WO2023190400A1 - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor device Download PDFInfo
- Publication number
- WO2023190400A1 WO2023190400A1 PCT/JP2023/012313 JP2023012313W WO2023190400A1 WO 2023190400 A1 WO2023190400 A1 WO 2023190400A1 JP 2023012313 W JP2023012313 W JP 2023012313W WO 2023190400 A1 WO2023190400 A1 WO 2023190400A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reference mark
- misalignment
- semiconductor device
- manufacturing
- signal waveform
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 99
- 239000004065 semiconductor Substances 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 238000001514 detection method Methods 0.000 claims abstract description 27
- 230000003287 optical effect Effects 0.000 claims abstract description 14
- 238000000206 photolithography Methods 0.000 claims abstract description 11
- 238000003384 imaging method Methods 0.000 claims abstract description 5
- 238000000926 separation method Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 19
- 238000002955 isolation Methods 0.000 description 19
- 238000012545 processing Methods 0.000 description 18
- 239000000758 substrate Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
Definitions
- the present disclosure relates to a method of manufacturing a semiconductor device, and particularly to a method of overlapping resist patterns in a lithography process of semiconductor manufacturing.
- the manufacturing process for semiconductor devices involves repeating a film formation process to form a film to be processed, a lithography process to form a resist pattern on a substrate using the semiconductor circuit as a mask, and an etching process to process the film to be processed based on the resist pattern. In this way, an element circuit is formed, but in the lithography process, it is necessary to accurately overlap the resist pattern with the processing pattern formed in the previous process.
- the reference mark 32 is an outer square frame processed and formed in a pre-process to be aligned, and an inner square frame formed in a post-process photolithography process.
- a certain photolithography mark 34 is configured as a pair of marks, and the amount of misalignment is determined by understanding the relative vertical and horizontal displacement of the registration mark 34 with respect to the reference mark 32.
- the detection position is the midpoint of the width of the signal waveform S at the intersection of the signal waveform S converted from the optical image recognized in the mark detection area 32A on the right side of the reference mark 32 and a predetermined threshold Th. Let it be XoRi.
- the difference between the detected position Xi and the detected position Xo is the misalignment amount ⁇ X in the X direction
- FIG. 7A shows an example of misalignment of the second process with respect to the first process
- FIG. 7B shows an example of misalignment of the third process with respect to the first process
- FIG. 7C shows an example of misalignment of the third process with respect to the second process. , respectively.
- FIG. 7A shows that when the position of the photolithography mark in the second process corresponding to the reference mark 32 in the first process, which is the previous process, is the actual value 38, whereas the normal value is 36, the true value is This shows a case where misalignment amounts ⁇ X21 and ⁇ Y21, which are the differences between 36 and the actual value 38 in the X and Y directions, occur.
- FIG. 7B shows that when the position of the photolithography mark in the third process corresponding to the reference mark 32 in the first process, which is the previous process, is the actual value 42, whereas the normal value is 40, the true value is This shows a case where misalignment amounts - ⁇ X31 and - ⁇ Y31, which are the differences between 40 and the actual value 42 in the X and Y directions, occur.
- FIG. 7C shows an example of misalignment in the third process relative to the second process when misalignment occurs in FIGS. 7A and 7B.
- the misalignment amounts ⁇ X32 and ⁇ Y32 in the third process relative to the second process are the differences in the X and Y directions between the true value 40 and the actual value 48 shown in FIG. 7C, but theoretically, as shown below, It is calculated based on the difference between the misalignment amounts - ⁇ X31, - ⁇ Y31 of the third process with respect to the first process and the misalignment amounts ⁇ X21, ⁇ Y21 of the second process with respect to the first process.
- ⁇ X32 ⁇ X31+ ⁇ X21
- ⁇ Y32 ⁇ Y31+ ⁇ Y21
- the amount of misalignment ⁇ X32, ⁇ Y32 of the third process with respect to the second process is determined by the amount of misalignment ⁇ X31, ⁇ Y31 of the third process with respect to the first process added to the amount of misalignment ⁇ X32, ⁇ Y32 of the second process with respect to the first process. There may be cases where this is done.
- FIG. 8A is a schematic diagram showing a state in which the gate pattern 14 is formed in the second step after the element isolation pattern 12 is formed in the first step on the semiconductor substrate 10.
- the gate pattern 14 formed on the element isolation pattern 12 has a misalignment amount ⁇ X21 in the second process with respect to the first process.
- FIG. 8B is a schematic diagram showing a case where the contact hole pattern 16 is formed in the third step after the gate pattern 14 is formed in the second step on the element isolation pattern 12.
- the contact hole pattern 16 formed on the element isolation pattern 12 has a misalignment amount ⁇ X31 in the third process with respect to the first process.
- the misalignment amount ⁇ X31 is added to the misalignment amount ⁇ X21, and the gate pattern 14 formed in the second step and the contact hole pattern 16 formed in the third step come into contact, causing leakage current. This results in a problem that occurs.
- the first process is used as the reference for the matching target process, but it is also possible to change the matching target process to the second process.
- the contact hole pattern 16 is misaligned with respect to the element isolation pattern 12 formed in the first process, resulting in increased resistance due to poor grounding with the active region and Problems such as an increase in leakage current may occur.
- Japanese Patent No. 5554906 discloses a technique for correcting the orthogonal component of shot shape distortion and the magnification difference in the in-plane direction in hybrid processing in which the lower layer process is performed using a scanner type exposure device and the upper layer process is performed using a batch type exposure device. discloses an invention of an alignment method for an exposure apparatus with high overlay accuracy.
- Japanese Unexamined Patent Publication No. 7-142326 discloses that after measuring the error between the first layer and the second layer serving as a reference, and deriving the amount of deviation of each layer, the error is averaged for each layer.
- An invention of a mask overlay method is disclosed in which the third layer is positioned for exposure at an intermediate position.
- the amount of deviation is measured multiple times and the average value of the measured values is calculated, which increases the number of work steps and requires complicated calculations. If the variance of each deviation amount involved in calculating the average value is large, the layer positioning accuracy will decrease even if the deviation amounts are averaged. In addition, the amount of deviation from the first layer and the amount of deviation from the second layer with respect to the third layer must be measured separately, and the processing time becomes longer as the alignment measurement process after exposure is performed multiple times. .
- the present disclosure provides a method for manufacturing a semiconductor device that can suppress misalignment of a layer in a post-process with respect to a layer in a pre-process.
- a first aspect of the present disclosure is a method for manufacturing a semiconductor device, which includes: a first reference mark formed in a first step;
- the second reference mark formed in the second step following the first step is formed by a concentric double square frame, and the first reference mark is obtained by an imaging device provided in the optical microscope of the alignment measuring machine.
- the midpoint of the width of the signal waveform at a portion where the signal waveform indicating a change in contrast of the image data including the second reference mark intersects with a predetermined threshold is set as a detection position, and the detection position is set in the second step. It is used as a reference for layer positioning in the third step following .
- the first reference mark and the second reference mark are formed by concentric double square frames, and the contrast of image data including the first reference mark and the second reference mark is changed.
- FIG. 7 is a flowchart showing a processing flow from a first step, which is element isolation processing, to a second step, which is gate processing, and a third step, which is contact hole processing.
- FIG. 2 is a schematic diagram showing a state in which a gate pattern is formed in a second step after an element isolation pattern is formed in a first step on a semiconductor substrate;
- FIG. 6 is a schematic diagram showing a case where a contact hole pattern is formed in a third step after a gate pattern is formed in a second step on an element isolation pattern.
- FIG. 7 is an explanatory diagram showing, as an example, a reference mark for measuring misalignment used in the third step.
- FIG. 1 is an explanatory diagram showing, as an example, a reference mark for measuring misalignment used in the third step.
- FIG. 3 is an explanatory diagram showing an example of a signal waveform converted from an optical image recognized in a mark detection area. It is an explanatory view when the reference mark of the 2nd process shifts in the X direction with respect to the reference mark of the 1st process.
- FIG. 2 is a schematic diagram showing a state in which a gate pattern is formed in a second step after an element isolation pattern is formed in a first step on a semiconductor substrate;
- FIG. 6 is a schematic diagram showing a case where a contact hole pattern is formed in a third step after a gate pattern is formed in a second step on an element isolation pattern.
- FIG. 2 is an explanatory diagram of registration mark alignment that has been conventionally performed.
- FIG. 2 is a schematic diagram showing a state in which a gate pattern is formed in a second step after an element isolation pattern is formed in a first step on a semiconductor substrate;
- FIG. 6 is a schematic diagram showing a case where a contact hole pattern is formed in a third step after a gate pattern is formed in a second step on an element isolation pattern.
- FIG. 1 is a flowchart showing a processing flow from the first step, which is element isolation processing, to the second step, which is gate processing, and the third step, which is contact hole processing.
- step S100 a first step of element isolation processing and formation is performed, and element isolation patterns 12 are formed on the semiconductor substrate 10, as shown in FIG. 2A.
- step S102 the gate pattern 14 is formed as shown in FIG. 2A in a second process.
- step S104 a contact hole pattern 16 is formed as shown in FIG. 2B in a third process.
- FIG. 3A is an explanatory diagram showing, as an example, reference marks 22 and 24 for measuring misalignment used in the third step.
- the reference mark 22 is processed and formed in the first step, and the reference mark 24 is formed in the second step.
- the reference mark 22, which is a square frame processed and formed in the first step, and the reference mark 24, which is a square frame formed in the second step, are formed doubly at an arbitrary mark interval d21. Then, the mark detection areas 28A, 28B, 28C, and 28D are set to be sandwiched and surrounded by the reference marks 22 and 24.
- the resist pattern 26 in the third step is set as a square frame that is concentric with the reference marks 22 and 24 forming a double square frame and smaller than the reference marks 22 and 24.
- the YoLo reference position obtained by averaging the reference mark 22 and the reference mark 24 is expressed by the following equations (1) to (4).
- the square frame defined by each of the detection positions XoRi, XoLe, YoUp, and YoLo is referred to as a "reference frame for positioning the resist pattern 26 in the third step" (hereinafter referred to as "reference frame”). (abbreviated as ).
- FIG. 3B is an explanatory diagram showing an example of the signal waveform S converted from the optical image recognized in the mark detection area 28A.
- visible light is used as a light source, and the contrast of image data acquired by an imaging device included in an optical microscope of a combined measuring instrument is detected, and changes in the contrast of the image data are detected as shown in FIG. 3B. It is recognized as a signal waveform S.
- the mark interval d21 is set as below, and each of the predetermined threshold Th, the width w1 of the reference mark 22, and the width w2 of the reference mark 24 in the second step is measured together.
- FIG. 4 is an explanatory diagram when the reference mark 28 of the second step (formed during the second step photolithography) is shifted by ⁇ X in the X direction with respect to the reference mark 24 of the second step.
- XoRi' is a detection position affected by the misalignment amount ⁇ X in the mark detection area 28A
- XoLe' is a detection position affected by the misalignment amount ⁇ X in the mark detection area 28B.
- XoRi' (w1+w2+d21- ⁇ X)/2...(5)
- XoLe' (w1+w2+d21+ ⁇ X)/2...(6)
- the reference frame is moved by ⁇ Y/2 in the Y direction when there is no misalignment. This is the position of the reference frame. Then, a square frame obtained by moving the reference frame when there is no misalignment by ⁇ X/2 in the X direction or ⁇ Y/2 in the Y direction becomes a new reference frame.
- ⁇ X/2 and ⁇ Y/2 are examples of how much the reference frame shifts.
- the detection position itself based on the signal waveform S detected by the alignment measuring machine includes the elements of ⁇ X/2 and ⁇ Y/2, the average position with respect to the relative deviation of the two underlying layers is can be recognized as the reference position "automatically and easily".
- ⁇ X/2 and ⁇ Y/ it is not necessary to consciously calculate ⁇ X/2 and ⁇ Y/, but ⁇ X/2 and ⁇ Y/2 are treated as correction amounts for positioning the resist pattern 26 in the third step. You can also do that.
- the position of the resist pattern 26 in the third step relative to the reference mark 22 can be moved by ⁇ X/2 in the X direction and by ⁇ Y/2 in the Y direction, thereby making it appropriate.
- FIG. 5A is a schematic diagram showing a state in which the gate pattern 14 is formed in the second step after the element isolation pattern 12 is formed in the first step on the semiconductor substrate 10.
- the gate pattern 14 formed on the element isolation pattern 12 has a misalignment amount ⁇ X in the second process with respect to the first process.
- FIG. 5B is a schematic diagram showing a case where the contact hole pattern 16 is formed in the third step after the gate pattern 14 is formed in the second step on the element isolation pattern 12.
- equation (9) in order to align the third process using a position shifted by 1/2 of the misalignment amount ⁇ X between the first process and the second process as a reference mark, The amount of misalignment of the contact hole pattern 16 formed in three steps is suppressed to ⁇ X/2. As a result, defects due to contact between the gate pattern 14 and the contact hole pattern 16 can be avoided.
- a reference position including an appropriate amount of misalignment can be determined with only one measurement, so that it is possible to measure the amount of misalignment multiple times, unlike conventional methods.
- complicated calculations of misalignment correction amounts, etc. are no longer necessary, and it becomes possible to proceed with the manufacturing process of the semiconductor device simply and quickly.
- the reference marks of the first layer and the reference marks of the second layer which serve as references, form a double frame arranged at an arbitrary interval.
- the detection area of the mark which serves as a reference for positioning the third layer in the subsequent process, is set so as to be sandwiched and surrounded by the reference mark of the first layer and the reference mark of the second layer.
- the reference position of the third layer is detected as a reference position that includes the amount of misalignment between the first layer and the second layer.
- a first reference mark formed in a first step and a second reference mark formed in a second step subsequent to the first step are formed by concentric double square frames,
- the signal at a portion where a predetermined threshold intersects a signal waveform indicating a change in contrast of image data including the first reference mark and the second reference mark acquired by an imaging device included in an optical microscope of the alignment measuring machine.
- the detection position is the midpoint of the waveform width
- the reference for positioning the layer related to the third step is the position of the second reference mark.
- the reference for layer positioning in the third step when no misalignment occurs is a position that is moved by 1/2 of the amount of misalignment in the direction in which the position of the second reference mark is misaligned.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
The present invention forms a reference mark 22 formed in a first process of a photolithography process of semiconductor device manufacturing and a reference mark 24 formed in a second process following the first process as concentric double square frames, and sets, as a detection position XoRi, a middle point of the width of a signal waveform S representing a change in contrast of image data acquired by an imaging device provided to an optical microscope of an alignment measurement device and including the reference mark 22 and the reference mark 24 in a portion of an intersection between the signal waveform S and a predetermined threshold value Th, and the detection position XoRi is used as a reference for positioning of a layer relating to a third process following the second process.
Description
本開示は、半導体装置の製造方法、特に半導体製造のリソグラフィ工程におけるレジストパターンの重ね合せの方法に関する。
The present disclosure relates to a method of manufacturing a semiconductor device, and particularly to a method of overlapping resist patterns in a lithography process of semiconductor manufacturing.
半導体装置の製造工程では、被加工膜を形成する成膜工程、半導体回路をマスクとしたレジストパターンを基板上に形成するリソグラフィ工程、レジストパターンを基に被加工膜を加工するエッチング工程などを繰り返すことで素子回路を形成するが、リソグラフィ工程では前工程で形成した加工パターンに対して精度良くレジストパターンを重ね合せる必要がある。
The manufacturing process for semiconductor devices involves repeating a film formation process to form a film to be processed, a lithography process to form a resist pattern on a substrate using the semiconductor circuit as a mask, and an etching process to process the film to be processed based on the resist pattern. In this way, an element circuit is formed, but in the lithography process, it is necessary to accurately overlap the resist pattern with the processing pattern formed in the previous process.
例えば、第1工程である素子分離加工形成から、第2工程であるゲート加工形成、そして第3工程であるコンタクトホール加工形成に至る加工フローを想定する。かかる加工フローにおいては、図6に示したように、合せ対象となる前工程で加工形成された外側の正方枠である基準マーク32と、後工程のフォトリソグラフィ工程で形成した内側の正方枠であるフォトリソグラフィマーク34とが一対のマークとして構成され、基準マーク32に対してレジストマーク34の上下左右の相対的なずれを把握することで合せずれ量が求められる。
For example, assume a processing flow from the first step, which is element isolation processing, to the second step, which is gate processing, and the third step, which is contact hole processing and formation. In this processing flow, as shown in FIG. 6, the reference mark 32 is an outer square frame processed and formed in a pre-process to be aligned, and an inner square frame formed in a post-process photolithography process. A certain photolithography mark 34 is configured as a pair of marks, and the amount of misalignment is determined by understanding the relative vertical and horizontal displacement of the registration mark 34 with respect to the reference mark 32.
具体的には、基準マーク32の右側のマーク検出エリア32Aで認識される光学像から変換された信号波形Sと所定の閾値Thとが交差した部分における信号波形Sの幅の中点を検出位置XoRiとする。同様に基準マーク32、及びフォトリソグラフィマーク34の他のマーク検出エリア32B、32C、32D、34A、34B、34C、34Dで各々認識される検出位置XoLe、YoUp、YoLo、XiRi、XiLe、YiUp、YiLoから、合せ測定時における基準マーク32の、X方向の検出位置Xo及びY方向の検出位置Yo、並びに合せ測定時におけるフォトリソグラフィマーク34の、X方向の検出位置Xi及びY方向の検出位置Yiが求められる。そして、検出位置Xiと検出位置Xoとの差がX方向の合せずれ量ΔXとして、検出位置Yiと検出位置Yoとの差がY方向の合せずれ量ΔYとして、各々下記のように導出される。
ΔX = Xi - Xo
ΔY = Yi - Yo Specifically, the detection position is the midpoint of the width of the signal waveform S at the intersection of the signal waveform S converted from the optical image recognized in the mark detection area 32A on the right side of the reference mark 32 and a predetermined threshold Th. Let it be XoRi. Similarly, the detection positions XoLe, YoUp, YoLo, XiRi, XiLe, YiUp, YiLo recognized in the reference mark 32 and other mark detection areas 32B, 32C, 32D, 34A, 34B, 34C, and 34D of the photolithography mark 34, respectively Therefore, the detection position Xo in the X direction and the detection position Yo in the Y direction of the reference mark 32 during alignment measurement, and the detection position Xi in the X direction and detection position Yi in the Y direction of the photolithography mark 34 during alignment measurement are Desired. Then, the difference between the detected position Xi and the detected position Xo is the misalignment amount ΔX in the X direction, and the difference between the detected position Yi and the detected position Yo is the misalignment amount ΔY in the Y direction, which are respectively derived as follows. .
ΔX = Xi - Xo
ΔY = Yi - Yo
ΔX = Xi - Xo
ΔY = Yi - Yo Specifically, the detection position is the midpoint of the width of the signal waveform S at the intersection of the signal waveform S converted from the optical image recognized in the mark detection area 32A on the right side of the reference mark 32 and a predetermined threshold Th. Let it be XoRi. Similarly, the detection positions XoLe, YoUp, YoLo, XiRi, XiLe, YiUp, YiLo recognized in the reference mark 32 and other mark detection areas 32B, 32C, 32D, 34A, 34B, 34C, and 34D of the photolithography mark 34, respectively Therefore, the detection position Xo in the X direction and the detection position Yo in the Y direction of the reference mark 32 during alignment measurement, and the detection position Xi in the X direction and detection position Yi in the Y direction of the photolithography mark 34 during alignment measurement are Desired. Then, the difference between the detected position Xi and the detected position Xo is the misalignment amount ΔX in the X direction, and the difference between the detected position Yi and the detected position Yo is the misalignment amount ΔY in the Y direction, which are respectively derived as follows. .
ΔX = Xi - Xo
ΔY = Yi - Yo
図7Aは第1工程に対する第2工程の合せずれの例を、図7Bは第1工程に対する第3工程の合せずれの例を、図7Cは第2工程に対する第3工程の合せずれの例を、各々示した概略図である。
7A shows an example of misalignment of the second process with respect to the first process, FIG. 7B shows an example of misalignment of the third process with respect to the first process, and FIG. 7C shows an example of misalignment of the third process with respect to the second process. , respectively.
図7Aは、前工程である第1工程に係る基準マーク32に対応する第2工程のフォトリソグラフィマークの位置が、正規では真値36であるところ、実値38であった際に、真値36と実値38とのX方向及びY方向における差である合せずれ量ΔX21、ΔY21が生じた場合を示している。
FIG. 7A shows that when the position of the photolithography mark in the second process corresponding to the reference mark 32 in the first process, which is the previous process, is the actual value 38, whereas the normal value is 36, the true value is This shows a case where misalignment amounts ΔX21 and ΔY21, which are the differences between 36 and the actual value 38 in the X and Y directions, occur.
図7Bは、前工程である第1工程に係る基準マーク32に対応する第3工程のフォトリソグラフィマークの位置が、正規では真値40であるところ、実値42であった際に、真値40と実値42とのX方向及びY方向における差である合せずれ量-ΔX31、-ΔY31が生じた場合を示している。
FIG. 7B shows that when the position of the photolithography mark in the third process corresponding to the reference mark 32 in the first process, which is the previous process, is the actual value 42, whereas the normal value is 40, the true value is This shows a case where misalignment amounts -ΔX31 and -ΔY31, which are the differences between 40 and the actual value 42 in the X and Y directions, occur.
図7Cは、図7A及び図7Bの合せずれ発生時における第2工程に対する第3工程の合せずれの例を示している。
FIG. 7C shows an example of misalignment in the third process relative to the second process when misalignment occurs in FIGS. 7A and 7B.
第2工程に対する第3工程の合せずれ量ΔX32、ΔY32は、図7Cに示した真値40と実値48とのX方向及びY方向における差であるが、理論上は、下記のように、第1工程に対する第3工程の合せずれ量-ΔX31、-ΔY31と、第1工程に対する第2工程の合せずれ量ΔX21、ΔY21との差に基づいて算出される。
-ΔX32 = -ΔX31-ΔX21
-ΔY32 = -ΔY31-ΔY21
∴ΔX32 = ΔX31+ΔX21
ΔY32 = ΔY31+ΔY21 The misalignment amounts ΔX32 and ΔY32 in the third process relative to the second process are the differences in the X and Y directions between the true value 40 and the actual value 48 shown in FIG. 7C, but theoretically, as shown below, It is calculated based on the difference between the misalignment amounts -ΔX31, -ΔY31 of the third process with respect to the first process and the misalignment amounts ΔX21, ΔY21 of the second process with respect to the first process.
-ΔX32 = -ΔX31-ΔX21
-ΔY32 = -ΔY31-ΔY21
∴ΔX32 = ΔX31+ΔX21
ΔY32 = ΔY31+ΔY21
-ΔX32 = -ΔX31-ΔX21
-ΔY32 = -ΔY31-ΔY21
∴ΔX32 = ΔX31+ΔX21
ΔY32 = ΔY31+ΔY21 The misalignment amounts ΔX32 and ΔY32 in the third process relative to the second process are the differences in the X and Y directions between the true value 40 and the actual value 48 shown in FIG. 7C, but theoretically, as shown below, It is calculated based on the difference between the misalignment amounts -ΔX31, -ΔY31 of the third process with respect to the first process and the misalignment amounts ΔX21, ΔY21 of the second process with respect to the first process.
-ΔX32 = -ΔX31-ΔX21
-ΔY32 = -ΔY31-ΔY21
∴ΔX32 = ΔX31+ΔX21
ΔY32 = ΔY31+ΔY21
その結果、第2工程に対する第3工程の合せずれ量ΔX32、ΔY32は、第1工程に対する第2工程の合せずれ量ΔX32、ΔY32に第1工程に対する第3工程の合せずれ量ΔX31、ΔY31が上乗せされる場合が生じ得る。
As a result, the amount of misalignment ΔX32, ΔY32 of the third process with respect to the second process is determined by the amount of misalignment ΔX31, ΔY31 of the third process with respect to the first process added to the amount of misalignment ΔX32, ΔY32 of the second process with respect to the first process. There may be cases where this is done.
図8Aは、半導体基板10の上に第1工程による素子分離パターン12が形成された後、第2工程によるゲートパターン14が形成された状態を示した概略図である。図8Aでは、素子分離パターン12上に形成されたゲートパターン14には、第1工程に対する第2工程の合せずれ量ΔX21が生じている。
FIG. 8A is a schematic diagram showing a state in which the gate pattern 14 is formed in the second step after the element isolation pattern 12 is formed in the first step on the semiconductor substrate 10. In FIG. 8A, the gate pattern 14 formed on the element isolation pattern 12 has a misalignment amount ΔX21 in the second process with respect to the first process.
図8Bは、素子分離パターン12上に、第2工程によるゲートパターン14が形成された後、第3工程によるコンタクトホールパターン16が形成された場合を示した概略図である。図8Bでは、素子分離パターン12上に形成されたコンタクトホールパターン16には、第1工程に対する第3工程の合せずれ量ΔX31が生じている。
FIG. 8B is a schematic diagram showing a case where the contact hole pattern 16 is formed in the third step after the gate pattern 14 is formed in the second step on the element isolation pattern 12. In FIG. 8B, the contact hole pattern 16 formed on the element isolation pattern 12 has a misalignment amount ΔX31 in the third process with respect to the first process.
その結果、合せずれ量ΔX21に合せずれ量ΔX31が上乗せされるようになり、第2工程で形成されるゲートパターン14と、第3工程で形成されるコンタクトホールパターン16とが接触し、リーク電流が発生する不具合が生じてしまう。
As a result, the misalignment amount ΔX31 is added to the misalignment amount ΔX21, and the gate pattern 14 formed in the second step and the contact hole pattern 16 formed in the third step come into contact, causing leakage current. This results in a problem that occurs.
図8A、図8Bに示した場合は、第1工程を合せ対象工程の基準としたが、合せ対象工程を第2工程に変更することとも考えられる。しかしながら、合せ対象工程を第2工程にした場合も、第1工程で形成した素子分離パターン12に対してコンタクトホールパターン16がずれることにより、アクティブ領域との接地不良による抵抗増加や、フィールド領域へのリーク電流増加などの不具合が生じてしまう。
In the case shown in FIGS. 8A and 8B, the first process is used as the reference for the matching target process, but it is also possible to change the matching target process to the second process. However, even when the second process is used as the alignment target process, the contact hole pattern 16 is misaligned with respect to the element isolation pattern 12 formed in the first process, resulting in increased resistance due to poor grounding with the active region and Problems such as an increase in leakage current may occur.
特許第5554906号公報には、下層工程をスキャナ型の露光装置で行い、上層工程を一括型露光装置で行うハイブリッド処理において、ショット形状歪みの直交成分、及び面内方向の倍率差を補正することにより、重ね合せ精度の高い露光装置のアライメント方法の発明が開示されている。
Japanese Patent No. 5554906 discloses a technique for correcting the orthogonal component of shot shape distortion and the magnification difference in the in-plane direction in hybrid processing in which the lower layer process is performed using a scanner type exposure device and the upper layer process is performed using a batch type exposure device. discloses an invention of an alignment method for an exposure apparatus with high overlay accuracy.
特開平7-142326号公報には、基準となる第1のレイヤと第2のレイヤとの誤差を測定し、各々のレイヤのずれ量を導出した後、各々のレイヤに対して平均化された中間位置に第3のレイヤの露光の位置決めを実施するマスク重ね合せ方法の発明が開示されている。
Japanese Unexamined Patent Publication No. 7-142326 discloses that after measuring the error between the first layer and the second layer serving as a reference, and deriving the amount of deviation of each layer, the error is averaged for each layer. An invention of a mask overlay method is disclosed in which the third layer is positioned for exposure at an intermediate position.
しかしながら、特許第5554906号公報に開示された発明では、上述のような、複数工程における各々の合せずれ量が重畳される場合がある。
However, in the invention disclosed in Japanese Patent No. 5,554,906, the misalignment amounts of each of the plurality of steps may be superimposed as described above.
特開平7-142326号公報に開示された発明では、ずれ量の測定を複数回実施し、さらに測定値の平均値を算出するので、作業工数が増え、且つ煩雑な計算が必要となると共に、平均値の算出に係る各々のずれ量の分散が大きい場合は、ずれ量を平均化してもレイヤの位置決め精度が低下する。また、第3レイヤに対する、第1レイヤとのずれ量、第2レイヤとのずれ量は各々別個に測定する必要があり、露光後の合わせ測定処理が複数回となることで処理時間が長くなる。
In the invention disclosed in JP-A-7-142326, the amount of deviation is measured multiple times and the average value of the measured values is calculated, which increases the number of work steps and requires complicated calculations. If the variance of each deviation amount involved in calculating the average value is large, the layer positioning accuracy will decrease even if the deviation amounts are averaged. In addition, the amount of deviation from the first layer and the amount of deviation from the second layer with respect to the third layer must be measured separately, and the processing time becomes longer as the alignment measurement process after exposure is performed multiple times. .
本開示は、前工程に係るレイヤに対する後工程のレイヤの位置ずれを抑制できる半導体装置の製造方法を提供する。
The present disclosure provides a method for manufacturing a semiconductor device that can suppress misalignment of a layer in a post-process with respect to a layer in a pre-process.
本開示の第1の態様は、半導体装置の製造方法であって、半導体装置製造のフォトリソグラフィ工程における複数のレイヤの重ね合せ位置の測定において、第1工程で形成する第1基準マークと、前記第1工程に後続する第2工程で形成する第2基準マークとを、同心の二重の正方枠で形成し、合せ測定機の光学顕微鏡に備えられた撮像装置で取得した前記第1基準マーク及び前記第2基準マークを含む画像データのコントラストの変化を示す信号波形と所定の閾値とが交差した部分の該信号波形の幅の中点を検出位置とし、前記検出位置を、前記第2工程に後続する第3工程に係るレイヤの位置決めの基準に用いる。
A first aspect of the present disclosure is a method for manufacturing a semiconductor device, which includes: a first reference mark formed in a first step; The second reference mark formed in the second step following the first step is formed by a concentric double square frame, and the first reference mark is obtained by an imaging device provided in the optical microscope of the alignment measuring machine. and the midpoint of the width of the signal waveform at a portion where the signal waveform indicating a change in contrast of the image data including the second reference mark intersects with a predetermined threshold is set as a detection position, and the detection position is set in the second step. It is used as a reference for layer positioning in the third step following .
本開示の第1の態様は、第1基準マークと第2基準マークとを同心の二重の正方枠で形成し、前記第1基準マーク及び前記第2基準マークを含む画像データのコントラストの変化を示す信号波形と所定の閾値とが交差した部分の該信号波形の幅の中点を第3工程に係るレイヤの位置決めの基準に用いることにより、前工程に係るレイヤに対する後工程のレイヤの位置ずれを抑制できる。
In a first aspect of the present disclosure, the first reference mark and the second reference mark are formed by concentric double square frames, and the contrast of image data including the first reference mark and the second reference mark is changed. By using the midpoint of the width of the signal waveform at the intersection of the signal waveform indicating the intersection with the predetermined threshold value as the reference for positioning the layer related to the third step, the position of the layer in the subsequent process relative to the layer related to the previous process can be determined. Misalignment can be suppressed.
本例示的実施形態に係る技術は、半導体装置製造のフォトリソグラフィ工程における複数のレイヤの重ね合せ位置の測定に関する。図1は、第1工程である素子分離加工形成から、第2工程であるゲート加工形成、そして第3工程であるコンタクトホール加工形成に至る加工フローを示したフローチャートである。ステップS100では、第1工程である素子分離加工形成が行われ、図2Aに示したように、半導体基板10の上に素子分離パターン12が形成される。
The technique according to the present exemplary embodiment relates to measuring the overlapping position of a plurality of layers in a photolithography process for manufacturing a semiconductor device. FIG. 1 is a flowchart showing a processing flow from the first step, which is element isolation processing, to the second step, which is gate processing, and the third step, which is contact hole processing. In step S100, a first step of element isolation processing and formation is performed, and element isolation patterns 12 are formed on the semiconductor substrate 10, as shown in FIG. 2A.
ステップS102では、第2工程により、ゲートパターン14が、図2Aに示したように形成される。
In step S102, the gate pattern 14 is formed as shown in FIG. 2A in a second process.
ステップS104では、第3工程により、コンタクトホールパターン16が、図2Bに示したように形成される。
In step S104, a contact hole pattern 16 is formed as shown in FIG. 2B in a third process.
図1に示した処理を実行するに際しては、前工程で形成した加工パターンに対して精度良くレジストパターンを重ね合せる必要がある。
When performing the process shown in FIG. 1, it is necessary to accurately overlap the resist pattern with the processing pattern formed in the previous process.
図3Aは、一例として、第3工程で用いる合せずれ測定用の基準マーク22、24を示した説明図である。基準マーク22は第1工程で、基準マーク24は第2工程で、各々加工形成される。
FIG. 3A is an explanatory diagram showing, as an example, reference marks 22 and 24 for measuring misalignment used in the third step. The reference mark 22 is processed and formed in the first step, and the reference mark 24 is formed in the second step.
本例示的実施形態では、第1工程で加工形成される正方枠である基準マーク22と、第2工程で形成される正方枠である基準マーク24とを任意のマーク間隔d21で二重に形成し、マーク検出エリア28A、28B、28C、28Dを基準マーク22と基準マーク24とで挟んで囲むように設定する。第3工程のレジストパターン26は、二重の正方枠を構成する基準マーク22、24と同心で、基準マーク22、24よりも小さい正方枠で設定する。
In this exemplary embodiment, the reference mark 22, which is a square frame processed and formed in the first step, and the reference mark 24, which is a square frame formed in the second step, are formed doubly at an arbitrary mark interval d21. Then, the mark detection areas 28A, 28B, 28C, and 28D are set to be sandwiched and surrounded by the reference marks 22 and 24. The resist pattern 26 in the third step is set as a square frame that is concentric with the reference marks 22 and 24 forming a double square frame and smaller than the reference marks 22 and 24.
第1工程による基準マーク22の幅がw1、第2工程による基準マーク24の幅がw2であれば、マーク検出エリア28A、28B、28C、28Dで各々認識される検出位置XoRi、XoLe、YoUp、YoLoの、基準マーク22及び基準マーク24を平均化した基準位置は下記の式(1)~(4)のようになる。本例示的実施形態では、検出位置XoRi、XoLe、YoUp、YoLoの各々で定義される正方枠を、「第3工程のレジストパターン26の位置決めをするための基準枠」(以下、「基準枠」と略記)として扱う。
XoRi =(w1+w2+d21)/2 …(1)
XoLe =(w1+w2+d21)/2 …(2)
YoUp =(w1+w2+d21)/2 …(3)
YoLo =(w1+w2+d21)/2 …(4) If the width of the reference mark 22 in the first step is w1, and the width of the reference mark 24 in the second step is w2, the detection positions XoRi, XoLe, YoUp, respectively recognized in the mark detection areas 28A, 28B, 28C, 28D, The YoLo reference position obtained by averaging the reference mark 22 and the reference mark 24 is expressed by the following equations (1) to (4). In this exemplary embodiment, the square frame defined by each of the detection positions XoRi, XoLe, YoUp, and YoLo is referred to as a "reference frame for positioning the resist pattern 26 in the third step" (hereinafter referred to as "reference frame"). (abbreviated as ).
XoRi = (w1+w2+d21)/2...(1)
XoLe = (w1+w2+d21)/2...(2)
YoUp = (w1+w2+d21)/2...(3)
YoLo = (w1+w2+d21)/2...(4)
XoRi =(w1+w2+d21)/2 …(1)
XoLe =(w1+w2+d21)/2 …(2)
YoUp =(w1+w2+d21)/2 …(3)
YoLo =(w1+w2+d21)/2 …(4) If the width of the reference mark 22 in the first step is w1, and the width of the reference mark 24 in the second step is w2, the detection positions XoRi, XoLe, YoUp, respectively recognized in the mark detection areas 28A, 28B, 28C, 28D, The YoLo reference position obtained by averaging the reference mark 22 and the reference mark 24 is expressed by the following equations (1) to (4). In this exemplary embodiment, the square frame defined by each of the detection positions XoRi, XoLe, YoUp, and YoLo is referred to as a "reference frame for positioning the resist pattern 26 in the third step" (hereinafter referred to as "reference frame"). (abbreviated as ).
XoRi = (w1+w2+d21)/2...(1)
XoLe = (w1+w2+d21)/2...(2)
YoUp = (w1+w2+d21)/2...(3)
YoLo = (w1+w2+d21)/2...(4)
図3Bは、マーク検出エリア28Aで認識される光学像から変換された信号波形Sの一例を示した説明図である。本例示的実施形態では、可視光を光源とし、合せ測定機の光学顕微鏡に備えられた撮像装置で取得した画像データのコントラストを検出し、当該画像データのコントラストの変化を図3Bに示したような信号波形Sとして認識する。
FIG. 3B is an explanatory diagram showing an example of the signal waveform S converted from the optical image recognized in the mark detection area 28A. In this exemplary embodiment, visible light is used as a light source, and the contrast of image data acquired by an imaging device included in an optical microscope of a combined measuring instrument is detected, and changes in the contrast of the image data are detected as shown in FIG. 3B. It is recognized as a signal waveform S.
本例示的実施形態では、マーク間隔d21を下記のように設定することで、二重の正方枠による信号波形の歪みを回避し、図6に示したような従来とほぼ同じような1つの頂点を備えた信号波形Sが得られるようにして、良好な合せ測定精度を得る。その結果、所定の閾値Thと交叉した部分の信号波形Sの幅の中点を検出位置XoRiとすることが可能となる。また、本例示的実施形態では、マーク間隔d21を下記のように設定すると共に、所定の閾値Th、基準マーク22の幅w1、及び第2工程による基準マーク24の幅w2の各々を、合せ測定機の光源の波長、及び当該波長における合せ測定機の光学顕微鏡の分離解像に基づいて決定する。換言すれば、基準マーク22と基準マーク24とを含む画像データのコントラストを検出した際に1つの頂点を備えた信号波形Sが得られ、且つ所定の閾値Thと信号波形Sとが交差する状態になるように、マーク間隔d21、所定の閾値Th、基準マーク22の幅w1、及び第2工程による基準マーク24の幅w2の各々を決定すればよい。
実際の合せずれの最大量 << d21 < 合せ測定機の光学顕微鏡の分離解像 In this exemplary embodiment, by setting the mark interval d21 as follows, distortion of the signal waveform due to the double square frame is avoided, and one vertex is almost the same as in the conventional case as shown in FIG. A signal waveform S having the following values is obtained, thereby obtaining good alignment measurement accuracy. As a result, it becomes possible to set the midpoint of the width of the signal waveform S at the portion that intersects the predetermined threshold Th as the detection position XoRi. Further, in the present exemplary embodiment, the mark interval d21 is set as below, and each of the predetermined threshold Th, the width w1 of the reference mark 22, and the width w2 of the reference mark 24 in the second step is measured together. It is determined based on the wavelength of the light source of the machine and the separation resolution of the optical microscope of the combined measuring machine at that wavelength. In other words, a state in which a signal waveform S having one vertex is obtained when the contrast of image data including the reference mark 22 and the reference mark 24 is detected, and the signal waveform S intersects with the predetermined threshold Th. It is sufficient to determine each of the mark interval d21, the predetermined threshold Th, the width w1 of the reference mark 22, and the width w2 of the reference mark 24 in the second step so that
Maximum amount of actual misalignment << d21 < Separation resolution of optical microscope of alignment measuring machine
実際の合せずれの最大量 << d21 < 合せ測定機の光学顕微鏡の分離解像 In this exemplary embodiment, by setting the mark interval d21 as follows, distortion of the signal waveform due to the double square frame is avoided, and one vertex is almost the same as in the conventional case as shown in FIG. A signal waveform S having the following values is obtained, thereby obtaining good alignment measurement accuracy. As a result, it becomes possible to set the midpoint of the width of the signal waveform S at the portion that intersects the predetermined threshold Th as the detection position XoRi. Further, in the present exemplary embodiment, the mark interval d21 is set as below, and each of the predetermined threshold Th, the width w1 of the reference mark 22, and the width w2 of the reference mark 24 in the second step is measured together. It is determined based on the wavelength of the light source of the machine and the separation resolution of the optical microscope of the combined measuring machine at that wavelength. In other words, a state in which a signal waveform S having one vertex is obtained when the contrast of image data including the reference mark 22 and the reference mark 24 is detected, and the signal waveform S intersects with the predetermined threshold Th. It is sufficient to determine each of the mark interval d21, the predetermined threshold Th, the width w1 of the reference mark 22, and the width w2 of the reference mark 24 in the second step so that
Maximum amount of actual misalignment << d21 < Separation resolution of optical microscope of alignment measuring machine
図4は、第2工程の基準マーク24に対して第2工程の基準マーク(第2工程ホトリソ時に形成される)28がX方向にΔXずれた場合の説明図である。図4における基準マーク28のX方向の合せずれをΔXとすると、マーク検出エリア28A、28Bで各々認識される検出位置XoRi’、XoLe’の各々の位置は下記の式(2)のようになる。XoRi’は、マーク検出エリア28Aにおける合せずれ量ΔXの影響を受けた検出位置であり、XoLe’は、マーク検出エリア28Bにおける合せずれ量ΔXの影響を受けた検出位置である。
XoRi’ =(w1+w2+d21-ΔX)/2 …(5)
XoLe’ =(w1+w2+d21+ΔX)/2 …(6) FIG. 4 is an explanatory diagram when the reference mark 28 of the second step (formed during the second step photolithography) is shifted by ΔX in the X direction with respect to the reference mark 24 of the second step. Assuming that the misalignment of the reference mark 28 in the X direction in FIG. . XoRi' is a detection position affected by the misalignment amount ΔX in the mark detection area 28A, and XoLe' is a detection position affected by the misalignment amount ΔX in the mark detection area 28B.
XoRi' = (w1+w2+d21-ΔX)/2...(5)
XoLe' = (w1+w2+d21+ΔX)/2...(6)
XoRi’ =(w1+w2+d21-ΔX)/2 …(5)
XoLe’ =(w1+w2+d21+ΔX)/2 …(6) FIG. 4 is an explanatory diagram when the reference mark 28 of the second step (formed during the second step photolithography) is shifted by ΔX in the X direction with respect to the reference mark 24 of the second step. Assuming that the misalignment of the reference mark 28 in the X direction in FIG. . XoRi' is a detection position affected by the misalignment amount ΔX in the mark detection area 28A, and XoLe' is a detection position affected by the misalignment amount ΔX in the mark detection area 28B.
XoRi' = (w1+w2+d21-ΔX)/2...(5)
XoLe' = (w1+w2+d21+ΔX)/2...(6)
上記の式(1)と式(5)との差分、及び上記の式(2)と式(6)との差分は、各々、下記の式(7)と式(8)とになる。
|XoRi’-XoRi| =ΔX/2 …(7)
|XoLe’-XoLe| =ΔX/2 …(8) The difference between the above equation (1) and equation (5) and the difference between the above equation (2) and equation (6) become the following equation (7) and equation (8), respectively.
|XoRi'−XoRi| =ΔX/2...(7)
|XoLe'−XoLe| =ΔX/2…(8)
|XoRi’-XoRi| =ΔX/2 …(7)
|XoLe’-XoLe| =ΔX/2 …(8) The difference between the above equation (1) and equation (5) and the difference between the above equation (2) and equation (6) become the following equation (7) and equation (8), respectively.
|XoRi'−XoRi| =ΔX/2...(7)
|XoLe'−XoLe| =ΔX/2…(8)
合せずれがない場合の基準枠の位置をXoとすると、合せずれ量ΔXを考慮した新たな基準枠の位置Xo’は、下記の式(9)のようになる。
Xo’ = Xo + ΔX/2 …(9) Assuming that the position of the reference frame when there is no misalignment is Xo, the new position Xo' of the reference frame in consideration of the amount of misalignment ΔX is expressed by the following equation (9).
Xo' = Xo + ΔX/2...(9)
Xo’ = Xo + ΔX/2 …(9) Assuming that the position of the reference frame when there is no misalignment is Xo, the new position Xo' of the reference frame in consideration of the amount of misalignment ΔX is expressed by the following equation (9).
Xo' = Xo + ΔX/2...(9)
式(9)が示すように、第2工程による基準マーク28が、基準マーク24に対してX方向にΔXずれた場合は、合せずれがない場合の基準枠をX方向にΔX/2移動させた位置が、新たな基準枠の位置となる。
As shown in equation (9), if the reference mark 28 in the second step is shifted by ΔX in the X direction with respect to the reference mark 24, the reference frame when there is no misalignment is moved by ΔX/2 in the X direction. The new reference frame position becomes the new reference frame position.
同様に、第2工程による基準マーク28が、基準マーク24に対してY方向にΔXずれた場合は、合せずれがない場合の基準枠をY方向にΔY/2移動させた位置を、新たな基準枠の位置とする。そして、合せずれがない場合の基準枠を、X方向にΔX/2、又はY方向にΔY/2移動させた正方枠が、新たな基準枠となる。
Similarly, if the reference mark 28 in the second step is shifted by ΔX in the Y direction with respect to the reference mark 24, the reference frame is moved by ΔY/2 in the Y direction when there is no misalignment. This is the position of the reference frame. Then, a square frame obtained by moving the reference frame when there is no misalignment by ΔX/2 in the X direction or ΔY/2 in the Y direction becomes a new reference frame.
上記のΔX/2及びΔY/2は、基準枠のずれがどの程度になるかを例示したものである。本例示的実施形態では、合せ測定機で検出した信号波形Sに基づく検出位置そのものが、ΔX/2及びΔY/2の要素を包含しているので、下地2層の相対ズレに対して平均位置を「自動かつ平易に」基準位置と認識することができる。
The above ΔX/2 and ΔY/2 are examples of how much the reference frame shifts. In this exemplary embodiment, since the detection position itself based on the signal waveform S detected by the alignment measuring machine includes the elements of ΔX/2 and ΔY/2, the average position with respect to the relative deviation of the two underlying layers is can be recognized as the reference position "automatically and easily".
本例示的実施形態では、上記のΔX/2及びΔY/を意識して算出することを要しないが、ΔX/2及びΔY/2は、第3工程のレジストパターン26の位置決めの補正量として扱うこともできる。例えば、基準マーク22に対する第3工程のレジストパターン26の位置を、X方向にΔX/2、Y方向にΔY/2、各々移動させることになり、適正化できる。
In this exemplary embodiment, it is not necessary to consciously calculate ΔX/2 and ΔY/, but ΔX/2 and ΔY/2 are treated as correction amounts for positioning the resist pattern 26 in the third step. You can also do that. For example, the position of the resist pattern 26 in the third step relative to the reference mark 22 can be moved by ΔX/2 in the X direction and by ΔY/2 in the Y direction, thereby making it appropriate.
図5Aは、半導体基板10の上に第1工程による素子分離パターン12が形成された後、第2工程によるゲートパターン14が形成された状態を示した概略図である。図5Aでは、素子分離パターン12上に形成されたゲートパターン14には、第1工程に対する第2工程の合せずれ量ΔXが生じている。
FIG. 5A is a schematic diagram showing a state in which the gate pattern 14 is formed in the second step after the element isolation pattern 12 is formed in the first step on the semiconductor substrate 10. In FIG. 5A, the gate pattern 14 formed on the element isolation pattern 12 has a misalignment amount ΔX in the second process with respect to the first process.
図5Bは、素子分離パターン12上に、第2工程によるゲートパターン14が形成された後、第3工程によるコンタクトホールパターン16が形成された場合を示した概略図である。本例示的実施形態では、式(9)に示したように、第1工程と第2工程との合せずれ量ΔXの1/2分ずれた位置を基準マークとして第3工程を合せるため、第3工程で形成されるコンタクトホールパターン16の合せずれ量はΔX/2に抑制される。その結果、ゲートパターン14とコンタクトホールパターン16との接触による不良を回避できる。さらに、本例示的実施形態によれば、1回の測定のみで適切な合せずれ量を含んだ基準位置を求めることができるため、従来行われていたような、合せずれ量の複数回測定、又は合せずれ補正量の複雑な計算等が不要となり、簡易迅速に半導体装置の製造工程を進めることが可能となる。
FIG. 5B is a schematic diagram showing a case where the contact hole pattern 16 is formed in the third step after the gate pattern 14 is formed in the second step on the element isolation pattern 12. In this exemplary embodiment, as shown in equation (9), in order to align the third process using a position shifted by 1/2 of the misalignment amount ΔX between the first process and the second process as a reference mark, The amount of misalignment of the contact hole pattern 16 formed in three steps is suppressed to ΔX/2. As a result, defects due to contact between the gate pattern 14 and the contact hole pattern 16 can be avoided. Furthermore, according to the present exemplary embodiment, a reference position including an appropriate amount of misalignment can be determined with only one measurement, so that it is possible to measure the amount of misalignment multiple times, unlike conventional methods. Alternatively, complicated calculations of misalignment correction amounts, etc. are no longer necessary, and it becomes possible to proceed with the manufacturing process of the semiconductor device simply and quickly.
以上説明したように、本例示的実施形態によれば、基準となる第1のレイヤの基準マークと第2のレイヤの基準マークとが任意の間隔で配設された2重の枠となるように形成し、後工程である第3のレイヤの位置決めの基準となるマークの検出エリアを、第1のレイヤの基準マークと第2のレイヤの基準マークとで挟んで囲むように設定する。その結果、第3のレイヤの基準となる位置が第1のレイヤと第2のレイヤとの合せずれ量を含んだ基準位置として検出されるため、ウェハ面内の測定点毎に第1のレイヤだけでなく、第2のレイヤと第3のレイヤとの位置関係が最適な合せずれ量となるような合せ精度を得ることが可能になるという効果を奏する。
As explained above, according to the exemplary embodiment, the reference marks of the first layer and the reference marks of the second layer, which serve as references, form a double frame arranged at an arbitrary interval. The detection area of the mark, which serves as a reference for positioning the third layer in the subsequent process, is set so as to be sandwiched and surrounded by the reference mark of the first layer and the reference mark of the second layer. As a result, the reference position of the third layer is detected as a reference position that includes the amount of misalignment between the first layer and the second layer. In addition, it is possible to obtain alignment accuracy such that the positional relationship between the second layer and the third layer has an optimal amount of alignment deviation.
2022年3月29日出願の日本国特許出願2022-053394号の開示は、その全体が参照により本明細書に取り込まれる。
The disclosure of Japanese Patent Application No. 2022-053394 filed on March 29, 2022 is incorporated herein by reference in its entirety.
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.
以上の例示的実施形態に関し、さらに以下の付記項を開示する。
[付記項1]
半導体装置製造のフォトリソグラフィ工程における複数のレイヤの重ね合せ位置の測定において、
第1工程で形成する第1基準マークと、前記第1工程に後続する第2工程で形成する第2基準マークとを、同心の二重の正方枠で形成し、
合せ測定機の光学顕微鏡に備えられた撮像装置で取得した前記第1基準マーク及び前記第2基準マークを含む画像データのコントラストの変化を示す信号波形と所定の閾値とが交差した部分の該信号波形の幅の中点を検出位置とし、
前記検出位置を、前記第2工程に後続する第3工程に係るレイヤの位置決めの基準に用いる半導体装置の製造方法。
[付記項2]
前記第1基準マークと前記第2基準マークとの間隔を、実際の合せずれ最大量より十分大きく、且つ前記合せ測定機の光学顕微鏡の分離解像より小さく設定する付記項1に記載の半導体装置の製造方法。
[付記項3]
前記第1基準マークの幅、前記第2基準マークの幅、及び前記所定の閾値の各々を、前記合せ測定機の光源の波長、及び該波長における前記合せ測定機の光学顕微鏡の分離解像に基づいて決定する付記項2に記載の半導体装置の製造方法。
[付記項4]
前記第2基準マークの本来の位置に対して実際の前記第2基準マークの位置の合せずれが生じた場合、前記第3工程に係るレイヤの位置決めの基準は、前記第2基準マークの位置の合せずれが生じない場合の前記第3工程に係るレイヤの位置決めの基準を、前記第2基準マークの位置がずれた方向に前記合せずれの量の1/2移動させた位置となる付記項1から付記項3のいずれか1項に記載の半導体装置の製造方法。
[付記項5]
前記第2基準マークの位置の合せずれが生じた場合、前記第1基準マークに対する前記第3工程に係るレイヤの位置を、前記第2基準マークの位置がずれた方向に前記合せずれの量の1/2移動させる付記項1から付記項3のいずれか1項に記載の半導体装置の製造方法。
[付記項6]
前記合せずれの量の1/2は、前記第2基準マークの位置の合せずれが生じた場合の前記信号波形における前記検出位置と、前記第2基準マークの位置の合せずれが生じない場合の前記信号波形における前記検出位置との差分である付記項4または付記項5に記載の半導体装置の製造方法。 Regarding the above exemplary embodiments, the following additional notes are further disclosed.
[Additional note 1]
In measuring the overlapping position of multiple layers in the photolithography process of semiconductor device manufacturing,
A first reference mark formed in a first step and a second reference mark formed in a second step subsequent to the first step are formed by concentric double square frames,
The signal at a portion where a predetermined threshold intersects a signal waveform indicating a change in contrast of image data including the first reference mark and the second reference mark acquired by an imaging device included in an optical microscope of the alignment measuring machine. The detection position is the midpoint of the waveform width,
A method of manufacturing a semiconductor device in which the detected position is used as a reference for layer positioning in a third step subsequent to the second step.
[Additional note 2]
The semiconductor device according to supplementary note 1, wherein the distance between the first reference mark and the second reference mark is set to be sufficiently larger than the actual maximum amount of misalignment and smaller than the separation resolution of an optical microscope of the alignment measuring device. manufacturing method.
[Additional note 3]
Each of the width of the first reference mark, the width of the second reference mark, and the predetermined threshold value is set to the wavelength of the light source of the alignment measuring machine and the separation resolution of the optical microscope of the alignment measuring machine at the wavelength. The method for manufacturing a semiconductor device according to Supplementary Note 2, which is determined based on the method.
[Additional note 4]
If there is a misalignment of the actual position of the second reference mark with respect to the original position of the second reference mark, the reference for positioning the layer related to the third step is the position of the second reference mark. Supplementary Note 1: The reference for layer positioning in the third step when no misalignment occurs is a position that is moved by 1/2 of the amount of misalignment in the direction in which the position of the second reference mark is misaligned. The method for manufacturing a semiconductor device according to any one of Supplementary Items 3 to 3.
[Additional note 5]
When misalignment of the second reference mark occurs, the position of the layer related to the third step with respect to the first reference mark is changed by the amount of misalignment in the direction in which the second reference mark is misaligned. The method for manufacturing a semiconductor device according to any one of Supplementary Notes 1 to 3, wherein the semiconductor device is moved by 1/2.
[Additional note 6]
1/2 of the amount of misalignment is the difference between the detected position in the signal waveform when misalignment of the second reference mark occurs and the detected position when misalignment of the second reference mark does not occur. The method for manufacturing a semiconductor device according to Supplementary Note 4 or 5, which is a difference between the signal waveform and the detected position.
[付記項1]
半導体装置製造のフォトリソグラフィ工程における複数のレイヤの重ね合せ位置の測定において、
第1工程で形成する第1基準マークと、前記第1工程に後続する第2工程で形成する第2基準マークとを、同心の二重の正方枠で形成し、
合せ測定機の光学顕微鏡に備えられた撮像装置で取得した前記第1基準マーク及び前記第2基準マークを含む画像データのコントラストの変化を示す信号波形と所定の閾値とが交差した部分の該信号波形の幅の中点を検出位置とし、
前記検出位置を、前記第2工程に後続する第3工程に係るレイヤの位置決めの基準に用いる半導体装置の製造方法。
[付記項2]
前記第1基準マークと前記第2基準マークとの間隔を、実際の合せずれ最大量より十分大きく、且つ前記合せ測定機の光学顕微鏡の分離解像より小さく設定する付記項1に記載の半導体装置の製造方法。
[付記項3]
前記第1基準マークの幅、前記第2基準マークの幅、及び前記所定の閾値の各々を、前記合せ測定機の光源の波長、及び該波長における前記合せ測定機の光学顕微鏡の分離解像に基づいて決定する付記項2に記載の半導体装置の製造方法。
[付記項4]
前記第2基準マークの本来の位置に対して実際の前記第2基準マークの位置の合せずれが生じた場合、前記第3工程に係るレイヤの位置決めの基準は、前記第2基準マークの位置の合せずれが生じない場合の前記第3工程に係るレイヤの位置決めの基準を、前記第2基準マークの位置がずれた方向に前記合せずれの量の1/2移動させた位置となる付記項1から付記項3のいずれか1項に記載の半導体装置の製造方法。
[付記項5]
前記第2基準マークの位置の合せずれが生じた場合、前記第1基準マークに対する前記第3工程に係るレイヤの位置を、前記第2基準マークの位置がずれた方向に前記合せずれの量の1/2移動させる付記項1から付記項3のいずれか1項に記載の半導体装置の製造方法。
[付記項6]
前記合せずれの量の1/2は、前記第2基準マークの位置の合せずれが生じた場合の前記信号波形における前記検出位置と、前記第2基準マークの位置の合せずれが生じない場合の前記信号波形における前記検出位置との差分である付記項4または付記項5に記載の半導体装置の製造方法。 Regarding the above exemplary embodiments, the following additional notes are further disclosed.
[Additional note 1]
In measuring the overlapping position of multiple layers in the photolithography process of semiconductor device manufacturing,
A first reference mark formed in a first step and a second reference mark formed in a second step subsequent to the first step are formed by concentric double square frames,
The signal at a portion where a predetermined threshold intersects a signal waveform indicating a change in contrast of image data including the first reference mark and the second reference mark acquired by an imaging device included in an optical microscope of the alignment measuring machine. The detection position is the midpoint of the waveform width,
A method of manufacturing a semiconductor device in which the detected position is used as a reference for layer positioning in a third step subsequent to the second step.
[Additional note 2]
The semiconductor device according to supplementary note 1, wherein the distance between the first reference mark and the second reference mark is set to be sufficiently larger than the actual maximum amount of misalignment and smaller than the separation resolution of an optical microscope of the alignment measuring device. manufacturing method.
[Additional note 3]
Each of the width of the first reference mark, the width of the second reference mark, and the predetermined threshold value is set to the wavelength of the light source of the alignment measuring machine and the separation resolution of the optical microscope of the alignment measuring machine at the wavelength. The method for manufacturing a semiconductor device according to Supplementary Note 2, which is determined based on the method.
[Additional note 4]
If there is a misalignment of the actual position of the second reference mark with respect to the original position of the second reference mark, the reference for positioning the layer related to the third step is the position of the second reference mark. Supplementary Note 1: The reference for layer positioning in the third step when no misalignment occurs is a position that is moved by 1/2 of the amount of misalignment in the direction in which the position of the second reference mark is misaligned. The method for manufacturing a semiconductor device according to any one of Supplementary Items 3 to 3.
[Additional note 5]
When misalignment of the second reference mark occurs, the position of the layer related to the third step with respect to the first reference mark is changed by the amount of misalignment in the direction in which the second reference mark is misaligned. The method for manufacturing a semiconductor device according to any one of Supplementary Notes 1 to 3, wherein the semiconductor device is moved by 1/2.
[Additional note 6]
1/2 of the amount of misalignment is the difference between the detected position in the signal waveform when misalignment of the second reference mark occurs and the detected position when misalignment of the second reference mark does not occur. The method for manufacturing a semiconductor device according to Supplementary Note 4 or 5, which is a difference between the signal waveform and the detected position.
Claims (7)
- 半導体装置製造のフォトリソグラフィ工程における複数のレイヤの重ね合せ位置の測定において、
第1工程で形成する第1基準マークと、前記第1工程に後続する第2工程で形成する第2基準マークとを、同心の二重の正方枠で形成し、
合せ測定機の光学顕微鏡に備えられた撮像装置で取得した前記第1基準マーク及び前記第2基準マークを含む画像データのコントラストの変化を示す信号波形と所定の閾値とが交差した部分の該信号波形の幅の中点を検出位置とし、
前記検出位置を、前記第2工程に後続する第3工程に係るレイヤの位置決めの基準に用いる半導体装置の製造方法。 In measuring the overlapping position of multiple layers in the photolithography process of semiconductor device manufacturing,
A first reference mark formed in a first step and a second reference mark formed in a second step subsequent to the first step are formed by concentric double square frames,
The signal at a portion where a predetermined threshold intersects a signal waveform indicating a change in contrast of image data including the first reference mark and the second reference mark acquired by an imaging device included in an optical microscope of the alignment measuring machine. The detection position is the midpoint of the waveform width,
A method of manufacturing a semiconductor device in which the detected position is used as a reference for layer positioning in a third step subsequent to the second step. - 前記第1基準マークと前記第2基準マークとの間隔を、実際の合せずれ最大量より十分大きく、且つ前記合せ測定機の光学顕微鏡の分離解像より小さく設定する請求項1に記載の半導体装置の製造方法。 The semiconductor device according to claim 1, wherein the distance between the first reference mark and the second reference mark is set to be sufficiently larger than the actual maximum amount of misalignment and smaller than the separation resolution of an optical microscope of the alignment measuring device. manufacturing method.
- 前記第1基準マークの幅、前記第2基準マークの幅、及び前記所定の閾値の各々を、前記合せ測定機の光源の波長、及び該波長における前記合せ測定機の光学顕微鏡の分離解像に基づいて決定する請求項2に記載の半導体装置の製造方法。 Each of the width of the first reference mark, the width of the second reference mark, and the predetermined threshold value is set to the wavelength of the light source of the alignment measuring machine and the separation resolution of the optical microscope of the alignment measuring machine at the wavelength. 3. The method for manufacturing a semiconductor device according to claim 2, wherein the method is determined based on the method.
- 前記第2基準マークの本来の位置に対して実際の前記第2基準マークの位置の合せずれが生じた場合、前記第3工程に係るレイヤの位置決めの基準は、前記第2基準マークの位置の合せずれが生じない場合の前記第3工程に係るレイヤの位置決めの基準を、前記第2基準マークの位置がずれた方向に前記合せずれの量の1/2移動させた位置となる請求項1に記載の半導体装置の製造方法。 If there is a misalignment of the actual position of the second reference mark with respect to the original position of the second reference mark, the reference for positioning the layer related to the third step is the position of the second reference mark. Claim 1: A reference for layer positioning in the third step when no misalignment occurs is a position that is shifted by half the amount of misalignment in the direction in which the position of the second reference mark is misaligned. A method for manufacturing a semiconductor device according to .
- 前記第2基準マークの位置の合せずれが生じた場合、前記第1基準マークに対する前記第3工程に係るレイヤの位置を、前記第2基準マークの位置がずれた方向に前記合せずれの量の1/2移動させる請求項1に記載の半導体装置の製造方法。 When misalignment of the second reference mark occurs, the position of the layer related to the third step with respect to the first reference mark is changed by the amount of misalignment in the direction in which the second reference mark is misaligned. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is moved by 1/2.
- 前記合せずれの量の1/2は、前記第2基準マークの位置の合せずれが生じた場合の前記信号波形における前記検出位置と、前記第2基準マークの位置の合せずれが生じない場合の前記信号波形における前記検出位置との差分である請求項4に記載の半導体装置の製造方法。 1/2 of the amount of misalignment is the difference between the detected position in the signal waveform when misalignment of the second reference mark occurs and the detected position when misalignment of the second reference mark does not occur. 5. The method of manufacturing a semiconductor device according to claim 4, wherein the difference is a difference between the signal waveform and the detected position.
- 前記合せずれの量の1/2は、前記第2基準マークの位置の合せずれが生じた場合の前記信号波形における前記検出位置と、前記第2基準マークの位置の合せずれが生じない場合の前記信号波形における前記検出位置との差分である請求項5に記載の半導体装置の製造方法。 1/2 of the amount of misalignment is the difference between the detected position in the signal waveform when misalignment of the second reference mark occurs and the detected position when misalignment of the second reference mark does not occur. 6. The method for manufacturing a semiconductor device according to claim 5, wherein the difference is a difference between the signal waveform and the detected position.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022053394 | 2022-03-29 | ||
JP2022-053394 | 2022-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023190400A1 true WO2023190400A1 (en) | 2023-10-05 |
Family
ID=88202283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/012313 WO2023190400A1 (en) | 2022-03-29 | 2023-03-27 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023190400A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003224061A (en) * | 2002-01-31 | 2003-08-08 | Sony Corp | Misalignment measuring method |
JP2005030776A (en) * | 2003-07-07 | 2005-02-03 | Nikon Corp | Superimposition measuring apparatus and method |
JP2011002737A (en) * | 2009-06-22 | 2011-01-06 | Toppan Printing Co Ltd | Exposure apparatus and exposure method |
-
2023
- 2023-03-27 WO PCT/JP2023/012313 patent/WO2023190400A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003224061A (en) * | 2002-01-31 | 2003-08-08 | Sony Corp | Misalignment measuring method |
JP2005030776A (en) * | 2003-07-07 | 2005-02-03 | Nikon Corp | Superimposition measuring apparatus and method |
JP2011002737A (en) * | 2009-06-22 | 2011-01-06 | Toppan Printing Co Ltd | Exposure apparatus and exposure method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2988393B2 (en) | Exposure method | |
US6841321B2 (en) | Method and system for processing a semi-conductor device | |
US20210382401A1 (en) | Overlay alignment mark, method for measuring overlay error, and method for overlay alignment | |
US11934109B2 (en) | Overlay alignment mark and method for measuring overlay error | |
JP2002093699A (en) | Overlay registration error measurement carried out for more than two semiconductor wafer layers at the same time | |
CN109884862B (en) | Overlay deviation compensation device and method in three-dimensional memory exposure system | |
US6795747B2 (en) | Reducing asymmetrically deposited film induced registration error | |
JP2010191162A (en) | Method for manufacturing reticle, apparatus for measuring surface shape, and computer | |
JPH07153673A (en) | Manufacture of semiconductor device and measuring-mark pattern | |
JP2000353657A (en) | Exposure method, aligner, and semiconductor device manufactured using the aligner | |
WO2023190400A1 (en) | Method for manufacturing semiconductor device | |
US7054007B2 (en) | Calibration wafer for a stepper | |
KR100919173B1 (en) | Aligning method | |
US6780552B2 (en) | Method for controlling the quality of a lithographic structuring step | |
KR100904732B1 (en) | Method for inspecting degree of misregistration between layers by using misregistration mark | |
US6301798B1 (en) | Method of measuring misalignment | |
US20230035488A1 (en) | Metrology method | |
JPH11340135A (en) | Pattern misalignment detecting mark, semiconductor device, and photo-mask | |
JP3196721B2 (en) | Semiconductor device manufacturing method and measuring device | |
JP3068785B2 (en) | Projection exposure apparatus or projection exposure method, device manufacturing method using the projection exposure method, and device manufactured by the device manufacturing method | |
EP4060409A1 (en) | Novel interface definition for lithographic apparatus | |
KR20050037675A (en) | Method for correcting an alignment of a stepper or a scanner in a photolithography processing | |
JPH1079333A (en) | Aligning method | |
KR100310423B1 (en) | Method of measuring mask distortion | |
EP4298481A1 (en) | Novel interface definition for lithographic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23780409 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024512489 Country of ref document: JP Kind code of ref document: A |