 is formed of a material containing any one of SiON, SiC, and SiO2 .
  • the third insulating layer 73 has a lower dielectric constant than the first insulating layer 71 and is therefore formed of a material containing SiO 2 . This improves the insulation between the semiconductor resistance layers 20 adjacent to each other in the Y-axis direction.
  • the third insulating layer 73 is thicker than each of the first insulating layer 71 , the second insulating layer 72 , and the sixth insulating layer 63 .
  • the thickness of each of the first insulating layer 71, the second insulating layer 72, the third insulating layer 73, and the sixth insulating layer 63 can be changed arbitrarily. In one example, the thickness of the first insulating layer 71, the thickness of the second insulating layer 72, and the thickness of the sixth insulating layer 63 may be equal to each other.
  • the thickness of the first insulating layer 71 and the thickness of the second insulating layer 72 may be equal to each other and thinner than the thickness of the sixth insulating layer 63. Further, in one example, the thickness of the first insulating layer 71 may be thicker than the thickness of the second insulating layer 72. Further, in one example, the thickness of the third insulating layer 73 may be equal to the thickness of the sixth insulating layer 63. Further, in one example, the thickness of the third insulating layer 73 may be thinner than the thickness of the sixth insulating layer 63.
  • the element insulating layer 40 including the wiring-side insulating layer 60 and the substrate-side insulating layer 50 includes a structure that alleviates electric field concentration generated in the wiring layer 80.
  • the element insulating layer 40 includes a fourth insulating layer 61 , a fifth insulating layer 62 , and a second substrate-side insulating layer that is the uppermost layer of the substrate-side insulating layer 50 as a structure that alleviates electric field concentration in the wiring layer 80 .
  • the second substrate-side insulating layer 52 which is the uppermost layer of the substrate-side insulating layer 50, will be referred to as a "seventh insulating layer 52A.”
  • Each of the fourth insulating layer 61, the fifth insulating layer 62, and the seventh insulating layer 52A is arranged closer to the substrate 30 (see FIG. 4) than the wiring layer 80. It can also be said that each of the fourth insulating layer 61, the fifth insulating layer 62, and the seventh insulating layer 52A is arranged on the opposite side of the semiconductor resistance layer 20 with respect to the wiring layer 80 in the Z-axis direction.
  • the fourth insulating layer 61 is laminated on the seventh insulating layer 52A.
  • the fourth insulating layer 61 is in contact with the seventh insulating layer 52A.
  • the fifth insulating layer 62 in contact with the wiring layer 80 is formed of a material containing SiN, for example. Therefore, the dielectric constant of the fifth insulating layer 62 is about 7.
  • the thickness of the fifth insulating layer 62 is equal to the thickness of the fourth insulating layer 61.
  • the thickness of the fifth insulating layer 62 is the fourth insulating layer 62. It can be said that the thickness is equal to the thickness of the insulating layer 61. Further, the thickness of the fifth insulating layer 62 is thinner than the thickness of the seventh insulating layer 52A.
  • both the thickness of the fifth insulating layer 62 and the thickness of the fourth insulating layer 61 are thinner than the thickness of the first insulating layer 71. Further, both the thickness of the fifth insulating layer 62 and the thickness of the fourth insulating layer 61 are thinner than the thickness of the second insulating layer 72.
  • the fourth insulating layer 61 is spaced apart from the wiring layer 80 in the Z-axis direction with the fifth insulating layer 62 interposed therebetween.
  • the fourth insulating layer 61 has a lower dielectric constant than the fifth insulating layer 62.
  • the relative permittivity of the fourth insulating layer 61 is greater than 3.8 and less than 7.
  • the dielectric constant of the fourth insulating layer 61 may be greater than 4 and less than 7.
  • the fourth insulating layer 61 is made of a material containing SiON. Therefore, the dielectric constant of the fourth insulating layer 61 is adjusted according to the concentration of N (nitrogen) in SiON.
  • the fourth insulating layer 61 has a thinner thickness than the seventh insulating layer 52A.
  • the seventh insulating layer 52A is spaced apart from the wiring layer 80 in the Z-axis direction.
  • the seventh insulating layer 52A has a lower dielectric constant than the fourth insulating layer 61.
  • the seventh insulating layer 52A is made of a material containing SiO 2 . Therefore, the dielectric constant of the seventh insulating layer 52A is about 3.8.
  • the thickness of the seventh insulating layer 52A is thicker than both the thickness of the first insulating layer 71 and the thickness of the second insulating layer 72. Further, the thickness of the seventh insulating layer 52A is thicker than the thickness of the sixth insulating layer 63.
  • the fifth insulating layer 62, the fourth insulating layer 61, and the seventh insulating layer 52A are arranged in this order from the wiring layer 80 toward the substrate 30 in the structure that alleviates electric field concentration on the wiring layer 80.
  • the structure is such that the relative dielectric constant decreases from the wiring layer 80 toward the substrate 30 as a structure for alleviating electric field concentration on the wiring layer 80 .
  • the sixth insulating layer 63 covering the wiring layer 80 has a lower dielectric constant than the fifth insulating layer 62.
  • the sixth insulating layer 63 may have a lower dielectric constant than the fourth insulating layer 61.
  • the sixth insulating layer 63 is formed of a material containing any one of SiON, SiC, and SiO2 .
  • the sixth insulating layer 63 has a lower dielectric constant than the fourth insulating layer 61 and is therefore formed of a material containing SiO 2 . This increases the insulation between the wiring layers 80 adjacent in the Y-axis direction.
  • each of the fourth insulating layer 61, the fifth insulating layer 62, and the seventh insulating layer 52A can be changed arbitrarily.
  • the thickness of the fourth insulating layer 61 may be thinner than the thickness of the fifth insulating layer 62.
  • the thickness of the fourth insulating layer 61 may be thicker than the thickness of the fifth insulating layer 62.
  • the thickness of the fourth insulating layer 61, the thickness of the fifth insulating layer 62, and the thickness of the seventh insulating layer 52A may be equal to each other.
  • the thickness of the fourth insulating layer 61 and the thickness of the fifth insulating layer 62 may be equal to each other and thinner than the thickness of the seventh insulating layer 52A. Further, in one example, the thickness of the seventh insulating layer 52A may be equal to the thickness of the sixth insulating layer 63. Further, in one example, the thickness of the seventh insulating layer 52A may be thinner than the thickness of the sixth insulating layer 63.
  • the element insulating layer 40 includes a structure that alleviates the concentration of the electric field generated at the terminal P1.
  • the element insulating layer 40 includes a third insulating layer 73, an eighth insulating layer 91, and a ninth insulating layer 92 as a structure that alleviates electric field concentration at the terminal P1.
  • the first chip 14 of the first embodiment includes terminals P1 to P5 shown in FIG.
  • the terminals P2 to P5 are also formed in the same manner as the terminal P1. In FIG. 7, a structure for alleviating electric field concentration using the terminal P1 will be described.
  • the eighth insulating layer 91 is laminated on the third insulating layer 73.
  • the ninth insulating layer 92 is laminated on the eighth insulating layer 91.
  • a terminal P1 is arranged on the ninth insulating layer 92. Both the eighth insulating layer 91 and the ninth insulating layer 92 are spaced apart from the semiconductor resistance layer 20 in the Z-axis direction.
  • the ninth insulating layer 92 in contact with the terminal P1 is formed of a material containing, for example, SiN. Therefore, the relative dielectric constant of the ninth insulating layer 92 is about 7. In the illustrated example, the thickness of the ninth insulating layer 92 is thinner than the thickness of the eighth insulating layer 91. Further, the thickness of the ninth insulating layer 92 is thinner than the thickness of the third insulating layer 73.
  • the thickness of the ninth insulating layer 92 is equal to the thickness of the second insulating layer 72.
  • the thickness of the ninth insulating layer 92 is thinner than the thickness of the first insulating layer 71.
  • the thickness of the ninth insulating layer 92 is thicker than both the thickness of the fourth insulating layer 61 and the thickness of the fifth insulating layer 62.
  • the thickness of the ninth insulating layer 92 is thinner than the thickness of the sixth insulating layer 63.
  • the eighth insulating layer 91 is spaced apart from the terminal P1 in the Z-axis direction via the ninth insulating layer 92.
  • the eighth insulating layer 91 has a lower dielectric constant than the ninth insulating layer 92.
  • the relative permittivity of the eighth insulating layer 91 is greater than 3.8 and less than 7.
  • the relative dielectric constant of the eighth insulating layer 91 may be greater than 4 and less than 7.
  • the eighth insulating layer 91 is made of a material containing SiON. Therefore, the dielectric constant of the eighth insulating layer 91 is adjusted according to the concentration of N (nitrogen) in SiON.
  • the eighth insulating layer 91 has a smaller thickness than the third insulating layer 73.
  • the thickness of the eighth insulating layer 91 is equal to the thickness of the first insulating layer 71.
  • the thickness of the eighth insulating layer 91 is It can be said that the thickness is equal to the thickness of the insulating layer 71.
  • the third insulating layer 73 is spaced apart from the terminal P1 in the Z-axis direction. Since the third insulating layer 73 is formed of a material containing SiO 2 as described above, it has a lower dielectric constant than the eighth insulating layer 91.
  • the ninth insulating layer 92, the eighth insulating layer 91, and the third insulating layer 73 are arranged in this order from the terminals P1 to P5 toward the substrate 30 in the structure that alleviates the electric field concentration on the terminals P1 to P5. ing.
  • the structure is such that the dielectric constant decreases from the terminals P1 to P5 toward the substrate 30, as a structure to alleviate electric field concentration on the terminals P1 to P5.
  • each of the eighth insulating layer 91, the ninth insulating layer 92, and the third insulating layer 73 can be changed arbitrarily.
  • the thickness of the eighth insulating layer 91 and the thickness of the ninth insulating layer 92 may be equal to each other.
  • the thickness of the eighth insulating layer 91 may be thicker than the thickness of the ninth insulating layer 92.
  • the thickness of the eighth insulating layer 91, the thickness of the ninth insulating layer 92, and the thickness of the third insulating layer 73 may be equal to each other.
  • Each of the terminals P1 to P5 and the wiring layer 80 are electrically connected by vias 93.
  • the via 93 extends in the Z-axis direction, which is the thickness direction of the element insulating layer 40. More specifically, as shown in FIG. By penetrating the layer 63 in the Z-axis direction, it is in contact with both the terminal P1 and the wiring layer 80.
  • the connection structure between each of the terminals P2 to P5 and the wiring layer 80 by the via 93 is also similar.
  • Via 93 is formed of the same material as via 90, for example.
  • the method for manufacturing the semiconductor device 10 includes the steps of preparing a substrate 30 and forming a substrate-side insulating layer 50 on the substrate 30.
  • the substrate 30 is prepared.
  • the substrate 30 is, for example, a Si substrate.
  • a step of forming a substrate-side insulating layer 50 on the substrate 30 is performed.
  • the first substrate-side insulating layer 51 and the second substrate-side insulating layer 52 are alternately laminated.
  • the first substrate-side insulating layer 51 and the second substrate-side insulating layer 52 are formed, for example, by chemical vapor deposition (CVD).
  • the first substrate-side insulating layer 51 is a SiN film
  • the second substrate-side insulating layer 52 is an SiO 2 film.
  • the second substrate-side insulating layer 52 which is the uppermost layer of the substrate-side insulating layer 50, constitutes a seventh insulating layer 52A.
  • the method for manufacturing the semiconductor device 10 includes a step of forming a part of the wiring side insulating layer 60. More specifically, the method for manufacturing the semiconductor device 10 includes a step of forming a fourth insulating layer 61 and a step of forming a fifth insulating layer 62.
  • the fourth insulating layer 61 is formed by, for example, CVD so as to be deposited on the second substrate side insulating layer 52, which becomes the seventh insulating layer 52A. Subsequently, in the step of forming the fifth insulating layer 62, the fifth insulating layer 62 is deposited on the fourth insulating layer 61 by, for example, CVD.
  • the fourth insulating layer 61 is a SiON film
  • the fifth insulating layer 62 is a SiN film.
  • the method for manufacturing the semiconductor device 10 includes a step of forming a wiring layer 80. More specifically, in this step, a metal film (not shown), which is a material film of the wiring layer 80, is formed on the fifth insulating layer 62 over the entire surface of the fifth insulating layer 62 by, for example, sputtering. For example, one or more of Ti, TiN, Ta, TaN, Au, Ag, Cu, Al, and W is appropriately selected for the metal film. Subsequently, a wiring layer 80 is formed by patterning the metal film by, for example, lithography and etching.
  • the method for manufacturing the semiconductor device 10 includes a step of forming the remainder of the wiring-side insulating layer 60 and a step of forming a part of the resistance-side insulating layer 70.
  • the step of forming the remainder of the wiring-side insulating layer 60 includes the step of forming a sixth insulating layer 63.
  • the sixth insulating layer 63 is formed by depositing on the fifth insulating layer 62 and the wiring layer 80, for example, by CVD. Thereby, the wiring layer 80 is covered with the fifth insulating layer 62 and the sixth insulating layer 63.
  • the sixth insulating layer 63 is a SiO 2 film.
  • the step of forming a part of the resistance side insulating layer 70 includes a step of forming a first insulating layer 71 and a step of forming a second insulating layer 72. More specifically, in the step of forming the first insulating layer 71, the first insulating layer 71 is deposited on the sixth insulating layer 63 by, for example, CVD. In the step of forming the second insulating layer 72, the second insulating layer 72 is deposited on the first insulating layer 71 by, for example, CVD. In the first embodiment, the first insulating layer 71 is a SiON film, and the second insulating layer 72 is a SiN film.
  • the method for manufacturing the semiconductor device 10 includes a step of forming a via 90. More specifically, in this step, via openings 801 are first formed by etching, for example. The via opening 801 is formed to penetrate both the first insulating layer 71 and the second insulating layer 72 in the Z-axis direction, and to expose a part of the wiring layer 80 to the sixth insulating layer 63. . Subsequently, via opening 801 is filled with a metal material, for example, by sputtering. As the metal material, one or more of Ti, TiN, Ta, TaN, Au, Ag, Cu, Al, and W is appropriately selected, for example. As a result, vias 90 are formed.
  • the method for manufacturing the semiconductor device 10 includes a step of forming a semiconductor resistance layer 20. More specifically, in this step, a resistive material film, which is a material film of the semiconductor resistive layer 20, is first formed on the second insulating layer 72. The resistive material film is formed over the entire surface of the second insulating layer 72. The resistive material film is made of CrSi, for example. Subsequently, the semiconductor resistance layer 20 is formed by patterning the resistance material film by, for example, lithography and etching. Thereby, the upper end of the via 90 is connected to the semiconductor resistance layer 20.
  • the method for manufacturing the semiconductor device 10 includes a step of forming the remainder of the resistance-side insulating layer 70, a step of forming an eighth insulating layer 91, a step of forming a ninth insulating layer 92, including.
  • the step of forming the remainder of the resistance-side insulating layer 70 includes the step of forming a third insulating layer 73.
  • the third insulating layer 73 is formed by depositing on the second insulating layer 72 and the semiconductor resistance layer 20, for example, by CVD.
  • the eighth insulating layer 91 is formed by depositing on the third insulating layer 73, for example, by CVD.
  • the ninth insulating layer 92 is deposited on the eighth insulating layer 91 by, for example, CVD.
  • the third insulating layer 73 is an SiO 2 film
  • the eighth insulating layer 91 is an SiON film
  • the ninth insulating layer 92 is an SiN film.
  • the method for manufacturing the semiconductor device 10 includes a step of forming a via 93. More specifically, in this step, via openings 802 are first formed, for example, by etching.
  • the via opening 802 penetrates the ninth insulating layer 92 , the eighth insulating layer 91 , the third insulating layer 73 , the second insulating layer 72 , and the first insulating layer 71 in the Z-axis direction, and also extends through the sixth insulating layer 63 .
  • the wiring layer 80 is formed so as to be partially exposed.
  • via opening 802 is filled with a metal material, for example, by sputtering.
  • the metal material one or more of Ti, TiN, Ta, TaN, Au, Ag, Cu, Al, and W is appropriately selected, for example.
  • vias 93 are formed.
  • the method for manufacturing the semiconductor device 10 includes a step of forming terminals P1 to P5. More specifically, in this step, a metal film (not shown), which is a material film for the terminals P1 to P5, is formed over the entire surface of the ninth insulating layer 92 on the ninth insulating layer 92 by, for example, sputtering. For example, one or more of Ti, TiN, Ta, TaN, Au, Ag, Cu, Al, Ni, Pd, and W is appropriately selected for the metal film. Subsequently, terminals P1 to P5 are formed by patterning the metal film by, for example, lithography and etching. Note that in FIG. 16, for convenience, only the terminal P1 among the terminals P1 to P5 is shown.
  • the method for manufacturing the semiconductor device 10 includes a step of forming a passivation film 43. More specifically, in this step, a passivation material film, which is the material film of the passivation film 43, is first formed on the ninth insulating layer 92 and on the terminals P1 to P5 by, for example, CVD. Subsequently, a portion of the passivation material film covering the terminals P1 to P5 is removed, for example, by etching. In other words, some of the terminals P1 to P5 are exposed from the passivation material film.
  • the passivation material film is, for example, a SiN film. As a result, a passivation film 43 is formed.
  • the first chip 14 is formed through the above steps.
  • the method for manufacturing the semiconductor device 10 includes the steps of preparing the first chip 14 and the second chip 15, preparing a lead frame, and leading the first chip 14 and the second chip 15. It includes a step of mounting on a frame, a step of forming wires W1 to W11, a step of forming sealing resin 16, and a step of dividing into pieces.
  • a lead frame including a frame 11, a die pad 12, and leads 13A to 13G (see FIG. 1) is prepared.
  • the first chip 14 and the second chip 15 on the lead frame the first chip 14 is die-bonded to the die pad portion 11A (see FIG. 1) of the frame 11, and the second chip 15 is die-bonded to the die pad 12. Ru.
  • W1 to W11 are formed by a wire bonding device. That is, W1 to W11 are bonding wires.
  • the sealing resin 16 the resin layer sealing the frame 11, the die pad 12, the leads 13A to 13G, the first chip 14, the second chip 15, and the wires W1 to W11 is formed by, for example, transfer molding. Ru.
  • black epoxy resin is used for the resin layer.
  • the resin layer may be formed by compression molding, for example.
  • the lead frame and the resin layer are cut, for example, by dicing. As a result, frame 11 and leads 13A to 13G are formed. Through the above steps, the semiconductor device 10 is manufactured.
  • the semiconductor device 10 includes an element insulating layer 40 having an element front surface 41 and an element back surface 42 opposite to the element front surface 41, and a plurality of semiconductor resistance layers 20 provided in the element insulating layer 40. , is provided.
  • Each semiconductor resistance layer 20 includes a resistance back surface 27 facing the element back surface 42 in the thickness direction (Z-axis direction) of the element insulating layer 40, a resistance surface 28 on the opposite side to the resistance back surface 27, and a resistance surface 27 and a resistance surface. 28.
  • the element insulating layer 40 includes a first insulating layer 71 , a second insulating layer 72 laminated on the first insulating layer 71 , a second insulating layer 72 having a higher dielectric constant than the first insulating layer 71 , and a second insulating layer 72 laminated on the second insulating layer 72 . and a third insulating layer 73 having a lower dielectric constant than the second insulating layer 72.
  • Each semiconductor resistance layer 20 is stacked on the second insulating layer 72 .
  • Each semiconductor resistance layer 20 is provided within the third insulating layer 73 with the resistor back surface 27 in contact with the second insulating layer 72 .
  • the resistor back surface 27 of the semiconductor resistance layer 20 is in contact with the second insulating layer 72 having a higher dielectric constant than the third insulating layer 73, the resistor back surface 27 of the element insulating layer 40 is connected to the element back surface 40 of the element insulating layer 40. It is possible to reduce the electric field strength directed toward . Therefore, electric field concentration in the semiconductor resistance layer 20 can be alleviated.
  • the dielectric constant decreases in the order of the semiconductor resistance layer 20, the second insulating layer 72, and the first insulating layer 71. That is, in the direction from the semiconductor resistance layer 20 toward the element back surface 42 of the element insulating layer 40, the dielectric constant gradually decreases as the distance from the semiconductor resistance layer 20 increases. Thereby, the electric field strength directed from the semiconductor resistance layer 20 toward the element back surface 42 of the element insulating layer 40 can be further reduced. Therefore, electric field concentration in the semiconductor resistance layer 20 can be further alleviated.
  • the plurality of semiconductor resistance layers 20 are aligned in the thickness direction (Z-axis direction) of the element insulating layer 40 and in a direction perpendicular to the thickness direction (Y-axis direction in the first embodiment). are arranged separately.
  • the first insulating layer 71 and the second insulating layer 72 that are common to the plurality of semiconductor resistance layers 20 can realize a structure that alleviates electric field concentration in each semiconductor resistance layer 20. Therefore, compared to a structure in which a plurality of semiconductor resistance layers 20 are provided at different positions in the Z-axis direction, a structure that alleviates electric field concentration in each semiconductor resistance layer 20 can be easily realized.
  • the semiconductor device 10 includes a wiring layer 80 provided on the element back surface 42 side of the element insulating layer 40 with respect to the semiconductor resistance layer 20 and electrically connected to the semiconductor resistance layer 20.
  • the wiring layer 80 includes a wiring surface 82 facing the semiconductor resistance layer 20 in the thickness direction (Z-axis direction) of the element insulating layer 40, a wiring back surface 81 opposite to the wiring surface 82, and a wiring surface 82 and a wiring back surface 81. and a wiring side surface 83 that connects the wiring.
  • the element insulating layer 40 includes a fourth insulating layer 61 and a fifth insulating layer 62 stacked on the fourth insulating layer 61 and having a higher dielectric constant than the fourth insulating layer 61.
  • the wiring layer 80 is laminated on the fifth insulating layer 62 , and the wiring back surface 81 is in contact with the fifth insulating layer 62 .
  • the wiring back surface 81 of the wiring layer 80 is in contact with the fifth insulating layer 62 having a higher dielectric constant than the fourth insulating layer 61, the wiring back surface 81 is in contact with the element back surface 42 of the element insulating layer 40. It is possible to reduce the electric field strength toward the Therefore, electric field concentration in the wiring layer 80 can be alleviated.
  • the relative dielectric constant decreases in the order of the wiring layer 80, the fifth insulating layer 62, and the fourth insulating layer 61. That is, in the direction from the wiring layer 80 toward the element back surface 42 of the element insulating layer 40, the relative permittivity gradually decreases as the distance from the wiring layer 80 increases. Thereby, the electric field strength directed from the wiring layer 80 toward the element back surface 42 of the element insulating layer 40 can be further reduced. Therefore, electric field concentration in the wiring layer 80 can be further alleviated.
  • the element insulating layer 40 is provided between the fifth insulating layer 62 and the first insulating layer 71 and includes a sixth insulating layer 63 having a lower dielectric constant than the fifth insulating layer 62.
  • the first insulating layer 71 is stacked on the sixth insulating layer 63.
  • the sixth insulating layer 63 has a lower dielectric constant than the first insulating layer 71.
  • the dielectric constant decreases in the order of the semiconductor resistance layer 20, the second insulating layer 72, the first insulating layer 71, and the sixth insulating layer 63. That is, in the direction from the semiconductor resistance layer 20 toward the element back surface 42 of the element insulating layer 40, the dielectric constant gradually decreases as the distance from the semiconductor resistance layer 20 increases. Thereby, the electric field strength directed from the semiconductor resistance layer 20 toward the element back surface 42 of the element insulating layer 40 can be further reduced. Therefore, electric field concentration in the semiconductor resistance layer 20 can be further alleviated.
  • the element insulating layer 40 includes a seventh insulating layer 52A having a lower dielectric constant than the fourth insulating layer 61.
  • the fourth insulating layer 61 is laminated on the seventh insulating layer 52A.
  • the dielectric constant decreases in the order of the wiring layer 80, the fifth insulating layer 62, the fourth insulating layer 61, and the seventh insulating layer 52A. That is, in the direction from the wiring layer 80 toward the element back surface 42 of the element insulating layer 40, the relative permittivity gradually decreases as the distance from the wiring layer 80 increases. Thereby, the electric field strength directed from the wiring layer 80 toward the element back surface 42 of the element insulating layer 40 can be further reduced. Therefore, electric field concentration in the wiring layer 80 can be further alleviated.
  • the element insulating layer 40 is laminated on the third insulating layer 73, and an eighth insulating layer 91 having a higher dielectric constant than the third insulating layer 73, and the eighth insulating layer 91 is laminated, a ninth insulating layer 92 having a higher dielectric constant than the eighth insulating layer 91;
  • the semiconductor device 10 further includes terminals P1 to P5 as electrode pads formed on the ninth insulating layer 92.
  • the terminals P1 to P5 are in contact with the ninth insulating layer 92 having a higher dielectric constant than the third insulating layer 73 and the eighth insulating layer 91, the terminals P1 to P5 are connected to the element insulating layer 40.
  • the electric field intensity directed toward the back surface 42 of the element can be reduced. Therefore, electric field concentration at the terminals P1 to P5 can be alleviated.
  • the relative dielectric constant decreases in the order of the ninth insulating layer 92, the eighth insulating layer 91, and the third insulating layer 73 from the terminals P1 to P5. That is, in the direction from the terminals P1 to P5 toward the element back surface 42 of the element insulating layer 40, the relative dielectric constant gradually decreases as the distance from the wiring layer 80 increases. Thereby, the electric field intensity directed from the terminals P1 to P5 toward the element back surface 42 of the element insulating layer 40 can be further reduced. Therefore, electric field concentration at the terminals P1 to P5 can be further alleviated.
  • the semiconductor device 10 includes an element insulating layer 40, a plurality of semiconductor resistance layers 20 provided in the element insulating layer 40, and electrically connected to the semiconductor resistance layer 20 in the element insulating layer 40, A wiring layer 80 is provided facing the semiconductor resistance layer 20 in the thickness direction (Z-axis direction) of the element insulating layer 40.
  • the wiring layer 80 includes a wiring surface 82 facing the semiconductor resistance layer 20 in the thickness direction of the element insulating layer 40, a wiring back surface 81 opposite to the wiring surface 82, and a wiring side surface connecting the wiring surface 82 and the wiring back surface 81.
  • the element insulating layer 40 includes a fourth insulating layer 61 and a fifth insulating layer 62 that is laminated on the fourth insulating layer 61 and has a dielectric constant higher than that of the fourth insulating layer 61, and a fifth insulating layer 62 that is laminated on the fifth insulating layer 62. and a sixth insulating layer 63 having a lower dielectric constant than the fifth insulating layer 62.
  • the wiring layer 80 is laminated on the fifth insulating layer 62 , and is provided in the sixth insulating layer 63 with the wiring back surface 81 in contact with the fifth insulating layer 62 .
  • the wiring back surface 81 of the wiring layer 80 is in contact with the fifth insulating layer 62 having a higher dielectric constant than the sixth insulating layer 63, the wiring back surface 81 is in contact with the element back surface 42 of the element insulating layer 40. It is possible to reduce the electric field strength toward the Therefore, electric field concentration in the wiring layer 80 can be alleviated.
  • the relative dielectric constant decreases in the order of the wiring layer 80, the fifth insulating layer 62, and the fourth insulating layer 61. That is, in the direction from the wiring layer 80 toward the element back surface 42 of the element insulating layer 40, the relative permittivity gradually decreases as the distance from the wiring layer 80 increases. Thereby, the electric field strength directed from the wiring layer 80 toward the element back surface 42 of the element insulating layer 40 can be further reduced. Therefore, electric field concentration in the wiring layer 80 can be further alleviated.
  • the semiconductor device 10 of the second embodiment will be described with reference to FIGS. 17 to 19.
  • the semiconductor device 10 of the second embodiment has a different electric field relaxation structure compared to the semiconductor device 10 of the first embodiment.
  • points different from the first embodiment will be explained in detail, and the same reference numerals will be given to the same components as in the first embodiment, and the explanation thereof will be omitted.
  • the element insulating layer 40 includes a surface-side insulating layer 100 instead of the wiring-side insulating layer 60 and the resistance-side insulating layer 70 (both shown in FIG. 5).
  • the element insulating layer 40 has a single-layer structure of the first insulating layer 71 instead of the laminated structure of the sixth insulating layer 63 and the first insulating layer 71 in the first embodiment (see FIG. 5). Be prepared. Further, the element insulating layer 40 has a single-layer structure of the third insulating layer 73 instead of the laminated structure of the third insulating layer 73 and the eighth insulating layer 91 (see FIG. 5) in the first embodiment.
  • the front side insulating layer 100 includes the first insulating layer 71, the second insulating layer 72, the third insulating layer 73, the fourth insulating layer 61, the fifth insulating layer 62, the seventh insulating layer 52A, and the ninth insulating layer Contains 92. It can also be said that the front side insulating layer 100 includes the resistance side insulating layer 70.
  • the first insulating layer 71 corresponds to a "low dielectric constant insulating layer".
  • the electric field relaxation structure of the semiconductor resistance layer 20 of the second embodiment includes the first insulating layer 71 and the second insulating layer 72 and does not include the sixth insulating layer 63. Therefore, in the second embodiment, the first insulating layer 71 is laminated on the fifth insulating layer 62. The first insulating layer 71 is in contact with the fifth insulating layer 62.
  • the thickness of the first insulating layer 71 is thicker than the thickness of the first insulating layer 71 of the first embodiment.
  • the thickness of the first insulating layer 71 is thicker than the thickness of the second substrate side insulating layer 52 (seventh insulating layer 52A).
  • the first insulating layer 71 has a lower dielectric constant than the second insulating layer 72.
  • the dielectric constant of the first insulating layer 71 is greater than 3.8 and less than 7. In one example, the dielectric constant of the first insulating layer 71 may be greater than 4 and less than 7.
  • the first insulating layer 71 is made of a material containing SiON, similarly to the first embodiment. Therefore, the dielectric constant of the first insulating layer 71 is adjusted according to the concentration of N (nitrogen) in SiON.
  • the second insulating layer 72 is an insulating layer in contact with the resistor back surface 27 of the semiconductor resistance layer 20, and is formed of a material containing SiN, as in the first embodiment.
  • the thickness of the second insulating layer 72 is the same as in the first embodiment.
  • the second insulating layer 72 and the first insulating layer 71 are arranged in this order from the semiconductor resistance layer 20 toward the substrate 30.
  • the structure is such that the relative dielectric constant decreases from the semiconductor resistance layer 20 toward the substrate 30 as a structure for alleviating electric field concentration on the semiconductor resistance layer 20 .
  • the third insulating layer 73 covering the semiconductor resistance layer 20 has a lower dielectric constant than the second insulating layer 72.
  • the third insulating layer 73 is formed of a material containing SiON or SiC, unlike the first embodiment.
  • the third insulating layer 73 is made of a material containing SiON, like the first insulating layer 71. That is, the relative permittivity of the third insulating layer 73 and the relative permittivity of the first insulating layer 71 are equal to each other.
  • the thickness of the third insulating layer 73 is thicker than the thickness of the third insulating layer 73 of the first embodiment.
  • the thickness of the third insulating layer 73 is thicker than both the thickness of the first insulating layer 71 and the thickness of the second insulating layer 72.
  • each of the first insulating layer 71, the second insulating layer 72, and the third insulating layer 73 can be changed arbitrarily.
  • the thickness of the first insulating layer 71, the thickness of the second insulating layer 72, and the thickness of the third insulating layer 73 may be equal to each other.
  • the thickness of the first insulating layer 71 and the thickness of the second insulating layer 72 may be equal to each other and thinner than the thickness of the third insulating layer 73.
  • the thickness of the second insulating layer 72 may be thicker than the thickness of the first insulating layer 71.
  • the electric field relaxation structure of the wiring layer 80 of the second embodiment is the same as the electric field relaxation structure of the wiring layer 80 of the first embodiment. That is, the electric field relaxation structure of the wiring layer 80 includes the fourth insulating layer 61, the fifth insulating layer 62, and the seventh insulating layer 52A.
  • the semiconductor device 10 of the second embodiment has a third insulating layer 73 instead of the laminated structure of the third insulating layer 73 and the eighth insulating layer 91 of the first embodiment (see FIG. 5). It has a single layer structure. Therefore, the electric field relaxation structure of the terminals P1 to P5 of the second embodiment includes the third insulating layer 73 and the ninth insulating layer 92.
  • the ninth insulating layer 92 is laminated on the third insulating layer 73.
  • the ninth insulating layer 92 is in contact with the third insulating layer 73.
  • the ninth insulating layer 92 is made of a material containing SiN, similarly to the first embodiment.
  • the third insulating layer 73 is formed of a material containing SiON, similarly to the second embodiment. That is, the relative dielectric constant of the third insulating layer 73 is lower than that of the ninth insulating layer 92.
  • the ninth insulating layer 92 and the third insulating layer 73 are arranged in this order from the terminals P1 to P5 toward the substrate 30.
  • the structure is such that the dielectric constant decreases from the terminals P1 to P5 toward the substrate 30, as a structure to alleviate electric field concentration on the terminals P1 to P5.
  • the semiconductor device 10 includes an element insulating layer 40, a plurality of semiconductor resistance layers 20 provided in the element insulating layer 40, and electrically connected to the semiconductor resistance layer 20 in the element insulating layer 40, A wiring layer 80 is provided facing the semiconductor resistance layer 20 in the thickness direction (Z-axis direction) of the element insulating layer 40.
  • the wiring layer 80 includes a wiring surface 82 facing the semiconductor resistance layer 20 in the thickness direction of the element insulating layer 40, a wiring back surface 81 opposite to the wiring surface 82, and a wiring side surface connecting the wiring surface 82 and the wiring back surface 81.
  • the element insulating layer 40 includes a fourth insulating layer 61 and a fifth insulating layer 62 that is laminated on the fourth insulating layer 61 and has a dielectric constant higher than that of the fourth insulating layer 61, and a fifth insulating layer 62 that is laminated on the fifth insulating layer 62. and a first insulating layer 71 having a lower dielectric constant than the fifth insulating layer 62.
  • the wiring layer 80 is laminated on the fifth insulating layer 62 , and is provided in the first insulating layer 71 with the wiring back surface 81 in contact with the fifth insulating layer 62 .
  • the wiring back surface 81 of the wiring layer 80 is in contact with the fifth insulating layer 62 having a higher dielectric constant than the first insulating layer 71, the wiring back surface 81 is in contact with the element back surface 42 of the element insulating layer 40. It is possible to reduce the electric field strength toward the Therefore, electric field concentration in the wiring layer 80 can be alleviated.
  • the relative dielectric constant decreases in the order of the wiring layer 80, the fifth insulating layer 62, and the fourth insulating layer 61. That is, in the direction from the wiring layer 80 toward the element back surface 42 of the element insulating layer 40, the relative permittivity gradually decreases as the distance from the wiring layer 80 increases. Thereby, the electric field strength directed from the wiring layer 80 toward the element back surface 42 of the element insulating layer 40 can be further reduced. Therefore, electric field concentration in the wiring layer 80 can be further alleviated.
  • the element insulating layer 40 is laminated on the third insulating layer 73 and includes the ninth insulating layer 92 as a high dielectric constant insulating layer having a higher dielectric constant than the third insulating layer 73.
  • the semiconductor device 10 further includes terminals P1 to P5 as electrode pads formed on the ninth insulating layer 92.
  • the relative permittivity decreases in the order of terminals P1 to P5 to ninth insulating layer 92 and third insulating layer 73. That is, in the direction from the terminals P1 to P5 toward the element back surface 42 of the element insulating layer 40, the relative dielectric constant gradually decreases as the distance from the wiring layer 80 increases. Thereby, the electric field intensity directed from the terminals P1 to P5 toward the element back surface 42 of the element insulating layer 40 can be further reduced. Therefore, electric field concentration at the terminals P1 to P5 can be further alleviated.
  • the semiconductor device 10 of the third embodiment will be described with reference to FIGS. 20 to 22.
  • the semiconductor device 10 of the third embodiment has a different electric field relaxation structure compared to the semiconductor device 10 of the first embodiment.
  • points different from the first embodiment will be explained in detail, and components common to the first embodiment will be denoted by the same reference numerals, and their explanation will be omitted.
  • the element insulating layer 40 is similar to the wiring-side insulating layer 60 and the resistance-side insulating layer 70 (both shown in FIG. 5) of the semiconductor device 10 of the first embodiment. Instead, a front side insulating layer 100 is provided. More specifically, the element insulating layer 40 has a single-layer structure of the first insulating layer 71 instead of the laminated structure of the sixth insulating layer 63 and the first insulating layer 71 in the first embodiment (see FIG. 5). Be prepared.
  • the element insulating layer 40 has a single layer structure of the third insulating layer 73 instead of the laminated structure of the third insulating layer 73, the eighth insulating layer 91, and the ninth insulating layer 92 (see FIG. 5) in the first embodiment. It has a layered structure. That is, the front side insulating layer 100 includes the first insulating layer 71, the second insulating layer 72, the third insulating layer 73, the fourth insulating layer 61, the fifth insulating layer 62, and the seventh insulating layer 52A. It can also be said that the front side insulating layer 100 includes the resistance side insulating layer 70.
  • the first insulating layer 71 corresponds to a "low dielectric constant insulating layer".
  • the electric field relaxation structure of the semiconductor resistance layer 20 is the same as the electric field relaxation structure of the semiconductor resistance layer 20 of the second embodiment.
  • the electric field relaxation structure of the wiring layer 80 is the same as the electric field relaxation structure of the wiring layer 80 of the first and second embodiments.
  • the electric field relaxation structure of the terminals P1 to P5 is omitted. That is, the semiconductor device 10 of the third embodiment does not include both the eighth insulating layer 91 and the ninth insulating layer 92 (see FIG. 7).
  • Terminals P1 to P5 are formed on the third insulating layer 73.
  • the terminals P1 to P5 are in contact with the third insulating layer 73.
  • the third insulating layer 73 is made of a material containing SiO 2 similarly to the first embodiment.
  • Terminals P1 to P5 are covered with a passivation film 43, similar to the first embodiment. According to the third embodiment, effects (1-1) to (1-3), (1-5), and (1-8) of the first embodiment and (2-1) of the second embodiment are obtained. You can obtain the following effects.
  • the positional relationship between the semiconductor resistance layer 20 and the wiring layer 80 in the Z-axis direction can be changed arbitrarily.
  • the wiring layer 80 may be arranged closer to the element surface 41 of the element insulating layer 40 than the semiconductor resistance layer 20 is.
  • the wiring layer 80 may be arranged between the semiconductor resistance layer 20 and the terminals P1 to P5 in the Z-axis direction.
  • the positions of the fourth insulating layer 61, the fifth insulating layer 62, and the sixth insulating layer 63 in the Z-axis direction are changed.
  • the positions of the fourth insulating layer 61, the fifth insulating layer 62, and the sixth insulating layer 63 are changed in the Z-axis direction, the Z-axis of the first insulating layer 71, the second insulating layer 72, and the third insulating layer 73 are changed.
  • the position of the direction is changed. That is, in the illustrated example, it can be said that the position of the wiring-side insulating layer 60 in the Z-axis direction and the position of the resistance-side insulating layer 70 in the Z-axis direction are interchanged.
  • the fourth insulating layer 61 is laminated on the third insulating layer 73.
  • the fifth insulating layer 62 is laminated on the fourth insulating layer 61.
  • the wiring layer 80 is formed on the fifth insulating layer 62.
  • the sixth insulating layer 63 is laminated on the fifth insulating layer 62 and covers the wiring layer 80.
  • the fourth insulating layer 61 is made of a material containing SiON
  • the fifth insulating layer 62 is made of a material containing SiN
  • the sixth insulating layer 63 is made of a material containing SiO2. It is made of a material containing 2 .
  • the first insulating layer 71 is laminated on the seventh insulating layer 52A.
  • the second insulating layer 72 is laminated on the first insulating layer 71.
  • the semiconductor resistance layer 20 is formed on the second insulating layer 72.
  • the third insulating layer 73 is stacked on the second insulating layer 72 and covers the semiconductor resistance layer 20 .
  • the first insulating layer 71 is made of a material containing SiON
  • the second insulating layer 72 is made of a material containing SiN
  • the third insulating layer 73 is made of a material containing SiO2. It is made of a material containing 2 .
  • the seventh insulating layer 52A is formed of a material containing SiO 2 .
  • the via 90 penetrates the fourth insulating layer 61, the fifth insulating layer 62, and the third insulating layer 73 to connect the semiconductor resistance layer 20 and the wiring layer 80.
  • the via 93 penetrates the ninth insulating layer 92, the eighth insulating layer 91, and the sixth insulating layer 63 to connect the wiring layer 80 and the terminals P1 to P5.
  • the materials forming the vias 90 and 93 are, for example, the same as those in the first embodiment.
  • the structure that alleviates electric field concentration on the wiring layer 80 includes a fifth insulating layer 62, a fourth insulating layer 61, and a third insulating layer 73.
  • the fifth insulating layer 62, the fourth insulating layer 61, and the third insulating layer 73 are arranged in this order from the wiring layer 80 toward the substrate 30.
  • the structure is such that the relative dielectric constant decreases from the wiring layer 80 toward the substrate 30 as a structure for alleviating electric field concentration on the wiring layer 80 .
  • the structure that alleviates electric field concentration on the semiconductor resistance layer 20 includes the second insulating layer 72, the first insulating layer 71, and the seventh insulating layer 52A.
  • the second insulating layer 72, the first insulating layer 71, and the seventh insulating layer 52A are arranged in this order from the semiconductor resistance layer 20 toward the substrate 30.
  • the structure is such that the relative dielectric constant decreases from the semiconductor resistance layer 20 toward the substrate 30 as a structure for alleviating electric field concentration on the semiconductor resistance layer 20 .
  • the eighth insulating layer 91 is laminated on the sixth insulating layer 63.
  • the ninth insulating layer 92 is laminated on the eighth insulating layer 91. Terminals P1 to P5 are formed on the ninth insulating layer 92.
  • the eighth insulating layer 91 is made of a material containing SiON
  • the ninth insulating layer 92 is made of a material containing SiN.
  • the structure that alleviates electric field concentration on terminals P1 to P5 includes a ninth insulating layer 92, an eighth insulating layer 91, and a sixth insulating layer 63.
  • the ninth insulating layer 92, the eighth insulating layer 91, and the sixth insulating layer 63 are arranged in this order from the terminals P1 to P5 toward the substrate 30.
  • the structure is such that the dielectric constant decreases from the terminals P1 to P5 toward the substrate 30, as a structure to alleviate electric field concentration on the terminals P1 to P5.
  • the electric field strength of each of the semiconductor resistance layer 20, the wiring layer 80, and the terminals P1 to P5 can be reduced. Therefore, electric field concentration within the semiconductor device 10 (first chip 14) can be alleviated.
  • the wiring layer 80 may be arranged above the semiconductor resistance layer 20, and the wiring layer 80 may constitute the terminals P1 to P5.
  • the wiring layer 80 is formed on the element surface 41 of the element insulating layer 40.
  • the insulating layer including the element surface 41 of the element insulating layer 40 is constituted by the fifth insulating layer 62.
  • the fifth insulating layer 62 is laminated on the fourth insulating layer 61.
  • the fourth insulating layer 61 is laminated on the third insulating layer 73. In this way, in the modification shown in FIG. 24, both the eighth insulating layer 91 and the ninth insulating layer 92 are omitted from the semiconductor device 10.
  • the passivation film 43 covers both the fifth insulating layer 62 and the wiring layer 80.
  • the passivation film 43 includes an opening 43X that exposes a portion of the wiring layer 80 that constitutes the terminals P1 to P5.
  • the portions of the wiring layer 80 exposed from the passivation film 43 constitute the terminals P1 to P5.
  • the via 90 connects the semiconductor resistance layer 20 and the wiring layer 80 by penetrating the fifth insulating layer 62, the fourth insulating layer 61, and the third insulating layer 73 in the Z-axis direction.
  • the via 90 is formed of the same material as the via 90 of the first embodiment, for example.
  • the via 93 is omitted from the semiconductor device 10.
  • the first insulating layer 71 is laminated on the seventh insulating layer 52A.
  • the second insulating layer 72 is laminated on the first insulating layer 71.
  • the semiconductor resistance layer 20 is formed on the second insulating layer 72.
  • the third insulating layer 73 is stacked on the second insulating layer 72 and covers the semiconductor resistance layer 20 .
  • the first insulating layer 71 is made of a material containing SiON
  • the second insulating layer 72 is made of a material containing SiN
  • the third insulating layer 73 is made of a material containing SiO2. It is made of a material containing 2 .
  • the seventh insulating layer 52A is formed of a material containing SiO 2 .
  • the structure that alleviates electric field concentration on the wiring layer 80 includes a fifth insulating layer 62 , a fourth insulating layer 61 , and a third insulating layer 73 .
  • the fifth insulating layer 62, the fourth insulating layer 61, and the third insulating layer 73 are arranged in this order from the wiring layer 80 toward the substrate 30.
  • the structure is such that the relative dielectric constant decreases from the wiring layer 80 toward the substrate 30 as a structure for alleviating electric field concentration on the wiring layer 80 .
  • the structure that alleviates electric field concentration on the semiconductor resistance layer 20 includes the second insulating layer 72, the first insulating layer 71, and the seventh insulating layer 52A.
  • the second insulating layer 72, the first insulating layer 71, and the seventh insulating layer 52A are arranged in this order from the semiconductor resistance layer 20 toward the substrate 30.
  • the structure is such that the relative dielectric constant decreases from the semiconductor resistance layer 20 toward the substrate 30 as a structure for alleviating electric field concentration on the semiconductor resistance layer 20 .
  • the electric field strength of each of the semiconductor resistance layer 20 and the wiring layer 80 can be reduced, similarly to the first embodiment. Therefore, electric field concentration within the semiconductor device 10 (first chip 14) can be alleviated.
  • the arrangement of the plurality of semiconductor resistance layers 20 can be arbitrarily changed.
  • the plurality of semiconductor resistance layers 20 may be arranged apart from each other in the X-axis direction.
  • the plurality of semiconductor resistance layers 20 may be arranged apart from each other in the lateral direction of the first chip 14.
  • at least one of the plurality of semiconductor resistance layers 20 may be arranged at a different position with respect to other semiconductor resistance layers 20 in the thickness direction (Y-axis direction) of the element insulating layer 40.
  • the configuration of the plurality of semiconductor resistance layers 20 can be changed arbitrarily.
  • the number of semiconductor resistance layers 20 can be changed arbitrarily.
  • the structure of the substrate side insulating layer 50 can be changed arbitrarily.
  • the first substrate-side insulating layer 51 may be omitted from the substrate-side insulating layer 50.
  • the substrate-side insulating layer 50 has a laminated structure of the second substrate-side insulating layer 52.
  • the shape of the first chip 14 in plan view can be arbitrarily changed.
  • the first chip 14 may have a square shape in plan view.
  • the term “on” includes the meanings of "on” and “above” unless the context clearly dictates otherwise.
  • the phrase “the first layer is formed on the second layer” refers to the fact that in some embodiments the first layer may be directly disposed on the second layer in contact with the second layer, but in other embodiments. It is contemplated that the first layer may be placed above the second layer without contacting the second layer. That is, the term “on” does not exclude structures in which other layers are formed between the first layer and the second layer.
  • the Z-axis direction used in the present disclosure does not necessarily need to be a vertical direction, nor does it need to completely coincide with the vertical direction. Accordingly, various structures according to the present disclosure (e.g., the structure shown in FIG. 1) are different from each other in that "upper” and “lower” in the Z-axis direction described herein are “upper” and “lower” in the vertical direction. Not limited to one thing.
  • the X-axis direction may be a vertical direction
  • the Y-axis direction may be a vertical direction.
  • an element insulating layer (40) having a front surface (41) and a back surface (42) opposite to the front surface (41); one or more semiconductor resistance layers (20) provided in the element insulating layer (40),
  • the semiconductor resistance layer (20) is a resistor back surface (27) facing the back surface (42) in the thickness direction (Z-axis direction) of the element insulating layer (40); a resistor surface (28) opposite to the resistor back surface (27); a resistor side surface (29) connecting the resistor back surface (27) and the resistor surface (28);
  • the element insulating layer (40) is a first insulating layer (71); a second insulating layer (72) laminated on the first insulating layer (71) and having a higher dielectric constant than the first insulating layer (71); a third insulating layer (73) laminated on the second insulating layer (72) and having a lower dielectric constant than the second insulating layer (72);
  • the semiconductor resistance layer (20) is laminated on the second insulating layer (72),
  • a plurality of the semiconductor resistance layers (20) are provided, and are aligned in the thickness direction (Z-axis direction) of the element insulating layer (40), and in a direction perpendicular to the thickness direction (Z-axis direction).
  • the wiring layer (80) is a wiring surface (82) facing the semiconductor resistance layer (20) in the thickness direction (Z-axis direction) of the element insulating layer (40); a wiring back surface (81) opposite to the wiring surface (82); a wiring side surface (83) connecting the wiring surface (82) and the wiring back surface (81);
  • the element insulating layer (40) is a fourth insulating layer (61); a fifth insulating layer (62) laminated on the fourth insulating layer (61) and having a higher dielectric constant than the fourth insulating layer (61);
  • the semiconductor device according to appendix 3 wherein the wiring layer (80) is laminated on the fifth insulating layer (62), and the wiring back surface (81) is in contact with the fifth insulating layer (62).
  • the element insulating layer (40) is provided between the fifth insulating layer (62) and the first insulating layer (71), and is a sixth insulating layer having a lower dielectric constant than the fifth insulating layer (62). including an insulating layer (63);
  • the element insulating layer (40) is provided between the fifth insulating layer (62) and the first insulating layer (71), and is a sixth insulating layer having a lower dielectric constant than the fifth insulating layer (62). including an insulating layer (63);
  • the first insulating layer (71) is laminated on the sixth insulating layer (63),
  • the first insulating layer (71) is laminated on the fifth insulating layer (62), and has a lower dielectric constant than the fifth insulating layer (62), The semiconductor device according to any one of appendices 4 to 7, wherein the wiring layer (80) is provided within the first insulating layer (71).
  • the element insulating layer (40) includes a seventh insulating layer (52A) having a lower dielectric constant than the fourth insulating layer (61), The semiconductor device according to any one of appendices 4 to 8, wherein the fourth insulating layer (61) is laminated on the seventh insulating layer (52A).
  • the element insulating layer (40) is an eighth insulating layer (91) laminated on the third insulating layer (73) and having a higher dielectric constant than the third insulating layer (73); a ninth insulating layer (92) laminated on the eighth insulating layer (91) and having a higher dielectric constant than the eighth insulating layer (91);
  • the element insulating layer (40) includes a high dielectric constant insulating layer (92) laminated on the third insulating layer (73) and having a higher dielectric constant than the third insulating layer (37),
  • the device further includes a via (90) extending in the thickness direction (Z-axis direction) of the element insulating layer (40) and electrically connecting the semiconductor resistance layer (20) and the wiring layer (80).
  • a via 90 extending in the thickness direction (Z-axis direction) of the element insulating layer (40) and electrically connecting the semiconductor resistance layer (20) and the wiring layer (80).
  • a wiring layer (80) provided on the surface (41) of the element insulating layer (40) and electrically connected to the semiconductor resistance layer (20);
  • a passivation film (43) provided on the surface (41) of the element insulating layer (40) and covering the wiring layer (80) so as to expose a part of the wiring layer (80).
  • the wiring layer (80) is a wiring surface (82) facing the semiconductor resistance layer (20) in the thickness direction (Z-axis direction) of the element insulating layer (40); a wiring back surface (81) opposite to the wiring surface (82); a wiring side surface (83) connecting the wiring surface (82) and the wiring back surface (81);
  • the element insulating layer (40) is a fourth insulating layer (61); a fifth insulating layer (62) laminated on the fourth insulating layer (61) and having a higher dielectric constant than the fourth insulating layer (61); a low dielectric constant insulating layer (63/71) laminated on the fifth insulating layer (62) and
  • the element insulating layer (40) further includes a sixth insulating layer (63) having a lower dielectric constant than the fifth insulating layer (62), The semiconductor device according to appendix 15, wherein the sixth insulating layer (63) is the low dielectric constant insulating layer stacked on the fifth insulating layer (62).
  • the element insulating layer (40) is a first insulating layer (71) having a lower dielectric constant than the fifth insulating layer (62); a second insulating layer (72) laminated on the first insulating layer (71) and having a higher dielectric constant than the first insulating layer (71);
  • the semiconductor resistance layer (20) is laminated on the second insulating layer (72),
  • the element insulating layer (40) includes a seventh insulating layer (52A) having a lower dielectric constant than the fourth insulating layer (61), The semiconductor device according to any one of appendices 15 to 17, wherein the fourth insulating layer (61) is laminated on the seventh insulating layer (52A).
  • an element insulating layer (40) having a front surface (41) and a back surface (42) opposite to the front surface (41); one or more semiconductor resistance layers (20) provided within the element insulating layer (40); electrode pads (P1 to P5) provided on the surface (41) of the element insulating layer (40); a passivation film (43) provided on the surface (41) of the element insulating layer (40) and covering the electrode pads (P1 to P5);
  • the element insulating layer (40) is an eighth insulating layer (91); a ninth insulating layer (92) laminated on the eighth insulating layer (91) and having a higher dielectric constant than the eighth insulating layer (91);
  • the electrode pads (P1 to P5) are laminated on the ninth insulating layer (92), and are provided in the passivation film (43) in contact with the ninth insulating layer (92).
  • the element insulating layer (40) includes a third insulating layer (73) having a lower dielectric constant than the eighth insulating layer (91), The semiconductor device according to appendix 19 or 20, wherein the eighth insulating layer (91) is stacked on the third insulating layer (73).
  • the element insulating layer (40) is a substrate-side insulating layer (50) provided on the substrate (30); a front-side insulating layer (100) laminated on the substrate-side insulating layer (50),
  • the front-side insulating layer (100) includes the first insulating layer (71), the second insulating layer (72), and the third insulating layer (73). semiconductor devices.
  • the element insulating layer (40) is a substrate-side insulating layer (50) provided on the substrate (30); a front-side insulating layer (100) laminated on the substrate-side insulating layer (50),
  • the front side insulating layer (100) includes the first insulating layer (71), the second insulating layer (72), the third insulating layer (73), the fourth insulating layer (74), and the fifth insulating layer (72).
  • the semiconductor device according to appendix 4 including an insulating layer (75).
  • the element insulating layer (40) is a substrate-side insulating layer (50) provided on the substrate (30); a wiring side insulating layer (60) laminated on the substrate side insulating layer (50); a resistance-side insulating layer (70) laminated on the wiring-side insulating layer (60),
  • the resistance side insulating layer (70) includes the first insulating layer (71), the second insulating layer (72), and the third insulating layer (73),
  • the wiring side insulating layer (60) includes the fourth insulating layer (61), the fifth insulating layer (62), and the sixth insulating layer (63). semiconductor devices.
  • the substrate side insulating layer (50) is a plurality of first substrate side insulating layers (51); a plurality of second substrate side insulating layers (52); The semiconductor according to any one of appendices 22 to 24, wherein the plurality of first substrate side insulating layers (51) and the plurality of second substrate side insulating layers (52) are alternately stacked one by one. Device.
  • the first substrate side insulating layer (51) is formed of a material containing SiN
  • the first insulating layer (71) is formed of a material containing SiON
  • the second insulating layer (72) is formed of a material containing SiN
  • the fourth insulating layer (61) is formed of a material containing SiON
  • the fourth insulating layer (61) is formed of a material containing SiON
  • the fifth insulating layer (62) is formed of a material containing SiN
  • the eighth insulating layer (91) is formed of a material containing SiON
  • Fourth insulating layer 62 Fifth insulating layer 63... Sixth insulating layer 70... Resistance side insulating layer 71... First insulating layer 72... Second insulating layer 73... Third insulating layer 80... Wiring layer 81... Wiring back surface 82 ... Wiring surface 83... Wiring side surface 90... Via 91... Eighth insulating layer 92... Ninth insulating layer 93... Via 100... Front side insulating layer 801, 802... Via opening W1 to W11... Wire P1 to P5... Terminal Q1 ⁇ Q9...terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

A semiconductor device according to the present invention is provided with an element insulating layer and a plurality of semiconductor resistive layers that are provided in the element insulating layer. The semiconductor resistive layers each comprise a resistive back surface, a resistive front surface that is on the reverse side from the resistive back surface, and a resistive lateral surface that connects the resistive back surface and the resistive front surface to each other. The element insulating layer comprises: a first insulating layer; a second insulating layer that is superposed on the first insulating layer and has a higher relative dielectric constant than the first insulating layer; and a third insulating layer that is superposed on the second insulating layer and has a lower relative dielectric constant than the second insulating layer. The semiconductor resistive layers are superposed on the second insulating layer and are provided within the third insulating layer in such a manner that the resistive back surfaces are in contact with the second insulating layer.

Description

半導体装置semiconductor equipment
 本開示は、半導体装置に関する。 The present disclosure relates to a semiconductor device.
 従来、抵抗分圧回路を用いて、高電圧を検出する装置が知られている。たとえば、特許文献1には、互いに直列に接続してなる複数の直列抵抗と複数の直列抵抗の分圧点を高電圧バッテリの接続点に接続する分圧抵抗とからなるラダー抵抗回路と、A/Dコンバータと、を備えた電圧検出回路によって電池ユニットの電圧を検出する電源装置が開示されている。 Conventionally, devices are known that detect high voltage using a resistive voltage divider circuit. For example, Patent Document 1 discloses a ladder resistance circuit including a plurality of series resistors connected in series with each other and a voltage dividing resistor connecting a voltage dividing point of the plurality of series resistors to a connection point of a high voltage battery; A power supply device is disclosed that detects the voltage of a battery unit using a voltage detection circuit including a /D converter.
特開2010-8227号公報Japanese Patent Application Publication No. 2010-8227
 ところで、電源装置のラダー抵抗回路のように複数の抵抗を含む回路を1チップ化させる構成の開発が進められている。この場合、チップ内において電界集中が生じるおそれがあり、その電界集中の緩和について改善の余地がある。 By the way, the development of a configuration in which a circuit including a plurality of resistors, such as a ladder resistance circuit of a power supply device, can be integrated into one chip is underway. In this case, electric field concentration may occur within the chip, and there is room for improvement in alleviating the electric field concentration.
 本開示の一態様による半導体装置は、表面、および前記表面とは反対側の裏面を有する素子絶縁層と、前記素子絶縁層内に設けられた1または複数の半導体抵抗層と、を備え、前記半導体抵抗層は、前記素子絶縁層の厚さ方向において前記裏面を向く抵抗裏面と、前記抵抗裏面とは反対側の抵抗表面と、前記抵抗裏面と前記抵抗表面とを繋ぐ抵抗側面と、を含み、前記素子絶縁層は、第1絶縁層と、前記第1絶縁層上に積層され、前記第1絶縁層よりも比誘電率が高い第2絶縁層と、前記第2絶縁層上に積層され、前記第2絶縁層よりも比誘電率が低い第3絶縁層と、を含み、前記半導体抵抗層は、前記第2絶縁層上に積層されており、前記抵抗裏面が前記第2絶縁層に接した状態で前記第3絶縁層内に設けられている。 A semiconductor device according to one aspect of the present disclosure includes an element insulating layer having a front surface and a back surface opposite to the front surface, and one or more semiconductor resistance layers provided in the element insulating layer, The semiconductor resistance layer includes a resistor back surface facing the back surface in the thickness direction of the element insulating layer, a resistor surface opposite to the resistor back surface, and a resistor side surface connecting the resistor back surface and the resistor surface. , the element insulating layer includes a first insulating layer, a second insulating layer laminated on the first insulating layer and having a higher dielectric constant than the first insulating layer, and a second insulating layer laminated on the second insulating layer. , a third insulating layer having a lower dielectric constant than the second insulating layer, the semiconductor resistance layer is laminated on the second insulating layer, and the resistor back surface is on the second insulating layer. The third insulating layer is provided in contact with the third insulating layer.
 本開示の一態様による半導体装置は、素子絶縁層と、前記素子絶縁層内に設けられた1または複数の半導体抵抗層と、前記素子絶縁層内において前記半導体抵抗層と電気的に接続され、前記素子絶縁層の厚さ方向において前記半導体抵抗層と対向配置された配線層と、を備え、前記配線層は、前記素子絶縁層の厚さ方向において前記半導体抵抗層を向く配線表面と、前記配線表面とは反対側の配線裏面と、前記配線表面と前記配線裏面とを繋ぐ配線側面と、を含み、前記素子絶縁層は、第4絶縁層と、前記第4絶縁層上に積層され、前記第4絶縁層よりも比誘電率が高い第5絶縁層と、前記第5絶縁層上に積層され、前記第5絶縁層よりも比誘電率が低い低誘電率絶縁層と、を含み、前記配線層は、前記第5絶縁層上に積層されており、前記配線裏面が前記第5絶縁層に接した状態で前記低誘電率絶縁層内に設けられている。 A semiconductor device according to one aspect of the present disclosure includes an element insulating layer, one or more semiconductor resistance layers provided in the element insulating layer, and electrically connected to the semiconductor resistance layer in the element insulating layer, a wiring layer disposed opposite to the semiconductor resistance layer in the thickness direction of the element insulating layer, the wiring layer having a wiring surface facing the semiconductor resistance layer in the thickness direction of the element insulation layer; The element insulating layer includes a wiring back surface opposite to the wiring surface, and a wiring side surface connecting the wiring front surface and the wiring back surface, and the element insulating layer is laminated on a fourth insulating layer and the fourth insulating layer, a fifth insulating layer having a higher dielectric constant than the fourth insulating layer; and a low dielectric constant insulating layer laminated on the fifth insulating layer and having a lower dielectric constant than the fifth insulating layer, The wiring layer is laminated on the fifth insulating layer, and is provided in the low dielectric constant insulating layer with the back surface of the wiring in contact with the fifth insulating layer.
 本開示の半導体装置によれば、電界集中の緩和を図ることができる。 According to the semiconductor device of the present disclosure, electric field concentration can be alleviated.
図1は、第1実施形態の半導体装置の概略平面図である。FIG. 1 is a schematic plan view of a semiconductor device according to a first embodiment. 図2は、図1の半導体装置における第1チップおよび第2チップの概略平面図である。FIG. 2 is a schematic plan view of a first chip and a second chip in the semiconductor device of FIG. 1. 図3は、第1チップにおける半導体抵抗層の概略平面図である。FIG. 3 is a schematic plan view of the semiconductor resistance layer in the first chip. 図4は、第1チップにおける半導体抵抗層およびその周辺を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing the semiconductor resistance layer and its surroundings in the first chip. 図5は、図4の半導体抵抗層およびその周辺を拡大した拡大断面図である。FIG. 5 is an enlarged cross-sectional view of the semiconductor resistance layer and its surroundings in FIG. 4. 図6は、第1チップにおける配線層およびその周辺を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing the wiring layer and its surroundings in the first chip. 図7は、図3のF7-F7線で第1チップを切断した概略断面図である。FIG. 7 is a schematic cross-sectional view of the first chip taken along line F7-F7 in FIG. 図8は、第1実施形態の半導体装置の製造工程の一例を示す概略断面図である。FIG. 8 is a schematic cross-sectional view showing an example of the manufacturing process of the semiconductor device of the first embodiment. 図9は、図8に続く製造工程を示す概略断面図である。FIG. 9 is a schematic cross-sectional view showing the manufacturing process following FIG. 8. 図10は、図9に続く製造工程を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing the manufacturing process following FIG. 9. 図11は、図10に続く製造工程を示す概略断面図である。FIG. 11 is a schematic cross-sectional view showing the manufacturing process following FIG. 10. 図12は、図11に続く製造工程を示す概略断面図である。FIG. 12 is a schematic cross-sectional view showing the manufacturing process following FIG. 11. 図13は、図12に続く製造工程を示す概略断面図である。FIG. 13 is a schematic cross-sectional view showing the manufacturing process following FIG. 12. 図14は、図13に続く製造工程を示す概略断面図である。FIG. 14 is a schematic cross-sectional view showing the manufacturing process following FIG. 13. 図15は、図14に続く製造工程を示す概略断面図である。FIG. 15 is a schematic cross-sectional view showing the manufacturing process following FIG. 14. 図16は、図15に続く製造工程を示す概略断面図である。FIG. 16 is a schematic cross-sectional view showing the manufacturing process following FIG. 15. 図17は、第2実施形態の半導体装置について、第1チップにおける半導体抵抗層およびその周辺を示す概略断面図である。FIG. 17 is a schematic cross-sectional view showing the semiconductor resistance layer and its surroundings in the first chip in the semiconductor device of the second embodiment. 図18は、第1チップにおける配線層およびその周辺を示す概略断面図である。FIG. 18 is a schematic cross-sectional view showing the wiring layer and its surroundings in the first chip. 図19は、第1チップにおける端子、半導体抵抗層、配線層、およびその周辺を示す概略断面図である。FIG. 19 is a schematic cross-sectional view showing a terminal, a semiconductor resistance layer, a wiring layer, and their surroundings in the first chip. 図20は、第3実施形態の半導体装置について、第1チップにおける半導体抵抗層およびその周辺を示す概略断面図である。FIG. 20 is a schematic cross-sectional view showing the semiconductor resistance layer and its surroundings in the first chip in the semiconductor device of the third embodiment. 図21は、第1チップにおける配線層およびその周辺を示す概略断面図である。FIG. 21 is a schematic cross-sectional view showing the wiring layer and its surroundings in the first chip. 図22は、第1チップにおける端子、半導体抵抗層、配線層、およびその周辺を示す概略断面図である。FIG. 22 is a schematic cross-sectional view showing a terminal, a semiconductor resistance layer, a wiring layer, and their surroundings in the first chip. 図23は、変更例の半導体装置について、第1チップにおける端子、半導体抵抗層、配線層、およびその周辺を示す概略断面図である。FIG. 23 is a schematic cross-sectional view showing a terminal, a semiconductor resistance layer, a wiring layer, and their surroundings in a first chip of a semiconductor device according to a modification. 図24は、変更例の半導体装置について、第1チップにおける配線層、半導体抵抗層、およびその周辺を示す概略断面図である。FIG. 24 is a schematic cross-sectional view showing a wiring layer, a semiconductor resistance layer, and their surroundings in a first chip of a semiconductor device according to a modification.
 以下、添付図面を参照して、本開示における絶縁チップおよび半導体装置のいくつかの実施形態について説明する。なお、説明を簡単かつ明確にするために、図面に示される構成要素は、必ずしも一定の縮尺で描かれていない。また、理解を容易にするために、断面図ではハッチング線が省略されている場合がある。添付の図面は、本開示の実施形態を例示するに過ぎず、本開示を制限するものとみなされるべきではない。 Hereinafter, some embodiments of an insulating chip and a semiconductor device according to the present disclosure will be described with reference to the accompanying drawings. It should be noted that, for simplicity and clarity of explanation, the components shown in the drawings are not necessarily drawn to scale. Further, in order to facilitate understanding, hatching lines may be omitted in the cross-sectional views. The accompanying drawings are merely illustrative of embodiments of the disclosure and should not be considered as limiting the disclosure.
 以下の詳細な説明は、本開示の例示的な実施形態を具体化する装置、システム、および方法を含む。この詳細な記載は本来説明のためのものに過ぎず、本開示の実施形態またはこのような実施形態の適用および使用を限定することを意図しない。 The following detailed description includes devices, systems, and methods that embody example embodiments of the present disclosure. This detailed description is illustrative in nature and is not intended to limit the embodiments of the disclosure or the application and uses of such embodiments.
 <第1実施形態>
 図1~図16を参照して、第1実施形態の半導体装置10について説明する。
 図1および図2は半導体装置10の全体構成を模式的に示し、図3は後述する第1チップの一部の平面構造を示し、図4~図7は第1チップの一部の断面構造を示している。図8~図16は半導体装置10の製造工程の一例を示している。
<First embodiment>
The semiconductor device 10 of the first embodiment will be described with reference to FIGS. 1 to 16.
1 and 2 schematically show the overall configuration of the semiconductor device 10, FIG. 3 shows a planar structure of a part of the first chip, which will be described later, and FIGS. 4 to 7 show a cross-sectional structure of a part of the first chip. It shows. 8 to 16 show an example of the manufacturing process of the semiconductor device 10.
 なお、本開示において使用される「平面視」という用語は、図4に示される互いに直交するXYZ軸のZ軸方向に半導体装置10を視ることをいう。また、図4に示される半導体装置10について、+Z方向を上、-Z方向を下、+X方向を右、-X方向を左と定義する。特に断りが無い場合、「平面視」とは、半導体装置10をZ軸に沿って上方から視ることを指す。 Note that the term "planar view" used in the present disclosure refers to viewing the semiconductor device 10 in the Z-axis direction of the mutually orthogonal XYZ axes shown in FIG. Furthermore, regarding the semiconductor device 10 shown in FIG. 4, the +Z direction is defined as top, the -Z direction as bottom, the +X direction as right, and the -X direction as left. Unless otherwise specified, "planar view" refers to viewing the semiconductor device 10 from above along the Z-axis.
 [半導体装置の全体構成]
 図1は、第1実施形態の半導体装置10の全体構成を概略的に示している。図2は、半導体装置10の第1チップ14および後述する第2チップ15の各々の電気的な構成および電気的な接続構造を概略的に示している。なお、図1では、図面を容易に理解するために、後述する封止樹脂16の内部の構成要素を実線で示している。図2では、図面を容易に理解するために、第1チップ14および第2チップ15の内部の構成要素を実線で示している。
[Overall configuration of semiconductor device]
FIG. 1 schematically shows the overall configuration of a semiconductor device 10 according to the first embodiment. FIG. 2 schematically shows the electrical configuration and electrical connection structure of each of the first chip 14 and the second chip 15, which will be described later, of the semiconductor device 10. In addition, in FIG. 1, in order to easily understand the drawing, components inside the sealing resin 16, which will be described later, are shown with solid lines. In FIG. 2, internal components of the first chip 14 and the second chip 15 are shown with solid lines in order to easily understand the drawing.
 図1に示すように、半導体装置10は、フレーム11と、ダイパッド12と、複数(第1実施形態では7つ)のリード13A~13Gと、フレーム11に搭載された第1チップ14と、ダイパッド12に搭載された第2チップ15と、ワイヤW1~W11と、これらを封止する封止樹脂16と、を備える。ここで、第1実施形態では、第1チップ14は「絶縁チップ」に対応している。 As shown in FIG. 1, the semiconductor device 10 includes a frame 11, a die pad 12, a plurality of (seven in the first embodiment) leads 13A to 13G, a first chip 14 mounted on the frame 11, and a die pad 12. 12, wires W1 to W11, and a sealing resin 16 for sealing these. Here, in the first embodiment, the first chip 14 corresponds to an "insulating chip".
 封止樹脂16は、平板状に形成されている。平面視における封止樹脂16の形状は、矩形状である。封止樹脂16は、第1~第4樹脂側面16A~16Dを有する。第1樹脂側面16Aおよび第2樹脂側面16Bは、封止樹脂16のX軸方向の両端面を構成している。第1樹脂側面16Aは封止樹脂16の-X方向の端面を構成し、第2樹脂側面16Bは封止樹脂16の+X方向の端面を構成している。第3樹脂側面16Cおよび第4樹脂側面16Dは封止樹脂16のY軸方向の両端面を構成している。第3樹脂側面16Cは封止樹脂16の-Y方向の端面を構成し、第4樹脂側面16Dは封止樹脂16の+Y方向の端面を構成している。 The sealing resin 16 is formed into a flat plate shape. The shape of the sealing resin 16 in plan view is rectangular. The sealing resin 16 has first to fourth resin side surfaces 16A to 16D. The first resin side surface 16A and the second resin side surface 16B constitute both end surfaces of the sealing resin 16 in the X-axis direction. The first resin side surface 16A constitutes an end surface of the sealing resin 16 in the -X direction, and the second resin side surface 16B constitutes an end surface of the sealing resin 16 in the +X direction. The third resin side surface 16C and the fourth resin side surface 16D constitute both end surfaces of the sealing resin 16 in the Y-axis direction. The third resin side surface 16C constitutes an end surface of the sealing resin 16 in the -Y direction, and the fourth resin side surface 16D constitutes an end surface of the sealing resin 16 in the +Y direction.
 フレーム11およびダイパッド12は、X軸方向において互いに離隔して配列されている。つまり、X軸方向は、フレーム11およびダイパッド12の配列方向となる。フレーム11は、ダイパッド12よりも第1樹脂側面16A寄りに配置されている。フレーム11、ダイパッド12、およびリード13A~13Gの各々は、銅(Cu)、アルミニウム(Al)等の金属材料によって形成されている。 The frame 11 and die pad 12 are arranged apart from each other in the X-axis direction. In other words, the X-axis direction is the direction in which the frame 11 and die pad 12 are arranged. The frame 11 is arranged closer to the first resin side surface 16A than the die pad 12. Frame 11, die pad 12, and leads 13A to 13G are each made of a metal material such as copper (Cu) or aluminum (Al).
 フレーム11は、ダイパッド部11Aおよびリード部11Bを含む。第1実施形態では、ダイパッド部11Aおよびリード部11Bは、一体に形成されている。
 ダイパッド部11Aは、第1チップ14が搭載される部分であり、第1チップ14を支持している。ダイパッド部11Aは、第1樹脂側面16Aに対して第2樹脂側面16B寄りに離隔して配置されている。平面視におけるダイパッド部11Aの形状は、Y軸方向が長手方向となり、X軸方向が短手方向となる矩形状である。つまり、ダイパッド部11Aは、フレーム11およびダイパッド12の配列方向における寸法が短くなるように形成されている。
The frame 11 includes a die pad portion 11A and a lead portion 11B. In the first embodiment, the die pad section 11A and the lead section 11B are integrally formed.
The die pad portion 11A is a portion on which the first chip 14 is mounted, and supports the first chip 14. The die pad portion 11A is spaced apart from the first resin side surface 16A toward the second resin side surface 16B. The die pad portion 11A has a rectangular shape in plan view, with the Y-axis direction being the longitudinal direction and the X-axis direction being the lateral direction. In other words, the die pad portion 11A is formed so that the dimension in the arrangement direction of the frame 11 and the die pad 12 is shortened.
 リード部11Bは、ダイパッド部11AのY軸方向の両端部のうち第3樹脂側面16Cに近い方の端部と、ダイパッド部11AのX軸方向の両端部のうち第1樹脂側面16Aに近い方の端部とからなるコーナ部に接続されている。リード部11Bは、ダイパッド部11Aに対して第1樹脂側面16Aに向けてX軸方向に沿って延びている。 The lead portion 11B includes an end portion of the die pad portion 11A in the Y-axis direction that is closer to the third resin side surface 16C, and an end portion of the die pad portion 11A in the X-axis direction that is closer to the first resin side surface 16A. It is connected to the corner part consisting of the end part of. The lead portion 11B extends along the X-axis direction toward the first resin side surface 16A with respect to the die pad portion 11A.
 ダイパッド12は、フレーム11よりも第2樹脂側面16B寄りに位置する一方、第2樹脂側面16Bに対して第1樹脂側面16A寄りに離隔して配置されている。ダイパッド12は、第2チップ15が搭載される部分であり、第2チップ15を支持している。平面視におけるダイパッド12の形状は、Y軸方向が長手方向となり、X軸方向が短手方向となる矩形状である。つまり、ダイパッド12は、フレーム11およびダイパッド12の配列方向における寸法が短くなるように形成されている。 The die pad 12 is located closer to the second resin side surface 16B than the frame 11, and is spaced apart from the second resin side surface 16B toward the first resin side surface 16A. The die pad 12 is a portion on which the second chip 15 is mounted, and supports the second chip 15. The die pad 12 has a rectangular shape in plan view, with the Y-axis direction being the longitudinal direction and the X-axis direction being the lateral direction. That is, the die pad 12 is formed so that the dimension in the arrangement direction of the frame 11 and the die pad 12 is shortened.
 リード13A~13Gは、封止樹脂16のX軸方向の両端部に分散して配置されている。より詳細には、リード13Aは、封止樹脂16の第1樹脂側面16A側の端部に配置されている。リード13B~13Gの各々は、封止樹脂16の第2樹脂側面16B側の端部に配置されている。 The leads 13A to 13G are distributed and arranged at both ends of the sealing resin 16 in the X-axis direction. More specifically, the lead 13A is arranged at the end of the sealing resin 16 on the first resin side surface 16A side. Each of the leads 13B to 13G is arranged at the end of the sealing resin 16 on the second resin side surface 16B side.
 リード13Aは、ダイパッド部11Aよりも第1樹脂側面16A寄りに配置されている。リード13Aは、X軸方向においてダイパッド部11Aと離隔して配置されている。また、リード13Aは、Y軸方向においてリード部11Bと離隔して配置されている。第1実施形態では、リード13Aは、X軸方向から視てダイパッド部11AのY軸方向の両端部のうち第4樹脂側面16D側の端部と重なる位置に配置されている。 The leads 13A are arranged closer to the first resin side surface 16A than the die pad portion 11A. The lead 13A is spaced apart from the die pad portion 11A in the X-axis direction. Further, the lead 13A is arranged apart from the lead portion 11B in the Y-axis direction. In the first embodiment, the lead 13A is arranged at a position that overlaps with the end on the fourth resin side surface 16D side of both ends in the Y-axis direction of the die pad portion 11A when viewed from the X-axis direction.
 リード13B~13Gの各々は、ダイパッド12よりも第2樹脂側面16B寄りに配置されている。リード13B~13Gの各々は、X軸方向においてダイパッド12と離隔して配置されている。リード13B~13Gは、Y軸方向において互いに離隔して配列されている。リード13B~13Gは、第4樹脂側面16Dから第3樹脂側面16Cに向けて、リード13B、リード13C、リード13D、リード13E、リード13F、およびリード13Gの順に配列されている。図1から分かるとおり、リード13Aとリード部11BとのY軸方向の間の距離は、リード13B~13GのうちY軸方向に隣り合うリード間の距離よりも大きい。 Each of the leads 13B to 13G is arranged closer to the second resin side surface 16B than the die pad 12. Each of the leads 13B to 13G is arranged apart from the die pad 12 in the X-axis direction. The leads 13B to 13G are arranged spaced apart from each other in the Y-axis direction. The leads 13B to 13G are arranged in the order of lead 13B, lead 13C, lead 13D, lead 13E, lead 13F, and lead 13G from the fourth resin side surface 16D to the third resin side surface 16C. As can be seen from FIG. 1, the distance between the lead 13A and the lead portion 11B in the Y-axis direction is greater than the distance between adjacent leads in the Y-axis direction among the leads 13B to 13G.
 フレーム11のダイパッド部11Aに搭載された第1チップ14は、平板状に形成されている。平面視における第1チップ14の形状は、Y軸方向が長手方向となり、X軸方向が短手方向となる矩形状である。つまり、第1チップ14は、フレーム11およびダイパッド12の配列方向における寸法が短くなるように形成されている。 The first chip 14 mounted on the die pad portion 11A of the frame 11 is formed into a flat plate shape. The shape of the first chip 14 in a plan view is a rectangular shape whose longitudinal direction is in the Y-axis direction and whose transverse direction is in the X-axis direction. That is, the first chip 14 is formed so that the dimensions in the arrangement direction of the frame 11 and die pad 12 are shortened.
 第1チップ14は、複数の端子P1~P5を含む。端子P1,P2は、第1チップ14のX軸方向の両端部のうち第1樹脂側面16Aに近い方の端部に設けられている。端子P1は、第1チップ14のうちリード13Aの近くに設けられている。端子P2は、第1チップ14のうちリード部11Bの近くに設けられている。端子P3~P5は、第1チップ14のX軸方向の両端部のうち第2チップ15に近い方の端部に設けられている。端子P3~P5は、Y軸方向において互いに離隔して配列されている。 The first chip 14 includes a plurality of terminals P1 to P5. The terminals P1 and P2 are provided at the end of the first chip 14 in the X-axis direction that is closer to the first resin side surface 16A. The terminal P1 is provided in the first chip 14 near the lead 13A. The terminal P2 is provided in the first chip 14 near the lead portion 11B. The terminals P3 to P5 are provided at the end closer to the second chip 15 of both ends of the first chip 14 in the X-axis direction. The terminals P3 to P5 are arranged apart from each other in the Y-axis direction.
 ダイパッド12に搭載された第2チップ15は、平板状に形成されている。平面視における第2チップ15の形状は、Y軸方向が長手方向となり、X軸方向が短手方向となる矩形状である。つまり、第2チップ15は、フレーム11およびダイパッド12の配列方向における寸法が短くなるように形成されている。 The second chip 15 mounted on the die pad 12 is formed into a flat plate shape. The shape of the second chip 15 in plan view is a rectangular shape in which the Y-axis direction is the longitudinal direction and the X-axis direction is the lateral direction. In other words, the second chip 15 is formed so that the dimensions in the arrangement direction of the frame 11 and the die pad 12 are shortened.
 第2チップ15は、複数の端子Q1~Q9を含む。端子Q1~Q3は、第2チップ15のX軸方向の両端部のうち第1チップ14に近い方の端部に設けられている。端子Q1~Q3は、Y軸方向において互いに離隔して配列されている。端子Q4~Q9は、第2チップ15のX軸方向の両端部のうち第2樹脂側面16Bに近い方の端部に設けられている。端子Q4~Q9は、Y軸方向において互いに離隔して配列されている。 The second chip 15 includes a plurality of terminals Q1 to Q9. The terminals Q1 to Q3 are provided at the end closer to the first chip 14 of both ends of the second chip 15 in the X-axis direction. The terminals Q1 to Q3 are arranged spaced apart from each other in the Y-axis direction. The terminals Q4 to Q9 are provided at the end closer to the second resin side surface 16B of both ends of the second chip 15 in the X-axis direction. The terminals Q4 to Q9 are arranged spaced apart from each other in the Y-axis direction.
 第1チップ14の端子P1は、ワイヤW1によってリード13Aに電気的に接続されている。端子P2は、ワイヤW2によってリード部11Bに電気的に接続されている。つまり、端子P2はフレーム11に電気的に接続されているともいえる。リード13Aおよびリード部11Bには高電圧発生部VTが電気的に接続される。高電圧発生部VTはたとえば直流電源である。リード13Aには高電圧発生部VTの正極が電気的に接続され、リード部11Bには高電圧発生部VTの負極が電気的に接続される。 The terminal P1 of the first chip 14 is electrically connected to the lead 13A by a wire W1. Terminal P2 is electrically connected to lead portion 11B by wire W2. In other words, it can be said that the terminal P2 is electrically connected to the frame 11. A high voltage generating section VT is electrically connected to the lead 13A and the lead section 11B. The high voltage generator VT is, for example, a DC power supply. The positive electrode of the high voltage generating section VT is electrically connected to the lead 13A, and the negative electrode of the high voltage generating section VT is electrically connected to the lead section 11B.
 第1チップ14の端子P3~P5と第2チップ15の端子Q1~Q3は、ワイヤW3~W5によって個別に電気的に接続されている。端子Q4~Q9は、ワイヤW6~W11によってリード13B~13Gと個別に電気的に接続されている。 Terminals P3 to P5 of the first chip 14 and terminals Q1 to Q3 of the second chip 15 are individually electrically connected by wires W3 to W5. Terminals Q4 to Q9 are individually electrically connected to leads 13B to 13G by wires W6 to W11.
 ここで、第1実施形態では、端子P1~P5のうち端子P1,P2は高圧側端子を構成し、端子P3~P5は低圧側端子を構成している。つまり、リード13Aおよびリード部11Bに電気的に接続された端子が高圧側端子を構成し、第2チップ15に電気的に接続された端子が低圧側端子を構成している。 Here, in the first embodiment, among the terminals P1 to P5, the terminals P1 and P2 constitute high voltage side terminals, and the terminals P3 to P5 constitute low voltage side terminals. That is, the terminal electrically connected to the lead 13A and the lead portion 11B constitutes a high voltage side terminal, and the terminal electrically connected to the second chip 15 constitutes a low voltage side terminal.
 このように、高電圧発生部VTに電気的に接続されたフレーム11のダイパッド部11Aは高圧側ダイパッドを構成し、ダイパッド12が低圧側ダイパッドを構成している。このため、端子P3~P5と基板30との絶縁耐圧は、端子P1,P2と基板30との絶縁耐圧よりも高い。一例では、端子P3~P5と基板30との絶縁耐圧は直流電圧で3850V程度であり、端子P1,P2と基板30との絶縁耐圧は直流電源で1400V程度である。 In this way, the die pad section 11A of the frame 11 electrically connected to the high voltage generating section VT constitutes a high voltage side die pad, and the die pad 12 constitutes a low voltage side die pad. Therefore, the dielectric strength voltage between the terminals P3 to P5 and the substrate 30 is higher than that between the terminals P1, P2 and the substrate 30. In one example, the dielectric strength voltage between the terminals P3 to P5 and the substrate 30 is about 3850V in DC voltage, and the dielectric strength voltage between the terminals P1, P2 and the substrate 30 is about 1400V in DC power supply.
 次に、第1チップ14および第2チップ15内の回路構成について説明する。
 図2に示すように、第1チップ14は、高電圧発生部VT(図1参照)の高電圧を降圧するための第1~第4抵抗回路14A~14Dを含む。第1抵抗回路14Aは抵抗値RAを含み、第2抵抗回路14Bは抵抗値RBを含み、第3抵抗回路14Cは抵抗値RCを含み、第4抵抗回路14Dは抵抗値RDを含む。
Next, the circuit configurations within the first chip 14 and the second chip 15 will be explained.
As shown in FIG. 2, the first chip 14 includes first to fourth resistance circuits 14A to 14D for stepping down the high voltage of the high voltage generating section VT (see FIG. 1). The first resistance circuit 14A includes a resistance value RA, the second resistance circuit 14B includes a resistance value RB, the third resistance circuit 14C includes a resistance value RC, and the fourth resistance circuit 14D includes a resistance value RD.
 抵抗値RBは、抵抗値RAよりも小さい。抵抗値RAに対する抵抗値RBの比(RB/RA)は、予め設定されている。抵抗値RCは、抵抗値RDよりも小さい。抵抗値RDに対する抵抗値RCの比(RC/RD)は、予め設定されている。比(RB/RA)および比(RC/RD)は、同一の所定値(たとえば1/999)に設定されている。 The resistance value RB is smaller than the resistance value RA. The ratio of the resistance value RB to the resistance value RA (RB/RA) is set in advance. Resistance value RC is smaller than resistance value RD. The ratio of the resistance value RC to the resistance value RD (RC/RD) is set in advance. The ratio (RB/RA) and the ratio (RC/RD) are set to the same predetermined value (for example, 1/999).
 第1~第4抵抗回路14A~14Dは、直列に接続されている。第1~第4抵抗回路14A~14Dの各々は、第1端部および第2端部を有する。第1抵抗回路14Aの第1端部は端子P1に電気的に接続されており、第1抵抗回路14Aの第2端部は第2抵抗回路14Bの第1端部に電気的に接続されている。第1抵抗回路14Aと第2抵抗回路14Bとの接続点は、端子P3に電気的に接続されている。第2抵抗回路14Bの第2端部は第3抵抗回路14Cの第1端部に電気的に接続されている。第2抵抗回路14Bと第3抵抗回路14Cとの接続点は、端子P4に電気的に接続されている。第3抵抗回路14Cの第2端部は第4抵抗回路14Dの第1端部に電気的に接続されている。第3抵抗回路14Cと第4抵抗回路14Dとの接続点は、端子P5に電気的に接続されている。第4抵抗回路14Dの第2端部は端子P2に電気的に接続されている。 The first to fourth resistance circuits 14A to 14D are connected in series. Each of the first to fourth resistance circuits 14A to 14D has a first end and a second end. The first end of the first resistance circuit 14A is electrically connected to the terminal P1, and the second end of the first resistance circuit 14A is electrically connected to the first end of the second resistance circuit 14B. There is. A connection point between the first resistance circuit 14A and the second resistance circuit 14B is electrically connected to the terminal P3. The second end of the second resistance circuit 14B is electrically connected to the first end of the third resistance circuit 14C. A connection point between the second resistance circuit 14B and the third resistance circuit 14C is electrically connected to the terminal P4. The second end of the third resistance circuit 14C is electrically connected to the first end of the fourth resistance circuit 14D. A connection point between the third resistance circuit 14C and the fourth resistance circuit 14D is electrically connected to the terminal P5. The second end of the fourth resistance circuit 14D is electrically connected to the terminal P2.
 第2チップ15は、電圧検出回路15Aを含む。電圧検出回路15Aは、オペアンプを含む。電圧検出回路15Aは、端子Q1~Q3に電気的に接続されている。端子Q1はワイヤW3によって第1チップ14の端子P3に電気的に接続され、端子Q2はワイヤW4によって第1チップ14の端子P4に電気的に接続され、端子Q3はワイヤW5によって第1チップ14の端子P5に電気的に接続されている。このため、電圧検出回路15Aは、第1抵抗回路14Aと第2抵抗回路14Bとの接続点と、第2抵抗回路14Bと第3抵抗回路14Cとの接続点と、第3抵抗回路14Cと第4抵抗回路14Dとの接続点との間の電圧を検出する。端子Q4~Q9(リード13B~13G(図1参照))は、第2チップ15内のオペアンプに電源電圧を供給したり、電圧検出回路15Aの出力信号を出力したりするために用いられる。 The second chip 15 includes a voltage detection circuit 15A. Voltage detection circuit 15A includes an operational amplifier. Voltage detection circuit 15A is electrically connected to terminals Q1 to Q3. The terminal Q1 is electrically connected to the terminal P3 of the first chip 14 by a wire W3, the terminal Q2 is electrically connected to the terminal P4 of the first chip 14 by a wire W4, and the terminal Q3 is electrically connected to the terminal P3 of the first chip 14 by a wire W5. It is electrically connected to terminal P5 of. Therefore, the voltage detection circuit 15A connects the connection point between the first resistance circuit 14A and the second resistance circuit 14B, the connection point between the second resistance circuit 14B and the third resistance circuit 14C, and the connection point between the third resistance circuit 14C and the third resistance circuit 14C. The voltage between the connection point and the four-resistance circuit 14D is detected. The terminals Q4 to Q9 (leads 13B to 13G (see FIG. 1)) are used to supply power supply voltage to the operational amplifier in the second chip 15 and to output the output signal of the voltage detection circuit 15A.
 [第1チップの概略的な平面構造]
 図3は、以上説明した第1チップ14の第1~第4抵抗回路14A~14D(図2参照)を含む第1チップ14の概略的な平面構造を示している。
[Schematic planar structure of the first chip]
FIG. 3 shows a schematic planar structure of the first chip 14 including the first to fourth resistance circuits 14A to 14D (see FIG. 2) of the first chip 14 described above.
 図3に示すように、第1チップ14は、複数の単位半導体抵抗層(以下、「半導体抵抗層20」)を含む。各半導体抵抗層20は、X軸方向に沿って延びている。換言すると、各半導体抵抗層20は、第1チップ14の短手方向に延びている。複数の半導体抵抗層20は、X軸方向において互いに揃った状態でY軸方向において互いに離隔して配列されている。換言すると、複数の半導体抵抗層20は、第1チップ14の長手方向において互いに離隔して配列されている。 As shown in FIG. 3, the first chip 14 includes a plurality of unit semiconductor resistance layers (hereinafter referred to as "semiconductor resistance layers 20"). Each semiconductor resistance layer 20 extends along the X-axis direction. In other words, each semiconductor resistance layer 20 extends in the lateral direction of the first chip 14. The plurality of semiconductor resistance layers 20 are arranged to be aligned with each other in the X-axis direction and spaced apart from each other in the Y-axis direction. In other words, the plurality of semiconductor resistance layers 20 are spaced apart from each other in the longitudinal direction of the first chip 14 .
 複数の半導体抵抗層20は、第1~第4抵抗回路14A~14Dの構成要素として用いられている。複数の半導体抵抗層20は、複数の抵抗領域として第1~第4抵抗領域R1~R4に区分することができる。第1~第4抵抗領域R1~R4は、+Y方向から-Y方向に向けて抵抗領域R1,R2,R3,R4の順に並んでいる。第1抵抗領域R1は第1抵抗回路14Aを構成する領域であり、第2抵抗領域R2は第2抵抗回路14Bを構成する領域であり、第3抵抗領域R3は第3抵抗回路14Cを構成する領域であり、第4抵抗領域R4は第4抵抗回路14Dを構成する領域である。 The plurality of semiconductor resistance layers 20 are used as constituent elements of the first to fourth resistance circuits 14A to 14D. The plurality of semiconductor resistance layers 20 can be divided into first to fourth resistance regions R1 to R4 as a plurality of resistance regions. The first to fourth resistance regions R1 to R4 are arranged in the order of resistance regions R1, R2, R3, and R4 from the +Y direction to the -Y direction. The first resistance region R1 is a region forming the first resistance circuit 14A, the second resistance region R2 is a region forming the second resistance circuit 14B, and the third resistance region R3 is a region forming the third resistance circuit 14C. The fourth resistance region R4 is a region constituting the fourth resistance circuit 14D.
 第1~第4抵抗領域R1~R4の各々の半導体抵抗層20の個数は、個別に設定されている。第1実施形態では、第1抵抗領域R1および第4抵抗領域R4の半導体抵抗層20の個数は互いに同じである。第2抵抗領域R2および第3抵抗領域R3の半導体抵抗層20の個数は互いに同じである。そして、第1および第4抵抗領域R1,R4の半導体抵抗層20の個数は、第2および第3抵抗領域R2,R3の半導体抵抗層20の個数よりも多い。なお、第1~第4抵抗領域R1~R4の各々の半導体抵抗層20の個数は第1実施形態に限定されず、任意に変更可能である。 The number of semiconductor resistance layers 20 in each of the first to fourth resistance regions R1 to R4 is individually set. In the first embodiment, the number of semiconductor resistance layers 20 in the first resistance region R1 and the fourth resistance region R4 is the same. The number of semiconductor resistance layers 20 in the second resistance region R2 and the third resistance region R3 is the same. The number of semiconductor resistance layers 20 in the first and fourth resistance regions R1 and R4 is greater than the number of semiconductor resistance layers 20 in the second and third resistance regions R2 and R3. Note that the number of semiconductor resistance layers 20 in each of the first to fourth resistance regions R1 to R4 is not limited to that in the first embodiment, and can be changed arbitrarily.
 より詳細には、第1~第4抵抗領域R1~R4においては、+Y方向の端から奇数行目の半導体抵抗層20の-X方向の端部の各々は、その半導体抵抗層20と-Y方向に隣接する偶数行目の半導体抵抗層20の-X方向の端部に電気的に接続されている。また、+Y方向の端から偶数行目の半導体抵抗層20の+X方向の端部の各々は、その半導体抵抗層20と-Y方向に隣接する奇数行目の半導体抵抗層20の+X方向の端部に電気的に接続されている。これにより、第1~第4抵抗領域R1~R4における全ての半導体抵抗層20が直列に接続されている。 More specifically, in the first to fourth resistance regions R1 to R4, each end of the semiconductor resistance layer 20 in the odd-numbered row from the end in the +Y direction in the -X direction is connected to the semiconductor resistance layer 20 in the -Y direction. It is electrically connected to the ends in the −X direction of even-numbered rows of semiconductor resistance layers 20 adjacent to each other in the direction. Furthermore, each of the +X direction ends of the even-numbered semiconductor resistance layers 20 from the +Y-direction end corresponds to the +X-direction ends of the odd-numbered semiconductor resistance layers 20 adjacent to the semiconductor resistance layer 20 in the −Y direction. electrically connected to the As a result, all the semiconductor resistance layers 20 in the first to fourth resistance regions R1 to R4 are connected in series.
 第1抵抗領域R1の+Y方向の端から1行目の半導体抵抗層20と端子P1とは、配線21によって接続されている。配線21は、第1抵抗領域R1の+Y方向の端から1行目の半導体抵抗層20における+X方向の端部に接続されている。 The semiconductor resistance layer 20 in the first row from the end in the +Y direction of the first resistance region R1 and the terminal P1 are connected by a wiring 21. The wiring 21 is connected to the end in the +X direction of the semiconductor resistance layer 20 in the first row from the end in the +Y direction of the first resistance region R1.
 第2抵抗領域R2の+Y方向の端から1行目の半導体抵抗層20と端子P3とは、配線22によって接続されている。配線22は、第2抵抗領域R2の+Y方向の端から1行目の半導体抵抗層20における+X方向の端部に接続されている。 The semiconductor resistance layer 20 in the first row from the end in the +Y direction of the second resistance region R2 and the terminal P3 are connected by a wiring 22. The wiring 22 is connected to the end in the +X direction of the semiconductor resistance layer 20 in the first row from the end in the +Y direction of the second resistance region R2.
 第2抵抗領域R2の-Y方向の端から1行目の半導体抵抗層20および第3抵抗領域R3の+Y方向の端から1行目の半導体抵抗層20と、端子P4とは、配線23によって接続されている。配線23は、第2抵抗領域R2の-Y方向の端から1行目の半導体抵抗層20および第3抵抗領域R3の+Y方向の端から1行目の半導体抵抗層20における+X方向の端部に接続されている。 The semiconductor resistance layer 20 in the first row from the end in the -Y direction of the second resistance region R2, the semiconductor resistance layer 20 in the first row from the end in the +Y direction of the third resistance region R3, and the terminal P4 are connected by wiring 23. It is connected. The wiring 23 is located at the end in the +X direction of the semiconductor resistance layer 20 in the first row from the end in the −Y direction of the second resistance region R2 and in the semiconductor resistance layer 20 in the first row from the end in the +Y direction of the third resistance region R3. It is connected to the.
 第3抵抗領域R3の-Y方向の端から1行目の半導体抵抗層20と端子P5とは、配線24によって接続されている。配線24は、第3抵抗領域R3の-Y方向の端から1行目の半導体抵抗層20における+X方向の端部に接続されている。 The semiconductor resistance layer 20 in the first row from the end in the -Y direction of the third resistance region R3 and the terminal P5 are connected by a wiring 24. The wiring 24 is connected to the end in the +X direction of the semiconductor resistance layer 20 in the first row from the end in the −Y direction of the third resistance region R3.
 第4抵抗領域R4の-Y方向の端から1行目の半導体抵抗層20と端子P2とは、配線25によって接続されている。配線25は、第4抵抗領域R4の-Y方向の端から1行目の半導体抵抗層20における+X方向の端部に接続されている。 The semiconductor resistance layer 20 in the first row from the end in the -Y direction of the fourth resistance region R4 and the terminal P2 are connected by a wiring 25. The wiring 25 is connected to the end in the +X direction of the semiconductor resistance layer 20 in the first row from the end in the −Y direction of the fourth resistance region R4.
 [第1チップの断面構造]
 図4~図7を参照して、第1チップ14の内部構成の一例について説明する。図4~図7の各々は、第1チップ14の断面構造を示している。図4は、第1抵抗領域R1におけるY軸方向に隣り合う4つの半導体抵抗層20が含まれる領域をYZ平面で切断した断面構造を示している。図5は、図4の4つの半導体抵抗層20およびその周辺の拡大構造を示している。図6は、第1抵抗領域R1におけるY軸方向に隣り合う4つの半導体抵抗層20が含まれる領域のうち+X方向の端部をYZ平面で切断した断面構造を示している。図7は、図3のF7-F7線で第1チップ14を切断した断面構造を示している。
[Cross-sectional structure of the first chip]
An example of the internal configuration of the first chip 14 will be described with reference to FIGS. 4 to 7. Each of FIGS. 4 to 7 shows a cross-sectional structure of the first chip 14. As shown in FIG. FIG. 4 shows a cross-sectional structure of a region including four semiconductor resistance layers 20 adjacent to each other in the Y-axis direction in the first resistance region R1, taken along the YZ plane. FIG. 5 shows an enlarged structure of the four semiconductor resistance layers 20 of FIG. 4 and their surroundings. FIG. 6 shows a cross-sectional structure obtained by cutting an end in the +X direction along the YZ plane in a region including four semiconductor resistance layers 20 adjacent to each other in the Y-axis direction in the first resistance region R1. FIG. 7 shows a cross-sectional structure of the first chip 14 taken along line F7-F7 in FIG.
 図4に示すように、第1チップ14は、基板30と、基板30上に形成された素子絶縁層40と、を含む。
 基板30は、たとえば半導体基板によって形成されている。基板30の厚さは、たとえば300μm程度である。第1実施形態では、基板30は、Siを含む材料によって形成された半導体基板である。なお、基板30は、半導体基板として、ワイドバンドギャップ半導体または化合物半導体が用いられていてもよい。また、基板30は、半導体基板に代えて、ガラスを含む材料によって形成された絶縁基板、またはアルミナ等のセラミックスを含む材料によって形成された絶縁基板が用いられていてもよい。
As shown in FIG. 4, the first chip 14 includes a substrate 30 and an element insulating layer 40 formed on the substrate 30.
The substrate 30 is formed of, for example, a semiconductor substrate. The thickness of the substrate 30 is, for example, about 300 μm. In the first embodiment, the substrate 30 is a semiconductor substrate made of a material containing Si. Note that the substrate 30 may be a semiconductor substrate made of a wide bandgap semiconductor or a compound semiconductor. Further, instead of the semiconductor substrate, the substrate 30 may be an insulating substrate formed of a material containing glass or an insulating substrate formed of a material containing ceramics such as alumina.
 ワイドバンドギャップ半導体は、2.0eV以上のバンドギャップを有する半導体基板である。ワイドバンドギャップ半導体は、SiC(炭化シリコン)であってもよい。化合物半導体は、III-V族化合物半導体であってもよい。化合物半導体は、AlN(窒化アルミニウム)、InN(窒化インジウム)、GaN(窒化ガリウム)、およびGaAs(ヒ化ガリウム)のうち少なくとも1つを含んでもよい。 A wide band gap semiconductor is a semiconductor substrate having a band gap of 2.0 eV or more. The wide bandgap semiconductor may be SiC (silicon carbide). The compound semiconductor may be a III-V compound semiconductor. The compound semiconductor may include at least one of AlN (aluminum nitride), InN (indium nitride), GaN (gallium nitride), and GaAs (gallium arsenide).
 素子絶縁層40は、Z軸方向において互いに反対側を向く素子表面41および素子裏面42を有する。ここで、第1実施形態では、Z軸方向は「素子絶縁層の厚さ方向」に対応する。素子裏面42は、基板30と接している。素子表面41は、Z軸方向において基板30とは反対側の面である。 The element insulating layer 40 has an element front surface 41 and an element back surface 42 facing oppositely to each other in the Z-axis direction. Here, in the first embodiment, the Z-axis direction corresponds to the "thickness direction of the element insulating layer". The back surface 42 of the element is in contact with the substrate 30. The element surface 41 is a surface opposite to the substrate 30 in the Z-axis direction.
 素子絶縁層40上には、端子P1~P5(図3参照)と、パッシベーション膜43とが形成されている。
 端子P1~P5は、素子絶縁層40の素子表面41上に形成されている。端子P1~P5は、Ti(チタン)、TiN(窒化チタン)、Ta(タンタル)、TaN(窒化タンタル)、Au(金)、Ag(銀)、Cu(銅)、Al(アルミニウム)、Ni(ニッケル)、Pd(パラジウム)、およびW(タングステン)のうち1つまたは複数が適宜選択される。第1実施形態では、端子P1~P5は、Alを含む材料によって形成されている。一例として、図7では、素子表面41上に端子P1が形成された構造が示されている。
Terminals P1 to P5 (see FIG. 3) and a passivation film 43 are formed on the element insulating layer 40.
Terminals P1 to P5 are formed on the element surface 41 of the element insulating layer 40. Terminals P1 to P5 are made of Ti (titanium), TiN (titanium nitride), Ta (tantalum), TaN (tantalum nitride), Au (gold), Ag (silver), Cu (copper), Al (aluminum), Ni ( One or more of nickel), Pd (palladium), and W (tungsten) is selected as appropriate. In the first embodiment, the terminals P1 to P5 are formed of a material containing Al. As an example, FIG. 7 shows a structure in which a terminal P1 is formed on the element surface 41.
 図7に示すように、端子P1は、パッシベーション膜43によって覆われている。一方、パッシベーション膜43は、端子P1を露出する開口部43Xを有する。なお、図示していないが、パッシベーション膜43は、図1~図3に示す端子P2~P5を露出する開口部43Xを有する。このため、端子P1~P5は、ワイヤW1~W5(図1参照)を接続するための露出面を含む。このように、端子P1~P5は、電極パッドを構成している。 As shown in FIG. 7, the terminal P1 is covered with a passivation film 43. On the other hand, the passivation film 43 has an opening 43X that exposes the terminal P1. Although not shown, the passivation film 43 has an opening 43X that exposes the terminals P2 to P5 shown in FIGS. 1 to 3. Terminals P1-P5 therefore include exposed surfaces for connecting wires W1-W5 (see FIG. 1). In this way, the terminals P1 to P5 constitute electrode pads.
 図4に示すように、パッシベーション膜43は、素子絶縁層40の素子表面41上に形成されている。パッシベーション膜43は、第1チップ14の表面保護膜であり、たとえばSiNを含む材料によって形成されている。なお、パッシベーション膜43を構成する材料は任意に変更可能であり、たとえばSiOを含む材料によって形成されていてもよい。また、パッシベーション膜43は、複数の膜の積層構造であってもよく、たとえばSiNを含む材料によって形成された膜とSiOを含む材料によって形成された膜との積層構造であってもよい。 As shown in FIG. 4, the passivation film 43 is formed on the element surface 41 of the element insulating layer 40. The passivation film 43 is a surface protection film of the first chip 14, and is formed of a material containing SiN, for example. Note that the material constituting the passivation film 43 can be changed arbitrarily, and may be formed of a material containing SiO 2 , for example. Further, the passivation film 43 may have a laminated structure of a plurality of films, for example, a laminated structure of a film formed of a material containing SiN and a film formed of a material containing SiO2 .
 素子絶縁層40は、基板30上に設けられた基板側絶縁層50と、基板側絶縁層50上に積層された配線側絶縁層60と、配線側絶縁層60上に積層された抵抗側絶縁層70と、を含む。 The element insulating layer 40 includes a substrate-side insulating layer 50 provided on the substrate 30, a wiring-side insulating layer 60 laminated on the substrate-side insulating layer 50, and a resistance-side insulating layer laminated on the wiring-side insulating layer 60. layer 70.
 基板側絶縁層50は、複数の第1基板側絶縁層51と、複数の第1基板側絶縁層51上に形成された第2基板側絶縁層52と、を含む。複数の第1基板側絶縁層51と複数の第2基板側絶縁層52は、Z軸方向において1つずつ交互に積層されている。 The substrate-side insulating layer 50 includes a plurality of first substrate-side insulating layers 51 and a second substrate-side insulating layer 52 formed on the plurality of first substrate-side insulating layers 51. The plurality of first substrate side insulating layers 51 and the plurality of second substrate side insulating layers 52 are alternately stacked one by one in the Z-axis direction.
 第1基板側絶縁層51は、SiN(窒化シリコン)、SiC、SiCN(窒素添加炭化シリコン)等を含む材料によって形成されている。第1基板側絶縁層51は、SiN系絶縁膜であってもよい。第1実施形態では、第1基板側絶縁層51は、SiNを含む材料によって形成されている。また、第1基板側絶縁層51は、たとえば第2基板側絶縁層52とは組成の異なる絶縁層であり、第2基板側絶縁層52と逆のストレスを持つ膜である。第1基板側絶縁層51は、たとえば引っ張り応力をもつ窒化膜であってよい。 The first substrate side insulating layer 51 is formed of a material containing SiN (silicon nitride), SiC, SiCN (nitrogen-doped silicon carbide), or the like. The first substrate-side insulating layer 51 may be a SiN-based insulating film. In the first embodiment, the first substrate side insulating layer 51 is formed of a material containing SiN. Further, the first substrate-side insulating layer 51 is, for example, an insulating layer having a different composition from the second substrate-side insulating layer 52, and is a film having stress opposite to that of the second substrate-side insulating layer 52. The first substrate side insulating layer 51 may be, for example, a nitride film having tensile stress.
 第2基板側絶縁層52は、SiO(酸化シリコン)を含む材料によって形成された酸化膜である。第2基板側絶縁層52の膜厚は、第1基板側絶縁層51の膜厚よりも厚い。第1基板側絶縁層51は、50nm以上1000nm未満の厚さを有する。第2基板側絶縁層52は、500nm以上5000nm以下の厚さを有する。第1実施形態では、第1基板側絶縁層51は300nm程度の厚さを有し、第2基板側絶縁層52は2000nm程度の厚さを有する。 The second substrate side insulating layer 52 is an oxide film formed of a material containing SiO 2 (silicon oxide). The film thickness of the second substrate side insulating layer 52 is thicker than the film thickness of the first substrate side insulating layer 51. The first substrate side insulating layer 51 has a thickness of 50 nm or more and less than 1000 nm. The second substrate side insulating layer 52 has a thickness of 500 nm or more and 5000 nm or less. In the first embodiment, the first substrate side insulating layer 51 has a thickness of about 300 nm, and the second substrate side insulating layer 52 has a thickness of about 2000 nm.
 第1基板側絶縁層51と第2基板側絶縁層52とを交互に積層する理由は、第2基板側絶縁層52の成膜によって生じる基板30の反りを、第1基板側絶縁層51の成膜によってコントロールすることによって基板側絶縁層50を厚く成膜するためである。第1実施形態では、基板側絶縁層50は、13.5μm程度の厚さを有する。 The reason why the first substrate-side insulating layer 51 and the second substrate-side insulating layer 52 are laminated alternately is to prevent the warpage of the substrate 30 caused by the film formation of the second substrate-side insulating layer 52 from the first substrate-side insulating layer 51. This is because the substrate-side insulating layer 50 can be formed thickly by controlling the film formation. In the first embodiment, the substrate-side insulating layer 50 has a thickness of about 13.5 μm.
 なお、図面の見やすさの観点から、図面における第1基板側絶縁層51の膜厚と第2基板側絶縁層52の膜厚との比率は、実際の第1基板側絶縁層51の膜厚と第2基板側絶縁層52の膜厚との比率とは異なる。また、図4は、第1基板側絶縁層51および第2基板側絶縁層52の構成を明示するため、第1基板側絶縁層51および第2基板側絶縁層52の双方の厚さを厚くしている。このため、図4に示される第1基板側絶縁層51および第2基板側絶縁層52の積層数は、第1基板側絶縁層51および第2基板側絶縁層52の実際の積層数を示すものではない。 Note that from the viewpoint of ease of viewing the drawings, the ratio of the film thickness of the first substrate side insulating layer 51 to the film thickness of the second substrate side insulating layer 52 in the drawings is the actual film thickness of the first substrate side insulating layer 51. and the film thickness of the second substrate side insulating layer 52 are different. In addition, in FIG. 4, in order to clearly show the configurations of the first substrate side insulating layer 51 and the second substrate side insulating layer 52, the thicknesses of both the first substrate side insulating layer 51 and the second substrate side insulating layer 52 are thickened. are doing. Therefore, the number of laminated layers of the first substrate side insulating layer 51 and the second substrate side insulating layer 52 shown in FIG. 4 indicates the actual number of laminated layers of the first substrate side insulating layer 51 and the second substrate side insulating layer 52. It's not a thing.
 抵抗側絶縁層70は、半導体抵抗層20が埋め込まれた絶縁層である。抵抗側絶縁層70は、第1絶縁層71と、第1絶縁層71上に積層された第2絶縁層72と、第2絶縁層72上に積層された第3絶縁層73と、を含む。半導体抵抗層20は、第2絶縁層72上に積層されており、第3絶縁層73によって覆われている。このため、図4に示すとおり、複数の半導体抵抗層20は、Z軸方向において互いに同じ位置に配置されている。 The resistance side insulating layer 70 is an insulating layer in which the semiconductor resistance layer 20 is embedded. The resistance side insulating layer 70 includes a first insulating layer 71, a second insulating layer 72 laminated on the first insulating layer 71, and a third insulating layer 73 laminated on the second insulating layer 72. . The semiconductor resistance layer 20 is stacked on the second insulating layer 72 and covered with the third insulating layer 73. Therefore, as shown in FIG. 4, the plurality of semiconductor resistance layers 20 are arranged at the same position in the Z-axis direction.
 半導体抵抗層20は、Z軸方向を厚さ方向とする平板状に形成されている。半導体抵抗層20の厚さは、半導体抵抗層20の幅(X軸方向の長さ)よりも薄い。また、半導体抵抗層20は、第1~第3絶縁層71~73の各々よりも薄い厚さを有する。半導体抵抗層20の厚さは、たとえば1nm以上100nm以下である。第1実施形態では、半導体抵抗層20の厚さは、2.5nm程度である。半導体抵抗層20は、たとえばCrSi(クロムシリコン)を含む材料によって形成されている。 The semiconductor resistance layer 20 is formed into a flat plate shape with the thickness direction in the Z-axis direction. The thickness of the semiconductor resistance layer 20 is thinner than the width (length in the X-axis direction) of the semiconductor resistance layer 20. Further, the semiconductor resistance layer 20 has a thickness smaller than each of the first to third insulating layers 71 to 73. The thickness of the semiconductor resistance layer 20 is, for example, 1 nm or more and 100 nm or less. In the first embodiment, the thickness of the semiconductor resistance layer 20 is approximately 2.5 nm. The semiconductor resistance layer 20 is formed of a material containing, for example, CrSi (chromium silicon).
 図5に示すように、半導体抵抗層20は、Z軸方向において素子絶縁層40の素子裏面42を向く抵抗裏面27と、抵抗裏面27とは反対側の抵抗表面28と、抵抗裏面27と抵抗表面28とを繋ぐ抵抗側面29と、を含む。第1実施形態では、抵抗裏面27および抵抗表面28の双方は、XY平面に沿った面である。抵抗側面29は、抵抗裏面27と抵抗表面28との双方と交差する面である。第1実施形態では、抵抗側面29は、抵抗裏面27と抵抗表面28との双方と直交する面である。 As shown in FIG. 5, the semiconductor resistance layer 20 includes a resistor back surface 27 facing the element back surface 42 of the element insulating layer 40 in the Z-axis direction, a resistor surface 28 on the opposite side to the resistor back surface 27, and a resistor back surface 27 and the resistor back surface 28. and a resistive side surface 29 connected to the surface 28. In the first embodiment, both the resistance back surface 27 and the resistance surface 28 are surfaces along the XY plane. The resistance side surface 29 is a surface that intersects both the resistance back surface 27 and the resistance surface 28. In the first embodiment, the resistance side surface 29 is a surface perpendicular to both the resistance back surface 27 and the resistance surface 28.
 半導体抵抗層20は、抵抗裏面27が第2絶縁層72に接した状態で第3絶縁層73内に設けられている。つまり、半導体抵抗層20は、第2絶縁層72と第3絶縁層73とによって挟み込まれている。抵抗表面28および抵抗側面29の双方は、第3絶縁層73に接している。 The semiconductor resistance layer 20 is provided within the third insulating layer 73 with the resistor back surface 27 in contact with the second insulating layer 72 . That is, the semiconductor resistance layer 20 is sandwiched between the second insulating layer 72 and the third insulating layer 73. Both resistive surface 28 and resistive side 29 are in contact with third insulating layer 73 .
 図6に示すように、配線側絶縁層60は、複数の配線層80が埋め込まれた絶縁層である。配線側絶縁層60は、第4絶縁層61と、第4絶縁層61上に積層された第5絶縁層62と、第5絶縁層62上に積層された第6絶縁層63と、を含む。複数の配線層80は、第5絶縁層62上に積層されており、第6絶縁層63によって覆われている。図示された例においては、複数の配線層80は、Z方向において互いに同じ位置に配置されている。 As shown in FIG. 6, the wiring-side insulating layer 60 is an insulating layer in which a plurality of wiring layers 80 are embedded. The wiring side insulating layer 60 includes a fourth insulating layer 61, a fifth insulating layer 62 laminated on the fourth insulating layer 61, and a sixth insulating layer 63 laminated on the fifth insulating layer 62. . The plurality of wiring layers 80 are stacked on the fifth insulating layer 62 and covered with the sixth insulating layer 63. In the illustrated example, the plurality of wiring layers 80 are arranged at the same position in the Z direction.
 配線層80は、たとえば図3に示す配線21~25を含む。配線層80は、配線側絶縁層60に埋め込まれているため、Z軸方向において抵抗側絶縁層70に埋め込まれた半導体抵抗層20よりも基板30(図4参照)寄りに配置されている。 The wiring layer 80 includes, for example, the wirings 21 to 25 shown in FIG. Since the wiring layer 80 is embedded in the wiring side insulating layer 60, it is arranged closer to the substrate 30 (see FIG. 4) than the semiconductor resistance layer 20 embedded in the resistance side insulating layer 70 in the Z-axis direction.
 配線層80は、Z軸方向を厚さ方向とする平板状に形成されている。配線層80の厚さは、配線層80の幅(平面視で配線層80が延びる方向と直交する方向の長さ)よりも薄い。配線層80の厚さは、半導体抵抗層20の厚さよりも厚い。図6に示す例においては、配線層80の厚さは、第5絶縁層62および第6絶縁層63の各々の厚さよりも厚い。一方、配線層80の厚さは、第4絶縁層61の厚さよりも薄い。配線層80は、Ti、TiN、Ta、TaN、Au、Ag、Cu、Al、およびWのうち1つまたは複数が適宜選択される。第1実施形態では、配線層80は、Alを含む材料によって形成されている。 The wiring layer 80 is formed in a flat plate shape with the thickness direction in the Z-axis direction. The thickness of the wiring layer 80 is thinner than the width of the wiring layer 80 (the length in the direction perpendicular to the direction in which the wiring layer 80 extends in plan view). The thickness of the wiring layer 80 is thicker than the thickness of the semiconductor resistance layer 20. In the example shown in FIG. 6, the thickness of the wiring layer 80 is thicker than the thickness of each of the fifth insulating layer 62 and the sixth insulating layer 63. On the other hand, the thickness of the wiring layer 80 is thinner than the thickness of the fourth insulating layer 61. For the wiring layer 80, one or more of Ti, TiN, Ta, TaN, Au, Ag, Cu, Al, and W is appropriately selected. In the first embodiment, the wiring layer 80 is formed of a material containing Al.
 図6に示す例においては、配線層80は、Y軸方向に隣り合う2つの半導体抵抗層20を電気的に接続している。より詳細には、配線層80は、2つの半導体抵抗層20の双方と重なるように形成されている。各半導体抵抗層20と配線層80とは、2つのビア90によって接続されている。ビア90は、素子絶縁層40の厚さ方向となるZ軸方向に延びている。より詳細には、ビア90は、第1絶縁層71、第2絶縁層72、および第6絶縁層63をZ軸方向に貫通することによって、半導体抵抗層20と配線層80との両方に接している。ビア90は、Ti、TiN、Ta、TaN、Au、Ag、Cu、Al、およびWのうち1つまたは複数が適宜選択される。第1実施形態では、ビア90は、Wを含む材料によって形成されている。なお、ビア90の個数は任意に変更可能である。 In the example shown in FIG. 6, the wiring layer 80 electrically connects two semiconductor resistance layers 20 adjacent in the Y-axis direction. More specifically, the wiring layer 80 is formed to overlap both of the two semiconductor resistance layers 20. Each semiconductor resistance layer 20 and wiring layer 80 are connected by two vias 90. The via 90 extends in the Z-axis direction, which is the thickness direction of the element insulating layer 40. More specifically, the via 90 is in contact with both the semiconductor resistance layer 20 and the wiring layer 80 by penetrating the first insulating layer 71, the second insulating layer 72, and the sixth insulating layer 63 in the Z-axis direction. ing. For the via 90, one or more of Ti, TiN, Ta, TaN, Au, Ag, Cu, Al, and W is appropriately selected. In the first embodiment, the via 90 is formed of a material containing W. Note that the number of vias 90 can be changed arbitrarily.
 配線層80は、Z軸方向において素子絶縁層40の素子裏面42(図4参照)を向く配線裏面81と、配線裏面81とは反対側の配線表面82と、配線裏面81と配線表面82とを繋ぐ配線側面83と、を含む。図示された例においては、配線裏面81は、Z軸方向において半導体抵抗層20とは反対側を向いているといえる。第1実施形態では、配線裏面81および配線表面82の双方は、XY平面に沿った面である。配線側面83は、配線裏面81と配線表面82との双方と交差する面である。第1実施形態では、配線側面83は、配線裏面81と配線表面82との双方と直交する面である。 The wiring layer 80 includes a wiring back surface 81 facing the element back surface 42 (see FIG. 4) of the element insulating layer 40 in the Z-axis direction, a wiring surface 82 opposite to the wiring back surface 81, and the wiring back surface 81 and the wiring surface 82. and a wiring side surface 83 that connects. In the illustrated example, it can be said that the wiring back surface 81 faces the opposite side from the semiconductor resistance layer 20 in the Z-axis direction. In the first embodiment, both the wiring back surface 81 and the wiring front surface 82 are surfaces along the XY plane. The wiring side surface 83 is a surface that intersects both the wiring back surface 81 and the wiring front surface 82. In the first embodiment, the wiring side surface 83 is a surface perpendicular to both the wiring back surface 81 and the wiring front surface 82.
 配線層80は、配線裏面81が第5絶縁層62に接した状態で第6絶縁層63内に設けられている。つまり、配線層80は、第5絶縁層62と第6絶縁層63とによって挟み込まれている。配線表面82および配線側面83の双方は、第6絶縁層63に接している。 The wiring layer 80 is provided in the sixth insulating layer 63 with the wiring back surface 81 in contact with the fifth insulating layer 62. That is, the wiring layer 80 is sandwiched between the fifth insulating layer 62 and the sixth insulating layer 63. Both the wiring surface 82 and the wiring side surface 83 are in contact with the sixth insulating layer 63.
 (半導体抵抗層の電界緩和構造)
 図5に示すように、抵抗側絶縁層70および配線側絶縁層60を含む素子絶縁層40は、半導体抵抗層20に生じる電界について、電界集中を緩和する構造を含む。一例では、素子絶縁層40は、半導体抵抗層20の電界集中を緩和する構造として、第1絶縁層71、第2絶縁層72、および第6絶縁層63を含む。
(Electric field relaxation structure of semiconductor resistance layer)
As shown in FIG. 5, the element insulating layer 40 including the resistance-side insulating layer 70 and the wiring-side insulating layer 60 includes a structure that alleviates electric field concentration generated in the semiconductor resistance layer 20. In one example, the element insulating layer 40 includes a first insulating layer 71, a second insulating layer 72, and a sixth insulating layer 63 as a structure that alleviates electric field concentration in the semiconductor resistance layer 20.
 第1絶縁層71および第2絶縁層72の双方は、Z軸方向において半導体抵抗層20と配線層80との間に配置されている。第6絶縁層63は、第1絶縁層71および第2絶縁層72の双方よりも基板30寄りに配置されている。第1絶縁層71は、第6絶縁層63上に積層されている。第1絶縁層71は、第6絶縁層63と接している。 Both the first insulating layer 71 and the second insulating layer 72 are arranged between the semiconductor resistance layer 20 and the wiring layer 80 in the Z-axis direction. The sixth insulating layer 63 is arranged closer to the substrate 30 than both the first insulating layer 71 and the second insulating layer 72. The first insulating layer 71 is stacked on the sixth insulating layer 63. The first insulating layer 71 is in contact with the sixth insulating layer 63.
 半導体抵抗層20と接する第2絶縁層72は、たとえばSiNを含む材料によって形成されている。このため、第2絶縁層72の比誘電率は、7程度である。図示された例においては、第2絶縁層72の厚さは、第1絶縁層71の厚さおよび第6絶縁層63の厚さの双方よりも薄い。 The second insulating layer 72 in contact with the semiconductor resistance layer 20 is formed of a material containing, for example, SiN. Therefore, the dielectric constant of the second insulating layer 72 is about 7. In the illustrated example, the thickness of the second insulating layer 72 is thinner than both the thickness of the first insulating layer 71 and the thickness of the sixth insulating layer 63.
 第1絶縁層71は、第2絶縁層72を介して半導体抵抗層20に対してZ軸方向に離隔して配置されている。第1絶縁層71は、第6絶縁層63を介して配線層80に対してZ軸方向に離隔して配置されている。第1絶縁層71は、第2絶縁層72よりも低い比誘電率を有する。第1絶縁層71の比誘電率は、3.8よりも大きく7未満である。一例では、第1絶縁層71の比誘電率は、4よりも大きく7未満であってもよい。第1実施形態では、第1絶縁層71は、SiONを含む材料によって形成されている。このため、第1絶縁層71の比誘電率は、SiONのうちのN(窒素)の濃度に応じて調整される。第1絶縁層71は、第6絶縁層63よりも薄い厚さを有する。 The first insulating layer 71 is spaced apart from the semiconductor resistance layer 20 in the Z-axis direction with the second insulating layer 72 interposed therebetween. The first insulating layer 71 is spaced apart from the wiring layer 80 in the Z-axis direction with the sixth insulating layer 63 interposed therebetween. The first insulating layer 71 has a lower dielectric constant than the second insulating layer 72. The dielectric constant of the first insulating layer 71 is greater than 3.8 and less than 7. In one example, the dielectric constant of the first insulating layer 71 may be greater than 4 and less than 7. In the first embodiment, the first insulating layer 71 is made of a material containing SiON. Therefore, the dielectric constant of the first insulating layer 71 is adjusted according to the concentration of N (nitrogen) in SiON. The first insulating layer 71 has a thinner thickness than the sixth insulating layer 63.
 第6絶縁層63は、半導体抵抗層20に対してZ軸方向に離隔して配置されている。第6絶縁層63は、第1絶縁層71よりも低い比誘電率を有する。第1実施形態では、第6絶縁層63は、SiOを含む材料によって形成されている。このため、第6絶縁層63の比誘電率は、3.8程度である。このように、第6絶縁層63は、半導体抵抗層20の電界を緩和するとともに配線層80を覆う絶縁層である。第6絶縁層63のうち配線層80が配置されていない領域の厚さは、第1絶縁層71および第2絶縁層72の各々の厚さよりも厚い。ここで、第1実施形態では、第6絶縁層63は「低誘電率絶縁層」に対応している。 The sixth insulating layer 63 is spaced apart from the semiconductor resistance layer 20 in the Z-axis direction. The sixth insulating layer 63 has a lower dielectric constant than the first insulating layer 71. In the first embodiment, the sixth insulating layer 63 is made of a material containing SiO 2 . Therefore, the dielectric constant of the sixth insulating layer 63 is about 3.8. In this way, the sixth insulating layer 63 is an insulating layer that relaxes the electric field of the semiconductor resistance layer 20 and covers the wiring layer 80. The thickness of the region of the sixth insulating layer 63 where the wiring layer 80 is not arranged is thicker than the thickness of each of the first insulating layer 71 and the second insulating layer 72. Here, in the first embodiment, the sixth insulating layer 63 corresponds to a "low dielectric constant insulating layer".
 このように、半導体抵抗層20に対する電界集中を緩和する構造では、半導体抵抗層20から基板30に向かうにつれて、第2絶縁層72、第1絶縁層71、および第6絶縁層63の順に配置されている。つまり、半導体抵抗層20に対する電界集中を緩和する構造として、半導体抵抗層20から基板30に向けて比誘電率が低下するように構成されている。 In this structure, the second insulating layer 72 , the first insulating layer 71 , and the sixth insulating layer 63 are arranged in this order from the semiconductor resistance layer 20 toward the substrate 30 in the structure that alleviates the electric field concentration on the semiconductor resistance layer 20 . ing. In other words, the structure is such that the relative dielectric constant decreases from the semiconductor resistance layer 20 toward the substrate 30 as a structure for alleviating electric field concentration on the semiconductor resistance layer 20 .
 また、半導体抵抗層20を覆う第3絶縁層73は、第2絶縁層72よりも低い比誘電率を有する。第3絶縁層73は、第1絶縁層71よりも低い比誘電率を有してもよい。第3絶縁層73は、SiON、SiC、SiOのいずれかを含む材料によって形成されている。第1実施形態では、第3絶縁層73は、第1絶縁層71よりも低い比誘電率を有するため、SiOを含む材料によって形成されている。これにより、Y軸方向に隣り合う半導体抵抗層20間の絶縁性が高められる。 Further, the third insulating layer 73 covering the semiconductor resistance layer 20 has a lower dielectric constant than the second insulating layer 72. The third insulating layer 73 may have a lower dielectric constant than the first insulating layer 71. The third insulating layer 73 is formed of a material containing any one of SiON, SiC, and SiO2 . In the first embodiment, the third insulating layer 73 has a lower dielectric constant than the first insulating layer 71 and is therefore formed of a material containing SiO 2 . This improves the insulation between the semiconductor resistance layers 20 adjacent to each other in the Y-axis direction.
 図示された例においては、第3絶縁層73の厚さは、第1絶縁層71の厚さ、第2絶縁層72の厚さ、および第6絶縁層63の厚さの各々よりも厚い。
 なお、第1絶縁層71、第2絶縁層72、第3絶縁層73、および第6絶縁層63の各々の厚さは任意に変更可能である。一例では、第1絶縁層71の厚さ、第2絶縁層72の厚さ、および第6絶縁層63の厚さは互いに等しくてもよい。また一例では、第1絶縁層71の厚さおよび第2絶縁層72の厚さは互いに等しく、かつ第6絶縁層63の厚さよりも薄くてもよい。また一例では、第1絶縁層71の厚さが第2絶縁層72の厚さよりも厚くてもよい。また一例では、第3絶縁層73の厚さが第6絶縁層63の厚さと等しくてもよい。また一例では、第3絶縁層73の厚さが第6絶縁層63の厚さよりも薄くてもよい。
In the illustrated example, the third insulating layer 73 is thicker than each of the first insulating layer 71 , the second insulating layer 72 , and the sixth insulating layer 63 .
Note that the thickness of each of the first insulating layer 71, the second insulating layer 72, the third insulating layer 73, and the sixth insulating layer 63 can be changed arbitrarily. In one example, the thickness of the first insulating layer 71, the thickness of the second insulating layer 72, and the thickness of the sixth insulating layer 63 may be equal to each other. Further, in one example, the thickness of the first insulating layer 71 and the thickness of the second insulating layer 72 may be equal to each other and thinner than the thickness of the sixth insulating layer 63. Further, in one example, the thickness of the first insulating layer 71 may be thicker than the thickness of the second insulating layer 72. Further, in one example, the thickness of the third insulating layer 73 may be equal to the thickness of the sixth insulating layer 63. Further, in one example, the thickness of the third insulating layer 73 may be thinner than the thickness of the sixth insulating layer 63.
 (配線層の電界緩和構造)
 図6に示すように、配線側絶縁層60および基板側絶縁層50を含む素子絶縁層40は、配線層80に生じる電界について、電界集中を緩和する構造を含む。一例では、素子絶縁層40は、配線層80の電界集中を緩和する構造として、第4絶縁層61、第5絶縁層62、および基板側絶縁層50の最上層となる第2基板側絶縁層52を含む。以下の説明においては、基板側絶縁層50の最上層となる第2基板側絶縁層52を「第7絶縁層52A」と称する。
(Electric field relaxation structure of wiring layer)
As shown in FIG. 6, the element insulating layer 40 including the wiring-side insulating layer 60 and the substrate-side insulating layer 50 includes a structure that alleviates electric field concentration generated in the wiring layer 80. In one example, the element insulating layer 40 includes a fourth insulating layer 61 , a fifth insulating layer 62 , and a second substrate-side insulating layer that is the uppermost layer of the substrate-side insulating layer 50 as a structure that alleviates electric field concentration in the wiring layer 80 . Contains 52. In the following description, the second substrate-side insulating layer 52, which is the uppermost layer of the substrate-side insulating layer 50, will be referred to as a "seventh insulating layer 52A."
 第4絶縁層61、第5絶縁層62、および第7絶縁層52Aの各々は、配線層80よりも基板30(図4参照)寄りに配置されている。第4絶縁層61、第5絶縁層62、および第7絶縁層52Aの各々は、Z軸方向において配線層80に対して半導体抵抗層20とは反対側に配置されているともいえる。第4絶縁層61は、第7絶縁層52A上に積層されている。第4絶縁層61は、第7絶縁層52Aに接している。 Each of the fourth insulating layer 61, the fifth insulating layer 62, and the seventh insulating layer 52A is arranged closer to the substrate 30 (see FIG. 4) than the wiring layer 80. It can also be said that each of the fourth insulating layer 61, the fifth insulating layer 62, and the seventh insulating layer 52A is arranged on the opposite side of the semiconductor resistance layer 20 with respect to the wiring layer 80 in the Z-axis direction. The fourth insulating layer 61 is laminated on the seventh insulating layer 52A. The fourth insulating layer 61 is in contact with the seventh insulating layer 52A.
 配線層80に接する第5絶縁層62は、たとえばSiNを含む材料によって形成されている。このため、第5絶縁層62の比誘電率は、7程度である。図示された例においては、第5絶縁層62の厚さは、第4絶縁層61の厚さと等しい。ここで、第5絶縁層62の厚さと第4絶縁層61の厚さとの差がたとえば第5絶縁層62の厚さの20%以内であれば、第5絶縁層62の厚さが第4絶縁層61の厚さと等しいといえる。また、第5絶縁層62の厚さは、第7絶縁層52Aの厚さよりも薄い。 The fifth insulating layer 62 in contact with the wiring layer 80 is formed of a material containing SiN, for example. Therefore, the dielectric constant of the fifth insulating layer 62 is about 7. In the illustrated example, the thickness of the fifth insulating layer 62 is equal to the thickness of the fourth insulating layer 61. Here, if the difference between the thickness of the fifth insulating layer 62 and the thickness of the fourth insulating layer 61 is, for example, within 20% of the thickness of the fifth insulating layer 62, the thickness of the fifth insulating layer 62 is the fourth insulating layer 62. It can be said that the thickness is equal to the thickness of the insulating layer 61. Further, the thickness of the fifth insulating layer 62 is thinner than the thickness of the seventh insulating layer 52A.
 図示された例においては、第5絶縁層62の厚さおよび第4絶縁層61の厚さの双方は、第1絶縁層71の厚さよりも薄い。また、第5絶縁層62の厚さおよび第4絶縁層61の厚さの双方は、第2絶縁層72の厚さよりも薄い。 In the illustrated example, both the thickness of the fifth insulating layer 62 and the thickness of the fourth insulating layer 61 are thinner than the thickness of the first insulating layer 71. Further, both the thickness of the fifth insulating layer 62 and the thickness of the fourth insulating layer 61 are thinner than the thickness of the second insulating layer 72.
 第4絶縁層61は、第5絶縁層62を介して配線層80に対してZ軸方向に離隔して配置されている。第4絶縁層61は、第5絶縁層62よりも低い比誘電率を有する。第4絶縁層61の比誘電率は、3.8よりも大きく7未満である。一例では、第4絶縁層61の比誘電率は、4よりも大きく7未満であってもよい。第1実施形態では、第4絶縁層61は、SiONを含む材料によって形成されている。このため、第4絶縁層61の比誘電率は、SiONのうちのN(窒素)の濃度に応じて調整される。第4絶縁層61は、第7絶縁層52Aよりも薄い厚さを有する。 The fourth insulating layer 61 is spaced apart from the wiring layer 80 in the Z-axis direction with the fifth insulating layer 62 interposed therebetween. The fourth insulating layer 61 has a lower dielectric constant than the fifth insulating layer 62. The relative permittivity of the fourth insulating layer 61 is greater than 3.8 and less than 7. In one example, the dielectric constant of the fourth insulating layer 61 may be greater than 4 and less than 7. In the first embodiment, the fourth insulating layer 61 is made of a material containing SiON. Therefore, the dielectric constant of the fourth insulating layer 61 is adjusted according to the concentration of N (nitrogen) in SiON. The fourth insulating layer 61 has a thinner thickness than the seventh insulating layer 52A.
 第7絶縁層52Aは、配線層80に対してZ軸方向に離隔して配置されている。第7絶縁層52Aは、第4絶縁層61よりも低い比誘電率を有する。第1実施形態では、第7絶縁層52Aは、SiOを含む材料によって形成されている。このため、第7絶縁層52Aの比誘電率は、3.8程度である。第7絶縁層52Aの厚さは、第1絶縁層71の厚さおよび第2絶縁層72の厚さの双方よりも厚い。また第7絶縁層52Aの厚さは、第6絶縁層63の厚さよりも厚い。 The seventh insulating layer 52A is spaced apart from the wiring layer 80 in the Z-axis direction. The seventh insulating layer 52A has a lower dielectric constant than the fourth insulating layer 61. In the first embodiment, the seventh insulating layer 52A is made of a material containing SiO 2 . Therefore, the dielectric constant of the seventh insulating layer 52A is about 3.8. The thickness of the seventh insulating layer 52A is thicker than both the thickness of the first insulating layer 71 and the thickness of the second insulating layer 72. Further, the thickness of the seventh insulating layer 52A is thicker than the thickness of the sixth insulating layer 63.
 このように、配線層80に対する電界集中を緩和する構造では、配線層80から基板30に向かうにつれて、第5絶縁層62、第4絶縁層61、および第7絶縁層52Aの順に配置されている。つまり、配線層80に対する電界集中を緩和する構造として、配線層80から基板30に向けて比誘電率が低下するように構成されている。 In this structure, the fifth insulating layer 62, the fourth insulating layer 61, and the seventh insulating layer 52A are arranged in this order from the wiring layer 80 toward the substrate 30 in the structure that alleviates electric field concentration on the wiring layer 80. . In other words, the structure is such that the relative dielectric constant decreases from the wiring layer 80 toward the substrate 30 as a structure for alleviating electric field concentration on the wiring layer 80 .
 また、配線層80を覆う第6絶縁層63は、第5絶縁層62よりも低い比誘電率を有する。第6絶縁層63は、第4絶縁層61よりも低い比誘電率を有してもよい。第6絶縁層63は、SiON、SiC、SiOのいずれかを含む材料によって形成されている。第1実施形態では、第6絶縁層63は、第4絶縁層61よりも低い比誘電率を有するため、SiOを含む材料によって形成されている。これにより、Y軸方向に隣り合う配線層80間の絶縁性が高められる。 Further, the sixth insulating layer 63 covering the wiring layer 80 has a lower dielectric constant than the fifth insulating layer 62. The sixth insulating layer 63 may have a lower dielectric constant than the fourth insulating layer 61. The sixth insulating layer 63 is formed of a material containing any one of SiON, SiC, and SiO2 . In the first embodiment, the sixth insulating layer 63 has a lower dielectric constant than the fourth insulating layer 61 and is therefore formed of a material containing SiO 2 . This increases the insulation between the wiring layers 80 adjacent in the Y-axis direction.
 なお、第4絶縁層61、第5絶縁層62、および第7絶縁層52Aの各々の厚さは任意に変更可能である。一例では、第4絶縁層61の厚さは第5絶縁層62の厚さよりも薄くてもよい。また一例では、第4絶縁層61の厚さは第5絶縁層62の厚さよりも厚くてもよい。また一例では、第4絶縁層61の厚さ、第5絶縁層62の厚さ、および第7絶縁層52Aの厚さは互いに等しくてもよい。また一例では、第4絶縁層61の厚さおよび第5絶縁層62の厚さは互いに等しく、かつ第7絶縁層52Aの厚さよりも薄くてもよい。また一例では、第7絶縁層52Aの厚さが第6絶縁層63の厚さと等しくてもよい。また一例では、第7絶縁層52Aの厚さが第6絶縁層63の厚さよりも薄くてもよい。 Note that the thickness of each of the fourth insulating layer 61, the fifth insulating layer 62, and the seventh insulating layer 52A can be changed arbitrarily. In one example, the thickness of the fourth insulating layer 61 may be thinner than the thickness of the fifth insulating layer 62. Further, in one example, the thickness of the fourth insulating layer 61 may be thicker than the thickness of the fifth insulating layer 62. Further, in one example, the thickness of the fourth insulating layer 61, the thickness of the fifth insulating layer 62, and the thickness of the seventh insulating layer 52A may be equal to each other. Further, in one example, the thickness of the fourth insulating layer 61 and the thickness of the fifth insulating layer 62 may be equal to each other and thinner than the thickness of the seventh insulating layer 52A. Further, in one example, the thickness of the seventh insulating layer 52A may be equal to the thickness of the sixth insulating layer 63. Further, in one example, the thickness of the seventh insulating layer 52A may be thinner than the thickness of the sixth insulating layer 63.
 (端子の電界緩和構造)
 図7に示すように、素子絶縁層40は、端子P1に生じる電界について、電界集中を緩和する構造を含む。一例では、素子絶縁層40は、端子P1の電界集中を緩和する構造として、第3絶縁層73、第8絶縁層91、および第9絶縁層92を含む。第1実施形態の第1チップ14は、図3に示す端子P1~P5を含む。端子P2~P5についても、端子P1と同様に形成されている。図7では、端子P1を用いて、電界集中を緩和する構造について説明する。
(Electric field relaxation structure of terminal)
As shown in FIG. 7, the element insulating layer 40 includes a structure that alleviates the concentration of the electric field generated at the terminal P1. In one example, the element insulating layer 40 includes a third insulating layer 73, an eighth insulating layer 91, and a ninth insulating layer 92 as a structure that alleviates electric field concentration at the terminal P1. The first chip 14 of the first embodiment includes terminals P1 to P5 shown in FIG. The terminals P2 to P5 are also formed in the same manner as the terminal P1. In FIG. 7, a structure for alleviating electric field concentration using the terminal P1 will be described.
 第8絶縁層91は、第3絶縁層73上に積層されている。第9絶縁層92は、第8絶縁層91上に積層されている。第9絶縁層92上には端子P1が配置されている。第8絶縁層91および第9絶縁層92の双方は、半導体抵抗層20に対してZ軸方向に離隔して配置されている。 The eighth insulating layer 91 is laminated on the third insulating layer 73. The ninth insulating layer 92 is laminated on the eighth insulating layer 91. A terminal P1 is arranged on the ninth insulating layer 92. Both the eighth insulating layer 91 and the ninth insulating layer 92 are spaced apart from the semiconductor resistance layer 20 in the Z-axis direction.
 端子P1に接する第9絶縁層92は、たとえばSiNを含む材料によって形成されている。このため、第9絶縁層92の比誘電率は、7程度である。図示された例においては、第9絶縁層92の厚さは、第8絶縁層91の厚さよりも薄い。また、第9絶縁層92の厚さは、第3絶縁層73の厚さよりも薄い。 The ninth insulating layer 92 in contact with the terminal P1 is formed of a material containing, for example, SiN. Therefore, the relative dielectric constant of the ninth insulating layer 92 is about 7. In the illustrated example, the thickness of the ninth insulating layer 92 is thinner than the thickness of the eighth insulating layer 91. Further, the thickness of the ninth insulating layer 92 is thinner than the thickness of the third insulating layer 73.
 図示された例においては、第9絶縁層92の厚さは、第2絶縁層72の厚さと等しい。ここで、第9絶縁層92の厚さと第2絶縁層72の厚さとの差がたとえば第2絶縁層72の厚さの20%以内であれば、第9絶縁層92の厚さが第2絶縁層72の厚さと等しいといえる。第9絶縁層92の厚さは、第1絶縁層71の厚さよりも薄い。第9絶縁層92の厚さは、第4絶縁層61の厚さおよび第5絶縁層62の厚さの双方よりも厚い。第9絶縁層92の厚さは、第6絶縁層63の厚さよりも薄い。 In the illustrated example, the thickness of the ninth insulating layer 92 is equal to the thickness of the second insulating layer 72. Here, if the difference between the thickness of the ninth insulating layer 92 and the thickness of the second insulating layer 72 is within 20% of the thickness of the second insulating layer 72, the thickness of the ninth insulating layer 92 is It can be said that the thickness is equal to the thickness of the insulating layer 72. The thickness of the ninth insulating layer 92 is thinner than the thickness of the first insulating layer 71. The thickness of the ninth insulating layer 92 is thicker than both the thickness of the fourth insulating layer 61 and the thickness of the fifth insulating layer 62. The thickness of the ninth insulating layer 92 is thinner than the thickness of the sixth insulating layer 63.
 第8絶縁層91は、第9絶縁層92を介して端子P1に対してZ軸方向に離隔して配置されている。第8絶縁層91は、第9絶縁層92よりも低い比誘電率を有する。第8絶縁層91の比誘電率は、3.8よりも大きく7未満である。一例では、第8絶縁層91の比誘電率は、4よりも大きく7未満であってもよい。第1実施形態では、第8絶縁層91は、SiONを含む材料によって形成されている。このため、第8絶縁層91の比誘電率は、SiONのうちのN(窒素)の濃度に応じて調整される。図示された例においては、第8絶縁層91は、第3絶縁層73よりも薄い厚さを有する。第8絶縁層91の厚さは、第1絶縁層71の厚さと等しい。ここで、第8絶縁層91の厚さと第1絶縁層71の厚さとの差がたとえば第1絶縁層71の厚さの20%以内であれば、第8絶縁層91の厚さが第1絶縁層71の厚さと等しいといえる。 The eighth insulating layer 91 is spaced apart from the terminal P1 in the Z-axis direction via the ninth insulating layer 92. The eighth insulating layer 91 has a lower dielectric constant than the ninth insulating layer 92. The relative permittivity of the eighth insulating layer 91 is greater than 3.8 and less than 7. In one example, the relative dielectric constant of the eighth insulating layer 91 may be greater than 4 and less than 7. In the first embodiment, the eighth insulating layer 91 is made of a material containing SiON. Therefore, the dielectric constant of the eighth insulating layer 91 is adjusted according to the concentration of N (nitrogen) in SiON. In the illustrated example, the eighth insulating layer 91 has a smaller thickness than the third insulating layer 73. The thickness of the eighth insulating layer 91 is equal to the thickness of the first insulating layer 71. Here, if the difference between the thickness of the eighth insulating layer 91 and the thickness of the first insulating layer 71 is within 20% of the thickness of the first insulating layer 71, the thickness of the eighth insulating layer 91 is It can be said that the thickness is equal to the thickness of the insulating layer 71.
 第3絶縁層73は、端子P1に対してZ軸方向に離隔して配置されている。第3絶縁層73は、上述のとおりSiOを含む材料によって形成されているため、第8絶縁層91よりも低い比誘電率を有する。 The third insulating layer 73 is spaced apart from the terminal P1 in the Z-axis direction. Since the third insulating layer 73 is formed of a material containing SiO 2 as described above, it has a lower dielectric constant than the eighth insulating layer 91.
 このように、端子P1~P5に対する電界集中を緩和する構造では、端子P1~P5から基板30に向かうにつれて、第9絶縁層92、第8絶縁層91、および第3絶縁層73の順に配置されている。つまり、端子P1~P5に対する電界集中を緩和する構造として、端子P1~P5から基板30に向けて比誘電率が低下するように構成されている。 In this structure, the ninth insulating layer 92, the eighth insulating layer 91, and the third insulating layer 73 are arranged in this order from the terminals P1 to P5 toward the substrate 30 in the structure that alleviates the electric field concentration on the terminals P1 to P5. ing. In other words, the structure is such that the dielectric constant decreases from the terminals P1 to P5 toward the substrate 30, as a structure to alleviate electric field concentration on the terminals P1 to P5.
 なお、第8絶縁層91、第9絶縁層92、および第3絶縁層73の各々の厚さは任意に変更可能である。一例では、第8絶縁層91の厚さと第9絶縁層92の厚さとは互いに等しくてもよい。また一例では、第8絶縁層91の厚さは第9絶縁層92の厚さよりも厚くてもよい。また一例では、第8絶縁層91の厚さ、第9絶縁層92の厚さ、および第3絶縁層73の厚さは互いに等しくてもよい。 Note that the thickness of each of the eighth insulating layer 91, the ninth insulating layer 92, and the third insulating layer 73 can be changed arbitrarily. In one example, the thickness of the eighth insulating layer 91 and the thickness of the ninth insulating layer 92 may be equal to each other. Further, in one example, the thickness of the eighth insulating layer 91 may be thicker than the thickness of the ninth insulating layer 92. Further, in one example, the thickness of the eighth insulating layer 91, the thickness of the ninth insulating layer 92, and the thickness of the third insulating layer 73 may be equal to each other.
 端子P1~P5と配線層80との各々は、ビア93によって電気的に接続されている。ビア93は、素子絶縁層40の厚さ方向となるZ軸方向に延びている。より詳細には、図7に示すように、ビア93は、第9絶縁層92、第8絶縁層91、第3絶縁層73、第2絶縁層72、第1絶縁層71、および第6絶縁層63をZ軸方向に貫通することによって、端子P1と配線層80との両方に接している。なお、図示していないが、ビア93による端子P2~P5と配線層80との各々の接続構造も同様である。ビア93は、たとえばビア90と同じ材料によって形成されている。 Each of the terminals P1 to P5 and the wiring layer 80 are electrically connected by vias 93. The via 93 extends in the Z-axis direction, which is the thickness direction of the element insulating layer 40. More specifically, as shown in FIG. By penetrating the layer 63 in the Z-axis direction, it is in contact with both the terminal P1 and the wiring layer 80. Although not shown, the connection structure between each of the terminals P2 to P5 and the wiring layer 80 by the via 93 is also similar. Via 93 is formed of the same material as via 90, for example.
 [半導体装置の製造方法]
 図8~図16を参照して、半導体装置10の製造方法の一例について説明する。なお、便宜上、以下の説明において、半導体装置10の製造過程においても半導体装置10と共通の構成要素には同一符号を付して説明する。
[Method for manufacturing semiconductor device]
An example of a method for manufacturing the semiconductor device 10 will be described with reference to FIGS. 8 to 16. For convenience, in the following description, components common to the semiconductor device 10 will be given the same reference numerals even in the manufacturing process of the semiconductor device 10.
 図8に示すように、半導体装置10の製造方法は、基板30を用意する工程と、基板30上に基板側絶縁層50を形成する工程と、を含む。
 まず、基板30が用意される。基板30は、たとえばSi基板である。続いて、基板30上に基板側絶縁層50を形成する工程が実施される。一例では、この工程では、基板30上に第2基板側絶縁層52が形成された後、第1基板側絶縁層51および第2基板側絶縁層52が交互に積層される。第1基板側絶縁層51および第2基板側絶縁層52は、たとえば化学気相蒸着法(chemical vapor deposition:CVD)によって形成される。第1実施形態では、第1基板側絶縁層51はSiN膜であり、第2基板側絶縁層52はSiO膜である。また、基板側絶縁層50の最上層となる第2基板側絶縁層52は、第7絶縁層52Aを構成する。
As shown in FIG. 8, the method for manufacturing the semiconductor device 10 includes the steps of preparing a substrate 30 and forming a substrate-side insulating layer 50 on the substrate 30.
First, the substrate 30 is prepared. The substrate 30 is, for example, a Si substrate. Subsequently, a step of forming a substrate-side insulating layer 50 on the substrate 30 is performed. In one example, in this step, after the second substrate-side insulating layer 52 is formed on the substrate 30, the first substrate-side insulating layer 51 and the second substrate-side insulating layer 52 are alternately laminated. The first substrate-side insulating layer 51 and the second substrate-side insulating layer 52 are formed, for example, by chemical vapor deposition (CVD). In the first embodiment, the first substrate-side insulating layer 51 is a SiN film, and the second substrate-side insulating layer 52 is an SiO 2 film. Further, the second substrate-side insulating layer 52, which is the uppermost layer of the substrate-side insulating layer 50, constitutes a seventh insulating layer 52A.
 図9に示すように、半導体装置10の製造方法は、配線側絶縁層60の一部を形成する工程を含む。より詳細には、半導体装置10の製造方法は、第4絶縁層61を形成する工程と、第5絶縁層62を形成する工程と、を含む。 As shown in FIG. 9, the method for manufacturing the semiconductor device 10 includes a step of forming a part of the wiring side insulating layer 60. More specifically, the method for manufacturing the semiconductor device 10 includes a step of forming a fourth insulating layer 61 and a step of forming a fifth insulating layer 62.
 第4絶縁層61を形成する工程では、たとえばCVDによって第7絶縁層52Aとなる第2基板側絶縁層52上に堆積するように第4絶縁層61が形成される。続いて、第5絶縁層62を形成する工程では、たとえばCVDによって第4絶縁層61上に堆積するように第5絶縁層62が形成される。第1実施形態では、第4絶縁層61はSiON膜であり、第5絶縁層62はSiN膜である。 In the step of forming the fourth insulating layer 61, the fourth insulating layer 61 is formed by, for example, CVD so as to be deposited on the second substrate side insulating layer 52, which becomes the seventh insulating layer 52A. Subsequently, in the step of forming the fifth insulating layer 62, the fifth insulating layer 62 is deposited on the fourth insulating layer 61 by, for example, CVD. In the first embodiment, the fourth insulating layer 61 is a SiON film, and the fifth insulating layer 62 is a SiN film.
 図10に示すように、半導体装置10の製造方法は、配線層80を形成する工程を含む。より詳細には、この工程では、たとえばスパッタ法によって第5絶縁層62上に第5絶縁層62の表面全体にわたり配線層80の材料膜であるメタル膜(図示略)が形成される。メタル膜は、たとえばTi、TiN、Ta、TaN、Au、Ag、Cu、Al、およびWのうち1つまたは複数が適宜選択される。続いて、たとえばリソグラフィおよびエッチングによってメタル膜をパターニングすることによって配線層80が形成される。 As shown in FIG. 10, the method for manufacturing the semiconductor device 10 includes a step of forming a wiring layer 80. More specifically, in this step, a metal film (not shown), which is a material film of the wiring layer 80, is formed on the fifth insulating layer 62 over the entire surface of the fifth insulating layer 62 by, for example, sputtering. For example, one or more of Ti, TiN, Ta, TaN, Au, Ag, Cu, Al, and W is appropriately selected for the metal film. Subsequently, a wiring layer 80 is formed by patterning the metal film by, for example, lithography and etching.
 図11に示すように、半導体装置10の製造方法は、配線側絶縁層60の残りを形成する工程と、抵抗側絶縁層70の一部を形成する工程と、を含む。
 配線側絶縁層60の残りを形成する工程は、第6絶縁層63を形成する工程を含む。この工程では、たとえばCVDによって第5絶縁層62上および配線層80上に堆積するように第6絶縁層63が形成される。これにより、配線層80は、第5絶縁層62および第6絶縁層63によって覆われている。第1実施形態では、第6絶縁層63は、SiO膜である。
As shown in FIG. 11, the method for manufacturing the semiconductor device 10 includes a step of forming the remainder of the wiring-side insulating layer 60 and a step of forming a part of the resistance-side insulating layer 70.
The step of forming the remainder of the wiring-side insulating layer 60 includes the step of forming a sixth insulating layer 63. In this step, the sixth insulating layer 63 is formed by depositing on the fifth insulating layer 62 and the wiring layer 80, for example, by CVD. Thereby, the wiring layer 80 is covered with the fifth insulating layer 62 and the sixth insulating layer 63. In the first embodiment, the sixth insulating layer 63 is a SiO 2 film.
 抵抗側絶縁層70の一部を形成する工程は、第1絶縁層71を形成する工程と、第2絶縁層72を形成する工程と、を含む。より詳細には、第1絶縁層71を形成する工程では、たとえばCVDによって第6絶縁層63上に堆積するように第1絶縁層71が形成される。第2絶縁層72を形成する工程では、たとえばCVDによって第1絶縁層71上に堆積するように第2絶縁層72が形成される。第1実施形態では、第1絶縁層71はSiON膜であり、第2絶縁層72はSiN膜である。 The step of forming a part of the resistance side insulating layer 70 includes a step of forming a first insulating layer 71 and a step of forming a second insulating layer 72. More specifically, in the step of forming the first insulating layer 71, the first insulating layer 71 is deposited on the sixth insulating layer 63 by, for example, CVD. In the step of forming the second insulating layer 72, the second insulating layer 72 is deposited on the first insulating layer 71 by, for example, CVD. In the first embodiment, the first insulating layer 71 is a SiON film, and the second insulating layer 72 is a SiN film.
 図12に示すように、半導体装置10の製造方法は、ビア90を形成する工程を含む。より詳細には、この工程では、まずたとえばエッチングによってビア用開口部801が形成される。ビア用開口部801は、第1絶縁層71および第2絶縁層72の双方をZ軸方向に貫通するとともに第6絶縁層63に対して配線層80の一部が露出するように形成される。続いて、たとえばスパッタ法によってビア用開口部801内に金属材料が充填される。金属材料は、たとえばTi、TiN、Ta、TaN、Au、Ag、Cu、Al、およびWのうち1つまたは複数が適宜選択される。これにより、ビア90が形成される。 As shown in FIG. 12, the method for manufacturing the semiconductor device 10 includes a step of forming a via 90. More specifically, in this step, via openings 801 are first formed by etching, for example. The via opening 801 is formed to penetrate both the first insulating layer 71 and the second insulating layer 72 in the Z-axis direction, and to expose a part of the wiring layer 80 to the sixth insulating layer 63. . Subsequently, via opening 801 is filled with a metal material, for example, by sputtering. As the metal material, one or more of Ti, TiN, Ta, TaN, Au, Ag, Cu, Al, and W is appropriately selected, for example. As a result, vias 90 are formed.
 図13に示すように、半導体装置10の製造方法は、半導体抵抗層20を形成する工程を含む。より詳細には、この工程では、まず第2絶縁層72上に半導体抵抗層20の材料膜である抵抗材料膜が形成される。抵抗材料膜は、第2絶縁層72の表面全体にわたり形成されている。抵抗材料膜は、たとえばCrSiによって形成されている。続いて、たとえばリソグラフィおよびエッチングによって抵抗材料膜がパターニングされることによって半導体抵抗層20が形成される。これにより、ビア90の上端が半導体抵抗層20に接続される。 As shown in FIG. 13, the method for manufacturing the semiconductor device 10 includes a step of forming a semiconductor resistance layer 20. More specifically, in this step, a resistive material film, which is a material film of the semiconductor resistive layer 20, is first formed on the second insulating layer 72. The resistive material film is formed over the entire surface of the second insulating layer 72. The resistive material film is made of CrSi, for example. Subsequently, the semiconductor resistance layer 20 is formed by patterning the resistance material film by, for example, lithography and etching. Thereby, the upper end of the via 90 is connected to the semiconductor resistance layer 20.
 図14に示すように、半導体装置10の製造方法は、抵抗側絶縁層70の残りを形成する工程と、第8絶縁層91を形成する工程と、第9絶縁層92を形成する工程と、を含む。抵抗側絶縁層70の残りを形成する工程は、第3絶縁層73を形成する工程を含む。 As shown in FIG. 14, the method for manufacturing the semiconductor device 10 includes a step of forming the remainder of the resistance-side insulating layer 70, a step of forming an eighth insulating layer 91, a step of forming a ninth insulating layer 92, including. The step of forming the remainder of the resistance-side insulating layer 70 includes the step of forming a third insulating layer 73.
 第3絶縁層73を形成する工程では、たとえばCVDによって第2絶縁層72上および半導体抵抗層20上に堆積するように第3絶縁層73が形成される。第8絶縁層91を形成する工程では、たとえばCVDによって第3絶縁層73上に堆積するように第8絶縁層91が形成される。第9絶縁層92を形成する工程では、たとえばCVDによって第8絶縁層91上に堆積するように第9絶縁層92が形成される。第1実施形態では、第3絶縁層73はSiO膜であり、第8絶縁層91はSiON膜であり、第9絶縁層92はSiN膜である。 In the step of forming the third insulating layer 73, the third insulating layer 73 is formed by depositing on the second insulating layer 72 and the semiconductor resistance layer 20, for example, by CVD. In the step of forming the eighth insulating layer 91, the eighth insulating layer 91 is formed by depositing on the third insulating layer 73, for example, by CVD. In the step of forming the ninth insulating layer 92, the ninth insulating layer 92 is deposited on the eighth insulating layer 91 by, for example, CVD. In the first embodiment, the third insulating layer 73 is an SiO 2 film, the eighth insulating layer 91 is an SiON film, and the ninth insulating layer 92 is an SiN film.
 図15に示すように、半導体装置10の製造方法は、ビア93を形成する工程を含む。より詳細には、この工程では、まずたとえばエッチングによってビア用開口部802が形成される。ビア用開口部802は、第9絶縁層92、第8絶縁層91、第3絶縁層73、第2絶縁層72、および第1絶縁層71をZ軸方向に貫通するとともに第6絶縁層63に対して配線層80の一部が露出するように形成される。続いて、たとえばスパッタ法によってビア用開口部802内に金属材料が充填される。金属材料は、たとえばTi、TiN、Ta、TaN、Au、Ag、Cu、Al、およびWのうち1つまたは複数が適宜選択される。これにより、ビア93が形成される。 As shown in FIG. 15, the method for manufacturing the semiconductor device 10 includes a step of forming a via 93. More specifically, in this step, via openings 802 are first formed, for example, by etching. The via opening 802 penetrates the ninth insulating layer 92 , the eighth insulating layer 91 , the third insulating layer 73 , the second insulating layer 72 , and the first insulating layer 71 in the Z-axis direction, and also extends through the sixth insulating layer 63 . The wiring layer 80 is formed so as to be partially exposed. Subsequently, via opening 802 is filled with a metal material, for example, by sputtering. As the metal material, one or more of Ti, TiN, Ta, TaN, Au, Ag, Cu, Al, and W is appropriately selected, for example. As a result, vias 93 are formed.
 図16に示すように、半導体装置10の製造方法は、端子P1~P5を形成する工程を含む。より詳細には、この工程では、たとえばスパッタ法によって第9絶縁層92上に第9絶縁層92の表面全体にわたり端子P1~P5の材料膜であるメタル膜(図示略)が形成される。メタル膜は、たとえばTi、TiN、Ta、TaN、Au、Ag、Cu、Al、Ni、PdおよびWのうち1つまたは複数が適宜選択される。続いて、たとえばリソグラフィおよびエッチングによってメタル膜をパターニングすることによって端子P1~P5が形成される。なお、図16では、便宜上、端子P1~P5のうち端子P1のみを示している。 As shown in FIG. 16, the method for manufacturing the semiconductor device 10 includes a step of forming terminals P1 to P5. More specifically, in this step, a metal film (not shown), which is a material film for the terminals P1 to P5, is formed over the entire surface of the ninth insulating layer 92 on the ninth insulating layer 92 by, for example, sputtering. For example, one or more of Ti, TiN, Ta, TaN, Au, Ag, Cu, Al, Ni, Pd, and W is appropriately selected for the metal film. Subsequently, terminals P1 to P5 are formed by patterning the metal film by, for example, lithography and etching. Note that in FIG. 16, for convenience, only the terminal P1 among the terminals P1 to P5 is shown.
 図示していないが、半導体装置10の製造方法は、パッシベーション膜43を形成する工程を含む。より詳細には、この工程では、まずたとえばCVDによって第9絶縁層92上および端子P1~P5上にパッシベーション膜43の材料膜であるパッシベーション材料膜が形成される。続いて、たとえばエッチングによってパッシベーション材料膜のうち端子P1~P5を覆う部分の一部が除去される。つまり、端子P1~P5の一部は、パッシベーション材料膜から露出する。パッシベーション材料膜は、たとえばSiN膜である。これにより、パッシベーション膜43が形成される。以上の工程を経て、第1チップ14が形成される。 Although not shown, the method for manufacturing the semiconductor device 10 includes a step of forming a passivation film 43. More specifically, in this step, a passivation material film, which is the material film of the passivation film 43, is first formed on the ninth insulating layer 92 and on the terminals P1 to P5 by, for example, CVD. Subsequently, a portion of the passivation material film covering the terminals P1 to P5 is removed, for example, by etching. In other words, some of the terminals P1 to P5 are exposed from the passivation material film. The passivation material film is, for example, a SiN film. As a result, a passivation film 43 is formed. The first chip 14 is formed through the above steps.
 そして、図示していないが、半導体装置10の製造方法は、第1チップ14および第2チップ15を用意する工程と、リードフレームを用意する工程と、第1チップ14および第2チップ15をリードフレームに実装する工程と、ワイヤW1~W11を形成する工程と、封止樹脂16を形成する工程と、個片化する工程と、を含む。 Although not shown, the method for manufacturing the semiconductor device 10 includes the steps of preparing the first chip 14 and the second chip 15, preparing a lead frame, and leading the first chip 14 and the second chip 15. It includes a step of mounting on a frame, a step of forming wires W1 to W11, a step of forming sealing resin 16, and a step of dividing into pieces.
 リードフレームを用意する工程では、フレーム11、ダイパッド12、およびリード13A~13G(ともに図1参照)を含むリードフレームが用意される。
 第1チップ14および第2チップ15をリードフレームに実装する工程では、第1チップ14がフレーム11のダイパッド部11A(図1参照)にダイボンディングされ、第2チップ15がダイパッド12にダイボンディングされる。
In the step of preparing a lead frame, a lead frame including a frame 11, a die pad 12, and leads 13A to 13G (see FIG. 1) is prepared.
In the step of mounting the first chip 14 and the second chip 15 on the lead frame, the first chip 14 is die-bonded to the die pad portion 11A (see FIG. 1) of the frame 11, and the second chip 15 is die-bonded to the die pad 12. Ru.
 ワイヤW1~W11を形成する工程では、ワイヤボンディング装置によってW1~W11が形成される。つまり、W1~W11は、ボンディングワイヤである。
 封止樹脂16を形成する工程では、フレーム11、ダイパッド12、およびリード13A~13G、第1チップ14、第2チップ15、およびワイヤW1~W11を封止する樹脂層がたとえばトランスファモールドによって形成される。樹脂層は、たとえば黒色のエポキシ樹脂が用いられる。なお、樹脂層は、たとえばコンプレッションモールドによって形成されてもよい。
In the step of forming wires W1 to W11, W1 to W11 are formed by a wire bonding device. That is, W1 to W11 are bonding wires.
In the step of forming the sealing resin 16, the resin layer sealing the frame 11, the die pad 12, the leads 13A to 13G, the first chip 14, the second chip 15, and the wires W1 to W11 is formed by, for example, transfer molding. Ru. For example, black epoxy resin is used for the resin layer. Note that the resin layer may be formed by compression molding, for example.
 個片化する工程では、たとえばダイシングによってリードフレームおよび樹脂層が切断される。これにより、フレーム11およびリード13A~13Gが形成される。以上の工程を経て、半導体装置10が製造される。 In the step of singulating, the lead frame and the resin layer are cut, for example, by dicing. As a result, frame 11 and leads 13A to 13G are formed. Through the above steps, the semiconductor device 10 is manufactured.
 [効果]
 第1実施形態の半導体装置10によれば、以下の効果が得られる。
 (1-1)半導体装置10は、素子表面41、および素子表面41とは反対側の素子裏面42を有する素子絶縁層40と、素子絶縁層40内に設けられた複数の半導体抵抗層20と、を備える。各半導体抵抗層20は、素子絶縁層40の厚さ方向(Z軸方向)において素子裏面42を向く抵抗裏面27と、抵抗裏面27とは反対側の抵抗表面28と、抵抗裏面27と抵抗表面28とを繋ぐ抵抗側面29と、を含む。素子絶縁層40は、第1絶縁層71と、第1絶縁層71上に積層され、第1絶縁層71よりも比誘電率が高い第2絶縁層72と、第2絶縁層72上に積層され、第2絶縁層72よりも比誘電率が低い第3絶縁層73と、を含む。各半導体抵抗層20は、第2絶縁層72上に積層されている。各半導体抵抗層20は、抵抗裏面27が第2絶縁層72に接した状態で第3絶縁層73内に設けられている。
[effect]
According to the semiconductor device 10 of the first embodiment, the following effects can be obtained.
(1-1) The semiconductor device 10 includes an element insulating layer 40 having an element front surface 41 and an element back surface 42 opposite to the element front surface 41, and a plurality of semiconductor resistance layers 20 provided in the element insulating layer 40. , is provided. Each semiconductor resistance layer 20 includes a resistance back surface 27 facing the element back surface 42 in the thickness direction (Z-axis direction) of the element insulating layer 40, a resistance surface 28 on the opposite side to the resistance back surface 27, and a resistance surface 27 and a resistance surface. 28. The element insulating layer 40 includes a first insulating layer 71 , a second insulating layer 72 laminated on the first insulating layer 71 , a second insulating layer 72 having a higher dielectric constant than the first insulating layer 71 , and a second insulating layer 72 laminated on the second insulating layer 72 . and a third insulating layer 73 having a lower dielectric constant than the second insulating layer 72. Each semiconductor resistance layer 20 is stacked on the second insulating layer 72 . Each semiconductor resistance layer 20 is provided within the third insulating layer 73 with the resistor back surface 27 in contact with the second insulating layer 72 .
 この構成によれば、第3絶縁層73よりも比誘電率が高い第2絶縁層72に半導体抵抗層20の抵抗裏面27が接しているため、抵抗裏面27から素子絶縁層40の素子裏面42に向かう電界強度を低減することができる。したがって、半導体抵抗層20における電界集中を緩和することができる。 According to this configuration, since the resistor back surface 27 of the semiconductor resistance layer 20 is in contact with the second insulating layer 72 having a higher dielectric constant than the third insulating layer 73, the resistor back surface 27 of the element insulating layer 40 is connected to the element back surface 40 of the element insulating layer 40. It is possible to reduce the electric field strength directed toward . Therefore, electric field concentration in the semiconductor resistance layer 20 can be alleviated.
 加えて、半導体抵抗層20から第2絶縁層72および第1絶縁層71の順に比誘電率が低くなる。つまり、半導体抵抗層20から素子絶縁層40の素子裏面42に向かう方向において、半導体抵抗層20から離れるにつれて徐々に比誘電率が低下する。これにより、半導体抵抗層20から素子絶縁層40の素子裏面42に向かう電界強度をさらに低減することができる。したがって、半導体抵抗層20における電界集中をさらに緩和することができる。 In addition, the dielectric constant decreases in the order of the semiconductor resistance layer 20, the second insulating layer 72, and the first insulating layer 71. That is, in the direction from the semiconductor resistance layer 20 toward the element back surface 42 of the element insulating layer 40, the dielectric constant gradually decreases as the distance from the semiconductor resistance layer 20 increases. Thereby, the electric field strength directed from the semiconductor resistance layer 20 toward the element back surface 42 of the element insulating layer 40 can be further reduced. Therefore, electric field concentration in the semiconductor resistance layer 20 can be further alleviated.
 (1-2)複数の半導体抵抗層20は、素子絶縁層40の厚さ方向(Z軸方向)に揃った状態で、当該厚さ方向と直交する方向(第1実施形態ではY軸方向)に離隔して配列されている。 (1-2) The plurality of semiconductor resistance layers 20 are aligned in the thickness direction (Z-axis direction) of the element insulating layer 40 and in a direction perpendicular to the thickness direction (Y-axis direction in the first embodiment). are arranged separately.
 この構成によれば、複数の半導体抵抗層20に対して共通の第1絶縁層71および第2絶縁層72によって、各半導体抵抗層20の電界集中の緩和の構造を実現できる。したがって、複数の半導体抵抗層20がZ軸方向において異なる位置に設けられた構成と比較して、各半導体抵抗層20の電界集中の緩和の構造を容易に実現できる。 According to this configuration, the first insulating layer 71 and the second insulating layer 72 that are common to the plurality of semiconductor resistance layers 20 can realize a structure that alleviates electric field concentration in each semiconductor resistance layer 20. Therefore, compared to a structure in which a plurality of semiconductor resistance layers 20 are provided at different positions in the Z-axis direction, a structure that alleviates electric field concentration in each semiconductor resistance layer 20 can be easily realized.
 (1-3)半導体装置10は、半導体抵抗層20に対して素子絶縁層40の素子裏面42側に設けられ、半導体抵抗層20と電気的に接続された配線層80を備える。配線層80は、素子絶縁層40の厚さ方向(Z軸方向)において半導体抵抗層20を向く配線表面82と、配線表面82とは反対側の配線裏面81と、配線表面82と配線裏面81とを繋ぐ配線側面83と、を含む。素子絶縁層40は、第4絶縁層61と、第4絶縁層61上に積層され、第4絶縁層61よりも比誘電率が高い第5絶縁層62と、を含む。配線層80は、第5絶縁層62上に積層されており、配線裏面81が第5絶縁層62に接している。 (1-3) The semiconductor device 10 includes a wiring layer 80 provided on the element back surface 42 side of the element insulating layer 40 with respect to the semiconductor resistance layer 20 and electrically connected to the semiconductor resistance layer 20. The wiring layer 80 includes a wiring surface 82 facing the semiconductor resistance layer 20 in the thickness direction (Z-axis direction) of the element insulating layer 40, a wiring back surface 81 opposite to the wiring surface 82, and a wiring surface 82 and a wiring back surface 81. and a wiring side surface 83 that connects the wiring. The element insulating layer 40 includes a fourth insulating layer 61 and a fifth insulating layer 62 stacked on the fourth insulating layer 61 and having a higher dielectric constant than the fourth insulating layer 61. The wiring layer 80 is laminated on the fifth insulating layer 62 , and the wiring back surface 81 is in contact with the fifth insulating layer 62 .
 この構成によれば、第4絶縁層61よりも比誘電率が高い第5絶縁層62に配線層80の配線裏面81が接しているため、配線裏面81から素子絶縁層40の素子裏面42に向かう電界強度を低減することができる。したがって、配線層80における電界集中を緩和することができる。 According to this configuration, since the wiring back surface 81 of the wiring layer 80 is in contact with the fifth insulating layer 62 having a higher dielectric constant than the fourth insulating layer 61, the wiring back surface 81 is in contact with the element back surface 42 of the element insulating layer 40. It is possible to reduce the electric field strength toward the Therefore, electric field concentration in the wiring layer 80 can be alleviated.
 加えて、配線層80から第5絶縁層62および第4絶縁層61の順に比誘電率が低くなる。つまり、配線層80から素子絶縁層40の素子裏面42に向かう方向において、配線層80から離れるにつれて徐々に比誘電率が低下する。これにより、配線層80から素子絶縁層40の素子裏面42に向かう電界強度をさらに低減することができる。したがって、配線層80における電界集中をさらに緩和することができる。 In addition, the relative dielectric constant decreases in the order of the wiring layer 80, the fifth insulating layer 62, and the fourth insulating layer 61. That is, in the direction from the wiring layer 80 toward the element back surface 42 of the element insulating layer 40, the relative permittivity gradually decreases as the distance from the wiring layer 80 increases. Thereby, the electric field strength directed from the wiring layer 80 toward the element back surface 42 of the element insulating layer 40 can be further reduced. Therefore, electric field concentration in the wiring layer 80 can be further alleviated.
 (1-4)素子絶縁層40は、第5絶縁層62と第1絶縁層71との間に設けられ、第5絶縁層62よりも比誘電率が低い第6絶縁層63を含む。第1絶縁層71は、第6絶縁層63上に積層されている。第6絶縁層63は、第1絶縁層71よりも比誘電率が低い。 (1-4) The element insulating layer 40 is provided between the fifth insulating layer 62 and the first insulating layer 71 and includes a sixth insulating layer 63 having a lower dielectric constant than the fifth insulating layer 62. The first insulating layer 71 is stacked on the sixth insulating layer 63. The sixth insulating layer 63 has a lower dielectric constant than the first insulating layer 71.
 この構成によれば、半導体抵抗層20から第2絶縁層72、第1絶縁層71、および第6絶縁層63の順に比誘電率が低くなる。つまり、半導体抵抗層20から素子絶縁層40の素子裏面42に向かう方向において、半導体抵抗層20から離れるにつれて徐々に比誘電率が低下する。これにより、半導体抵抗層20から素子絶縁層40の素子裏面42に向かう電界強度をさらに低減することができる。したがって、半導体抵抗層20における電界集中をさらに緩和することができる。 According to this configuration, the dielectric constant decreases in the order of the semiconductor resistance layer 20, the second insulating layer 72, the first insulating layer 71, and the sixth insulating layer 63. That is, in the direction from the semiconductor resistance layer 20 toward the element back surface 42 of the element insulating layer 40, the dielectric constant gradually decreases as the distance from the semiconductor resistance layer 20 increases. Thereby, the electric field strength directed from the semiconductor resistance layer 20 toward the element back surface 42 of the element insulating layer 40 can be further reduced. Therefore, electric field concentration in the semiconductor resistance layer 20 can be further alleviated.
 (1-5)素子絶縁層40は、第4絶縁層61よりも比誘電率が低い第7絶縁層52Aを含む。第4絶縁層61は、第7絶縁層52A上に積層されている。
 この構成によれば、配線層80から第5絶縁層62、第4絶縁層61、および第7絶縁層52Aの順に比誘電率が低くなる。つまり、配線層80から素子絶縁層40の素子裏面42に向かう方向において、配線層80から離れるにつれて徐々に比誘電率が低下する。これにより、配線層80から素子絶縁層40の素子裏面42に向かう電界強度をさらに低減することができる。したがって、配線層80における電界集中をさらに緩和することができる。
(1-5) The element insulating layer 40 includes a seventh insulating layer 52A having a lower dielectric constant than the fourth insulating layer 61. The fourth insulating layer 61 is laminated on the seventh insulating layer 52A.
According to this configuration, the dielectric constant decreases in the order of the wiring layer 80, the fifth insulating layer 62, the fourth insulating layer 61, and the seventh insulating layer 52A. That is, in the direction from the wiring layer 80 toward the element back surface 42 of the element insulating layer 40, the relative permittivity gradually decreases as the distance from the wiring layer 80 increases. Thereby, the electric field strength directed from the wiring layer 80 toward the element back surface 42 of the element insulating layer 40 can be further reduced. Therefore, electric field concentration in the wiring layer 80 can be further alleviated.
 (1-6)素子絶縁層40は、第3絶縁層73上に積層され、第3絶縁層73よりも比誘電率が高い第8絶縁層91と、第8絶縁層91上に積層され、第8絶縁層91よりも比誘電率が高い第9絶縁層92と、を含む。半導体装置10は、第9絶縁層92上に形成された電極パッドとしての端子P1~P5をさらに備える。 (1-6) The element insulating layer 40 is laminated on the third insulating layer 73, and an eighth insulating layer 91 having a higher dielectric constant than the third insulating layer 73, and the eighth insulating layer 91 is laminated, a ninth insulating layer 92 having a higher dielectric constant than the eighth insulating layer 91; The semiconductor device 10 further includes terminals P1 to P5 as electrode pads formed on the ninth insulating layer 92.
 この構成によれば、第3絶縁層73および第8絶縁層91よりも比誘電率が高い第9絶縁層92に端子P1~P5が接しているため、端子P1~P5から素子絶縁層40の素子裏面42に向かう電界強度を低減することができる。したがって、端子P1~P5における電界集中を緩和することができる。 According to this configuration, since the terminals P1 to P5 are in contact with the ninth insulating layer 92 having a higher dielectric constant than the third insulating layer 73 and the eighth insulating layer 91, the terminals P1 to P5 are connected to the element insulating layer 40. The electric field intensity directed toward the back surface 42 of the element can be reduced. Therefore, electric field concentration at the terminals P1 to P5 can be alleviated.
 加えて、端子P1~P5から第9絶縁層92、第8絶縁層91、および第3絶縁層73の順に比誘電率が低くなる。つまり、端子P1~P5から素子絶縁層40の素子裏面42に向かう方向において、配線層80から離れるにつれて徐々に比誘電率が低下する。これにより、端子P1~P5から素子絶縁層40の素子裏面42に向かう電界強度をさらに低減することができる。したがって、端子P1~P5における電界集中をさらに緩和することができる。 In addition, the relative dielectric constant decreases in the order of the ninth insulating layer 92, the eighth insulating layer 91, and the third insulating layer 73 from the terminals P1 to P5. That is, in the direction from the terminals P1 to P5 toward the element back surface 42 of the element insulating layer 40, the relative dielectric constant gradually decreases as the distance from the wiring layer 80 increases. Thereby, the electric field intensity directed from the terminals P1 to P5 toward the element back surface 42 of the element insulating layer 40 can be further reduced. Therefore, electric field concentration at the terminals P1 to P5 can be further alleviated.
 (1-7)半導体装置10は、素子絶縁層40と、素子絶縁層40内に設けられた複数の半導体抵抗層20と、素子絶縁層40内において半導体抵抗層20と電気的に接続され、素子絶縁層40の厚さ方向(Z軸方向)において半導体抵抗層20と対向配置された配線層80と、を備える。配線層80は、素子絶縁層40の厚さ方向において半導体抵抗層20を向く配線表面82と、配線表面82とは反対側の配線裏面81と、配線表面82と配線裏面81とを繋ぐ配線側面83と、を含む。素子絶縁層40は、第4絶縁層61と、第4絶縁層61上に積層され、第4絶縁層61よりも比誘電率が高い第5絶縁層62と、第5絶縁層62上に積層され、第5絶縁層62よりも比誘電率が低い第6絶縁層63と、を含む。配線層80は、第5絶縁層62上に積層されており、配線裏面81が第5絶縁層62に接した状態で第6絶縁層63内に設けられている。 (1-7) The semiconductor device 10 includes an element insulating layer 40, a plurality of semiconductor resistance layers 20 provided in the element insulating layer 40, and electrically connected to the semiconductor resistance layer 20 in the element insulating layer 40, A wiring layer 80 is provided facing the semiconductor resistance layer 20 in the thickness direction (Z-axis direction) of the element insulating layer 40. The wiring layer 80 includes a wiring surface 82 facing the semiconductor resistance layer 20 in the thickness direction of the element insulating layer 40, a wiring back surface 81 opposite to the wiring surface 82, and a wiring side surface connecting the wiring surface 82 and the wiring back surface 81. 83. The element insulating layer 40 includes a fourth insulating layer 61 and a fifth insulating layer 62 that is laminated on the fourth insulating layer 61 and has a dielectric constant higher than that of the fourth insulating layer 61, and a fifth insulating layer 62 that is laminated on the fifth insulating layer 62. and a sixth insulating layer 63 having a lower dielectric constant than the fifth insulating layer 62. The wiring layer 80 is laminated on the fifth insulating layer 62 , and is provided in the sixth insulating layer 63 with the wiring back surface 81 in contact with the fifth insulating layer 62 .
 この構成によれば、第6絶縁層63よりも比誘電率が高い第5絶縁層62に配線層80の配線裏面81が接しているため、配線裏面81から素子絶縁層40の素子裏面42に向かう電界強度を低減することができる。したがって、配線層80における電界集中を緩和することができる。 According to this configuration, since the wiring back surface 81 of the wiring layer 80 is in contact with the fifth insulating layer 62 having a higher dielectric constant than the sixth insulating layer 63, the wiring back surface 81 is in contact with the element back surface 42 of the element insulating layer 40. It is possible to reduce the electric field strength toward the Therefore, electric field concentration in the wiring layer 80 can be alleviated.
 加えて、配線層80から第5絶縁層62および第4絶縁層61の順に比誘電率が低くなる。つまり、配線層80から素子絶縁層40の素子裏面42に向かう方向において、配線層80から離れるにつれて徐々に比誘電率が低下する。これにより、配線層80から素子絶縁層40の素子裏面42に向かう電界強度をさらに低減することができる。したがって、配線層80における電界集中をさらに緩和することができる。 In addition, the relative dielectric constant decreases in the order of the wiring layer 80, the fifth insulating layer 62, and the fourth insulating layer 61. That is, in the direction from the wiring layer 80 toward the element back surface 42 of the element insulating layer 40, the relative permittivity gradually decreases as the distance from the wiring layer 80 increases. Thereby, the electric field strength directed from the wiring layer 80 toward the element back surface 42 of the element insulating layer 40 can be further reduced. Therefore, electric field concentration in the wiring layer 80 can be further alleviated.
 <第2実施形態>
 図17~図19を参照して、第2実施形態の半導体装置10について説明する。第2実施形態の半導体装置10は、第1実施形態の半導体装置10と比較して、電界緩和構造が異なる。以下では、第1実施形態と異なる点を詳細に説明し、第1実施形態と共通する構成要素には同一符号を付し、その説明を省略する。
<Second embodiment>
The semiconductor device 10 of the second embodiment will be described with reference to FIGS. 17 to 19. The semiconductor device 10 of the second embodiment has a different electric field relaxation structure compared to the semiconductor device 10 of the first embodiment. In the following, points different from the first embodiment will be explained in detail, and the same reference numerals will be given to the same components as in the first embodiment, and the explanation thereof will be omitted.
 図17に示すように、第2実施形態の半導体装置10において、素子絶縁層40は、配線側絶縁層60および抵抗側絶縁層70(ともに図5参照)に代えて、表面側絶縁層100を含む。より詳細には、素子絶縁層40は、第1実施形態における第6絶縁層63と第1絶縁層71との積層構造(図5参照)に代えて、第1絶縁層71の単層構造を備える。また、素子絶縁層40は、第1実施形態における第3絶縁層73と第8絶縁層91との積層構造(図5参照)に代えて、第3絶縁層73の単層構造を備える。つまり、表面側絶縁層100は、第1絶縁層71、第2絶縁層72、第3絶縁層73、第4絶縁層61、第5絶縁層62、第7絶縁層52A、および第9絶縁層92を含む。表面側絶縁層100は、抵抗側絶縁層70を含むともいえる。ここで、第2実施形態では、第1絶縁層71は「低誘電率絶縁層」に対応している。 As shown in FIG. 17, in the semiconductor device 10 of the second embodiment, the element insulating layer 40 includes a surface-side insulating layer 100 instead of the wiring-side insulating layer 60 and the resistance-side insulating layer 70 (both shown in FIG. 5). include. More specifically, the element insulating layer 40 has a single-layer structure of the first insulating layer 71 instead of the laminated structure of the sixth insulating layer 63 and the first insulating layer 71 in the first embodiment (see FIG. 5). Be prepared. Further, the element insulating layer 40 has a single-layer structure of the third insulating layer 73 instead of the laminated structure of the third insulating layer 73 and the eighth insulating layer 91 (see FIG. 5) in the first embodiment. That is, the front side insulating layer 100 includes the first insulating layer 71, the second insulating layer 72, the third insulating layer 73, the fourth insulating layer 61, the fifth insulating layer 62, the seventh insulating layer 52A, and the ninth insulating layer Contains 92. It can also be said that the front side insulating layer 100 includes the resistance side insulating layer 70. Here, in the second embodiment, the first insulating layer 71 corresponds to a "low dielectric constant insulating layer".
 第2実施形態の半導体抵抗層20の電界緩和構造は、第1絶縁層71および第2絶縁層72を含み、第6絶縁層63を含んでいない。このため、第2実施形態では、第1絶縁層71は、第5絶縁層62上に積層されている。第1絶縁層71は、第5絶縁層62に接している。 The electric field relaxation structure of the semiconductor resistance layer 20 of the second embodiment includes the first insulating layer 71 and the second insulating layer 72 and does not include the sixth insulating layer 63. Therefore, in the second embodiment, the first insulating layer 71 is laminated on the fifth insulating layer 62. The first insulating layer 71 is in contact with the fifth insulating layer 62.
 第1絶縁層71の厚さは、第1実施形態の第1絶縁層71の厚さよりも厚い。第1絶縁層71の厚さは、第2基板側絶縁層52(第7絶縁層52A)の厚さよりも厚い。第1絶縁層71は、第2絶縁層72よりも低い比誘電率を有する。第1絶縁層71の比誘電率は、3.8よりも大きく7未満である。一例では、第1絶縁層71の比誘電率は、4よりも大きく7未満であってもよい。第1絶縁層71は、第1実施形態と同様に、SiONを含む材料によって形成されている。このため、第1絶縁層71の比誘電率は、SiONのうちのN(窒素)の濃度に応じて調整される。 The thickness of the first insulating layer 71 is thicker than the thickness of the first insulating layer 71 of the first embodiment. The thickness of the first insulating layer 71 is thicker than the thickness of the second substrate side insulating layer 52 (seventh insulating layer 52A). The first insulating layer 71 has a lower dielectric constant than the second insulating layer 72. The dielectric constant of the first insulating layer 71 is greater than 3.8 and less than 7. In one example, the dielectric constant of the first insulating layer 71 may be greater than 4 and less than 7. The first insulating layer 71 is made of a material containing SiON, similarly to the first embodiment. Therefore, the dielectric constant of the first insulating layer 71 is adjusted according to the concentration of N (nitrogen) in SiON.
 第2絶縁層72は、第1実施形態と同様に、半導体抵抗層20の抵抗裏面27と接する絶縁層であり、SiNを含む材料によって形成されている。第2絶縁層72の厚さは、第1実施形態と同様である。 The second insulating layer 72 is an insulating layer in contact with the resistor back surface 27 of the semiconductor resistance layer 20, and is formed of a material containing SiN, as in the first embodiment. The thickness of the second insulating layer 72 is the same as in the first embodiment.
 このように、半導体抵抗層20に対する電界集中を緩和する構造では、半導体抵抗層20から基板30に向かうにつれて、第2絶縁層72および第1絶縁層71の順に配置されている。つまり、半導体抵抗層20に対する電界集中を緩和する構造として、半導体抵抗層20から基板30に向けて比誘電率が低下するように構成されている。 In this way, in the structure that alleviates the electric field concentration on the semiconductor resistance layer 20, the second insulating layer 72 and the first insulating layer 71 are arranged in this order from the semiconductor resistance layer 20 toward the substrate 30. In other words, the structure is such that the relative dielectric constant decreases from the semiconductor resistance layer 20 toward the substrate 30 as a structure for alleviating electric field concentration on the semiconductor resistance layer 20 .
 また、半導体抵抗層20を覆う第3絶縁層73は、第2絶縁層72よりも低い比誘電率を有する。第2実施形態では、第3絶縁層73は、第1実施形態とは異なり、SiONまたはSiCを含む材料によって形成されている。第2実施形態では、第3絶縁層73は、第1絶縁層71と同じくSiONを含む材料によって形成されている。つまり、第3絶縁層73の比誘電率と第1絶縁層71の比誘電率とは互いに等しい。 Further, the third insulating layer 73 covering the semiconductor resistance layer 20 has a lower dielectric constant than the second insulating layer 72. In the second embodiment, the third insulating layer 73 is formed of a material containing SiON or SiC, unlike the first embodiment. In the second embodiment, the third insulating layer 73 is made of a material containing SiON, like the first insulating layer 71. That is, the relative permittivity of the third insulating layer 73 and the relative permittivity of the first insulating layer 71 are equal to each other.
 図示された例においては、第3絶縁層73の厚さは、第1実施形態の第3絶縁層73の厚さよりも厚い。第3絶縁層73の厚さは、第1絶縁層71の厚さおよび第2絶縁層72の厚さの双方よりも厚い。 In the illustrated example, the thickness of the third insulating layer 73 is thicker than the thickness of the third insulating layer 73 of the first embodiment. The thickness of the third insulating layer 73 is thicker than both the thickness of the first insulating layer 71 and the thickness of the second insulating layer 72.
 なお、第1絶縁層71、第2絶縁層72、および第3絶縁層73の各々の厚さは任意に変更可能である。一例では、第1絶縁層71の厚さ、第2絶縁層72の厚さ、および第3絶縁層73の厚さは互いに等しくてもよい。また一例では、第1絶縁層71の厚さおよび第2絶縁層72の厚さは互いに等しく、かつ第3絶縁層73の厚さよりも薄くてもよい。また一例では、第2絶縁層72の厚さが第1絶縁層71の厚さよりも厚くてもよい。 Note that the thickness of each of the first insulating layer 71, the second insulating layer 72, and the third insulating layer 73 can be changed arbitrarily. In one example, the thickness of the first insulating layer 71, the thickness of the second insulating layer 72, and the thickness of the third insulating layer 73 may be equal to each other. Further, in one example, the thickness of the first insulating layer 71 and the thickness of the second insulating layer 72 may be equal to each other and thinner than the thickness of the third insulating layer 73. Further, in one example, the thickness of the second insulating layer 72 may be thicker than the thickness of the first insulating layer 71.
 図18に示すように、第2実施形態の配線層80の電界緩和構造は、第1実施形態の配線層80の電界緩和構造と同じである。つまり、配線層80の電界緩和構造は、第4絶縁層61、第5絶縁層62、および第7絶縁層52Aを含む。 As shown in FIG. 18, the electric field relaxation structure of the wiring layer 80 of the second embodiment is the same as the electric field relaxation structure of the wiring layer 80 of the first embodiment. That is, the electric field relaxation structure of the wiring layer 80 includes the fourth insulating layer 61, the fifth insulating layer 62, and the seventh insulating layer 52A.
 図19に示すように、第2実施形態の半導体装置10は、第1実施形態の第3絶縁層73と第8絶縁層91の積層構造(図5参照)に代えて、第3絶縁層73の単層構造を備える。このため、第2実施形態の端子P1~P5の電界緩和構造は、第3絶縁層73および第9絶縁層92を含む。 As shown in FIG. 19, the semiconductor device 10 of the second embodiment has a third insulating layer 73 instead of the laminated structure of the third insulating layer 73 and the eighth insulating layer 91 of the first embodiment (see FIG. 5). It has a single layer structure. Therefore, the electric field relaxation structure of the terminals P1 to P5 of the second embodiment includes the third insulating layer 73 and the ninth insulating layer 92.
 第9絶縁層92は、第3絶縁層73上に積層されている。第9絶縁層92は、第3絶縁層73に接している。第9絶縁層92は、第1実施形態と同様に、SiNを含む材料によって形成されている。第3絶縁層73は、第2実施形態と同様に、SiONを含む材料によって形成されている。つまり、第3絶縁層73の比誘電率は、第9絶縁層92の比誘電率よりも低い。 The ninth insulating layer 92 is laminated on the third insulating layer 73. The ninth insulating layer 92 is in contact with the third insulating layer 73. The ninth insulating layer 92 is made of a material containing SiN, similarly to the first embodiment. The third insulating layer 73 is formed of a material containing SiON, similarly to the second embodiment. That is, the relative dielectric constant of the third insulating layer 73 is lower than that of the ninth insulating layer 92.
 このように、端子P1~P5に対する電界集中を緩和する構造では、端子P1~P5から基板30に向かうにつれて、第9絶縁層92および第3絶縁層73の順に配置されている。つまり、端子P1~P5に対する電界集中を緩和する構造として、端子P1~P5から基板30に向けて比誘電率が低下するように構成されている。 In this way, in the structure that alleviates the electric field concentration on the terminals P1 to P5, the ninth insulating layer 92 and the third insulating layer 73 are arranged in this order from the terminals P1 to P5 toward the substrate 30. In other words, the structure is such that the dielectric constant decreases from the terminals P1 to P5 toward the substrate 30, as a structure to alleviate electric field concentration on the terminals P1 to P5.
 [効果]
 第2実施形態の半導体装置10によれば、第1実施形態の(1-1)~(1-3)、(1-5)、および(1-8)の効果に加え、以下の効果が得られる。
[effect]
According to the semiconductor device 10 of the second embodiment, in addition to the effects (1-1) to (1-3), (1-5), and (1-8) of the first embodiment, the following effects are achieved. can get.
 (2-1)半導体装置10は、素子絶縁層40と、素子絶縁層40内に設けられた複数の半導体抵抗層20と、素子絶縁層40内において半導体抵抗層20と電気的に接続され、素子絶縁層40の厚さ方向(Z軸方向)において半導体抵抗層20と対向配置された配線層80と、を備える。配線層80は、素子絶縁層40の厚さ方向において半導体抵抗層20を向く配線表面82と、配線表面82とは反対側の配線裏面81と、配線表面82と配線裏面81とを繋ぐ配線側面83と、を含む。素子絶縁層40は、第4絶縁層61と、第4絶縁層61上に積層され、第4絶縁層61よりも比誘電率が高い第5絶縁層62と、第5絶縁層62上に積層され、第5絶縁層62よりも比誘電率が低い第1絶縁層71と、を含む。配線層80は、第5絶縁層62上に積層されており、配線裏面81が第5絶縁層62に接した状態で第1絶縁層71内に設けられている。 (2-1) The semiconductor device 10 includes an element insulating layer 40, a plurality of semiconductor resistance layers 20 provided in the element insulating layer 40, and electrically connected to the semiconductor resistance layer 20 in the element insulating layer 40, A wiring layer 80 is provided facing the semiconductor resistance layer 20 in the thickness direction (Z-axis direction) of the element insulating layer 40. The wiring layer 80 includes a wiring surface 82 facing the semiconductor resistance layer 20 in the thickness direction of the element insulating layer 40, a wiring back surface 81 opposite to the wiring surface 82, and a wiring side surface connecting the wiring surface 82 and the wiring back surface 81. 83. The element insulating layer 40 includes a fourth insulating layer 61 and a fifth insulating layer 62 that is laminated on the fourth insulating layer 61 and has a dielectric constant higher than that of the fourth insulating layer 61, and a fifth insulating layer 62 that is laminated on the fifth insulating layer 62. and a first insulating layer 71 having a lower dielectric constant than the fifth insulating layer 62. The wiring layer 80 is laminated on the fifth insulating layer 62 , and is provided in the first insulating layer 71 with the wiring back surface 81 in contact with the fifth insulating layer 62 .
 この構成によれば、第1絶縁層71よりも比誘電率が高い第5絶縁層62に配線層80の配線裏面81が接しているため、配線裏面81から素子絶縁層40の素子裏面42に向かう電界強度を低減することができる。したがって、配線層80における電界集中を緩和することができる。 According to this configuration, since the wiring back surface 81 of the wiring layer 80 is in contact with the fifth insulating layer 62 having a higher dielectric constant than the first insulating layer 71, the wiring back surface 81 is in contact with the element back surface 42 of the element insulating layer 40. It is possible to reduce the electric field strength toward the Therefore, electric field concentration in the wiring layer 80 can be alleviated.
 加えて、配線層80から第5絶縁層62および第4絶縁層61の順に比誘電率が低くなる。つまり、配線層80から素子絶縁層40の素子裏面42に向かう方向において、配線層80から離れるにつれて徐々に比誘電率が低下する。これにより、配線層80から素子絶縁層40の素子裏面42に向かう電界強度をさらに低減することができる。したがって、配線層80における電界集中をさらに緩和することができる。 In addition, the relative dielectric constant decreases in the order of the wiring layer 80, the fifth insulating layer 62, and the fourth insulating layer 61. That is, in the direction from the wiring layer 80 toward the element back surface 42 of the element insulating layer 40, the relative permittivity gradually decreases as the distance from the wiring layer 80 increases. Thereby, the electric field strength directed from the wiring layer 80 toward the element back surface 42 of the element insulating layer 40 can be further reduced. Therefore, electric field concentration in the wiring layer 80 can be further alleviated.
 (2-2)素子絶縁層40は、第3絶縁層73上に積層され、第3絶縁層73よりも比誘電率が高い高誘電率絶縁層としての第9絶縁層92を含む。半導体装置10は、第9絶縁層92上に形成された電極パッドとしての端子P1~P5をさらに備える。 (2-2) The element insulating layer 40 is laminated on the third insulating layer 73 and includes the ninth insulating layer 92 as a high dielectric constant insulating layer having a higher dielectric constant than the third insulating layer 73. The semiconductor device 10 further includes terminals P1 to P5 as electrode pads formed on the ninth insulating layer 92.
 この構成によれば、第3絶縁層73よりも比誘電率が高い第9絶縁層92に端子P1~P5が接しているため、端子P1~P5から素子絶縁層40の素子裏面42に向かう電界強度を低減することができる。したがって、端子P1~P5における電界集中を緩和することができる。 According to this configuration, since the terminals P1 to P5 are in contact with the ninth insulating layer 92 having a higher dielectric constant than the third insulating layer 73, an electric field directed from the terminals P1 to P5 toward the element back surface 42 of the element insulating layer 40 Strength can be reduced. Therefore, electric field concentration at the terminals P1 to P5 can be alleviated.
 加えて、端子P1~P5から第9絶縁層92および第3絶縁層73の順に比誘電率が低くなる。つまり、端子P1~P5から素子絶縁層40の素子裏面42に向かう方向において、配線層80から離れるにつれて徐々に比誘電率が低下する。これにより、端子P1~P5から素子絶縁層40の素子裏面42に向かう電界強度をさらに低減することができる。したがって、端子P1~P5における電界集中をさらに緩和することができる。 In addition, the relative permittivity decreases in the order of terminals P1 to P5 to ninth insulating layer 92 and third insulating layer 73. That is, in the direction from the terminals P1 to P5 toward the element back surface 42 of the element insulating layer 40, the relative dielectric constant gradually decreases as the distance from the wiring layer 80 increases. Thereby, the electric field intensity directed from the terminals P1 to P5 toward the element back surface 42 of the element insulating layer 40 can be further reduced. Therefore, electric field concentration at the terminals P1 to P5 can be further alleviated.
 <第3実施形態>
 図20~図22を参照して、第3実施形態の半導体装置10について説明する。第3実施形態の半導体装置10は、第1実施形態の半導体装置10と比較して、電界緩和構造が異なる。以下では、第1実施形態と異なる点を詳細に説明し、第1実施形態と共通する構成要素には同一符号を付し、その説明を省略する。
<Third embodiment>
The semiconductor device 10 of the third embodiment will be described with reference to FIGS. 20 to 22. The semiconductor device 10 of the third embodiment has a different electric field relaxation structure compared to the semiconductor device 10 of the first embodiment. In the following, points different from the first embodiment will be explained in detail, and components common to the first embodiment will be denoted by the same reference numerals, and their explanation will be omitted.
 図20に示すように、第3実施形態の半導体装置10において、素子絶縁層40は、第1実施形態の半導体装置10の配線側絶縁層60および抵抗側絶縁層70(ともに図5参照)に代えて、表面側絶縁層100を備える。より詳細には、素子絶縁層40は、第1実施形態における第6絶縁層63と第1絶縁層71との積層構造(図5参照)に代えて、第1絶縁層71の単層構造を備える。また、素子絶縁層40は、第1実施形態における第3絶縁層73と第8絶縁層91と第9絶縁層92との積層構造(図5参照)に代えて、第3絶縁層73の単層構造を備える。つまり、表面側絶縁層100は、第1絶縁層71、第2絶縁層72、第3絶縁層73、第4絶縁層61、第5絶縁層62、および第7絶縁層52Aを含む。表面側絶縁層100は、抵抗側絶縁層70を含むともいえる。ここで、第3実施形態では、第1絶縁層71は「低誘電率絶縁層」に対応している。 As shown in FIG. 20, in the semiconductor device 10 of the third embodiment, the element insulating layer 40 is similar to the wiring-side insulating layer 60 and the resistance-side insulating layer 70 (both shown in FIG. 5) of the semiconductor device 10 of the first embodiment. Instead, a front side insulating layer 100 is provided. More specifically, the element insulating layer 40 has a single-layer structure of the first insulating layer 71 instead of the laminated structure of the sixth insulating layer 63 and the first insulating layer 71 in the first embodiment (see FIG. 5). Be prepared. Further, the element insulating layer 40 has a single layer structure of the third insulating layer 73 instead of the laminated structure of the third insulating layer 73, the eighth insulating layer 91, and the ninth insulating layer 92 (see FIG. 5) in the first embodiment. It has a layered structure. That is, the front side insulating layer 100 includes the first insulating layer 71, the second insulating layer 72, the third insulating layer 73, the fourth insulating layer 61, the fifth insulating layer 62, and the seventh insulating layer 52A. It can also be said that the front side insulating layer 100 includes the resistance side insulating layer 70. Here, in the third embodiment, the first insulating layer 71 corresponds to a "low dielectric constant insulating layer".
 図20に示すように、第3実施形態では、半導体抵抗層20の電界緩和構造は、第2実施形態の半導体抵抗層20の電界緩和構造と同じである。
 図21に示すように、第3実施形態では、配線層80の電界緩和構造は、第1および第2実施形態の配線層80の電界緩和構造と同じである。
As shown in FIG. 20, in the third embodiment, the electric field relaxation structure of the semiconductor resistance layer 20 is the same as the electric field relaxation structure of the semiconductor resistance layer 20 of the second embodiment.
As shown in FIG. 21, in the third embodiment, the electric field relaxation structure of the wiring layer 80 is the same as the electric field relaxation structure of the wiring layer 80 of the first and second embodiments.
 図22に示すように、第3実施形態では、端子P1~P5の電界緩和構造が省略されている。つまり、第3実施形態の半導体装置10は、第8絶縁層91および第9絶縁層92(ともに図7参照)の双方を含んでいない。 As shown in FIG. 22, in the third embodiment, the electric field relaxation structure of the terminals P1 to P5 is omitted. That is, the semiconductor device 10 of the third embodiment does not include both the eighth insulating layer 91 and the ninth insulating layer 92 (see FIG. 7).
 端子P1~P5は、第3絶縁層73上に形成されている。端子P1~P5は、第3絶縁層73に接している。第3絶縁層73は、第1実施形態と同様に、SiOを含む材料によって形成されている。端子P1~P5は、第1実施形態と同様に、パッシベーション膜43によって覆われている。第3実施形態によれば、第1実施形態の(1-1)~(1-3)、(1-5)、および(1-8)の効果と第2実施形態の(2-1)の効果とを得ることができる。 Terminals P1 to P5 are formed on the third insulating layer 73. The terminals P1 to P5 are in contact with the third insulating layer 73. The third insulating layer 73 is made of a material containing SiO 2 similarly to the first embodiment. Terminals P1 to P5 are covered with a passivation film 43, similar to the first embodiment. According to the third embodiment, effects (1-1) to (1-3), (1-5), and (1-8) of the first embodiment and (2-1) of the second embodiment are obtained. You can obtain the following effects.
 <変更例>
 上記各実施形態は、以下のように変更して実施することができる。また、上記各実施形態および以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
<Example of change>
Each of the above embodiments can be modified and implemented as follows. Further, each of the above embodiments and the following modified examples can be implemented in combination with each other within a technically consistent range.
 ・上記各実施形態において、半導体抵抗層20と配線層80とのZ軸方向の位置関係は任意に変更可能である。
 一例では、図23に示すように、配線層80は、半導体抵抗層20よりも素子絶縁層40の素子表面41寄りに配置されていてもよい。換言すると、配線層80は、半導体抵抗層20と端子P1~P5とのZ軸方向の間に配置されていてもよい。
- In each of the above embodiments, the positional relationship between the semiconductor resistance layer 20 and the wiring layer 80 in the Z-axis direction can be changed arbitrarily.
In one example, as shown in FIG. 23, the wiring layer 80 may be arranged closer to the element surface 41 of the element insulating layer 40 than the semiconductor resistance layer 20 is. In other words, the wiring layer 80 may be arranged between the semiconductor resistance layer 20 and the terminals P1 to P5 in the Z-axis direction.
 配線層80のZ軸方向の位置の変更にともない、第4絶縁層61、第5絶縁層62、および第6絶縁層63のZ軸方向の位置が変更される。第4絶縁層61、第5絶縁層62、および第6絶縁層63のZ軸方向の位置の変更にともない、第1絶縁層71、第2絶縁層72、および第3絶縁層73のZ軸方向の位置が変更される。つまり、図示された例においては、配線側絶縁層60のZ軸方向の位置と抵抗側絶縁層70とZ軸方向の位置とが入れ替わっているといえる。 As the position of the wiring layer 80 in the Z-axis direction is changed, the positions of the fourth insulating layer 61, the fifth insulating layer 62, and the sixth insulating layer 63 in the Z-axis direction are changed. As the positions of the fourth insulating layer 61, the fifth insulating layer 62, and the sixth insulating layer 63 are changed in the Z-axis direction, the Z-axis of the first insulating layer 71, the second insulating layer 72, and the third insulating layer 73 are changed. The position of the direction is changed. That is, in the illustrated example, it can be said that the position of the wiring-side insulating layer 60 in the Z-axis direction and the position of the resistance-side insulating layer 70 in the Z-axis direction are interchanged.
 より詳細には、第4絶縁層61は、第3絶縁層73上に積層されている。第5絶縁層62は第4絶縁層61上に積層されている。配線層80は第5絶縁層62上に形成されている。第6絶縁層63は、第5絶縁層62上に積層され、かつ配線層80を覆っている。ここで、第1実施形態と同様に、第4絶縁層61はSiONを含む材料によって形成されており、第5絶縁層62はSiNを含む材料によって形成されており、第6絶縁層63はSiOを含む材料によって形成されている。 More specifically, the fourth insulating layer 61 is laminated on the third insulating layer 73. The fifth insulating layer 62 is laminated on the fourth insulating layer 61. The wiring layer 80 is formed on the fifth insulating layer 62. The sixth insulating layer 63 is laminated on the fifth insulating layer 62 and covers the wiring layer 80. Here, similarly to the first embodiment, the fourth insulating layer 61 is made of a material containing SiON, the fifth insulating layer 62 is made of a material containing SiN, and the sixth insulating layer 63 is made of a material containing SiO2. It is made of a material containing 2 .
 第1絶縁層71は、第7絶縁層52A上に積層されている。第2絶縁層72は第1絶縁層71上に積層されている。半導体抵抗層20は第2絶縁層72上に形成されている。第3絶縁層73は、第2絶縁層72上に積層され、かつ半導体抵抗層20を覆っている。ここで、第1実施形態と同様に、第1絶縁層71はSiONを含む材料によって形成されており、第2絶縁層72はSiNを含む材料によって形成されており、第3絶縁層73はSiOを含む材料によって形成されている。また、第7絶縁層52Aは、SiOを含む材料によって形成されている。 The first insulating layer 71 is laminated on the seventh insulating layer 52A. The second insulating layer 72 is laminated on the first insulating layer 71. The semiconductor resistance layer 20 is formed on the second insulating layer 72. The third insulating layer 73 is stacked on the second insulating layer 72 and covers the semiconductor resistance layer 20 . Here, similarly to the first embodiment, the first insulating layer 71 is made of a material containing SiON, the second insulating layer 72 is made of a material containing SiN, and the third insulating layer 73 is made of a material containing SiO2. It is made of a material containing 2 . Furthermore, the seventh insulating layer 52A is formed of a material containing SiO 2 .
 ビア90は、第4絶縁層61、第5絶縁層62、および第3絶縁層73を貫通して半導体抵抗層20と配線層80とを接続している。ビア93は、第9絶縁層92、第8絶縁層91、および第6絶縁層63を貫通して配線層80と端子P1~P5とを接続している。ビア90,93を構成する材料はたとえば第1実施形態と同様である。 The via 90 penetrates the fourth insulating layer 61, the fifth insulating layer 62, and the third insulating layer 73 to connect the semiconductor resistance layer 20 and the wiring layer 80. The via 93 penetrates the ninth insulating layer 92, the eighth insulating layer 91, and the sixth insulating layer 63 to connect the wiring layer 80 and the terminals P1 to P5. The materials forming the vias 90 and 93 are, for example, the same as those in the first embodiment.
 配線層80に対する電界集中を緩和する構造は、第5絶縁層62、第4絶縁層61、および第3絶縁層73を含む。配線層80に対する電界集中を緩和する構造では、配線層80から基板30に向かうにつれて、第5絶縁層62、第4絶縁層61、および第3絶縁層73の順に配置されている。つまり、配線層80に対する電界集中を緩和する構造として、配線層80から基板30に向けて比誘電率が低下するように構成されている。 The structure that alleviates electric field concentration on the wiring layer 80 includes a fifth insulating layer 62, a fourth insulating layer 61, and a third insulating layer 73. In the structure that alleviates electric field concentration on the wiring layer 80, the fifth insulating layer 62, the fourth insulating layer 61, and the third insulating layer 73 are arranged in this order from the wiring layer 80 toward the substrate 30. In other words, the structure is such that the relative dielectric constant decreases from the wiring layer 80 toward the substrate 30 as a structure for alleviating electric field concentration on the wiring layer 80 .
 半導体抵抗層20に対する電界集中を緩和する構造は、第2絶縁層72、第1絶縁層71、および第7絶縁層52Aを含む。半導体抵抗層20に対する電界集中を緩和する構造では、半導体抵抗層20から基板30に向かうにつれて、第2絶縁層72、第1絶縁層71、および第7絶縁層52Aの順に配置されている。つまり、半導体抵抗層20に対する電界集中を緩和する構造として、半導体抵抗層20から基板30に向けて比誘電率が低下するように構成されている。 The structure that alleviates electric field concentration on the semiconductor resistance layer 20 includes the second insulating layer 72, the first insulating layer 71, and the seventh insulating layer 52A. In the structure that alleviates electric field concentration on the semiconductor resistance layer 20, the second insulating layer 72, the first insulating layer 71, and the seventh insulating layer 52A are arranged in this order from the semiconductor resistance layer 20 toward the substrate 30. In other words, the structure is such that the relative dielectric constant decreases from the semiconductor resistance layer 20 toward the substrate 30 as a structure for alleviating electric field concentration on the semiconductor resistance layer 20 .
 第8絶縁層91は、第6絶縁層63上に積層されている。第9絶縁層92は、第8絶縁層91上に積層されている。端子P1~P5は、第9絶縁層92上に形成されている。ここで、第1実施形態と同様に、第8絶縁層91はSiONを含む材料によって形成されており、第9絶縁層92はSiNを含む材料によって形成されている。 The eighth insulating layer 91 is laminated on the sixth insulating layer 63. The ninth insulating layer 92 is laminated on the eighth insulating layer 91. Terminals P1 to P5 are formed on the ninth insulating layer 92. Here, similarly to the first embodiment, the eighth insulating layer 91 is made of a material containing SiON, and the ninth insulating layer 92 is made of a material containing SiN.
 端子P1~P5に対する電界集中を緩和する構造は、第9絶縁層92、第8絶縁層91、および第6絶縁層63を含む。端子P1~P5に対する電界集中を緩和する構造では、端子P1~P5から基板30に向かうにつれて、第9絶縁層92、第8絶縁層91、および第6絶縁層63の順に配置されている。つまり、端子P1~P5に対する電界集中を緩和する構造として、端子P1~P5から基板30に向けて比誘電率が低下するように構成されている。 The structure that alleviates electric field concentration on terminals P1 to P5 includes a ninth insulating layer 92, an eighth insulating layer 91, and a sixth insulating layer 63. In the structure that alleviates electric field concentration on the terminals P1 to P5, the ninth insulating layer 92, the eighth insulating layer 91, and the sixth insulating layer 63 are arranged in this order from the terminals P1 to P5 toward the substrate 30. In other words, the structure is such that the dielectric constant decreases from the terminals P1 to P5 toward the substrate 30, as a structure to alleviate electric field concentration on the terminals P1 to P5.
 この構成によれば、第1実施形態と同様に、半導体抵抗層20、配線層80、および端子P1~P5の各々の電界強度を低減することができる。したがって、半導体装置10(第1チップ14)内における電界集中の緩和を図ることができる。 According to this configuration, as in the first embodiment, the electric field strength of each of the semiconductor resistance layer 20, the wiring layer 80, and the terminals P1 to P5 can be reduced. Therefore, electric field concentration within the semiconductor device 10 (first chip 14) can be alleviated.
 ・上記各実施形態において、配線層80が半導体抵抗層20よりも上方に配置されたうえで、配線層80が端子P1~P5を構成していてもよい。
 一例では、図24に示すように、配線層80は、素子絶縁層40の素子表面41上に形成されている。換言すると、素子絶縁層40の素子表面41を含む絶縁層は、第5絶縁層62によって構成されている。第5絶縁層62は、第4絶縁層61上に積層されている。第4絶縁層61は、第3絶縁層73上に積層されている。このように、図24に示す変更例においては、半導体装置10から第8絶縁層91および第9絶縁層92の双方が省略されている。
- In each of the above embodiments, the wiring layer 80 may be arranged above the semiconductor resistance layer 20, and the wiring layer 80 may constitute the terminals P1 to P5.
In one example, as shown in FIG. 24, the wiring layer 80 is formed on the element surface 41 of the element insulating layer 40. In other words, the insulating layer including the element surface 41 of the element insulating layer 40 is constituted by the fifth insulating layer 62. The fifth insulating layer 62 is laminated on the fourth insulating layer 61. The fourth insulating layer 61 is laminated on the third insulating layer 73. In this way, in the modification shown in FIG. 24, both the eighth insulating layer 91 and the ninth insulating layer 92 are omitted from the semiconductor device 10.
 パッシベーション膜43は、第5絶縁層62および配線層80の双方を覆っている。一方、パッシベーション膜43は、配線層80のうち端子P1~P5を構成する部分を露出する開口部43Xを含む。換言すると、配線層80のうちパッシベーション膜43から露出した部分は、端子P1~P5を構成している。 The passivation film 43 covers both the fifth insulating layer 62 and the wiring layer 80. On the other hand, the passivation film 43 includes an opening 43X that exposes a portion of the wiring layer 80 that constitutes the terminals P1 to P5. In other words, the portions of the wiring layer 80 exposed from the passivation film 43 constitute the terminals P1 to P5.
 ビア90は、第5絶縁層62、第4絶縁層61、および第3絶縁層73をZ軸方向に貫通することによって、半導体抵抗層20と配線層80とを接続している。ビア90は、たとえば第1実施形態のビア90と同じ材料によって形成されている。図24に示す変更例においては、半導体装置10からビア93が省略されている。 The via 90 connects the semiconductor resistance layer 20 and the wiring layer 80 by penetrating the fifth insulating layer 62, the fourth insulating layer 61, and the third insulating layer 73 in the Z-axis direction. The via 90 is formed of the same material as the via 90 of the first embodiment, for example. In the modification shown in FIG. 24, the via 93 is omitted from the semiconductor device 10.
 第1絶縁層71は、第7絶縁層52A上に積層されている。第2絶縁層72は第1絶縁層71上に積層されている。半導体抵抗層20は第2絶縁層72上に形成されている。第3絶縁層73は、第2絶縁層72上に積層され、かつ半導体抵抗層20を覆っている。ここで、第1実施形態と同様に、第1絶縁層71はSiONを含む材料によって形成されており、第2絶縁層72はSiNを含む材料によって形成されており、第3絶縁層73はSiOを含む材料によって形成されている。また、第7絶縁層52Aは、SiOを含む材料によって形成されている。 The first insulating layer 71 is laminated on the seventh insulating layer 52A. The second insulating layer 72 is laminated on the first insulating layer 71. The semiconductor resistance layer 20 is formed on the second insulating layer 72. The third insulating layer 73 is stacked on the second insulating layer 72 and covers the semiconductor resistance layer 20 . Here, similarly to the first embodiment, the first insulating layer 71 is made of a material containing SiON, the second insulating layer 72 is made of a material containing SiN, and the third insulating layer 73 is made of a material containing SiO2. It is made of a material containing 2 . Furthermore, the seventh insulating layer 52A is formed of a material containing SiO 2 .
 配線層80に対する電界集中を緩和する構造は、第5絶縁層62、第4絶縁層61、および第3絶縁層73を含む。配線層80に対する電界集中を緩和する構造では、配線層80から基板30に向かうにつれて、第5絶縁層62、第4絶縁層61、および第3絶縁層73の順に配置されている。つまり、配線層80に対する電界集中を緩和する構造として、配線層80から基板30に向けて比誘電率が低下するように構成されている。 The structure that alleviates electric field concentration on the wiring layer 80 includes a fifth insulating layer 62 , a fourth insulating layer 61 , and a third insulating layer 73 . In the structure that alleviates electric field concentration on the wiring layer 80, the fifth insulating layer 62, the fourth insulating layer 61, and the third insulating layer 73 are arranged in this order from the wiring layer 80 toward the substrate 30. In other words, the structure is such that the relative dielectric constant decreases from the wiring layer 80 toward the substrate 30 as a structure for alleviating electric field concentration on the wiring layer 80 .
 半導体抵抗層20に対する電界集中を緩和する構造は、第2絶縁層72、第1絶縁層71、および第7絶縁層52Aを含む。半導体抵抗層20に対する電界集中を緩和する構造では、半導体抵抗層20から基板30に向かうにつれて、第2絶縁層72、第1絶縁層71、および第7絶縁層52Aの順に配置されている。つまり、半導体抵抗層20に対する電界集中を緩和する構造として、半導体抵抗層20から基板30に向けて比誘電率が低下するように構成されている。 The structure that alleviates electric field concentration on the semiconductor resistance layer 20 includes the second insulating layer 72, the first insulating layer 71, and the seventh insulating layer 52A. In the structure that alleviates electric field concentration on the semiconductor resistance layer 20, the second insulating layer 72, the first insulating layer 71, and the seventh insulating layer 52A are arranged in this order from the semiconductor resistance layer 20 toward the substrate 30. In other words, the structure is such that the relative dielectric constant decreases from the semiconductor resistance layer 20 toward the substrate 30 as a structure for alleviating electric field concentration on the semiconductor resistance layer 20 .
 この構成によれば、第1実施形態と同様に、半導体抵抗層20および配線層80の各々の電界強度を低減することができる。したがって、半導体装置10(第1チップ14)内における電界集中の緩和を図ることができる。 According to this configuration, the electric field strength of each of the semiconductor resistance layer 20 and the wiring layer 80 can be reduced, similarly to the first embodiment. Therefore, electric field concentration within the semiconductor device 10 (first chip 14) can be alleviated.
 ・各実施形態において、複数の半導体抵抗層20の配列態様は任意に変更可能である。一例では、複数の半導体抵抗層20は、X軸方向において互いに離隔して配列されていてもよい。換言すると、複数の半導体抵抗層20は、第1チップ14の短手方向において互いに離隔して配列されていてもよい。また、複数の半導体抵抗層20の少なくとも1つは、素子絶縁層40の厚さ方向(Y軸方向)において他の半導体抵抗層20に対して異なった位置に配置されていてもよい。 - In each embodiment, the arrangement of the plurality of semiconductor resistance layers 20 can be arbitrarily changed. In one example, the plurality of semiconductor resistance layers 20 may be arranged apart from each other in the X-axis direction. In other words, the plurality of semiconductor resistance layers 20 may be arranged apart from each other in the lateral direction of the first chip 14. Further, at least one of the plurality of semiconductor resistance layers 20 may be arranged at a different position with respect to other semiconductor resistance layers 20 in the thickness direction (Y-axis direction) of the element insulating layer 40.
 ・各実施形態において、複数の半導体抵抗層20の構成は任意に変更可能である。また、半導体抵抗層20の個数は任意に変更可能である。
 ・各実施形態において、基板側絶縁層50の構成は任意に変更可能である。一例では、基板側絶縁層50から第1基板側絶縁層51を省略してもよい。この場合、たとえば基板側絶縁層50は、第2基板側絶縁層52の積層構造によって構成されている。
- In each embodiment, the configuration of the plurality of semiconductor resistance layers 20 can be changed arbitrarily. Moreover, the number of semiconductor resistance layers 20 can be changed arbitrarily.
- In each embodiment, the structure of the substrate side insulating layer 50 can be changed arbitrarily. In one example, the first substrate-side insulating layer 51 may be omitted from the substrate-side insulating layer 50. In this case, for example, the substrate-side insulating layer 50 has a laminated structure of the second substrate-side insulating layer 52.
 ・各実施形態において、平面視における第1チップ14の形状は任意に変更可能である。一例では、平面視における第1チップ14の形状は正方形であってもよい。
 本開示で使用される「~上に」という用語は、文脈によって明らかにそうでないことが示されない限り、「~上に」と「~の上方に」との意味を含む。したがって、「第1層が第2層上に形成される」という表現は、或る実施形態では第1層が第2層に接触して第2層上に直接配置され得るが、他の実施形態では第1層が第2層に接触することなく第2層の上方に配置され得ることが意図される。すなわち、「~上に」という用語は、第1層と第2層との間に他の層が形成される構造を排除しない。
- In each embodiment, the shape of the first chip 14 in plan view can be arbitrarily changed. In one example, the first chip 14 may have a square shape in plan view.
As used in this disclosure, the term "on" includes the meanings of "on" and "above" unless the context clearly dictates otherwise. Thus, the phrase "the first layer is formed on the second layer" refers to the fact that in some embodiments the first layer may be directly disposed on the second layer in contact with the second layer, but in other embodiments. It is contemplated that the first layer may be placed above the second layer without contacting the second layer. That is, the term "on" does not exclude structures in which other layers are formed between the first layer and the second layer.
 本開示で使用されるZ軸方向は必ずしも鉛直方向である必要はなく、鉛直方向に完全に一致している必要もない。したがって、本開示による種々の構造(たとえば、図1に示される構造)は、本明細書で説明されるZ軸方向の「上」および「下」が鉛直方向の「上」および「下」であることに限定されない。たとえば、X軸方向が鉛直方向であってもよく、またはY軸方向が鉛直方向であってもよい。 The Z-axis direction used in the present disclosure does not necessarily need to be a vertical direction, nor does it need to completely coincide with the vertical direction. Accordingly, various structures according to the present disclosure (e.g., the structure shown in FIG. 1) are different from each other in that "upper" and "lower" in the Z-axis direction described herein are "upper" and "lower" in the vertical direction. Not limited to one thing. For example, the X-axis direction may be a vertical direction, or the Y-axis direction may be a vertical direction.
 <付記>
 上記実施形態および各変更例から把握できる技術的思想を以下に記載する。なお、限定する意図ではなく理解の補助のために、付記に記載した構成について実施形態中の対応する符号を括弧書きで示す。符号は、理解の補助のために例として示すものであり、各符号に記載された構成要素は、符号で示される構成要素に限定されるべきではない。
<Additional notes>
The technical ideas that can be understood from the above embodiment and each modification example will be described below. It should be noted that, for the purpose of assisting understanding rather than with the intention of limiting, the corresponding reference numerals in the embodiments for the configurations described in the supplementary notes are shown in parentheses. The symbols are shown as examples to aid understanding, and the components described with each symbol should not be limited to the components indicated by the symbols.
 [付記1]
 表面(41)、および前記表面(41)とは反対側の裏面(42)を有する素子絶縁層(40)と、
 前記素子絶縁層(40)内に設けられた1または複数の半導体抵抗層(20)と、を備え、
 前記半導体抵抗層(20)は、
 前記素子絶縁層(40)の厚さ方向(Z軸方向)において前記裏面(42)を向く抵抗裏面(27)と、
 前記抵抗裏面(27)とは反対側の抵抗表面(28)と、
 前記抵抗裏面(27)と前記抵抗表面(28)とを繋ぐ抵抗側面(29)と、を含み、
 前記素子絶縁層(40)は、
 第1絶縁層(71)と、
 前記第1絶縁層(71)上に積層され、前記第1絶縁層(71)よりも比誘電率が高い第2絶縁層(72)と、
 前記第2絶縁層(72)上に積層され、前記第2絶縁層(72)よりも比誘電率が低い第3絶縁層(73)と、を含み、
 前記半導体抵抗層(20)は、前記第2絶縁層(72)上に積層されており、前記抵抗裏面(27)が前記第2絶縁層(72)に接した状態で前記第3絶縁層(73)内に設けられている
 半導体装置(10)。
[Additional note 1]
an element insulating layer (40) having a front surface (41) and a back surface (42) opposite to the front surface (41);
one or more semiconductor resistance layers (20) provided in the element insulating layer (40),
The semiconductor resistance layer (20) is
a resistor back surface (27) facing the back surface (42) in the thickness direction (Z-axis direction) of the element insulating layer (40);
a resistor surface (28) opposite to the resistor back surface (27);
a resistor side surface (29) connecting the resistor back surface (27) and the resistor surface (28);
The element insulating layer (40) is
a first insulating layer (71);
a second insulating layer (72) laminated on the first insulating layer (71) and having a higher dielectric constant than the first insulating layer (71);
a third insulating layer (73) laminated on the second insulating layer (72) and having a lower dielectric constant than the second insulating layer (72);
The semiconductor resistance layer (20) is laminated on the second insulating layer (72), and the third insulating layer ( A semiconductor device (10) provided in 73).
 [付記2]
 前記半導体抵抗層(20)は、複数設けられており、前記素子絶縁層(40)の厚さ方向(Z軸方向)に揃った状態で、当該厚さ方向(Z軸方向)と直交する方向(Y軸方向)に離隔して配列されている
 付記1に記載の半導体装置。
[Additional note 2]
A plurality of the semiconductor resistance layers (20) are provided, and are aligned in the thickness direction (Z-axis direction) of the element insulating layer (40), and in a direction perpendicular to the thickness direction (Z-axis direction). The semiconductor device according to Supplementary Note 1, wherein the semiconductor device is arranged at a distance in the Y-axis direction.
 [付記3]
 前記半導体抵抗層(20)に対して前記素子絶縁層(40)の前記裏面(42)側に設けられ、前記半導体抵抗層(20)と電気的に接続された配線層(80)を備える
 付記1または2に記載の半導体装置。
[Additional note 3]
A wiring layer (80) provided on the back surface (42) side of the element insulating layer (40) with respect to the semiconductor resistance layer (20) and electrically connected to the semiconductor resistance layer (20). 3. The semiconductor device according to 1 or 2.
 [付記4]
 前記配線層(80)は、
 前記素子絶縁層(40)の厚さ方向(Z軸方向)において前記半導体抵抗層(20)を向く配線表面(82)と、
 前記配線表面(82)とは反対側の配線裏面(81)と、
 前記配線表面(82)と前記配線裏面(81)とを繋ぐ配線側面(83)と、を含み、
 前記素子絶縁層(40)は、
 第4絶縁層(61)と、
 前記第4絶縁層(61)上に積層され、前記第4絶縁層(61)よりも比誘電率が高い第5絶縁層(62)と、を含み、
 前記配線層(80)は、前記第5絶縁層(62)上に積層されており、前記配線裏面(81)が前記第5絶縁層(62)に接している
 付記3に記載の半導体装置。
[Additional note 4]
The wiring layer (80) is
a wiring surface (82) facing the semiconductor resistance layer (20) in the thickness direction (Z-axis direction) of the element insulating layer (40);
a wiring back surface (81) opposite to the wiring surface (82);
a wiring side surface (83) connecting the wiring surface (82) and the wiring back surface (81);
The element insulating layer (40) is
a fourth insulating layer (61);
a fifth insulating layer (62) laminated on the fourth insulating layer (61) and having a higher dielectric constant than the fourth insulating layer (61);
The semiconductor device according to appendix 3, wherein the wiring layer (80) is laminated on the fifth insulating layer (62), and the wiring back surface (81) is in contact with the fifth insulating layer (62).
 [付記5]
 前記素子絶縁層(40)は、前記第5絶縁層(62)と前記第1絶縁層(71)との間に設けられ、前記第5絶縁層(62)よりも比誘電率が低い第6絶縁層(63)を含み、
 前記配線層(80)は、前記第6絶縁層(63)内に設けられている
 付記4に記載の半導体装置。
[Additional note 5]
The element insulating layer (40) is provided between the fifth insulating layer (62) and the first insulating layer (71), and is a sixth insulating layer having a lower dielectric constant than the fifth insulating layer (62). including an insulating layer (63);
The semiconductor device according to appendix 4, wherein the wiring layer (80) is provided within the sixth insulating layer (63).
 [付記6]
 前記素子絶縁層(40)は、前記第5絶縁層(62)と前記第1絶縁層(71)との間に設けられ、前記第5絶縁層(62)よりも比誘電率が低い第6絶縁層(63)を含み、
 前記第1絶縁層(71)は、前記第6絶縁層(63)上に積層されており、
 前記第6絶縁層(63)は、前記第1絶縁層(71)よりも比誘電率が低い
 付記4または5に記載の半導体装置。
[Additional note 6]
The element insulating layer (40) is provided between the fifth insulating layer (62) and the first insulating layer (71), and is a sixth insulating layer having a lower dielectric constant than the fifth insulating layer (62). including an insulating layer (63);
The first insulating layer (71) is laminated on the sixth insulating layer (63),
The semiconductor device according to appendix 4 or 5, wherein the sixth insulating layer (63) has a lower dielectric constant than the first insulating layer (71).
 [付記7]
 前記第1絶縁層(71)は、前記配線層(80)に対して前記素子絶縁層(40)の厚さ方向(Z軸方向)において離隔して配置されている
 付記6に記載の半導体装置。
[Additional note 7]
The semiconductor device according to appendix 6, wherein the first insulating layer (71) is spaced apart from the wiring layer (80) in the thickness direction (Z-axis direction) of the element insulating layer (40). .
 [付記8]
 前記第1絶縁層(71)は、前記第5絶縁層(62)上に積層され、かつ前記第5絶縁層(62)よりも比誘電率が低く、
 前記配線層(80)は、前記第1絶縁層(71)内に設けられている
 付記4~7のいずれか1つに記載の半導体装置。
[Additional note 8]
The first insulating layer (71) is laminated on the fifth insulating layer (62), and has a lower dielectric constant than the fifth insulating layer (62),
The semiconductor device according to any one of appendices 4 to 7, wherein the wiring layer (80) is provided within the first insulating layer (71).
 [付記9]
 前記素子絶縁層(40)は、前記第4絶縁層(61)よりも比誘電率が低い第7絶縁層(52A)を含み、
 前記第4絶縁層(61)は、前記第7絶縁層(52A)上に積層されている
 付記4~8のいずれか1つに記載の半導体装置。
[Additional note 9]
The element insulating layer (40) includes a seventh insulating layer (52A) having a lower dielectric constant than the fourth insulating layer (61),
The semiconductor device according to any one of appendices 4 to 8, wherein the fourth insulating layer (61) is laminated on the seventh insulating layer (52A).
 [付記10]
 前記素子絶縁層(40)は、
 前記第3絶縁層(73)上に積層され、前記第3絶縁層(73)よりも比誘電率が高い第8絶縁層(91)と、
 前記第8絶縁層(91)上に積層され、前記第8絶縁層(91)よりも比誘電率が高い第9絶縁層(92)と、を含み、
 前記第9絶縁層(92)上に形成された電極パッド(P1~P5)をさらに備える
 付記1~9のいずれか1つに記載の半導体装置。
[Additional note 10]
The element insulating layer (40) is
an eighth insulating layer (91) laminated on the third insulating layer (73) and having a higher dielectric constant than the third insulating layer (73);
a ninth insulating layer (92) laminated on the eighth insulating layer (91) and having a higher dielectric constant than the eighth insulating layer (91);
The semiconductor device according to any one of Supplementary Notes 1 to 9, further comprising electrode pads (P1 to P5) formed on the ninth insulating layer (92).
 [付記11]
 前記素子絶縁層(40)は、前記第3絶縁層(73)上に積層され、前記第3絶縁層(37)よりも比誘電率が高い高誘電率絶縁層(92)を含み、
 前記高誘電率絶縁層(92)上に形成された電極パッド(P1~P5)をさらに備える
 付記1~8のいずれか1つに記載の半導体装置。
[Additional note 11]
The element insulating layer (40) includes a high dielectric constant insulating layer (92) laminated on the third insulating layer (73) and having a higher dielectric constant than the third insulating layer (37),
The semiconductor device according to any one of appendices 1 to 8, further comprising electrode pads (P1 to P5) formed on the high dielectric constant insulating layer (92).
 [付記12]
 前記素子絶縁層(40)の厚さ方向(Z軸方向)に延び、前記半導体抵抗層(20)と前記配線層(80)とを電気的に接続するビア(90)をさらに備える
 付記3~9のいずれか1つに記載の半導体装置。
[Additional note 12]
The device further includes a via (90) extending in the thickness direction (Z-axis direction) of the element insulating layer (40) and electrically connecting the semiconductor resistance layer (20) and the wiring layer (80). 9. The semiconductor device according to any one of 9.
 [付記13]
 前記半導体抵抗層(20)は、前記配線層(80)よりも薄い厚さを有する
 付記3~9のいずれか1つに記載の半導体装置。
[Additional note 13]
The semiconductor device according to any one of Supplementary Notes 3 to 9, wherein the semiconductor resistance layer (20) has a thickness thinner than the wiring layer (80).
 [付記14]
 前記素子絶縁層(40)の前記表面(41)に設けられ、前記半導体抵抗層(20)と電気的に接続された配線層(80)と、
 前記素子絶縁層(40)の前記表面(41)に設けられ、前記配線層(80)の一部を露出するように前記配線層(80)を覆うパッシベーション膜(43)と、を備える
 付記1~13のいずれか1つに記載の半導体装置。
[Additional note 14]
a wiring layer (80) provided on the surface (41) of the element insulating layer (40) and electrically connected to the semiconductor resistance layer (20);
A passivation film (43) provided on the surface (41) of the element insulating layer (40) and covering the wiring layer (80) so as to expose a part of the wiring layer (80). The semiconductor device according to any one of items 1 to 13.
 [付記15]
 素子絶縁層(40)と、
 前記素子絶縁層(40)内に設けられた1または複数の半導体抵抗層(20)と、
 前記素子絶縁層(40)内において前記半導体抵抗層(20)と電気的に接続され、前記素子絶縁層(40)の厚さ方向(Z軸方向)において前記半導体抵抗層(20)と対向配置された配線層(80)と、を備え、
 前記配線層(80)は、
 前記素子絶縁層(40)の厚さ方向(Z軸方向)において前記半導体抵抗層(20)を向く配線表面(82)と、
 前記配線表面(82)とは反対側の配線裏面(81)と、
 前記配線表面(82)と前記配線裏面(81)とを繋ぐ配線側面(83)と、を含み、
 前記素子絶縁層(40)は、
 第4絶縁層(61)と、
 前記第4絶縁層(61)上に積層され、前記第4絶縁層(61)よりも比誘電率が高い第5絶縁層(62)と、
 前記第5絶縁層(62)上に積層され、前記第5絶縁層(62)よりも比誘電率が低い低誘電率絶縁層(63/71)と、を含み、
 前記配線層(80)は、前記第5絶縁層(62)上に積層されており、前記配線裏面(81)が前記第5絶縁層(62)に接した状態で前記低誘電率絶縁層(63/71)内に設けられている
 半導体装置(10)。
[Additional note 15]
an element insulating layer (40);
one or more semiconductor resistance layers (20) provided within the element insulating layer (40);
electrically connected to the semiconductor resistance layer (20) within the element insulating layer (40), and disposed opposite to the semiconductor resistance layer (20) in the thickness direction (Z-axis direction) of the element insulating layer (40); a wiring layer (80),
The wiring layer (80) is
a wiring surface (82) facing the semiconductor resistance layer (20) in the thickness direction (Z-axis direction) of the element insulating layer (40);
a wiring back surface (81) opposite to the wiring surface (82);
a wiring side surface (83) connecting the wiring surface (82) and the wiring back surface (81);
The element insulating layer (40) is
a fourth insulating layer (61);
a fifth insulating layer (62) laminated on the fourth insulating layer (61) and having a higher dielectric constant than the fourth insulating layer (61);
a low dielectric constant insulating layer (63/71) laminated on the fifth insulating layer (62) and having a lower dielectric constant than the fifth insulating layer (62);
The wiring layer (80) is laminated on the fifth insulating layer (62), and the low dielectric constant insulating layer ( 63/71).
 [付記16]
 前記素子絶縁層(40)は、前記第5絶縁層(62)よりも比誘電率が低い第6絶縁層(63)をさらに含み、
 前記第6絶縁層(63)は、前記第5絶縁層(62)上に積層された前記低誘電率絶縁層である
 付記15に記載の半導体装置。
[Additional note 16]
The element insulating layer (40) further includes a sixth insulating layer (63) having a lower dielectric constant than the fifth insulating layer (62),
The semiconductor device according to appendix 15, wherein the sixth insulating layer (63) is the low dielectric constant insulating layer stacked on the fifth insulating layer (62).
 [付記17]
 前記素子絶縁層(40)は、
 前記第5絶縁層(62)よりも比誘電率が低い第1絶縁層(71)と、
 前記第1絶縁層(71)上に積層され、前記第1絶縁層(71)よりも比誘電率が高い第2絶縁層(72)と、を含み、
 前記半導体抵抗層(20)は、前記第2絶縁層(72)上に積層されており、
 前記第1絶縁層(71)は、前記第5絶縁層(62)上に積層された前記低誘電率絶縁層である
 付記15に記載の半導体装置。
[Additional note 17]
The element insulating layer (40) is
a first insulating layer (71) having a lower dielectric constant than the fifth insulating layer (62);
a second insulating layer (72) laminated on the first insulating layer (71) and having a higher dielectric constant than the first insulating layer (71);
The semiconductor resistance layer (20) is laminated on the second insulating layer (72),
The semiconductor device according to appendix 15, wherein the first insulating layer (71) is the low dielectric constant insulating layer stacked on the fifth insulating layer (62).
 [付記18]
 前記素子絶縁層(40)は、前記第4絶縁層(61)よりも比誘電率が低い第7絶縁層(52A)を含み、
 前記第4絶縁層(61)は、前記第7絶縁層(52A)上に積層されている
 付記15~17のいずれか1つに記載の半導体装置。
[Additional note 18]
The element insulating layer (40) includes a seventh insulating layer (52A) having a lower dielectric constant than the fourth insulating layer (61),
The semiconductor device according to any one of appendices 15 to 17, wherein the fourth insulating layer (61) is laminated on the seventh insulating layer (52A).
 [付記19]
 表面(41)と、前記表面(41)とは反対側の裏面(42)を有する素子絶縁層(40)と、
 前記素子絶縁層(40)内に設けられた1または複数の半導体抵抗層(20)と、
 前記素子絶縁層(40)の前記表面(41)上に設けられた電極パッド(P1~P5)と、
 前記素子絶縁層(40)の前記表面(41)上に設けられ、前記電極パッド(P1~P5)を覆うパッシベーション膜(43)と、を備え、
 前記素子絶縁層(40)は、
 第8絶縁層(91)と、
 前記第8絶縁層(91)上に積層され、前記第8絶縁層(91)よりも比誘電率が高い第9絶縁層(92)と、を含み、
 前記電極パッド(P1~P5)は、前記第9絶縁層(92)上に積層されており、前記第9絶縁層(92)に接した状態で前記パッシベーション膜(43)内に設けられている
 半導体装置(10)。
[Additional note 19]
an element insulating layer (40) having a front surface (41) and a back surface (42) opposite to the front surface (41);
one or more semiconductor resistance layers (20) provided within the element insulating layer (40);
electrode pads (P1 to P5) provided on the surface (41) of the element insulating layer (40);
a passivation film (43) provided on the surface (41) of the element insulating layer (40) and covering the electrode pads (P1 to P5);
The element insulating layer (40) is
an eighth insulating layer (91);
a ninth insulating layer (92) laminated on the eighth insulating layer (91) and having a higher dielectric constant than the eighth insulating layer (91);
The electrode pads (P1 to P5) are laminated on the ninth insulating layer (92), and are provided in the passivation film (43) in contact with the ninth insulating layer (92). Semiconductor device (10).
 [付記20]
 前記素子絶縁層(40)内に設けられた1または複数の半導体抵抗層(20)と、
 前記素子絶縁層(40)内において前記半導体抵抗層(20)と電気的に接続され、前記素子絶縁層(40)の厚さ方向(Z軸方向)において前記半導体抵抗層(20)と対向配置された配線層(80)と、を備え、
 前記電極パッド(P1~P5)は、前記配線層(80)を介して前記半導体抵抗層(20)と電気的に接続されている
 付記19に記載の半導体装置。
[Additional note 20]
one or more semiconductor resistance layers (20) provided within the element insulating layer (40);
electrically connected to the semiconductor resistance layer (20) within the element insulating layer (40), and disposed opposite to the semiconductor resistance layer (20) in the thickness direction (Z-axis direction) of the element insulating layer (40); a wiring layer (80),
The semiconductor device according to attachment 19, wherein the electrode pads (P1 to P5) are electrically connected to the semiconductor resistance layer (20) via the wiring layer (80).
 [付記21]
 前記素子絶縁層(40)は、前記第8絶縁層(91)よりも比誘電率が低い第3絶縁層(73)を含み、
 前記第8絶縁層(91)は、前記第3絶縁層(73)上に積層されている
 付記19または20に記載の半導体装置。
[Additional note 21]
The element insulating layer (40) includes a third insulating layer (73) having a lower dielectric constant than the eighth insulating layer (91),
The semiconductor device according to appendix 19 or 20, wherein the eighth insulating layer (91) is stacked on the third insulating layer (73).
 [付記22]
 基板(30)をさらに備え、
 前記素子絶縁層(40)は、
 前記基板(30)上に設けられた基板側絶縁層(50)と、
 前記基板側絶縁層(50)上に積層された表面側絶縁層(100)と、を含み、
 前記表面側絶縁層(100)は、前記第1絶縁層(71)、前記第2絶縁層(72)、および前記第3絶縁層(73)を含む
 付記1~4のいずれか1つに記載の半導体装置。
[Additional note 22]
further comprising a substrate (30);
The element insulating layer (40) is
a substrate-side insulating layer (50) provided on the substrate (30);
a front-side insulating layer (100) laminated on the substrate-side insulating layer (50),
The front-side insulating layer (100) includes the first insulating layer (71), the second insulating layer (72), and the third insulating layer (73). semiconductor devices.
 [付記23]
 基板(30)をさらに備え、
 前記素子絶縁層(40)は、
 前記基板(30)上に設けられた基板側絶縁層(50)と、
 前記基板側絶縁層(50)上に積層された表面側絶縁層(100)と、を含み、
 前記表面側絶縁層(100)は、前記第1絶縁層(71)、前記第2絶縁層(72)、前記第3絶縁層(73)、前記第4絶縁層(74)、および前記第5絶縁層(75)を含む
 付記4に記載の半導体装置。
[Additional note 23]
further comprising a substrate (30);
The element insulating layer (40) is
a substrate-side insulating layer (50) provided on the substrate (30);
a front-side insulating layer (100) laminated on the substrate-side insulating layer (50),
The front side insulating layer (100) includes the first insulating layer (71), the second insulating layer (72), the third insulating layer (73), the fourth insulating layer (74), and the fifth insulating layer (72). The semiconductor device according to appendix 4, including an insulating layer (75).
 [付記24]
 基板(30)をさらに備え、
 前記素子絶縁層(40)は、
 前記基板(30)上に設けられた基板側絶縁層(50)と、
 前記基板側絶縁層(50)上に積層された配線側絶縁層(60)と、
 前記配線側絶縁層(60)上に積層された抵抗側絶縁層(70)と、を含み、
 前記抵抗側絶縁層(70)は、前記第1絶縁層(71)、前記第2絶縁層(72)、および前記第3絶縁層(73)を含み、
 前記配線側絶縁層(60)は、前記第4絶縁層(61)、前記第5絶縁層(62)、および前記第6絶縁層(63)を含む
 付記5~7のいずれか1つに記載の半導体装置。
[Additional note 24]
further comprising a substrate (30);
The element insulating layer (40) is
a substrate-side insulating layer (50) provided on the substrate (30);
a wiring side insulating layer (60) laminated on the substrate side insulating layer (50);
a resistance-side insulating layer (70) laminated on the wiring-side insulating layer (60),
The resistance side insulating layer (70) includes the first insulating layer (71), the second insulating layer (72), and the third insulating layer (73),
The wiring side insulating layer (60) includes the fourth insulating layer (61), the fifth insulating layer (62), and the sixth insulating layer (63). semiconductor devices.
 [付記25]
 前記基板側絶縁層(50)は、
 複数の第1基板側絶縁層(51)と、
 複数の第2基板側絶縁層(52)と、を含み、
 前記複数の第1基板側絶縁層(51)と前記複数の第2基板側絶縁層(52)とは、1つずつ交互に積層されている
 付記22~24のいずれか1つに記載の半導体装置。
[Additional note 25]
The substrate side insulating layer (50) is
a plurality of first substrate side insulating layers (51);
a plurality of second substrate side insulating layers (52);
The semiconductor according to any one of appendices 22 to 24, wherein the plurality of first substrate side insulating layers (51) and the plurality of second substrate side insulating layers (52) are alternately stacked one by one. Device.
 [付記26]
 前記第1基板側絶縁層(51)は、SiNを含む材料によって形成され、
 前記第2基板側絶縁層(52)は、SiOを含む材料によって形成されている
 付記25に記載の半導体装置。
[Additional note 26]
The first substrate side insulating layer (51) is formed of a material containing SiN,
The semiconductor device according to attachment 25, wherein the second substrate side insulating layer (52) is formed of a material containing SiO 2 .
 [付記27]
 基板(30)をさらに備え、
 前記配線層(80)は、前記素子絶縁層(40)の厚さ方向(Z軸方向)において前記基板(30)から離隔して配置されている
 付記3~9のいずれか1つに記載の半導体装置。
[Additional note 27]
further comprising a substrate (30);
The wiring layer (80) is arranged to be spaced apart from the substrate (30) in the thickness direction (Z-axis direction) of the element insulating layer (40). Semiconductor equipment.
 [付記28]
 前記第1絶縁層(71)は、SiONを含む材料によって形成され、
 前記第2絶縁層(72)は、SiNを含む材料によって形成され、
 前記第3絶縁層(73)は、SiOを含む材料によって形成されている
 付記1~14のいずれか1つに記載の半導体装置。
[Additional note 28]
The first insulating layer (71) is formed of a material containing SiON,
The second insulating layer (72) is formed of a material containing SiN,
The semiconductor device according to any one of appendices 1 to 14, wherein the third insulating layer (73) is formed of a material containing SiO 2 .
 [付記29]
 前記第4絶縁層(61)は、SiONを含む材料によって形成され、
 前記第5絶縁層(62)は、SiNを含む材料によって形成されている
 付記4に記載の半導体装置。
[Additional note 29]
The fourth insulating layer (61) is formed of a material containing SiON,
The semiconductor device according to appendix 4, wherein the fifth insulating layer (62) is formed of a material containing SiN.
 [付記30]
 前記第4絶縁層(61)は、SiONを含む材料によって形成され、
 前記第5絶縁層(62)は、SiNを含む材料によって形成され、
 前記第6絶縁層(63)は、SiOを含む材料によって形成されている
 付記5~7のいずれか1つに記載の半導体装置。
[Additional note 30]
The fourth insulating layer (61) is formed of a material containing SiON,
The fifth insulating layer (62) is formed of a material containing SiN,
The semiconductor device according to any one of appendices 5 to 7, wherein the sixth insulating layer (63) is formed of a material containing SiO 2 .
 [付記31]
 前記第7絶縁層(52A)は、SiOを含む材料によって形成されている
 付記9に記載の半導体装置。
[Additional note 31]
The semiconductor device according to appendix 9, wherein the seventh insulating layer (52A) is formed of a material containing SiO2 .
 [付記32]
 前記第8絶縁層(91)は、SiONを含む材料によって形成され、
 前記第9絶縁層(92)は、SiNを含む材料によって形成されている
 付記10に記載の半導体装置。
[Additional note 32]
The eighth insulating layer (91) is formed of a material containing SiON,
The semiconductor device according to appendix 10, wherein the ninth insulating layer (92) is formed of a material containing SiN.
 [付記33]
 前記半導体抵抗層(20)は、CrSiを含む
 付記1~32のいずれか1つに記載の半導体装置。
[Additional note 33]
The semiconductor device according to any one of Supplementary Notes 1 to 32, wherein the semiconductor resistance layer (20) contains CrSi.
 [付記34]
 前記第1絶縁層(71)は、前記第3絶縁層(73)よりも薄い厚さを有する
 付記1~14のいずれか1つに記載の半導体装置。
[Additional note 34]
The semiconductor device according to any one of appendices 1 to 14, wherein the first insulating layer (71) has a thickness thinner than the third insulating layer (73).
 [付記35]
 前記第2絶縁層(72)は、前記第1絶縁層(71)よりも薄い厚さを有する
 付記1~14のいずれか1つに記載の半導体装置。
[Additional note 35]
The semiconductor device according to any one of appendices 1 to 14, wherein the second insulating layer (72) has a thickness thinner than the first insulating layer (71).
 [付記36]
 前記第5絶縁層(62)は、前記第2絶縁層(72)よりも薄い厚さを有する
 付記4~8のいずれか1つに記載の半導体装置。
[Appendix 36]
The semiconductor device according to any one of appendices 4 to 8, wherein the fifth insulating layer (62) has a thickness thinner than the second insulating layer (72).
 [付記37]
 前記第4絶縁層(61)は、前記第2絶縁層(72)よりも薄い厚さを有する
 付記4~8のいずれか1つに記載の半導体装置。
[Additional note 37]
The semiconductor device according to any one of appendices 4 to 8, wherein the fourth insulating layer (61) has a thickness thinner than the second insulating layer (72).
 [付記38]
 前記第2絶縁層(72)の厚さは、前記配線層(80)の厚さ以下である
 付記3~9のいずれか1つに記載の半導体装置。
[Appendix 38]
The semiconductor device according to any one of appendices 3 to 9, wherein the second insulating layer (72) has a thickness that is less than or equal to the wiring layer (80).
 [付記39]
 前記第2絶縁層(72)は、前記半導体抵抗層(20)よりも厚い厚さを有する
 付記1~14のいずれか1つに記載の半導体装置。
[Additional note 39]
The semiconductor device according to any one of Supplementary Notes 1 to 14, wherein the second insulating layer (72) has a thickness greater than the semiconductor resistance layer (20).
 [付記40]
 前記第6絶縁層(63)は、前記第4絶縁層(61)および前記第5絶縁層(62)の双方よりも厚い厚さを有する
 付記6または7に記載の半導体装置。
[Additional note 40]
The semiconductor device according to appendix 6 or 7, wherein the sixth insulating layer (63) has a thickness greater than both the fourth insulating layer (61) and the fifth insulating layer (62).
 [付記41]
 前記第6絶縁層(63)は、前記第1絶縁層(71)よりも厚い厚さを有する
 付記6または7に記載の半導体装置。
[Additional note 41]
The semiconductor device according to appendix 6 or 7, wherein the sixth insulating layer (63) has a greater thickness than the first insulating layer (71).
 10…半導体装置
 11…フレーム
 11A…第1ダイパッド部
 11B…第1リード部
 12…ダイパッド
 13A~13G…リード
 14…第1チップ
 14A~14D…第1~第4抵抗回路
 15…第2チップ
 15A…電圧検出回路
 16…封止樹脂
 16A~16D…第1~第4樹脂側面
 20…半導体抵抗層
 21~25…配線
 27…抵抗裏面
 28…抵抗表面
 29…抵抗側面
 30…基板
 40…素子絶縁層
 41…素子表面
 42…素子裏面
 43…パッシベーション膜
 43X…開口部
 50…基板側絶縁層
 51…第1基板側絶縁層
 52…第2基板側絶縁層
 52A…第7絶縁層
 60…配線側絶縁層
 61…第4絶縁層
 62…第5絶縁層
 63…第6絶縁層
 70…抵抗側絶縁層
 71…第1絶縁層
 72…第2絶縁層
 73…第3絶縁層
 80…配線層
 81…配線裏面
 82…配線表面
 83…配線側面
 90…ビア
 91…第8絶縁層
 92…第9絶縁層
 93…ビア
 100…表面側絶縁層
 801,802…ビア用開口部
 W1~W11…ワイヤ
 P1~P5…端子
 Q1~Q9…端子
10... Semiconductor device 11... Frame 11A... First die pad part 11B... First lead part 12... Die pad 13A-13G... Lead 14... First chip 14A-14D... First to fourth resistance circuit 15... Second chip 15A... Voltage detection circuit 16...Sealing resin 16A-16D...First to fourth resin side surfaces 20...Semiconductor resistance layer 21-25...Wiring 27...Resistor back surface 28...Resistor surface 29...Resistor side surface 30...Substrate 40...Element insulating layer 41 ...Element surface 42...Element back surface 43...Passivation film 43X...Opening 50...Substrate side insulating layer 51...First substrate side insulating layer 52...Second substrate side insulating layer 52A...Seventh insulating layer 60...Wiring side insulating layer 61 ... Fourth insulating layer 62... Fifth insulating layer 63... Sixth insulating layer 70... Resistance side insulating layer 71... First insulating layer 72... Second insulating layer 73... Third insulating layer 80... Wiring layer 81... Wiring back surface 82 ... Wiring surface 83... Wiring side surface 90... Via 91... Eighth insulating layer 92... Ninth insulating layer 93... Via 100... Front side insulating layer 801, 802... Via opening W1 to W11... Wire P1 to P5... Terminal Q1 ~Q9...terminal

Claims (17)

  1.  表面、および前記表面とは反対側の裏面を有する素子絶縁層と、
     前記素子絶縁層内に設けられた1または複数の半導体抵抗層と、
    を備え、
     前記半導体抵抗層は、
     前記素子絶縁層の厚さ方向において前記裏面を向く抵抗裏面と、
     前記抵抗裏面とは反対側の抵抗表面と、
     前記抵抗裏面と前記抵抗表面とを繋ぐ抵抗側面と、
    を含み、
     前記素子絶縁層は、
     第1絶縁層と、
     前記第1絶縁層上に積層され、前記第1絶縁層よりも比誘電率が高い第2絶縁層と、
     前記第2絶縁層上に積層され、前記第2絶縁層よりも比誘電率が低い第3絶縁層と、
    を含み、
     前記半導体抵抗層は、前記第2絶縁層上に積層されており、前記抵抗裏面が前記第2絶縁層に接した状態で前記第3絶縁層内に設けられている
     半導体装置。
    an element insulating layer having a front surface and a back surface opposite to the front surface;
    one or more semiconductor resistance layers provided in the element insulating layer;
    Equipped with
    The semiconductor resistance layer is
    a resistor back surface facing the back surface in the thickness direction of the element insulating layer;
    a resistor surface opposite to the resistor back surface;
    a resistor side surface connecting the resistor back surface and the resistor surface;
    including;
    The element insulating layer is
    a first insulating layer;
    a second insulating layer laminated on the first insulating layer and having a higher dielectric constant than the first insulating layer;
    a third insulating layer laminated on the second insulating layer and having a lower dielectric constant than the second insulating layer;
    including;
    The semiconductor resistance layer is stacked on the second insulating layer, and is provided in the third insulating layer with the back surface of the resistor in contact with the second insulating layer.
  2.  前記半導体抵抗層は、複数設けられており、前記素子絶縁層の厚さ方向に揃った状態で、当該厚さ方向と直交する方向に離隔して配列されている
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, wherein a plurality of the semiconductor resistance layers are provided, and the semiconductor resistance layers are aligned in the thickness direction of the element insulating layer and spaced apart in a direction perpendicular to the thickness direction. .
  3.  前記半導体抵抗層に対して前記素子絶縁層の前記裏面側に設けられ、前記半導体抵抗層と電気的に接続された配線層を備える
     請求項1または2に記載の半導体装置。
    The semiconductor device according to claim 1 , further comprising a wiring layer provided on the back side of the element insulating layer with respect to the semiconductor resistance layer and electrically connected to the semiconductor resistance layer.
  4.  前記配線層は、
     前記素子絶縁層の厚さ方向において前記半導体抵抗層を向く配線表面と、
     前記配線表面とは反対側の配線裏面と、
     前記配線表面と前記配線裏面とを繋ぐ配線側面と、
    を含み、
     前記素子絶縁層は、
     第4絶縁層と、
     前記第4絶縁層上に積層され、前記第4絶縁層よりも比誘電率が高い第5絶縁層と、
    を含み、
     前記配線層は、前記第5絶縁層上に積層されており、前記配線裏面が前記第5絶縁層に接している
     請求項3に記載の半導体装置。
    The wiring layer is
    a wiring surface facing the semiconductor resistance layer in the thickness direction of the element insulating layer;
    a back side of the wiring opposite to the wiring surface;
    a wiring side surface connecting the wiring surface and the wiring back surface;
    including;
    The element insulating layer is
    a fourth insulating layer;
    a fifth insulating layer laminated on the fourth insulating layer and having a higher dielectric constant than the fourth insulating layer;
    including;
    The semiconductor device according to claim 3, wherein the wiring layer is stacked on the fifth insulating layer, and the back surface of the wiring is in contact with the fifth insulating layer.
  5.  前記素子絶縁層は、前記第5絶縁層と前記第1絶縁層との間に設けられ、前記第5絶縁層よりも比誘電率が低い第6絶縁層を含み、
     前記配線層は、前記第6絶縁層内に設けられている
     請求項4に記載の半導体装置。
    The element insulating layer is provided between the fifth insulating layer and the first insulating layer, and includes a sixth insulating layer having a lower dielectric constant than the fifth insulating layer,
    The semiconductor device according to claim 4, wherein the wiring layer is provided within the sixth insulating layer.
  6.  前記素子絶縁層は、前記第5絶縁層と前記第1絶縁層との間に設けられ、前記第5絶縁層よりも比誘電率が低い第6絶縁層を含み、
     前記第1絶縁層は、前記第6絶縁層上に積層されており、
     前記第6絶縁層は、前記第1絶縁層よりも比誘電率が低い
     請求項4または5に記載の半導体装置。
    The element insulating layer is provided between the fifth insulating layer and the first insulating layer, and includes a sixth insulating layer having a lower dielectric constant than the fifth insulating layer,
    The first insulating layer is laminated on the sixth insulating layer,
    The semiconductor device according to claim 4 , wherein the sixth insulating layer has a lower dielectric constant than the first insulating layer.
  7.  前記第1絶縁層は、前記配線層に対して前記素子絶縁層の厚さ方向において離隔して配置されている
     請求項6に記載の半導体装置。
    The semiconductor device according to claim 6, wherein the first insulating layer is spaced apart from the wiring layer in the thickness direction of the element insulating layer.
  8.  前記第1絶縁層は、前記第5絶縁層上に積層され、かつ前記第5絶縁層よりも比誘電率が低く、
     前記配線層は、前記第1絶縁層内に設けられている
     請求項4~7のいずれか一項に記載の半導体装置。
    The first insulating layer is laminated on the fifth insulating layer, and has a lower dielectric constant than the fifth insulating layer,
    The semiconductor device according to claim 4, wherein the wiring layer is provided within the first insulating layer.
  9.  前記素子絶縁層は、前記第4絶縁層よりも比誘電率が低い第7絶縁層を含み、
     前記第4絶縁層は、前記第7絶縁層上に積層されている
     請求項4~8のいずれか一項に記載の半導体装置。
    The element insulating layer includes a seventh insulating layer having a lower dielectric constant than the fourth insulating layer,
    The semiconductor device according to claim 4, wherein the fourth insulating layer is stacked on the seventh insulating layer.
  10.  前記素子絶縁層は、
     前記第3絶縁層上に積層され、前記第3絶縁層よりも比誘電率が高い第8絶縁層と、
     前記第8絶縁層上に積層され、前記第8絶縁層よりも比誘電率が高い第9絶縁層と、
    を含み、
     前記第9絶縁層上に形成された電極パッドをさらに備える
     請求項1~9のいずれか一項に記載の半導体装置。
    The element insulating layer is
    an eighth insulating layer laminated on the third insulating layer and having a higher dielectric constant than the third insulating layer;
    a ninth insulating layer laminated on the eighth insulating layer and having a higher dielectric constant than the eighth insulating layer;
    including;
    The semiconductor device according to claim 1, further comprising an electrode pad formed on the ninth insulating layer.
  11.  前記素子絶縁層は、前記第3絶縁層上に積層され、前記第3絶縁層よりも比誘電率が高い高誘電率絶縁層を含み、
     前記高誘電率絶縁層上に形成された電極パッドをさらに備える
     請求項1~8のいずれか一項に記載の半導体装置。
    The element insulating layer includes a high dielectric constant insulating layer laminated on the third insulating layer and having a higher dielectric constant than the third insulating layer,
    The semiconductor device according to claim 1, further comprising an electrode pad formed on the high dielectric constant insulating layer.
  12.  前記素子絶縁層の厚さ方向に延び、前記半導体抵抗層と前記配線層とを電気的に接続するビアをさらに備える
     請求項3~9のいずれか一項に記載の半導体装置。
    10. The semiconductor device according to claim 3, further comprising a via extending in the thickness direction of the element insulating layer and electrically connecting the semiconductor resistance layer and the wiring layer.
  13.  前記半導体抵抗層は、前記配線層よりも薄い厚さを有する
     請求項3~9のいずれか一項に記載の半導体装置。
    The semiconductor device according to claim 3, wherein the semiconductor resistance layer has a thickness thinner than the wiring layer.
  14.  前記素子絶縁層の前記表面に設けられ、前記半導体抵抗層と電気的に接続された配線層と、
     前記素子絶縁層の前記表面に設けられ、前記配線層の一部を露出するように前記配線層を覆うパッシベーション膜と、
    を備える
     請求項1~13のいずれか一項に記載の半導体装置。
    a wiring layer provided on the surface of the element insulating layer and electrically connected to the semiconductor resistance layer;
    a passivation film provided on the surface of the element insulating layer and covering the wiring layer so as to expose a part of the wiring layer;
    The semiconductor device according to any one of claims 1 to 13, comprising:
  15.  素子絶縁層と、
     前記素子絶縁層内に設けられた1または複数の半導体抵抗層と、
     前記素子絶縁層内において前記半導体抵抗層と電気的に接続され、前記素子絶縁層の厚さ方向において前記半導体抵抗層と対向配置された配線層と、
    を備え、
     前記配線層は、
     前記素子絶縁層の厚さ方向において前記半導体抵抗層を向く配線表面と、
     前記配線表面とは反対側の配線裏面と、
     前記配線表面と前記配線裏面とを繋ぐ配線側面と、
    を含み、
     前記素子絶縁層は、
     第4絶縁層と、
     前記第4絶縁層上に積層され、前記第4絶縁層よりも比誘電率が高い第5絶縁層と、
     前記第5絶縁層上に積層され、前記第5絶縁層よりも比誘電率が低い低誘電率絶縁層と、
    を含み、
     前記配線層は、前記第5絶縁層上に積層されており、前記配線裏面が前記第5絶縁層に接した状態で前記低誘電率絶縁層内に設けられている
     半導体装置。
    an element insulating layer;
    one or more semiconductor resistance layers provided in the element insulating layer;
    a wiring layer electrically connected to the semiconductor resistance layer in the element insulating layer and facing the semiconductor resistance layer in the thickness direction of the element insulating layer;
    Equipped with
    The wiring layer is
    a wiring surface facing the semiconductor resistance layer in the thickness direction of the element insulating layer;
    a wiring back surface opposite to the wiring surface;
    a wiring side surface connecting the wiring surface and the wiring back surface;
    including;
    The element insulating layer is
    a fourth insulating layer;
    a fifth insulating layer laminated on the fourth insulating layer and having a higher dielectric constant than the fourth insulating layer;
    a low dielectric constant insulating layer laminated on the fifth insulating layer and having a lower dielectric constant than the fifth insulating layer;
    including;
    The wiring layer is laminated on the fifth insulating layer, and is provided in the low dielectric constant insulating layer with the back surface of the wiring in contact with the fifth insulating layer.
  16.  前記素子絶縁層は、前記第5絶縁層よりも比誘電率が低い第6絶縁層をさらに含み、
     前記第6絶縁層は、前記第5絶縁層上に積層された前記低誘電率絶縁層である
     請求項15に記載の半導体装置。
    The element insulating layer further includes a sixth insulating layer having a lower dielectric constant than the fifth insulating layer,
    The semiconductor device according to claim 15, wherein the sixth insulating layer is the low dielectric constant insulating layer stacked on the fifth insulating layer.
  17.  前記素子絶縁層は、
     前記第5絶縁層よりも比誘電率が低い第1絶縁層と、
     前記第1絶縁層上に積層され、前記第1絶縁層よりも比誘電率が高い第2絶縁層と、
    を含み、
     前記半導体抵抗層は、前記第2絶縁層上に積層されており、
     前記第1絶縁層は、前記第5絶縁層上に積層された前記低誘電率絶縁層である
     請求項15に記載の半導体装置。
    The element insulating layer is
    a first insulating layer having a lower dielectric constant than the fifth insulating layer;
    a second insulating layer laminated on the first insulating layer and having a higher dielectric constant than the first insulating layer;
    including;
    The semiconductor resistance layer is laminated on the second insulating layer,
    The semiconductor device according to claim 15, wherein the first insulating layer is the low dielectric constant insulating layer stacked on the fifth insulating layer.
PCT/JP2023/025696 2022-07-15 2023-07-12 Semiconductor device WO2024014473A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022114107 2022-07-15
JP2022-114107 2022-07-15

Publications (1)

Publication Number Publication Date
WO2024014473A1 true WO2024014473A1 (en) 2024-01-18

Family

ID=89536746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025696 WO2024014473A1 (en) 2022-07-15 2023-07-12 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2024014473A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289609A (en) * 2001-03-27 2002-10-04 Toshiba Corp Semiconductor device and its manufacturing method
JP2017502522A (en) * 2013-12-31 2017-01-19 日本テキサス・インスツルメンツ株式会社 Metal thin film resistors and processes
WO2022149371A1 (en) * 2021-01-08 2022-07-14 ローム株式会社 Electronic component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289609A (en) * 2001-03-27 2002-10-04 Toshiba Corp Semiconductor device and its manufacturing method
JP2017502522A (en) * 2013-12-31 2017-01-19 日本テキサス・インスツルメンツ株式会社 Metal thin film resistors and processes
WO2022149371A1 (en) * 2021-01-08 2022-07-14 ローム株式会社 Electronic component

Similar Documents

Publication Publication Date Title
CN110326073B (en) Capacitor with a capacitor element
US8154129B2 (en) Electrode structure and semiconductor device
US7786565B2 (en) Semiconductor apparatus including power semiconductor device constructed by using wide band gap semiconductor
US20240339421A1 (en) Electronic component and semiconductor device
JP6300236B2 (en) SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND POWER CONVERSION DEVICE
US7723837B2 (en) Semiconductor device
JP6726112B2 (en) Semiconductor device and power converter
JP2005520342A (en) Semiconductor device having wire bond pad and manufacturing method thereof
JP6100480B2 (en) Semiconductor device and manufacturing method thereof
US11961816B2 (en) Semiconductor chip and semiconductor device including a copper pillar and an intermediate layer and a concave portion formed at one end surface of the copper pillar
WO2024014473A1 (en) Semiconductor device
CN111341760B (en) Resistor element
US11626221B2 (en) Resistance element and its manufacturing method
US20230387185A1 (en) Semiconductor device
CN112086439A (en) Resistance element
JP5228361B2 (en) Mounting structure of semiconductor device
US20240282805A1 (en) Semiconductor device and semiconductor module
US20240282699A1 (en) Semiconductor device
US20230116738A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2023102918A (en) Semiconductor device
JP2020202356A (en) Resistor element and manufacturing method for the same
WO2024043105A1 (en) Transformer chip and signal transmission device
WO2023189930A1 (en) Semiconductor element and semiconductor device
US20240186366A1 (en) Semiconductor device and semiconductor module
US20220254692A1 (en) Semiconductor element, semiconductor device including the semiconductor element, and semiconductor element manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839645

Country of ref document: EP

Kind code of ref document: A1