WO2023277153A1 - 骨髄系共通前駆細胞(cmp)又は骨髄球系前駆細胞の増殖性を向上させる方法 - Google Patents

骨髄系共通前駆細胞(cmp)又は骨髄球系前駆細胞の増殖性を向上させる方法 Download PDF

Info

Publication number
WO2023277153A1
WO2023277153A1 PCT/JP2022/026341 JP2022026341W WO2023277153A1 WO 2023277153 A1 WO2023277153 A1 WO 2023277153A1 JP 2022026341 W JP2022026341 W JP 2022026341W WO 2023277153 A1 WO2023277153 A1 WO 2023277153A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
cells
progenitor cells
cmp
expression
Prior art date
Application number
PCT/JP2022/026341
Other languages
English (en)
French (fr)
Inventor
直也 ▲高▼山
浩之 江藤
壮 中村
スーディップ クマール ポール
Original Assignee
国立大学法人千葉大学
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人千葉大学, 国立大学法人京都大学 filed Critical 国立大学法人千葉大学
Priority to JP2023532070A priority Critical patent/JPWO2023277153A1/ja
Priority to EP22833299.5A priority patent/EP4365283A1/en
Priority to US18/575,460 priority patent/US20240301353A1/en
Publication of WO2023277153A1 publication Critical patent/WO2023277153A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0645Macrophages, e.g. Kuepfer cells in the liver; Monocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0639Dendritic cells, e.g. Langherhans cells in the epidermis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0641Erythrocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0642Granulocytes, e.g. basopils, eosinophils, neutrophils, mast cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/125Stem cell factor [SCF], c-kit ligand [KL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/145Thrombopoietin [TPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/22Colony stimulating factors (G-CSF, GM-CSF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2303Interleukin-3 (IL-3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/04Immortalised cells

Definitions

  • the present invention broadly relates to methods for improving the proliferation of common myeloid progenitor cells (CMP) or myeloid progenitor cells.
  • CMP common myeloid progenitor cells
  • Peripheral blood cells differentiate from hematopoietic stem cells via hematopoietic progenitor cells of each lineage.
  • Common myeloid progenitor cells are hematopoietic progenitor cells that produce platelets, erythrocytes, and white blood cells other than lymphoid cells (neutrophils, macrophages, basophils, dendritic cells, etc.). It exists in the bone marrow in a steady state, but differentiates as necessary during injury, infection, etc., and supplies mature blood cells.
  • Produced neutrophils, macrophages, basophils, dendritic cells, etc. play a major role in innate immunity, protecting against various pathogenic organisms, eliminating tumors and degenerated self cells, allergic reactions, acute and chronic inflammation. contribute to
  • Non-Patent Documents 1 and 2 In methods using cord blood- and bone marrow-derived hematopoietic progenitor cells, neutrophils, macrophages, and the like can be obtained by adding growth factors (see Non-Patent Documents 1 and 2), but the growth of cord blood and bone marrow blood itself does not occur. is finite, and lot differences are large, making it difficult to prepare a large amount of cells of uniform quality.
  • Non-Patent Documents 3--7 the reported macrophage differentiation from human iPS cells is limited to 10 8 cells in a 250 mL culture system (see Non-Patent Document 8). From the standpoint of both drug screening and cell therapy, the number of cells in conventional techniques is significantly insufficient, and the development of more efficient induction methods is essential.
  • the present invention provides common myeloid progenitor cells (CMP) or myeloid progenitor cells for the establishment of a stable production system for cells such as neutrophils, macrophages, basophils, and dendritic cells.
  • CMP common myeloid progenitor cells
  • An object of the present invention is to provide a novel method for improving the proliferation of
  • the present inventors as a result of repeated studies to solve the above problems, forcedly express the MYC family gene and BMI1 gene in any cell in the differentiation process from hematopoietic progenitor cells to specific myeloid progenitor cells. As a result, the inventors have found that the proliferative properties of CMP or myeloid progenitor cells can be improved, and have completed the present invention.
  • the present invention includes the following inventions.
  • [1] comprising the step of forcibly expressing the MYC family gene and the BMI1 gene in any cell in the process of differentiation from hematopoietic progenitor cells to myeloid progenitor cells, A method for improving proliferation of CMP or myeloid progenitor cells, wherein the myeloid progenitor cells are macrophage, dendritic cell, granulocyte, erythroblast, or erythrocyte progenitor cells.
  • the method of [1] further comprising the step of extracting CMP or myeloid progenitor cells.
  • [6] The method according to any one of [1] to [5], further comprising suppressing the expression of at least one of the CDKN1A gene and the p53 gene, or the function of the expression product, in CMP or myeloid progenitor cells.
  • the method of. [7] A method for producing CMP or myeloid progenitor cells, which comprises culturing the CMP or myeloid progenitor cells obtained by the method according to any one of [1] to [6].
  • [8] A method for producing a CMP differentiated cell, comprising a step of differentiating the CMP or myeloid progenitor cells obtained by the method according to any one of [1] to [7].
  • CMP or myeloid progenitor cells obtained by the method according to any one of [1] to [7], or CMP differentiated cells obtained by the method according to [8] or [9] A pharmaceutical composition comprising: [11] CMPs or myeloid progenitor cells obtained by the method according to any one of [1] to [7], CMP differentiated cells obtained by the method according to [8] or [9], or A method for treating or preventing a disease, comprising administering the pharmaceutical composition of [10] to a patient in need thereof.
  • CMP or myeloid progenitor cells obtained by the method according to any one of [1] to [7].
  • a CMP-lineage differentiated cell obtained by the method of [8] or [9].
  • a CMP or myeloid progenitor cell proliferation-promoting agent containing as an active ingredient a molecule that forces expression of the MYC family gene and the BMI1 gene, A proliferation-promoting agent, wherein the myeloid progenitor cells are macrophage, dendritic cell, granulocyte, erythroblast, or erythrocyte progenitor cells.
  • a cell preparation comprising the cell population of [16].
  • a method for producing macrophages comprising the steps of: 1) a step of forcibly expressing the MYC family gene and the BMI1 gene in any cell in the process of differentiation from hematopoietic progenitor cells to macrophage progenitor cells; 2) culturing and growing the cells obtained in step 1; 3) A step of suppressing forced expression of the MYC family gene and BMI1 gene in the cells obtained in step 2 and further culturing the cells under macrophage differentiation conditions to promote differentiation and maturation into macrophages.
  • step 1 further comprises forced expression of the BCL-XL gene in any cell in the process of differentiation from hematopoietic progenitor cells to macrophage progenitor cells.
  • step 3 further comprises suppressing forced expression of the BCL-XL gene in the cells obtained in step 2.
  • Step 1 further comprises suppressing the expression of the CDKN1A gene and/or the p53 gene, or the function of the expression product, in any cell in the process of differentiation from hematopoietic progenitor cells to macrophage progenitor cells, [18 ] to [20].
  • [1B] comprising the step of forcibly expressing the BCL-XL gene in CMP or myeloid progenitor cells, A method for improving proliferation of CMP or myeloid progenitor cells, wherein the myeloid progenitor cells are GMP, macrophage progenitor cells or dendritic cell progenitor cells.
  • the method of [1B] further comprising the step of extracting CMP or myeloid progenitor cells.
  • [3B] The method of [1B] or [2B], further comprising the step of forced expression of the MYC family gene and the BMI1 gene in CMP or myeloid progenitor cells.
  • [7B] The method of [6B], wherein the CMP-lineage differentiated cells are macrophages or dendritic cells.
  • [8B] CMP or myeloid progenitor cells obtained by the method of any one of [1B] to [5B], or CMP differentiated cells obtained by the method of [6B] or [7B]
  • a pharmaceutical composition comprising: [9B] CMPs or myeloid progenitor cells obtained by the method of any one of [1B] to [5B], or CMP differentiated cells obtained by the method of [6B] or [7B], Or a method for treating or preventing a disease, which comprises administering the pharmaceutical composition of [8B] to a patient in need thereof.
  • a cell population comprising the CMP or myeloid progenitor cells of [13B], wherein the proportion of the CMP or myeloid progenitor cells in the entire cell population is 10% or more.
  • [1C] comprising the step of suppressing the expression of at least one of the CDKN1A gene and the p53 gene, or the function of the expression product, in CMP or myeloid progenitor cells;
  • the method of [1C] further comprising the step of extracting CMP or myeloid progenitor cells.
  • [3C] The method of [1C] or [2C], further comprising the step of forced expression of the MYC family gene and the BMI1 gene in CMP or myeloid progenitor cells.
  • [4C] The method of any one of [1C] to [3C], further comprising the step of forcibly expressing the BCL-XL gene in CMP or myeloid progenitor cells.
  • [5C] A method for producing CMP or myeloid progenitor cells, comprising the step of culturing the CMP or myeloid progenitor cells obtained by the method according to any one of [1C] to [4C].
  • [6C] A method for producing CMP-lineage differentiated cells, comprising a step of differentiating CMP- or myeloid-lineage progenitor cells obtained by the method according to any one of [1C] to [5C].
  • [7C] The method of [6C], wherein the CMP-lineage differentiated cells are macrophages, dendritic cells or erythrocytes.
  • a pharmaceutical composition comprising: [9C] CMPs or myeloid progenitor cells obtained by the method of any one of [1C] to [5C], or CMP differentiated cells obtained by the method of [6C] or [7C], Or a method for treating or preventing a disease, which comprises administering the pharmaceutical composition of [8C] to a patient in need thereof.
  • [13C] a nucleic acid encoding an expression-suppressing nucleic acid for the CDKN1A gene operably linked to a fifth exogenous promoter and/or an expression-suppressing nucleic acid for the p53 gene operably linked to the sixth exogenous promoter; CMP or myeloid progenitor cells, wherein the myeloid progenitor cells are GMP, macrophage progenitor cells, dendritic cell progenitor cells or erythroid progenitor cells.
  • a cell population comprising the CMP or myeloid progenitor cells of [13C], wherein the proportion of the CMP or myeloid progenitor cells in the entire cell population is 10% or more.
  • a cell preparation comprising the cell population of [14C].
  • the proliferation of CMP or myeloid progenitor cells can be improved.
  • the present invention enables doxycycline-induced stable proliferation of human iPS cell-derived hematopoietic progenitor cells for a long period of time.
  • a large amount of neutrophils, macrophages, erythroblasts, erythrocytes, etc. can be prepared.
  • the present invention is capable of inducing immortalized myeloid cell lines from various iPS cells with high efficiency, iPS cells transfected with receptors targeting foreign-specific antigens, and genetic modification that enhances cytotoxicity to target cells.
  • HLA null iPS cells that have suppressed immune rejection, and iPS cells that have inherited diseases they are more physiological and can be expected to be superior in both drug screening and cell therapy.
  • FIG. 1 shows a method for establishing an immortalized CMP strain used in Example 1-1.
  • FIG. 2 shows a strain (MB) that was cultured as it was after 14 days of culture with the CMP strain introduced with the two genes of c-MYC/BMI1, and after 21 days of culture, the MB strain was further treated with a doxycycline-induced lentiviral vector for BCL-XL.
  • a strain into which the gene was introduced (MBX) a strain (MB-p21/p53_KD) infected with a shp21/p53 lentiviral vector that further persistently expresses the MB strain after 21 days of culture, and an MBX strain after 21 days of culture.
  • FIG. 3 shows the expression of the three factors MYC/BMI1/BCL-XL after removing doxycycline from the culture medium for CMP strains (upper row: Clone7-3, lower row: Clone7-4) induced from healthy subject-derived iPS cells.
  • 7 shows the results of confirmation of terminal differentiation into three main myeloid lineages on day 7 after suppressing .
  • FIG. 4 shows differentiation of MBX strain and MBX-p21/p53_KD strain into macrophages on day 7 after removing doxycycline from the culture medium and suppressing the expression of the three factors MYC/BMI1/BCL-XL. The results are shown.
  • FIG. 5 shows the PiggyBac System used in Example 2-1.
  • FIG. 6 shows the growth curve of the macrophage strain established in Example 2-1.
  • FIG. 7 shows the results of staining the 1383D10-derived macrophage strain obtained in Example 2-1 with CD13, CD14, CD33, CD43 and HLA-DR and analyzing by FACS. The upper part of FIG.
  • FIG. 8 shows the operation of each macrophage strain obtained in Example 2-1 after sorting with CX3CR1, which is a macrophage marker, at the time of gene expression (Dox on) and at the time of gene expression suppression (Dox off).
  • the lower part of FIG. 8 shows the results of FACS analysis of macrophage cell surface markers at the time of gene expression (Dox on).
  • FIG. 9 shows the results of FACS analysis of macrophage cell surface markers when gene expression is suppressed (Dox off) for each macrophage strain obtained in Example 2-1.
  • FIG. 10 shows the result of verifying whether each macrophage strain obtained in Example 2-1 is of the M1 type or the M2 type.
  • FIG. 11 shows the results of removing doxycycline from the culture solution of each macrophage strain obtained in Example 2-1, and staining the cell strain with CD11b after culturing on Matrigel with Dox off.
  • FIG. 12 shows the results of examining the phagocytic ability of each macrophage strain obtained in Example 2-1.
  • FIG. 13 shows the results of examining the ⁇ -amiloid phagocytic ability of each macrophage strain obtained in Example 2-1.
  • FIG. 14 shows the results of counting the number of glycophorin A (Gly-A)-positive cells in the erythrocyte line established in Example 2-1.
  • FIG. 15 shows the PiggyBac System used in Example 3-1.
  • FIG. 16 shows growth curves of macrophage strains established in Example 3-1.
  • FIG. 17 shows growth curves of the dendritic cell lines established in Example 3-1.
  • the upper part of FIG. 18 shows the operation of each macrophage strain obtained in Example 3-1 after sorting with CX3CR1, which is a macrophage marker, at the time of gene expression (Dox on) and at the time of gene expression suppression (Dox off).
  • the lower part of FIG. 18 shows the results of FACS analysis of macrophage cell surface markers at the time of gene expression (Dox on).
  • FIG. 19 shows the results of FACS analysis of macrophage cell surface markers when gene expression is suppressed (Dox off) for each macrophage strain obtained in Example 3-1.
  • FIG. 20 shows the results of examining the ⁇ -amiloid phagocytic ability of each macrophage strain obtained in Example 3-1.
  • FIG. 21 shows the operation to perform gene expression (Dox on) and gene expression suppression (Dox off) after sorting each dendritic cell line obtained in Example 3-1 with CD209, which is a dendritic cell marker. indicates The lower part of FIG. 21 shows the results of FACS analysis of dendritic cell surface markers during gene expression (Dox on) and gene expression suppression (Dox off).
  • FIG. 22 shows the results of FACS analysis of dendritic cell surface markers during gene expression (Dox on) and gene expression suppression (Dox off) for each dendritic cell line obtained in Example 3-1.
  • FIG. 21 shows the operation to perform gene expression (Dox on) and gene expression suppression (Dox off) after sorting each dendritic cell line obtained in Example 3-1 with CD209, which is a dendritic cell marker. indicates The lower part of FIG. 21 shows the results of FACS analysis of dendritic cell surface markers during gene expression (Dox on) and gene expression suppression (Dox off).
  • FIG. 22 shows the results of FACS
  • FIG. 23 shows the results of FACS analysis of dendritic cell surface markers during gene expression (Dox on) and gene expression suppression (Dox off) for each dendritic cell line obtained in Example 3-1.
  • FIG. 24 shows the results of counting the number of Gly-A positive cells for the erythroid line established in Example 3-1.
  • Methodology 1 The method for improving the proliferative property of CMP or myeloid progenitor cells according to the present embodiment is to forcibly express the MYC family gene and BMI1 gene in any cell in the process of differentiation from hematopoietic progenitor cells to myeloid progenitor cells. It can be expected that the proliferative properties of CMP or myeloid progenitor cells will be improved, and an immortalized cell line that can proliferate indefinitely will be obtained.
  • CMP common myeloid progenitor
  • CMPs can be characterized by expression of cell surface markers, eg, CD33 + , in flow cytometric analysis.
  • CMP can be obtained by culturing hematopoietic progenitor cells or hematopoietic endothelial cells under conditions suitable for inducing CMP differentiation.
  • hematopoietic progenitor cells or hematopoietic endothelial cells can be obtained by culturing in an appropriate medium containing GM-CSF, G-CSF, IL-3, SCF and TPO for a period of time sufficient for differentiation into CMPs. .
  • an appropriate medium containing GM-CSF, G-CSF, IL-3, SCF and TPO for a period of time sufficient for differentiation into CMPs.
  • conditions of 5% CO 2 and 36 to 38°C preferably 37°C can be used.
  • Induction of CMP can be determined by subjecting cultured cells to flow cytometric analysis to detect the appearance of cells with cell surface marker expression patterns characteristic of CMP as described above, or by subjecting them to colony formation assays. , can be confirmed by confirming that the above-mentioned CMPs have the characteristic differentiation ability.
  • the culture period until CMP is induced varies depending on the type of starting cells (hematopoietic progenitor cells, hematopoietic endothelial cells, etc.), but its presence can be confirmed about 1 to 20 days after initiation of differentiation induction. can.
  • Hematopoietic progenitor cells are hematopoietic cells characterized as CD34 + CD43 + cells, and may be, for example, cells derived from pluripotent stem cells such as ES cells and iPS cells, particularly ES cells.
  • Cells obtained from net-like structures also referred to as “ES-sac” or “iPS-sac”
  • iPS-sac pluripotent stem cells
  • the “net-like structure” prepared from ES cells or iPS cells is a three-dimensional sac-like structure (having a space inside) derived from ES cells or iPS cells, and is composed of an endothelial cell population or the like.
  • Hematopoietic endothelial cells refers to cells that express VE-cadherin and have the ability (bipotency) to form colonies of both blood cells and vascular endothelial cells from a single cell. Hematopoietic endothelial cells can be VE-cadherin positive, CD41 positive, CXCR4 positive cells. "Hematopoietic endothelial cells” may be, for example, cells derived from pluripotent stem cells such as ES cells or iPS cells, and are induced in the process of inducing net-like structures from ES cells or iPS cells.
  • Cell culture conditions suitable for preparing net-like structures from human pluripotent stem cells such as human ES cells and human iPS cells vary depending on the pluripotent stem cells used. % of FBS, and even in the case of serum-free, growth factors and supplements can be added as appropriate. Furthermore, 0 to 100 ng/ml, more preferably about 20 ng/ml of VEGF should be added in order to efficiently form a net-like structure.
  • the culture environment varies depending on the type of ES cells or iPS cells used, conditions such as 5% CO 2 at 36 to 38° C., preferably 37° C., can be used.
  • the culture period until the net-like structure is formed varies depending on the type of pluripotent stem cells and the induction conditions.
  • a cell mass containing hematopoietic endothelial cells is formed, and a net-like structure containing hematopoietic progenitor cells is formed by about 14 to 16 days.
  • the formed net-like structure has a follicular structure, and hematopoietic progenitor cells are present in a concentrated state inside.
  • Hematopoietic endothelial cells contained in the cell mass and hematopoietic progenitor cells present inside the net-like structure are separated by physical means, for example, passing through a sterilized sieve-like instrument (e.g., cell strainer, etc.). be able to.
  • a sterilized sieve-like instrument e.g., cell strainer, etc.
  • Myeloid progenitor cells are CMP-derived cells that are differentiated from CMPs and broadly mean macrophage, dendritic cell, granulocyte, erythroid, or erythroid progenitor cells.
  • CMP can differentiate into megakaryocyte-erythrocyte progenitor (MEP) and granulocyte-macrophage progenitor (GMP) cells. After that, through multistage differentiation, macrophages, dendritic cells, and granulocytes are generated from GMP, and megakaryocytes, erythroblasts, or red blood cells are generated from MEP.
  • MEP megakaryocyte-erythrocyte progenitor
  • GMP granulocyte-macrophage progenitor
  • macrophages, dendritic cells, granulocytes, erythroblasts, or erythroid progenitors are terminally differentiated macrophages, dendritic cells, granulocytes, megakaryocytes, erythroblasts, or erythrocytes. Any cell in the process of differentiating from CMP to macrophages, dendritic cells, granulocytes, erythroblasts, or erythrocytes, but not per se.
  • myeloid progenitor cells include, but are not limited to, MEP, GMP, macrophage progenitor cells, dendritic cell progenitor cells, erythrocyte progenitor cells, neutrophil progenitor cells, and the like.
  • myeloid progenitor cells from myeloid progenitor cells, megakaryocyte progenitor cells in the process of differentiation from MEP to megakaryocytes (before multinucleation, described as "megakaryocyte progenitor cells" in WO2011/034073) are excluded.
  • MEPs can be obtained by culturing hematopoietic progenitor cells, hematopoietic endothelial cells or CMPs under conditions suitable for inducing MEP differentiation.
  • hematopoietic progenitor cells, hematopoietic endothelial cells or CMPs can be obtained by culturing in an appropriate medium containing IL-3, SCF and TPO for a period of time sufficient for differentiation into MEPs.
  • Macrophage progenitor cells can be obtained by culturing hematopoietic progenitor cells, hematopoietic endothelial cells, and CMP under conditions suitable for inducing macrophage progenitor cell differentiation.
  • hematopoietic progenitor cells hematopoietic endothelial cells
  • CMPs can be obtained by culturing in an appropriate medium containing IL-1b, SCF and M-CSF for a period of time sufficient for differentiation into macrophage progenitor cells.
  • Dendritic cell progenitor cells can be obtained by culturing hematopoietic progenitor cells, hematopoietic endothelial cells, and CMP under conditions suitable for inducing dendritic cell progenitor cell differentiation.
  • hematopoietic progenitor cells, hematopoietic endothelial cells and CMPs can be obtained by culturing them in an appropriate medium containing SCF, M-CSF and GM-CSF for a period of time sufficient for differentiation into dendritic cell progenitor cells.
  • Neutrophil progenitor cells can be obtained by culturing hematopoietic progenitor cells, hematopoietic endothelial cells, and CMP under conditions suitable for inducing differentiation of neutrophil progenitor cells.
  • hematopoietic progenitor cells hematopoietic endothelial cells
  • CMPs can be obtained by culturing them in an appropriate medium containing SCF and GM-CSF for a period of time sufficient for differentiation into neutrophil progenitor cells.
  • Erythroid progenitor cells can be obtained by culturing hematopoietic progenitor cells, hematopoietic endothelial cells, CMP or MEP under conditions suitable for inducing differentiation of erythroid progenitor cells.
  • hematopoietic progenitor cells hematopoietic endothelial cells, CMPs or MEPs can be obtained by culturing in an appropriate medium containing SCF and EPO for a period of time sufficient for differentiation into erythroid progenitor cells.
  • an appropriate medium containing SCF and EPO for example, conditions of 5% CO 2 and 36 to 38°C, preferably 37°C can be used.
  • the fact that each myeloid progenitor cell was induced was confirmed by subjecting the cultured cells to flow cytometric analysis to detect the appearance of cells having a cell surface marker expression pattern characteristic of each myeloid progenitor cell described below.
  • each myeloid progenitor cell has a characteristic differentiation ability by subjecting it to a colony formation assay.
  • the culture period until CMP is induced varies depending on the type of starting cells (hematopoietic progenitor cells, hematopoietic endothelial cells, etc.), but its presence should be confirmed 7 to 14 days after initiation of differentiation induction. can be done.
  • CMPs, MEPs can be characterized by the following cell surface marker expression patterns in flow cytometric analysis.
  • CMP Lin ⁇ /CD33 +
  • MEP CD41 + or CD41 + Gly-A +
  • myeloid progenitor cells can be characterized in flow cytometric analysis by, for example, expressing at least one, preferably two or more of the following cell surface markers.
  • Macrophage progenitor cells CX3CR1, CD16, CD14, CD11b, CD13, CD86 Dendritic cell precursors: CD209, CD11c, CD303, CD80, CD86 Erythroid progenitor cells: Gly-A, CD71 Neutrophil progenitor cells: CD15, CD16
  • the present inventors found that in pre-multinucleated megakaryocytes (including those described as "megakaryocyte progenitor cells” in WO2011/034073) induced from pluripotent stem cells, oncogenes such as MYC and BMI1 etc. It has been reported that the gene is forcibly expressed and the proliferative ability of the megakaryocyte is enhanced (WO2011/034073, JEM, 207:2817-2830 2010), but the present invention is that this methodology can be used not only for megakaryocytes but also for megakaryocytes. , based on the discovery that it can be applied to arbitrary cells in the process of differentiation from hematopoietic progenitor cells to myeloid progenitor cells, and can enhance their proliferation ability.
  • expression of a gene means transcription of DNA encoding a gene of interest into mRNA and/or translation of mRNA into protein. Forced expression of the MYC family gene and the BMI1 gene may be performed simultaneously or sequentially. After forced expression, the cells may be subcultured, and the period from the last passage to the date of cancellation of forced expression is not particularly limited, but may be, for example, 1 day, 2 days, or 3 days or more. . When maintaining proliferation of CMP or myeloid progenitor cells, it is preferable to maintain forced expression of the MYC family gene and BMI1 gene during the culture period.
  • MYC family genes are genes that induce canceration of cells in vivo.
  • MYC family genes include, for example, c-MYC, N-MYC, and L-MYC genes. Among these, c-MYC is preferred.
  • the BMI gene is a gene that negatively regulates the CDKN2a (INK4A/ARF) gene and functions to avoid cell senescence (Ogura et al., Regenerative Medicine, vol.6, No.4, pp26-32; Jseus et al., Jseus et al., Nature Reviews Molecular Cell Biology vol.7, pp667-677, 2006; Proc. Natl. Acad. Sci. USA, vol.100, pp211-216, 2003).
  • the method for improving the proliferation of CMP or myeloid progenitor cells may further include a step of extracting (isolating or purifying) cells in a desired specific stage of differentiation (CMP or myeloid progenitor cells). good. Extraction of cells at a specific stage of differentiation (CMP or myeloid progenitor cells) may be performed before or after forced expression of the MYC family gene and BMI1 gene. In one embodiment, this extraction step is performed before forced expression of the MYC family gene and BMI1 gene, and the MYC family gene and BMI1 gene are forcedly expressed in the extracted cells at a specific stage of differentiation (CMP or myeloid progenitor cells).
  • the MYC family gene and the BMI1 gene are forcibly expressed to prepare a cell population containing cells in a specific desired differentiation stage (CMP or myeloid progenitor cells), and then from the cell population, the desired Cells of a specific differentiation stage (CMP or myeloid progenitor cells) are extracted.
  • the MYC family gene and the BMI1 gene may be subsequently forcibly expressed in the extracted cells at a specific stage of differentiation (CMP or myeloid progenitor cells).
  • the cells to be extracted are preferably only CMP cell lines or only single myeloid progenitor cell lines. A cell population in which two or more of these cells are mixed may be used. Examples of cells to be extracted include CMP, MEP, GMP, macrophage progenitor cells, dendritic cell progenitor cells, erythrocyte progenitor cells, neutrophil progenitor cells, and the like.
  • Extraction of the cells of interest is performed by methods well known to those skilled in the art, such as flow cytometry, panning, magnetic beads, etc., using antibodies against cell surface markers that are specifically expressed (or not expressed) in the cells. It can be done by Isolation of CMP and MEP can be performed by isolating cells satisfying the cell surface marker expression pattern described above.
  • cells positive for at least one cell surface marker preferably CX3CR1 selected from the group consisting of CX3CR1, CD16, CD14, CD11b, CD13 and CD86 are isolated.
  • dendritic cell progenitor cells for example, cells positive for at least one cell surface marker (preferably CD209) selected from the group consisting of CD209, CD11c, CD303, CD80 and CD86 are isolated.
  • cell surface marker preferably CD209
  • erythrocyte progenitor cells for example, cells positive for at least one cell surface marker (preferably Gly-A) selected from the group consisting of Gly-A and CD71 are isolated.
  • cells positive for at least one cell surface marker selected from the group consisting of CD15 and CD16 are isolated.
  • the ratio of the target cells contained in the cell population after the extraction operation is, for example, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more , 90% or more, 95% or more (eg, 100%).
  • Single cells of the cells of interest may be isolated.
  • the method for improving the proliferation of CMP or myeloid progenitor cells according to the present invention may further include a step of forcing expression of the BCL-XL gene in CMP or myeloid progenitor cells. Further promotion of proliferation of CMP or myeloid progenitor cells can be expected by expressing the BCL-XL gene in addition to the MYC family gene and BMI1 gene. The period of forced expression of the BCL-XL gene can be appropriately determined by those skilled in the art.
  • the BCL-XL gene is a gene that has the function of suppressing cell apoptosis.
  • the forced expression of the MYC family gene, BMI1 gene, and/or BCL-XL gene may be performed simultaneously or sequentially.
  • CMP or myeloid progenitor cells with improved proliferation ability may be obtained by forced expression of the MYC family gene and BMI1 gene followed by forced expression of the BCL-XL gene.
  • CMP or myeloid progenitor cells with improved proliferative ability can be obtained by forced expression of the MYC family gene, the BMI1 gene and the BCL-XL gene at the same time.
  • MYC family genes, BMI1 gene, and BCL-XL gene promote cell proliferation of CMP or myeloid progenitor cells, but CMP-lineage differentiated cells (e.g., macrophages, dendritic cells, neutrophils, erythrocytes) terminally
  • CMP-lineage differentiated cells e.g., macrophages, dendritic cells, neutrophils, erythrocytes
  • the expression of these genes may be suppressed prior to entering the terminal differentiation process in order to inhibit differentiation. Suppression of the expression of these genes in CMP or myeloid progenitor cells facilitates the induction of functional and more mature CMP-lineage differentiated cells (eg, macrophages, dendritic cells, neutrophils, erythrocytes).
  • a gene introduction system using a non-viral vector such as a viral vector, a plasmid vector, or an episomal vector may be used for introduction into cells and expression.
  • a method eg, PiggyBac Transposon system
  • PiggyBac Transposon system is used in which the target gene is non-virally integrated into the genome of the cell using a transposon, and after establishing a stable expression cell line, the transgene that is no longer needed is removed using a transposonase. is also preferred.
  • CMP or myeloid progenitor cells may be transfected with an expression vector (e.g., viral vector) of a desired gene (e.g., MYC family gene and BMI1 gene, optionally further BCL-XL gene).
  • a desired gene e.g., MYC family gene and BMI1 gene, optionally further BCL-XL gene.
  • pluripotent stem cells e.g., ES cells, iPS cells
  • hematopoietic progenitor cells hematopoietic endothelial cells incorporating expression cassettes of desired genes (e.g., MYC family genes and BMI1 genes, optionally further BCL-XL genes)
  • CMP or myeloid progenitor cells may be induced and forced expression of the gene at that stage.
  • pluripotent stem cells e.g., ES cells, iPS cells
  • hematopoietic progenitor cells e.g., hematopoietic progenitor cells
  • hematopoietic cells e.g., hematopoietic progenitor cells into which expression cassettes of desired genes (e.g., MYC family genes and BMI1 genes, optionally further BCL-XL genes) have been incorporated in advance
  • desired genes e.g., MYC family genes and BMI1 genes, optionally further BCL-XL genes
  • endothelial cells differentiation of pluripotent stem cells, hematopoietic progenitor cells or hematopoietic endothelial cells into CMP or myeloid progenitor cells may be induced while forcibly expressing the gene.
  • the gene When gene expression is performed using a gene transfer vector, the gene may be operably linked downstream of an appropriate promoter, inserted into the gene transfer vector, and introduced into cells to express the gene of interest.
  • the promoter can be an exogenous promoter.
  • an "endogenous" promoter of a gene means a promoter that is naturally linked to the gene in the genome
  • an "exogenous" promoter of a gene refers to genetic manipulation (i.e., molecular biology artificially placed proximal to the gene by means of scientific techniques) such that transcription of the gene is directed by the promoter to which it is operably linked.
  • operably linked means linking a promoter and a gene of interest so that the gene of interest is cis-controlled by the promoter and the desired expression of the gene of interest is achieved.
  • An exogenous promoter can be a constitutive promoter or a regulated promoter.
  • Constitutive promoters include, for example, CMV promoter, EF1 promoter, ubiquitin promoter and the like.
  • a regulatable promoter means an inducible or derepressible promoter and refers to a promoter that has a DNA sequence that acts in conjunction with the promoter that can be bound by either a repressor or an inducer.
  • a promoter is "on" when it is induced or derepressed, and “off” when the promoter is not induced or derepressed.
  • regulatable promoters include drug responsive promoters such as tetracycline responsive promoters, steroid responsive promoters, metallothionein promoters and the like.
  • a tetracycline-responsive promoter is a known regulatable promoter that is reversibly controlled by the presence or absence of tetracycline or its derivatives (eg, doxycycline (Dox)).
  • a tetracycline responsive promoter is a promoter that has a tetracycline responsive element (TRE) placed within it, and binding of the reverse tetracycline-regulated transactivator (rtTA) protein or tetracycline-regulated transactivator (tTA) to the TRE.
  • TRE tetracycline responsive element
  • a promoter that is activated (that is, induces the expression of the target protein) by .
  • the rtTA protein binds to the TRE in the presence of Dox, while the tTA protein binds to the TRE in the absence of Dox to induce expression of the gene of interest operably linked to the promoter downstream of the TRE sequence.
  • a tetracycline-responsive promoter When a tetracycline-responsive promoter is used, cells into which the gene functionally linked to the tetracycline-responsive promoter and the rtTA or tTA protein have been introduced are cultured in the presence of Dox to activate the gene in a Dox-dependent manner. expression can be induced or suppressed.
  • An exogenous promoter is preferably a regulatable promoter.
  • the gene of interest can be inducibly expressed by control such as addition of a drug.
  • a suitable drug-mediated gene expression system can be easily selected by those skilled in the art to achieve desired expression control of MYC family genes, BMI1 genes, BCL-XL genes, and the like. A commercially available kit or the like may be used for such expression.
  • the MYC family gene, BMI1 gene, and BCL-XL gene, which are target genes for expression regulation may be inserted into separate vectors or may be inserted into the same vector.
  • Suppression of the expression of the MYC family gene, BMI1 gene, BCL-XL gene, etc. in cells is, for example, the induction of expression by the drug-inducible expression system using the above-mentioned regulatable promoter is released by removal of the drug, etc. can be achieved by Alternatively, the introduced MYC family gene, BMI1 gene, BCL-XL gene or the like may be removed using the Cre/lox system or the like to suppress the expression of these genes. Commercially available kits and the like can also be used as appropriate for suppressively regulating the expression of MYC family genes, BMI1 gene, BCL-XL gene and the like.
  • a commercially available drug-responsive gene expression induction system such as the Tet-on (registered trademark) or Tet-off (registered trademark) system may be used for forced expression and release of each of the above genes.
  • a corresponding drug such as tetracycline or doxycycline may be contained in the medium and the forced expression may be suppressed by removing them from the medium.
  • the method for improving the proliferation of CMP or myeloid progenitor cells suppresses the expression of at least one of the CDKN1A gene and p53 gene, or the function of the expression product thereof, in CMP or myeloid progenitor cells.
  • a process may be included.
  • expression is used as a concept including transcription and translation, and inhibition of expression can include inhibition at the transcription level as well as inhibition at the translation level.
  • by suppressing the expression of the CDKN1A gene and/or the p53 gene or the function of the expression product thereof further improvement in proliferation of CMP or myeloid progenitor cells can be expected.
  • the CDKN1A (cyclin-dependent kinase inhibitor 1A) gene encodes the cell cycle inhibitor p21, and is also known as the downstream gene of the tumor suppressor gene p53.
  • the activated p53 protein acts as a transcription factor and increases the expression of p53 downstream genes. Therefore, as used herein, "to suppress the expression of a gene or the function of its expression product” means the expression of a gene of interest or the function of its expression product (e.g., p21 in the case of the CDKN1A gene). can be achieved by directly suppressing the gene of interest, or by controlling the expression of genes upstream of the gene of interest or the function of their expression products.
  • the p53 gene when suppressing the expression of the CDKN1A gene or the function of its expression product, the p53 gene, or another gene upstream of the p53 gene, is included in the target upstream gene of the CDKN1A gene.
  • INK4A gene and ARF gene which are tumor suppressor genes are not included.
  • CDKN1A gene it is preferable to suppress not only the CDKN1A gene, but also the expression of the p53 gene or the functions of their expression products.
  • each gene or the function of the expression product thereof can be suppressed by a known method.
  • siRNA, shRNA, antisense nucleic acid ("expression suppressing nucleic acid” )
  • expression suppressing nucleic acid or by introducing various molecules such as expression vectors capable of expressing these expression-suppressing nucleic acids into cells.
  • the gene may be knocked down using other techniques such as genome editing techniques. For example, when knocking down a gene using the CRISPR-Cas system, a guide RNA targeting the gene and a fusion protein of inactivated Cas and repressor domain such as dCas are used.
  • siRNA is typically a double-stranded oligo RNA consisting of an RNA having a sequence complementary to the nucleotide sequence of the mRNA of the target gene or a partial sequence thereof and its complementary strand.
  • the length of siRNA when used in mammalian cells, is usually about 19 to 30 bases, preferably about 21 to 25 bases.
  • the nucleotide sequences of these RNAs can be appropriately designed by those skilled in the art from the sequence information of genes whose expression is to be suppressed.
  • shRNA can also be used instead of siRNA.
  • the antisense nucleic acid includes a nucleotide sequence that can specifically hybridize with the target mRNA under physiological conditions of cells that express the target mRNA (mature mRNA or early transcript), and in a hybridized state, the target mRNA. It refers to a nucleic acid capable of inhibiting translation of the encoded polypeptide.
  • An antisense nucleic acid is generally a single-stranded nucleic acid with a length of 10 to 100 bases, preferably 15 to 30 bases.
  • the type of antisense nucleic acid may be DNA or RNA, or a chimera of DNA and RNA.
  • the nucleotide sequence of the antisense nucleic acid can be appropriately designed by those skilled in the art based on the sequence information of the gene whose expression is to be suppressed.
  • compounds known to suppress the expression of each gene can also be used.
  • p21 inhibitors such as UC2288, butyrolactone I, LLW10, sorafenib, and sterigmatocystin are known as compounds that suppress the expression of the CDKN1A gene.
  • p53 inhibitors pifithrin ⁇ , nutrin-3, ReACp53, RG7388 and the like are known.
  • the gene of interest may be knocked out using known techniques in order to suppress the expression of the gene or the function of its expression product.
  • Gene knockout means that all or part of a gene has been disrupted or mutated so that it does not perform its original function.
  • a gene may be disrupted or mutated so that one allele on the genome is non-functional.
  • multiple alleles may be disrupted or mutated.
  • Knockout can be performed by known methods, for example, a method of knocking out by introducing into cells a DNA construct designed to allow genetic recombination with the target gene, TALEN or CRISPR-Cas A method of knocking out by base insertion, deletion, or substitution introduction using genome editing technology such as system.
  • compounds that suppress the transcription and transcription products of each gene, or binding inhibitors of the produced proteins to target proteins may be used.
  • p21 binding inhibition: UC2288, butyrolactone I, LLW10, sorafenib, sterigmatocystin, etc. may be used.
  • Suppression of the expression of the CDKN1A gene and/or the p53 gene is preferably carried out by introducing into cells an expression vector that expresses an expression-suppressing nucleic acid for each gene.
  • an expression vector that expresses an expression-suppressing nucleic acid for each gene any method known to those skilled in the art may be used. It may be introduced into cells and expressed using a gene introduction system using a viral vector such as a retrovirus or a non-viral vector such as a plasmid vector or an episomal vector.
  • a method of non-virally incorporating a nucleic acid encoding an expression-suppressing nucleic acid into the genome of a cell using a transposon establishing a cell line that stably expresses the expression-suppressing nucleic acid, and then removing the unnecessary transferred nucleic acid using a transposonase. It is also preferred to use (eg PiggyBac Transposon system).
  • CMP or myeloid progenitor cells may be transfected with an expression vector (e.g., viral vector) of an expression-suppressing nucleic acid for a desired gene (e.g., CDKN1A gene, p53 gene), or a desired gene (e.g., CDKN1A gene, p53 gene) to induce CMP or myeloid progenitor cells from pluripotent stem cells (e.g., ES cells, iPS cells), hematopoietic progenitor cells or hematopoietic endothelial cells incorporating expression cassettes of expression-suppressing nucleic acids for The siRNA, shRNA or antisense nucleic acid may be forcibly expressed at the stage.
  • an expression vector e.g., viral vector
  • an expression-suppressing nucleic acid for a desired gene e.g., CDKN1A gene, p53 gene
  • a desired gene e.g., CDKN1A
  • pluripotent stem cells e.g., ES cells, iPS cells
  • hematopoietic progenitor cells e.g., hematopoietic progenitor cells
  • hematopoietic endothelial cells in which an expression cassette of an expression-suppressing nucleic acid for a desired gene (e.g., CDKN1A gene, p53 gene) is incorporated in advance
  • a desired gene e.g., CDKN1A gene, p53 gene
  • the expression Differentiation of the pluripotent stem cells, hematopoietic progenitor cells or hematopoietic endothelial cells into CMP or myeloid progenitor cells may be induced while forced expression of the suppressor nucleic acid.
  • a nucleic acid e.g., DNA
  • the promoter can be an exogenous promoter.
  • the exogenous promoter can be a constitutive promoter or a regulated promoter, but is preferably a constitutive promoter.
  • constitutive promoters examples include U6 promoter, H1 promoter, tRNA promoter, retroviral LTR promoter, adenoviral VAl promoter, 5S rRNA promoter, 7SK RNA promoter, when expressing relatively small RNAs such as siRNA and shRNA, It is preferable to use a pol III promoter such as the 7SL RNA promoter.
  • a nucleic acid encoding an expression-suppressing nucleic acid for the CDKN1A gene and a nucleic acid encoding an expression-suppressing nucleic acid for the p53 gene may be inserted into separate expression vectors or may be inserted into the same expression vector.
  • the suppression of the expression of the CDKN1A gene or p53 gene, or the function of the expression product thereof may be simultaneous with the forced expression of any of the MYC family gene, BMI1 gene, or BCL-XL gene. It is preferably simultaneous with or after forced expression of the BCL-XL gene.
  • it can be performed after a decrease in cell proliferation has been confirmed.
  • compare the cell growth rate at a certain time point with the most recent cell growth rate e.g., if the cell growth rate is confirmed every week, compare the cell growth rate of a certain week with the growth rate of the week before).
  • compare the cell growth rate at a certain time point with the most recent cell growth rate (e.g., if the cell growth rate is confirmed every week, compare the cell growth rate of a certain week with the growth rate of the week before). ), and can be carried out after confirming that the growth rate has decreased to 1/2 or less.
  • the decrease in cell proliferation is about 30 days, about 40 days, about 50 days, about 60 days, about 70 days, about 80 days after the forced expression of the MYC family gene and the BMI1 gene. days later, or up to about 90 days later.
  • forced expression of MYC family genes e.g., c-Myc gene
  • BMI1 gene in parallel with this, CDKN1A gene and / or p53 gene expression, or its Suppresses the function of the expression product.
  • MYC family genes e.g., c-Myc gene
  • BMI1 gene e.g., BMI1 gene
  • BCL-XL gene e.g., BMI1A gene
  • CDKN1A gene and / or p53 suppresses the expression of a gene or the function of its expression product.
  • each gene such as the MYC family gene, BMI1 gene, BCL-XL gene, CDKN1A gene, p53 gene, etc. means those encoded by their known nucleic acid sequences, such as cDNA sequences. Each gene can also include homologs that are identified based on known nucleic acid sequence homology.
  • a "homologue” is a gene in which the cDNA sequence of a gene consists of a sequence that is substantially identical to the nucleic acid sequence of that gene.
  • a homologue of the c-MYC gene is a gene whose cDNA sequence is substantially identical to the nucleic acid sequence shown in SEQ ID NO: 1, for example.
  • cDNA consisting of a sequence substantially identical to the nucleic acid sequence represented by SEQ ID NO: 1 is about 60% or more, preferably about 70% or more, more preferably about 80% or more, such as 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, even more preferably about 90% or more, such as 91%, 92%, 93% , 94%, 95%, 96%, 97%, 98%, most preferably about 99% or more, or a sequence complementary to the nucleic acid sequence shown in SEQ ID NO: 1 DNAs capable of hybridizing to DNA or RNA under stringent conditions, the proteins encoded by these DNAs inhibiting the cell cycle.
  • the cDNA consisting of a sequence substantially identical to the nucleic acid sequence represented by SEQ ID NO: 1 is one or more, for example 1 to 10, preferably several, such as 1, in the sequence represented by SEQ ID NO: 1.
  • a DNA consisting of a sequence in which ⁇ 5, 1 to 4, 1 to 3, or 1 to 2 bases are deleted, substituted or added, and the protein encoded by these DNAs is capable of completing the cell cycle. It is something that hinders.
  • a homologue of the BMI1 gene is a gene whose cDNA sequence consists of, for example, a sequence substantially identical to the nucleic acid sequence shown in SEQ ID NO:2.
  • cDNA consisting of a sequence substantially identical to the nucleic acid sequence shown by SEQ ID NO: 2 is about 60% or more, preferably about 70% or more, more preferably about 80% of the DNA consisting of the sequence shown by SEQ ID NO: 2.
  • the cDNA consisting of a sequence substantially identical to the nucleic acid sequence represented by SEQ ID NO: 2 is one or more, for example 1 to 10, preferably several, such as 1, in the sequence represented by SEQ ID NO: 2.
  • a DNA consisting of a sequence in which ⁇ 5, 1 to 4, 1 to 3, or 1 to 2 bases are deleted, substituted or added, and the protein encoded by these DNAs is capable of completing the cell cycle. It is something that hinders.
  • a homologue of the BCL-XL gene is a gene whose cDNA sequence consists of, for example, a sequence substantially identical to the nucleic acid sequence shown in SEQ ID NO:3.
  • cDNA consisting of a sequence substantially identical to the nucleic acid sequence shown by SEQ ID NO: 3 is about 60% or more, preferably about 70% or more, more preferably about 80% of the DNA consisting of the sequence shown by SEQ ID NO: 3.
  • % or more such as 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, even more preferably about 90% or more, such as 91%, 92%, 93%, DNA consisting of a sequence having 94%, 95%, 96%, 97%, 98%, most preferably about 99% or more identity, or a DNA consisting of a sequence complementary to the nucleic acid sequence shown in SEQ ID NO: 3 or DNAs capable of hybridizing to RNA under stringent conditions, the proteins encoded by these DNAs inhibiting the cell cycle.
  • the cDNA consisting of a sequence substantially identical to the nucleic acid sequence represented by SEQ ID NO: 3 is one or more, such as 1 to 10, preferably several, such as 1, in the sequence represented by SEQ ID NO: 3.
  • a DNA consisting of a sequence in which ⁇ 5, 1 to 4, 1 to 3, or 1 to 2 bases are deleted, substituted or added, and the protein encoded by these DNAs is capable of completing the cell cycle. It is something that hinders.
  • a homologue of the CDKN1A gene is a gene whose cDNA sequence consists of, for example, a sequence substantially identical to the nucleic acid sequence shown in SEQ ID NO:4.
  • cDNA consisting of a sequence substantially identical to the nucleic acid sequence shown by SEQ ID NO: 4 is about 60% or more, preferably about 70% or more, more preferably about 80% of the DNA consisting of the sequence shown by SEQ ID NO: 4.
  • the cDNA consisting of a sequence substantially identical to the nucleic acid sequence represented by SEQ ID NO: 4 is one or more, such as 1 to 10, preferably several, such as 1, in the sequence represented by SEQ ID NO: 4.
  • a DNA consisting of a sequence in which ⁇ 5, 1 to 4, 1 to 3, or 1 to 2 bases are deleted, substituted or added, and the protein encoded by these DNAs is capable of completing the cell cycle. It is something that hinders.
  • the p53 gene is a gene whose cDNA sequence consists of, for example, a sequence substantially identical to the nucleic acid sequence shown in SEQ ID NO:5.
  • cDNA consisting of a sequence substantially identical to the nucleic acid sequence shown by SEQ ID NO: 5 is about 60% or more, preferably about 70% or more, more preferably about 80% of the DNA consisting of the sequence shown by SEQ ID NO: 5.
  • DNA consisting of a sequence complementary to the nucleic acid sequence shown in SEQ ID NO: 5 A DNA capable of hybridizing under stringent conditions, wherein the protein encoded by the DNA suppresses cancer.
  • the cDNA consisting of a sequence substantially identical to the nucleic acid sequence represented by SEQ ID NO: 5 is one or more, such as 1 to 10, preferably several, such as 1, in the sequence represented by SEQ ID NO: 5.
  • the stringent conditions are hybridization conditions that are easily determined by those skilled in the art, and are generally empirical experimental conditions that depend on the base length of nucleic acids, washing temperature, and salt concentration. be. In general, longer bases require higher temperatures for proper annealing and shorter bases require lower temperatures. Hybridization generally depends on the ability of complementary strands to reanneal in an environment slightly below their melting temperature.
  • the filter is washed in a 0.1 ⁇ SSC, 0.1% SDS solution under temperature conditions of 37° C. to 42° C. etc. will be raised.
  • highly stringent conditions include, for example, washing in 65° C., 5 ⁇ SSC and 0.1% SDS in the washing step. Polynucleotides with high homology can be obtained by increasing stringent conditions.
  • the method for producing CMP or myeloid progenitor cells according to this embodiment includes CMP or myeloid progenitor cells obtained by the above-described method for improving the proliferation of CMP or myeloid progenitor cells according to this embodiment. including a step of culturing (culturing step).
  • Culture conditions for CMPs or myeloid progenitor cells can be appropriately determined by those skilled in the art according to the type and state of the cells.
  • the culture temperature can be about 35° C. to about 42° C., about 36° C. to about 40° C., or about 37° C. to about 39° C.
  • the carbon dioxide concentration is, for example, 5% CO 2
  • the oxygen concentration is, for example, 20° C. It can be % 02 .
  • It may be stationary culture or shaking culture.
  • the shaking speed in shaking culture is not particularly limited, either, and can be, for example, 10 rpm to 200 rpm, 30 rpm to 150 rpm, and the like.
  • the medium may be Iscove's Modified Dulbecco's Medium (IMDM) medium containing serum, insulin, transferrin, serine, thiolglycerol, ascorbic acid, and TPO.
  • IMDM Iscove's Modified Dulbecco's Medium
  • the IMDM medium may further contain SCF and may further contain heparin.
  • phorbol esters eg phorbol-12-myristate-13-acetate; PMA may be added.
  • feeder cells refer to cells that are co-cultured with target cells in order to prepare an environment necessary for culturing the target cells to be proliferated or differentiated.
  • Feeder cells may be allogeneic or heterologous as long as they are distinguishable from target cells.
  • Feeder cells may be cells that have been treated with antibiotics or gamma radiation to prevent proliferation, or cells that have not been treated.
  • the medium may contain serum or plasma, or may be serum-free. If serum is used, human serum is preferred.
  • the medium contains, for example, albumin, insulin, transferrin, selenium, fatty acids, trace elements, 2-mercaptoethanol, thiolglycerol, monothioglycerol (MTG), lipids, amino acids (eg L-glutamine), ascorbic acid , heparin, non-essential amino acids, vitamins, growth factors, small compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts, cytokines, and the like.
  • Cytokines include, for example, vascular endothelial growth factor (VEGF), thrombopoietin (TPO), various TPO-like agents, stem cell factor (SCF), erythropoietin (EPO), granulocyte colony stimulating factor (G-CSF), interleukin 3 (IL3), ITS (insulin-transferrin-selenite) supplements, ADAM (A Disintegrin And Metalloprotease) inhibitors, and the like.
  • VEGF vascular endothelial growth factor
  • TPO thrombopoietin
  • SCF stem cell factor
  • EPO erythropoietin
  • G-CSF granulocyte colony stimulating factor
  • IL3 interleukin 3
  • ITS insulin-transferrin-selenite
  • ADAM Disintegrin And Metalloprotease
  • cytokines suitable for cell proliferation it is preferable to add a combination of cytokines suitable for cell proliferation to the medium.
  • cytokines suitable for cell proliferation For example, when CMPs are cultured, at least one, preferably all cytokines selected from GM-CSF, G-CSF, IL-3, SCF and TPO are added to the medium in a sufficient amount to promote the proliferation of CMPs. can be added to When culturing MEPs, at least one, preferably all cytokines selected from IL-3, SCF and TPO can be added to the medium. When culturing GMP, at least one, preferably all cytokines selected from SCF and GM-CSF can be added to the medium.
  • cytokines selected from IL-1b, SCF and M-CSF can be added to the medium.
  • cytokines selected from IL-1b, SCF and M-CSF can be added to the medium.
  • dendritic cell progenitor cells at least one, preferably all cytokines selected from SCF, M-CSF and GM-CSF can be added to the medium.
  • neutrophil progenitor cells at least one, preferably all cytokines selected from SCF and GM-CSF can be added to the medium.
  • erythroid progenitor cells at least one, preferably all cytokines selected from SCF and EPO can be added to the medium.
  • the present invention provides CMP or myeloid progenitor cells (hereinafter referred to as the present invention cells).
  • the MYC family gene is preferably c-MYC.
  • myeloid progenitor cells include MEP, GMP, macrophage progenitor cells, dendritic cell progenitor cells, erythrocyte progenitor cells, neutrophil progenitor cells, and the like.
  • the first exogenous promoter and the second exogenous promoter can independently be constitutive promoters or regulatable promoters, but are preferably regulatable promoters.
  • the regulatable promoter is preferably a drug responsive promoter, more preferably a tetracycline responsive promoter.
  • the types of the first exogenous promoter and the second exogenous promoter may be the same or different, but are preferably the same type of promoter. By using the same type of promoter, the MYC family gene and the BMI1 gene can be expressed synchronously, and their expression can be suppressed synchronously.
  • the first exogenous promoter and the second exogenous promoter are preferably the same regulatable promoter (eg drug responsive promoter), more preferably both are tetracycline responsive promoters.
  • the first exogenous promoter and the second exogenous promoter may be independently operably linked to the MYC family gene and the BMI1 gene, or one exogenous promoter may be linked to the MYC family gene and It may be operably linked to the BMI1 gene.
  • the MYC family gene and the BMI1 gene are linked via an intervening sequence such as an IRES to enable bicistronic expression under the control of one exogenous promoter.
  • the MYC family gene operably linked to the first exogenous promoter and the BMI1 gene operably linked to the second exogenous promoter may be integrated into the genome of the CMP or myeloid progenitor cell. and may be present in an expression vector introduced into CMP or myeloid progenitor cells.
  • the MYC family gene operably linked to the first exogenous promoter and the BMI1 gene operably linked to the second exogenous promoter are integrated into the genome of the CMP or myeloid progenitor cell.
  • the cells of the present invention act with the third exogenous promoter to enable tetracycline-dependent expression control. It is preferred to further have the rtTA gene or tTA gene operably linked.
  • the third exogenous promoter can be a constitutive promoter or a regulated promoter, but preferably is a constitutive promoter.
  • the rtTA gene or tTA gene operably linked to a third exogenous promoter may be integrated into the genome of the CMP or myeloid progenitor cell or introduced into the CMP or myeloid progenitor cell. It may be present in an expression vector.
  • the rtTA gene or tTA gene operably linked to a third exogenous promoter is integrated into the genome of the CMP or myeloid progenitor cell.
  • the cells of the present invention contain an amount of a MYC family gene (e.g., , c-Myc gene) and the BMI1 gene.
  • the amount of MYC family gene (e.g., c-Myc) and BMI1 gene capable of promoting the proliferation of CMP or myeloid progenitor cells in vitro is defined as CMP or myeloid lineage expressing said amount of MYC family gene and BMI1 gene.
  • MYC family such that the growth rate of progenitor cells is significantly increased compared to CMP or myeloid progenitor cells prepared in the same manner as the above cells except that the MYC family gene and BMI1 gene are not expressed. Means the amount of gene and BMI1 gene.
  • the cells of the present invention may further have a BCL-XL gene operably linked to a fourth exogenous promoter.
  • a fourth exogenous promoter When the cells are cultured under the condition that the fourth exogenous promoter is activated, it can be expected that the BCL-XL gene will be expressed and the proliferation of the cells of the present invention will be further promoted.
  • the fourth exogenous promoter can independently be a constitutive promoter or a regulated promoter, but preferably is a regulated promoter.
  • the regulatable promoter is preferably a drug responsive promoter, more preferably a tetracycline responsive promoter.
  • the type of the fourth exogenous promoter may be the same as or different from the first exogenous promoter and / or the second exogenous promoter, but preferably the first, second and fourth An exogenous promoter is a promoter of the same type.
  • the MYC family gene, the BMI1 gene and the BCL-XL gene can be expressed synchronously, and their expression can be suppressed synchronously.
  • the first, second and fourth exogenous promoters are preferably the same regulatable promoter (eg drug responsive promoter), more preferably all tetracycline responsive promoters.
  • the fourth exogenous promoter may be operably linked to the BCL-XL gene independently of the first and second exogenous promoters, or the MYC family gene and BCL may be linked to the first exogenous promoter.
  • -XL gene may be operably linked
  • BMI1 gene and BR>ACL-XL gene may be operably linked to a second exogenous promoter, or one exogenous
  • the MYC family gene, BMI1 gene and BCL-XL gene may be operably linked to the promoter. Linking multiple genes via intervening sequences such as RES enables bicistronic expression under the control of a single exogenous promoter.
  • the BCL-XL gene operably linked to a fourth exogenous promoter may be integrated into the genome of the CMP or myeloid progenitor cell, or the expression introduced into the CMP or myeloid progenitor cell. It may be present in a vector.
  • the BCL-XL gene operably linked to a fourth exogenous promoter is integrated into the genome of the CMP or myeloid progenitor cell.
  • the cells of the present invention contain a nucleic acid encoding an expression-suppressing nucleic acid (e.g., siRNA, shRNA, antisense nucleic acid) for the CDKN1A gene operably linked to a fifth exogenous promoter, and /or may further have a nucleic acid encoding an expression-suppressing nucleic acid for the p53 gene operably linked to a sixth exogenous promoter.
  • an expression-suppressing nucleic acid e.g., siRNA, shRNA, antisense nucleic acid
  • the fifth exogenous promoter and the sixth exogenous promoter can independently be constitutive promoters or regulated promoters, but are preferably constitutive promoters.
  • the constitutive promoter is preferably a pol III promoter such as the H1 promoter.
  • the type of the fifth exogenous promoter may be the same as or different from the sixth exogenous promoter.
  • a nucleic acid encoding an expression-suppressing nucleic acid for the CDKN1A gene operably linked to a fifth exogenous promoter, and a nucleic acid encoding an expression-suppressing nucleic acid for the p53 gene operably linked to the sixth exogenous promoter It may be integrated into the genome of the CMP or myeloid progenitor cell, or it may be present in an expression vector introduced into the CMP or myeloid progenitor cell, but preferably the CMP or myeloid progenitor cell integrated into the genome of the cell.
  • the cells of the invention are a MYC family gene operably linked to a first exogenous promoter; CMP or myeloid progenitor cells (e.g., MEP, GMP) having the BMI1 gene operably linked to a second exogenous promoter and the BCL-XL gene operably linked to a fourth exogenous promoter , macrophage progenitor cells, dendritic cell progenitor cells, erythroid progenitor cells, neutrophil progenitor cells).
  • CMP or myeloid progenitor cells e.g., MEP, GMP having the BMI1 gene operably linked to a second exogenous promoter and the BCL-XL gene operably linked to a fourth exogenous promoter
  • macrophage progenitor cells e.g., dendritic cell progenitor cells, erythroid progenitor cells, neutrophil progenitor cells.
  • the cell of the present invention further contains the rtTA gene or tTA gene operably linked to the third exogenous promoter. may have.
  • the cells of the invention are a MYC family gene operably linked to a first exogenous promoter; a BMI1 gene operably linked to a second exogenous promoter; A nucleic acid encoding an expression-suppressing nucleic acid for the CDKN1A gene operably linked to a fifth exogenous promoter, and a nucleic acid encoding an expression-suppressing nucleic acid for the p53 gene operably linked to the sixth exogenous promoter.
  • CMP or myeloid progenitor cells eg, MEP, GMP, macrophage progenitor cells, dendritic cell progenitor cells, erythroid progenitor cells, neutrophil progenitor cells).
  • the cell of the present invention further contains the rtTA gene or tTA gene operably linked to the third exogenous promoter. may have.
  • the cells of the invention are a MYC family gene operably linked to a first exogenous promoter; a BMI1 gene operably linked to a second exogenous promoter; BCL-XL gene operably linked to a fourth exogenous promoter Nucleic acid encoding an expression-suppressing nucleic acid for the CDKN1A gene operably linked to a fifth exogenous promoter, and acting with a sixth exogenous promoter CMP or myeloid progenitor cells (e.g., MEPs, GMPs, macrophage progenitor cells, dendritic cell progenitor cells, erythroid progenitor cells, neutrophil progenitor cells, having a nucleic acid encoding an expression-suppressing nucleic acid for the p53 gene operably linked thereto) ).
  • CMP or myeloid progenitor cells e.g., MEPs, GMPs, macrophage progenitor cells, dendritic cell progen
  • the cell of the present invention further contains the rtTA gene or tTA gene operably linked to the third exogenous promoter. may have.
  • the cells of the present invention can be obtained by the method of improving the proliferation of CMP or myeloid progenitor cells of the present invention or the method of producing CMP or myeloid progenitor cells of the present invention.
  • the present invention also provides a cell population containing the cells of the present invention (referred to as the cell population of the present invention).
  • the cell population abundantly contains the cells of the present invention, and the percentage of the cells of the present invention contained in the entire cell population is, for example, 10% or more, 20% or more, 30% or more, 40% or more, 50%. 60% or more, 70% or more, 80% or more, 90% or more, 95% or more (eg, 100%).
  • Such a cell population rich in the cells of the present invention can be obtained by extracting cells at a specific differentiation stage of interest (CMP or myeloid progenitor cells (e.g., MEP, GMP , macrophage progenitor cells, dendritic cell progenitor cells, erythrocyte progenitor cells, neutrophil progenitor cells))).
  • CMP myeloid progenitor cells
  • the cell populations of the invention are enriched for cells of the invention that are at a particular stage of differentiation.
  • the proportion of the cells of the present invention (the cells are CMP) contained in the entire cell population is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more (eg, 100%).
  • the percentage of the cells of the present invention (the cells are MEPs) contained in the entire cell population is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more (eg, 100%).
  • the percentage of the cells of the present invention (the cells are GMP) contained in the entire cell population is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more (eg, 100%).
  • the percentage of the cells of the present invention (the cells are macrophage progenitor cells) contained in the entire cell population is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% 70% or more, 80% or more, 90% or more, 95% or more (eg, 100%).
  • the percentage of the cells of the present invention (the cells are dendritic cell progenitor cells) contained in the entire cell population is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more (eg, 100%). In one aspect, the percentage of the cells of the present invention (the cells are erythroid progenitor cells) contained in the entire cell population is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% 70% or more, 80% or more, 90% or more, 95% or more (eg, 100%).
  • the percentage of the cells of the present invention (the cells are neutrophil progenitor cells) contained in the entire cell population is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more (eg, 100%).
  • a cell population rich in the cells of the present invention at a specific differentiation stage can be obtained by converting cells at the desired differentiation stage into cells at the differentiation stage from the cell population to which the method of the method of the present invention is applied. It can be obtained by isolation/extraction using a cell sorter or the like using an antibody against a specifically expressed cell surface marker.
  • the cells of the present invention and the cell populations of the present invention can be obtained by the method of improving the proliferation of CMP or myeloid progenitor cells of the present invention or the method of producing CMP or myeloid progenitor cells of the present invention. .
  • the present invention also provides a cell preparation containing the cell population of the present invention (referred to as the cell preparation of the present invention).
  • the cell preparation of the present invention is prepared by suspending the cell population of the present invention in an appropriate physiological aqueous solution (e.g., physiological saline, isotonic solution containing glucose and other adjuvants, liquid medium). can do.
  • physiological aqueous solution contains a buffer (e.g., phosphate buffer, sodium acetate buffer), an analgesic (e.g., lidocaine hydrochloride, procaine hydrochloride, etc.), a stabilizer (e.g., human serum albumin, polyethylene glycol, etc.).
  • the cell population of the present invention is suspended in the cell preparation such that the cell concentration is, for example, 1.0 ⁇ 10 1 to 1.0 ⁇ 10 12 cells/mL.
  • a combination of cytokines suitable for proliferation of the cells may be added to the cell preparation.
  • cytokines suitable for proliferation of the cells may be added to the cell preparation.
  • at least one, preferably all cytokines selected from GM-CSF, G-CSF, IL-3, SCF and TPO can be added to the cell preparation.
  • at least one, preferably all cytokines selected from IL-3, SCF and TPO can be added to the cell preparation.
  • cell preparations containing GMP at least one, preferably all cytokines selected from SCF and GM-CSF can be added to the cell preparation.
  • cytokines selected from IL-1b, SCF and M-CSF can be added to said cell preparation.
  • cytokines selected from IL-1b, SCF and M-CSF can be added to said cell preparation.
  • cell preparations containing dendritic cell progenitor cells at least one and preferably all cytokines selected from SCF, M-CSF and GM-CSF can be added to the medium.
  • cell preparations comprising neutrophil progenitor cells at least one, preferably all cytokines selected from SCF and GM-CSF can be added to the cell preparation.
  • erythroid progenitor cells at least one, preferably all cytokines selected from SCF and EPO can be added to the cell preparation.
  • CMP or myeloid progenitor cells can have freeze-thaw resistance that maintains cell proliferation and differentiation potential even after thawing after cryopreservation. Therefore, it is possible to produce CMP differentiated cells by cryopreserving CMP or myeloid progenitor cells, lysing them as necessary, and subjecting them to differentiation-inducing culture. Therefore, by using the cells of the present invention, a series of operations for producing CMP-lineage differentiated cells such as macrophages, dendritic cells, erythrocytes, neutrophils, etc. from pluripotent stem cells such as ES cells and iPS cells can be started.
  • the cell preparation of the invention is a frozen cell preparation comprising a frozen cell population of the invention as described above.
  • a frozen cell preparation is prepared using the cells of the present invention, it can be composed of the cell population of the present invention and a cryopreservation solution, and if necessary, additives and the like are also included in the composition.
  • a cryopreservation solution a DMSO-containing freezing solution or the like can be used. Specifically, Cellbanker (Nippon Zenyaku Kogyo Co., Ltd.), Bambanker (Nippon Genetics Co., Ltd.), TC protector (DS Pharma Biomedical Co., Ltd.), albumin added cp-1 (Kyokuto Pharmaceutical Co., Ltd.), etc. be.
  • the method for producing CMP differentiated cells includes CMP or bone marrow obtained by the above-described method for improving the proliferation of CMP or myeloid progenitor cells or the method for producing CMP or myeloid progenitor cells. It includes the step of differentiating a globular progenitor cell (ie, the cell of the present invention).
  • CMP differentiated cells include monocytic cells such as macrophages and dendritic cells, granulocytic cells such as neutrophils and basophils, erythroblasts, red blood cells, etc., differentiated from CMP or myeloid progenitor cells. and are distinct from myeloid progenitor cells.
  • Methods for differentiating CMP or myeloid progenitor cells include monocytic cells such as macrophages and dendritic cells, granulocytic cells such as neutrophils and basophils, erythroblasts and erythrocytes.
  • monocytic cells such as macrophages and dendritic cells
  • granulocytic cells such as neutrophils and basophils
  • erythroblasts and erythrocytes.
  • Differentiation-inducing methods can be selected as appropriate, including the method of culturing as described above.
  • the drug used in the step of forced expression of each gene such as tetracycline or doxycycline, may be contained in the medium, and the forced expression may be suppressed by removing them from the medium, followed by culturing the cells.
  • CMP-lineage differentiated cells may include monocytic cells, granulocytic cells, or erythroid cells, and may include monocytic cells or granulocytic cells.
  • the method of controlling the differentiation of CMPs into specific cells can appropriately use a suitable known medium or a medium based thereon.
  • the types of differentiated cells can be controlled by controlling the cytokine conditions contained in the medium.
  • CMP-lineage differentiated cells can be obtained, including spherical cells, granulocytic cells, or erythroblastic cells.
  • cytokine conditions for differentiating into various cells include those shown in Examples.
  • MYC family genes e.g., c-Myc gene
  • BMI1 gene optionally further BCL-XL gene
  • CDKN1A gene and/or p53 gene, or the function of the expression product thereof is cultured under macrophage differentiation conditions (e.g., in the presence of SCF, M-CSF, IL-1b) Macrophage progenitor cells then proliferate well while maintaining their differentiation stage, but removal of the drug results in MYC family genes (e.g., c-Myc gene) and BMI1 gene (optionally further BCL-XL) in the cells. gene), followed by culturing under macrophage differentiation conditions (e.g., in the presence of SCF, M-CSF, IL-1b) to suppress cell proliferation and promote differentiation and maturation into macrophages. be done.
  • macrophage differentiation conditions e.g., in the presence of SCF, M-CSF, IL-1b
  • the addition of the drug forces the expression of MYC family genes (e.g., c-Myc gene) and BMI1 gene (optionally further BCL-XL gene), optionally CDKN1A gene and / or p53 gene expression, or dendritic cell progenitor cells in which the function of the expression product is suppressed, are cultured under dendritic cell differentiation conditions (e.g., in the presence of SCF, M-CSF, GM-CSF) Then, the dendritic cell progenitor cells proliferate well while maintaining their differentiation stage.
  • MYC family genes e.g., c-Myc gene
  • BMI1 gene optionally further BCL-XL gene
  • CDKN1A gene and / or p53 gene expression optionally CDKN1A gene and / or p53 gene expression
  • dendritic cell progenitor cells proliferate well while maintaining their differentiation stage.
  • dendritic cell differentiation conditions e.g., in the presence of SCF, M-CSF, GM-CSF
  • cell proliferation is suppressed, transforming into dendritic cells Differentiation and maturation are promoted.
  • erythroid progenitor cells in which the expression of the CDKN1A gene and / or p53 gene or the function of the expression product is suppressed are cultured under erythroid differentiation conditions (e.g., in the presence of SCF, EPO), the erythroid progenitor cells reach the differentiation stage but the forced expression of MYC family genes (e.g., c-Myc gene) and BMI1 gene (optionally further BCL-XL gene) in the cells is suppressed by removal of the drug, Subsequent culturing under erythroid differentiation conditions (eg, in the presence of SCF or EPO) suppresses cell proliferation and promotes differentiation and maturation into erythroids and erythr
  • the CMP or myeloid progenitor cell proliferation-promoting agent contains, as active ingredients, a molecule that forces expression of the MYC family gene and the BMI1 gene, and optionally a molecule that forces expression of the BCL-XL gene as an active ingredient. as an active ingredient, or a molecule that suppresses the expression of the CDKN1A gene or the p53 gene or the function of the expression product thereof.
  • myeloid progenitor cells are progenitor cells of macrophages, dendritic cells, granulocytes, erythroblasts, or erythrocytes.
  • the pharmaceutical composition according to this embodiment includes CMP or myeloid progenitor cells obtained by the above-described method for improving the proliferation of CMP or myeloid progenitor cells or the method for producing CMP or myeloid progenitor cells, Alternatively, it includes CMP-lineage-differentiated cells obtained by the method for producing CMP-lineage-differentiated cells described above.
  • CMP or myeloid progenitor cells obtained by the method for improving the proliferation of CMP or myeloid progenitor cells or the method for producing CMP or myeloid progenitor cells, or the above-described CMP differentiated cells are produced.
  • the CMP-type differentiated cells obtained by the method are cells that control the innate immune system, and can be used to eliminate tumor/degenerate cells and pathogenic organisms. Therefore, the pharmaceutical composition according to this embodiment can be used for removing tumor/degenerate cells, infectious pathogens, and the like. Specifically, it is used as an immune cell preparation for blood transfusion that is specialized for each disease by introducing receptors that target foreign-body-specific antigens in the normal body and genetically modifying it to increase cytotoxicity to target cells.
  • CMP myeloid progenitor cells
  • CMP differentiated cells are prepared as parenteral preparations such as injections, suspensions, infusions, etc. by mixing with pharmaceutically acceptable carriers according to conventional methods.
  • pharmaceutically acceptable carriers that can be included in the parenteral preparation include, for example, physiological saline, isotonic solutions containing glucose and other adjuvants (eg, D-sorbitol, D-mannitol, sodium chloride, etc.).
  • the pharmaceutical composition of the present invention contains, for example, a buffer (e.g., phosphate buffer, sodium acetate buffer), an analgesic (e.g., lidocaine hydrochloride, procaine hydrochloride, etc.), a stabilizer (e.g., human serum albumin, polyethylene glycol, etc.), preservatives (eg, sodium benzoate, benzalkonium chloride, etc.), antioxidants (eg, ascorbic acid, sodium edetate, etc.), and the like.
  • a buffer e.g., phosphate buffer, sodium acetate buffer
  • an analgesic e.g., lidocaine hydrochloride, procaine hydrochloride, etc.
  • a stabilizer e.g., human serum albumin, polyethylene glycol, etc.
  • preservatives eg, sodium benzoate, benzalkonium chloride, etc.
  • antioxidants eg, ascorbic acid, sodium edetate
  • the method for treating or preventing a disease according to this embodiment includes CMP or myeloid progenitor cells obtained by the method for improving the proliferation of CMP or myeloid progenitor cells or the method for producing CMP or myeloid progenitor cells.
  • This includes administering progenitor cells, CMP-lineage-differentiated cells obtained by the above-described method for producing CMP-lineage-differentiated cells, or the pharmaceutical composition according to this embodiment to a patient in need thereof.
  • diseases include, but are not limited to, tumors/degenerate cells, diseases related to infectious pathogens, inflammation/allergic diseases (autoimmune diseases, chronic inflammatory diseases such as arteriosclerosis), and the like.
  • the administration method is not particularly limited, but injection is preferred, and examples thereof include intravenous administration and intraperitoneal administration.
  • the dosage of the agent of the present invention varies depending on the subject of administration, treatment target site, symptoms, administration method, etc., but usually in patients (with a body weight of 60 kg), for example, in the case of intravenous administration, human An amount of myeloid blood cells of about 1.0 ⁇ 10 6 to about 1.0 ⁇ 10 11 cells can be administered about 2 to 3 times a week for about 2 to 3 weeks or longer.
  • the kit according to the present embodiment contains the above-described CMP or myeloid progenitor cell proliferation-promoting agent, and can chronic inflammatory disease).
  • the kit may contain reagents, carriers and additives depending on its use, and may further contain buffer solutions, containers, instructions for use, and the like.
  • the kit contains CMP or myeloid progenitor cell growth promoters, and is a major causative cell for inflammation/allergic diseases (autoimmune diseases, chronic inflammatory diseases such as arteriosclerosis).
  • Disease diagnostic chips used for specific cell types such as neutrophils, macrophages, and dendritic cells are included.
  • the present invention provides a method for improving the proliferation of CMP or myeloid progenitor cells, comprising the step of forcibly expressing the BCL-XL gene in CMP or myeloid progenitor cells (hereinafter referred to as "the present invention method 2”).
  • Myeloid progenitor cells are preferably GMP, macrophage progenitor cells or dendritic cell progenitor cells.
  • Method 2 of the present invention may further include a step of extracting (isolating or purifying) cells (CMP or myeloid progenitor cells) at a desired specific stage of differentiation.
  • Extraction of cells at a specific stage of differentiation may be performed before or after forced expression of the BCL-XL gene.
  • this extraction step is performed before the forced expression of the BCL-XL gene, and the BCL-XL gene is forced to express in the extracted cells at a specific stage of differentiation (CMP or myeloid progenitor cells).
  • a cell population containing cells at a desired specific stage of differentiation (CMP or myeloid progenitor cells) in which the BCL-XL gene is forcibly expressed is prepared, and then the desired specific cells are extracted from the cell population. Differentiating cells (CMP or myeloid progenitor cells) are extracted. The BCL-XL gene may be subsequently forced to express in the extracted cells at a specific stage of differentiation (CMP or myeloid progenitor cells).
  • the cells to be extracted are preferably only CMP cell lines or only single myeloid progenitor cell lines.
  • a cell population in which two or more of these cells are mixed may be used.
  • the cells to be extracted are preferably CMP, GMP, macrophage progenitor cells or dendritic cell progenitor cells.
  • the target cells can be extracted according to the method described in Methodology 1.
  • the ratio of the target cells contained in the cell population after the extraction operation is, for example, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more , 90% or more, 95% or more (eg, 100%).
  • Single cells of the cells of interest may be isolated.
  • Method 2 of the present invention may further comprise a step of forcing expression of MYC family genes (preferably c-Myc) and BMI1 gene in CMP or myeloid progenitor cells.
  • MYC family genes preferably c-Myc
  • BMI1 gene By expressing the MYC family gene (preferably c-Myc) and the BMI1 gene in addition to the BCL-XL gene, further promotion of proliferation of CMP or myeloid progenitor cells can be expected.
  • a person skilled in the art can appropriately determine the period of forced expression of the MYC family gene (preferably c-Myc) and the BMI1 gene.
  • Forced expression of the MYC family gene, BMI1 gene, and BCL-XL gene may be performed simultaneously or sequentially.
  • CMP or myeloid progenitor cells with improved proliferation ability may be obtained by forced expression of the MYC family gene and BMI1 gene followed by forced expression of the BCL-XL gene.
  • CMP or myeloid progenitor cells with improved proliferative ability can be obtained by forced expression of the MYC family gene, the BMI1 gene and the BCL-XL gene at the same time.
  • MYC family genes, BMI1 gene, and BCL-XL gene promote cell proliferation of CMP or myeloid progenitor cells, but CMP-lineage differentiated cells (e.g., macrophages, dendritic cells, neutrophils, erythrocytes) terminally
  • CMP-lineage differentiated cells e.g., macrophages, dendritic cells, neutrophils, erythrocytes
  • the expression of these genes may be suppressed prior to entering the terminal differentiation process in order to inhibit differentiation. Suppression of the expression of these genes in CMP or myeloid progenitor cells facilitates the induction of functional and more mature CMP-lineage differentiated cells (eg, macrophages, dendritic cells, neutrophils, erythrocytes).
  • CMP or myeloid progenitor cells may be transfected with an expression vector of a desired gene (e.g., BCL-XL gene, optionally further MYC family gene and BMI1 gene), or may be transfected with a desired gene (e.g., CMP or myeloid progenitor from pluripotent stem cells (e.g., ES cells, iPS cells), hematopoietic progenitor cells or hematopoietic endothelial cells incorporating expression cassettes of BCL-XL genes, optionally further MYC family genes and BMI1 genes) Cells may be induced to force expression of the gene at that stage.
  • a desired gene e.g., BCL-XL gene, optionally further MYC family gene and BMI1 gene
  • pluripotent stem cells e.g., ES cells, iPS cells
  • hematopoietic progenitor cells or hematopoietic endothelial cells incorporating
  • pluripotent stem cells e.g., ES cells, iPS cells
  • hematopoietic progenitor cells e.g., hematopoietic progenitor cells
  • hematopoietic progenitor cells in which an expression cassette of a desired gene (e.g., BCL-XL gene, optionally further MYC family gene and BMI1 gene) is incorporated in advance
  • a desired gene e.g., BCL-XL gene, optionally further MYC family gene and BMI1 gene
  • endothelial cells differentiation of pluripotent stem cells, hematopoietic progenitor cells or hematopoietic endothelial cells into CMP or myeloid progenitor cells may be induced while forcibly expressing the gene.
  • the MYC family gene, BMI1 gene, and BCL-XL gene which are target genes for expression regulation, may be inserted into separate vectors or may be inserted into the same vector
  • Method 2 of the present invention may include a step of suppressing the expression of the CDKN1A gene and/or p53 gene or the function of the expression product in CMP or myeloid progenitor cells.
  • CDKN1A gene it is preferable to suppress not only the CDKN1A gene, but also the expression of the p53 gene or the functions of their expression products.
  • CMP or myeloid progenitor cells may be transfected with an expression vector (e.g., viral vector) of an expression-suppressing nucleic acid for a desired gene (e.g., CDKN1A gene, p53 gene), or a desired gene (e.g., CDKN1A gene, p53 gene) to induce CMP or myeloid progenitor cells from pluripotent stem cells (e.g., ES cells, iPS cells), hematopoietic progenitor cells or hematopoietic endothelial cells incorporating expression cassettes of expression-suppressing nucleic acids for The siRNA, shRNA or antisense nucleic acid may be forcibly expressed at the stage.
  • an expression vector e.g., viral vector
  • an expression-suppressing nucleic acid for a desired gene e.g., CDKN1A gene, p53 gene
  • a desired gene e.g., CDKN1A
  • pluripotent stem cells e.g., ES cells, iPS cells
  • hematopoietic progenitor cells e.g., hematopoietic progenitor cells
  • hematopoietic endothelial cells in which an expression cassette of an expression-suppressing nucleic acid for a desired gene (e.g., CDKN1A gene, p53 gene) is incorporated in advance
  • a desired gene e.g., CDKN1A gene, p53 gene
  • the expression Differentiation of the pluripotent stem cells, hematopoietic progenitor cells or hematopoietic endothelial cells into CMP or myeloid progenitor cells may be induced while forced expression of the suppressor nucleic acid.
  • a nucleic acid e.g., DNA
  • the promoter can be an exogenous promoter.
  • the exogenous promoter can be a constitutive promoter or a regulated promoter, but is preferably a constitutive promoter.
  • a nucleic acid encoding an expression-suppressing nucleic acid for the CDKN1A gene and a nucleic acid encoding an expression-suppressing nucleic acid for the p53 gene may be inserted into separate expression vectors or may be inserted into the same expression vector.
  • the expression of the CDKN1A gene and/or the p53 gene, or the suppression of the function of the expression product thereof may be simultaneous with the forced expression of any of the MYC family gene, the BMI1 gene, or the BCL-XL gene.
  • the forced expression of the BCL-XL gene may be performed after a decrease in cell proliferation has been confirmed.
  • compare the cell growth rate at a certain time point with the most recent cell growth rate e.g., if the cell growth rate is confirmed every week, compare the cell growth rate of a certain week with the growth rate of the previous week).
  • compare the cell growth rate at a certain time point with the most recent cell growth rate (e.g., if the cell growth rate is confirmed every week, compare the cell growth rate of a certain week with the growth rate of the previous week). ), and can be carried out after confirming that the growth rate has decreased to 1/2 or less.
  • MYC family genes e.g., c-Myc gene
  • BMI1 gene e.g., BMI1 gene
  • BCL-XL gene e.g., BMI1A gene
  • CDKN1A gene and / or p53 suppresses the expression of a gene or the function of its expression product.
  • the present invention provides a method for producing CMP or myeloid progenitor cells (hereinafter referred to as the production of the present invention), comprising a step of culturing the CMP or myeloid progenitor cells obtained in Method 2 of the present invention (culturing step). Method 2) is also provided.
  • the culture conditions for CMP or myeloid progenitor cells are as described in Methodology 1. As described in Methodology 1, depending on the type of CMP or myeloid progenitor cells to be cultured, a combination of cytokines suitable for cell proliferation can be added to the medium.
  • the present invention provides a CMP or myeloid progenitor cell (hereinafter, cell 2 of the present invention) having a BCL-XL gene operably linked to a fourth exogenous promoter.
  • Myeloid progenitor cells are preferably GMP, macrophage progenitor cells or dendritic cell progenitor cells.
  • the explanation of the terms of the fourth exogenous promoter conforms to the part described for Methodology 1.
  • the BCL-XL gene operably linked to a fourth exogenous promoter may be integrated into the genome of the CMP or myeloid progenitor cell, or the expression introduced into the CMP or myeloid progenitor cell. It may be present in a vector.
  • the BCL-XL gene operably linked to a fourth exogenous promoter is integrated into the genome of the CMP or myeloid progenitor cell.
  • the cells of the present invention contain the rtTA gene or tTA gene operably linked to the third exogenous promoter to enable tetracycline-dependent expression control. It is preferred to further have a gene.
  • the third exogenous promoter can be a constitutive promoter or a regulated promoter, but preferably is a constitutive promoter.
  • the rtTA gene or tTA gene operably linked to a third exogenous promoter may be integrated into the genome of the CMP or myeloid progenitor cell or introduced into the CMP or myeloid progenitor cell. It may be present in an expression vector.
  • the rtTA gene or tTA gene operably linked to a third exogenous promoter is integrated into the genome of the CMP or myeloid progenitor cell.
  • the cell 2 of the present invention further has a MYC family gene operably linked to the first exogenous promoter and a BMI1 gene operably linked to the second exogenous promoter.
  • the MYC family gene is preferably c-MYC.
  • the explanation of the terms of the first exogenous promoter and the second exogenous promoter conforms to the part described in Methodology 1.
  • the MYC family gene operably linked to the first exogenous promoter and the BMI1 gene operably linked to the second exogenous promoter may be integrated into the genome of the CMP or myeloid progenitor cell. and may be present in an expression vector introduced into CMP or myeloid progenitor cells.
  • the MYC family gene operably linked to the first exogenous promoter and the BMI1 gene operably linked to the second exogenous promoter are integrated into the genome of the CMP or myeloid progenitor cell.
  • the type of the first exogenous promoter and / or the second exogenous promoter may be the same as or different from the fourth exogenous promoter, but preferably the first, second and fourth An exogenous promoter is a promoter of the same type.
  • the MYC family gene, the BMI1 gene and the BCL-XL gene can be expressed synchronously, and their expression can be suppressed synchronously.
  • the first, second and fourth exogenous promoters are preferably the same regulatable promoter (eg drug responsive promoter), more preferably all tetracycline responsive promoters.
  • the fourth exogenous promoter may be operably linked to the BCL-XL gene independently of the first and second exogenous promoters, or the MYC family gene and BCL may be linked to the fourth exogenous promoter.
  • -XL gene may be operably linked
  • BMI1 gene and BCL-XL gene may be operably linked to a fourth exogenous promoter, or one exogenous promoter
  • the MYC family gene, BMI1 gene and BCL-XL gene may be operably linked.
  • the cells 2 of the present invention include a third exogenous promoter to enable tetracycline-dependent expression control. It is preferred to further have the rtTA gene or tTA gene operably linked to.
  • the third exogenous promoter can be a constitutive promoter or a regulated promoter, but preferably is a constitutive promoter.
  • the rtTA gene or tTA gene operably linked to a third exogenous promoter may be integrated into the genome of the CMP or myeloid progenitor cell or introduced into the CMP or myeloid progenitor cell. It may be present in an expression vector.
  • the rtTA gene or tTA gene operably linked to a third exogenous promoter is integrated into the genome of the CMP or myeloid progenitor cell.
  • the cell 2 of the present invention contains a nucleic acid encoding an expression-suppressing nucleic acid (e.g., siRNA, shRNA, antisense nucleic acid) for the CDKN1A gene operably linked to a fifth exogenous promoter, and/or may further have a nucleic acid encoding an expression-suppressing nucleic acid for the p53 gene operably linked to a sixth exogenous promoter.
  • an expression-suppressing nucleic acid e.g., siRNA, shRNA, antisense nucleic acid
  • a nucleic acid encoding an expression-suppressing nucleic acid for the CDKN1A gene operably linked to a fifth exogenous promoter, and a nucleic acid encoding an expression-suppressing nucleic acid for the p53 gene operably linked to the sixth exogenous promoter It may be integrated into the genome of the CMP or myeloid progenitor cell, or it may be present in an expression vector introduced into the CMP or myeloid progenitor cell, but preferably the CMP or myeloid progenitor cell integrated into the cell's genome.
  • the cell 2 of the invention is a MYC family gene (e.g., c-Myc) operably linked to a first exogenous promoter; CMP or myeloid progenitor cells (e.g., GMP, macrophages) having the BMI1 gene operably linked to a second exogenous promoter and the BCL-XL gene operably linked to a fourth exogenous promoter progenitor cells, dendritic cell progenitor cells).
  • CMP or myeloid progenitor cells e.g., GMP, macrophages
  • the cells of the present invention are operably linked to a third exogenous promoter. It may further have an rtTA gene or a tTA gene.
  • the cell 2 of the invention is a MYC family gene operably linked to a first exogenous promoter; a BMI1 gene operably linked to a second exogenous promoter; BCL-XL gene operably linked to a fourth exogenous promoter Nucleic acid encoding an expression-suppressing nucleic acid for the CDKN1A gene operably linked to a fifth exogenous promoter, and acting with a sixth exogenous promoter CMP or myeloid progenitor cells (eg, GMP, macrophage progenitor cells, dendritic cell progenitor cells) having a nucleic acid encoding an expression-suppressing nucleic acid for the p53 gene operably linked thereto.
  • CMP or myeloid progenitor cells eg, GMP, macrophage progenitor cells, dendritic cell progenitor cells
  • the cells of the present invention are operably linked to a third exogenous promoter. It may further have an rtTA gene or a tTA gene.
  • the cell 2 of the present invention can be obtained by the method 2 of the present invention or the production method 2 of the present invention described above.
  • the present invention also provides a cell population containing the cells 2 of the present invention (referred to as cell population 2 of the present invention).
  • the cell population 2 abundantly contains the cells 2 of the present invention, and the proportion of the cells 2 of the present invention contained in the entire cell population 2 is, for example, 10% or more, 20% or more, 30% or more, 40%. 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more (eg, 100%).
  • Such a cell population rich in the cells 2 of the present invention can be obtained from cells at a specific differentiation stage of interest (CMP or myeloid progenitor cells (e.g., GMP , macrophage progenitor cells, dendritic cell progenitor cells)) can be obtained by extraction.
  • CMP or myeloid progenitor cells e.g., GMP , macrophage progenitor cells, dendritic cell progenitor cells
  • the cell population 2 of the invention is enriched with cells 2 of the invention at a particular stage of differentiation.
  • the proportion of the cells 2 of the present invention (the cells are GMP) contained in the entire cell population is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more , 70% or more, 80% or more, 90% or more, 95% or more (eg, 100%).
  • the percentage of the cells 2 of the present invention (the cells are macrophage progenitor cells) contained in the entire cell population is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% % or more, 70% or more, 80% or more, 90% or more, 95% or more (eg, 100%).
  • the proportion of the cells 2 of the present invention (the cells are dendritic cell progenitor cells) contained in the entire cell population is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more. , 60% or more, 70% or more, 80% or more, 90% or more, 95% or more (eg, 100%).
  • a cell population rich in the cells 2 of the present invention at a specific differentiation stage is obtained by converting cells at the desired differentiation stage into cells at the differentiation stage from the cell population to which the method 2 of the present invention is applied. It can be obtained by isolating and extracting with a cell sorter or the like using an antibody against a specifically expressed cell surface marker.
  • the present invention also provides a cell preparation containing the cell population 2 of the present invention (referred to as the cell preparation 2 of the present invention).
  • the cell preparation 2 of the present invention can be prepared by suspending the cell population 2 of the present invention in a suitable physiological aqueous solution in the same manner as Methodology 1.
  • the cell preparation 2 of the present invention is a frozen cell preparation comprising the frozen cell population 2 of the present invention.
  • CMP-type differentiated cells are obtained by differentiating CMP or myeloid progenitor cells obtained by Method 2 of the present invention or Production Method 2 of the present invention (i.e., Cell 2 of the present invention). be able to.
  • the CMP or myeloid progenitor cell proliferation-promoting agent (referred to as proliferation-promoting agent 2 of the present invention) contains a molecule that forces expression of the BCL-XL gene as an active ingredient.
  • the growth-promoting agent 2 of the present invention may further contain, as an active ingredient, a molecule that forces expression of the MYC family gene and the BMI1 gene.
  • the proliferation-promoting agent 2 of the present invention may further contain, as an active ingredient, a molecule that suppresses the expression of the CDKN1A gene or p53 gene or the function of the expression product thereof.
  • CMP or myeloid progenitor cells obtained by method 2 of the present invention or production method 2 of the present invention (cell 2 of the present invention), or CMP lines obtained by the method for producing CMP-lineage differentiated cells described above Pharmaceutical compositions containing differentiated cells can also be prepared and used to treat or prevent various diseases. The adjustment of the pharmaceutical composition and the treatment or prevention of the disease can be carried out according to Methodology 1.
  • the present invention relates to proliferation of CMP or myeloid progenitor cells, comprising the step of suppressing the expression of the CDKN1A gene and/or p53 gene, or the function of the expression product, in CMP or myeloid progenitor cells.
  • the present invention provides a method for improving the property (hereinafter referred to as "method 2 of the present invention").
  • Myeloid progenitor cells are preferably GMP, macrophage progenitor cells, dendritic cell progenitor cells, or erythroid progenitor cells.
  • CDKN1A gene and/or the p53 gene or the function of the expression product thereof By suppressing the expression of the CDKN1A gene and/or the p53 gene or the function of the expression product thereof, it is expected that the proliferative properties of CMP or myeloid progenitor cells are improved, and immortalized cell lines that proliferate indefinitely can be obtained. .
  • CDKN1A gene it is preferable to suppress not only the CDKN1A gene, but also the expression of the p53 gene or the functions of their expression products.
  • Suppression of the expression of the CDKN1A gene and/or p53 gene is preferably performed in the same manner as in Methodology 1 by introducing an expression vector that expresses an expression-suppressing nucleic acid (e.g., siRNA, shRNA, antisense nucleic acid) for each gene into cells.
  • an expression-suppressing nucleic acid e.g., siRNA, shRNA, antisense nucleic acid
  • CMP or myeloid progenitor cells may be transfected with an expression vector (e.g., viral vector) of an expression-suppressing nucleic acid for a desired gene (e.g., CDKN1A gene, p53 gene), or a desired gene (e.g., CDKN1A gene, p53 gene) to induce CMP or myeloid progenitor cells from pluripotent stem cells (e.g., ES cells, iPS cells), hematopoietic progenitor cells or hematopoietic endothelial cells incorporating expression cassettes of expression-suppressing nucleic acids for The expression-suppressing nucleic acid may be forcibly expressed in stages.
  • an expression vector e.g., viral vector
  • an expression-suppressing nucleic acid for a desired gene e.g., CDKN1A gene, p53 gene
  • a desired gene e.g., CDKN1A gene, p
  • pluripotent stem cells e.g., ES cells, iPS cells
  • hematopoietic progenitor cells e.g., hematopoietic progenitor cells
  • hematopoietic endothelial cells in which an expression cassette of an expression-suppressing nucleic acid for a desired gene (e.g., CDKN1A gene, p53 gene) is incorporated in advance
  • a desired gene e.g., CDKN1A gene, p53 gene
  • the expression Differentiation of the pluripotent stem cells, hematopoietic progenitor cells or hematopoietic endothelial cells into CMP or myeloid progenitor cells may be induced while forced expression of the suppressor nucleic acid.
  • a nucleic acid e.g., DNA
  • the promoter can be an exogenous promoter.
  • the exogenous promoter can be a constitutive promoter or a regulated promoter, but is preferably a constitutive promoter.
  • a nucleic acid encoding an expression-suppressing nucleic acid for the CDKN1A gene and a nucleic acid encoding an expression-suppressing nucleic acid for the p53 gene may be inserted into separate expression vectors or may be inserted into the same expression vector.
  • Method 3 of the present invention may further include a step of extracting (isolating or purifying) cells at a desired specific stage of differentiation (CMP or myeloid progenitor cells).
  • the extraction of cells at the specific stage of differentiation (CMP or myeloid progenitor cells) may be performed before or after suppressing the expression of the CDKN1A gene and/or the p53 gene or the function of the expression product thereof.
  • the extraction step is performed before suppressing the expression of the CDKN1A gene and/or the p53 gene or the function of the expression product thereof, and in the extracted specific differentiation stage cells (CMP or myeloid progenitor cells), It suppresses the expression of the CDKN1A gene and/or the p53 gene, or the function of the expression product thereof.
  • CMP or myeloid progenitor cells a cell population containing cells at a specific desired differentiation stage in which the expression of the CDKN1A gene and/or p53 gene or the function of the expression product thereof is suppressed is prepared, Cells at a desired specific stage of differentiation (CMP or myeloid progenitor cells) are then extracted from the cell population.
  • the expression of the CDKN1A gene and/or the p53 gene, or the function of the expression product thereof, may be subsequently suppressed in the extracted cells at a specific stage of differentiation (CMP or myeloid progenitor cells).
  • CMP or myeloid progenitor cells By extracting the cells of interest and applying the method 3 of the present invention to the extracted cells, or extracting the cells of interest from the cell population to which the method 3 of the present invention has been applied, By continuously culturing the cells, the desired cell type can be efficiently proliferated. From the viewpoint of efficiently improving the proliferation of the extracted cell type, it is preferable that the cells to be extracted are only CMP or only a single type of myeloid progenitor cells. A cell population in which the above cell types are mixed may be used.
  • the cells to be extracted are preferably CMP, GMP, macrophage progenitor cells, dendritic cell progenitor cells, or erythroid progenitor cells.
  • the target cells can be extracted according to the method described in Methodology 1.
  • the ratio of the target cells contained in the cell population after the extraction operation is, for example, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more , 90% or more, 95% or more (eg, 100%).
  • Single cells of the cells of interest may be isolated.
  • Method 3 of the present invention may further comprise a step of forcing expression of MYC family genes (preferably c-Myc) and BMI1 gene in CMP or myeloid progenitor cells.
  • MYC family genes preferably c-Myc
  • BMI1 gene in addition to suppressing the expression of the CDKN1A gene and/or the p53 gene or the function of the expression product thereof can be expected to further promote
  • the period of forced expression of the MYC family gene (preferably c-Myc) and BMI1 gene can be appropriately determined by those skilled in the art.
  • the forced expression of the MYC family gene and the BMI1 gene may be performed simultaneously with the suppression of the expression of the CDKN1A gene and/or the p53 gene or the function of the expression product thereof, or may be performed sequentially.
  • Method 3 of the present invention may further comprise a step of forcing the BCL-XL gene in CMP or myeloid progenitor cells.
  • a step of forcing the BCL-XL gene in CMP or myeloid progenitor cells By expressing the BCL-XL gene in addition to suppressing the expression of the CDKN1A gene and/or the p53 gene or the function of their expression products, further promotion of proliferation of CMP or myeloid progenitor cells can be expected.
  • the period of forced expression of the BCL-XL gene can be appropriately determined by those skilled in the art.
  • the forced expression of the BCL-XL gene may be performed simultaneously with the suppression of the expression of the CDKN1A gene and/or p53 gene, or the function of the expression product thereof, or may be performed sequentially. For example, by forcibly expressing the BCL-XL gene and then suppressing the expression of the CDKN1A gene and/or p53 gene, or the function of the expression product thereof, to obtain CMP or myeloid progenitor cells with improved proliferation ability. good too.
  • forced expression of the BCL-XL gene and expression of the CDKN1A gene and/or p53 gene, or suppression of the functions of the expression products thereof are performed simultaneously to obtain CMP or myeloid progenitor cells with improved proliferative ability. can.
  • Method 3 of the present invention may further comprise the step of forcing MYC family genes (preferably c-Myc gene), BMI1 gene and BCL-XL gene in CMP or myeloid progenitor cells.
  • MYC family genes preferably c-Myc gene
  • BMI1 gene and BCL-XL gene in CMP or myeloid progenitor cells.
  • suppression of the expression of the CDKN1A gene or p53 gene, or the function of the expression product thereof may be simultaneous with forced expression of any of the MYC family gene, BMI1 gene, or BCL-XL gene.
  • the expression of the CDKN1A gene or p53 gene or the function of the expression product is suppressed simultaneously with or after forced expression of the BCL-XL gene.
  • MYC family gene preferably c-Myc gene
  • BMI1 gene forcibly expressed CMP or myeloid progenitor cells after confirming a decrease in cell proliferation
  • CDKN1A Inhibits the expression of a gene or the p53 gene, or the function of its expression product.
  • MYC family gene preferably c-Myc gene
  • BMI1 gene forcibly expressed CMP or myeloid progenitor cells after confirming a decrease in cell proliferation
  • compare the cell growth rate at a certain time point with the most recent cell growth rate e.g., if the cell growth rate is confirmed every week, compare the cell growth rate of a certain week with the growth rate of the week before).
  • the most recent cell growth rate e.g., if the cell growth rate is confirmed every week, compare the cell growth rate of a certain week with the growth rate of the week before.
  • forced expression of MYC family genes e.g., c-Myc gene
  • BMI1 gene e.g., BMI1 gene
  • BCL-XL gene in parallel with this, CDKN1A gene and / or p53 It suppresses the expression of a gene or the function of its expression product.
  • MYC family genes, BMI1 gene, and BCL-XL gene promote cell proliferation of CMP or myeloid progenitor cells, but CMP-lineage differentiated cells (e.g., macrophages, dendritic cells, neutrophils, erythrocytes) terminally
  • CMP-lineage differentiated cells e.g., macrophages, dendritic cells, neutrophils, erythrocytes
  • the expression of these genes may be suppressed prior to entering the terminal differentiation process in order to inhibit differentiation. Suppression of the expression of these genes in CMP or myeloid progenitor cells facilitates the induction of functional and more mature CMP-lineage differentiated cells (eg, macrophages, dendritic cells, neutrophils, erythrocytes).
  • Genes such as the MYC family gene, BMI1 gene, and BCL-XL gene can be forcibly expressed in cells according to the methods described in Methodology 1 and Methodology 2.
  • Intracellular expression of MYC family genes, BMI1 gene, BCL-XL gene, etc. can be suppressed according to the methods described in Methodology 1 and Methodology 2.
  • the present invention provides a method for producing CMP or myeloid progenitor cells (hereinafter referred to as the production of the present invention), comprising a step of culturing the CMP or myeloid progenitor cells obtained in Method 3 of the present invention (culturing step). Method 2) is also provided.
  • the culture conditions for CMP or myeloid progenitor cells are as described in Methodology 1. As described in Methodology 1, depending on the type of CMP or myeloid progenitor cells to be cultured, a combination of cytokines suitable for cell proliferation can be added to the medium.
  • the present invention provides a nucleic acid encoding an expression-suppressing nucleic acid (e.g., siRNA, shRNA, antisense nucleic acid) for the CDKN1A gene operably linked to a fifth exogenous promoter, and/or acts with a sixth exogenous promoter.
  • a CMP or myeloid progenitor cell (hereinafter referred to as cell 3 of the present invention) having a nucleic acid encoding an expression-suppressing nucleic acid for the p53 gene operably linked thereto is provided.
  • Myeloid progenitor cells are preferably GMP, macrophage progenitor cells, dendritic cell progenitor cells or erythroid progenitor cells.
  • a nucleic acid encoding an expression-suppressing nucleic acid for the CDKN1A gene operably linked to a fifth exogenous promoter, and a nucleic acid encoding an expression-suppressing nucleic acid for the p53 gene operably linked to the sixth exogenous promoter It may be integrated into the genome of the CMP or myeloid progenitor cell, or it may be present in an expression vector introduced into the CMP or myeloid progenitor cell, but preferably the CMP or myeloid progenitor cell integrated into the genome of the cell.
  • the cell 3 of the present invention further has a MYC family gene operably linked to the first exogenous promoter and a BMI1 gene operably linked to the second exogenous promoter.
  • the MYC family gene operably linked to the first exogenous promoter and the BMI1 gene operably linked to the second exogenous promoter may be integrated into the genome of the CMP or myeloid progenitor cell. and may be present in an expression vector introduced into CMP or myeloid progenitor cells.
  • the MYC family gene operably linked to the first exogenous promoter and the BMI1 gene operably linked to the second exogenous promoter are integrated into the genome of the CMP or myeloid progenitor cell.
  • the cell 3 of the present invention may further have a BCL-XL gene operably linked to a fourth exogenous promoter.
  • the explanation of the terms of the fourth exogenous promoter conforms to the part described for Methodology 1.
  • the BCL-XL gene operably linked to a fourth exogenous promoter may be integrated into the genome of the CMP or myeloid progenitor cell, or the expression introduced into the CMP or myeloid progenitor cell. It may be present in a vector.
  • the BCL-XL gene operably linked to a fourth exogenous promoter is integrated into the genome of the CMP or myeloid progenitor cell.
  • the types of the first, second and fourth exogenous promoters may be the same as or different from the fourth exogenous promoter, but preferably the first, second and fourth exogenous promoters are promoters of the same type.
  • the MYC family gene, the BMI1 gene and the BCL-XL gene can be expressed synchronously, and their expression can be suppressed synchronously.
  • the first, second and fourth exogenous promoters are preferably the same regulatable promoter (eg drug responsive promoter), more preferably all tetracycline responsive promoters.
  • the cells 3 of the present invention include a third exogenous promoter to enable tetracycline-dependent expression control It is preferred to further have the rtTA gene or tTA gene operably linked to.
  • the third exogenous promoter can be a constitutive promoter or a regulated promoter, but preferably is a constitutive promoter.
  • the rtTA gene or tTA gene operably linked to a third exogenous promoter may be integrated into the genome of the CMP or myeloid progenitor cell or introduced into the CMP or myeloid progenitor cell. It may be present in an expression vector.
  • the rtTA gene or tTA gene operably linked to a third exogenous promoter is integrated into the genome of the CMP or myeloid progenitor cell.
  • the cell 3 of the invention is a MYC family gene (e.g., c-Myc) operably linked to a first exogenous promoter; a BMI1 gene operably linked to a second exogenous promoter; A nucleic acid encoding an expression-suppressing nucleic acid for the CDKN1A gene operably linked to a fifth exogenous promoter, and a nucleic acid encoding an expression-suppressing nucleic acid for the p53 gene operably linked to the sixth exogenous promoter.
  • MYC family gene e.g., c-Myc
  • CMP or myeloid progenitor cells eg, CMP, GMP, macrophage progenitor cells, dendritic cell progenitor cells, erythroid progenitor cells.
  • a tetracycline-responsive promoter as at least one (preferably all) selected from the first and second exogenous promoters, the cells of the present invention contain the rtTA gene operably linked to the third exogenous promoter Alternatively, it may further have a tTA gene.
  • the cell 3 of the invention is a MYC family gene operably linked to a first exogenous promoter; a BMI1 gene operably linked to a second exogenous promoter; BCL-XL gene operably linked to a fourth exogenous promoter Nucleic acid encoding an expression-suppressing nucleic acid for the CDKN1A gene operably linked to a fifth exogenous promoter, and acting with a sixth exogenous promoter
  • a CMP or myeloid progenitor cell eg, CMP, GMP, macrophage progenitor, dendritic cell progenitor, erythroid progenitor having a nucleic acid encoding a silencing nucleic acid for the p53 gene operably linked thereto.
  • the cells of the present invention are operably linked to a third exogenous promoter. It may further have an rtTA gene or a tTA gene.
  • the cell 3 of the present invention can be obtained by the method 3 of the present invention or the production method 3 of the present invention described above.
  • the present invention also provides a cell population containing the cells 3 of the present invention (referred to as cell population 3 of the present invention).
  • the cell population 3 abundantly contains the cells 3 of the present invention, and the proportion of the cells 3 of the present invention contained in the entire cell population 3 is, for example, 10% or more, 20% or more, 30% or more, 40%. 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more (eg, 100%).
  • Such a cell population rich in the cells 3 of the present invention can be obtained from cells at a specific differentiation stage of interest (CMP or myeloid progenitor cells (e.g., GMP , macrophage progenitor cells, dendritic cell progenitor cells, erythrocyte progenitor cells)) can be obtained by extraction.
  • CMP or myeloid progenitor cells e.g., GMP , macrophage progenitor cells, dendritic cell progenitor cells, erythrocyte progenitor cells
  • the cell population 3 of the invention is enriched with cells 3 of the invention at a particular stage of differentiation.
  • the percentage of the cells 3 of the present invention (the cells are GMP) contained in the entire cell population is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more , 70% or more, 80% or more, 90% or more, 95% or more (eg, 100%).
  • the percentage of the cells 3 of the present invention (the cells are macrophage progenitor cells) contained in the entire cell population is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% % or more, 70% or more, 80% or more, 90% or more, 95% or more (eg, 100%).
  • the proportion of the cells 3 of the present invention (the cells are dendritic cell progenitor cells) contained in the entire cell population is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more. , 60% or more, 70% or more, 80% or more, 90% or more, 95% or more (eg, 100%).
  • the percentage of the cells 3 of the present invention (the cells are erythrocyte progenitor cells) contained in the entire cell population is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% % or more, 70% or more, 80% or more, 90% or more, 95% or more (eg, 100%).
  • a cell population rich in the cells 3 of the present invention at a specific differentiation stage can be obtained by converting cells at the desired differentiation stage into cells at the differentiation stage from the cell population to which the method 3 of the present invention is applied. It can be obtained by isolation/extraction using a cell sorter or the like using an antibody against a specifically expressed cell surface marker.
  • the present invention also provides a cell preparation containing the cell population 3 of the present invention (referred to as the cell preparation 2 of the present invention).
  • the cell preparation 3 of the present invention can be prepared by suspending the cell population 3 of the present invention in a suitable physiological aqueous solution in the same manner as Methodology 1.
  • the cell preparation 3 of the present invention is a frozen cell preparation comprising the frozen cell population 3 of the present invention.
  • CMP-type differentiated cells are obtained by differentiating CMP or myeloid progenitor cells obtained by Method 3 of the present invention or Production Method 3 of the present invention (i.e., Cell 3 of the present invention). be able to.
  • the CMP or myeloid progenitor cell proliferation-promoting agent according to the present embodiment (referred to as proliferation-promoting agent 3 of the present invention) is an effective molecule that suppresses the expression of the CDKN1A gene and/or the p53 gene, or the function of the expression product thereof. Contains as an ingredient.
  • the growth-promoting agent 3 of the present invention is preferably an expression-suppressing nucleic acid (e.g., siRNA, shRNA, antisense nucleic acid) capable of specifically suppressing the expression of the CDKN1A gene, or an expression vector capable of expressing these expression-suppressing nucleic acids, and/or expression-suppressing nucleic acids capable of specifically suppressing expression of the p53 gene, or expression vectors capable of expressing these expression-suppressing nucleic acids are included as active ingredients.
  • the growth-promoting agent 3 of the present invention may further contain, as an active ingredient, a molecule that forces expression of the MYC family gene and the BMI1 gene.
  • the proliferation-promoting agent 3 of the present invention may further contain, as an active ingredient, a molecule that forces expression of the BCL-XL gene.
  • CMP or myeloid progenitor cells obtained by method 3 of the present invention or production method 3 of the present invention (cell 3 of the present invention), or CMP cells obtained by the method for producing CMP-lineage differentiated cells described above Pharmaceutical compositions containing differentiated cells can also be prepared and used to treat or prevent various diseases. Preparation of a pharmaceutical composition and treatment or prevention of a disease can be carried out according to Methodology 1.
  • Example 1-1 Proliferation-promoting human iPS cells of CMP strain are cultured for 14 days according to the method shown in FIG . to obtain isolated blood progenitor cells. A proliferative CMP strain was established by subjecting the obtained blood progenitor cells to the following treatment.
  • a lentiviral vector for forced expression of c-MYC/BMI1 under doxycycline control was introduced into isolated blood progenitor cells (1.0 ⁇ 10 4 to 1.0 ⁇ 10 5 cells) on day 14 of culture ( MB), GM-CSF (50 ng/ml), G-CSF (10 ng/ml), IL-3 (10 ng/ml), SCF (25 ng/ml), TPO (5 ng/ml) in medium containing doxycycline Proliferative CMP (MB) was established by culturing in the presence.
  • proliferated cells were CMP because neutrophils, macrophages, erythroblasts and megakaryocytes could be induced from single cells by methylcellulose colony assay ( Takayama et al., Blood, 111(11):5298-5306, 2008).
  • CMP On day 21 of culture, CMP (MB) was infected with a lentiviral vector that forcedly expressed BCL-XL under doxycycline control and a lentiviral vector that continuously expressed shRNA against p21 and shRNA against p53, and GM-CSF. , G-CSF, IL-3, SCF, TPO in the presence of doxycycline.
  • CMP (MBX) in which the BCL-XL gene was further introduced using a doxycycline-inducible lentiviral vector, and in addition to MB introduction, shp21/p53 lentiviral vector that continuously expresses were further introduced.
  • CMP (MB-p21/p53_KD) was infected, and the BCL-XL gene was introduced using a doxycycline-inducible lentiviral vector in addition to MB introduction, and infected with a persistently expressing shp21/p53 lentiviral vector.
  • CMP (MBX-p21/p53_KD) was established. The established cells did not express markers of macrophages, MEPs and megakaryocyte progenitor cells, suggesting a single CMP population.
  • Figure 2 shows the results of counting the number of cells on the 14th, 31st, and 43rd days for each CMP. Forced expression of c-MYC and BMI1 allowed CMP to proliferate well. Forced expression of BCL-XL promoted cell proliferation. Knockdown of p21 and p53 also promoted cell proliferation. By the same method, we succeeded in establishing proliferative CMPs from 7 different iPS cell strains.
  • Example 1-2 Induction of differentiation into erythroblasts, macrophages, and neutrophils Doxycycline was removed from the culture medium of each cell obtained in Example 1-1, and the three factors c-MYC/BMI1/BCL-XL After suppressing the expression of , cells were cultured in the presence of cytokines such as G-CSF, SCF, TPO, EPO, and IL3, and on day 7, erythroblasts, macrophages, and neutrophils differentiated from the CMP strain were analyzed by FACS. did.
  • cytokines such as G-CSF, SCF, TPO, EPO, and IL3
  • Antibodies used were CD43 antibody, CD33 antibody, CD14 antibody, CD11b antibody, GPA (Glycophorin A) antibody (BioLegend, catalog number: 306612), and APC anti-human CD41 Antibody (BioLegend, catalog number: 303710).
  • the results are shown in FIG. Differentiation into megakaryocytes was also confirmed. Doxycycline ablation (suppression of c-MYC/BMI1/BCL-XL expression) confirmed terminal differentiation into the three major myeloid lineages. These results suggest that the cells obtained in Example 1-1 are CMP, and that suppression of c-MYC/BMI1/BCL-XL expression promotes terminal differentiation into myeloid cells. rice field.
  • Example 1-3 Induction of Differentiation into Macrophages and Neutrophils Cells were cultured in the presence of cytokines GM-CSF, G-CSF, SCF, TPO, and IL3, and erythroblasts, macrophages, and neutrophils differentiated from the CMP strain were analyzed by FACS on day 7. Antibodies used were CD16 antibody, CD14 antibody, CD11b antibody, and CD11c antibody. The results are shown in FIG. Both MBX and MBX-p21/p53KD CMPs induced macrophages. MBX-p21/p53KD showed a higher percentage of cells differentiated into macrophages than MBX, suggesting that p21/p53KD may promote macrophage differentiation.
  • Example 2-1 PiggyBac System A vector was prepared by introducing BMI1 IRESS c-MYC downstream of the tetracycline response element (TRE) in the PiggyBac vector and introducing sh p53 and sh p21 downstream of the H1 promoter (pb BMI1 IRESS c-MYC-rtTA sh p53 sh p21) (see FIG. 5(A)).
  • BCL-XL was introduced downstream of the TRE in the PiggyBac vector.
  • the rtTA 2A puromycin resistance gene is expressed downstream of the Ubic promoter in this vector (pb BclXL).
  • the PiggyBac vector used was provided by Associate Professor Knut Woltjen of iPS Cell Research Institute, Kyoto University.
  • the isolated CX3CR1-positive CD14-positive cells were subsequently cultured in the presence of SCF (50 ng/ml), M-CSF (20 ng/ml), IL1 ⁇ (10 ng/ml), and Doxcycline (1 ⁇ g/ml) to obtain macrophage strains. got When preparing erythrocyte strains, blood progenitor cells were cultured in the presence of SCF (50 ng/ml), EPO (3 U/ml), and Doxcycline (1 ⁇ g/ml) for 7 days, and then CD71-positive CD235ab-positive cells were isolated using a cell sorter. released.
  • the isolated CD71-positive CD235ab-positive cells were subsequently cultured in the presence of SCF (50 ng/ml), EPO (3 U/ml) and Doxcycline (1 ⁇ g/ml) to obtain erythroid strains. Growth curves for each macrophage cell line are shown in FIG. As for the number of cells, CX3CR1-positive cells were counted.
  • Example 2-2 Macrophage Strain
  • the 1383D10-derived macrophage strain obtained in Example 2-1 was stained with CD13, CD14, CD33, CD43 and HLA-DR and analyzed by FACS.
  • Antibodies used were CD13 antibody, CD14 antibody, CD33 antibody, CD43 antibody, and HLA-DR antibody. The results are shown in FIG. They were confirmed to be CD13 and CD14 positive cells, which are macrophage markers.
  • Example 2-3 Macrophage Cell Surface Marker After sorting each macrophage strain obtained in Example 2-1 with CX3CR1, which is a macrophage marker, at the time of gene expression (Dox on) and at the time of gene expression suppression (Dox off) , macrophage cell surface markers were analyzed by FACS. Dox on was cultured in the presence of SCF (50 ng/ml), M-CSF (20 ng/ml), IL1 ⁇ (10 ng/ml), and Doxcycline (1 ⁇ g/ml), and Dox off was cultured in the presence of M-CSF (20 ng/ml). It was cultured for 3 days under the same conditions (see upper part of FIG. 16).
  • Example 2-4 M1 type and M2 type Each macrophage strain obtained in Example 2-1 was analyzed by FACS to determine whether it was M1 type or M2 type. When the Dox off cells were stained with the M1-type marker CD32 and the M2-type marker Cd163, both were positive and could not be distinguished by FACS (see FIG. 10).
  • Example 2-5 CD11b-positive cells Doxycycline was removed from the culture medium of each macrophage strain obtained in Example 2-1, and the cell lines cultured on Matrigel in the presence of M-CSF when Dox was off were stained with CD11b. However, CD11b positive cells were obtained. The results are shown in FIG. It was found that CD11b, a macrophage marker, was expressed by changing the culture environment (culturing on Matrigel).
  • Example 2-6 Phagocytic ability The phagocytic ability of each macrophage strain obtained in Example 2-1 was examined. Doxycycline was removed from the culture medium of each cell, and fluorescence-labeled yeast cell wall peptides were added to the cell lines on days 1, 2, and 3 after Dox on and Dox off, followed by FACS analysis. The results are shown in FIG. Dox ON showed low phagocytic activity. On the other hand, the phagocytic ability was confirmed from the first day when it was off.
  • Example 2-7 Phagocytosis of ⁇ -amiloid The phagocytosis of ⁇ -amiloid of each macrophage strain obtained in Example 2-1 was examined. Doxycycline was removed from the culture medium of each cell, and fluorescence-labeled oligomeric ⁇ -amiloid was added to the cell line 5 days after Dox on and Dox off, followed by FACS analysis. The results are shown in FIG. Dox ON showed low phagocytic activity. On the other hand, phagocytic activity was confirmed when Dox was off.
  • Example 2-8 Red blood cell line
  • khES3 (ES cells) and 1383D10 (iPS cells)-derived blood progenitor cells were treated with SCF (50 ng/ml), EPO (3 U/ml), Dox (1 ⁇ g/ml ), the immortalized erythrocyte strain obtained was counted as Gly-A-positive cells (see FIG. 14).
  • Example 3-1 PiggyBac System
  • 5 ES cell lines and 5 iPS cell lines were cultured on day 7 of hematopoietic differentiation under the conditions shown in FIG. Each cell line was obtained. More specifically, when preparing a macrophage line, hematopoietic endothelial cells were treated with SCF (50 ng/ml), M-CSF (20 ng/ml), IL1 ⁇ (10 ng/ml), Doxcycline (1 ⁇ g/ml) in the presence of After culturing for 7 days, CX3CR1-positive CD14-positive cells were isolated using a cell sorter.
  • the isolated CX3CR1-positive CD14-positive cells were subsequently cultured in the presence of SCF (50 ng/ml), M-CSF (20 ng/ml), IL1 ⁇ (10 ng/ml), and Doxcycline (1 ⁇ g/ml) to obtain macrophage strains. got When preparing dendritic cell lines, hematopoietic endothelial cells were treated with SCF (50 ng/ml), M-CSF (20 ng/ml), GM-CSF (20 ⁇ g/ml), Doxcycline (1 ⁇ g/ml) for 7 days. After culturing, CD209-positive cells were isolated using a cell sorter.
  • the isolated CD209-positive cells were subsequently cultured in the presence of SCF (50 ng/ml), M-CSF (20 ng/ml), GM-CSF (20 ⁇ g/ml) and Doxcycline (1 ⁇ g/ml) to form dendritic cells.
  • a cell line was obtained.
  • hematopoietic endothelial cells were cultured in the presence of SCF (50 ng/ml), EPO (3 U/ml), and Doxcycline (1 ⁇ g/ml) for 7 days, and then CD71-positive CD235ab-positive cells were isolated using a cell sorter. released.
  • the isolated CD71-positive CD235ab-positive cells were subsequently cultured in the presence of SCF (50 ng/ml), EPO (3 U/ml) and Doxcycline (1 ⁇ g/ml) to obtain erythroid strains.
  • SCF serum-free medium
  • EPO EPO
  • Doxcycline 1 ⁇ g/ml
  • Proliferation of each proliferative macrophage cell line obtained by culturing under conditions of SCF (50 ng/ml), M-CSF (20 ⁇ g/ml), IL1 ⁇ (10 ng/ml), and Dox (1 ⁇ g/ml) Curves are shown in FIG. As for the number of cells, CX3CR1-positive cells were counted.
  • Proliferative dendritic cells obtained by culturing under conditions of SCF (50 ng/ml), M-CSF (20 ⁇ g/ml), GM-CSF (20 ⁇ g/ml), and Dox (1 ⁇ g/ml) Growth curves for the strains are shown in FIG. As for the number of cells, CD209-positive cells were counted.
  • Example 3-2 Macrophage Cell Surface Marker After sorting each macrophage strain obtained in Example 3-1 with CX3CR1, which is a macrophage marker, at the time of gene expression (Dox on) and at the time of gene expression suppression (Dox off) , macrophage cell surface markers were analyzed by FACS. Dox on was cultured in the presence of SCF (50 ng/ml), M-CSF (20 ng/ml), IL1 ⁇ (10 ng/ml), and Doxcycline (1 ⁇ g/ml), and Dox off was cultured in the presence of M-CSF (20 ng/ml). The cells were cultured for 3 days under the same conditions (see upper part of FIG. 18).
  • Example 3-3 Phagocytosis of ⁇ -amiloid The phagocytosis of ⁇ -amiloid of each macrophage strain obtained in Example 3-1 was examined. Doxycycline was removed from the culture medium of each cell, and fluorescence-labeled oligomeric ⁇ -amiloid was added to the cell lines 3 days after Dox on and Dox off, followed by FACS analysis. The results are shown in FIG. Dox ON showed low phagocytic activity. On the other hand, phagocytic activity was confirmed when Dox was off.
  • Example 3-4 Dendritic cell surface marker After sorting each dendritic cell line obtained in Example 3-1 with CD209, which is a dendritic cell marker, at the time of gene expression (Dox on) and at the time of gene expression suppression (Dox off), dendritic cell surface markers were analyzed by FACS. Dox on was cultured in the presence of SCF (50 ng/ml), M-CSF (20 ng/ml), GM-CSF (20 ng/ml), and Doxcycline (1 ⁇ g/ml), and Dox off was cultured in the presence of GM-CSF (20 ng/ml ) for 5 days (see top of FIG. 20).
  • CD11c, CD209, and CD80 were expressed at higher levels when Dox was off than when Dox was on.
  • some cells expressed CD1a and CD1c, which are receptors that present bacterial lipid molecules to T cells as antigens when Dox is off.
  • Example 3-5 Red blood cell line
  • khES3 (ES cells) and kthES14 (ES cells)-derived blood progenitor cells were treated with SCF (50 ng/ml), EPO (3 U/ml), Dox (1 ⁇ g/ml ), the number of Gly-A-positive cells was counted for the obtained erythroid line having proliferation ability (see FIG. 24).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Diabetes (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、造血前駆細胞から骨髄球系前駆細胞への分化過程における任意の細胞において、MYCファミリー遺伝子及びBMI1遺伝子を強制発現させる工程を含み、骨髄球系前駆細胞が、マクロファージ、樹状細胞、顆粒球、赤芽球、又は赤血球の前駆細胞である、CMP又は骨髄球系前駆細胞の増殖性を向上させる方法、に関する。

Description

骨髄系共通前駆細胞(CMP)又は骨髄球系前駆細胞の増殖性を向上させる方法
 本発明は広く、骨髄系共通前駆細胞(CMP)又は骨髄球系前駆細胞の増殖性を向上させる方法等に関する。
 末梢の血液細胞は、造血幹細胞から各系列の造血前駆細胞を経由して分化する。骨髄系共通前駆細胞は、血小板、赤血球、さらにリンパ球系以外の白血球細胞(好中球、マクロファージ、好塩基球、樹状細胞等)を産生する造血前駆細胞である。定常状態では骨髄中に存在するが、外傷や感染時等に必要に応じて分化し、成熟血液細胞を供給する。産生される好中球、マクロファージ、好塩基球、樹状細胞等は、自然免疫の主役であり、各種病原生物からの防御、腫瘍や変性した自己の細胞の排除、アレルギー反応、急性、慢性炎症に寄与する。
 これらの細胞は、炎症・アレルギーに対する薬剤スクリーニング、体内異物を除去するための細胞療法のソースとして期待される。従来の技術では、臍帯血、骨髄血、ヒトES/iPS細胞等から、試験管内で分化誘導する方法が取られてきたが、いずれの手技も煩雑であり、また大量の細胞を準備することが困難である。
Jie Z, Zhang Y, Wang C, Shen B, Guan X, Ren Z, et al. Large-scale ex vivo generation of human neutrophils from cord blood CD34+ cells. PLoS One. 2017;12(3). Caux C, Vanbervliet B, Massacrier C, Dezutter-Dambuyant C, De Saint-Vis B, Jacquet C, et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNFα. J Exp Med. 1996;184(2):695-706. Lachmann N, Ackermann M, Frenzel E, Liebhaber S, Brennig S, Happle C, et al. Large-scale hematopoietic differentiation of human induced pluripotent stem cells provides granulocytes or macrophages for cell replacement therapies. Stem Cell Reports. 2015; Hiramoto T, Ebihara Y, Mizoguchi Y, Nakamura K, Yamaguchi K, Ueno K, et al. Wnt3a stimulates maturation of impaired neutrophils developed from severe congenital neutropenia patient-derived pluripotent stem cells. Proc Natl Acad Sci U S A. 2013;110(8):3023-8. Sweeney CL, Teng R, Wang H, Merling RK, Lee J, Choi U, et al. Molecular Analysis of Neutrophil Differentiation from Human Induced Pluripotent Stem Cells Delineates the Kinetics of Key Regulators of Hematopoiesis. Stem Cells. 2016;34(6):1513-26. Takata K, Kozaki T, Lee CZW, Thion MS, Otsuka M, Lim S, et al. Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a Platform for Modeling Tissue-Resident Macrophage Differentiation and Function. Immunity. 2017;47(1):183-198.e6. Cao X, Yakala GK, van den Hil FE, Cochrane A, Mummery CL, Orlova V V. Differentiation and Functional Comparison of Monocytes and Macrophages from hiPSCs with Peripheral Blood Derivatives. Stem Cell Reports. 2019;12(6):1282-97. Ackermann M, Kempf H, Hetzel M, Hesse C, Hashtchin AR, Brinkert K, et al. Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections. Nat Commun. 2018;9(1).
 臍帯血、骨髄血由来造血前駆細胞を用いた方法では、増殖因子を加えることで、好中球、マクロファージ等が得られるが(非特許文献1、2参照)、臍帯血、骨髄血自体の増殖が有限であり、且つロット差が大きく、均一な質の細胞を大量に準備することが困難である。
 ヒトES/iPS細胞を用いた方法では、ES/iPS細胞自体はほぼ無限に増殖可能であるが、分化誘導法が煩雑であり、且つ、血液細胞への誘導効率が悪く、臨床応用レベルでの大量供給は困難である(非特許文献3~7参照)。例えば報告されているヒトiPS細胞からのマクロファージ分化では、250mLの培養系で、10細胞が限度である(非特許文献8参照)。薬剤スクリーニング、細胞療法いずれの観点からも従来の技術では、細胞数が大幅に不足しており、より効率の良い誘導法の開発が必須である。
 骨髄球系の不死化細胞株としては、白血病患者から培養により低確率で樹立した細胞株は存在するが、当該細胞株は白血病変異遺伝子が恒常的に発現した細胞であり、正常分化が不可能であり、成熟細胞を用いて行う薬剤スクリーニングは不可能である。また、ガン化のリスクがあり、細胞療法のソースとしては使用できない。
 かかる事情に鑑み、本発明は、好中球、マクロファージ、好塩基球、樹状細胞等の細胞の安定した産生系の確立のために、骨髄系共通前駆細胞(CMP)又は骨髄球系前駆細胞の増殖性を向上させる新規な方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために検討を重ねた結果、造血前駆細胞から特定の骨髄球系前駆細胞への分化過程における任意の細胞において、MYCファミリー遺伝子及びBMI1遺伝子を強制発現させることで、CMP又は骨髄球系前駆細胞の増殖性を向上できることを見出し、本発明を完成させるに至った。
 すなわち、本願発明は以下の発明を包含する。
[1] 造血前駆細胞から骨髄球系前駆細胞への分化過程における任意の細胞において、MYCファミリー遺伝子及びBMI1遺伝子を強制発現させる工程を含み、
 骨髄球系前駆細胞が、マクロファージ、樹状細胞、顆粒球、赤芽球、又は赤血球の前駆細胞である、CMP又は骨髄球系前駆細胞の増殖性を向上させる方法。
[2] CMP又は骨髄球系前駆細胞を抽出する工程をさらに含む、[1]に記載の方法。
[3] CMP又は骨髄球系前駆細胞において、MYCファミリー遺伝子及びBMI1遺伝子の発現、又はその発現産物の機能を抑制する工程をさらに含む、[1]又は[2]に記載の方法。
[4] CMP又は骨髄球系前駆細胞において、BCL-XL遺伝子を強制発現させる工程をさらに含む、[1]~[3]のいずれかに記載の方法。
[5] CMP又は骨髄球系前駆細胞において、BCL-XL遺伝子の発現、又はその発現産物の機能を抑制する工程をさらに含む、[4]に記載の方法。
[6] CMP又は骨髄球系前駆細胞において、CDKN1A遺伝子及びp53遺伝子の少なくともいずれかの発現、又はその発現産物の機能を抑制する工程をさらに含む、[1]~[5]のいずれかに記載の方法。
[7] [1]~[6]のいずれかに記載の方法で得られたCMP又は骨髄球系前駆細胞を培養する工程を含む、CMP又は骨髄球系前駆細胞を製造する方法。
[8] [1]~[7]のいずれかに記載の方法で得られたCMP又は骨髄球系前駆細胞を分化する工程を含む、CMP系分化細胞を製造する方法。
[9] CMP系分化細胞が、マクロファージ、樹状細胞、顆粒球、赤芽球、又は赤血球である、[8]に記載の方法。
[10] [1]~[7]のいずれかに記載の方法で得られたCMP若しくは骨髄球系前駆細胞、又は[8]若しくは[9]に記載の方法で得られたCMP系分化細胞を含む、医薬組成物。
[11] [1]~[7]のいずれかに記載の方法で得られたCMP、骨髄球系前駆細胞、[8]若しくは[9]に記載の方法で得られたCMP系分化細胞、又は[10]に記載の医薬組成物を、それを必要とする患者に投与することを含む、疾患の治療又は予防方法。
[12] [1]~[7]のいずれかに記載の方法で得られたCMP又は骨髄球系前駆細胞。
[13] [8]又は[9]に記載の方法で得られたCMP系分化細胞。
[14] CMP又は骨髄球系前駆細胞の増殖促進剤であって、
 MYCファミリー遺伝子及びBMI1遺伝子を強制発現させる分子を有効成分として含み、
 骨髄球系前駆細胞が、マクロファージ、樹状細胞、顆粒球、赤芽球、又は赤血球の前駆細胞である、増殖促進剤。
[15] 第1の外来性プロモーターと作用可能に連結されたMYCファミリー遺伝子及び第2の外来性プロモーターと作用可能に連結されたBMI1遺伝子を有する、CMP又は骨髄球系前駆細胞であって、骨髄球系前駆細胞が、マクロファージ、樹状細胞、顆粒球、赤芽球、又は赤血球の前駆細胞である、CMP又は骨髄球系前駆細胞。
[16] [15]に記載のCMP又は骨髄球系前駆細胞を含む細胞集団であって、該細胞集団全体における該CMP又は骨髄球系前駆細胞の割合が10%以上である、細胞集団。
[17] [16]に記載の細胞集団を含む、細胞調製物。
[18] 以下の工程を含む、マクロファージを製造する方法:
1)造血前駆細胞からマクロファージ前駆細胞への分化過程における任意の細胞において、MYCファミリー遺伝子及びBMI1遺伝子を強制発現させる工程、
2)工程1で得られた細胞を培養し、増殖させる工程、
3)工程2で得られた細胞におけるMYCファミリー遺伝子及びBMI1遺伝子の強制発現を抑制し、マクロファージ分化条件下で更に培養することにより、マクロファージへの分化及び成熟を促進する工程。
[19] 工程1が、造血前駆細胞からマクロファージ前駆細胞への分化過程における任意の細胞において、BCL-XL遺伝子を強制発現させることを更に含む、請求項14記載の方法。
[20] 工程3が、工程2で得られた細胞におけるBCL-XL遺伝子の強制発現を抑制することを更に含む、[19]記載の方法。
[21] 工程1が、造血前駆細胞からマクロファージ前駆細胞への分化過程における任意の細胞において、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制することを更に含む、[18]~[20]のいずれかに記載の方法。
[1B] CMP又は骨髄球系前駆細胞において、BCL-XL遺伝子を強制発現させる工程を含み、
 骨髄球系前駆細胞が、GMP、マクロファージ前駆細胞又は樹状細胞前駆細胞である、CMP又は骨髄球系前駆細胞の増殖性を向上させる方法。
[2B] CMP又は骨髄球系前駆細胞を抽出する工程をさらに含む、[1B]に記載の方法。
[3B] CMP又は骨髄球系前駆細胞において、MYCファミリー遺伝子及びBMI1遺伝子を強制発現させる工程をさらに含む、[1B]又は[2B]に記載の方法。
[4B] CMP又は骨髄球系前駆細胞において、CDKN1A遺伝子及びp53遺伝子の少なくともいずれかの発現、又はその発現産物の機能を抑制する工程をさらに含む、[1B]~[3B]のいずれかに記載の方法。
[5B] [1B]~[4B]のいずれかに記載の方法で得られたCMP又は骨髄球系前駆細胞を培養する工程を含む、CMP又は骨髄球系前駆細胞を製造する方法。
[6B] [1B]~[5B]のいずれかに記載の方法で得られたCMP又は骨髄球系前駆細胞を分化する工程を含む、CMP系分化細胞を製造する方法。
[7B] CMP系分化細胞が、マクロファージ又は樹状細胞である、[6B]に記載の方法。
[8B] [1B]~[5B]のいずれかに記載の方法で得られたCMP又は骨髄球系前駆細胞、又は[6B]若しくは[7B]に記載の方法で得られたCMP系分化細胞を含む、医薬組成物。
[9B] [1B]~[5B]のいずれかに記載の方法で得られたCMP、骨髄球系前駆細胞、又は[6B]若しくは[7B]に記載の方法で得られたCMP系分化細胞、又は[8B]に記載の医薬組成物を、それを必要とする患者に投与することを含む、疾患の治療又は予防方法。
[10B] [1B]~[5B]のいずれかに記載の方法で得られたCMP又は骨髄球系前駆細胞。
[11B] [6B]又は[7B]に記載の方法で得られたCMP系分化細胞。
[12B] CMP又は骨髄球系前駆細胞の増殖促進剤であって、
 BCL-XL遺伝子を強制発現させる分子を有効成分として含み、
 骨髄球系前駆細胞が、GMP、マクロファージ前駆細胞又は樹状細胞前駆細胞である、増殖促進剤。
[13B] 外来性プロモーターと作用可能に連結されたBCL-XL遺伝子を有する、CMP又は骨髄球系前駆細胞であって、骨髄球系前駆細胞が、GMP、マクロファージ前駆細胞又は樹状細胞前駆細胞である、CMP又は骨髄球系前駆細胞。
[14B] [13B]に記載のCMP又は骨髄球系前駆細胞を含む細胞集団であって、該細胞集団全体における該CMP又は骨髄球系前駆細胞の割合が10%以上である、細胞集団。
[15B] [14B]に記載の細胞集団を含む、細胞調製物。
[1C] CMP又は骨髄球系前駆細胞において、CDKN1A遺伝子及びp53遺伝子の少なくともいずれかの発現、又はその発現産物の機能を抑制する工程を含み、
 骨髄球系前駆細胞が、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞又は赤血球前駆細胞である、CMP又は骨髄球系前駆細胞の増殖性を向上させる方法。
[2C] CMP又は骨髄球系前駆細胞を抽出する工程をさらに含む、[1C]に記載の方法。
[3C] CMP又は骨髄球系前駆細胞において、MYCファミリー遺伝子及びBMI1遺伝子を強制発現させる工程をさらに含む、[1C]又は[2C]に記載の方法。
[4C] CMP又は骨髄球系前駆細胞において、BCL-XL遺伝子を強制発現させる工程をさらに含む、[1C]~[3C]のいずれかに記載の方法。
[5C] [1C]~[4C]のいずれかに記載の方法で得られたCMP又は骨髄球系前駆細胞を培養する工程を含む、CMP又は骨髄球系前駆細胞を製造する方法。
[6C] [1C]~[5C]のいずれかに記載の方法で得られたCMP又は骨髄球系前駆細胞を分化する工程を含む、CMP系分化細胞を製造する方法。
[7C] CMP系分化細胞が、マクロファージ、樹状細胞又は赤血球である、[6C]に記載の方法。
[8C] [1C]~[5C]のいずれかに記載の方法で得られたCMP又は骨髄球系前駆細胞、又は[6C]若しくは[7C]に記載の方法で得られたCMP系分化細胞を含む、医薬組成物。
[9C] [1C]~[5C]のいずれかに記載の方法で得られたCMP、骨髄球系前駆細胞、又は[6C]若しくは[7C]に記載の方法で得られたCMP系分化細胞、又は[8C]に記載の医薬組成物を、それを必要とする患者に投与することを含む、疾患の治療又は予防方法。
[10C] [1C]~[5C]のいずれかに記載の方法で得られたCMP又は骨髄球系前駆細胞。
[11C] [6C]又は[7C]に記載の方法で得られたCMP系分化細胞。
[12C] CMP又は骨髄球系前駆細胞の増殖促進剤であって、
 CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制する分子を有効成分として含み、
 骨髄球系前駆細胞が、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞又は赤血球前駆細胞である、増殖促進剤。
[13C] 第5の外来性プロモーターと作用可能に連結されたCDKN1A遺伝子に対する発現抑制核酸、及び/又は第6の外来性プロモーターと作用可能に連結されたp53遺伝子に対する発現抑制核酸をコードする核酸を有する、CMP又は骨髄球系前駆細胞であって、骨髄球系前駆細胞が、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞又は赤血球前駆細胞である、CMP又は骨髄球系前駆細胞。
[14C] [13C]に記載のCMP又は骨髄球系前駆細胞を含む細胞集団であって、該細胞集団全体における該CMP又は骨髄球系前駆細胞の割合が10%以上である、細胞集団。
[15C] [14C]に記載の細胞集団を含む、細胞調製物。
 本発明によれば、造血前駆細胞から特定の骨髄球系前駆細胞への分化過程における任意の細胞において、MYCファミリー遺伝子及びBMI1遺伝子を強制発現させることで、CMP又は骨髄球系前駆細胞の増殖性を向上させることが可能になる。
 また、本発明は、ドキシサイクリン誘導性にヒトiPS細胞由来造血前駆細胞を長期間安定増殖させることが可能であり、任意のタイミングで培地からドキシサイクリンを除去するだけで、増殖を抑制すると同時に、正常機能を有する好中球、マクロファージ、赤芽球、赤血球等を大量に準備可能である。
 本発明は様々なiPS細胞から高効率に骨髄球系の不死化細胞株に誘導可能であることから異物特異的抗原を標的としたレセプター導入したiPS細胞、標的細胞への細胞毒性を強める遺伝子改変したiPS細胞、免疫拒絶反応を抑えたHLA null iPS細胞、遺伝性疾患iPS細胞を用いることで、より生理的であり、薬剤スクリーニング、細胞療法、双方で優位性が期待できる。
図1は、実施例1-1で用いた不死化CMP株を樹立する方法を示す。 図2は、培養14日後にc-MYC/BMI1の2遺伝子を導入したCMP株を、そのまま培養した株(MB)、培養21日後にMB株に更にドキシサイクリン誘導レンチウイルスベクターを用いてBCL-XL遺伝子を導入した株(MBX)、培養21日後にMB株に更に持続的に発現するsh p21/p53レンチウイルスベクターを感染させた株(MB-p21/p53_KD)、及び培養21日後にMBX株に更に持続的に発現するsh p21/p53レンチウイルスベクターを感染させた株(MBX-p21/p53_KD)について、14日目と31日目と43日目における細胞の増殖数の結果を示す。 図3は、健常者由来iPS細胞から誘導したCMP株(上列:Clone7-3、下列:Clone7-4)について、培養液からドキシサイクリンを除去し、MYC/BMI1/BCL-XLの3因子の発現を抑制して7日目に、骨髄球系の主要な3系統への終末分化を確認した結果を示す。 図4は、MBX株及びMBX-p21/p53_KD株について、培養液からドキシサイクリンを除去し、MYC/BMI1/BCL-XLの3因子の発現を抑制して7日目に、マクロファージへの分化を確認した結果を示す。 図5は、実施例2-1で用いたPiggyBac Systemを示す。 図6は、実施例2-1で樹立したマクロファージ株の増殖曲線を示す。 図7は、実施例2-1で得た1383D10由来のマクロファージ株をCD13,CD14,CD33,CD43,HLA-DRで染色しFACSで解析した結果を示す。 図8上部は、実施例2-1で得た各マクロファージ株をマクロファージのマーカーであるCX3CR1でsorting後、遺伝子発現時(Dox on)と遺伝子発現抑制時(Dox off)とする操作を示す。図8下部は、遺伝子発現時(Dox on)のマクロファージ細胞表面マーカーをFACSで解析した結果を示す。 図9は、実施例2-1で得た各マクロファージ株について、遺伝子発現抑制時(Dox off)のマクロファージ細胞表面マーカーをFACSで解析した結果を示す。 図10は、実施例2-1で得た各マクロファージ株について、M1型、M2型のいずれの型であるかを検証した結果を示す。 図11は、実施例2-1で得た各マクロファージ株の培養液からドキシサイクリンを除去し、Dox off時にマトリゲル上で培養した細胞株をCD11bで染色した結果を示す。 図12は、実施例2-1で得た各マクロファージ株の貪食能を調べた結果を示す。 図13は、実施例2-1で得た各マクロファージ株のβ-amiloidの貪食能を調べた結果を示す。 図14は、実施例2-1で樹立した赤血球株について、細胞数をグリコフォリンA(Gly-A)陽性細胞でカウントした結果を示す。 図15は、実施例3-1で用いたPiggyBac Systemを示す。 図16は、実施例3-1で樹立したマクロファージ株の増殖曲線を示す。 図17は、実施例3-1で樹立した樹状細胞株の増殖曲線を示す。 図18上部は、実施例3-1で得た各マクロファージ株をマクロファージのマーカーであるCX3CR1でsorting後、遺伝子発現時(Dox on)と遺伝子発現抑制時(Dox off)とする操作を示す。図18下部は、遺伝子発現時(Dox on)のマクロファージ細胞表面マーカーをFACSで解析した結果を示す。 図19は、実施例3-1で得た各マクロファージ株について、遺伝子発現抑制時(Dox off)のマクロファージ細胞表面マーカーをFACSで解析した結果を示す。 図20は、実施例3-1で得た各マクロファージ株のβ-amiloidの貪食能を調べた結果を示す。 図21上部は、実施例3-1で得た各樹状細胞株を樹状細胞のマーカーであるCD209でsorting後、遺伝子発現時(Dox on)と遺伝子発現抑制時(Dox off)とする操作を示す。図21下部は、遺伝子発現時(Dox on)と遺伝子発現抑制時(Dox off)の樹状細胞表面マーカーをFACSで解析した結果を示す。 図22は、実施例3-1で得た各樹状細胞株について、遺伝子発現時(Dox on)と遺伝子発現抑制時(Dox off)の樹状細胞表面マーカーをFACSで解析した結果を示す。 図23は、実施例3-1で得た各樹状細胞株について、遺伝子発現時(Dox on)と遺伝子発現抑制時(Dox off)の樹状細胞表面マーカーをFACSで解析した結果を示す。 図24は、実施例3-1で樹立した赤血球株について、細胞数をGly-A陽性細胞でカウントした結果を示す。
(1)方法論1
 本実施形態に係るCMP又は骨髄球系前駆細胞の増殖性を向上させる方法は、造血前駆細胞から骨髄球系前駆細胞への分化過程における任意の細胞において、MYCファミリー遺伝子及びBMI1遺伝子を強制発現させる工程を含み、これにより、CMP又は骨髄球系前駆細胞の増殖性が向上し、無限に増殖する不死化細胞株を得ることが期待できる。
 「造血前駆細胞から骨髄球系前駆細胞への分化過程」には、造血前駆細胞は含まれない。造血前駆細胞から骨髄球系前駆細胞への分化過程の細胞としては、CMP及び下記に詳述する骨髄球系前駆細胞を挙げることができる。
 本明細書で使用する場合、「骨髄系共通前駆細胞」(common myeloid progenitor:CMP)とは、マクロファージや樹状細胞等の単球系細胞、好中球や好塩基球等の顆粒球系細胞、血小板を産出する巨核球細胞、及び赤芽球細胞や赤血球等の赤血球系細胞に分化する能力を有し、T細胞、B細胞及びNK細胞等のリンパ球へ分化する能力を有していない前駆細胞である。
 CMPは、フローサイトメトリー解析において、例えば、CD33の細胞表面マーカー発現により特徴付けることができる。CMPは、造血前駆細胞や造血内皮細胞を、CMP分化誘導に適した条件下で培養することにより得ることができる。例えば、造血前駆細胞又は造血内皮細胞を、GM-CSF、G-CSF、IL-3、SCF及びTPOを含む適切な培地中で、CMPへの分化に十分な期間培養することにより得ることができる。培養の環境としては、例えば、5%CO、36~38℃、好ましくは37℃の条件を用いることができる。CMPが誘導されたことは、培養した細胞をフローサイトメトリー解析に付して、上述のCMPに特徴的な細胞表面マーカー発現パターンを有する細胞の出現を検出するか、コロニー形成アッセイに付して、上述のCMPに特徴的な分化能力を有することを確認することにより、確かめることができる。CMPが誘導されるまでの培養期間は、出発細胞(造血前駆細胞、造血内皮細胞等)の種類によって異なるが分化誘導を開始してから、1~20日後くらいにはその存在を確認することができる。
 「造血前駆細胞」とは、CD34CD43細胞として特徴付けられる造血系の細胞であり、例えば、ES細胞、iPS細胞等の多能性幹細胞由来の細胞であってもよく、特に、ES細胞、iPS細胞等の多能性幹細胞から調製されるネット様構造物(「ES-sac」又は「iPS-sac」とも称する)から得られる細胞(特に、ネット様構造物から分離した直後の細胞)が好ましい。ここで、ES細胞又はiPS細胞から調製される「ネット様構造物」とは、ES細胞又はiPS細胞由来の立体的な嚢状(内部に空間を伴うもの)構造体で、内皮細胞集団等で形成され、内部に造血前駆細胞を含むもののことである。ネット様構造については、例えば、WO2008/041370;WO2009/122747;Lordier et al.,Blood,112:3164-3174 2009;TAKAYAMA et al., BLOOD 2008,111:5298-5306を参照できる。
 「造血内皮細胞」とは、VE-カドヘリンを発現し、1個の細胞から血液細胞と血管内皮細胞の両方のコロニーを形成する能力(二分化能)を持つ細胞をいう。造血内皮細胞は、VE-カドヘリン陽性、CD41陽性、CXCR4陽性の細胞であり得る。「造血内皮細胞」は、例えば、ES細胞、又はiPS細胞等の多能性幹細胞由来の細胞であってもよく、ES細胞又はiPS細胞からネット様構造物を誘導する過程で、誘導される。
 ネット様構造物をヒトES細胞、ヒトiPS細胞等のヒト多能性幹細胞から調製するために適した細胞の培養条件は、用いる多能性幹細胞によって異なるが、例えば、培地としては、最終濃度15%のFBSを添加したIMDMを用い、その他無血清の場合においても適宜増殖因子及びサプリメント等を加えたものを使用することができる。さらに、ネット様構造物を効率的に形成させるために、VEGFを0~100ng/ml、より好ましくは、20ng/ml程度加えるのがよい。培養の環境としては、用いるES細胞又はiPS細胞の種類によって異なるが、例えば、5%CO、36~38℃、好ましくは37℃の条件を用いることができる。ネット様構造物が形成されるまでの培養期間は、多能性幹細胞の種類や誘導条件によって異なるが、一般的には、多能性幹細胞をフィーダー細胞上に播いてから、7日後くらいまでに造血内皮細胞を含む細胞塊が形成され、14~16日後くらいまでに、造血前駆細胞を含むネット様構造物が形成される。
 形成されたネット様構造物は、濾胞状構造になっており、内部には、造血前駆細胞が濃縮された状態で存在している。細胞塊に含まれる造血内皮細胞やネット様構造物の内部に存在する造血前駆細胞は、物理的な手段、例えば、滅菌済みの篩状器具(例えば、セルストレイナー等)に通すことにより、分離することができる。
 「骨髄球系前駆細胞」とは、CMPから分化した、CMPに由来する細胞であり、マクロファージ、樹状細胞、顆粒球、赤芽球、又は赤血球の前駆細胞を広く意味する。CMPは、巨核球・赤芽球前駆細胞(megakaryocyte-erythrocyte progenitor:MEP)や顆粒球・マクロファージ前駆細胞(granulocyte-macrophage progenitor:GMP)に分化し得る。
 その後多段階の分化を経て、GMPからは、マクロファージ、樹状細胞、及び顆粒球が、MEPからは、巨核球、赤芽球、又は赤血球が生成される。すなわち、マクロファージ、樹状細胞、顆粒球、赤芽球、又は赤血球の前駆細胞(骨髄球系前駆細胞)は、最終分化したマクロファージ、樹状細胞、顆粒球、巨核球、赤芽球、又は赤血球自体ではないものの、CMPからマクロファージ、樹状細胞、顆粒球、赤芽球、又は赤血球への分化過程における任意の細胞であればよい。骨髄球系前駆細胞としては、MEP、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞、赤血球前駆細胞、好中球前駆細胞等を例示することができるが、これらに限定されない。なお、本発明においては、骨髄球系前駆細胞からは、MEPから巨核球への分化過程における巨核球の前駆細胞(多核化前のもの、WO2011/034073で「巨核前駆細胞」と記載しているものを含む)が除かれる。
 MEPは、造血前駆細胞、造血内皮細胞又はCMPを、MEP分化誘導に適した条件下で培養することにより得ることができる。例えば、造血前駆細胞、造血内皮細胞又はCMPを、IL-3、SCF及びTPOを含む適切な培地中で、MEPへの分化に十分な期間培養することにより得ることができる。マクロファージ前駆細胞は、造血前駆細胞、造血内皮細胞、CMPを、マクロファージ前駆細胞分化誘導に適した条件下で培養することにより得ることができる。例えば、造血前駆細胞、造血内皮細胞、CMPを、IL-1b、SCF及びM-CSFを含む適切な培地中で、マクロファージ前駆細胞への分化に十分な期間培養することにより得ることができる。樹状細胞前駆細胞は、造血前駆細胞、造血内皮細胞、CMPを、樹状細胞前駆細胞分化誘導に適した条件下で培養することにより得ることができる。例えば、造血前駆細胞、造血内皮細胞、CMPを、SCF、M-CSF及びGM-CSFを含む適切な培地中で、樹状細胞前駆細胞への分化に十分な期間培養することにより得ることができる。好中球前駆細胞は、造血前駆細胞、造血内皮細胞、CMPを、好中球前駆細胞分化誘導に適した条件下で培養することにより得ることができる。例えば、造血前駆細胞、造血内皮細胞、CMPを、SCF及びGM-CSFを含む適切な培地中で、好中球前駆細胞への分化に十分な期間培養することにより得ることができる。赤血球前駆細胞は、造血前駆細胞、造血内皮細胞、CMP又はMEPを、赤血球前駆細胞分化誘導に適した条件下で培養することにより得ることができる。例えば、造血前駆細胞、造血内皮細胞、CMP又はMEPを、SCF及びEPOを含む適切な培地中で、赤血球前駆細胞への分化に十分な期間培養することにより得ることができる。培養の環境としては、例えば、5%CO、36~38℃、好ましくは37℃の条件を用いることができる。各骨髄球系前駆細胞が誘導されたことは、培養した細胞をフローサイトメトリー解析に付して、下述の各骨髄球系前駆細胞に特徴的な細胞表面マーカー発現パターンを有する細胞の出現を検出するか、コロニー形成アッセイに付して、各骨髄球系前駆細胞に特徴的な分化能力を有することを確認することにより、確かめることができる。CMPが誘導されるまでの培養期間は、出発細胞(造血前駆細胞、造血内皮細胞等)の種類によって異なるが、分化誘導を開始してから、7~14日後くらいにはその存在を確認することができる。
 CMP、MEPは、フローサイトメトリー解析において、以下の細胞表面マーカー発現パターンにより特徴付けられ得る。
CMP:Lin/CD33
MEP:CD41 又はCD41Gly-A
 その他の骨髄球系前駆細胞は、フローサイトメトリー解析において、例えば、以下の細胞表面マーカーの少なくとも1つ、好ましくは2以上を発現することにより特徴付けられ得る。
マクロファージ前駆細胞:CX3CR1、CD16、CD14、CD11b、CD13、CD86
樹状細胞前駆細胞:CD209、CD11c、CD303、CD80、CD86
赤血球前駆細胞:Gly-A、CD71
好中球前駆細胞:CD15、CD16
 本発明者らは、多能性幹細胞から誘導した多核化前の巨核球(WO2011/034073中で「巨核前駆細胞」と記載しているものを含む)中でMYC等の癌遺伝子とBMI1等の遺伝子を強制発現させ、該巨核球の増殖能を高めることについて報告をしているが(WO2011/034073、JEM, 207:2817-2830 2010)、本発明は、この方法論が、巨核球のみならず、造血前駆細胞から骨髄球系前駆細胞への分化過程における任意の細胞に適用可能であり、その増殖能を高め得ることを見出したことに基づく。
 本明細書で使用する場合、「遺伝子の発現」とは、対象の遺伝子をコードするDNAがmRNAへ転写されること、及び/又はmRNAがタンパク質へ翻訳されることを意味する。MYCファミリー遺伝子及びBMI1遺伝子の強制発現は、同時に行ってもよく、順次行ってもよい。なお、強制発現後に、細胞を継代培養してもよく、最後の継代から強制発現を解除する日までの期間も特に限定されないが、例えば、1日間、2日間又は3日間以上としてもよい。CMP又は骨髄球系前駆細胞の増殖を維持する場合には、培養期間中、MYCファミリー遺伝子及びBMI1遺伝子の強制発現を維持することが好ましい。
 MYCファミリー遺伝子は、生体内において細胞の癌化を誘導する遺伝子である。MYCファミリー遺伝子としては、例えば、c-MYC、N-MYC、L-MYC遺伝子が挙げられる。これらの中でもc-MYCが好ましい。
 BMI遣伝子は、CDKN2a(INK4A/ARF)遺伝子を負に制御し、細胞老化を回避するために機能する遺伝子である(小倉ら, 再生医療,vol.6,No.4,pp26-32;Jseus et al., Jseus et al., Nature Reviews Molecular Cell Biology vol.7,pp667-677,2006;Proc.Natl.Acad.Sci.USA,vol.100,pp211-216,2003)。
 CMP又は骨髄球系前駆細胞の増殖性を向上させる方法においては、所望の特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)を抽出(単離又は精製)する工程をさらに含んでいてもよい。特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)の抽出は、MYCファミリー遺伝子及びBMI1遺伝子を強制発現させる前に行っても後に行ってもよい。一態様において、MYCファミリー遺伝子及びBMI1遺伝子を強制発現させる前にこの抽出工程を行い、抽出した特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)において、MYCファミリー遺伝子及びBMI1遺伝子を強制発現させる。別の態様において、MYCファミリー遺伝子及びBMI1遺伝子を強制発現させた、所望の特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)を含む細胞集団を調製し、その後該細胞集団から、所望の特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)を抽出する。この抽出した特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)において、MYCファミリー遺伝子及びBMI1遺伝子を引き続き強制発現させてもよい。目的とする細胞を抽出し、抽出された細胞に対して、本発明の方法を適用することにより、或いは本発明の方法を適用した細胞集団から、目的とする細胞を抽出して、該細胞を継続して培養することにより、目的の細胞種を効率よく増殖させることができる。抽出する細胞は、抽出した細胞種の増殖性を効率的に向上させる観点から、CMPの細胞株のみとすることや、骨髄球系前駆細胞の単一種の細胞株のみとすることが好ましいが、これらの2種以上の細胞が混合した細胞集団としてもよい。
 抽出する細胞としては、例えば、CMP、MEP、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞、赤血球前駆細胞、好中球前駆細胞等を挙げることができる。目的とする細胞の抽出は、該細胞に特異的に発現している(又は発現していない)細胞表面マーカーに対する抗体を用いて、フローサイトメトリー、パニング、磁気ビーズ等の当業者に周知の方法により行うことができる。CMP、MEPの単離は、上述の細胞表面マーカー発現パターンを満足する細胞を単離することにより行うことができる。マクロファージ前駆細胞を抽出する場合、例えば、CX3CR1、CD16、CD14、CD11b、CD13及びCD86からなる群から選択される少なくとも1つの細胞表面マーカー(好ましくは、CX3CR1)が陽性の細胞を単離する。樹状細胞前駆細胞を抽出する場合、例えば、CD209、CD11c、CD303、CD80及びCD86からなる群から選択される少なくとも1つの細胞表面マーカー(好ましくは、CD209)が陽性の細胞を単離する。赤血球前駆細胞を抽出する場合、例えば、Gly-A及びCD71からなる群から選択される少なくとも1つの細胞表面マーカー(好ましくは、Gly-A)が陽性の細胞を単離する。好中球前駆細胞を抽出する場合、例えば、CD15及びCD16からなる群から選択される少なくとも1つの細胞表面マーカーが陽性の細胞を単離する。
 抽出操作後の細胞集団に含まれる目的とする細胞の割合が、例えば、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)となるように、目的とする細胞の単離を行うことができる。目的とする細胞のシングルセルを単離してもよい。
 本発明に係るCMP又は骨髄球系前駆細胞の増殖性を向上させる方法は、CMP又は骨髄球系前駆細胞において、BCL-XL遺伝子を強制発現させる工程をさらに含んでいてもよい。MYCファミリー遺伝子及びBMI1遺伝子に加えて、BCL-XL遺伝子を発現させることにより、CMP又は骨髄球系前駆細胞の増殖の更なる促進が期待できる。BCL-XL遺伝子の上記強制発現の期間は当業者が適宜決定することができる。
 BCL-XL遺伝子は、細胞のアポトーシスを抑制する機能を有する遣伝子である。
 MYCファミリー遺伝子、BMI1遺伝子、及び/又はBCL-XL遺伝子の強制発現は、同時に行ってもよく、順次行ってもよい。例えば、MYCファミリー遺伝子とBMI1遺伝子を強制発現させ、続いてBCL-XL遺伝子を強制発現させて、増殖能を向上させたCMP又は骨髄球系前駆細胞を得てもよい。また、MYCファミリー遺伝子とBMI1遺伝子とBCL-XL遺伝子を同時に強制発現させて、増殖能を向上させたCMP又は骨髄球系前駆細胞を得ることもできる。CMP又は骨髄球系前駆細胞の増殖を維持する場合には、培養期間中、MYCファミリー遺伝子及びBMI1遺伝子に加えてBCL-XLの強制発現を維持することが好ましい。
 MYCファミリー遺伝子、BMI1遺伝子、及びBCL-XL遺伝子は、CMP又は骨髄球系前駆細胞の細胞増殖を促進するが、CMP系分化細胞(例、マクロファージ、樹状細胞、好中球、赤血球)の終末分化を阻害し得るために、終末分化工程に入る前にこれら遺伝子の発現を抑制してもよい。CMP又は骨髄球系前駆細胞内のこれら遺伝子発現を抑制することにより、機能的でより成熟したCMP系分化細胞(例、マクロファージ、樹状細胞、好中球、赤血球)が誘導されやすくなる。
 MYCファミリー遺伝子、BMI1遺伝子、BCL-XL遺伝子等の遺伝子を細胞内で強制発現させる場合、当業者において周知のいかなる方法により実施してもよいが、例えば、遺伝子を、レンチウイルスやレトロウイルス等のウイルスベクターやプラスミドベクター、エピソーマルベクター等の非ウイルスベクターによる遺伝子導入システムを利用して、細胞内に導入し、発現させてもよい。トランスポゾンを用いて非ウイルス的に、目的遺伝子を細胞のゲノムに組み込み,安定発現細胞株を樹立した後に、不要となった導入遺伝子をトランスポゾネースにより除去する方法(例、PiggyBac Transposonシステム)を用いることもまた好ましい。CMP又は骨髄球系前駆細胞に、所望の遺伝子(例、MYCファミリー遺伝子及びBMI1遺伝子、任意的に更にBCL-XL遺伝子)の発現ベクター(例、ウイルスベクター)をトランスフェクトしてもよいし、予め所望の遺伝子(例、MYCファミリー遺伝子及びBMI1遺伝子、任意的に更にBCL-XL遺伝子)の発現カセットを組み込んだ多能性幹細胞(例、ES細胞、iPS細胞)、造血前駆細胞又は造血内皮細胞からCMP又は骨髄球系前駆細胞を誘導し、その段階で当該遺伝子を強制発現させてもよい。或いは、予め所望の遺伝子(例、MYCファミリー遺伝子及びBMI1遺伝子、任意的に更にBCL-XL遺伝子)の発現カセットを組み込んだ多能性幹細胞(例、ES細胞、iPS細胞)、造血前駆細胞又は造血内皮細胞において、当該遺伝子を強制発現させながら、該多能性幹細胞、造血前駆細胞又は造血内皮細胞から、CMP又は骨髄球系前駆細胞への分化を誘導してもよい。遺伝子導入ベクターにより遺伝子発現を行う場合、適当なプロモーターの下流に該遺伝子を作用可能に連結し、これを遺伝子導入ベクターに挿入して、細胞内に導入して目的遺伝子を発現させてもよい。該プロモーターは外来性プロモーターであり得る。本明細書中、遺伝子の「内在性」プロモーターとは、ゲノム中における該遺伝子と自然な状態で連結されているプロモーターを意味し、遺伝子の「外来性」プロモーターとは、遺伝操作(すなわち分子生物学的技法)によって、人為的に該遺伝子の近位に、該遺伝子の転写が、作用可能に連結されているプロモーターによって指示されるように配置されているものを意味する。ここで、「作用可能」に連結するとは、該プロモーターによって目的遺伝子がシスに支配され、目的遺伝子の所望の発現が実現されるようにプロモーターと目的遺伝子を連結することを意味する。外来性プロモーターは、恒常的プロモーター又は調節性プロモーターであり得る。恒常的プロモーターとしては、例えば、CMVプロモーター、EF1プロモーター、ユビキチンプロモーター等を挙げることができる。調節性プロモーターとは、誘導可能又は抑制解除可能なプロモーターを意味し、リプレッサー又はインデューサーのいずれか一方と結合することのできる、プロモーターと共に働くDNA配列を有するプロモーターを指す。プロモーターが誘導されるか或いは抑制解除されると「オンの状態」になり、プロモーターが誘導されないか或いは抑制解除されていない状態では、プロモーターは「オフの状態」となる。調節性プロモーターの例としては、テトラサイクリン反応性プロモーター、ステロイド反応性プロモーター、メタロチオネインプロモーター等の薬剤反応性プロモーターを挙げることができる。テトラサイクリン反応性プロモーターとは、テトラサイクリン又はその誘導体(例えば、ドキシサイクリン(Dox))の存在又は非存在によって可逆的に制御される、既知の調節性プロモーターである。テトラサイクリン反応性プロモーターは、内部にテトラサイクリン応答エレメント(TRE)が配置されたプロモーターであり、リバーステトラサイクリン制御性トランス活性化因子(rtTA)タンパク質又はテトラサイクリン制御性トランス活性化因子(tTA)のTREへの結合により、活性化される(即ち、目的タンパク質の発現を誘導する)プロモーターである。rtTAタンパク質はDox存在下でTREに結合し、一方tTAタンパク質はDox非存在下でTREに結合して、TRE配列の下流のプロモーターと機能的に連結された目的遺伝子の発現を誘導する。テトラサイクリン反応性プロモーターを用いる場合、テトラサイクリン反応性プロモーターと機能的に連結された該遺伝子と、rtTA又はtTAタンパク質とが導入された細胞を、Dox存在下で培養することにより、Dox依存的に該遺伝子の発現を誘導又は抑制することができる。外来性プロモーターは、好ましくは調節性プロモーターである。調節性プロモーターを用いることにより、例えば、薬剤添加等の制御により目的遺伝子を誘導的に発現させることもできる。このような薬剤による遺伝子発現システムは、MYCファミリー遺伝子、BMI1遺伝子、BCL-XL遺伝子等の所望の発現制御を実現するために、当業者において、適当なシステムを容易に選択することができる。このような発現を行うために、市販のキット等を使用してもよい。また、発現制御の目的遺伝子であるMYCファミリー遺伝子、BMI1遺伝子、BCL-XL遺伝子は、それぞれ別々のベクターに挿入してもよいし、同一のベクターに挿入してもよい。
 細胞内におけるMYCファミリー遺伝子、BMI1遺伝子、BCL-XL遺伝子等の発現の抑制は、例えば、前述の調節性プロモーターを用いた薬剤誘導的な発現システムによる発現の誘導を、薬剤等の除去により解除することで達成してもよい。或いは、導入したMYCファミリー遺伝子、BMI1遺伝子、BCL-XL遺伝子等をCre/loxシステム等を使用して除去し、これらの遺伝子の発現を抑制的に制御してもよい。MYCファミリー遺伝子、BMI1遺伝子、BCL-XL遺伝子等の発現を抑制的に調節するために、市販のキット等を適宜使用することもできる。
 上記各遺伝子の強制発現及びその解除のためにTet-on(登録商標)又はTet-off(登録商標)システムのような市販の薬剤応答性の遺伝子発現誘導システムを用いてもよい。この場合、強制発現させる工程においては、対応する薬剤、例えば、テトラサイクリン又はドキシサイクリンを培地に含有させ、これらを培地から除くことによって強制発現を抑制してもよい。
 遺伝子の強制発現及び強制発現の解除は、国際公開第2011/034073号(上掲)及び米国特許出願公開第2012/0238023号、国際公開第2012/157586号(上掲)及び米国特許出願公開第2014/0127815号、国際公開第2014/123242号及び米国特許出願公開第2016/0002599号、又はNakamura S et al, Cell Stem Cell. 14, 535-548, 2014に記載された方法、その他の公知の方法又はそれに準ずる方法で行うことができる。
 本発明に係るCMP又は骨髄球系前駆細胞の増殖性を向上させる方法は、CMP又は骨髄球系前駆細胞において、CDKN1A遺伝子及びp53遺伝子の少なくともいずれかの発現、又はその発現産物の機能を抑制する工程を含んでいてもよい。ここで、発現とは、転写及び翻訳を含む概念で用いられ、発現を阻害するという場合、転写レベルで阻害することも翻訳レベルで阻害することも含みうる。本発明の方法において、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制することにより、CMP又は骨髄球系前駆細胞の増殖の更なる向上が期待できる。
 CDKN1A(cyclin-dependent kinase inhibitor 1A)遺伝子は細胞周期の阻害因子p21をコードしており、癌抑制遺伝子であるp53遺伝子の下流遺伝子としても知られている。活性化したp53タンパク質は転写因子として働き、p53下流遺伝子群の発現を増加させる。そのため、本明細書で使用する場合、「遺伝子の発現、又はその発現産物の機能を抑制する」とは、対象の遺伝子の発現やその発現産物(例えば、CDKN1A遺伝子の場合にはp21)の機能を直接抑制することによって達成してもよいし、対象の遺伝子の上流にある遺伝子の発現やそれらの発現産物の機能を制御することで達成することもできる。ただし、本明細書においては、CDKN1A遺伝子の発現、又はその発現産物の機能を抑制する場合、その対象となるCDKN1A遺伝子の上流遺伝子の中に、p53遺伝子、更にはp53遺伝子の上流にある別の癌抑制遺伝子であるINK4A遺伝子及びARF遺伝子は含まれない。
 CDKN1A遺伝子のみならず、p53遺伝子の発現、或いはそれらの発現産物の機能を抑制することが好ましい。
 上記各遺伝子の発現又はその発現産物の機能の抑制は、既知の方法により行うことができ、例えば、各遺伝子の発現を特異的に抑制し得るsiRNA、shRNA、アンチセンス核酸(「発現抑制核酸」という。)、又はこれらの発現抑制核酸を発現し得る発現ベクター等の、種々の分子を細胞に導入することにより行うことができる。或いは、それ以外の技術、例えばゲノム編集技術等を利用し、遺伝子をノックダウンしてもよい。例えば、CRISPR-Casシステムを利用して遺伝子をノックダウンする場合、その遺伝子を標的とするガイドRNAと、dCasのような不活化Casとリプレッサードメインの融合タンパク質等が用いられる。
 siRNAは、典型的には、標的遺伝子のmRNAのヌクレオチド配列又はその部分配列と相補的な配列を有するRNAとその相補鎖からなる2本鎖オリゴRNAである。siRNAの長さは、哺乳動物細胞に用いられる場合、通常19~30塩基程度、好ましくは21塩基~25塩基程度である。これらのRNAのヌクレオチド配列は、発現が抑制される遺伝子の配列情報により当業者が適宜設計することができる。siRNAの代わりにshRNAを使用することもできる。
 アンチセンス核酸とは、標的mRNA(成熟mRNA又は初期転写産物)を発現する細胞の生理的条件下で標的mRNAと特異的にハイブリダイズし得るヌクレオチド配列を含み、かつハイブリダイズした状態で標的mRNAにコードされるポリペプチドの翻訳を阻害し得る核酸を意味する。アンチセンス核酸は、一般的には10塩基長~100塩基長、好ましくは15塩基長~30塩基長の一本鎖核酸である。アンチセンス核酸の種類は、DNA又はRNAであってもよいし、或いはDNAとRNAのキメラであってもよい。アンチセンス核酸のヌクレオチド配列は、発現が抑制される遺伝子の配列情報により当業者が適宜設計することができる。
 上記の技術に加え、各遺伝子の発現を抑制することが知られている化合物を使用することもできる。例えば、CDKN1A遺伝子の発現を抑制する化合物として、UC2288、ブチロラクトンI、LLW10、ソラフェニブ、ステリグマトシスチン等のp21阻害剤が知られている。また、p53阻害剤としては、ピフィスリンα、ナトリン-3、ReACp53、RG7388等が知られている。
 或いは、遺伝子の発現又はその発現産物の機能の抑制のために、公知の技術を用いて対象の遺伝子をノックアウトしてもよい。遺伝子のノックアウトとは、遺伝子の全部又は一部がその本来の機能を発揮しないように破壊又は変異されていることを意味する。遺伝子は、ゲノム上の一つの対立遺伝子が機能しないように破壊又は変異されていてもよい。また、複数の対立遺伝子が破壊又は変異されていてもよい。ノックアウトは、既知の方法により行うことができ、例えば、標的遺伝子との間で遺伝的組換えが起こるように作られたDNAコンストラクトを細胞に導入することによりノックアウトする方法や、TALENやCRISPR-Casシステム等のゲノム編集技術を利用して、塩基の挿入、欠失、置換導入によりノックアウトする方法が挙げられる。
 その他、各遺伝子の転写及び転写産物を抑制する化合物、又は産生されたタンパクの標的タンパクとの結合阻害剤(p53結合阻害:ピフィスリンα、ナトリン-3、ReACp53、RG7388等;p21結合阻害:UC2288、ブチロラクトンI、LLW10、ソラフェニブ、ステリグマトシスチン等)等を使用してもよい。
 遺伝子の発現又はその発現産物の機能の抑制は、上述の方法により行うことができる。
 CDKN1A遺伝子及び/又はp53遺伝子の発現の抑制は、好ましくは、各遺伝子に対する発現抑制核酸を発現する発現ベクターを細胞に導入することにより行う。CDKN1A遺伝子、p53遺伝子等の遺伝子に対する発現抑制核酸を細胞内で強制発現させる場合、当業者において周知のいかなる方法により実施してもよいが、例えば、該発現抑制核酸をコードする核酸を、レンチウイルスやレトロウイルス等のウイルスベクターやプラスミドベクター、エピソーマルベクター等の非ウイルスベクターによる遺伝子導入システムを利用して、細胞内に導入し、発現させてもよい。トランスポゾンを用いて非ウイルス的に、発現抑制核酸をコードする核酸を細胞のゲノムに組み込み、発現抑制核酸の安定発現細胞株を樹立した後に、不要となった導入核酸をトランスポゾネースにより除去する方法(例、PiggyBac Transposonシステム)を用いることもまた好ましい。CMP又は骨髄球系前駆細胞に、所望の遺伝子(例、CDKN1A遺伝子、p53遺伝子)に対する発現抑制核酸の発現ベクター(例、ウイルスベクター)をトランスフェクトしてもよいし、予め所望の遺伝子(例、CDKN1A遺伝子、p53遺伝子)に対する発現抑制核酸の発現カセットを組み込んだ多能性幹細胞(例、ES細胞、iPS細胞)、造血前駆細胞又は造血内皮細胞からCMP又は骨髄球系前駆細胞を誘導し、その段階で当該siRNA、shRNA又はアンチセンス核酸を強制発現させてもよい。或いは、予め所望の遺伝子(例、CDKN1A遺伝子、p53遺伝子)に対する発現抑制核酸の発現カセットを組み込んだ多能性幹細胞(例、ES細胞、iPS細胞)、造血前駆細胞又は造血内皮細胞において、当該発現抑制核酸を強制発現させながら、該多能性幹細胞、造血前駆細胞又は造血内皮細胞から、CMP又は骨髄球系前駆細胞への分化を誘導してもよい。発現ベクターを用いて細胞内で発現抑制核酸の発現を行う場合、適当なプロモーターの下流に該発現抑制核酸をコードする核酸(例、DNA)を作用可能に連結し、これを発現ベクターに挿入して、細胞内に導入して目的とする発現抑制核酸を発現させてもよい。該プロモーターは外来性プロモーターであり得る。外来性プロモーターは、恒常的プロモーター又は調節性プロモーターであり得るが、好ましくは恒常的プロモーターである。恒常的プロモーターの例としては、siRNAやshRNA等の比較的小さいRNAを発現する場合、U6プロモーター、H1プロモーター、tRNAプロモーター、レトロウイルス性LTRプロモーター、アデノウイルスVAlプロモーター、5S rRNAプロモーター、7SK RNAプロモーター、7SL RNAプロモーター等のpolIII系プロモーターを用いることが好ましい。CDKN1A遺伝子に対する発現抑制核酸をコードする核酸と、p53遺伝子に対する発現抑制核酸をコードする核酸は、それぞれ別々の発現ベクターに挿入してもよいし、同一の発現ベクターに挿入してもよい。
 本局面において、CDKN1A遺伝子又はp53遺伝子の発現、又はその発現産物の機能の抑制は、MYCファミリー遺伝子、BMI1遺伝子、又はBCL-XL遺伝子のいずれかの強制発現と同時であってもよい。好ましくはBCL-XL遺伝子の強制発現と同時か、或いはその後である。例えば細胞増殖の低下が確認された後に実施することができる。一例として、ある時点の細胞増殖率を直近の細胞増殖率と比較し(例えば、一週間ごとに細胞の増殖を確認したとして、ある週の細胞増殖率をその一週間前の増殖率と比較して)、増殖率が1/2以下になった状態が確認された後に実施することができる。細胞増殖の低下は、限定することを意図するものではないが、MYCファミリー遺伝子及びBMI1遺伝子の強制発現直後から約30日後、約40日後、約50日後、約60日後、約70日後、約80日後、又は約90日後まで見られる。一態様において、CMP又は骨髄球系前駆細胞において、MYCファミリー遺伝子(例、c-Myc遺伝子)及びBMI1遺伝子を強制発現させ、これと並行して、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制する。一態様において、CMP又は骨髄球系前駆細胞において、MYCファミリー遺伝子(例、c-Myc遺伝子)、BMI1遺伝子、及びBCL-XL遺伝子を強制発現させ、これと並行して、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制する。
 本明細書で使用する場合のMYCファミリー遺伝子、BMI1遺伝子、BCL-XL遺伝子、CDKN1A遺伝子、p53遺伝子等の各遺伝子は、それらの公知の核酸配列、例えばcDNA配列でコードされるものを意味する。各遺伝子には、公知の核酸配列の相同性に基づいて同定されるホモログも含まれ得る。「ホモログ」とは、遺伝子のcDNA配列が、その遺伝子の核酸配列と実質的に同一の配列からなる遺伝子のことである。
 MYCファミリー遺伝子のうち、c-MYC遺伝子のホモログとは、そのcDNA配列が、例えば、配列番号1で示される核酸配列と実質的に同一の配列からなる遺伝子のことである。配列番号1で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号1で表される配列からなるDNAと、約60%以上、好ましくは約70%以上、より好ましくは約80%以上、例えば81%、82%、83%、84%、85%、86%、87%、88%、89%、よりさらに好ましくは約90%以上、例えば91%、92%、93%、94%、95%、96%、97%、98%、最も好ましくは約99%以上の同一性を有する配列からなるDNA、若しくは、配列番号1で示される核酸配列に相補的な配列からなるDNA又はRNAとストリンジェントな条件下でハイブリダイズできるDNAであって、これらのDNAによってコードされるタンパク質が、細胞周期を阻害するもののことである。或いは、配列番号1で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号1で示される配列中の1又は複数個、例えば1~10個、好ましくは数個、例えば1~5個、1~4個、1~3個、1~2個の塩基が欠失、置換若しくは付加された配列からなるDNAであって、これらのDNAによってコードされるタンパク質が、細胞周期を阻害するもののことである。
 BMI1遺伝子のホモログとは、そのcDNA配列が、例えば、配列番号2で示される核酸配列と実質的に同一の配列からなる遺伝子のことである。配列番号2で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号2で示される配列からなるDNAと、約60%以上、好ましくは約70%以上、より好ましくは約80%以上、例えば81%、82%、83%、84%、85%、86%、87%、88%、89%、よりさらに好ましくは約90%以上、例えば91%、92%、93%、94%、95%、96%、97%、98%、最も好ましくは約99%以上の同一性を有する配列からなるDNA、若しくは、配列番号2で示される核酸配列に相補的な配列からなるDNA又はRNAとストリンジェントな条件下でハイブリダイズできるDNAであって、これらのDNAによってコードされるタンパク質が、細胞周期を阻害するもののことである。或いは、配列番号2で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号2で示される配列中の1又は複数個、例えば1~10個、好ましくは数個、例えば1~5個、1~4個、1~3個、1~2個の塩基が欠失、置換若しくは付加された配列からなるDNAであって、これらのDNAによってコードされるタンパク質が、細胞周期を阻害するもののことである。
 BCL-XL遺伝子のホモログとは、そのcDNA配列が、例えば、配列番号3で示される核酸配列と実質的に同一の配列からなる遺伝子のことである。配列番号3で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号3で示される配列からなるDNAと、約60%以上、好ましくは約70%以上、より好ましくは約80%以上、例えば81%、82%、83%、84%、85%、86%、87%、88%、89%、よりさらに好ましくは約90%以上、例えば91%、92%、93%、94%、95%、96%、97%、98%、最も好ましくは約99%以上の同一性を有する配列からなるDNA、若しくは、配列番号3で示される核酸配列に相補的な配列からなるDNA又はRNAとストリンジェントな条件下でハイブリダイズできるDNAであって、これらのDNAによってコードされるタンパク質が、細胞周期を阻害するもののことである。或いは、配列番号3で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号3で示される配列中の1又は複数個、例えば1~10個、好ましくは数個、例えば1~5個、1~4個、1~3個、1~2個の塩基が欠失、置換若しくは付加された配列からなるDNAであって、これらのDNAによってコードされるタンパク質が、細胞周期を阻害するもののことである。
 CDKN1A遺伝子のホモログとは、そのcDNA配列が、例えば、配列番号4で示される核酸配列と実質的に同一の配列からなる遺伝子のことである。配列番号4で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号4で示される配列からなるDNAと、約60%以上、好ましくは約70%以上、より好ましくは約80%以上、例えば81%、82%、83%、84%、85%、86%、87%、88%、89%、よりさらに好ましくは約90%以上、例えば91%、92%、93%、94%、95%、96%、97%、98%、最も好ましくは約99%以上の同一性を有する配列からなるDNA、若しくは、配列番号4で示される核酸配列に相補的な配列からなるDNA又はRNAとストリンジェントな条件下でハイブリダイズできるDNAであって、これらのDNAによってコードされるタンパク質が、細胞周期を阻害するもののことである。或いは、配列番号4で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号4で示される配列中の1又は複数個、例えば1~10個、好ましくは数個、例えば1~5個、1~4個、1~3個、1~2個の塩基が欠失、置換若しくは付加された配列からなるDNAであって、これらのDNAによってコードされるタンパク質が、細胞周期を阻害するもののことである。
 p53遺伝子とは、そのcDNA配列が、例えば、配列番号5で示される核酸配列と実質的に同一の配列からなる遺伝子のことである。配列番号5で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号5で示される配列からなるDNAと、約60%以上、好ましくは約70%以上、より好ましくは約80%以上、例えば81%、82%、83%、84%、85%、86%、87%、88%、89%、よりさらに好ましくは90%以上、例えば91%、92%、93%、94%、95%、96%、97%、98%、最も好ましくは約99%以上の同一性を有する配列からなるDNA、若しくは、配列番号5で示される核酸配列に相補的な配列からなるDNAとストリンジェントな条件下でハイブリダイズできるDNAであって、そのDNAによってコードされるタンパク質が、癌を抑制するもののことである。或いは、配列番号5で示される核酸配列と実質的に同一の配列からなるcDNAとは、配列番号5で示される配列中の1又は複数個、例えば1~10個、好ましくは数個、例えば1~5個、1~4個、1~3個、1~2個の塩基が欠失、置換若しくは付加された配列からなるDNAであって、これらのDNAによってコードされるタンパク質が、癌を抑制するもののことである。
 ここで、ストリンジェントな条件とは、当業者によって容易に決定されるハイブリダイゼーションの条件のことであり、一般的に核酸の塩基長、洗浄温度、及び塩濃度に依存する経験的な実験条件である。一般に、塩基が長くなると適切なアニーリングのための温度が高くなり、塩基が短くなると温度は低くなる。ハイブリッド形成は、一般的に、相補的鎖がその融点よりやや低い環境における再アニール能力に依存する。
 具体的には、例えば、低ストリンジェントな条件として、ハイブリダイゼーション後のフィルターの洗浄段階において、37℃~42℃の温度条件下、0.1×SSC、0.1%SDS溶液中で洗浄すること等が上げられる。また、高ストリンジェントな条件として、例えば、洗浄段階において、65℃、5×SSC及び0.1%SDS中で洗浄すること等が挙げられる。ストリンジェントな条件をより高くすることにより、相同性の高いポリヌクレオチドを得ることができる。
 本実施形態に係るCMP又は骨髄球系前駆細胞を製造する方法は、上述した本実施形態に係るCMP又は骨髄球系前駆細胞の増殖性を向上させる方法で得られたCMP又は骨髄球系前駆細胞を培養する工程(培養工程)を含む。
 CMP又は骨髄球系前駆細胞の培養条件は、細胞の種類やその状態に応じて当業者が適宜決定することができる。例えば、培養温度は約35℃~約42℃、約36℃~約40℃、又は約37℃~約39℃とすることができ、二酸化炭素濃度は例えば5%CO、酸素濃度は例えば20%0とすることができる。静置培養であっても、振とう培養であってもよい。振とう培養の場合の振とう速度も特に限定されず、例えば、10rpm~200rpm、30rpm~150rpm等とすることができる。
 培地は、血清、インスリン、トランスフェリン、セリン、チオールグリセロール、アスコルビン酸、TPOを含むイスコフ改変ダルベッコ培地(IMDM)培地であってもよい。この場合、IMDM培地はさらにSCFを含んでいてもよく、さらにヘパリンを含んでいてもよい。さらに、ホルボールエステル(例えば、ホルボール-12-ミリスタート-13-アセタート;PMA)を加えてもよい。
 細胞の培養工程は、フィーダー細胞の存在下又は不在下で実施することができる。本明細書において、「フィーダー細胞」とは、増殖又は分化させようとしている標的細胞の培養に必要な環境を整えるために、標的細胞と共培養される細胞をいう。フィーダー細胞は、標的細胞と識別できる細胞である限り、同種由来の細胞であっても異種由来の細胞であってもよい。フィーダー細胞は、抗生物質やガンマ線により増殖しないよう処理した細胞であっても、処理されていない細胞であってもよい。
 培地は、血清又は血漿を含有していてもよく、或いは無血清でもよい。血清を用いる場合は、ヒト血清が好ましい。必要に応じて、培地は、例えば、アルブミン、インスリン、トランスフェリン、セレン、脂肪酸、微量元素、2-メルカプトエタノール、チオールグリセロール、モノチオグリセロール(MTG)、脂質、アミノ酸(例えばL-グルタミン)、アスコルビン酸、ヘパリン、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類、サイトカイン等の1つ以上の物質も含有してもよい。サイトカインとしては、例えば、血管内皮細胞増殖因子(VEGF)、トロンボポエチン(TPO)、各種TPO様作用物質、幹細胞因子(SCF)、エリスロポエチン(EPO)、顆粒球コロニー刺激因子(G-CSF)、インターロイキン3(IL3)、ITS(インスリンートランスフェリンーセレナイト)サプリメント、ADAM(A Disintegrin And Metalloprotease)阻害剤等が挙げられる。
 培養するCMP又は骨髄球系前駆細胞の種類に応じ、細胞増殖に適したサイトカインの生み合わせを、培地に添加することが好ましい。例えば、CMPを培養する場合、CMPの増殖を促進するのに十分な量のGM-CSF、G-CSF、IL-3、SCF及びTPOから選択される少なくとも1つ、好ましくは全てのサイトカインを培地に添加することができる。MEPを培養する場合、IL-3、SCF及びTPOから選択される少なくとも1つ、好ましくは全てのサイトカインを培地に添加することができる。GMPを培養する場合、SCF及びGM-CSFから選択される少なくとも1つ、好ましくは全てのサイトカインを培地に添加することができる。マクロファージ前駆細胞を培養する場合、IL-1b、SCF及びM-CSFから選択される少なくとも1つ、好ましくは全てのサイトカインを培地に添加することができる。樹状細胞前駆細胞を培養する場合、SCF、M-CSF及びGM-CSFから選択される少なくとも1つ、好ましくは全てのサイトカインを培地に添加することができる。好中球前駆細胞を培養する場合、SCF及びGM-CSFから選択される少なくとも1つ、好ましくは全てのサイトカインを培地に添加することができる。赤血球前駆細胞を培養する場合、SCF及びEPOから選択される少なくとも1つ、好ましくは全てのサイトカインを培地に添加することができる。
 本発明は、第1の外来性プロモーターと作用可能に連結されたMYCファミリー遺伝子及び第2の外来性プロモーターと作用可能に連結されたBMI1遺伝子を有する、CMP又は骨髄球系前駆細胞(以下、本発明の細胞)を提供する。MYCファミリー遺伝子は、好ましくはc-MYCである。骨髄球系前駆細胞としては、MEP、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞、赤血球前駆細胞、好中球前駆細胞等を例示することができる。第1の外来性プロモーター及び第2の外来性プロモーターは、独立して、恒常的プロモーター又は調節性プロモーターであり得るが、好ましくは、調節性プロモーターである。調節性プロモーターは、好ましくは薬剤反応性プロモーターであり、より好ましくは、テトラサイクリン反応性プロモーターである。第1の外来性プロモーターと第2の外来性プロモーターの種類は、同一であっても異なっていてもよいが、好ましくは同一の種類のプロモーターである。同一の種類のプロモーターを用いることにより、MYCファミリー遺伝子とBMI1遺伝子を同期的に発現させることができ、また同期的に発現を抑制することができる。第1の外来性プロモーターと第2の外来性プロモーターは、好ましくは、同一の調節性プロモーター(例、薬剤反応性プロモーター)であり、より好ましくは共にテトラサイクリン反応性プロモーターである。第1の外来性プロモーターと第2の外来性プロモーターとは、それぞれ独立して、MYCファミリー遺伝子及びBMI1遺伝子と作用可能に連結されていてもよいし、1つの外来性プロモーターに、MYCファミリー遺伝子とBMI1遺伝子とが作用可能に連結されていてもよい。この場合、MYCファミリー遺伝子とBMI1遺伝子とは、IRES等の介在配列を介して連結されることにより、1つの外来性プロモーターの制御下で、バイシストロニックな発現が可能となる。第1の外来性プロモーターと作用可能に連結されたMYCファミリー遺伝子及び第2の外来性プロモーターと作用可能に連結されたBMI1遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれていてもよいし、CMP又は骨髄球系前駆細胞内に導入された発現ベクター中に存在してもよい。好ましくは、第1の外来性プロモーターと作用可能に連結されたMYCファミリー遺伝子及び第2の外来性プロモーターと作用可能に連結されたBMI1遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれている。
 第1の外来性プロモーター及び/又は第2の外来性プロモーターとしてテトラサイクリン反応性プロモーターを用いる場合、テトラサイクリン依存的な発現制御を可能とするため、本発明の細胞は、第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子を更に有することが好ましい。第3の外来性プロモーターは、恒常的プロモーター又は調節性プロモーターであり得るが、好ましくは、恒常的プロモーターである。第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれていてもよいし、CMP又は骨髄球系前駆細胞内に導入された発現ベクター中に存在してもよい。好ましくは、第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれている。
 本発明の細胞は、該細胞をCMP又は骨髄球系前駆細胞が増殖し得る条件下で培養した場合に、インビトロでCMP又は骨髄球系前駆細胞の増殖を促進し得る量のMYCファミリー遺伝子(例、c-Myc遺伝子)及びBMI1遺伝子を発現する。インビトロでCMP又は骨髄球系前駆細胞の増殖を促進し得る量のMYCファミリー遺伝子(例、c-Myc)及びBMI1遺伝子とは、当該量のMYCファミリー遺伝子及びBMI1遺伝子を発現するCMP又は骨髄球系前駆細胞の増殖速度が、MYCファミリー遺伝子及びBMI1遺伝子を発現していないことを除いては上記細胞と同様に作成したCMP又は骨髄球系前駆細胞と比較して、有意に上昇するようなMYCファミリー遺伝子及びBMI1遺伝子の量を意味する。
 増殖能力を増強する観点から、本発明の細胞は、第4の外来性プロモーターと作用可能に連結されたBCL-XL遺伝子を更に有していてもよい。該細胞を第4の外来性プロモーターが作動する条件下で培養すると、BCL-XL遺伝子が発現し、本発明の細胞の増殖が更に促進されることが期待できる。第4の外来性プロモーターは、独立して、恒常的プロモーター又は調節性プロモーターであり得るが、好ましくは、調節性プロモーターである。調節性プロモーターは、好ましくは薬剤反応性プロモーターであり、より好ましくは、テトラサイクリン反応性プロモーターである。第4の外来性プロモーターの種類は、第1の外来性プロモーター及び/又は第2の外来性プロモーターと同一であっても異なっていてもよいが、好ましくは、第1、第2及び第4の外来性プロモーターは、同一の種類のプロモーターである。同一の種類のプロモーターを用いることにより、MYCファミリー遺伝子、BMI1遺伝子及びBCL-XL遺伝子を同期的に発現させることができ、また同期的に発現を抑制することができる。第1、第2及び第4の外来性プロモーターは、好ましくは、同一の調節性プロモーター(例、薬剤反応性プロモーター)であり、より好ましくは全てテトラサイクリン反応性プロモーターである。第4の外来性プロモーターは、第1及び第2の外来性プロモーターと独立して、BCL-XL遺伝子と作用可能に連結されていてもよいし、第1の外来性プロモーターにMYCファミリー遺伝子とBCL-XL遺伝子とが作用可能に連結されていてもよいし、第2の外来性プロモーターにBMI1遺伝子と・BR>ACL-XL遺伝子とが作用可能に連結されていてもよいし、1つの外来性プロモーターに、MYCファミリー遺伝子、BMI1遺伝子及びBCL-XL遺伝子が作用可能に連結されていてもよい。複数の遺伝子をRES等の介在配列を介して連結することにより、1つの外来性プロモーターの制御下で、バイシストロニックな発現が可能となる。第4の外来性プロモーターと作用可能に連結されたBCL-XL遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれていてもよいし、CMP又は骨髄球系前駆細胞内に導入された発現ベクター中に存在してもよい。好ましくは、第4の外来性プロモーターと作用可能に連結されたBCL-XL遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれている。
 増殖能力を増強する観点から、本発明の細胞は、第5の外来性プロモーターと作用可能に連結されたCDKN1A遺伝子に対する発現抑制核酸(例、siRNA、shRNA、アンチセンス核酸)をコードする核酸、及び/又は第6の外来性プロモーターと作用可能に連結されたp53遺伝子に対する発現抑制核酸をコードする核酸を更に有していてもよい。該細胞を第5の外来性プロモーター、及び/又は第6の外来性プロモーターが作動する条件下で培養すると、CDKN1A遺伝子に対する発現抑制核酸、及び/又はp53遺伝子に対する発現抑制核酸が発現し、本発明の細胞の増殖が更に促進されることが期待できる。第5の外来性プロモーター及び第6の外来性プロモーターは、独立して、恒常的プロモーター又は調節性プロモーターであり得るが、好ましくは、恒常的プロモーターである。恒常的プロモーターは、好ましくは、H1プロモーター等のpolIII系プロモーターである。第5の外来性プロモーターの種類は、第6の外来性プロモーターと同一であっても異なっていてもよい。第5の外来性プロモーターと作用可能に連結されたCDKN1A遺伝子に対する発現抑制核酸をコードする核酸、及び第6の外来性プロモーターと作用可能に連結されたp53遺伝子に対する発現抑制核酸をコードする核酸は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれていてもよいし、CMP又は骨髄球系前駆細胞内に導入された発現ベクター中に存在してもよいが、好ましくは、CMP又は骨髄球系前駆細胞のゲノムに組み込まれている。
 一態様において、本発明の細胞は、
第1の外来性プロモーターと作用可能に連結されたMYCファミリー遺伝子、
第2の外来性プロモーターと作用可能に連結されたBMI1遺伝子、及び
第4の外来性プロモーターと作用可能に連結されたBCL-XL遺伝子
を有する、CMP又は骨髄球系前駆細胞(例、MEP、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞、赤血球前駆細胞、好中球前駆細胞)である。第1の外来性プロモーター及び/又は第2の外来性プロモーターとしてテトラサイクリン反応性プロモーターを用いる場合、本発明の細胞は、第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子を更に有していてもよい。
 一態様において、本発明の細胞は、
第1の外来性プロモーターと作用可能に連結されたMYCファミリー遺伝子、
第2の外来性プロモーターと作用可能に連結されたBMI1遺伝子、
第5の外来性プロモーターと作用可能に連結されたCDKN1A遺伝子に対する発現抑制核酸をコードする核酸、及び
第6の外来性プロモーターと作用可能に連結されたp53遺伝子に対する発現抑制核酸をコードする核酸
を有するCMP又は骨髄球系前駆細胞(例、MEP、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞、赤血球前駆細胞、好中球前駆細胞)である。第1の外来性プロモーター及び/又は第2の外来性プロモーターとしてテトラサイクリン反応性プロモーターを用いる場合、本発明の細胞は、第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子を更に有していてもよい。
 一態様において、本発明の細胞は、
第1の外来性プロモーターと作用可能に連結されたMYCファミリー遺伝子、
第2の外来性プロモーターと作用可能に連結されたBMI1遺伝子、
第4の外来性プロモーターと作用可能に連結されたBCL-XL遺伝子
第5の外来性プロモーターと作用可能に連結されたCDKN1A遺伝子に対する発現抑制核酸をコードする核酸、及び
第6の外来性プロモーターと作用可能に連結されたp53遺伝子に対する発現抑制核酸をコードする核酸
を有するCMP又は骨髄球系前駆細胞(例、MEP、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞、赤血球前駆細胞、好中球前駆細胞)である。第1の外来性プロモーター及び/又は第2の外来性プロモーターとしてテトラサイクリン反応性プロモーターを用いる場合、本発明の細胞は、第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子を更に有していてもよい。
 本発明の細胞は、上述した本発明のCMP又は骨髄球系前駆細胞の増殖性を向上させる方法、又はCMP又は骨髄球系前駆細胞を製造する方法により得ることができる。
 また、本発明は、上記本発明の細胞を含む細胞集団(本発明の細胞集団という。)を提供する。該細胞集団は、上記本発明の細胞を豊富に含み、該細胞集団全体に含まれる本発明の細胞の割合は、例えば、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)である。このような本発明の細胞を豊富に含む細胞集団は、上記本発明の方法を適用した細胞集団から、目的とする特定の分化段階の細胞(CMP又は骨髄球系前駆細胞(例、MEP、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞、赤血球前駆細胞、好中球前駆細胞))を、抽出することにより得ることができる。好ましい態様において、本発明の細胞集団は、特定の分化段階にある本発明の細胞を豊富に含む。一態様において、細胞集団全体に含まれる本発明の細胞(該細胞はCMPである)の割合が、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)である。一態様において、細胞集団全体に含まれる本発明の細胞(該細胞はMEPである)の割合が、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)である。一態様において、細胞集団全体に含まれる本発明の細胞(該細胞はGMPである)の割合が、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)である。一態様において、細胞集団全体に含まれる本発明の細胞(該細胞はマクロファージ前駆細胞である)の割合が、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)である。一態様において、細胞集団全体に含まれる本発明の細胞(該細胞は樹状細胞前駆細胞である)の割合が、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)である。一態様において、細胞集団全体に含まれる本発明の細胞(該細胞は赤血球前駆細胞である)の割合が、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)である。一態様において、細胞集団全体に含まれる本発明の細胞(該細胞は好中球前駆細胞である)の割合が、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)である。このように特定の分化段階にある本発明の細胞を豊富に含む細胞集団は、上記本発明の方法の方法を適用した細胞集団から、目的とする分化段階の細胞を、該分化段階の細胞に特異的に発現する細胞表面マーカーに対する抗体を用いて、セルソーター等で単離・抽出することにより得ることができる。
 本発明の細胞、及び本発明の細胞集団は、上述した本発明のCMP又は骨髄球系前駆細胞の増殖性を向上させる方法、又はCMP又は骨髄球系前駆細胞を製造する方法により得ることができる。
 また、本発明は、上記本発明の細胞集団を含む細胞調製物(本発明の細胞調製物という。)を提供する。本発明の細胞調製物は、上記本発明の細胞集団を、適切な生理的水溶液(例、生理食塩水、ブドウ糖やその他の補助薬を含む等張液、液体培地)で懸濁することにより調整することができる。該生理的水溶液には、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩酸リドカイン、塩酸プロカイン等)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコール等)、保存剤(例えば、安息香酸ナトリウム、塩化ベンザルコニウム等)、酸化防止剤(例えば、アスコルビン酸、エデト酸ナトリウム等)等を配合してもよい。該細胞調製物中には、細胞濃度が、例えば1.0×10~1.0×1012細胞/mLとなるように、上記本発明の細胞集団を懸濁する。
 細胞調製物中に含まれるCMP又は骨髄球系前駆細胞の種類に応じ、該細胞の増殖に適したサイトカインの生み合わせを、該細胞調製物に添加してもよい。例えば、CMPを含む細胞調製物の場合、GM-CSF、G-CSF、IL-3、SCF及びTPOから選択される少なくとも1つ、好ましくは全てのサイトカインを該細胞調製物に添加することができる。MEPを含む細胞調製物の場合、IL-3、SCF及びTPOから選択される少なくとも1つ、好ましくは全てのサイトカインを該細胞調製物に添加することができる。GMPを含む細胞調製物の場合、SCF及びGM-CSFから選択される少なくとも1つ、好ましくは全てのサイトカインを該細胞調製物に添加することができる。マクロファージ前駆細胞を含む該胞調製物の場合、IL-1b、SCF及びM-CSFから選択される少なくとも1つ、好ましくは全てのサイトカインを該細胞調製物に添加することができる。樹状細胞前駆細胞を含む細胞調製物の場合、SCF、M-CSF及びGM-CSFから選択される少なくとも1つ、好ましくは全てのサイトカインを培地に添加することができる。好中球前駆細胞を含む細胞調製物の場合、SCF及びGM-CSFから選択される少なくとも1つ、好ましくは全てのサイトカインを該細胞調製物に添加することができる。赤血球前駆細胞を含む細胞調製物の場合、SCF及びEPOから選択される少なくとも1つ、好ましくは全てのサイトカインを該細胞調製物に添加することができる。
 CMP又は骨髄球系前駆細胞は、凍結保存後解凍しても、細胞増殖能及び分化能を維持する凍結解凍耐性を有し得る。そのため、CMP又は骨髄球系前駆細胞を凍結保存して、必要に応じて溶解して、分化誘導培養に付すことにより、CMP系分化細胞を製造することが可能である。従って、上記本発明の細胞を用いることにより、ES細胞やiPS細胞等の多能性幹細胞からCMP系分化細胞、例えばマクロファージ、樹状細胞、赤血球、好中球等を製造する一連の作業を始めの工程から行う必要がなくなる。つまり、本発明の細胞を原料として、多量に調製し、必要に応じて凍結保存をしておくことにより、製造プロセスの合理化・効率化が図られ、マクロファージ、樹状細胞、赤血球、好中球等の様々なCMP系分化細胞を迅速に供給可能な仕組みを構築することができる。したがって、一態様において、本発明の細胞調製物は、凍結した上記本発明の細胞集団を含む凍結細胞調製物である。本発明の細胞を用いて、凍結細胞調製物を作製する場合には、上記本発明の細胞集団と、凍結保存液とから構成することができ、その他必要に応じて添加剤等も組成中に含めることができる。凍結保存液としては、DMSO入りの凍結液等を利用できる。具体的にはセルバンカー(日本全薬工業株式会社)やバンバンカー(日本ジェネティクス株式会社)、TCプロテクター(DSファーマバイオメディカル株式会社)、アルブミン加cp-1(極東製薬工業株式会社)等である。
 本実施形態に係るCMP系分化細胞を製造する方法は、上述したCMP又は骨髄球系前駆細胞の増殖性を向上させる方法又はCMP又は骨髄球系前駆細胞を製造する方法で得られたCMP又は骨髄球系前駆細胞(すなわち、本発明の細胞)を分化させる工程を含む。CMP系分化細胞は、CMP又は骨髄球系前駆細胞から分化した、マクロファージや樹状細胞等の単球系細胞、好中球や好塩基球等の顆粒球系細胞、赤芽球細胞や赤血球等であり、骨髄球系前駆細胞とは区別される。
 CMP又は骨髄球系前駆細胞を分化する方法としては、マクロファージや樹状細胞等の単球系細胞、好中球や好塩基球等の顆粒球系細胞、赤芽球細胞や赤血球への公知の分化誘導方法を、上記で培養する方法も含め適宜選択することができる。例えば、各遺伝子を強制発現させる工程において用いた薬剤、例えば、テトラサイクリン又はドキシサイクリンを培地に含有させ、これらを培地から除くことによって強制発現を抑制した後、引き続き細胞を培養すればよい。
 CMP系分化細胞は、単球系細胞、顆粒球系細胞、又は赤芽球細胞を含んでもよく、単球系細胞又は顆粒球系細胞を含んでもよい。このように、CMPを特定の細胞に分化させるよう制御する方法は、好適な公知の培地やそれに準ずる培地を適宜使用することができる。例えば、本実施形態に係るCMP系分化細胞を製造する方法においては、培地に含まれるサイトカイン条件を制御することにより、分化する細胞の種類を制御することができる。具体的には、トロンボポエチン(TPO)、幹細胞因子(SCF)、エリスロポエチン(EPO)、顆粒球コロニー刺激因子(G-CSF)、及びインターロイキン3(IL3)のサイトカインを用いて培養することにより、単球系細胞、顆粒球系細胞、又は赤芽球細胞を含むCMP系分化細胞を得ることができる。また、トロンボポエチン(TPO)、幹細胞因子(SCF)、顆粒球マクロファージコロニー刺激因子(GM-CSF)、顆粒球コロニー刺激因子(G-CSF)、及びインターロイキン3(IL3)のサイトカインを用いることにより、単球系細胞又は顆粒球系細胞を含むCMP系分化細胞を得ることができる。具体的には、各種細胞に分化するためのサイトカイン条件として、実施例に示すものが挙げられる。
 例えば、薬剤(例、テトラサイクリン、ドキシサイクリン)反応性プロモーター制御下で、当該薬剤の添加により、MYCファミリー遺伝子(例、c-Myc遺伝子)及びBMI1遺伝子(任意的に更にBCL-XL遺伝子)を強制発現させ、任意的にCDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制したマクロファージ前駆細胞を、マクロファージ分化条件下(例、SCF、M-CSF、IL-1b存在下)で培養すると、マクロファージ前駆細胞は、その分化段階を維持したまま良好に増殖するが、該薬剤の除去により該細胞におけるMYCファミリー遺伝子(例、c-Myc遺伝子)及びBMI1遺伝子(任意的に更にBCL-XL遺伝子)の強制発現を抑制した後、引き続きマクロファージ分化条件下(例、SCF、M-CSF、IL-1b存在下)で培養することにより、細胞増殖が抑制され、マクロファージへの分化、成熟が促進される。薬剤(テトラサイクリン、ドキシサイクリン)反応性プロモーター制御下で、当該薬剤の添加により、MYCファミリー遺伝子(例、c-Myc遺伝子)及びBMI1遺伝子(任意的に更にBCL-XL遺伝子)を強制発現させ、任意的にCDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制した樹状細胞前駆細胞を、樹状細胞分化条件下(例、SCF、M-CSF、GM-CSF存在下)で培養すると、樹状細胞前駆細胞は、その分化段階を維持したまま良好に増殖するが、該薬剤の除去により該細胞におけるMYCファミリー遺伝子(例、c-Myc遺伝子)及びBMI1遺伝子(任意的に更にBCL-XL遺伝子)の強制発現を抑制した後、引き続き樹状細胞分化条件下(例、SCF、M-CSF、GM-CSF存在下)で培養することにより、細胞増殖が抑制され、樹状細胞への分化、成熟が促進される。薬剤(テトラサイクリン、ドキシサイクリン)反応性プロモーター制御下で、当該薬剤の添加により、MYCファミリー遺伝子(例、c-Myc遺伝子)及びBMI1遺伝子(任意的に更にBCL-XL遺伝子)を強制発現させ、任意的にCDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制した赤血球前駆細胞を、赤血球分化条件下(例、SCF、EPO存在下)で培養すると、赤血球前駆細胞は、その分化段階を維持したまま良好に増殖するが、該薬剤の除去により該細胞におけるMYCファミリー遺伝子(例、c-Myc遺伝子)及びBMI1遺伝子(任意的に更にBCL-XL遺伝子)の強制発現を抑制した後、引き続き赤血球分化条件下(例、SCF、EPO存在下)で培養することにより、細胞増殖が抑制され、赤芽球や赤血球への分化、成熟が促進される。
 本実施形態に係るCMP又は骨髄球系前駆細胞の増殖促進剤は、MYCファミリー遺伝子及びBMI1遺伝子を強制発現させる分子を有効成分として含み、任意に、BCL-XL遺伝子を強制発現させる分子を有効成分として含み、或いはCDKN1A遺伝子又はp53遺伝子の発現又はその発現産物の機能を抑制する分子を有効成分として含む。また、骨髄球系前駆細胞は、マクロファージ、樹状細胞、顆粒球、赤芽球、又は赤血球の前駆細胞である。
 本実施形態に係る医薬組成物は、上述したCMP又は骨髄球系前駆細胞の増殖性を向上させる方法又はCMP又は骨髄球系前駆細胞を製造する方法で得られたCMP又は骨髄球系前駆細胞、或いは上述したCMP系分化細胞を製造する方法で得られたCMP系分化細胞を含む。
 上述したCMP又は骨髄球系前駆細胞の増殖性を向上させる方法又はCMP又は骨髄球系前駆細胞を製造する方法で得られたCMP又は骨髄球系前駆細胞、或いは上述したCMP系分化細胞を製造する方法で得られたCMP系分化細胞は、自然免疫系を司る細胞であり、腫瘍・変性細胞、病原性生物の除去に役立たせることができる。したがって、本実施形態に係る医薬組成物は、腫瘍・変性細胞、感染性病原生物の除去等のために用いられ得る。具体的には、正常体内における異物特異的抗原を標的としたレセプター導入や、標的細胞への細胞毒性を強める遺伝子改変を行うことで、疾患毎に特化した輸血用免疫細胞製剤として使用される。また、免疫製剤、抗がん剤、抗アレルギー製剤、抗動脈硬化用の医薬組成物として使用される。上述したCMP、骨髄球系前駆細胞又はCMP系分化細胞は、常套手段にしたがって医薬上許容される担体と混合する等して注射剤、懸濁剤、点滴剤等の非経口製剤として製造される。当該非経口製剤に含まれ得る医薬上許容される担体としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えば、D-ソルビトール、D-マンニトール、塩化ナトリウム等)等の注射用の水性液を挙げることができるが、これらに限定されない。本発明の医薬組成物は、例えば、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩酸リドカイン、塩酸プロカイン等)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコール等)、保存剤(例えば、安息香酸ナトリウム、塩化ベンザルコニウム等)、酸化防止剤(例えば、アスコルビン酸、エデト酸ナトリウム等)等と配合しても良い。本発明の医薬組成物を水性懸濁液剤として製剤化する場合、例えば、上記水性液に約1.0×10~約1.0×1012細胞/mLとなるように、上述したCMP、骨髄球系前駆細胞又はCMP系分化細胞を懸濁すればよい。
 本実施形態に係る疾患の治療又は予防方法は、上述したCMP又は骨髄球系前駆細胞の増殖性を向上させる方法又はCMP又は骨髄球系前駆細胞を製造する方法で得られたCMP又は骨髄球系前駆細胞、或いは上述したCMP系分化細胞を製造する方法で得られたCMP系分化細胞、或いは本実施形態に係る医薬組成物を、それを必要とする患者に投与することを含む。疾患としては、特に限定されないが、腫瘍・変性細胞、感染性病原生物に関する疾患や、炎症・アレルギー性疾患(自己免疫疾患、動脈硬化等の慢性炎症性疾患)等が挙げられる。投与方法は特に限定されないが、好ましくは注射であり、静脈内投与、腹腔内投与等が挙げられる。本発明の剤の投与量は、投与対象、治療標的部位、症状、投与方法等により差異はあるが、通常、患者(体重60kgとして)においては、例えば、静脈内投与の場合、1回につきヒトミエロイド系血液細胞の量として約1.0×10~約1.0×1011細胞を、1週間に約2~3回、約2~3週間以上投与することができる。
 本実施形態に係るキットは、上述したCMP又は骨髄球系前駆細胞の増殖促進剤を含み、腫瘍・変性細胞、感染性病原生物に関する疾患や、炎症・アレルギー性疾患(自己免疫疾患、動脈硬化等の慢性炎症性疾患)の診断に用いられる。
 キットは、その用途に応じて試薬や、担体や添加物を含んでいてもよく、更には緩衝液、容器、使用説明書等を含んでいてもよい。具体的なキットの形態としては、CMP又は骨髄球系前駆細胞の増殖促進剤を含み、炎症・アレルギー性疾患(自己免疫疾患、動脈硬化等の慢性炎症性疾患)の主要な原因細胞である好中球、マクロファージ、樹状細胞等の特定の細胞種に用いられる疾患診断チップが挙げられる。
(2)方法論2
 更なる局面において、本発明は、CMP又は骨髄球系前駆細胞において、BCL-XL遺伝子を強制発現させる工程を含む、CMP又は骨髄球系前駆細胞の増殖性を向上させる方法(以下、「本発明の方法2」という。)を提供する。骨髄球系前駆細胞は、好ましくは、GMP、マクロファージ前駆細胞又は樹状細胞前駆細胞である。BCL-XL遺伝子を強制発現させることにより、CMP又は骨髄球系前駆細胞の増殖性が向上し、無限に増殖する不死化細胞株を得ることが期待できる。
 本発明の方法2においては、所望の特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)を抽出(単離又は精製)する工程をさらに含んでいてもよい。特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)の抽出は、BCL-XL遺伝子を強制発現させる前に行っても後に行ってもよい。一態様において、BCL-XL遺伝子を強制発現させる前にこの抽出工程を行い、抽出した特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)において、BCL-XL遺伝子を強制発現させる。別の態様において、BCL-XL遺伝子を強制発現させた、所望の特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)を含む細胞集団を調製し、その後該細胞集団から、所望の特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)を抽出する。この抽出した特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)において、BCL-XL遺伝子を引き続き強制発現させてもよい。目的とする細胞を抽出し、抽出された細胞に対して、本発明の方法を適用することにより、或いは本発明の方法を適用した細胞集団から、目的とする細胞を抽出して、該細胞を継続して培養することにより、目的の細胞種を効率よく増殖させることができる。抽出する細胞は、抽出した細胞種の増殖性を効率的に向上させる観点から、CMPの細胞株のみとすることや、骨髄球系前駆細胞の単一種の細胞株のみとすることが好ましいが、これらの2種以上の細胞が混合した細胞集団としてもよい。抽出する細胞は、好ましくは、CMP、GMP、マクロファージ前駆細胞又は樹状細胞前駆細胞である。目的とする細胞の抽出は、方法論1に記載した方法に従って行うことができる。抽出操作後の細胞集団に含まれる目的とする細胞の割合が、例えば、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)となるように、目的とする細胞の単離を行うことができる。目的とする細胞のシングルセルを単離してもよい。
 本発明の方法2は、CMP又は骨髄球系前駆細胞において、MYCファミリー遺伝子(好ましくはc-Myc)及びBMI1遺伝子を強制発現させる工程をさらに含んでいてもよい。BCL-XL遺伝子に加えて、MYCファミリー遺伝子(好ましくはc-Myc)及びBMI1遺伝子を発現させることにより、CMP又は骨髄球系前駆細胞の増殖の更なる促進が期待できる。MYCファミリー遺伝子(好ましくはc-Myc)及びBMI1遺伝子の強制発現の期間は当業者が適宜決定することができる。
 MYCファミリー遺伝子、BMI1遺伝子、及びBCL-XL遺伝子の強制発現は、同時に行ってもよく、順次行ってもよい。例えば、MYCファミリー遺伝子とBMI1遺伝子を強制発現させ、続いてBCL-XL遺伝子を強制発現させて、増殖能を向上させたCMP又は骨髄球系前駆細胞を得てもよい。また、MYCファミリー遺伝子とBMI1遺伝子とBCL-XL遺伝子を同時に強制発現させて、増殖能を向上させたCMP又は骨髄球系前駆細胞を得ることもできる。CMP又は骨髄球系前駆細胞の増殖を維持する場合には、培養期間中、MYCファミリー遺伝子、BMI1遺伝子、及びBCL-XL遺伝子の強制発現を維持することが好ましい。
 MYCファミリー遺伝子、BMI1遺伝子、及びBCL-XL遺伝子は、CMP又は骨髄球系前駆細胞の細胞増殖を促進するが、CMP系分化細胞(例、マクロファージ、樹状細胞、好中球、赤血球)の終末分化を阻害し得るために、終末分化工程に入る前にこれら遺伝子の発現を抑制してもよい。CMP又は骨髄球系前駆細胞内のこれら遺伝子発現を抑制することにより、機能的でより成熟したCMP系分化細胞(例、マクロファージ、樹状細胞、好中球、赤血球)が誘導されやすくなる。
 MYCファミリー遺伝子、BMI1遺伝子、BCL-XL遺伝子等の遺伝子は、方法論1に記載した方法に準じて細胞内で強制発現させることができる。CMP又は骨髄球系前駆細胞に、所望の遺伝子(例、BCL-XL遺伝子、任意的に更にMYCファミリー遺伝子及びBMI1遺伝子)の発現ベクターをトランスフェクトしてもよいし、予め所望の遺伝子(例、BCL-XL遺伝子、任意的に更にMYCファミリー遺伝子及びBMI1遺伝子)の発現カセットを組み込んだ多能性幹細胞(例、ES細胞、iPS細胞)、造血前駆細胞又は造血内皮細胞からCMP又は骨髄球系前駆細胞を誘導し、その段階で当該遺伝子を強制発現させてもよい。或いは、予め所望の遺伝子(例、BCL-XL遺伝子、任意的に更にMYCファミリー遺伝子及びBMI1遺伝子)の発現カセットを組み込んだ多能性幹細胞(例、ES細胞、iPS細胞)、造血前駆細胞又は造血内皮細胞において、当該遺伝子を強制発現させながら、該多能性幹細胞、造血前駆細胞又は造血内皮細胞から、CMP又は骨髄球系前駆細胞への分化を誘導してもよい。発現制御の目的遺伝子であるMYCファミリー遺伝子、BMI1遺伝子、BCL-XL遺伝子は、それぞれ別々のベクターに挿入してもよいし、同一のベクターに挿入してもよい。
 細胞内におけるMYCファミリー遺伝子、BMI1遺伝子、BCL-XL遺伝子等の発現の抑制は、方法論1に記載した方法に準じて行うことができる。
 本発明の方法2は、CMP又は骨髄球系前駆細胞において、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制する工程を含んでいてもよい。本発明の方法2において、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制することにより、CMP又は骨髄球系前駆細胞の増殖の更なる向上が期待できる。
 CDKN1A遺伝子のみならず、p53遺伝子の発現、或いはそれらの発現産物の機能を抑制することが好ましい。
 上記各遺伝子の発現又はその発現産物の機能の抑制は、方法論1に記載した方法に準じて行うことができる。
 CDKN1A遺伝子及び/又はp53遺伝子の発現の抑制は、方法論1と同様に、好ましくは、各遺伝子に対する発現抑制核酸を発現する発現ベクターを細胞に導入することにより行う。CMP又は骨髄球系前駆細胞に、所望の遺伝子(例、CDKN1A遺伝子、p53遺伝子)に対する発現抑制核酸の発現ベクター(例、ウイルスベクター)をトランスフェクトしてもよいし、予め所望の遺伝子(例、CDKN1A遺伝子、p53遺伝子)に対する発現抑制核酸の発現カセットを組み込んだ多能性幹細胞(例、ES細胞、iPS細胞)、造血前駆細胞又は造血内皮細胞からCMP又は骨髄球系前駆細胞を誘導し、その段階で当該siRNA、shRNA又はアンチセンス核酸を強制発現させてもよい。或いは、予め所望の遺伝子(例、CDKN1A遺伝子、p53遺伝子)に対する発現抑制核酸の発現カセットを組み込んだ多能性幹細胞(例、ES細胞、iPS細胞)、造血前駆細胞又は造血内皮細胞において、当該発現抑制核酸を強制発現させながら、該多能性幹細胞、造血前駆細胞又は造血内皮細胞から、CMP又は骨髄球系前駆細胞への分化を誘導してもよい。発現ベクターを用いて細胞内で発現抑制核酸の発現を行う場合、適当なプロモーターの下流に該発現抑制核酸をコードする核酸(例、DNA)を作用可能に連結し、これを発現ベクターに挿入して、細胞内に導入して目的とする発現抑制核酸を発現させてもよい。該プロモーターは外来性プロモーターであり得る。外来性プロモーターは、恒常的プロモーター又は調節性プロモーターであり得るが、好ましくは恒常的プロモーターである。CDKN1A遺伝子に対する発現抑制核酸をコードする核酸と、p53遺伝子に対する発現抑制核酸をコードする核酸は、それぞれ別々の発現ベクターに挿入してもよいし、同一の発現ベクターに挿入してもよい。
 本局面において、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能の抑制は、MYCファミリー遺伝子、BMI1遺伝子、又はBCL-XL遺伝子のいずれかの強制発現と同時であってもよい。好ましくは、BCL-XL遺伝子の強制発現と同時か、或いはその後である。例えば細胞増殖の低下が確認された後に実施することができる。一例として、ある時点の細胞増殖率を直近の細胞増殖率と比較し(例えば、一週間ごとに細胞の増殖を確認したとして、ある週の細胞増殖率をその一週間前の増殖率と比較して)、増殖率が1/2以下になった状態が確認された後に実施することができる。一態様において、CMP又は骨髄球系前駆細胞において、MYCファミリー遺伝子(例、c-Myc遺伝子)、BMI1遺伝子、及びBCL-XL遺伝子を強制発現させ、これと並行して、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制する。
 本発明は、上記本発明の方法2で得られたCMP又は骨髄球系前駆細胞を培養する工程(培養工程)を含む、CMP又は骨髄球系前駆細胞を製造する方法(以下、本発明の製造方法2という)をも提供する。
 CMP又は骨髄球系前駆細胞の培養条件は、方法論1に記載の通りである。方法論1に記載の通り、培養するCMP又は骨髄球系前駆細胞の種類に応じ、細胞増殖に適したサイトカインの生み合わせを、培地に添加することができる。
 本発明は、第4の外来性プロモーターと作用可能に連結されたBCL-XL遺伝子を有する、CMP又は骨髄球系前駆細胞(以下、本発明の細胞2)を提供する。骨髄球系前駆細胞は、好ましくは、GMP、マクロファージ前駆細胞又は樹状細胞前駆細胞である。第4の外来性プロモーターの用語の説明は、方法論1について記載した部分に準ずる。第4の外来性プロモーターと作用可能に連結されたBCL-XL遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれていてもよいし、CMP又は骨髄球系前駆細胞内に導入された発現ベクター中に存在してもよい。好ましくは、第4の外来性プロモーターと作用可能に連結されたBCL-XL遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれている。
 第4の外来性プロモーターとしてテトラサイクリン反応性プロモーターを用いる場合、テトラサイクリン依存的な発現制御を可能とするため、本発明の細胞は、第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子を更に有することが好ましい。第3の外来性プロモーターは、恒常的プロモーター又は調節性プロモーターであり得るが、好ましくは、恒常的プロモーターである。第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれていてもよいし、CMP又は骨髄球系前駆細胞内に導入された発現ベクター中に存在してもよい。好ましくは、第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれている。
 増殖能力を増強する観点から、本発明の細胞2は、第1の外来性プロモーターと作用可能に連結されたMYCファミリー遺伝子及び第2の外来性プロモーターと作用可能に連結されたBMI1遺伝子を更に有していてもよい。MYCファミリー遺伝子は、好ましくはc-MYCである。第1の外来性プロモーター及び第2の外来性プロモーターの用語の説明は、方法論1について記載した部分に準ずる。第1の外来性プロモーターと作用可能に連結されたMYCファミリー遺伝子及び第2の外来性プロモーターと作用可能に連結されたBMI1遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれていてもよいし、CMP又は骨髄球系前駆細胞内に導入された発現ベクター中に存在してもよい。好ましくは、第1の外来性プロモーターと作用可能に連結されたMYCファミリー遺伝子及び第2の外来性プロモーターと作用可能に連結されたBMI1遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれている。
 第1の外来性プロモーター及び/又は第2の外来性プロモーターの種類は、第4の外来性プロモーターと同一であっても異なっていてもよいが、好ましくは、第1、第2及び第4の外来性プロモーターは、同一の種類のプロモーターである。同一の種類のプロモーターを用いることにより、MYCファミリー遺伝子、BMI1遺伝子及びBCL-XL遺伝子を同期的に発現させることができ、また同期的に発現を抑制することができる。第1、第2及び第4の外来性プロモーターは、好ましくは、同一の調節性プロモーター(例、薬剤反応性プロモーター)であり、より好ましくは全てテトラサイクリン反応性プロモーターである。第4の外来性プロモーターは、第1及び第2の外来性プロモーターと独立して、BCL-XL遺伝子と作用可能に連結されていてもよいし、第4の外来性プロモーターにMYCファミリー遺伝子とBCL-XL遺伝子とが作用可能に連結されていてもよいし、第4の外来性プロモーターにBMI1遺伝子とBCL-XL遺伝子とが作用可能に連結されていてもよいし、1つの外来性プロモーターに、MYCファミリー遺伝子、BMI1遺伝子及びBCL-XL遺伝子が作用可能に連結されていてもよい。
 第1、第2及び第4の外来性プロモーターの少なくとも1つについてテトラサイクリン反応性プロモーターを用いる場合、テトラサイクリン依存的な発現制御を可能とするため、本発明の細胞2は、第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子を更に有することが好ましい。第3の外来性プロモーターは、恒常的プロモーター又は調節性プロモーターであり得るが、好ましくは、恒常的プロモーターである。第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれていてもよいし、CMP又は骨髄球系前駆細胞内に導入された発現ベクター中に存在してもよい。好ましくは、第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれている。
 増殖能力を増強する観点から、本発明の細胞2は、第5の外来性プロモーターと作用可能に連結されたCDKN1A遺伝子に対する発現抑制核酸(例、siRNA、shRNA、アンチセンス核酸)をコードする核酸、及び/又は第6の外来性プロモーターと作用可能に連結されたp53遺伝子に対する発現抑制核酸をコードする核酸を更に有していてもよい。第5の外来性プロモーター及び第6の外来性プロモーターの用語の説明は、方法論1について記載した部分に準ずる。第5の外来性プロモーターと作用可能に連結されたCDKN1A遺伝子に対する発現抑制核酸をコードする核酸、及び第6の外来性プロモーターと作用可能に連結されたp53遺伝子に対する発現抑制核酸をコードする核酸は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれていてもよいし、CMP又は骨髄球系前駆細胞内に導入された発現ベクター中に存在してもよいが、好ましくは、CMP又は骨髄球系前駆細胞のゲノムに組み込まれている。
 一態様において、本発明の細胞2は、
第1の外来性プロモーターと作用可能に連結されたMYCファミリー遺伝子(例、c-Myc)、
第2の外来性プロモーターと作用可能に連結されたBMI1遺伝子、及び
第4の外来性プロモーターと作用可能に連結されたBCL-XL遺伝子を有する、CMP又は骨髄球系前駆細胞(例、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞)である。第1、2及び4の外来性プロモーターから選択される少なくとも1つ(好ましくは全て)としてテトラサイクリン反応性プロモーターを用いる場合、本発明の細胞は、第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子を更に有していてもよい。
 一態様において、本発明の細胞2は、
第1の外来性プロモーターと作用可能に連結されたMYCファミリー遺伝子、
第2の外来性プロモーターと作用可能に連結されたBMI1遺伝子、
第4の外来性プロモーターと作用可能に連結されたBCL-XL遺伝子
第5の外来性プロモーターと作用可能に連結されたCDKN1A遺伝子に対する発現抑制核酸をコードする核酸、及び
第6の外来性プロモーターと作用可能に連結されたp53遺伝子に対する発現抑制核酸をコードする核酸
を有するCMP又は骨髄球系前駆細胞(例、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞)である。第1、2及び4の外来性プロモーターから選択される少なくとも1つ(好ましくは全て)としてテトラサイクリン反応性プロモーターを用いる場合、本発明の細胞は、第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子を更に有していてもよい。
 本発明の細胞2は、上述した本発明の方法2、又は本発明の製造方法2により得ることができる。
 また、本発明は、上記本発明の細胞2を含む細胞集団(本発明の細胞集団2という。)を提供する。該細胞集団2は、上記本発明の細胞2を豊富に含み、該細胞集団2全体に含まれる本発明の細胞2の割合は、例えば、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)である。このような本発明の細胞2を豊富に含む細胞集団は、上記本発明の方法2を適用した細胞集団から、目的とする特定の分化段階の細胞(CMP又は骨髄球系前駆細胞(例、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞))を、抽出することにより得ることができる。好ましい態様において、本発明の細胞集団2は、特定の分化段階にある本発明の細胞2を豊富に含む。一態様において、細胞集団全体に含まれる本発明の細胞2(該細胞はGMPである)の割合が、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)である。一態様において、細胞集団全体に含まれる本発明の細胞2(該細胞はマクロファージ前駆細胞である)の割合が、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)である。一態様において、細胞集団全体に含まれる本発明の細胞2(該細胞は樹状細胞前駆細胞である)の割合が、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)である。このように特定の分化段階にある本発明の細胞2を豊富に含む細胞集団は、上記本発明の方法2を適用した細胞集団から、目的とする分化段階の細胞を、該分化段階の細胞に特異的に発現する細胞表面マーカーに対する抗体を用いて、セルソーター等で単離・抽出することにより得ることができる。
 また、本発明は、上記本発明の細胞集団2を含む細胞調製物(本発明の細胞調製物2という。)を提供する。本発明の細胞調製物2は、方法論1と同様に、上記本発明の細胞集団2を、適切な生理的水溶液で懸濁することにより調製することができる。一態様において、本発明の細胞調製物2は、凍結した上記本発明の細胞集団2を含む凍結細胞調製物である。
 方法論1と同様に、本発明の方法2又は本発明の製造方法2で得られたCMP又は骨髄球系前駆細胞(すなわち、本発明の細胞2)を分化させることにより、CMP系分化細胞を得ることができる。
 本実施形態に係るCMP又は骨髄球系前駆細胞の増殖促進剤(本発明の増殖促進剤2という)は、BCL-XL遺伝子を強制発現させる分子を有効成分として含む。本発明の増殖促進剤2は、MYCファミリー遺伝子及びBMI1遺伝子を強制発現させる分子を更に有効成分として含んでいてもよい。本発明の増殖促進剤2は、CDKN1A遺伝子又はp53遺伝子の発現又はその発現産物の機能を抑制する分子を更に有効成分として含んでいてもよい。
 また、本発明の方法2又は本発明の製造方法2で得られたCMP又は骨髄球系前駆細胞(本発明の細胞2)、或いは上述したCMP系分化細胞を製造する方法で得られたCMP系分化細胞を含む医薬組成物を調製し、各種疾患の治療又は予防に用いることもできる。医薬組成物の調整及び、疾患の治療又は予防は、方法論1に準じて実施することができる。
 各用語の定義は、方法論1について記載した部分に準ずる。
(2)方法論3
 更なる局面において、本発明は、CMP又は骨髄球系前駆細胞において、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制する工程を含む、CMP又は骨髄球系前駆細胞の増殖性を向上させる方法(以下、「本発明の方法2」という。)を提供する。骨髄球系前駆細胞は、好ましくは、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞、又は赤血球前駆細胞である。CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制することにより、CMP又は骨髄球系前駆細胞の増殖性が向上し、無限に増殖する不死化細胞株を得ることが期待できる。
 CDKN1A遺伝子のみならず、p53遺伝子の発現、或いはそれらの発現産物の機能を抑制することが好ましい。
 上記各遺伝子の発現又はその発現産物の機能の抑制は、方法論1に記載した方法に準じて行うことができる。
 CDKN1A遺伝子及び/又はp53遺伝子の発現の抑制は、方法論1と同様に、好ましくは、各遺伝子に対する発現抑制核酸(例、siRNA、shRNA、アンチセンス核酸)を発現する発現ベクターを細胞に導入することにより行う。CMP又は骨髄球系前駆細胞に、所望の遺伝子(例、CDKN1A遺伝子、p53遺伝子)に対する発現抑制核酸の発現ベクター(例、ウイルスベクター)をトランスフェクトしてもよいし、予め所望の遺伝子(例、CDKN1A遺伝子、p53遺伝子)に対する発現抑制核酸の発現カセットを組み込んだ多能性幹細胞(例、ES細胞、iPS細胞)、造血前駆細胞又は造血内皮細胞からCMP又は骨髄球系前駆細胞を誘導し、その段階で当該発現抑制核酸を強制発現させてもよい。或いは、予め所望の遺伝子(例、CDKN1A遺伝子、p53遺伝子)に対する発現抑制核酸の発現カセットを組み込んだ多能性幹細胞(例、ES細胞、iPS細胞)、造血前駆細胞又は造血内皮細胞において、当該発現抑制核酸を強制発現させながら、該多能性幹細胞、造血前駆細胞又は造血内皮細胞から、CMP又は骨髄球系前駆細胞への分化を誘導してもよい。発現ベクターを用いて細胞内で発現抑制核酸の発現を行う場合、適当なプロモーターの下流に該発現抑制核酸をコードする核酸(例、DNA)を作用可能に連結し、これを発現ベクターに挿入して、細胞内に導入して目的とする発現抑制核酸を発現させてもよい。該プロモーターは外来性プロモーターであり得る。外来性プロモーターは、恒常的プロモーター又は調節性プロモーターであり得るが、好ましくは恒常的プロモーターである。CDKN1A遺伝子に対する発現抑制核酸をコードする核酸と、p53遺伝子に対する発現抑制核酸をコードする核酸は、それぞれ別々の発現ベクターに挿入してもよいし、同一の発現ベクターに挿入してもよい。
 本発明の方法3においては、所望の特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)を抽出(単離又は精製)する工程をさらに含んでいてもよい。当該特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)の抽出は、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制する前に行っても後に行ってもよい。一態様において、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制する前にこの抽出工程を行い、抽出した特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)において、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制する。別の態様において、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制した、所望の特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)を含む細胞集団を調製し、その後該細胞集団から、所望の特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)を抽出する。この抽出した特定の分化段階の細胞(CMP又は骨髄球系前駆細胞)において、引き続きCDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制してもよい。目的とする細胞を抽出し、抽出された細胞に対して、本発明の方法3を適用することにより、或いは本発明の方法3を適用した細胞集団から、目的とする細胞を抽出して、該細胞を継続して培養することにより、目的の細胞種を効率よく増殖させることができる。抽出する細胞は、抽出した細胞種の増殖性を効率的に向上させる観点から、CMPのみとすることや、骨髄球系前駆細胞の単一種の細胞のみとすることが好ましいが、これらの2種以上の細胞種が混合した細胞集団としてもよい。抽出する細胞は、好ましくは、CMP、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞、又は赤血球前駆細胞である。目的とする細胞の抽出は、方法論1に記載した方法に従って行うことができる。抽出操作後の細胞集団に含まれる目的とする細胞の割合が、例えば、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)となるように、目的とする細胞の単離を行うことができる。目的とする細胞のシングルセルを単離してもよい。
 本発明の方法3は、CMP又は骨髄球系前駆細胞において、MYCファミリー遺伝子(好ましくはc-Myc)及びBMI1遺伝子を強制発現させる工程をさらに含んでいてもよい。CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能の抑制に加えて、MYCファミリー遺伝子(好ましくはc-Myc)及びBMI1遺伝子を発現させることにより、CMP又は骨髄球系前駆細胞の増殖の更なる促進が期待できる。MYCファミリー遺伝子(好ましくはc-Myc)及びBMI1遺伝子の上記強制発現の期間は当業者が適宜決定することができる。
 MYCファミリー遺伝子及びBMI1遺伝子の強制発現は、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能の抑制と同時に行ってもよく、順次行ってもよい。例えば、MYCファミリー遺伝子とBMI1遺伝子を強制発現させ、続いてCDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制して、増殖能を向上させたCMP又は骨髄球系前駆細胞を得てもよい。また、MYCファミリー遺伝子及びBMI1遺伝子の強制発現と、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能の抑制を同時に行い、増殖能を向上させたCMP又は骨髄球系前駆細胞を得ることもできる。
 本発明の方法3は、CMP又は骨髄球系前駆細胞において、BCL-XL遺伝子を強制させる工程をさらに含んでいてもよい。CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能の抑制に加えて、BCL-XL遺伝子を発現させることにより、CMP又は骨髄球系前駆細胞の増殖の更なる促進が期待できる。BCL-XL遺伝子の上記強制発現の期間は当業者が適宜決定することができる。
 BCL-XL遺伝子の強制発現は、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能の抑制と同時に行ってもよく、順次行ってもよい。例えば、BCL-XL遺伝子を強制発現させ、続いてCDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制して、増殖能を向上させたCMP又は骨髄球系前駆細胞を得てもよい。また、BCL-XL遺伝子の強制発現と、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能の抑制を同時に行い、増殖能を向上させたCMP又は骨髄球系前駆細胞を得ることもできる。
 一態様において、本発明の方法3は、CMP又は骨髄球系前駆細胞において、MYCファミリー遺伝子(好ましくはc-Myc遺伝子)、BMI1遺伝子及びBCL-XL遺伝子を強制させる工程をさらに含んでいてもよい。本態様において、CDKN1A遺伝子又はp53遺伝子の発現、又はその発現産物の機能の抑制は、MYCファミリー遺伝子、BMI1遺伝子、又はBCL-XL遺伝子のいずれかの強制発現と同時であってもよい。好ましくはBCL-XL遺伝子の強制発現と同時か、或いはその後にCDKN1A遺伝子又はp53遺伝子の発現、又はその発現産物の機能を抑制する。一態様において、CMP又は骨髄球系前駆細胞において、MYCファミリー遺伝子(好ましくはc-Myc遺伝子)及びBMI1遺伝子を強制発現したCMP又は骨髄球系前駆細胞の細胞増殖の低下が確認された後に、CDKN1A遺伝子又はp53遺伝子の発現、又はその発現産物の機能を抑制する。一態様において、CMP又は骨髄球系前駆細胞において、MYCファミリー遺伝子(好ましくはc-Myc遺伝子)及びBMI1遺伝子を強制発現したCMP又は骨髄球系前駆細胞の細胞増殖の低下が確認された後に、BCL-XL遺伝子の強制発現とCDKN1A遺伝子又はp53遺伝子の発現、又はその発現産物の機能の抑制を実施する。一例として、ある時点の細胞増殖率を直近の細胞増殖率と比較し(例えば、一週間ごとに細胞の増殖を確認したとして、ある週の細胞増殖率をその一週間前の増殖率と比較して)、増殖率が1/2以下になった状態が確認された後に実施することができる。一態様において、CMP又は骨髄球系前駆細胞において、MYCファミリー遺伝子(例、c-Myc遺伝子)、BMI1遺伝子、及びBCL-XL遺伝子を強制発現させ、これと並行して、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制する。
 MYCファミリー遺伝子、BMI1遺伝子、及びBCL-XL遺伝子は、CMP又は骨髄球系前駆細胞の細胞増殖を促進するが、CMP系分化細胞(例、マクロファージ、樹状細胞、好中球、赤血球)の終末分化を阻害し得るために、終末分化工程に入る前にこれら遺伝子の発現を抑制してもよい。CMP又は骨髄球系前駆細胞内のこれら遺伝子発現を抑制することにより、機能的でより成熟したCMP系分化細胞(例、マクロファージ、樹状細胞、好中球、赤血球)が誘導されやすくなる。
 MYCファミリー遺伝子、BMI1遺伝子、BCL-XL遺伝子等の遺伝子は、方法論1や方法論2に記載した方法に準じて細胞内で強制発現させることができる。細胞内におけるMYCファミリー遺伝子、BMI1遺伝子、BCL-XL遺伝子等の発現の抑制は、方法論1や方法論2に記載した方法に準じて行うことができる。
 本発明は、上記本発明の方法3で得られたCMP又は骨髄球系前駆細胞を培養する工程(培養工程)を含む、CMP又は骨髄球系前駆細胞を製造する方法(以下、本発明の製造方法2という)をも提供する。
 CMP又は骨髄球系前駆細胞の培養条件は、方法論1に記載の通りである。方法論1に記載の通り、培養するCMP又は骨髄球系前駆細胞の種類に応じ、細胞増殖に適したサイトカインの生み合わせを、培地に添加することができる。
 本発明は、第5の外来性プロモーターと作用可能に連結されたCDKN1A遺伝子に対する発現抑制核酸(例、siRNA、shRNA、アンチセンス核酸)をコードする核酸、及び/又は第6の外来性プロモーターと作用可能に連結されたp53遺伝子に対する発現抑制核酸をコードする核酸を有する、CMP又は骨髄球系前駆細胞(以下、本発明の細胞3)を提供する。骨髄球系前駆細胞は、好ましくは、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞又は赤血球前駆細胞である。第5の外来性プロモーター及び第6の外来性プロモーターの用語の説明は、方法論1について記載した部分に準ずる。第5の外来性プロモーターと作用可能に連結されたCDKN1A遺伝子に対する発現抑制核酸をコードする核酸、及び第6の外来性プロモーターと作用可能に連結されたp53遺伝子に対する発現抑制核酸をコードする核酸は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれていてもよいし、CMP又は骨髄球系前駆細胞内に導入された発現ベクター中に存在してもよいが、好ましくは、CMP又は骨髄球系前駆細胞のゲノムに組み込まれている。
 増殖能力を増強する観点から、本発明の細胞3は、第1の外来性プロモーターと作用可能に連結されたMYCファミリー遺伝子及び第2の外来性プロモーターと作用可能に連結されたBMI1遺伝子を更に有していてもよい。第1の外来性プロモーター及び第2の外来性プロモーターの用語の説明は、方法論1について記載した部分に準ずる。第1の外来性プロモーターと作用可能に連結されたMYCファミリー遺伝子及び第2の外来性プロモーターと作用可能に連結されたBMI1遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれていてもよいし、CMP又は骨髄球系前駆細胞内に導入された発現ベクター中に存在してもよい。好ましくは、第1の外来性プロモーターと作用可能に連結されたMYCファミリー遺伝子及び第2の外来性プロモーターと作用可能に連結されたBMI1遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれている。
 増殖能力を増強する観点から、本発明の細胞3は、第4の外来性プロモーターと作用可能に連結されたBCL-XL遺伝子を更に有していてもよい。第4の外来性プロモーターの用語の説明は、方法論1について記載した部分に準ずる。第4の外来性プロモーターと作用可能に連結されたBCL-XL遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれていてもよいし、CMP又は骨髄球系前駆細胞内に導入された発現ベクター中に存在してもよい。好ましくは、第4の外来性プロモーターと作用可能に連結されたBCL-XL遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれている。
 第1、第2及び第4の外来性プロモーターの種類は、第4の外来性プロモーターと同一であっても異なっていてもよいが、好ましくは、第1、第2及び第4の外来性プロモーターは、同一の種類のプロモーターである。同一の種類のプロモーターを用いることにより、MYCファミリー遺伝子、BMI1遺伝子及びBCL-XL遺伝子を同期的に発現させることができ、また同期的に発現を抑制することができる。第1、第2及び第4の外来性プロモーターは、好ましくは、同一の調節性プロモーター(例、薬剤反応性プロモーター)であり、より好ましくは全てテトラサイクリン反応性プロモーターである。
 第1、第2及び第4の外来性プロモーターの少なくとも1つについてテトラサイクリン反応性プロモーターを用いる場合、テトラサイクリン依存的な発現制御を可能とするため、本発明の細胞3は、第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子を更に有することが好ましい。第3の外来性プロモーターは、恒常的プロモーター又は調節性プロモーターであり得るが、好ましくは、恒常的プロモーターである。第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれていてもよいし、CMP又は骨髄球系前駆細胞内に導入された発現ベクター中に存在してもよい。好ましくは、第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子は、CMP又は骨髄球系前駆細胞のゲノムに組み込まれている。
 一態様において、本発明の細胞3は、
第1の外来性プロモーターと作用可能に連結されたMYCファミリー遺伝子(例、c-Myc)、
第2の外来性プロモーターと作用可能に連結されたBMI1遺伝子、
第5の外来性プロモーターと作用可能に連結されたCDKN1A遺伝子に対する発現抑制核酸をコードする核酸、及び
第6の外来性プロモーターと作用可能に連結されたp53遺伝子に対する発現抑制核酸をコードする核酸を有する、CMP又は骨髄球系前駆細胞(例、CMP、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞、赤血球前駆細胞)である。第1及び2の外来性プロモーターから選択される少なくとも1つ(好ましくは全て)としてテトラサイクリン反応性プロモーターを用いる場合、本発明の細胞は、第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子を更に有していてもよい。
 一態様において、本発明の細胞3は、
第1の外来性プロモーターと作用可能に連結されたMYCファミリー遺伝子、
第2の外来性プロモーターと作用可能に連結されたBMI1遺伝子、
第4の外来性プロモーターと作用可能に連結されたBCL-XL遺伝子
第5の外来性プロモーターと作用可能に連結されたCDKN1A遺伝子に対する発現抑制核酸をコードする核酸、及び
第6の外来性プロモーターと作用可能に連結されたp53遺伝子に対する発現抑制核酸をコードする核酸
を有するCMP又は骨髄球系前駆細胞(例、CMP、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞、赤血球前駆細胞)である。第1、2及び4の外来性プロモーターから選択される少なくとも1つ(好ましくは全て)としてテトラサイクリン反応性プロモーターを用いる場合、本発明の細胞は、第3の外来性プロモーターと作用可能に連結されたrtTA遺伝子又はtTA遺伝子を更に有していてもよい。
 本発明の細胞3は、上述した本発明の方法3、又は本発明の製造方法3により得ることができる。
 また、本発明は、上記本発明の細胞3を含む細胞集団(本発明の細胞集団3という。)を提供する。該細胞集団3は、上記本発明の細胞3を豊富に含み、該細胞集団3全体に含まれる本発明の細胞3の割合は、例えば、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)である。このような本発明の細胞3を豊富に含む細胞集団は、上記本発明の方法3を適用した細胞集団から、目的とする特定の分化段階の細胞(CMP又は骨髄球系前駆細胞(例、GMP、マクロファージ前駆細胞、樹状細胞前駆細胞、赤血球前駆細胞))を、抽出することにより得ることができる。好ましい態様において、本発明の細胞集団3は、特定の分化段階にある本発明の細胞3を豊富に含む。一態様において、細胞集団全体に含まれる本発明の細胞3(該細胞はGMPである)の割合が、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)である。一態様において、細胞集団全体に含まれる本発明の細胞3(該細胞はマクロファージ前駆細胞である)の割合が、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)である。一態様において、細胞集団全体に含まれる本発明の細胞3(該細胞は樹状細胞前駆細胞である)の割合が、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)である。一態様において、細胞集団全体に含まれる本発明の細胞3(該細胞は赤血球前駆細胞である)の割合が、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上、95%以上(例、100%)である。このように特定の分化段階にある本発明の細胞3を豊富に含む細胞集団は、上記本発明の方法3を適用した細胞集団から、目的とする分化段階の細胞を、該分化段階の細胞に特異的に発現する細胞表面マーカーに対する抗体を用いて、セルソーター等で単離・抽出することにより得ることができる。
 また、本発明は、上記本発明の細胞集団3を含む細胞調製物(本発明の細胞調製物2という。)を提供する。本発明の細胞調製物3は、方法論1と同様に、上記本発明の細胞集団3を、適切な生理的水溶液で懸濁することにより調製することができる。一態様において、本発明の細胞調製物3は、凍結した上記本発明の細胞集団3を含む凍結細胞調製物である。
 方法論1と同様に、本発明の方法3又は本発明の製造方法3で得られたCMP又は骨髄球系前駆細胞(すなわち、本発明の細胞3)を分化させることにより、CMP系分化細胞を得ることができる。
 本実施形態に係るCMP又は骨髄球系前駆細胞の増殖促進剤(本発明の増殖促進剤3という)は、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制する分子を有効成分として含む。本発明の増殖促進剤3は、好ましくは、CDKN1A遺伝子の発現を特異的に抑制し得る発現抑制核酸(例、siRNA、shRNA、アンチセンス核酸)又はこれらの発現抑制核酸を発現し得る発現ベクター、並びに/或いはp53遺伝子の発現を特異的に抑制し得る発現抑制核酸、又はこれらの発現抑制核酸を発現し得る発現ベクターを有効成分として含む。本発明の増殖促進剤3は、MYCファミリー遺伝子及びBMI1遺伝子を強制発現させる分子を更に有効成分として含んでいてもよい。本発明の増殖促進剤3は、BCL-XL遺伝子を強制発現させる分子を更に有効成分として含んでいてもよい。
 また、本発明の方法3又は本発明の製造方法3で得られたCMP又は骨髄球系前駆細胞(本発明の細胞3)、或いは上述したCMP系分化細胞を製造する方法で得られたCMP系分化細胞を含む医薬組成物を調製し、各種疾患の治療又は予防に用いることもできる。医薬組成物の調製及び、疾患の治療又は予防は、方法論1に準じて実施することができる。
 各用語の定義は、方法論1について記載した部分に準ずる。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明は何らこれに限定されるものではない。当業者は、本発明の意義を逸脱することなく様々な態様に本発明を変更することができ、かかる変更も本発明の範囲に含まれる。
実施例1-1:CMP株の増殖促進
 ヒトiPS細胞から、図1に示す方法に従って培養を14日間行い、血液前駆細胞への分化培養を実施し、セルソーターでCD34CD43細胞をソートすることにより単離した血液前駆細胞を得た。得られた血液前駆細胞に、以下の処理を行うことで増殖能を有するCMP株を樹立した。まず、培養14日目の単離した血液前駆細胞(1.0×10~1.0×10個)に、ドキシサイクリン制御によりc-MYC/BMI1を強制発現させるレンチウイルスベクターを導入し(MB)、GM-CSF(50ng/ml)、G-CSF(10ng/ml)、IL-3(10ng/ml)、SCF(25ng/ml)、TPO(5ng/ml)を含む培地中で、ドキシサイクリン存在下で培養することにより、増殖能を有するCMP(MB)を樹立した。増殖した細胞がCMPであることは、メチルセルロースコロニーアッセイにて、シングルセルから好中球、マクロファージ、赤芽球及び巨核球が誘導できたことから、樹立した細胞がCMPであることを確認した(Takayama et al., Blood, 111(11):5298-5306, 2008)。
 培養21日目に、CMP(MB)にドキシサイクリン制御によりBCL-XLを強制発現させるレンチウイルスベクター、及びp21に対するshRNA及びp53に対するshRNAを持続的に発現するレンチウイルスベクターを感染させて、GM-CSF、G-CSF、IL-3、SCF、TPOを含む培地中で、ドキシサイクリン存在下でさらに培養した。この培養操作により、MB導入に加えてドキシサイクリン誘導レンチウイルスベクターを用いてBCL-XL遺伝子を更に導入したCMP(MBX)、MB導入に加えて持続的に発現するsh p21/p53レンチウイルスベクターを更に感染させたCMP(MB-p21/p53_KD)、及びMB導入に加えてドキシサイクリン誘導レンチウイルスベクターを用いてBCL-XL遺伝子を導入し、持続的に発現するsh p21/p53レンチウイルスベクターを感染させたCMP(MBX-p21/p53_KD)を樹立した。樹立した細胞は、マクロファージ、MEP及び巨核球前駆細胞のマーカーを発現していないことから、CMP単一のポピュレーションと考えられた。
 各CMPについて、14日目と31日目と43日目の細胞数をカウントした結果を図2に示す。c-MYC及びBMI1の強制発現により、CMPは良好に増殖した。BCL-XLの強制発現により、細胞増殖が促進された。またp21及びp53のノックダウンによっても細胞増殖が促進された。同様の方法により、異なる7株のiPS細胞から、増殖性を有するCMPの樹立に成功した。
実施例1-2:赤芽球・マクロファージ・好中球への分化誘導
 実施例1-1で得た各細胞の培養液からドキシサイクリンを除去し、c-MYC/BMI1/BCL-XLの3因子の発現を抑制後、G-CSF、SCF、TPO、EPO、IL3のサイトカインの存在下で細胞を培養し、7日目にCMP株から分化した赤芽球・マクロファージ・好中球をFACSで解析した。抗体はCD43抗体、CD33抗体、CD14抗体、CD11b抗体、GPA(Glycophorin A)抗体(BioLegend、カタログ番号:306612)、APC anti-human CD41 Antibody(BioLegend、カタログ番号:303710)を使用した。結果を図3に示す。巨核球への分化も確認できた。ドキシサイクリン除去(c-MYC/BMI1/BCL-XLの発現抑制)により、骨髄系の主要な3系統への終末分化が確認された。この結果から、実施例1-1で得られた細胞がCMPであること、及びc-MYC/BMI1/BCL-XLの発現抑制により、骨髄系細胞への終末分化が促進されることが示唆された。
実施例1-3:マクロファージ・好中球への分化誘導
 実施例1-1で得た各細胞の培養液からドキシサイクリンを除去し、MYC/BMI1/BCL-XLの3因子の発現を抑制後、GM-CSF、G-CSF、SCF、TPO、IL3のサイトカインの存在下で細胞を培養し、7日目にCMP株から分化した赤芽球・マクロファージ・好中球をFACSで解析した。抗体はCD16抗体、CD14抗体、CD11b抗体、及びCD11c抗体を使用した。結果を図4に示す。MBX及びMBX-p21/p53KDのいずれのCMPからもマクロファージが誘導された。MBXよりもMBX-p21/p53KDの方が、マクロファージに分化した細胞のパーセンテージが高いことから、p21/p53KDによりマクロファージへの分化が促進される可能性が示唆された。
実施例2-1:PiggyBac System
 PiggyBacベクター内のテトラサイクリン応答因子(TRE)の下流にBMI1 IRESS c-MYCを導入し、H1 promoterの下流にsh p53, sh p21を導入したベクターを作製した(pb BMI1 IRESS c-MYC-rtTA sh p53 sh p21)(図5(A)参照)。PiggyBacベクター内のTREの下流にBCL-XLを導入した。このベクター内にUbic promoter下流にrtTA 2A puromycin耐性遺伝子が発現する(pb BclXL)。用いたPiggyBacベクターは、京都大学iPS細胞研究所のKnut Woltjen准教授から分与されたものである。
 上記のベクターを1383D10(iPS細胞)、KhES3、KthES14の各細胞株にリポフェクションで導入後、puromycinで導入細胞をセレクションした。その後、各細胞を14日間で血液前駆細胞に分化・単離後、図5(B)に示す条件下で培養し、マクロファージ株、赤血球株の各細胞株を得た。
 より具体的には、マクロファージ株を調製する場合、血液前駆細胞を、SCF(50ng/ml)、M-CSF(20ng/ml)、IL1β(10ng/ml)、Doxcycline(1μg/ml)存在下で7日間培養した後に、セルソーターでCX3CR1陽性CD14陽性細胞を単離した。単離されたCX3CR1陽性CD14陽性細胞を、引き続きSCF(50ng/ml)、M-CSF(20ng/ml)、IL1β(10ng/ml)、Doxcycline(1μg/ml)存在下で培養することによりマクロファージ株を得た。
 赤血球株を調製する場合、血液前駆細胞を、SCF(50ng/ml),EPO(3U/ml),Doxcycline(1μg/ml)存在下で7日間培養した後に、セルソーターでCD71陽性CD235ab陽性細胞を単離した。単離されたCD71陽性CD235ab陽性細胞を、引き続きSCF(50ng/ml),EPO(3U/ml),Doxcycline(1μg/ml)存在下で培養することにより、赤血球株を得た。
 各マクロファージ細胞株の増殖曲線を図6に示す。細胞数はCX3CR1陽性細胞をカウントした。
実施例2-2:マクロファージ株
 実施例2-1で得た1383D10由来のマクロファージ株をCD13,CD14,CD33,CD43,HLA-DRで染色しFACSで解析した。抗体はCD13抗体、CD14抗体、CD33抗体、CD43抗体、HLA-DR抗体を使用した。結果を図7に示す。マクロファージのマーカーであるCD13,CD14陽性細胞であることが確認された。
実施例2-3:マクロファージ細胞表面マーカー
 実施例2-1で得た各マクロファージ株をマクロファージのマーカーであるCX3CR1でsortingした後、遺伝子発現時(Dox on)と遺伝子発現抑制時(Dox off)で、マクロファージ細胞表面マーカーをFACSで解析した。Dox onはSCF(50ng/ml)、M-CSF(20ng/ml)、IL1β(10ng/ml)、Doxcycline(1μg/ml)存在下で培養し、Dox offはM-CSF(20ng/ml)存在下で3日間培養した(図16上部参照)。遺伝子発現時(Dox on)の結果を図8下部に、遺伝子発現抑制時(Dox off)の結果を図9に示す。Dox off時にはDox onと比べCD14,CD163,CD80が高発現した。しかし、CD11bの発現は低かった。
実施例2-4:M1型、M2型
 実施例2-1で得た各マクロファージ株がM1型、M2型どちらの型なのかをFACSで解析した。Dox off細胞をM1型のマーカーであるCD32、M2型のマーカーであるCd163で染色したところ、どちらも陽性なためFACSでは識別できなかった(図10参照)。
実施例2-5:CD11b陽性細胞
 実施例2-1で得た各マクロファージ株の培養液からドキシサイクリンを除去し、Dox off時にM-CSFの存在下マトリゲル上で培養した細胞株をCD11bで染色したところ、CD11b陽性細胞が得られた。結果を図11に示す。培養環境の変化(マトリゲル上での培養)でマクロファージマーカーであるCD11bが発現することがわかった。
実施例2-6:貪食能
 実施例2-1で得た各マクロファージ株の貪食能を調べた。各細胞の培養液からドキシサイクリンを除去し、Dox on, Dox off後1日目、2日目、3日目の細胞株に蛍光標識した酵母細胞壁ペプチドを添加後FACSで解析した。結果を図12に示す。Dox ONでは貪食能が低かっ
た。一方、off時では1日目から貪食能が確認された。
実施例2-7:β-amiloidの貪食能
 実施例2-1で得た各マクロファージ株のβ-amiloidの貪食能を調べた。各細胞の培養液からドキシサイクリンを除去し、Dox on, Dox off後5日目の細胞株に蛍光標識したオリゴマーβ-amiloidを添加後FACSで解析した。結果を図13に示す。Dox ONでは貪食能が低かった。一方、Dox off時では貪食能が確認された。
実施例2-8:赤血球株
 実施例2-1において、khES3(ES細胞)、1383D10(iPS細胞)由来血液前駆細胞をSCF(50ng/ml),EPO(3U/ml),Dox(1μg/ml)の条件下で培養することで、取得した不死化の赤血球株について、細胞数をGly-A陽性細胞でカウントした(図14参照)。
実施例3-1:PiggyBac System
 実施例2-1と同様に、ES細胞5株、iPS細胞5株を用いて血球分化7日目に、図15に示す各条件で培養することでマクロファージ株、樹状細胞株、赤血球株の各細胞株を得た。
 より具体的には、マクロファージ株を調製する場合、造血内皮細胞を、SCF(50ng/ml)、M-CSF(20ng/ml)、IL1β(10ng/ml)、Doxcycline(1μg/ml)存在下で7日間培養した後に、セルソーターでCX3CR1陽性CD14陽性細胞を単離した。単離されたCX3CR1陽性CD14陽性細胞を、引き続きSCF(50ng/ml)、M-CSF(20ng/ml)、IL1β(10ng/ml)、Doxcycline(1μg/ml)存在下で培養することによりマクロファージ株を得た。
 樹状細胞株を調製する場合、造血内皮細胞を、SCF(50ng/ml)、M-CSF(20ng/ml)、GM-CSF(20μg/ml)、Doxcycline(1μg/ml)存在下で7日間培養した後に、セルソーターでCD209陽性細胞を単離した。単離されたCD209陽性細胞を、引き続きSCF(50ng/ml)、M-CSF(20ng/ml)、GM-CSF(20μg/ml)、Doxcycline(1μg/ml)存在下で培養することにより樹状細胞株を得た。
 赤血球株を調製する場合、造血内皮細胞を、SCF(50ng/ml),EPO(3U/ml),Doxcycline(1μg/ml)存在下で7日間培養した後に、セルソーターでCD71陽性CD235ab陽性細胞を単離した。単離されたCD71陽性CD235ab陽性細胞を、引き続きSCF(50ng/ml),EPO(3U/ml),Doxcycline(1μg/ml)存在下で培養することにより、赤血球株を得た。
 SCF(50ng/ml),M-CSF(20μg/ml),IL1β(10ng/ml),Dox(1μg/ml)の条件下で培養することで、取得した増殖能を有する各マクロファージ細胞株の増殖曲線を図16に示す。細胞数はCX3CR1陽性細胞をカウントした。
 SCF(50ng/ml),M-CSF(20μg/ml),GM-CSF(20μg/ml),Dox(1μg/ml)の条件下で培養することで、取得した増殖能を有する各樹状細胞株の増殖曲線を図17に示す。細胞数はCD209陽性細胞をカウントした。
実施例3-2:マクロファージ細胞表面マーカー
 実施例3-1で得た各マクロファージ株をマクロファージのマーカーであるCX3CR1でsortingした後、遺伝子発現時(Dox on)と遺伝子発現抑制時(Dox off)で、マクロファージ細胞表面マーカーをFACSで解析した。Dox onはSCF(50ng/ml)、M-CSF(20ng/ml)、IL1β(10ng/ml)、Doxcycline(1μg/ml)存在下で培養し、Dox offはM-CSF(20ng/ml)存在下で3日間培養した(図18上部参照)。遺伝子発現時(Dox on)の結果を図18下部に、遺伝子発現抑制時(Dox off)の結果を図19に示す。Dox off時にはDox onと比べCD14,CD163,CD80が高発現した。しかし、CD11bの発現は低かった。
実施例3-3:β-amiloidの貪食能
 実施例3-1で得た各マクロファージ株のβ-amiloidの貪食能を調べた。各細胞の培養液からドキシサイクリンを除去し、Dox on, Dox off後3日目の細胞株に蛍光標識したオリゴマーβ-amiloidを添加後FACSで解析した。結果を図20に示す。Dox ONでは貪食能が低かった。一方、Dox off時では貪食能が確認された。
実施例3-4:樹状細胞表面マーカー
 実施例3-1で得た各樹状細胞株を樹状細胞のマーカーであるCD209でsortingした後、遺伝子発現時(Dox on)と遺伝子発現抑制時(Dox off)で、樹状細胞表面マーカーをFACSで解析した。Dox onはSCF(50ng/ml)、M-CSF(20ng/ml)、GM-CSF(20ng/ml)、Doxcycline(1μg/ml)存在下で培養し、Dox offはGM-CSF(20ng/ml)存在下で5日間培養した(図20上部参照)。遺伝子発現時(Dox on)の結果と、遺伝子発現抑制時(Dox off)の結果とをそれぞれ図21~23に示す。Dox off時にはDox onと比べCD11c,CD209,CD80が高発現した。また、一部の細胞でDox off時に細菌の脂質分子をT細胞に抗原提示する受容体であるCD1a,CD1cが発現した。
実施例3-5:赤血球株
 実施例3-1において、khES3(ES細胞)、kthES14(ES細胞)由来血液前駆細胞をSCF(50ng/ml),EPO(3U/ml),Dox(1μg/ml)の条件下で培養することで、取得した増殖能を有する赤血球株について、細胞数をGly-A陽性細胞でカウントした(図24参照)。

Claims (17)

  1.  造血前駆細胞から骨髄球系前駆細胞への分化過程における任意の細胞において、MYCファミリー遺伝子及びBMI1遺伝子を強制発現させる工程を含み、
     骨髄球系前駆細胞が、マクロファージ、樹状細胞、顆粒球、赤芽球、又は赤血球の前駆細胞である、骨髄系共通前駆細胞(CMP)又は骨髄球系前駆細胞の増殖性を向上させる方法。
  2.  CMP又は骨髄球系前駆細胞を抽出する工程をさらに含む、請求項1に記載の方法。
  3.  CMP又は骨髄球系前駆細胞において、MYCファミリー遺伝子及びBMI1遺伝子の発現、又はその発現産物の機能を抑制する工程をさらに含む、請求項1又は2に記載の方法。
  4.  CMP又は骨髄球系前駆細胞において、BCL-XL遺伝子を強制発現させる工程をさらに含む、請求項1~3のいずれか一項に記載の方法。
  5.  CMP又は骨髄球系前駆細胞において、BCL-XL遺伝子の発現、又はその発現産物の機能を抑制する工程をさらに含む、請求項4に記載の方法。
  6.  CMP又は骨髄球系前駆細胞において、CDKN1A遺伝子及びp53遺伝子の少なくともいずれかの発現、又はその発現産物の機能を抑制する工程をさらに含む、請求項1~5のいずれか一項に記載の方法。
  7.  請求項1~6のいずれか一項に記載の方法で得られたCMP又は骨髄球系前駆細胞を培養する工程を含む、CMP又は骨髄球系前駆細胞を製造する方法。
  8.  請求項1~7のいずれか一項に記載の方法で得られたCMP又は骨髄球系前駆細胞を分化する工程を含む、CMP系分化細胞を製造する方法。
  9.  CMP系分化細胞が、マクロファージ、樹状細胞、顆粒球、赤芽球、又は赤血球である、請求項8に記載の方法。
  10.  請求項1~7のいずれか一項に記載の方法で得られたCMP若しくは骨髄球系前駆細胞、又は請求項8若しくは9に記載の方法で得られたCMP系分化細胞を含む、医薬組成物。
  11.  請求項1~7のいずれか一項に記載の方法で得られたCMP又は骨髄球系前駆細胞。
  12.  請求項8又は9に記載の方法で得られたCMP系分化細胞。
  13.  CMP又は骨髄球系前駆細胞の増殖促進剤であって、
     MYCファミリー遺伝子及びBMI1遺伝子を強制発現させる分子を有効成分として含み、
     骨髄球系前駆細胞が、マクロファージ、樹状細胞、顆粒球、赤芽球、又は赤血球の前駆細胞である、増殖促進剤。
  14.  以下の工程を含む、マクロファージを製造する方法:
    1)造血前駆細胞からマクロファージ前駆細胞への分化過程における任意の細胞において、MYCファミリー遺伝子及びBMI1遺伝子を強制発現させる工程、
    2)工程1で得られた細胞を培養し、増殖させる工程、
    3)工程2で得られた細胞におけるMYCファミリー遺伝子及びBMI1遺伝子の強制発現を抑制し、マクロファージ分化条件下で更に培養することにより、マクロファージへの分化及び成熟を促進する工程。
  15.  工程1が、造血前駆細胞からマクロファージ前駆細胞への分化過程における任意の細胞において、BCL-XL遺伝子を強制発現させることを更に含む、請求項14記載の方法。
  16.  工程3が、工程2で得られた細胞におけるBCL-XL遺伝子の強制発現を抑制することを更に含む、請求項15記載の方法。
  17.  工程1が、造血前駆細胞からマクロファージ前駆細胞への分化過程における任意の細胞において、CDKN1A遺伝子及び/又はp53遺伝子の発現、又はその発現産物の機能を抑制することを更に含む、請求項14~16のいずれか一項に記載の方法。
PCT/JP2022/026341 2021-06-30 2022-06-30 骨髄系共通前駆細胞(cmp)又は骨髄球系前駆細胞の増殖性を向上させる方法 WO2023277153A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023532070A JPWO2023277153A1 (ja) 2021-06-30 2022-06-30
EP22833299.5A EP4365283A1 (en) 2021-06-30 2022-06-30 Method for improving proliferative properties of common myeloid progenitor cells (cmp) or myelocytic progenitor cells
US18/575,460 US20240301353A1 (en) 2021-06-30 2022-06-30 Method for improving proliferative properties of common myeloid progenitor cells (cmp) or myelocytic progenitor cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-109513 2021-06-30
JP2021109513 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023277153A1 true WO2023277153A1 (ja) 2023-01-05

Family

ID=84692749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026341 WO2023277153A1 (ja) 2021-06-30 2022-06-30 骨髄系共通前駆細胞(cmp)又は骨髄球系前駆細胞の増殖性を向上させる方法

Country Status (4)

Country Link
US (1) US20240301353A1 (ja)
EP (1) EP4365283A1 (ja)
JP (1) JPWO2023277153A1 (ja)
WO (1) WO2023277153A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024143555A1 (ja) * 2022-12-28 2024-07-04 国立大学法人千葉大学 細胞分化度の調節方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041370A1 (fr) 2006-10-04 2008-04-10 The University Of Tokyo Structure renfermant des cellules progénitrices hématopoïétiques issues de cellules es et procédé de préparation de cellules sanguines faisant appel à ladite structure
JP2009511081A (ja) * 2005-10-18 2009-03-19 ナショナル ジューイッシュ メディカル アンド リサーチ センター 条件的に不死化された長期幹細胞およびそのような細胞を作製および使用する方法
WO2009122747A1 (ja) 2008-04-01 2009-10-08 国立大学法人東京大学 iPS細胞からの血小板の調製方法
WO2011034073A1 (ja) 2009-09-15 2011-03-24 国立大学法人東京大学 分化細胞の新規製造法
WO2012043651A1 (ja) * 2010-09-30 2012-04-05 国立大学法人 熊本大学 ミエロイド系血液細胞の製造方法
WO2012157586A1 (ja) 2011-05-13 2012-11-22 国立大学法人東京大学 多核化巨核球細胞、及び血小板の製造方法
WO2014123242A1 (ja) 2013-02-08 2014-08-14 国立大学法人京都大学 巨核球及び血小板の製造方法
JP2020518263A (ja) * 2017-05-04 2020-06-25 メディツィーニシェ・ホーホシューレ・ハノーファーMedizinische Hochschule Hannover 幹細胞由来ミエロイド細胞、その生成および使用
JP2020525031A (ja) * 2017-06-30 2020-08-27 エタブリスモン フランセ ドュ サンEtablissement Francais Du Sang 赤血球系前駆細胞を作製する方法
WO2021090594A1 (ja) * 2019-11-04 2021-05-14 国立大学法人 東京大学 好中球前駆細胞及びその製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511081A (ja) * 2005-10-18 2009-03-19 ナショナル ジューイッシュ メディカル アンド リサーチ センター 条件的に不死化された長期幹細胞およびそのような細胞を作製および使用する方法
WO2008041370A1 (fr) 2006-10-04 2008-04-10 The University Of Tokyo Structure renfermant des cellules progénitrices hématopoïétiques issues de cellules es et procédé de préparation de cellules sanguines faisant appel à ladite structure
WO2009122747A1 (ja) 2008-04-01 2009-10-08 国立大学法人東京大学 iPS細胞からの血小板の調製方法
JP2017046719A (ja) * 2009-09-15 2017-03-09 国立大学法人 東京大学 分化細胞の新規製造法
WO2011034073A1 (ja) 2009-09-15 2011-03-24 国立大学法人東京大学 分化細胞の新規製造法
US20120238023A1 (en) 2009-09-15 2012-09-20 Koji Eto Novel Method for Producing Differentiated Cells
WO2012043651A1 (ja) * 2010-09-30 2012-04-05 国立大学法人 熊本大学 ミエロイド系血液細胞の製造方法
WO2012157586A1 (ja) 2011-05-13 2012-11-22 国立大学法人東京大学 多核化巨核球細胞、及び血小板の製造方法
US20140127815A1 (en) 2011-05-13 2014-05-08 The University Of Tokyo Method for Producing Polyploidized Megakaryocyte and Platelets
WO2014123242A1 (ja) 2013-02-08 2014-08-14 国立大学法人京都大学 巨核球及び血小板の製造方法
US20160002599A1 (en) 2013-02-08 2016-01-07 Kyoto University Production methods for megakaryocytes and platelets
JP2020518263A (ja) * 2017-05-04 2020-06-25 メディツィーニシェ・ホーホシューレ・ハノーファーMedizinische Hochschule Hannover 幹細胞由来ミエロイド細胞、その生成および使用
JP2020525031A (ja) * 2017-06-30 2020-08-27 エタブリスモン フランセ ドュ サンEtablissement Francais Du Sang 赤血球系前駆細胞を作製する方法
WO2021090594A1 (ja) * 2019-11-04 2021-05-14 国立大学法人 東京大学 好中球前駆細胞及びその製造方法

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
ACKERMANN MKEMPF HHETZEL MHESSE CHASHTCHIN ARBRINKERT K ET AL.: "Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections", NAT COMMUN, vol. 9, no. 1, 2018, XP055803069, DOI: 10.1038/s41467-018-07570-7
CAO XYAKALA GKVAN DEN HIL FECOCHRANE AMUMMERY CLORLOVA V V: "Differentiation and Functional Comparison of Monocytes and Macrophages from hiPSCs with Peripheral Blood Derivatives", STEM CELL REPORTS, vol. 12, no. 6, 2019, pages 1282 - 97, XP055838672, DOI: 10.1016/j.stemcr.2019.05.003
CAUX CVANBERVLIET BMASSACRIER CDEZUTTER-DAMBUYANT CDE SAINT-VIS BJACQUET C ET AL.: "CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNFa", J EXP MED., vol. 184, no. 2, 1996, pages 695 - 706, XP000607044, DOI: 10.1084/jem.184.2.695
HIRAMOTO TEBIHARA YMIZOGUCHI YNAKAMURA KYAMAGUCHI KUENO K ET AL.: "Wnt3a stimulates maturation of impaired neutrophils developed from severe congenital neutropenia patient-derived pluripotent stem cells", PROC NATL ACAD SCI U S A., vol. 110, no. 8, 2013, pages 3023 - 8
JEM, vol. 207, 2010, pages 2817 - 2830
JIE ZZHANG YWANG CSHEN BGUAN XREN Z ET AL.: "Large-scale ex vivo generation of human neutrophils from cord blood CD34+ cells", PLOS ONE, vol. 12, no. 3, 2017
JSEUS ET AL., NATURE REVIEWS MOLECULAR CELL BIOLOGY, vol. 7, 2006, pages 667 - 677
LACHMANN NACKERMANN MFRENZEL ELIEBHABER SBRENNIG SHAPPLE C ET AL.: "Large-scale hematopoietic differentiation of human induced pluripotent stem cells provides granulocytes or macrophages for cell replacement therapies", STEM CELL REPORTS, 2015
LORDIER ET AL., BLOOD, vol. 112, 2009, pages 3164 - 3174
NAKAMURA S ET AL., CELL STEM CELL, vol. 14, 2014, pages 535 - 548
OGURA ET AL., REGENERATIVE MEDICINE, vol. 6, no. 4, pages 26 - 32
PROC. NATL. ACAD. SCI. USA, vol. 100, 2003, pages 211 - 216
SWEENEY CLTENG RWANG HMERLING RKLEE JCHOI U ET AL.: "Molecular Analysis of Neutrophil Differentiation from Human Induced Pluripotent Stem Cells Delineates the Kinetics of Key Regulators of Hematopoiesis", STEM CELLS, vol. 34, no. 6, 2016, pages 1513 - 26
TAKATA KKOZAKI TLEE CZWTHION MSOTSUKA MLIM S ET AL.: "Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a Platform for Modeling Tissue-Resident Macrophage Differentiation and Function", IMMUNITY, vol. 47, no. 1, 2017, pages 183 - 198, XP085134422, DOI: 10.1016/j.immuni.2017.06.017
TAKAYAMA ET AL., BLOOD, vol. 111, 2008, pages 5298 - 5306
TAKAYAMA ET AL., BLOOD, vol. 111, no. 11, 2008, pages 5298 - 5306

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024143555A1 (ja) * 2022-12-28 2024-07-04 国立大学法人千葉大学 細胞分化度の調節方法

Also Published As

Publication number Publication date
JPWO2023277153A1 (ja) 2023-01-05
US20240301353A1 (en) 2024-09-12
EP4365283A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
JP6920644B2 (ja) 幹細胞の免疫制御作用を調節する方法
Schuettpelz et al. Regulation of hematopoietic stem cell activity by inflammation
JP6514717B2 (ja) 異常ヘモグロビン症を治療するための組成物および方法
JP7303743B2 (ja) 細胞を樹状細胞または抗原提示細胞にリプログラムするための組成物、その方法および使用
US12006513B2 (en) Methods for the long-term expansion of granulocyte-macrophage progenitors and applications thereof
WO2020051453A1 (en) Generation of hematopoietic progenitor cells from human pluripotent stem cells
Hodge et al. Overexpression of microRNA-155 enhances the efficacy of dendritic cell vaccine against breast cancer
Hammerschmidt et al. CRISPR/Cas9 immunoengineering of Hoxb8-immortalized progenitor cells for revealing CCR7-mediated dendritic cell signaling and migration mechanisms in vivo
JP2019509065A (ja) コロニー形成培地及びその使用
Gallouet et al. Macrophage production and activation are dependent on TRIM33
KR20160075676A (ko) 방법
EP3442544B1 (en) Enhanced gene delivery methods
US10961509B2 (en) Engineered endothelial cells expressing an ETS transcription factor
WO2023277153A1 (ja) 骨髄系共通前駆細胞(cmp)又は骨髄球系前駆細胞の増殖性を向上させる方法
WO2021075568A1 (ja) 巨核球前駆細胞又は巨核球細胞の製造方法
WO2021090594A1 (ja) 好中球前駆細胞及びその製造方法
WO2024143555A1 (ja) 細胞分化度の調節方法
US20180066253A1 (en) Methods and compositions for modifying endothelial cells
WO2020033331A1 (en) Method and compositions for treating colon cancer and breast cancer
EP4112720A1 (en) Genetically modified megakaryocyte, modified platelet, and methods respectively for producing said genetically modified megakaryocyte and said modified platelet
WO2024034656A1 (ja) 増殖性マクロファージ様細胞(pMAC)の製造方法
JP2023038833A (ja) 骨髄由来神経保護型ミクログリア様細胞の選択的誘導方法とその利用
US20220372441A1 (en) Micrornas enriched in megakaryocytic extracellular vesicles and uses thereof
WO2022194929A1 (en) Ex-vivo proliferation of human phagocytic cells
JP2013116898A (ja) 幹細胞を操作する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833299

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023532070

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022833299

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022833299

Country of ref document: EP

Effective date: 20240130