WO2023176693A1 - Display system, display method, display body, and method for manufacturing display body - Google Patents
Display system, display method, display body, and method for manufacturing display body Download PDFInfo
- Publication number
- WO2023176693A1 WO2023176693A1 PCT/JP2023/009078 JP2023009078W WO2023176693A1 WO 2023176693 A1 WO2023176693 A1 WO 2023176693A1 JP 2023009078 W JP2023009078 W JP 2023009078W WO 2023176693 A1 WO2023176693 A1 WO 2023176693A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- ellipticity
- display
- wavelength
- linearly polarized
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/02—Viewing or reading apparatus
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
Definitions
- the present invention relates to a display system, a display method, a display body, and a method for manufacturing a display body.
- Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices are rapidly becoming popular.
- EL electroluminescence
- optical members such as polarizing members and retardation members are generally used to realize image display and improve image display performance (see, for example, Patent Document 1).
- VR goggles with a display for realizing Virtual Reality (VR) are beginning to be commercialized. Since VR goggles are being considered for use in a variety of situations, it is desired that they be lighter and have higher definition. Weight reduction can be achieved, for example, by making the lenses used in VR goggles thinner. On the other hand, there is also a desire for the development of optical members suitable for display systems using thin lenses.
- the main purpose of the present invention is to provide a display system that can reduce the weight and increase the definition of VR goggles.
- a display system for displaying an image to a user, comprising: a display element having a display surface that forwardly emits light representing an image via a polarizing member; a reflecting section that is disposed in front of the display element, includes a reflective polarizing member, and reflects light emitted from the display element; and a first lens that is disposed on the optical path between the display element and the reflective section. and a half mirror disposed between the display element and the first lens part, which transmits the light emitted from the display element and reflects the light reflected by the reflection part toward the reflection part.
- the ellipticity of transmitted light with a wavelength of 380 nm to 700 nm when linearly polarized light whose polarization direction makes an angle of 45° with respect to the slow axis is incident on the first ⁇ /4 member. is 0.72 or more, and when linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the second ⁇ /4 member, the transmitted light with a wavelength of 380 nm to 700 nm is A display system is provided having an ellipticity of 0.72 or greater.
- the first ⁇ /4 member has a polarization direction of 45° with respect to its slow axis in the wavelength range of 380 nm to 700 nm.
- the proportion of the wavelength range in which the ellipticity of transmitted light is 0.85 or more is 70% or more. It may be.
- linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the first ⁇ /4 member.
- the wavelength range of 380 nm to 600 nm may account for 70% or more of the wavelength range in which transmitted light exhibits an ellipticity of 0.85 or more when the polarization direction is set to the second ⁇ /4 member.
- the wavelength region of 380 nm to 600 nm may account for 70% or more of the wavelength region in which transmitted light exhibits an ellipticity of 0.85 or more when linearly polarized light is incident at an angle of 45° with respect to the axis.
- the polarization direction of the light emitted through the polarizing member and the reflection axis of the reflective polarizing member are substantially orthogonal to each other. It's fine.
- the polarization direction of the light emitted through the polarizing member and the reflection axis of the reflective polarizing member are substantially parallel to each other. It's fine.
- a display body including the display system according to any one of [1] to [7] above is provided.
- a method for manufacturing a display body including the display system according to any one of [1] to [7] above.
- the step of passing the light representing the image emitted through the polarizing member through the first ⁇ /4 member; and passing the light representing the image through the first ⁇ /4 member is provided.
- the ellipticity of transmitted light with a wavelength of 380 nm to 700 nm is 0.72 or more, and linearly polarized light whose polarization direction forms an angle of 45° with respect to its slow axis is incident on the second ⁇ /4 member.
- a display method is provided in which the ellipticity of transmitted light with a wavelength of 380 nm to 700 nm is 0.72 or more.
- VR goggles the image displayed on the display is magnified by a lens and viewed by the viewer, so slight fluctuations in the characteristics of each component can greatly affect the display characteristics.
- high definition of VR goggles can be realized by using constituent members having predetermined optical characteristics.
- FIG. 1 is a schematic diagram showing a general configuration of a display system according to one embodiment of the present invention.
- 2 is a schematic diagram illustrating an example of the progress of light and changes in polarization state in one embodiment of the display system shown in FIG. 1.
- FIG. 2 is a schematic diagram illustrating an example of the progress of light and changes in polarization state in one embodiment of the display system shown in FIG. 1.
- FIG. 3 is a diagram for explaining a method of measuring thickness variations. It is a figure for explaining the measuring method of an ISC value. It is a figure which shows the ellipticity spectrum of the retardation film produced in the manufacturing example.
- Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
- Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
- In-plane phase difference (Re) "Re( ⁇ )” is an in-plane retardation measured with light having a wavelength of ⁇ nm at 23°C.
- Re(550) is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C.
- Phase difference in thickness direction (Rth) is a retardation in the thickness direction measured with light having a wavelength of ⁇ nm at 23°C.
- Rth (550) is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C.
- Substantially orthogonal includes a range of 90° ⁇ 10°, preferably within a range of 90° ⁇ 5°, more preferably within a range of 90° ⁇ 3°, and even more preferably 90° ⁇ 3°. It is within a range of 1°.
- FIG. 1 is a schematic diagram showing the general configuration of a display system according to one embodiment of the present invention.
- FIG. 1 schematically shows the arrangement, shape, etc. of each component of the display system 2.
- the display system 2 includes a display element 12, a reflection section 14 including a reflective polarizing member, a first lens section 16, a half mirror 18, a first retardation member 20, a second retardation member 22, and a second retardation member 22. It is equipped with two lens parts 24.
- the reflecting section 14 is arranged at the front of the display element 12 on the display surface 12a side, and can reflect the light emitted from the display element 12.
- the first lens section 16 is arranged on the optical path between the display element 12 and the reflection section 14, and the half mirror 18 is arranged between the display element 12 and the first lens section 16.
- the first retardation member 20 is arranged on the optical path between the display element 12 and the half mirror 18, and the second retardation member 22 is arranged on the optical path between the half mirror 18 and the reflection section 14.
- the display element 12 is, for example, a liquid crystal display or an organic EL display, and has a display surface 12a for displaying images.
- the light emitted from the display surface 12a passes through a polarizing member (typically, a polarizing film) that may be included in the display element 12, and is emitted as first linearly polarized light.
- a polarizing member typically, a polarizing film
- the first retardation member 20 is a ⁇ /4 member that can convert the first linearly polarized light incident on the first retardation member 20 into first circularly polarized light (hereinafter, the first retardation member is referred to as the first (sometimes referred to as a ⁇ /4 member). Note that the first retardation member 20 may be provided integrally with the display element 12.
- the half mirror 18 transmits the light emitted from the display element 12 and reflects the light reflected by the reflection section 14 toward the reflection section 14 .
- the half mirror 18 is provided integrally with the first lens section 16.
- the second retardation member 22 is a ⁇ /4 member that can transmit the light reflected by the reflection part 14 and the half mirror 18 through the reflection part 14 including a reflective polarizing member (hereinafter referred to as the second retardation member). (sometimes referred to as the second ⁇ /4 member). Note that the second retardation member 22 may be provided integrally with the first lens portion 16.
- the first circularly polarized light emitted from the first ⁇ /4 member 20 passes through the half mirror 18 and the first lens section 16, and is converted into second linearly polarized light by the second ⁇ /4 member 22. .
- the second linearly polarized light emitted from the second ⁇ /4 member 22 is reflected toward the half mirror 18 without passing through the reflective polarizing member included in the reflecting section 14 .
- the polarization direction of the second linearly polarized light incident on the reflective polarizing member included in the reflecting section 14 is the same direction as the reflection axis of the reflective polarizing member. Therefore, the second linearly polarized light incident on the reflection section 14 is reflected by the reflective polarizing member.
- the second linearly polarized light reflected by the reflection section 14 is converted into second circularly polarized light by the second ⁇ /4 member 22, and the second circularly polarized light emitted from the second ⁇ /4 member 22 is converted into second circularly polarized light by the second ⁇ /4 member 22.
- the light passes through one lens section 16 and is reflected by a half mirror 18.
- the circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second ⁇ /4 member 22.
- the third linearly polarized light passes through the reflective polarizing member included in the reflecting section 14.
- the polarization direction of the third linearly polarized light incident on the reflective polarizing member included in the reflecting section 14 is the same direction as the transmission axis of the reflective polarizing member. Therefore, the third linearly polarized light that has entered the reflecting section 14 is transmitted through the reflective polarizing member.
- the light that has passed through the reflection section 14 passes through the second lens section 24 and enters the user's eyes 26 .
- the absorption axis of the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member included in the reflecting section 14 may be arranged substantially parallel to each other, or may be arranged substantially perpendicular to each other.
- the angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the first retardation member 20 is, for example, 40° to 50°, may be 42° to 48°, and is about 45°. It may be °.
- the angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the second retardation member 22 is, for example, 40° to 50°, may be 42° to 48°, and is about 45°. It may be °.
- the in-plane retardation Re (550) of the first retardation member 20 is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. .
- the first retardation member 20 preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
- Re(450)/Re(550) of the first retardation member 20 is, for example, less than 1 and may be 0.95 or less, further less than 0.90, and even 0.85 or less. good.
- Re(450)/Re(550) of the first retardation member 20 is, for example, 0.75 or more.
- the first retardation member 20 has Re(400)/Re(550) ⁇ 0.85, Re(650)/Re(550)>1.03, and Re(750)/Re( 550)>1.05.
- the first retardation member 20 has 0.65 ⁇ Re(400)/Re(550) ⁇ 0.80 (preferably 0.7 ⁇ Re(400)/Re(550) ⁇ 0.75), 1. 0 ⁇ Re(650)/Re(550) ⁇ 1.25 (preferably 1.05 ⁇ Re(650)/Re(550) ⁇ 1.20) and 1.05 ⁇ Re(750)/Re( 550) ⁇ 1.40 (preferably 1.08 ⁇ Re(750)/Re(550) ⁇ 1.36), more preferably at least two. More preferably, all of them are satisfied.
- the first retardation member 20 preferably exhibits a refractive index characteristic of nx>ny ⁇ nz.
- the Nz coefficient of the first retardation member 20 is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, particularly preferably 0.9 to 1. It is 3.
- the transmitted light is transmitted over a wavelength range of 380 nm to 700 nm, for example. It exhibits an ellipticity of 0.72 or more, preferably 0.75 or more, more preferably 0.78 or more.
- the upper limit of the ellipticity of the transmitted light is 1.
- the ellipticity of transmitted light when linearly polarized light whose polarization direction forms an angle of 45° with respect to the slow axis of the first retardation member is incident on the first retardation member is defined as “
- the ellipticity of the first retardation member may be referred to as "the ellipticity of the first retardation member”. Therefore, for example, “the ellipticity of the first retardation member at the wavelength ⁇ nm” means the ellipticity of the transmitted light with the wavelength ⁇ nm, and "the first retardation member exhibits an ellipticity of X or more" means , means that the ellipticity of the transmitted light is X or more. The same applies to the second retardation member described later.
- the first retardation member having a high ellipticity of the transmitted light over a wide wavelength range of visible light display unevenness, ghosts, etc. can be suppressed.
- the proportion of the wavelength range in which the first retardation member 20 exhibits an ellipticity of 0.85 or more is, for example, 70% or more, preferably 75% or more, and more preferably 80% or more. It is.
- the ratio may be, for example, 100% or less.
- 70% or more, preferably 71% to 75%, more preferably 76% to 80% of the wavelength range in which the first retardation member 20 exhibits an ellipticity of 0.85 or more is 380 nm to 600 nm.
- the wavelength range is occupied by Since most of the wavelength range in which the first retardation member 20 exhibits an ellipticity of 0.85 or more is in the wavelength range of 380 nm to 600 nm, the effect of suppressing display unevenness, ghosting, etc. can be more preferably obtained.
- the ellipticity (ellipticity (550)) of the first retardation member 20 at a wavelength of 550 nm is, for example, 0.9 or more, preferably 0.93 or more, and more preferably 0.95 to 1. By satisfying such an ellipticity (550), a decrease in light efficiency can be suppressed.
- the ellipticity (ellipticity (450)) of the first retardation member 20 at a wavelength of 450 nm is larger than the ellipticity (ellipticity (650)) at a wavelength of 650 nm.
- Ellipticity (450)/ellipticity (650) is, for example, greater than 1, preferably 1.01 to 1.08.
- the ISC value of the first retardation member 20 is, for example, 50 or less, preferably 40 or less, more preferably 30 or less, and still more preferably 20 or less.
- the ISC value can be an indicator of smoothness or unevenness.
- the variation in the thickness of the first retardation member 20 is preferably 1 ⁇ m or less, more preferably 0.8 ⁇ m or less, still more preferably 0.6 ⁇ m or less, and even more preferably 0.4 ⁇ m or less. With such thickness variations, for example, the above ISC value can be achieved satisfactorily.
- the thickness variation is defined as the thickness of the first part located in the plane of the retardation member and the predetermined thickness in any direction from the first part (for example, upward, downward, leftward, and rightward). It can be determined by measuring the thickness at positions spaced apart (for example, 5 mm to 15 mm).
- the ISC value per unit thickness of the first retardation member 20 is preferably 1 or less, more preferably 0.7 or less, and still more preferably 0.5 or less.
- the ISC value per unit thickness can be determined, for example, by dividing the ISC value by the thickness (unit: ⁇ m).
- the first retardation member 20 is formed of any suitable material that can satisfy the above characteristics.
- the first retardation member 20 may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound. Note that the stretched film of the resin film is sometimes referred to as a retardation film.
- the resins contained in the above resin film include polycarbonate resin, polyester carbonate resin, polyester resin, polyvinyl acetal resin, polyarylate resin, cyclic olefin resin, cellulose resin, polyvinyl alcohol resin, and polyamide resin. , polyimide resin, polyether resin, polystyrene resin, acrylic resin, and the like. These resins may be used alone or in combination (for example, blended or copolymerized).
- a resin film containing a polycarbonate resin or a polyester carbonate resin hereinafter sometimes simply referred to as a polycarbonate resin
- polycarbonate resins contain structural units derived from fluorene-based dihydroxy compounds, structural units derived from isosorbide-based dihydroxy compounds, alicyclic diols, alicyclic dimethanols, di-, tri-, or polyethylene glycols, and alkylene-based dihydroxy compounds. a structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol.
- the polycarbonate resin contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and/or a di, tri, or polyethylene glycol. More preferably, it contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, and a structural unit derived from di, tri or polyethylene glycol. .
- the polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary.
- the liquid crystal compound alignment and solidification layer is a layer in which the liquid crystal compound is aligned in a predetermined direction within the layer, and the alignment state is fixed.
- the "alignment hardened layer” is a concept that includes an orientation hardened layer obtained by curing a liquid crystal monomer as described below.
- rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the first retardation member (homogeneous alignment). Examples of rod-shaped liquid crystal compounds include liquid crystal polymers and liquid crystal monomers.
- the liquid crystal compound is preferably polymerizable. If the liquid crystal compound is polymerizable, the alignment state of the liquid crystal compound can be fixed by aligning the liquid crystal compound and then polymerizing it.
- the liquid crystal compound alignment and solidification layer is produced by subjecting the surface of a predetermined base material to an alignment treatment, applying a coating liquid containing the liquid crystal compound to the surface, and subjecting the liquid crystal compound to the alignment treatment. It can be formed by orienting it in a corresponding direction and fixing the orientation state. Any suitable orientation treatment may be employed as the orientation treatment. Specifically, mechanical alignment treatment, physical alignment treatment, and chemical alignment treatment can be mentioned. Specific examples of mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of physical alignment treatment include magnetic field alignment treatment and electric field alignment treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo alignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
- the alignment of the liquid crystal compound is carried out by treatment at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound.
- the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is oriented in accordance with the orientation treatment direction of the substrate surface.
- the alignment state is fixed by cooling the liquid crystal compound aligned as described above.
- the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to polymerization treatment or crosslinking treatment.
- liquid crystal compound any suitable liquid crystal polymer and/or liquid crystal monomer can be used as the liquid crystal compound.
- the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
- Specific examples of liquid crystal compounds and methods for producing liquid crystal alignment solidified layers are described in, for example, JP 2006-163343A, JP 2006-178389A, and WO 2018/123551A. The descriptions of these publications are incorporated herein by reference.
- the thickness of the first retardation member 20 is preferably 100 ⁇ m or less.
- the thickness of the first retardation member 20 made of a stretched resin film is, for example, 10 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 70 ⁇ m, more preferably 10 ⁇ m to 60 ⁇ m, and still more preferably 20 ⁇ m to 50 ⁇ m. It is.
- the thickness of the first retardation member 20 composed of the liquid crystal alignment solidified layer is, for example, 1 ⁇ m to 10 ⁇ m, preferably 1 ⁇ m to 8 ⁇ m, more preferably 1 ⁇ m to 6 ⁇ m, and even more preferably 1 ⁇ m to 4 ⁇ m.
- the in-plane retardation Re (550) of the second retardation member 22 is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. .
- the second retardation member 22 preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
- Re(450)/Re(550) of the second retardation member 22 is, for example, less than 1 and may be 0.95 or less, further less than 0.90, and even 0.85 or less. good.
- Re(450)/Re(550) of the second retardation member 22 is, for example, 0.75 or more.
- the second retardation member 22 has Re(400)/Re(550) ⁇ 0.85, Re(650)/Re(550)>1.03, and Re(750)/Re( 550)>1.05.
- the second retardation member 22 has 0.65 ⁇ Re(400)/Re(550) ⁇ 0.80 (preferably 0.7 ⁇ Re(400)/Re(550) ⁇ 0.75), 1. 0 ⁇ Re(650)/Re(550) ⁇ 1.25 (preferably 1.05 ⁇ Re(650)/Re(550) ⁇ 1.20) and 1.05 ⁇ Re(750)/Re( 550) ⁇ 1.40 (preferably 1.08 ⁇ Re(750)/Re(550) ⁇ 1.36), more preferably at least two. More preferably, all of them are satisfied.
- the second retardation member 22 preferably exhibits a refractive index characteristic of nx>ny ⁇ nz.
- the Nz coefficient of the second retardation member 22 is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, particularly preferably 0.9 to 1. It is 3.
- the transmitted light is transmitted over a wavelength range of 380 nm to 700 nm, for example. It exhibits an ellipticity of 0.72 or more, preferably 0.75 or more, more preferably 0.78 or more.
- the upper limit of the ellipticity of the transmitted light is 1.
- the proportion of the wavelength region in which the second retardation member 22 exhibits an ellipticity of 0.85 or more is, for example, 70% or more, preferably 75% or more, more preferably 80% or more. It is. The ratio may be 100%.
- 70% or more, preferably 71% to 75%, more preferably 76% to 80% of the wavelength range in which the second retardation member 22 exhibits an ellipticity of 0.85 or more is 380 nm to 600 nm.
- the wavelength range is occupied by Since most of the wavelength range in which the second retardation member 22 exhibits an ellipticity of 0.85 or more is in the wavelength range of 380 nm to 600 nm, the effect of suppressing display unevenness, ghosting, etc. can be more preferably obtained.
- the ellipticity (550) of the second retardation member 22 is, for example, 0.9 or more, preferably 0.93 or more, and more preferably 0.95 to 1. By satisfying such an ellipticity (550), a decrease in light efficiency can be suppressed.
- the ellipticity (450) of the second retardation member 22 is larger than the ellipticity (650).
- Ellipticity (450)/ellipticity (650) is, for example, greater than 1, preferably 1.01 to 1.08.
- the ISC value of the second retardation member 22 is, for example, 50 or less, preferably 40 or less, more preferably 30 or less, and still more preferably 20 or less.
- the ISC value can be an indicator of smoothness or unevenness.
- the variation in the thickness of the second retardation member 22 is preferably 1 ⁇ m or less, more preferably 0.8 ⁇ m or less, still more preferably 0.6 ⁇ m or less, and even more preferably 0.4 ⁇ m or less. With such thickness variations, for example, the above ISC value can be achieved satisfactorily.
- the ISC value per unit thickness of the second retardation member 22 is preferably 1 or less, more preferably 0.7 or less, and even more preferably 0.5 or less.
- the second retardation member 22 is formed of any suitable material that can satisfy the above characteristics.
- the second retardation member 22 may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound.
- the same explanation as for the first retardation member 20 can be applied to the second retardation member 22 made of a stretched resin film or an oriented solidified layer of a liquid crystal compound.
- the first retardation member 20 and the second retardation member 22 may have the same configuration (forming material, thickness, optical properties, etc.), or may have different configurations.
- the thickness of the second retardation member 22 is preferably 100 ⁇ m or less.
- the thickness of the second retardation member 22 made of a stretched resin film is, for example, 10 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 70 ⁇ m, more preferably 10 ⁇ m to 60 ⁇ m, and still more preferably 20 ⁇ m to 50 ⁇ m. It is.
- the thickness of the second retardation member 22 composed of the liquid crystal alignment solidified layer is, for example, 1 ⁇ m to 10 ⁇ m, preferably 1 ⁇ m to 8 ⁇ m, more preferably 1 ⁇ m to 6 ⁇ m, and still more preferably 1 ⁇ m to 4 ⁇ m.
- the absolute value of the difference between the in-plane retardation (a) of the first retardation member and the in-plane retardation (b) of the second retardation member is, for example, 3.5 nm or less, preferably 3.0 nm or less. It is more preferably 2.5 nm or less, still more preferably 2.0 nm or less, particularly preferably 1.5 nm or less, and most preferably 1.0 nm or less.
- (a) and (b) are values of Re(590).
- the in-plane retardation (a) of the first retardation member and the in-plane retardation (b) of the second retardation member satisfy the following formula (I). ((a)-(b))/((a)+(b)/2) ⁇ 0.02...(I) More preferably ((a)-(b))/((a)+(b)/2) ⁇ 0.015, even more preferably ((a)-(b))/((a)+( b)/2) ⁇ 0.01.
- the reflecting section 14 may include an absorbing polarizing member.
- the absorptive polarizing member may be placed in front of the reflective polarizing member.
- the reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member may be arranged substantially parallel to each other, and the transmission axis of the reflective polarizing member and the transmission axis of the absorptive polarizing member may be arranged substantially parallel to each other.
- the reflecting section 14 may include a laminate having a reflective polarizing member and an absorbing polarizing member.
- the reflective polarizing member can transmit polarized light parallel to its transmission axis (typically, linearly polarized light) while maintaining its polarized state, and can reflect light in other polarized states.
- the cross transmittance (Tc) of the reflective polarizing member may be, for example, 0.01% to 3%.
- the single transmittance (Ts) of the reflective polarizing member may be, for example, 43% to 49%, preferably 45% to 47%.
- the degree of polarization (P) of the reflective polarizing member may be, for example, 92% to 99.99%.
- the reflective polarizing member is typically composed of a film having a multilayer structure (sometimes referred to as a reflective polarizing film). Commercially available reflective polarizing films include, for example, 3M's product names "DBEF" and "APF” and Nitto Denko's product name "APCF”.
- the absorption type polarizing member may typically include a resin film (sometimes referred to as an absorption type polarizing film) containing a dichroic substance.
- the thickness of the absorption type polarizing film is, for example, 1 ⁇ m or more and 20 ⁇ m or less, may be 2 ⁇ m or more and 15 ⁇ m or less, may be 12 ⁇ m or less, may be 10 ⁇ m or less, or may be 8 ⁇ m or less, It may be 5 ⁇ m or less.
- the above-mentioned absorption type polarizing film may be produced from a single layer resin film, or may be produced using a laminate of two or more layers.
- a hydrophilic polymer film such as a polyvinyl alcohol (PVA) film, a partially formalized PVA film, or a partially saponified ethylene/vinyl acetate copolymer film is coated with iodine or dichloromethane.
- An absorption type polarizing film can be obtained by performing a dyeing treatment with a dichroic substance such as a color dye, a stretching treatment, and the like. Among these, an absorption type polarizing film obtained by dyeing a PVA film with iodine and uniaxially stretching it is preferred.
- the above-mentioned staining with iodine is performed, for example, by immersing the PVA-based film in an iodine aqueous solution.
- the stretching ratio of the above-mentioned uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing process or may be performed while dyeing. Alternatively, it may be dyed after being stretched. If necessary, the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment, etc.
- the laminate produced using the above-mentioned laminate of two or more layers is a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or Examples include a laminate of a material and a PVA-based resin layer formed by coating on the resin base material.
- An absorption type polarizing film obtained by using a laminate of a resin base material and a PVA resin layer coated on the resin base material can be obtained by, for example, applying a PVA resin solution to the resin base material, drying it, and applying the resin.
- a PVA-based resin layer on a base material to obtain a laminate of the resin base material and the PVA-based resin layer; stretching and dyeing the laminate to make the PVA-based resin layer an absorption type polarizing film.
- a polyvinyl alcohol resin layer containing a halide and a polyvinyl alcohol resin is formed on one side of the resin base material.
- Stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching.
- the stretching may further include stretching the laminate in air at a high temperature (for example, 95° C. or higher) before stretching in the boric acid aqueous solution, if necessary.
- the laminate is preferably subjected to a drying shrinkage treatment in which the laminate is heated while being conveyed in the longitudinal direction to shrink by 2% or more in the width direction.
- the manufacturing method of this embodiment includes subjecting the laminate to an in-air auxiliary stretching process, a dyeing process, an underwater stretching process, and a drying shrinkage process in this order.
- the obtained resin base material/absorption type polarizing film laminate may be used as is (that is, the resin base material may be used as a protective layer of the absorption type polarizing film), or the resin base material/absorption type polarizing film laminate may be used as is.
- Any suitable protective layer depending on the purpose may be laminated on the peeled surface from which the resin base material is peeled off, or on the surface opposite to the peeled surface. Details of the manufacturing method of such an absorption type polarizing film are described in, for example, Japanese Patent Application Publication No. 2012-73580 and Japanese Patent No. 6470455. The entire descriptions of these publications are incorporated herein by reference.
- the orthogonal transmittance (Tc) of the absorption type polarizing member (absorption type polarizing film) is preferably 0.5% or less, more preferably 0.1% or less, and still more preferably 0.05% or less. be.
- the single transmittance (Ts) of the absorption type polarizing member (absorption type polarizing film) is, for example, 41.0% to 45.0%, preferably 42.0% or more.
- the degree of polarization (P) of the absorption type polarizing member (absorption type polarizing film) is, for example, 99.0% to 99.997%, preferably 99.9% or more.
- FIG. 2 shows an embodiment in which the absorption axis of the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member 14a included in the reflecting section 14 are arranged substantially perpendicular to each other in the display system shown in FIG.
- FIG. 2 is a schematic diagram illustrating the progression of light and changes in polarization state in FIG.
- FIG. 2(a) is a schematic diagram illustrating an example of the progression of light in this embodiment
- FIG. 2(b) is a schematic diagram illustrating how light passes through each member or is reflected by each member in this embodiment.
- FIG. 2 is a schematic diagram illustrating an example of a change in the polarization state of light due to the change in the polarization state of light.
- FIG. 2 is a schematic diagram illustrating an example of a change in the polarization state of light due to the change in the polarization state of light.
- the solid line arrow attached to the display element 12 indicates the absorption axis direction of the polarizing member included in the display element 12.
- the solid arrows attached to the reflective polarizing member 14a included in the reflecting section 14 indicate the reflection axis direction, and the broken arrows indicate the transmission axis direction of each polarizing member.
- the angle between the polarization direction of the first linearly polarized light emitted forward via the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member 14a is substantially parallel.
- the angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the first ⁇ /4 member 20 is, for example, 40° to 50°.
- the slow axis of the first ⁇ /4 member 20 and the slow axis of the second ⁇ /4 member 22 are arranged substantially perpendicular to each other.
- the light L emitted from the display element 12 as first linearly polarized light via the polarizing member is converted into first circularly polarized light by the first ⁇ /4 member 20.
- the first circularly polarized light passes through the half mirror 18 and the first lens section 16 (not shown in FIG. 2), and is passed through the second ⁇ /4 member 22 to form the first circularly polarized light whose polarization direction is parallel to that of the first linearly polarized light. It is converted into linearly polarized light of 2.
- the polarization direction of the second linearly polarized light is in the same direction (substantially parallel) as the reflection axis of the reflective polarizing member 14a included in the reflection section 14. Therefore, the second linearly polarized light incident on the reflection section 14 is reflected toward the half mirror 18 by the reflective polarizing member 14a.
- the second linearly polarized light reflected by the reflecting section 14 is converted into second circularly polarized light by the second ⁇ /4 member 22.
- the rotation direction of the second circularly polarized light is the same as the rotation direction of the first circularly polarized light.
- the second circularly polarized light emitted from the second ⁇ /4 member 22 passes through the first lens section 16 and is reflected by the half mirror 18, forming a third circle that rotates in the opposite direction to the second circularly polarized light. converted into polarized light.
- the third circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second ⁇ /4 member 22.
- the polarization direction of the third linearly polarized light is orthogonal to the polarization direction of the second linearly polarized light, and is in the same direction (substantially parallel) as the transmission axis of the reflective polarizing member 14a. Therefore, the third linearly polarized light can be transmitted through the reflective polarizing member 14a. Further, although not shown, when the reflective section includes an absorption type polarizing member, the absorption axis thereof is arranged to be approximately parallel to the reflection axis of the reflective polarizing member 14a, so that the light transmitted through the reflective polarizing member 14a is The third linearly polarized light can pass through the absorptive polarizing member as it is. The light that has passed through the reflection section 14 passes through the second lens section 24 and enters the user's eyes 26 .
- the slow axes of the first ⁇ /4 member and the second ⁇ /4 member are the absorption axis of the polarizing member included in the display element 12, respectively. are arranged so as to form a predetermined angle (for example, 40° to 50°) counterclockwise and clockwise with respect to the
- a predetermined angle for example, 40° to 50°
- the first ⁇ /4 member and the second ⁇ /4 member are members whose slow axes make an angle of, for example, 83° to 97°, preferably 84° to 96°, more preferably 85° to 95°, still more preferably 86° to 94°, and even more preferably are arranged so that the angle is between 87° and 93°.
- the slow axis of the first ⁇ /4 member 20 and the slow axis of the second ⁇ /4 member 22 are arranged substantially perpendicular to each other, but as shown in FIG. They may be arranged substantially in parallel.
- both the slow axis of the first ⁇ /4 member 20 and the slow axis of the second ⁇ /4 member 22 are rotated clockwise or counterclockwise with respect to the absorption axis of the polarizing member included in the display element 12. They may be arranged so as to form a predetermined angle (for example, 40° to 50°). In this case, unlike the example shown in FIG.
- the absorption axis of the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member 14a included in the reflecting section 14 may be arranged substantially parallel to each other. Therefore, the angle between the polarization direction of the first linearly polarized light emitted forward via the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member 14 may be substantially orthogonal.
- the first ⁇ /4 member and the second ⁇ /4 member is arranged so that the angle between their slow axes is, for example, 7° or less, preferably 6° or less, more preferably 5° or less, still more preferably 4° or less, and even more preferably 3° or less. be done.
- the slow axis of the first ⁇ /4 member and the slow axis of the second ⁇ /4 member satisfy such a relationship, a display system having excellent display characteristics can be obtained.
- the first linearly polarized light emitted from the display element 12 via the polarizing member passes through the first ⁇ /4 member 20 and then becomes the second ⁇ /4 member. After passing through the four members 22 three times in total, the light passes through the reflective polarizing member 14a.
- ⁇ /4 members each having an ellipticity of a predetermined value or more over a wide range of visible light region as the first ⁇ /4 member 20 and the second ⁇ /4 member 22, , hue change of transmitted light, light leakage, etc. can be suppressed.
- test and evaluation methods in Examples and the like are as follows.
- parts when it is written as “parts”, it means “parts by weight” unless there are special notes, and when it is written as “%”, it means “wt%” unless there are special notes.
- Thickness The thickness of 10 ⁇ m or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). Thickness exceeding 10 ⁇ m was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).
- FIG. 5 is a diagram for explaining a method for measuring an ISC value, and is a schematic diagram of the arrangement of a light source, a retardation film, a screen, and a CCD camera viewed from above. As shown in FIG. 5, a light source L, a retardation film M, and a screen S were arranged in this order, and a transmitted image projected onto the screen S was measured by a CCD camera C.
- the retardation film M was attached to a non-alkali glass plate (manufactured by Corning, Inc., 1737), and the measurement was conducted with the glass plate placed on the light source L side.
- the arrangement was such that the distance from the light source L to the retardation film M in the X-axis direction was 10 to 60 cm.
- the arrangement was such that the distance from the light source L to the screen S in the X-axis direction was 70 to 130 cm.
- the arrangement was such that the distance from the CCD camera C to the retardation film M in the Y-axis direction was 3 to 30 cm.
- the arrangement was such that the distance from the CCD camera C to the screen S in the X-axis direction was 70 to 130 cm.
- the oligomerized reaction liquid in the first reactor was transferred to the second reactor.
- temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240° C. and the pressure was 0.2 kPa in 50 minutes.
- polymerization was allowed to proceed until a predetermined stirring power was reached.
- nitrogen was introduced into the reactor to restore the pressure nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
- polyester carbonate resin pellets
- a single-screw extruder manufactured by Toshiba Machine Co., Ltd., cylinder temperature setting: 250°C
- T-die width 200mm, setting temperature: 250°C
- a long resin film with a thickness of 130 ⁇ m was produced using a film forming apparatus equipped with a chill roll (temperature setting: 120 to 130° C.), a winder and a winder.
- the obtained long resin film was stretched in the width direction at a stretching temperature of 140° C. and a stretching ratio of 2.7 times.
- a commercially available retardation film (manufactured by Kaneka Corporation, product name: "Zeonor #140COP QWP") composed of a cycloolefin resin film was used as the retardation film 2.
- the thickness of the retardation film 2 was 33 ⁇ m
- the Re(590) was 140 nm
- the Nz coefficient was 1.0
- Re(450)/Re(550) of the retardation film 2 was 1.01.
- thermoplastic resin base material a long, amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 ⁇ m) having a Tg of approximately 75° C. was used, and one side of the resin base material was subjected to corona treatment. Iodine was added to 100 parts by weight of a PVA resin prepared by mixing polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Mitsubishi Chemical Corporation, product name "Gosenex Z410”) in a ratio of 9:1.
- a PVA aqueous solution (coating liquid) was prepared by dissolving 13 parts by weight of potassium chloride in water.
- the PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60° C. to form a PVA-based resin layer with a thickness of 13 ⁇ m, thereby producing a laminate.
- the obtained laminate was uniaxially stretched 2.4 times in the vertical direction (longitudinal direction) in an oven at 130° C. (in-air auxiliary stretching treatment).
- the laminate was immersed for 30 seconds in an insolubilization bath (boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C.
- a polarizing film 1 having a structure of [acrylic resin film/absorption type polarizing film] was obtained.
- a water-based adhesive containing a PVA-based resin having an acetoacetyl group, methylolmelamine, and a positively charged alumina colloid (average particle size: 15 nm) was used.
- the single transmittance (Ts) of the polarizing film 1 was 43.0%, and the degree of polarization was 99.989%.
- the ellipticity of the above-mentioned retardation film 1 and retardation film 2 was measured as follows. The results are shown in Table 2 and FIG. 6. ⁇ How to measure ellipticity> Measurement with a configuration of [retardation film/polarizing film 1] by laminating a retardation film on the absorbing polarizing film side surface of the polarizing film 1 via an acrylic adhesive layer (manufactured by Nitto Denko Corporation, thickness 5 ⁇ m) A sample was obtained. In the measurement sample, the angle between the slow axis of the retardation film and the absorption axis of the polarizing film 1 was 45°.
- Example 1 Four retardation films 1 obtained in Production Example 1-1 were stacked, and then the polarizing film 1 obtained in Production Example 2 was stacked to obtain a laminate. Adjacent films were bonded together via an acrylic adhesive layer (manufactured by Nitto Denko Corporation, thickness 5 ⁇ m). The four retardation films 1 were stacked in order from one side as ⁇ /4 member 1, ⁇ /4 member 2, ⁇ /4 member 3, and ⁇ /4 member 4 in the axial relationship shown in Table 3. Then, the polarizing film 1 was placed on the ⁇ /4 member 4.
- the angles shown in Table 3 are the axis angles of each member based on the absorption axis direction of the absorption type polarizing film of the polarizing film when the laminate is viewed from the ⁇ /4 member 1 side, and "+" indicates Clockwise, "-" means counterclockwise.
- Example 1 A laminate was obtained in the same manner as in Example 1 except that retardation film 2 was used as ⁇ /4 members 1 to 4.
- the parallel hue of the laminate is the hue of light that is emitted from the polarizing film 1 side when linearly polarized light whose polarization direction is perpendicular to the absorption axis of the polarizing film 1 is incident from the ⁇ /4 member 1 side of the laminate. .
- Table 4 shows the parallel transmittance and initial hue of the polarizing film 1, and the difference between these and the parallel transmittance and parallel hue of the laminate.
- the laminates produced in Examples and Comparative Examples are simple evaluation models of display systems according to embodiments of the present invention. Specifically, in the display system according to the embodiment of the present invention, light that enters the laminate from the ⁇ /4 member 1 side and exits from the polarizing film 1 side is emitted forward from the display element via the polarizing member. After the first linearly polarized light passes through the first ⁇ /4 member and the second ⁇ /4 member in this order, it is reflected by the reflective polarizing member and the half mirror to further pass through the second ⁇ /4 member.
- the difference between the parallel transmittance of the polarizing film 1 and the parallel transmittance of the laminate can reflect the degree of reduction in light efficiency in the display system. Further, the difference ( ⁇ a * b * ) between the initial hue of the polarizing film 1 and the parallel hue of the laminate can reflect the degree of change in hue between the emitted light and the transmitted light in the display system.
- the present invention is not limited to the above embodiments, and various modifications are possible.
- it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that has the same effect, or a configuration that can achieve the same purpose.
- the display system according to the embodiment of the present invention can be used for a display body such as VR goggles, for example.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
Abstract
The present invention provides a display system that makes it possible to realize VR goggles having higher definition. A display system according to an embodiment of the present invention displays an image for a user, and comprises: a display element having a display surface for emitting, in a forward direction through a polarization member, light representing an image; a reflecting unit that is arranged in front of the display element, includes a reflective polarization member, and reflects the light emitted from the display element; a first lens unit arranged on the optical path between the display element and the reflecting unit; a half mirror that is arranged between display element and the first lens unit, transmits the light emitted from the display element, and reflects, toward the reflecting unit, the light reflected by the reflecting unit; a first λ/4 member arranged on the optical path between the display element and the half mirror; and a second λ/4 member arranged on the optical path between the half mirror and the reflecting unit. When linearly polarized light the polarization direction of which forms an angle of 45° with respect to the slow axis is incident to the first λ/4 member, the ellipticity of transmitted light having a wavelength of 380-700 nm is 0.72 or greater, and when linearly polarized light the polarization direction of which forms an angle of 45° with respect to the slow axis is incident to the second λ/4 member, the ellipticity of transmitted light having a wavelength of 380-700 nm is 0.72 or greater.
Description
本発明は、表示システム、表示方法、表示体および表示体の製造方法に関する。
The present invention relates to a display system, a display method, a display body, and a method for manufacturing a display body.
液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置においては、画像表示を実現し、画像表示の性能を高めるために、一般的に、偏光部材、位相差部材等の光学部材が用いられている(例えば、特許文献1を参照)。
Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices (eg, organic EL display devices) are rapidly becoming popular. In image display devices, optical members such as polarizing members and retardation members are generally used to realize image display and improve image display performance (see, for example, Patent Document 1).
近年、画像表示装置の新たな用途が開発されている。例えば、Virtual Reality(VR)を実現するためのディスプレイ付きゴーグル(VRゴーグル)が製品化され始めている。VRゴーグルは様々な場面での利用が検討されていることから、その軽量化、高精細化等が望まれている。軽量化は、例えば、VRゴーグルに用いられるレンズを薄型化することで達成され得る。一方で、薄型レンズを用いた表示システムに適した光学部材の開発も望まれている。
In recent years, new uses for image display devices have been developed. For example, goggles with a display (VR goggles) for realizing Virtual Reality (VR) are beginning to be commercialized. Since VR goggles are being considered for use in a variety of situations, it is desired that they be lighter and have higher definition. Weight reduction can be achieved, for example, by making the lenses used in VR goggles thinner. On the other hand, there is also a desire for the development of optical members suitable for display systems using thin lenses.
上記に鑑み、本発明はVRゴーグルの軽量化、高精細化を実現し得る表示システムの提供を主たる目的とする。
In view of the above, the main purpose of the present invention is to provide a display system that can reduce the weight and increase the definition of VR goggles.
[1]本発明の1つの局面によれば、ユーザに対して画像を表示する表示システムであって、偏光部材を介して画像を表す光を前方に出射する表示面を有する表示素子と、上記表示素子の前方に配置され、反射型偏光部材を含み、上記表示素子から出射された光を反射する反射部と、上記表示素子と上記反射部との間の光路上に配置される第一レンズ部と、上記表示素子と上記第一レンズ部との間に配置され、上記表示素子から出射された光を透過させ、上記反射部で反射された光を上記反射部に向けて反射させるハーフミラーと、上記表示素子と上記ハーフミラーとの間の光路上に配置される第1のλ/4部材と、上記ハーフミラーと上記反射部との間の光路上に配置される第2のλ/4部材と、を備え、上記第1のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長380nm~700nmの透過光の楕円率が、0.72以上であり、上記第2のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長380nm~700nmの透過光の楕円率が、0.72以上である、表示システムが提供される。
[2]上記[1]に記載の表示システムにおいて、上記第1のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長550nmの透過光の楕円率が、0.9以上であってよく、上記第2のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長550nmの透過光の楕円率が、0.9以上であってよい。
[3]上記[1]または[2]に記載の表示システムにおいて、上記第1のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長450nmの透過光の楕円率が、波長650nmの透過光の楕円率よりも大きくてよく、上記第2のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長450nmの透過光の楕円率が、波長650nmの透過光の楕円率よりも大きくてよい。
[4]上記[1]から[3]のいずれかに記載の表示システムにおいて、380nm~700nmの波長領域中、上記第1のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの透過光の楕円率が0.85以上である波長領域が占める割合が70%以上であってよく、380nm~700nmの波長領域中、上記第2のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの透過光の楕円率が0.85以上である波長領域が占める割合が70%以上であってよい。
[5]上記[1]から[4]のいずれかに記載の表示システムにおいて、上記第1のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの透過光が0.85以上の楕円率を示す波長領域の70%以上を、380nm~600nmの波長領域が占めてよく、上記第2のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの透過光が0.85以上の楕円率を示す波長領域の70%以上を、380nm~600nmの波長領域が占めてよい。
[6]上記[1]から[5]のいずれかに記載の表示システムにおいて、上記偏光部材を介して出射された光の偏光方向と上記反射型偏光部材の反射軸とが互いに略直交であってよい。
[7]上記[1]から[5]のいずれかに記載の表示システムにおいて、上記偏光部材を介して出射された光の偏光方向と上記反射型偏光部材の反射軸とが互いに略平行であってよい。
[8]本発明の別の局面によれば、上記[1]から[7]のいずれかに記載の表示システムを具備する表示体が提供される。
[9]本発明の別の局面によれば、上記[1]から[7]のいずれかに記載の表示システムを具備する表示体の製造方法が提供される。
[10]本発明の別の局面によれば、偏光部材を介して出射された画像を表す光を、第1のλ/4部材を通過させるステップと、上記第1のλ/4部材を通過した光を、ハーフミラーおよび第一レンズ部を通過させるステップと、上記ハーフミラーおよび上記第一レンズ部を通過した光を、第2のλ/4部材を通過させるステップと、上記第2のλ/4部材を通過した光を、反射型偏光部材を含む反射部で上記ハーフミラーに向けて反射させるステップと、上記反射部および上記ハーフミラーで反射させた光を、上記第2のλ/4部材により上記反射部を透過可能にするステップと、を有し、上記第1のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長380nm~700nmの透過光の楕円率が、0.72以上であり、上記第2のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長380nm~700nmの透過光の楕円率が、0.72以上である、表示方法が提供される。 [1] According to one aspect of the present invention, there is provided a display system for displaying an image to a user, comprising: a display element having a display surface that forwardly emits light representing an image via a polarizing member; a reflecting section that is disposed in front of the display element, includes a reflective polarizing member, and reflects light emitted from the display element; and a first lens that is disposed on the optical path between the display element and the reflective section. and a half mirror disposed between the display element and the first lens part, which transmits the light emitted from the display element and reflects the light reflected by the reflection part toward the reflection part. a first λ/4 member disposed on the optical path between the display element and the half mirror; and a second λ/4 member disposed on the optical path between the half mirror and the reflection section. 4 member, and the ellipticity of transmitted light with a wavelength of 380 nm to 700 nm when linearly polarized light whose polarization direction makes an angle of 45° with respect to the slow axis is incident on the first λ/4 member. is 0.72 or more, and when linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the second λ/4 member, the transmitted light with a wavelength of 380 nm to 700 nm is A display system is provided having an ellipticity of 0.72 or greater.
[2] In the display system according to [1] above, when linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the first λ/4 member, a wavelength of 550 nm is obtained. The ellipticity of the transmitted light may be 0.9 or more, and the wavelength when linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the second λ/4 member. The ellipticity of transmitted light at 550 nm may be 0.9 or more.
[3] In the display system according to [1] or [2] above, when linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the first λ/4 member. The ellipticity of transmitted light with a wavelength of 450 nm may be larger than that of transmitted light with a wavelength of 650 nm, and the polarization direction of the second λ/4 member makes an angle of 45° with respect to its slow axis. When linearly polarized light is incident, the ellipticity of transmitted light with a wavelength of 450 nm may be larger than the ellipticity of transmitted light with a wavelength of 650 nm.
[4] In the display system according to any one of [1] to [3] above, the first λ/4 member has a polarization direction of 45° with respect to its slow axis in the wavelength range of 380 nm to 700 nm. When linearly polarized light forming an angle of When linearly polarized light whose polarization direction makes an angle of 45° with respect to the slow axis is incident on a λ/4 member, the proportion of the wavelength range in which the ellipticity of transmitted light is 0.85 or more is 70% or more. It may be.
[5] In the display system according to any one of [1] to [4] above, linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the first λ/4 member. The wavelength range of 380 nm to 600 nm may account for 70% or more of the wavelength range in which transmitted light exhibits an ellipticity of 0.85 or more when the polarization direction is set to the second λ/4 member. The wavelength region of 380 nm to 600 nm may account for 70% or more of the wavelength region in which transmitted light exhibits an ellipticity of 0.85 or more when linearly polarized light is incident at an angle of 45° with respect to the axis.
[6] In the display system according to any one of [1] to [5] above, the polarization direction of the light emitted through the polarizing member and the reflection axis of the reflective polarizing member are substantially orthogonal to each other. It's fine.
[7] In the display system according to any one of [1] to [5] above, the polarization direction of the light emitted through the polarizing member and the reflection axis of the reflective polarizing member are substantially parallel to each other. It's fine.
[8] According to another aspect of the present invention, a display body including the display system according to any one of [1] to [7] above is provided.
[9] According to another aspect of the present invention, there is provided a method for manufacturing a display body including the display system according to any one of [1] to [7] above.
[10] According to another aspect of the present invention, the step of passing the light representing the image emitted through the polarizing member through the first λ/4 member; and passing the light representing the image through the first λ/4 member. passing the light that has passed through the half mirror and the first lens section; passing the light that has passed through the half mirror and the first lens section through a second λ/4 member; a step of reflecting the light that has passed through the /4 member toward the half mirror by a reflecting section including a reflective polarizing member; the step of allowing the reflective portion to pass through the member; The ellipticity of transmitted light with a wavelength of 380 nm to 700 nm is 0.72 or more, and linearly polarized light whose polarization direction forms an angle of 45° with respect to its slow axis is incident on the second λ/4 member. A display method is provided in which the ellipticity of transmitted light with a wavelength of 380 nm to 700 nm is 0.72 or more.
[2]上記[1]に記載の表示システムにおいて、上記第1のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長550nmの透過光の楕円率が、0.9以上であってよく、上記第2のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長550nmの透過光の楕円率が、0.9以上であってよい。
[3]上記[1]または[2]に記載の表示システムにおいて、上記第1のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長450nmの透過光の楕円率が、波長650nmの透過光の楕円率よりも大きくてよく、上記第2のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長450nmの透過光の楕円率が、波長650nmの透過光の楕円率よりも大きくてよい。
[4]上記[1]から[3]のいずれかに記載の表示システムにおいて、380nm~700nmの波長領域中、上記第1のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの透過光の楕円率が0.85以上である波長領域が占める割合が70%以上であってよく、380nm~700nmの波長領域中、上記第2のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの透過光の楕円率が0.85以上である波長領域が占める割合が70%以上であってよい。
[5]上記[1]から[4]のいずれかに記載の表示システムにおいて、上記第1のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの透過光が0.85以上の楕円率を示す波長領域の70%以上を、380nm~600nmの波長領域が占めてよく、上記第2のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの透過光が0.85以上の楕円率を示す波長領域の70%以上を、380nm~600nmの波長領域が占めてよい。
[6]上記[1]から[5]のいずれかに記載の表示システムにおいて、上記偏光部材を介して出射された光の偏光方向と上記反射型偏光部材の反射軸とが互いに略直交であってよい。
[7]上記[1]から[5]のいずれかに記載の表示システムにおいて、上記偏光部材を介して出射された光の偏光方向と上記反射型偏光部材の反射軸とが互いに略平行であってよい。
[8]本発明の別の局面によれば、上記[1]から[7]のいずれかに記載の表示システムを具備する表示体が提供される。
[9]本発明の別の局面によれば、上記[1]から[7]のいずれかに記載の表示システムを具備する表示体の製造方法が提供される。
[10]本発明の別の局面によれば、偏光部材を介して出射された画像を表す光を、第1のλ/4部材を通過させるステップと、上記第1のλ/4部材を通過した光を、ハーフミラーおよび第一レンズ部を通過させるステップと、上記ハーフミラーおよび上記第一レンズ部を通過した光を、第2のλ/4部材を通過させるステップと、上記第2のλ/4部材を通過した光を、反射型偏光部材を含む反射部で上記ハーフミラーに向けて反射させるステップと、上記反射部および上記ハーフミラーで反射させた光を、上記第2のλ/4部材により上記反射部を透過可能にするステップと、を有し、上記第1のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長380nm~700nmの透過光の楕円率が、0.72以上であり、上記第2のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長380nm~700nmの透過光の楕円率が、0.72以上である、表示方法が提供される。 [1] According to one aspect of the present invention, there is provided a display system for displaying an image to a user, comprising: a display element having a display surface that forwardly emits light representing an image via a polarizing member; a reflecting section that is disposed in front of the display element, includes a reflective polarizing member, and reflects light emitted from the display element; and a first lens that is disposed on the optical path between the display element and the reflective section. and a half mirror disposed between the display element and the first lens part, which transmits the light emitted from the display element and reflects the light reflected by the reflection part toward the reflection part. a first λ/4 member disposed on the optical path between the display element and the half mirror; and a second λ/4 member disposed on the optical path between the half mirror and the reflection section. 4 member, and the ellipticity of transmitted light with a wavelength of 380 nm to 700 nm when linearly polarized light whose polarization direction makes an angle of 45° with respect to the slow axis is incident on the first λ/4 member. is 0.72 or more, and when linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the second λ/4 member, the transmitted light with a wavelength of 380 nm to 700 nm is A display system is provided having an ellipticity of 0.72 or greater.
[2] In the display system according to [1] above, when linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the first λ/4 member, a wavelength of 550 nm is obtained. The ellipticity of the transmitted light may be 0.9 or more, and the wavelength when linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the second λ/4 member. The ellipticity of transmitted light at 550 nm may be 0.9 or more.
[3] In the display system according to [1] or [2] above, when linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the first λ/4 member. The ellipticity of transmitted light with a wavelength of 450 nm may be larger than that of transmitted light with a wavelength of 650 nm, and the polarization direction of the second λ/4 member makes an angle of 45° with respect to its slow axis. When linearly polarized light is incident, the ellipticity of transmitted light with a wavelength of 450 nm may be larger than the ellipticity of transmitted light with a wavelength of 650 nm.
[4] In the display system according to any one of [1] to [3] above, the first λ/4 member has a polarization direction of 45° with respect to its slow axis in the wavelength range of 380 nm to 700 nm. When linearly polarized light forming an angle of When linearly polarized light whose polarization direction makes an angle of 45° with respect to the slow axis is incident on a λ/4 member, the proportion of the wavelength range in which the ellipticity of transmitted light is 0.85 or more is 70% or more. It may be.
[5] In the display system according to any one of [1] to [4] above, linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the first λ/4 member. The wavelength range of 380 nm to 600 nm may account for 70% or more of the wavelength range in which transmitted light exhibits an ellipticity of 0.85 or more when the polarization direction is set to the second λ/4 member. The wavelength region of 380 nm to 600 nm may account for 70% or more of the wavelength region in which transmitted light exhibits an ellipticity of 0.85 or more when linearly polarized light is incident at an angle of 45° with respect to the axis.
[6] In the display system according to any one of [1] to [5] above, the polarization direction of the light emitted through the polarizing member and the reflection axis of the reflective polarizing member are substantially orthogonal to each other. It's fine.
[7] In the display system according to any one of [1] to [5] above, the polarization direction of the light emitted through the polarizing member and the reflection axis of the reflective polarizing member are substantially parallel to each other. It's fine.
[8] According to another aspect of the present invention, a display body including the display system according to any one of [1] to [7] above is provided.
[9] According to another aspect of the present invention, there is provided a method for manufacturing a display body including the display system according to any one of [1] to [7] above.
[10] According to another aspect of the present invention, the step of passing the light representing the image emitted through the polarizing member through the first λ/4 member; and passing the light representing the image through the first λ/4 member. passing the light that has passed through the half mirror and the first lens section; passing the light that has passed through the half mirror and the first lens section through a second λ/4 member; a step of reflecting the light that has passed through the /4 member toward the half mirror by a reflecting section including a reflective polarizing member; the step of allowing the reflective portion to pass through the member; The ellipticity of transmitted light with a wavelength of 380 nm to 700 nm is 0.72 or more, and linearly polarized light whose polarization direction forms an angle of 45° with respect to its slow axis is incident on the second λ/4 member. A display method is provided in which the ellipticity of transmitted light with a wavelength of 380 nm to 700 nm is 0.72 or more.
VRゴーグルにおいては、ディスプレイに表示された画像がレンズで拡大されて視認者に視認されることから、各構成部材におけるわずかな特性のブレが表示特性に大きく影響し得る。これに対し、本発明の実施形態による表示システムによれば、所定の光学特性を有する構成部材を用いることによりVRゴーグルの高精細化を実現することができる。
In VR goggles, the image displayed on the display is magnified by a lens and viewed by the viewer, so slight fluctuations in the characteristics of each component can greatly affect the display characteristics. On the other hand, according to the display system according to the embodiment of the present invention, high definition of VR goggles can be realized by using constituent members having predetermined optical characteristics.
以下、図面を参照して本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。図面は説明をより明確にするため、実施の形態に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、図面については、同一または同等の要素には同一の符号を付し、重複する説明は省略することがある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments. In order to make the explanation more clear, the drawings may schematically represent the width, thickness, shape, etc. of each part compared to the embodiment, but this is just an example and does not limit the interpretation of the present invention. It's not a thing. Further, in the drawings, the same or equivalent elements are denoted by the same reference numerals, and overlapping explanations may be omitted.
(用語および記号の定義)
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
本明細書において角度に言及するときは、特段の言及がない限り、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。また、本明細書において、「略平行」は、0°±10°の範囲を包含し、好ましくは0°±5°の範囲内であり、より好ましくは0°±3°の範囲内であり、さらに好ましくは0°±1°の範囲内である。「略直交」は、90°±10°の範囲を包含し、好ましくは90°±5°の範囲内であり、より好ましくは90°±3°の範囲内であり、さらに好ましくは90°±1°の範囲内である。 (Definition of terms and symbols)
Definitions of terms and symbols used herein are as follows.
(1) Refractive index (nx, ny, nz)
"nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny" is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
"Re(λ)" is an in-plane retardation measured with light having a wavelength of λnm at 23°C. For example, "Re(550)" is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C. Re(λ) is determined by the formula: Re(λ)=(nx−ny)×d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in thickness direction (Rth)
"Rth (λ)" is a retardation in the thickness direction measured with light having a wavelength of λ nm at 23°C. For example, "Rth (550)" is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C. Rth(λ) is determined by the formula: Rth(λ)=(nx−nz)×d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is determined by Nz=Rth/Re.
(5) Angle When an angle is referred to in this specification, unless otherwise specified, the angle includes both clockwise and counterclockwise directions with respect to the reference direction. Therefore, for example, "45°" means ±45°. Furthermore, in this specification, "substantially parallel" includes a range of 0°±10°, preferably within a range of 0°±5°, and more preferably within a range of 0°±3°. , more preferably within the range of 0°±1°. "Substantially orthogonal" includes a range of 90°±10°, preferably within a range of 90°±5°, more preferably within a range of 90°±3°, and even more preferably 90°±3°. It is within a range of 1°.
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
本明細書において角度に言及するときは、特段の言及がない限り、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。また、本明細書において、「略平行」は、0°±10°の範囲を包含し、好ましくは0°±5°の範囲内であり、より好ましくは0°±3°の範囲内であり、さらに好ましくは0°±1°の範囲内である。「略直交」は、90°±10°の範囲を包含し、好ましくは90°±5°の範囲内であり、より好ましくは90°±3°の範囲内であり、さらに好ましくは90°±1°の範囲内である。 (Definition of terms and symbols)
Definitions of terms and symbols used herein are as follows.
(1) Refractive index (nx, ny, nz)
"nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny" is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
"Re(λ)" is an in-plane retardation measured with light having a wavelength of λnm at 23°C. For example, "Re(550)" is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C. Re(λ) is determined by the formula: Re(λ)=(nx−ny)×d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in thickness direction (Rth)
"Rth (λ)" is a retardation in the thickness direction measured with light having a wavelength of λ nm at 23°C. For example, "Rth (550)" is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C. Rth(λ) is determined by the formula: Rth(λ)=(nx−nz)×d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is determined by Nz=Rth/Re.
(5) Angle When an angle is referred to in this specification, unless otherwise specified, the angle includes both clockwise and counterclockwise directions with respect to the reference direction. Therefore, for example, "45°" means ±45°. Furthermore, in this specification, "substantially parallel" includes a range of 0°±10°, preferably within a range of 0°±5°, and more preferably within a range of 0°±3°. , more preferably within the range of 0°±1°. "Substantially orthogonal" includes a range of 90°±10°, preferably within a range of 90°±5°, more preferably within a range of 90°±3°, and even more preferably 90°±3°. It is within a range of 1°.
図1は本発明の1つの実施形態に係る表示システムの概略の構成を示す模式図である。図1では、表示システム2の各構成要素の配置および形状等を模式的に図示している。表示システム2は、表示素子12と、反射型偏光部材を含む反射部14と、第一レンズ部16と、ハーフミラー18と、第一位相差部材20と、第二位相差部材22と、第二レンズ部24とを備えている。反射部14は、表示素子12の表示面12a側である前方に配置され、表示素子12から出射された光を反射し得る。第一レンズ部16は表示素子12と反射部14との間の光路上に配置され、ハーフミラー18は表示素子12と第一レンズ部16との間に配置されている。第一位相差部材20は表示素子12とハーフミラー18との間の光路上に配置され、第二位相差部材22はハーフミラー18と反射部14との間の光路上に配置されている。
FIG. 1 is a schematic diagram showing the general configuration of a display system according to one embodiment of the present invention. FIG. 1 schematically shows the arrangement, shape, etc. of each component of the display system 2. As shown in FIG. The display system 2 includes a display element 12, a reflection section 14 including a reflective polarizing member, a first lens section 16, a half mirror 18, a first retardation member 20, a second retardation member 22, and a second retardation member 22. It is equipped with two lens parts 24. The reflecting section 14 is arranged at the front of the display element 12 on the display surface 12a side, and can reflect the light emitted from the display element 12. The first lens section 16 is arranged on the optical path between the display element 12 and the reflection section 14, and the half mirror 18 is arranged between the display element 12 and the first lens section 16. The first retardation member 20 is arranged on the optical path between the display element 12 and the half mirror 18, and the second retardation member 22 is arranged on the optical path between the half mirror 18 and the reflection section 14.
表示素子12は、例えば、液晶ディスプレイまたは有機ELディスプレイであり、画像を表示するための表示面12aを有している。表示面12aから出射される光は、例えば、表示素子12に含まれ得る偏光部材(代表的には、偏光フィルム)を通過して出射され、第1の直線偏光とされている。
The display element 12 is, for example, a liquid crystal display or an organic EL display, and has a display surface 12a for displaying images. The light emitted from the display surface 12a passes through a polarizing member (typically, a polarizing film) that may be included in the display element 12, and is emitted as first linearly polarized light.
第一位相差部材20は、第一位相差部材20に入射した第1の直線偏光を第1の円偏光に変換し得るλ/4部材である(以下、第一位相差部材を第1のλ/4部材と称する場合がある)。なお、第一位相差部材20は、表示素子12に一体に設けられてもよい。
The first retardation member 20 is a λ/4 member that can convert the first linearly polarized light incident on the first retardation member 20 into first circularly polarized light (hereinafter, the first retardation member is referred to as the first (sometimes referred to as a λ/4 member). Note that the first retardation member 20 may be provided integrally with the display element 12.
ハーフミラー18は、表示素子12から出射された光を透過させ、反射部14で反射された光を反射部14に向けて反射させる。ハーフミラー18は、第一レンズ部16に一体に設けられている。
The half mirror 18 transmits the light emitted from the display element 12 and reflects the light reflected by the reflection section 14 toward the reflection section 14 . The half mirror 18 is provided integrally with the first lens section 16.
第二位相差部材22は、反射部14およびハーフミラー18で反射させた光を、反射型偏光部材を含む反射部14を透過させ得るλ/4部材である(以下、第二位相差部材を第2のλ/4部材と称する場合がある)。なお、第二位相差部材22は、第一レンズ部16に一体に設けられてもよい。
The second retardation member 22 is a λ/4 member that can transmit the light reflected by the reflection part 14 and the half mirror 18 through the reflection part 14 including a reflective polarizing member (hereinafter referred to as the second retardation member). (sometimes referred to as the second λ/4 member). Note that the second retardation member 22 may be provided integrally with the first lens portion 16.
第1のλ/4部材20から出射された第1の円偏光は、ハーフミラー18および第一レンズ部16を通過し、第2のλ/4部材22により第2の直線偏光に変換される。第2のλ/4部材22から出射された第2の直線偏光は、反射部14に含まれる反射型偏光部材を透過せずにハーフミラー18に向けて反射される。このとき、反射部14に含まれる反射型偏光部材に入射した第2の直線偏光の偏光方向は、反射型偏光部材の反射軸と同方向である。そのため、反射部14に入射した第2の直線偏光は、反射型偏光部材で反射される。
The first circularly polarized light emitted from the first λ/4 member 20 passes through the half mirror 18 and the first lens section 16, and is converted into second linearly polarized light by the second λ/4 member 22. . The second linearly polarized light emitted from the second λ/4 member 22 is reflected toward the half mirror 18 without passing through the reflective polarizing member included in the reflecting section 14 . At this time, the polarization direction of the second linearly polarized light incident on the reflective polarizing member included in the reflecting section 14 is the same direction as the reflection axis of the reflective polarizing member. Therefore, the second linearly polarized light incident on the reflection section 14 is reflected by the reflective polarizing member.
反射部14で反射された第2の直線偏光は第2のλ/4部材22により第2の円偏光に変換され、第2のλ/4部材22から出射された第2の円偏光は第一レンズ部16を通過してハーフミラー18で反射される。ハーフミラー18で反射された円偏光は、第一レンズ部16を通過し、第2のλ/4部材22により第3の直線偏光に変換される。第3の直線偏光は、反射部14に含まれる反射型偏光部材を透過する。このとき、反射部14に含まれる反射型偏光部材に入射した第3の直線偏光の偏光方向は、反射型偏光部材の透過軸と同方向である。そのため、反射部14に入射した第3の直線偏光は、反射型偏光部材を透過する。
The second linearly polarized light reflected by the reflection section 14 is converted into second circularly polarized light by the second λ/4 member 22, and the second circularly polarized light emitted from the second λ/4 member 22 is converted into second circularly polarized light by the second λ/4 member 22. The light passes through one lens section 16 and is reflected by a half mirror 18. The circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second λ/4 member 22. The third linearly polarized light passes through the reflective polarizing member included in the reflecting section 14. At this time, the polarization direction of the third linearly polarized light incident on the reflective polarizing member included in the reflecting section 14 is the same direction as the transmission axis of the reflective polarizing member. Therefore, the third linearly polarized light that has entered the reflecting section 14 is transmitted through the reflective polarizing member.
反射部14を透過した光は、第二レンズ部24を通過して、ユーザの目26に入射する。
The light that has passed through the reflection section 14 passes through the second lens section 24 and enters the user's eyes 26 .
例えば、表示素子12に含まれる偏光部材の吸収軸と反射部14に含まれる反射型偏光部材の反射軸とは、互いに略平行に配置されてもよいし、略直交に配置されてもよい。表示素子12に含まれる偏光部材の吸収軸と第一位相差部材20の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。表示素子12に含まれる偏光部材の吸収軸と第二位相差部材22の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。
For example, the absorption axis of the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member included in the reflecting section 14 may be arranged substantially parallel to each other, or may be arranged substantially perpendicular to each other. The angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the first retardation member 20 is, for example, 40° to 50°, may be 42° to 48°, and is about 45°. It may be °. The angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the second retardation member 22 is, for example, 40° to 50°, may be 42° to 48°, and is about 45°. It may be °.
第一位相差部材20の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。
The in-plane retardation Re (550) of the first retardation member 20 is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. .
第一位相差部材20は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第一位相差部材20のRe(450)/Re(550)は、例えば1未満であり、0.95以下であってよく、さらには0.90未満、さらには0.85以下であってもよい。第一位相差部材20のRe(450)/Re(550)は、例えば0.75以上である。
The first retardation member 20 preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light. Re(450)/Re(550) of the first retardation member 20 is, for example, less than 1 and may be 0.95 or less, further less than 0.90, and even 0.85 or less. good. Re(450)/Re(550) of the first retardation member 20 is, for example, 0.75 or more.
1つの実施形態において、第一位相差部材20は、Re(400)/Re(550)<0.85、Re(650)/Re(550)>1.03、およびRe(750)/Re(550)>1.05を全て満たす。第一位相差部材20は、0.65<Re(400)/Re(550)<0.80(好ましくは、0.7<Re(400)/Re(550)<0.75)、1.0<Re(650)/Re(550)<1.25(好ましくは、1.05<Re(650)/Re(550)<1.20)、および1.05<Re(750)/Re(550)<1.40(好ましくは、1.08<Re(750)/Re(550)<1.36)から選択される少なくとも1つを満たすことが好ましく、より好ましくは少なくとも2つを満たし、さらに好ましくは全てを満たす。
In one embodiment, the first retardation member 20 has Re(400)/Re(550)<0.85, Re(650)/Re(550)>1.03, and Re(750)/Re( 550)>1.05. The first retardation member 20 has 0.65<Re(400)/Re(550)<0.80 (preferably 0.7<Re(400)/Re(550)<0.75), 1. 0<Re(650)/Re(550)<1.25 (preferably 1.05<Re(650)/Re(550)<1.20) and 1.05<Re(750)/Re( 550)<1.40 (preferably 1.08<Re(750)/Re(550)<1.36), more preferably at least two. More preferably, all of them are satisfied.
第一位相差部材20は、好ましくは屈折率特性がnx>ny≧nzの関係を示す。ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。第一位相差部材20のNz係数は、好ましくは0.9~3、より好ましくは0.9~2.5、さらに好ましくは0.9~1.5、特に好ましくは0.9~1.3である。
The first retardation member 20 preferably exhibits a refractive index characteristic of nx>ny≧nz. Here, "ny=nz" includes not only the case where ny and nz are completely equal, but also the case where ny and nz are substantially equal. Therefore, there may be a case where ny<nz within a range that does not impair the effects of the present invention. The Nz coefficient of the first retardation member 20 is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, particularly preferably 0.9 to 1. It is 3.
第一位相差部材20に偏光方向が第一位相差部材20の遅相軸に対して45°の角度をなす直線偏光を入射させたときの透過光は、380nm~700nmの波長領域にわたって、例えば0.72以上、好ましくは0.75以上、より好ましくは0.78以上の楕円率を示す。上記透過光の楕円率の上限は1である。なお、本明細書中、第一位相差部材に偏光方向が第一位相差部材の遅相軸に対して45°の角度をなす直線偏光を入射させたときの透過光の楕円率を、「第一位相差部材の楕円率」と称する場合がある。よって、例えば、「第一位相差部材の波長λnmにおける楕円率」は、上記透過光の波長λnmの光の楕円率を意味し、「第一位相差部材がX以上の楕円率を示す」は、上記透過光の楕円率がX以上であることを意味する。後述する第二位相差部材についても同様である。可視光の広波長領域にわたって上記透過光の楕円率が高い第一位相差部材を用いることにより、表示ムラ、ゴースト等を抑制することができる。
When linearly polarized light whose polarization direction makes an angle of 45° with respect to the slow axis of the first retardation member 20 is incident on the first retardation member 20, the transmitted light is transmitted over a wavelength range of 380 nm to 700 nm, for example. It exhibits an ellipticity of 0.72 or more, preferably 0.75 or more, more preferably 0.78 or more. The upper limit of the ellipticity of the transmitted light is 1. In this specification, the ellipticity of transmitted light when linearly polarized light whose polarization direction forms an angle of 45° with respect to the slow axis of the first retardation member is incident on the first retardation member is defined as “ The ellipticity of the first retardation member may be referred to as "the ellipticity of the first retardation member". Therefore, for example, "the ellipticity of the first retardation member at the wavelength λnm" means the ellipticity of the transmitted light with the wavelength λnm, and "the first retardation member exhibits an ellipticity of X or more" means , means that the ellipticity of the transmitted light is X or more. The same applies to the second retardation member described later. By using the first retardation member having a high ellipticity of the transmitted light over a wide wavelength range of visible light, display unevenness, ghosts, etc. can be suppressed.
380nm~700nmの波長領域中、第一位相差部材20が0.85以上の楕円率を示す波長領域が占める割合は、例えば70%以上であり、好ましくは75%以上、より好ましくは80%以上である。当該割合は、例えば100%以下であってもよい。このような第一位相差部材20を用いることにより、表示ムラ、ゴースト等の抑制効果がより好適に得られ得る。
In the wavelength range of 380 nm to 700 nm, the proportion of the wavelength range in which the first retardation member 20 exhibits an ellipticity of 0.85 or more is, for example, 70% or more, preferably 75% or more, and more preferably 80% or more. It is. The ratio may be, for example, 100% or less. By using such a first retardation member 20, the effect of suppressing display unevenness, ghosting, etc. can be more suitably obtained.
1つの実施形態において、第一位相差部材20が0.85以上の楕円率を示す波長領域の例えば70%以上、好ましくは71%~75%、より好ましくは76%~80%を380nm~600nmの波長領域が占める。第一位相差部材20が0.85以上の楕円率を示す波長領域の大半が380nm~600nmの波長領域であることにより、表示ムラ、ゴースト等の抑制効果がより好適に得られ得る。
In one embodiment, for example, 70% or more, preferably 71% to 75%, more preferably 76% to 80% of the wavelength range in which the first retardation member 20 exhibits an ellipticity of 0.85 or more is 380 nm to 600 nm. The wavelength range is occupied by Since most of the wavelength range in which the first retardation member 20 exhibits an ellipticity of 0.85 or more is in the wavelength range of 380 nm to 600 nm, the effect of suppressing display unevenness, ghosting, etc. can be more preferably obtained.
第一位相差部材20の波長550nmにおける楕円率(楕円率(550))は、例えば0.9以上であり、好ましくは0.93以上、より好ましくは0.95~1である。このような楕円率(550)を満たすことにより、光効率の低下が抑制され得る。
The ellipticity (ellipticity (550)) of the first retardation member 20 at a wavelength of 550 nm is, for example, 0.9 or more, preferably 0.93 or more, and more preferably 0.95 to 1. By satisfying such an ellipticity (550), a decrease in light efficiency can be suppressed.
1つの実施形態において、第一位相差部材20の波長450nmにおける楕円率(楕円率(450))は、波長650nmにおける楕円率(楕円率(650))よりも大きい。楕円率(450)/楕円率(650)は、例えば1を超え、好ましくは1.01~1.08である。楕円率(450)と楕円率(650)とがこのような第一位相差部材20を用いることにより、短波長の光漏れ(例えば、青抜け)が抑制され得る。
In one embodiment, the ellipticity (ellipticity (450)) of the first retardation member 20 at a wavelength of 450 nm is larger than the ellipticity (ellipticity (650)) at a wavelength of 650 nm. Ellipticity (450)/ellipticity (650) is, for example, greater than 1, preferably 1.01 to 1.08. By using the first retardation member 20 having such an ellipticity (450) and an ellipticity (650), short wavelength light leakage (for example, blue bleeding) can be suppressed.
第一位相差部材20のISC値は、例えば50以下であり、好ましくは40以下であり、より好ましくは30以下であり、さらに好ましくは20以下である。第一位相差部材20がこのようなISC値を満足することにより、視認性に優れた表示システムを実現することができる。例えば、このようなISC値を満足することにより、面内位相差の均一性を向上させることができ、結果として、優れた表示特性を有する表示システムが得られ得る。ISC値は、平滑性またはムラの指標となり得る。
The ISC value of the first retardation member 20 is, for example, 50 or less, preferably 40 or less, more preferably 30 or less, and still more preferably 20 or less. When the first retardation member 20 satisfies such an ISC value, a display system with excellent visibility can be realized. For example, by satisfying such an ISC value, the uniformity of in-plane retardation can be improved, and as a result, a display system with excellent display characteristics can be obtained. The ISC value can be an indicator of smoothness or unevenness.
第一位相差部材20の厚みのばらつきは、好ましくは1μm以下であり、より好ましくは0.8μm以下であり、さらに好ましくは0.6μm以下であり、さらにより好ましくは0.4μm以下である。このような厚みのばらつきによれば、例えば、上記ISC値を良好に達成し得る。ここで、厚みのばらつきは、位相差部材の面内に位置する第一部位の厚みと、第一部位から任意の方向(例えば、上方向、下方向、左方向および右方向)に、所定の間隔(例えば、5mm~15mm)をあけた位置の厚みを測定することにより求めることができる。
The variation in the thickness of the first retardation member 20 is preferably 1 μm or less, more preferably 0.8 μm or less, still more preferably 0.6 μm or less, and even more preferably 0.4 μm or less. With such thickness variations, for example, the above ISC value can be achieved satisfactorily. Here, the thickness variation is defined as the thickness of the first part located in the plane of the retardation member and the predetermined thickness in any direction from the first part (for example, upward, downward, leftward, and rightward). It can be determined by measuring the thickness at positions spaced apart (for example, 5 mm to 15 mm).
第一位相差部材20の単位厚みあたりのISC値は、好ましくは1以下であり、より好ましくは0.7以下であり、さらに好ましくは0.5以下である。単位厚みあたりのISC値は、例えば、ISC値を厚み(単位:μm)で除することにより求めることができる。
The ISC value per unit thickness of the first retardation member 20 is preferably 1 or less, more preferably 0.7 or less, and still more preferably 0.5 or less. The ISC value per unit thickness can be determined, for example, by dividing the ISC value by the thickness (unit: μm).
第一位相差部材20は、上記特性を満足し得る任意の適切な材料で形成される。第一位相差部材20は、例えば、樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層であり得る。なお、樹脂フィルムの延伸フィルムを位相差フィルムと称する場合がある。
The first retardation member 20 is formed of any suitable material that can satisfy the above characteristics. The first retardation member 20 may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound. Note that the stretched film of the resin film is sometimes referred to as a retardation film.
上記樹脂フィルムに含まれる樹脂としては、ポリカーボネート系樹脂、ポリエステルカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアセタール系樹脂、ポリアリレート系樹脂、環状オレフィン系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂等が挙げられる。これらの樹脂は、単独で用いてもよく、組み合わせて(例えば、ブレンド、共重合)用いてもよい。第一位相差部材20が逆分散波長特性を示す場合、ポリカーボネート系樹脂またはポリエステルカーボネート系樹脂(以下、単にポリカーボネート系樹脂と称する場合がある)を含む樹脂フィルムが好適に用いられ得る。
The resins contained in the above resin film include polycarbonate resin, polyester carbonate resin, polyester resin, polyvinyl acetal resin, polyarylate resin, cyclic olefin resin, cellulose resin, polyvinyl alcohol resin, and polyamide resin. , polyimide resin, polyether resin, polystyrene resin, acrylic resin, and the like. These resins may be used alone or in combination (for example, blended or copolymerized). When the first retardation member 20 exhibits reverse dispersion wavelength characteristics, a resin film containing a polycarbonate resin or a polyester carbonate resin (hereinafter sometimes simply referred to as a polycarbonate resin) may be suitably used.
上記ポリカーボネート系樹脂としては、本発明の効果が得られる限りにおいて、任意の適切なポリカーボネート系樹脂を用いることができる。例えば、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。好ましくは、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジメタノールに由来する構造単位ならびに/あるいはジ、トリまたはポリエチレングリコールに由来する構造単位と、を含み;さらに好ましくは、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、ジ、トリまたはポリエチレングリコールに由来する構造単位と、を含む。ポリカーボネート系樹脂は、必要に応じてその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。なお、第一位相差部材に好適に用いられ得るポリカーボネート系樹脂および第一位相差部材の形成方法の詳細は、例えば、特開2014-10291号公報、特開2014-26266号公報、特開2015-212816号公報、特開2015-212817号公報、特開2015-212818号公報に記載されており、これらの公報の記載は本明細書に参考として援用される。
Any suitable polycarbonate resin can be used as the polycarbonate resin as long as the effects of the present invention can be obtained. For example, polycarbonate resins contain structural units derived from fluorene-based dihydroxy compounds, structural units derived from isosorbide-based dihydroxy compounds, alicyclic diols, alicyclic dimethanols, di-, tri-, or polyethylene glycols, and alkylene-based dihydroxy compounds. a structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol. Preferably, the polycarbonate resin contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and/or a di, tri, or polyethylene glycol. More preferably, it contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, and a structural unit derived from di, tri or polyethylene glycol. . The polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary. Note that details of the polycarbonate-based resin that can be suitably used for the first retardation member and the method for forming the first retardation member can be found, for example, in JP-A No. 2014-10291, JP-A No. 2014-26266, and JP-A No. 2015-2015. It is described in JP-A-212816, JP-A-2015-212817, and JP-A-2015-212818, and the descriptions of these publications are incorporated herein by reference.
上記液晶化合物の配向固化層は、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層である。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。第一位相差部材においては、代表的には、棒状の液晶化合物が第一位相差部材の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。棒状の液晶化合物として、例えば、液晶ポリマーおよび液晶モノマーが挙げられる。液晶化合物は、好ましくは、重合可能である。液晶化合物が重合可能であると、液晶化合物を配向させた後に重合させることで、液晶化合物の配向状態を固定できる。
The liquid crystal compound alignment and solidification layer is a layer in which the liquid crystal compound is aligned in a predetermined direction within the layer, and the alignment state is fixed. In addition, the "alignment hardened layer" is a concept that includes an orientation hardened layer obtained by curing a liquid crystal monomer as described below. In the first retardation member, rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the first retardation member (homogeneous alignment). Examples of rod-shaped liquid crystal compounds include liquid crystal polymers and liquid crystal monomers. The liquid crystal compound is preferably polymerizable. If the liquid crystal compound is polymerizable, the alignment state of the liquid crystal compound can be fixed by aligning the liquid crystal compound and then polymerizing it.
上記液晶化合物の配向固化層(液晶配向固化層)は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。
The liquid crystal compound alignment and solidification layer (liquid crystal alignment solidification layer) is produced by subjecting the surface of a predetermined base material to an alignment treatment, applying a coating liquid containing the liquid crystal compound to the surface, and subjecting the liquid crystal compound to the alignment treatment. It can be formed by orienting it in a corresponding direction and fixing the orientation state. Any suitable orientation treatment may be employed as the orientation treatment. Specifically, mechanical alignment treatment, physical alignment treatment, and chemical alignment treatment can be mentioned. Specific examples of mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of physical alignment treatment include magnetic field alignment treatment and electric field alignment treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo alignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。
The alignment of the liquid crystal compound is carried out by treatment at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound. By performing such temperature treatment, the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is oriented in accordance with the orientation treatment direction of the substrate surface.
配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性または架橋性である場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。
In one embodiment, the alignment state is fixed by cooling the liquid crystal compound aligned as described above. When the liquid crystal compound is polymerizable or crosslinkable, the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to polymerization treatment or crosslinking treatment.
上記液晶化合物としては、任意の適切な液晶ポリマーおよび/または液晶モノマーが用いられる。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。液晶化合物の具体例および液晶配向固化層の作製方法は、例えば、特開2006-163343号公報、特開2006-178389号公報、国際公開第2018/123551号公報に記載されている。これらの公報の記載は本明細書に参考として援用される。
Any suitable liquid crystal polymer and/or liquid crystal monomer can be used as the liquid crystal compound. The liquid crystal polymer and the liquid crystal monomer may be used alone or in combination. Specific examples of liquid crystal compounds and methods for producing liquid crystal alignment solidified layers are described in, for example, JP 2006-163343A, JP 2006-178389A, and WO 2018/123551A. The descriptions of these publications are incorporated herein by reference.
第一位相差部材20の厚みは、好ましくは100μm以下である。具体的には、樹脂フィルムの延伸フィルムで構成される第一位相差部材20の厚みは、例えば10μm~100μmであり、好ましくは10μm~70μm、より好ましくは10μm~60μm、さらに好ましくは20μm~50μmである。また、液晶配向固化層で構成される第一位相差部材20の厚みは、例えば1μm~10μmであり、好ましくは1μm~8μm、より好ましくは1μm~6μm、さらに好ましくは1μm~4μmである。
The thickness of the first retardation member 20 is preferably 100 μm or less. Specifically, the thickness of the first retardation member 20 made of a stretched resin film is, for example, 10 μm to 100 μm, preferably 10 μm to 70 μm, more preferably 10 μm to 60 μm, and still more preferably 20 μm to 50 μm. It is. Further, the thickness of the first retardation member 20 composed of the liquid crystal alignment solidified layer is, for example, 1 μm to 10 μm, preferably 1 μm to 8 μm, more preferably 1 μm to 6 μm, and even more preferably 1 μm to 4 μm.
第二位相差部材22の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。
The in-plane retardation Re (550) of the second retardation member 22 is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. .
第二位相差部材22は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第二位相差部材22のRe(450)/Re(550)は、例えば1未満であり、0.95以下であってよく、さらには0.90未満、さらには0.85以下であってもよい。第二位相差部材22のRe(450)/Re(550)は、例えば0.75以上である。
The second retardation member 22 preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light. Re(450)/Re(550) of the second retardation member 22 is, for example, less than 1 and may be 0.95 or less, further less than 0.90, and even 0.85 or less. good. Re(450)/Re(550) of the second retardation member 22 is, for example, 0.75 or more.
1つの実施形態において、第二位相差部材22は、Re(400)/Re(550)<0.85、Re(650)/Re(550)>1.03、およびRe(750)/Re(550)>1.05を全て満たす。第二位相差部材22は、0.65<Re(400)/Re(550)<0.80(好ましくは、0.7<Re(400)/Re(550)<0.75)、1.0<Re(650)/Re(550)<1.25(好ましくは、1.05<Re(650)/Re(550)<1.20)、および1.05<Re(750)/Re(550)<1.40(好ましくは、1.08<Re(750)/Re(550)<1.36)から選択される少なくとも1つを満たすことが好ましく、より好ましくは少なくとも2つを満たし、さらに好ましくは全てを満たす。
In one embodiment, the second retardation member 22 has Re(400)/Re(550)<0.85, Re(650)/Re(550)>1.03, and Re(750)/Re( 550)>1.05. The second retardation member 22 has 0.65<Re(400)/Re(550)<0.80 (preferably 0.7<Re(400)/Re(550)<0.75), 1. 0<Re(650)/Re(550)<1.25 (preferably 1.05<Re(650)/Re(550)<1.20) and 1.05<Re(750)/Re( 550)<1.40 (preferably 1.08<Re(750)/Re(550)<1.36), more preferably at least two. More preferably, all of them are satisfied.
第二位相差部材22は、好ましくは屈折率特性がnx>ny≧nzの関係を示す。ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。第二位相差部材22のNz係数は、好ましくは0.9~3、より好ましくは0.9~2.5、さらに好ましくは0.9~1.5、特に好ましくは0.9~1.3である。
The second retardation member 22 preferably exhibits a refractive index characteristic of nx>ny≧nz. Here, "ny=nz" includes not only the case where ny and nz are completely equal, but also the case where ny and nz are substantially equal. Therefore, there may be a case where ny<nz within a range that does not impair the effects of the present invention. The Nz coefficient of the second retardation member 22 is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, particularly preferably 0.9 to 1. It is 3.
第二位相差部材22に偏光方向が第一位相差部材20の遅相軸に対して45°の角度をなす直線偏光を入射させたときの透過光は、380nm~700nmの波長領域にわたって、例えば0.72以上、好ましくは0.75以上、より好ましくは0.78以上の楕円率を示す。上記透過光の楕円率の上限は1である。可視光の広波長領域にわたって上記透過光の楕円率が高い第二位相差部材22を用いることにより、表示ムラ、ゴースト等を抑制することができる。
When linearly polarized light whose polarization direction makes an angle of 45° with respect to the slow axis of the first retardation member 20 is incident on the second retardation member 22, the transmitted light is transmitted over a wavelength range of 380 nm to 700 nm, for example. It exhibits an ellipticity of 0.72 or more, preferably 0.75 or more, more preferably 0.78 or more. The upper limit of the ellipticity of the transmitted light is 1. By using the second retardation member 22 having a high ellipticity of the transmitted light over a wide wavelength range of visible light, display unevenness, ghosts, etc. can be suppressed.
380nm~700nmの波長領域中、第二位相差部材22が0.85以上の楕円率を示す波長領域が占める割合は、例えば70%以上であり、好ましくは75%以上、より好ましくは80%以上である。当該割合は100%であってもよい。このような第二位相差部材22を用いることにより、表示ムラ、ゴースト等の抑制効果がより好適に得られ得る。
In the wavelength region of 380 nm to 700 nm, the proportion of the wavelength region in which the second retardation member 22 exhibits an ellipticity of 0.85 or more is, for example, 70% or more, preferably 75% or more, more preferably 80% or more. It is. The ratio may be 100%. By using such a second retardation member 22, the effect of suppressing display unevenness, ghosting, etc. can be more suitably obtained.
1つの実施形態において、第二位相差部材22が0.85以上の楕円率を示す波長領域の例えば70%以上、好ましくは71%~75%、より好ましくは76%~80%を380nm~600nmの波長領域が占める。第二位相差部材22が0.85以上の楕円率を示す波長領域の大半が380nm~600nmの波長領域であることにより、表示ムラ、ゴースト等の抑制効果がより好適に得られ得る。
In one embodiment, for example, 70% or more, preferably 71% to 75%, more preferably 76% to 80% of the wavelength range in which the second retardation member 22 exhibits an ellipticity of 0.85 or more is 380 nm to 600 nm. The wavelength range is occupied by Since most of the wavelength range in which the second retardation member 22 exhibits an ellipticity of 0.85 or more is in the wavelength range of 380 nm to 600 nm, the effect of suppressing display unevenness, ghosting, etc. can be more preferably obtained.
第二位相差部材22の楕円率(550)は、例えば0.9以上であり、好ましくは0.93以上、より好ましくは0.95~1である。このような楕円率(550)を満たすことにより、光効率の低下が抑制され得る。
The ellipticity (550) of the second retardation member 22 is, for example, 0.9 or more, preferably 0.93 or more, and more preferably 0.95 to 1. By satisfying such an ellipticity (550), a decrease in light efficiency can be suppressed.
1つの実施形態において、第二位相差部材22の楕円率(450)は、楕円率(650)よりも大きい。楕円率(450)/楕円率(650)は、例えば1を超え、好ましくは1.01~1.08である。このような第二位相差部材22を用いることにより、短波長の光漏れ(例えば、青抜け)が抑制され得る。
In one embodiment, the ellipticity (450) of the second retardation member 22 is larger than the ellipticity (650). Ellipticity (450)/ellipticity (650) is, for example, greater than 1, preferably 1.01 to 1.08. By using such a second retardation member 22, short wavelength light leakage (for example, blue light leakage) can be suppressed.
第二位相差部材22のISC値は、例えば50以下であり、好ましくは40以下であり、より好ましくは30以下であり、さらに好ましくは20以下である。第二位相差部材22がこのようなISC値を満足することにより、視認性に優れた表示システムを実現することができる。例えば、このようなISC値を満足することにより、面内位相差の均一性を向上させることができ、結果として、優れた表示特性を有する表示システムが得られ得る。ISC値は、平滑性またはムラの指標となり得る。
The ISC value of the second retardation member 22 is, for example, 50 or less, preferably 40 or less, more preferably 30 or less, and still more preferably 20 or less. When the second retardation member 22 satisfies such an ISC value, a display system with excellent visibility can be realized. For example, by satisfying such an ISC value, the uniformity of in-plane retardation can be improved, and as a result, a display system with excellent display characteristics can be obtained. The ISC value can be an indicator of smoothness or unevenness.
第二位相差部材22の厚みのばらつきは、好ましくは1μm以下であり、より好ましくは0.8μm以下であり、さらに好ましくは0.6μm以下であり、さらにより好ましくは0.4μm以下である。このような厚みのばらつきによれば、例えば、上記ISC値を良好に達成し得る。
The variation in the thickness of the second retardation member 22 is preferably 1 μm or less, more preferably 0.8 μm or less, still more preferably 0.6 μm or less, and even more preferably 0.4 μm or less. With such thickness variations, for example, the above ISC value can be achieved satisfactorily.
第二位相差部材22の単位厚みあたりのISC値は、好ましくは1以下であり、より好ましくは0.7以下であり、さらに好ましくは0.5以下である。
The ISC value per unit thickness of the second retardation member 22 is preferably 1 or less, more preferably 0.7 or less, and even more preferably 0.5 or less.
第二位相差部材22は、上記特性を満足し得る任意の適切な材料で形成される。第二位相差部材22は、例えば、樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層であり得る。樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層で構成される第二位相差部材22については、第一位相差部材20と同様の説明を適用することができる。第一位相差部材20と第二位相差部材22とは、同じ構成(形成材料、厚み、光学特性等)の部材であってもよく、異なる構成の部材であってもよい。
The second retardation member 22 is formed of any suitable material that can satisfy the above characteristics. The second retardation member 22 may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound. The same explanation as for the first retardation member 20 can be applied to the second retardation member 22 made of a stretched resin film or an oriented solidified layer of a liquid crystal compound. The first retardation member 20 and the second retardation member 22 may have the same configuration (forming material, thickness, optical properties, etc.), or may have different configurations.
第二位相差部材22の厚みは、好ましくは100μm以下である。具体的には、樹脂フィルムの延伸フィルムで構成される第二位相差部材22の厚みは、例えば10μm~100μmであり、好ましくは10μm~70μm、より好ましくは10μm~60μm、さらに好ましくは20μm~50μmである。また、液晶配向固化層で構成される第二位相差部材22の厚みは、例えば1μm~10μmであり、好ましくは1μm~8μm、より好ましくは1μm~6μm、さらに好ましくは1μm~4μmである。
The thickness of the second retardation member 22 is preferably 100 μm or less. Specifically, the thickness of the second retardation member 22 made of a stretched resin film is, for example, 10 μm to 100 μm, preferably 10 μm to 70 μm, more preferably 10 μm to 60 μm, and still more preferably 20 μm to 50 μm. It is. Further, the thickness of the second retardation member 22 composed of the liquid crystal alignment solidified layer is, for example, 1 μm to 10 μm, preferably 1 μm to 8 μm, more preferably 1 μm to 6 μm, and still more preferably 1 μm to 4 μm.
第一位相差部材の面内位相差(a)と第二位相差部材の面内位相差(b)との差の絶対値は、例えば3.5nm以下であり、好ましくは3.0nm以下であり、より好ましくは2.5nm以下であり、さらに好ましくは2.0nm以下であり、特に好ましくは1.5nm以下であり、最も好ましくは1.0nm以下である。1つの実施形態においては、(a)および(b)は、Re(590)の値である。(a)および(b)が上記関係を満たすことにより、優れた表示特性を有する表示システムが得られ得る。
The absolute value of the difference between the in-plane retardation (a) of the first retardation member and the in-plane retardation (b) of the second retardation member is, for example, 3.5 nm or less, preferably 3.0 nm or less. It is more preferably 2.5 nm or less, still more preferably 2.0 nm or less, particularly preferably 1.5 nm or less, and most preferably 1.0 nm or less. In one embodiment, (a) and (b) are values of Re(590). When (a) and (b) satisfy the above relationship, a display system having excellent display characteristics can be obtained.
第一位相差部材の面内位相差(a)と第二位相差部材の面内位相差(b)とは、下記式(I)を満たすことが好ましい。
((a)-(b))/((a)+(b)/2)≦0.02・・・(I)
より好ましくは((a)-(b))/((a)+(b)/2)≦0.015であり、さらに好ましくは((a)-(b))/((a)+(b)/2)≦0.01である。 It is preferable that the in-plane retardation (a) of the first retardation member and the in-plane retardation (b) of the second retardation member satisfy the following formula (I).
((a)-(b))/((a)+(b)/2)≦0.02...(I)
More preferably ((a)-(b))/((a)+(b)/2)≦0.015, even more preferably ((a)-(b))/((a)+( b)/2)≦0.01.
((a)-(b))/((a)+(b)/2)≦0.02・・・(I)
より好ましくは((a)-(b))/((a)+(b)/2)≦0.015であり、さらに好ましくは((a)-(b))/((a)+(b)/2)≦0.01である。 It is preferable that the in-plane retardation (a) of the first retardation member and the in-plane retardation (b) of the second retardation member satisfy the following formula (I).
((a)-(b))/((a)+(b)/2)≦0.02...(I)
More preferably ((a)-(b))/((a)+(b)/2)≦0.015, even more preferably ((a)-(b))/((a)+( b)/2)≦0.01.
反射部14は、反射型偏光部材に加え、吸収型偏光部材を含んでいてもよい。吸収型偏光部材は、反射型偏光部材の前方に配置され得る。反射型偏光部材の反射軸と吸収型偏光部材の吸収軸とは互いに略平行に配置され得、反射型偏光部材の透過軸と吸収型偏光部材の透過軸とは互いに略平行に配置され得る。反射部14が吸収型偏光部材を含む場合、反射部14は反射型偏光部材と吸収型偏光部材とを有する積層体を含んでいてもよい。
In addition to the reflective polarizing member, the reflecting section 14 may include an absorbing polarizing member. The absorptive polarizing member may be placed in front of the reflective polarizing member. The reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member may be arranged substantially parallel to each other, and the transmission axis of the reflective polarizing member and the transmission axis of the absorptive polarizing member may be arranged substantially parallel to each other. When the reflecting section 14 includes an absorption type polarizing member, the reflecting section 14 may include a laminate having a reflective polarizing member and an absorbing polarizing member.
上記反射型偏光部材は、その透過軸に平行な偏光(代表的には、直線偏光)をその偏光状態を維持したまま透過させ、それ以外の偏光状態の光を反射し得る。反射型偏光部材の直交透過率(Tc)は、例えば0.01%~3%であり得る。反射型偏光部材の単体透過率(Ts)は、例えば43%~49%、好ましくは45%~47%であり得る。反射型偏光部材の偏光度(P)は、例えば92%~99.99%であり得る。反射型偏光部材としては、代表的には、多層構造を有するフィルム(反射型偏光フィルムと称する場合がある)で構成される。反射型偏光フィルムの市販品として、例えば、3M社製の商品名「DBEF」、「APF」、日東電工社製の商品名「APCF」が挙げられる。
The reflective polarizing member can transmit polarized light parallel to its transmission axis (typically, linearly polarized light) while maintaining its polarized state, and can reflect light in other polarized states. The cross transmittance (Tc) of the reflective polarizing member may be, for example, 0.01% to 3%. The single transmittance (Ts) of the reflective polarizing member may be, for example, 43% to 49%, preferably 45% to 47%. The degree of polarization (P) of the reflective polarizing member may be, for example, 92% to 99.99%. The reflective polarizing member is typically composed of a film having a multilayer structure (sometimes referred to as a reflective polarizing film). Commercially available reflective polarizing films include, for example, 3M's product names "DBEF" and "APF" and Nitto Denko's product name "APCF".
上記吸収型偏光部材は、代表的には、二色性物質を含む樹脂フィルム(吸収型偏光膜と称する場合がある)を含み得る。吸収型偏光膜の厚みは、例えば1μm以上20μm以下であり、2μm以上15μm以下であってもよく、12μm以下であってもよく、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよい。
The absorption type polarizing member may typically include a resin film (sometimes referred to as an absorption type polarizing film) containing a dichroic substance. The thickness of the absorption type polarizing film is, for example, 1 μm or more and 20 μm or less, may be 2 μm or more and 15 μm or less, may be 12 μm or less, may be 10 μm or less, or may be 8 μm or less, It may be 5 μm or less.
上記吸収型偏光膜は、単層の樹脂フィルムから作製してもよく、二層以上の積層体を用いて作製してもよい。
The above-mentioned absorption type polarizing film may be produced from a single layer resin film, or may be produced using a laminate of two or more layers.
単層の樹脂フィルムから作製する場合、例えば、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理、延伸処理等を施すことにより吸収型偏光膜を得ることができる。中でも、PVA系フィルムをヨウ素で染色し一軸延伸して得られる吸収型偏光膜が好ましい。
When manufacturing from a single-layer resin film, for example, a hydrophilic polymer film such as a polyvinyl alcohol (PVA) film, a partially formalized PVA film, or a partially saponified ethylene/vinyl acetate copolymer film is coated with iodine or dichloromethane. An absorption type polarizing film can be obtained by performing a dyeing treatment with a dichroic substance such as a color dye, a stretching treatment, and the like. Among these, an absorption type polarizing film obtained by dyeing a PVA film with iodine and uniaxially stretching it is preferred.
上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。
The above-mentioned staining with iodine is performed, for example, by immersing the PVA-based film in an iodine aqueous solution. The stretching ratio of the above-mentioned uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing process or may be performed while dyeing. Alternatively, it may be dyed after being stretched. If necessary, the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment, etc.
上記二層以上の積層体を用いて作製する場合の積層体としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる吸収型偏光膜は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を吸収型偏光膜とすること;により作製され得る。本実施形態においては、好ましくは、樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂とを含むポリビニルアルコール系樹脂層を形成する。延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。加えて、本実施形態においては、好ましくは、積層体は、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理に供される。代表的には、本実施形態の製造方法は、積層体に、空中補助延伸処理と染色処理と水中延伸処理と乾燥収縮処理とをこの順に施すことを含む。補助延伸を導入することにより、熱可塑性樹脂上にPVAを塗布する場合でも、PVAの結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVAの配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVAの配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる吸収型偏光膜の光学特性は向上し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、光学特性を向上させることができる。得られた樹脂基材/吸収型偏光膜の積層体はそのまま用いてもよく(すなわち、樹脂基材を吸収型偏光膜の保護層としてもよく)、樹脂基材/吸収型偏光膜の積層体から樹脂基材を剥離した剥離面に、もしくは、剥離面とは反対側の面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような吸収型偏光膜の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。
The laminate produced using the above-mentioned laminate of two or more layers is a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or Examples include a laminate of a material and a PVA-based resin layer formed by coating on the resin base material. An absorption type polarizing film obtained by using a laminate of a resin base material and a PVA resin layer coated on the resin base material can be obtained by, for example, applying a PVA resin solution to the resin base material, drying it, and applying the resin. Forming a PVA-based resin layer on a base material to obtain a laminate of the resin base material and the PVA-based resin layer; stretching and dyeing the laminate to make the PVA-based resin layer an absorption type polarizing film. can be produced by; In this embodiment, preferably, a polyvinyl alcohol resin layer containing a halide and a polyvinyl alcohol resin is formed on one side of the resin base material. Stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Furthermore, the stretching may further include stretching the laminate in air at a high temperature (for example, 95° C. or higher) before stretching in the boric acid aqueous solution, if necessary. In addition, in the present embodiment, the laminate is preferably subjected to a drying shrinkage treatment in which the laminate is heated while being conveyed in the longitudinal direction to shrink by 2% or more in the width direction. Typically, the manufacturing method of this embodiment includes subjecting the laminate to an in-air auxiliary stretching process, a dyeing process, an underwater stretching process, and a drying shrinkage process in this order. By introducing auxiliary stretching, even when PVA is applied onto a thermoplastic resin, it becomes possible to improve the crystallinity of PVA and achieve high optical properties. At the same time, by increasing the orientation of PVA in advance, it is possible to prevent problems such as deterioration of orientation and dissolution of PVA when it is immersed in water during the subsequent dyeing and stretching processes, resulting in high optical properties. becomes possible to achieve. Furthermore, when the PVA-based resin layer is immersed in a liquid, disturbance in the orientation of polyvinyl alcohol molecules and deterioration of orientation can be suppressed compared to when the PVA-based resin layer does not contain a halide. Thereby, the optical properties of an absorption polarizing film obtained through a treatment process performed by immersing the laminate in a liquid, such as dyeing treatment and underwater stretching treatment, can be improved. Furthermore, optical properties can be improved by shrinking the laminate in the width direction by drying shrinkage treatment. The obtained resin base material/absorption type polarizing film laminate may be used as is (that is, the resin base material may be used as a protective layer of the absorption type polarizing film), or the resin base material/absorption type polarizing film laminate may be used as is. Any suitable protective layer depending on the purpose may be laminated on the peeled surface from which the resin base material is peeled off, or on the surface opposite to the peeled surface. Details of the manufacturing method of such an absorption type polarizing film are described in, for example, Japanese Patent Application Publication No. 2012-73580 and Japanese Patent No. 6470455. The entire descriptions of these publications are incorporated herein by reference.
吸収型偏光部材(吸収型偏光膜)の直交透過率(Tc)は、0.5%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。吸収型偏光部材(吸収型偏光膜)の単体透過率(Ts)は、例えば41.0%~45.0%であり、好ましくは42.0%以上である。吸収型偏光部材(吸収型偏光膜)の偏光度(P)は、例えば99.0%~99.997%であり、好ましくは99.9%以上である。
The orthogonal transmittance (Tc) of the absorption type polarizing member (absorption type polarizing film) is preferably 0.5% or less, more preferably 0.1% or less, and still more preferably 0.05% or less. be. The single transmittance (Ts) of the absorption type polarizing member (absorption type polarizing film) is, for example, 41.0% to 45.0%, preferably 42.0% or more. The degree of polarization (P) of the absorption type polarizing member (absorption type polarizing film) is, for example, 99.0% to 99.997%, preferably 99.9% or more.
図2は、図1に示す表示システムにおいて表示素子12に含まれる偏光部材の吸収軸と反射部14に含まれる反射型偏光部材14aの反射軸とが、互いに略直交に配置されている実施形態における光の進行と偏光状態の変化を説明する概略図である。具体的には、図2(a)は当該実施形態における光の進行の一例を説明する概略図であり、図2(b)は当該実施形態において各部材を透過することまたは各部材に反射されることによる光の偏光状態の変化の一例を説明する概略図である。図2中、表示素子12に付された実線の矢印は表示素子12に含まれる偏光部材の吸収軸方向を示し、第1のλ/4部材20および第2のλ/4部材22に付された矢印は遅相軸方向を示し、反射部14に含まれる反射型偏光部材14aに付された実線の矢印は反射軸方向を示し、破線の矢印は各偏光部材の透過軸方向を示す。当該実施形態において、表示素子12に含まれる偏光部材を介して前方に出射される第1の直線偏光の偏光方向と反射型偏光部材14aの反射軸とのなす角度は、略平行である。表示素子12に含まれる偏光部材の吸収軸と第1のλ/4部材20の遅相軸とのなす角度は、例えば、40°~50°である。第1のλ/4部材20の遅相軸と第2のλ/4部材22の遅相軸とは、互いに略直交に配置されている。
FIG. 2 shows an embodiment in which the absorption axis of the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member 14a included in the reflecting section 14 are arranged substantially perpendicular to each other in the display system shown in FIG. FIG. 2 is a schematic diagram illustrating the progression of light and changes in polarization state in FIG. Specifically, FIG. 2(a) is a schematic diagram illustrating an example of the progression of light in this embodiment, and FIG. 2(b) is a schematic diagram illustrating how light passes through each member or is reflected by each member in this embodiment. FIG. 2 is a schematic diagram illustrating an example of a change in the polarization state of light due to the change in the polarization state of light. In FIG. 2, the solid line arrow attached to the display element 12 indicates the absorption axis direction of the polarizing member included in the display element 12. The solid arrows attached to the reflective polarizing member 14a included in the reflecting section 14 indicate the reflection axis direction, and the broken arrows indicate the transmission axis direction of each polarizing member. In this embodiment, the angle between the polarization direction of the first linearly polarized light emitted forward via the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member 14a is substantially parallel. The angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the first λ/4 member 20 is, for example, 40° to 50°. The slow axis of the first λ/4 member 20 and the slow axis of the second λ/4 member 22 are arranged substantially perpendicular to each other.
表示素子12から偏光部材を介して第1の直線偏光として出射される光Lは、第1のλ/4部材20によって第1の円偏光に変換される。第1の円偏光は、ハーフミラー18および第一レンズ部16(図2では図示せず)を通過し、第2のλ/4部材22により第1の直線偏光と偏光方向が平行である第2の直線偏光に変換される。第2の直線偏光は、その偏光方向が反射部14に含まれる反射型偏光部材14aの反射軸と同方向(略平行)である。よって、反射部14に入射した第2の直線偏光は、反射型偏光部材14aによってハーフミラー18に向けて反射される。
The light L emitted from the display element 12 as first linearly polarized light via the polarizing member is converted into first circularly polarized light by the first λ/4 member 20. The first circularly polarized light passes through the half mirror 18 and the first lens section 16 (not shown in FIG. 2), and is passed through the second λ/4 member 22 to form the first circularly polarized light whose polarization direction is parallel to that of the first linearly polarized light. It is converted into linearly polarized light of 2. The polarization direction of the second linearly polarized light is in the same direction (substantially parallel) as the reflection axis of the reflective polarizing member 14a included in the reflection section 14. Therefore, the second linearly polarized light incident on the reflection section 14 is reflected toward the half mirror 18 by the reflective polarizing member 14a.
反射部14で反射された第2の直線偏光は第2のλ/4部材22により第2の円偏光に変換される。第2の円偏光の回転方向は、第1の円偏光の回転方向と同方向である。第2のλ/4部材22から出射された第2の円偏光は第一レンズ部16を通過してハーフミラー18で反射されて、第2の円偏光と逆方向に回転する第3の円偏光に変換される。ハーフミラー18で反射された第3の円偏光は、第一レンズ部16を通過し、第2のλ/4部材22により第3の直線偏光に変換される。第3の直線偏光の偏光方向は、第2の直線偏光の偏光方向と直交しており、反射型偏光部材14aの透過軸と同方向(略平行)である。よって、第3の直線偏光は、反射型偏光部材14aを透過することができる。また、図示しないが、反射部が吸収型偏光部材を含む場合、その吸収軸が反射型偏光部材14aの反射軸と略平行になるように配置されることから、反射型偏光部材14aを透過した第3の直線偏光は、そのまま吸収型偏光部材を透過することができる。反射部14を透過した光は、第二レンズ部24を通過して、ユーザの目26に入射する。
The second linearly polarized light reflected by the reflecting section 14 is converted into second circularly polarized light by the second λ/4 member 22. The rotation direction of the second circularly polarized light is the same as the rotation direction of the first circularly polarized light. The second circularly polarized light emitted from the second λ/4 member 22 passes through the first lens section 16 and is reflected by the half mirror 18, forming a third circle that rotates in the opposite direction to the second circularly polarized light. converted into polarized light. The third circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second λ/4 member 22. The polarization direction of the third linearly polarized light is orthogonal to the polarization direction of the second linearly polarized light, and is in the same direction (substantially parallel) as the transmission axis of the reflective polarizing member 14a. Therefore, the third linearly polarized light can be transmitted through the reflective polarizing member 14a. Further, although not shown, when the reflective section includes an absorption type polarizing member, the absorption axis thereof is arranged to be approximately parallel to the reflection axis of the reflective polarizing member 14a, so that the light transmitted through the reflective polarizing member 14a is The third linearly polarized light can pass through the absorptive polarizing member as it is. The light that has passed through the reflection section 14 passes through the second lens section 24 and enters the user's eyes 26 .
図2に示す例では、表示素子12側から見た場合に、第1のλ/4部材および第2のλ/4部材の遅相軸がそれぞれ、表示素子12に含まれる偏光部材の吸収軸に対して反時計回りおよび時計回りに所定の角度(例えば、40°~50°)をなすように配置されているが、これらが時計回りおよび反時計回りに所定の角度をなすように配置されている場合にも、上記と同様の説明が適用できる。表示素子12に含まれる偏光部材の吸収軸と反射型偏光部材14aの反射軸とが、互いに略直交に配置されている実施形態においては、第1のλ/4部材と第2のλ/4部材とは、互いの遅相軸のなす角度が、例えば83°~97°、好ましくは84°~96°、より好ましくは85°~95°、さらに好ましくは86°~94°、さらにより好ましくは87°~93°となるように配置される。第1のλ/4部材の遅相軸と第2のλ/4部材の遅相軸とがこのような関係を満足することにより、優れた表示特性を有する表示システムが得られ得る。
In the example shown in FIG. 2, when viewed from the display element 12 side, the slow axes of the first λ/4 member and the second λ/4 member are the absorption axis of the polarizing member included in the display element 12, respectively. are arranged so as to form a predetermined angle (for example, 40° to 50°) counterclockwise and clockwise with respect to the The same explanation as above can also be applied when In an embodiment in which the absorption axis of the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member 14a are arranged substantially perpendicular to each other, the first λ/4 member and the second λ/4 member The members are members whose slow axes make an angle of, for example, 83° to 97°, preferably 84° to 96°, more preferably 85° to 95°, still more preferably 86° to 94°, and even more preferably are arranged so that the angle is between 87° and 93°. When the slow axis of the first λ/4 member and the slow axis of the second λ/4 member satisfy such a relationship, a display system having excellent display characteristics can be obtained.
図2に示す例では、第1のλ/4部材20の遅相軸と第2のλ/4部材22の遅相軸とは互いに略直交に配置されているが、図3に示すように略平行に配置されていてもよい。例えば、第1のλ/4部材20の遅相軸と第2のλ/4部材22の遅相軸の両方が表示素子12に含まれる偏光部材の吸収軸に対して時計回りまたは反時計回りに所定の角度(例えば、40°~50°)をなすように配置されてもよい。この場合、図2に示す例とは異なり、表示素子12に含まれる偏光部材の吸収軸と反射部14に含まれる反射型偏光部材14aの反射軸とは互いに略平行に配置され得る。よって、表示素子12に含まれる偏光部材を介して前方に出射される第1の直線偏光の偏光方向と反射型偏光部材14の反射軸とのなす角度は、略直交であり得る。表示素子12に含まれる偏光部材の吸収軸と反射型偏光部材14の反射軸とが、互いに略平行に配置されている実施形態において、第1のλ/4部材と第2のλ/4部材とは、互いの遅相軸のなす角度が、例えば7°以下、好ましくは6°以下、より好ましくは5°以下、さらに好ましくは4°以下、さらにより好ましくは3°以下となるように配置される。第1のλ/4部材の遅相軸と第2のλ/4部材の遅相軸とがこのような関係を満足することにより、優れた表示特性を有する表示システムが得られ得る。
In the example shown in FIG. 2, the slow axis of the first λ/4 member 20 and the slow axis of the second λ/4 member 22 are arranged substantially perpendicular to each other, but as shown in FIG. They may be arranged substantially in parallel. For example, both the slow axis of the first λ/4 member 20 and the slow axis of the second λ/4 member 22 are rotated clockwise or counterclockwise with respect to the absorption axis of the polarizing member included in the display element 12. They may be arranged so as to form a predetermined angle (for example, 40° to 50°). In this case, unlike the example shown in FIG. 2, the absorption axis of the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member 14a included in the reflecting section 14 may be arranged substantially parallel to each other. Therefore, the angle between the polarization direction of the first linearly polarized light emitted forward via the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member 14 may be substantially orthogonal. In an embodiment in which the absorption axis of the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member 14 are arranged substantially parallel to each other, the first λ/4 member and the second λ/4 member is arranged so that the angle between their slow axes is, for example, 7° or less, preferably 6° or less, more preferably 5° or less, still more preferably 4° or less, and even more preferably 3° or less. be done. When the slow axis of the first λ/4 member and the slow axis of the second λ/4 member satisfy such a relationship, a display system having excellent display characteristics can be obtained.
以上のとおり、本発明の実施形態による表示システムにおいては、表示素子12から偏光部材を介して出射された第1の直線偏光が第1のλ/4部材20を透過後、第2のλ/4部材22を計3回透過した後に反射型偏光部材14aを透過する。このような表示システムにおいて、第1のλ/4部材20および第2のλ/4部材22としてそれぞれ、可視光領域の広範囲にわたって所定の値以上の楕円率を有するλ/4部材を用いることにより、透過光の色相変化、光漏れ等を抑制することができる。具体的には、反射型偏光部材14aを透過する光における波長間の透過率の差が低減されることにより、表示素子から出射された光からの色相変化が抑制される結果、表示ムラが抑制され得る。また、可視光領域の広範囲にわたって偏光の崩れが抑制されることにより、反射型偏光部材14aにおける光抜けが抑制される結果、反射型偏光部材14aで反射されるべき光が残像(いわゆる、ゴースト)としてユーザに視認されることを好適に抑制することができる。
As described above, in the display system according to the embodiment of the present invention, the first linearly polarized light emitted from the display element 12 via the polarizing member passes through the first λ/4 member 20 and then becomes the second λ/4 member. After passing through the four members 22 three times in total, the light passes through the reflective polarizing member 14a. In such a display system, by using λ/4 members each having an ellipticity of a predetermined value or more over a wide range of visible light region as the first λ/4 member 20 and the second λ/4 member 22, , hue change of transmitted light, light leakage, etc. can be suppressed. Specifically, by reducing the difference in transmittance between wavelengths of light transmitted through the reflective polarizing member 14a, hue change from the light emitted from the display element is suppressed, and as a result, display unevenness is suppressed. can be done. In addition, by suppressing the collapse of polarization over a wide range of visible light region, light leakage in the reflective polarizing member 14a is suppressed, and as a result, the light that should be reflected by the reflective polarizing member 14a becomes an afterimage (so-called ghost). It is possible to suitably prevent the user from being visually recognized as such.
以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。なお、実施例等における、試験および評価方法は以下のとおりである。なお、「部」と記載されている場合は、特記事項がない限り「重量部」を意味し、「%」と記載されている場合は、特記事項がない限り「重量%」を意味する。
Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples in any way. In addition, the test and evaluation methods in Examples and the like are as follows. In addition, when it is written as "parts", it means "parts by weight" unless there are special notes, and when it is written as "%", it means "wt%" unless there are special notes.
(1)厚み
10μm以下の厚みは、走査型電子顕微鏡(日本電子社製、製品名「JSM-7100F」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(2)面内位相差Re(λ)
ミュラーマトリクス・ポラリメーター(Axometrics社製、製品名「Axoscan」)を用いて、23℃における各波長での面内位相差を測定した。
(3)偏光フィルムの単体透過率および偏光度
分光光度計(大塚電子社製、「LPF-200」)を用いて、偏光フィルムの単体透過率Ts、平行透過率Tp、直交透過率Tcを測定した。これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。得られたTpおよびTcから、下記式を用いて偏光フィルムの偏光度を求めた。
偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
(4)厚みのばらつき
位相差フィルムを100mm×100mmのサイズに切り出して測定サンプルとした。図4に示すように、測定サンプルの中心と中心から上下左右に各々10mm離れた4点との計5点における厚みを測定し、最大値と最小値との差を厚みのばらつきとした。
(5)ISC値
位相差フィルムについて、株式会社アイ・システム製のEyeScale-4Wを用いてISC値を測定した。具体的には、測定装置の仕様に基づいて、3CCDイメージセンサーのISC測定モードにて、面内のムラをISC値として算出した。
図5は、ISC値の測定方法を説明するための図であり、光源、位相差フィルム、スクリーン、CCDカメラの配置を上から見た概略図である。図5に示すように、光源L、位相差フィルムM、および、スクリーンSをこの順に配置して、スクリーンSに投影された透過画像を、CCDカメラCにより測定した。なお、位相差フィルムMは、無アルカリガラス板(コーニング社製、1737)に貼り付けられ、そのガラス板が光源L側となるように配置した状態で測定に供した。
光源Lから位相差フィルムMまでのX軸方向における距離は10~60cmになるように配置した。光源LからスクリーンSまでのX軸方向における距離は70~130cmになるように配置した。CCDカメラCから位相差フィルムMまでのY軸方向における距離は3~30cmになるように配置した。CCDカメラCからスクリーンSまでのX軸方向における距離は70~130cmになるように配置した。 (1) Thickness The thickness of 10 μm or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). Thickness exceeding 10 μm was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).
(2) In-plane phase difference Re(λ)
In-plane retardation at each wavelength at 23° C. was measured using a Mueller matrix polarimeter (manufactured by Axometrics, product name “Axoscan”).
(3) Single transmittance and polarization degree of polarizing film Measure the single transmittance Ts, parallel transmittance Tp, and cross transmittance Tc of the polarizing film using a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., "LPF-200") did. These Ts, Tp, and Tc are Y values measured using a 2-degree visual field (C light source) according to JIS Z8701 and subjected to visibility correction. From the obtained Tp and Tc, the degree of polarization of the polarizing film was determined using the following formula.
Degree of polarization (%) = {(Tp-Tc)/(Tp+Tc)} 1/2 ×100
(4) Variation in Thickness The retardation film was cut into a size of 100 mm x 100 mm and used as a measurement sample. As shown in FIG. 4, the thickness was measured at a total of 5 points, including the center of the measurement sample and 4 points 10 mm away from the center in the upper, lower, left, and right directions, and the difference between the maximum value and the minimum value was defined as the thickness variation.
(5) ISC value The ISC value of the retardation film was measured using EyeScale-4W manufactured by Eye System Co., Ltd. Specifically, based on the specifications of the measuring device, the in-plane unevenness was calculated as an ISC value in the ISC measurement mode of the 3CCD image sensor.
FIG. 5 is a diagram for explaining a method for measuring an ISC value, and is a schematic diagram of the arrangement of a light source, a retardation film, a screen, and a CCD camera viewed from above. As shown in FIG. 5, a light source L, a retardation film M, and a screen S were arranged in this order, and a transmitted image projected onto the screen S was measured by a CCD camera C. Note that the retardation film M was attached to a non-alkali glass plate (manufactured by Corning, Inc., 1737), and the measurement was conducted with the glass plate placed on the light source L side.
The arrangement was such that the distance from the light source L to the retardation film M in the X-axis direction was 10 to 60 cm. The arrangement was such that the distance from the light source L to the screen S in the X-axis direction was 70 to 130 cm. The arrangement was such that the distance from the CCD camera C to the retardation film M in the Y-axis direction was 3 to 30 cm. The arrangement was such that the distance from the CCD camera C to the screen S in the X-axis direction was 70 to 130 cm.
10μm以下の厚みは、走査型電子顕微鏡(日本電子社製、製品名「JSM-7100F」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(2)面内位相差Re(λ)
ミュラーマトリクス・ポラリメーター(Axometrics社製、製品名「Axoscan」)を用いて、23℃における各波長での面内位相差を測定した。
(3)偏光フィルムの単体透過率および偏光度
分光光度計(大塚電子社製、「LPF-200」)を用いて、偏光フィルムの単体透過率Ts、平行透過率Tp、直交透過率Tcを測定した。これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。得られたTpおよびTcから、下記式を用いて偏光フィルムの偏光度を求めた。
偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
(4)厚みのばらつき
位相差フィルムを100mm×100mmのサイズに切り出して測定サンプルとした。図4に示すように、測定サンプルの中心と中心から上下左右に各々10mm離れた4点との計5点における厚みを測定し、最大値と最小値との差を厚みのばらつきとした。
(5)ISC値
位相差フィルムについて、株式会社アイ・システム製のEyeScale-4Wを用いてISC値を測定した。具体的には、測定装置の仕様に基づいて、3CCDイメージセンサーのISC測定モードにて、面内のムラをISC値として算出した。
図5は、ISC値の測定方法を説明するための図であり、光源、位相差フィルム、スクリーン、CCDカメラの配置を上から見た概略図である。図5に示すように、光源L、位相差フィルムM、および、スクリーンSをこの順に配置して、スクリーンSに投影された透過画像を、CCDカメラCにより測定した。なお、位相差フィルムMは、無アルカリガラス板(コーニング社製、1737)に貼り付けられ、そのガラス板が光源L側となるように配置した状態で測定に供した。
光源Lから位相差フィルムMまでのX軸方向における距離は10~60cmになるように配置した。光源LからスクリーンSまでのX軸方向における距離は70~130cmになるように配置した。CCDカメラCから位相差フィルムMまでのY軸方向における距離は3~30cmになるように配置した。CCDカメラCからスクリーンSまでのX軸方向における距離は70~130cmになるように配置した。 (1) Thickness The thickness of 10 μm or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). Thickness exceeding 10 μm was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).
(2) In-plane phase difference Re(λ)
In-plane retardation at each wavelength at 23° C. was measured using a Mueller matrix polarimeter (manufactured by Axometrics, product name “Axoscan”).
(3) Single transmittance and polarization degree of polarizing film Measure the single transmittance Ts, parallel transmittance Tp, and cross transmittance Tc of the polarizing film using a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., "LPF-200") did. These Ts, Tp, and Tc are Y values measured using a 2-degree visual field (C light source) according to JIS Z8701 and subjected to visibility correction. From the obtained Tp and Tc, the degree of polarization of the polarizing film was determined using the following formula.
Degree of polarization (%) = {(Tp-Tc)/(Tp+Tc)} 1/2 ×100
(4) Variation in Thickness The retardation film was cut into a size of 100 mm x 100 mm and used as a measurement sample. As shown in FIG. 4, the thickness was measured at a total of 5 points, including the center of the measurement sample and 4 points 10 mm away from the center in the upper, lower, left, and right directions, and the difference between the maximum value and the minimum value was defined as the thickness variation.
(5) ISC value The ISC value of the retardation film was measured using EyeScale-4W manufactured by Eye System Co., Ltd. Specifically, based on the specifications of the measuring device, the in-plane unevenness was calculated as an ISC value in the ISC measurement mode of the 3CCD image sensor.
FIG. 5 is a diagram for explaining a method for measuring an ISC value, and is a schematic diagram of the arrangement of a light source, a retardation film, a screen, and a CCD camera viewed from above. As shown in FIG. 5, a light source L, a retardation film M, and a screen S were arranged in this order, and a transmitted image projected onto the screen S was measured by a CCD camera C. Note that the retardation film M was attached to a non-alkali glass plate (manufactured by Corning, Inc., 1737), and the measurement was conducted with the glass plate placed on the light source L side.
The arrangement was such that the distance from the light source L to the retardation film M in the X-axis direction was 10 to 60 cm. The arrangement was such that the distance from the light source L to the screen S in the X-axis direction was 70 to 130 cm. The arrangement was such that the distance from the CCD camera C to the retardation film M in the Y-axis direction was 3 to 30 cm. The arrangement was such that the distance from the CCD camera C to the screen S in the X-axis direction was 70 to 130 cm.
[製造例1-1:位相差フィルム1の作製]
撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置に、ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン29.60重量部(0.046mol)、イソソルビド(ISB)29.21重量部(0.200mol)、スピログリコール(SPG)42.28重量部(0.139mol)、ジフェニルカーボネート(DPC)63.77重量部(0.298mol)、および、触媒として酢酸カルシウム1水和物1.19×10-2重量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネート系樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。
得られたポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み130μmの長尺状の樹脂フィルムを作製した。得られた長尺状の樹脂フィルムを、幅方向に、延伸温度140℃、延伸倍率2.7倍で延伸した。
こうして、厚みが47μmで、Re(590)が143nmであり、Nz係数が1.2である位相差フィルム1を得た。得られた位相差フィルム1のRe(450)/Re(550)は0.856であった。位相差フィルム1のISC値および厚みのばらつきを表1に示す。 [Production Example 1-1: Production of retardation film 1]
29.60 weight of bis[9-(2-phenoxycarbonylethyl)fluoren-9-yl]methane was added to a batch polymerization apparatus consisting of two vertical reactors equipped with a stirring blade and a reflux condenser controlled at 100°C. part (0.046 mol), isosorbide (ISB) 29.21 parts by weight (0.200 mol), spiroglycol (SPG) 42.28 parts by weight (0.139 mol), diphenyl carbonate (DPC) 63.77 parts by weight (0 .298 mol) and 1.19×10 −2 parts by weight (6.78×10 −5 mol) of calcium acetate monohydrate as a catalyst were charged. After the inside of the reactor was replaced with nitrogen under reduced pressure, it was heated with a heating medium, and when the internal temperature reached 100°C, stirring was started. 40 minutes after the start of temperature rise, the internal temperature was controlled to reach 220°C, and at the same time, pressure reduction was started to maintain this temperature, and the pressure was reduced to 13.3 kPa in 90 minutes after reaching 220°C. Phenol vapor produced as a by-product during the polymerization reaction was led to a reflux condenser at 100°C, a small amount of monomer component contained in the phenol vapor was returned to the reactor, and uncondensed phenol vapor was led to a condenser at 45°C for recovery. After nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Next, temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240° C. and the pressure was 0.2 kPa in 50 minutes. Thereafter, polymerization was allowed to proceed until a predetermined stirring power was reached. When a predetermined power was reached, nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
After vacuum drying the obtained polyester carbonate resin (pellets) at 80°C for 5 hours, a single-screw extruder (manufactured by Toshiba Machine Co., Ltd., cylinder temperature setting: 250°C) and a T-die (width 200mm, setting temperature: 250°C) were used. A long resin film with a thickness of 130 μm was produced using a film forming apparatus equipped with a chill roll (temperature setting: 120 to 130° C.), a winder and a winder. The obtained long resin film was stretched in the width direction at a stretching temperature of 140° C. and a stretching ratio of 2.7 times.
In this way, a retardation film 1 having a thickness of 47 μm, a Re (590) of 143 nm, and an Nz coefficient of 1.2 was obtained. Re(450)/Re(550) of the obtained retardation film 1 was 0.856. Table 1 shows the ISC value and thickness variation of the retardation film 1.
撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置に、ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン29.60重量部(0.046mol)、イソソルビド(ISB)29.21重量部(0.200mol)、スピログリコール(SPG)42.28重量部(0.139mol)、ジフェニルカーボネート(DPC)63.77重量部(0.298mol)、および、触媒として酢酸カルシウム1水和物1.19×10-2重量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネート系樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。
得られたポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み130μmの長尺状の樹脂フィルムを作製した。得られた長尺状の樹脂フィルムを、幅方向に、延伸温度140℃、延伸倍率2.7倍で延伸した。
こうして、厚みが47μmで、Re(590)が143nmであり、Nz係数が1.2である位相差フィルム1を得た。得られた位相差フィルム1のRe(450)/Re(550)は0.856であった。位相差フィルム1のISC値および厚みのばらつきを表1に示す。 [Production Example 1-1: Production of retardation film 1]
29.60 weight of bis[9-(2-phenoxycarbonylethyl)fluoren-9-yl]methane was added to a batch polymerization apparatus consisting of two vertical reactors equipped with a stirring blade and a reflux condenser controlled at 100°C. part (0.046 mol), isosorbide (ISB) 29.21 parts by weight (0.200 mol), spiroglycol (SPG) 42.28 parts by weight (0.139 mol), diphenyl carbonate (DPC) 63.77 parts by weight (0 .298 mol) and 1.19×10 −2 parts by weight (6.78×10 −5 mol) of calcium acetate monohydrate as a catalyst were charged. After the inside of the reactor was replaced with nitrogen under reduced pressure, it was heated with a heating medium, and when the internal temperature reached 100°C, stirring was started. 40 minutes after the start of temperature rise, the internal temperature was controlled to reach 220°C, and at the same time, pressure reduction was started to maintain this temperature, and the pressure was reduced to 13.3 kPa in 90 minutes after reaching 220°C. Phenol vapor produced as a by-product during the polymerization reaction was led to a reflux condenser at 100°C, a small amount of monomer component contained in the phenol vapor was returned to the reactor, and uncondensed phenol vapor was led to a condenser at 45°C for recovery. After nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Next, temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240° C. and the pressure was 0.2 kPa in 50 minutes. Thereafter, polymerization was allowed to proceed until a predetermined stirring power was reached. When a predetermined power was reached, nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
After vacuum drying the obtained polyester carbonate resin (pellets) at 80°C for 5 hours, a single-screw extruder (manufactured by Toshiba Machine Co., Ltd., cylinder temperature setting: 250°C) and a T-die (width 200mm, setting temperature: 250°C) were used. A long resin film with a thickness of 130 μm was produced using a film forming apparatus equipped with a chill roll (temperature setting: 120 to 130° C.), a winder and a winder. The obtained long resin film was stretched in the width direction at a stretching temperature of 140° C. and a stretching ratio of 2.7 times.
In this way, a retardation film 1 having a thickness of 47 μm, a Re (590) of 143 nm, and an Nz coefficient of 1.2 was obtained. Re(450)/Re(550) of the obtained retardation film 1 was 0.856. Table 1 shows the ISC value and thickness variation of the retardation film 1.
[製造例1-2:位相差フィルム2の作製]
シクロオレフィン系樹脂フィルムで構成された市販の位相差フィルム(カネカ社製、製品名「ゼオノア#140COP QWP」)を位相差フィルム2として用いた。位相差フィルム2の厚みは33μmで、Re(590)は140nmであり、Nz係数は1.0であった。また、位相差フィルム2のRe(450)/Re(550)は1.01であった。 [Production Example 1-2: Production of retardation film 2]
A commercially available retardation film (manufactured by Kaneka Corporation, product name: "Zeonor #140COP QWP") composed of a cycloolefin resin film was used as theretardation film 2. The thickness of the retardation film 2 was 33 μm, the Re(590) was 140 nm, and the Nz coefficient was 1.0. Moreover, Re(450)/Re(550) of the retardation film 2 was 1.01.
シクロオレフィン系樹脂フィルムで構成された市販の位相差フィルム(カネカ社製、製品名「ゼオノア#140COP QWP」)を位相差フィルム2として用いた。位相差フィルム2の厚みは33μmで、Re(590)は140nmであり、Nz係数は1.0であった。また、位相差フィルム2のRe(450)/Re(550)は1.01であった。 [Production Example 1-2: Production of retardation film 2]
A commercially available retardation film (manufactured by Kaneka Corporation, product name: "Zeonor #140COP QWP") composed of a cycloolefin resin film was used as the
[製造例2:偏光フィルム1の作製]
熱可塑性樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用い、樹脂基材の片面に、コロナ処理を施した。
ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(三菱ケミカル社製、商品名「ゴーセネックスZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で縦方向(長手方向)に2.4倍に一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる吸収型偏光膜の単体透過率(Ts)が所望の値となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
その後、約90℃に保たれたオーブン中で乾燥しながら、表面温度が約75℃に保たれたSUS製の加熱ロールに接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は5.2%であった。
このようにして、樹脂基材上に厚み約5μmの吸収型偏光膜を形成した。
得られた吸収型偏光膜の表面(樹脂基材とは反対側の面)に、保護層としてのアクリル系樹脂フィルム(「RV―20」、厚み20μm)を、水系接着剤(硬化後の厚み0.1μm)を介して貼り合せた。次いで、樹脂基材を剥離した。
これによって、[アクリル樹脂フィルム/吸収型偏光膜]の構成を有する偏光フィルム1を得た。なお、上記水系接着剤としては、アセトアセチル基を有するPVA系樹脂とメチロールメラミンと正電荷を有するアルミナコロイド(平均粒子径15nm)とを含有する水系接着剤を用いた。
偏光フィルム1の単体透過率(Ts)は43.0%であり、偏光度は99.989%であった。 [Production Example 2: Production of polarizing film 1]
As the thermoplastic resin base material, a long, amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm) having a Tg of approximately 75° C. was used, and one side of the resin base material was subjected to corona treatment.
Iodine was added to 100 parts by weight of a PVA resin prepared by mixing polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Mitsubishi Chemical Corporation, product name "Gosenex Z410") in a ratio of 9:1. A PVA aqueous solution (coating liquid) was prepared by dissolving 13 parts by weight of potassium chloride in water.
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60° C. to form a PVA-based resin layer with a thickness of 13 μm, thereby producing a laminate.
The obtained laminate was uniaxially stretched 2.4 times in the vertical direction (longitudinal direction) in an oven at 130° C. (in-air auxiliary stretching treatment).
Next, the laminate was immersed for 30 seconds in an insolubilization bath (boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C. (insolubilization treatment).
Next, the finally obtained absorption type polarized light was added to a dyeing bath (an iodine aqueous solution obtained by blending iodine and potassium iodide at a weight ratio of 1:7 to 100 parts by weight of water) at a liquid temperature of 30°C. The membrane was immersed for 60 seconds while adjusting the concentration so that the single transmittance (Ts) of the membrane became a desired value (staining treatment).
Next, it was immersed for 30 seconds in a crosslinking bath (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) at a liquid temperature of 40°C. (Crosslinking treatment).
Thereafter, while immersing the laminate in a boric acid aqueous solution (boric acid concentration: 4% by weight, potassium iodide concentration: 5% by weight) at a liquid temperature of 70°C, the laminate was completely rolled in the longitudinal direction (longitudinal direction) between rolls having different circumferential speeds. Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment).
Thereafter, the laminate was immersed in a cleaning bath (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) at a liquid temperature of 20° C. (cleaning treatment).
Thereafter, while drying in an oven kept at about 90°C, it was brought into contact with a SUS heating roll whose surface temperature was kept at about 75°C (drying shrinkage treatment). The shrinkage rate of the laminate in the width direction due to the drying shrinkage treatment was 5.2%.
In this way, an absorption type polarizing film with a thickness of about 5 μm was formed on the resin base material.
An acrylic resin film ("RV-20",thickness 20 μm) as a protective layer was applied to the surface of the obtained absorption type polarizing film (the surface opposite to the resin base material), and a water-based adhesive (thickness after curing) was applied as a protective layer. 0.1 μm). Then, the resin base material was peeled off.
As a result, a polarizing film 1 having a structure of [acrylic resin film/absorption type polarizing film] was obtained. As the water-based adhesive, a water-based adhesive containing a PVA-based resin having an acetoacetyl group, methylolmelamine, and a positively charged alumina colloid (average particle size: 15 nm) was used.
The single transmittance (Ts) of the polarizing film 1 was 43.0%, and the degree of polarization was 99.989%.
熱可塑性樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用い、樹脂基材の片面に、コロナ処理を施した。
ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(三菱ケミカル社製、商品名「ゴーセネックスZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で縦方向(長手方向)に2.4倍に一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる吸収型偏光膜の単体透過率(Ts)が所望の値となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
その後、約90℃に保たれたオーブン中で乾燥しながら、表面温度が約75℃に保たれたSUS製の加熱ロールに接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は5.2%であった。
このようにして、樹脂基材上に厚み約5μmの吸収型偏光膜を形成した。
得られた吸収型偏光膜の表面(樹脂基材とは反対側の面)に、保護層としてのアクリル系樹脂フィルム(「RV―20」、厚み20μm)を、水系接着剤(硬化後の厚み0.1μm)を介して貼り合せた。次いで、樹脂基材を剥離した。
これによって、[アクリル樹脂フィルム/吸収型偏光膜]の構成を有する偏光フィルム1を得た。なお、上記水系接着剤としては、アセトアセチル基を有するPVA系樹脂とメチロールメラミンと正電荷を有するアルミナコロイド(平均粒子径15nm)とを含有する水系接着剤を用いた。
偏光フィルム1の単体透過率(Ts)は43.0%であり、偏光度は99.989%であった。 [Production Example 2: Production of polarizing film 1]
As the thermoplastic resin base material, a long, amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm) having a Tg of approximately 75° C. was used, and one side of the resin base material was subjected to corona treatment.
Iodine was added to 100 parts by weight of a PVA resin prepared by mixing polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Mitsubishi Chemical Corporation, product name "Gosenex Z410") in a ratio of 9:1. A PVA aqueous solution (coating liquid) was prepared by dissolving 13 parts by weight of potassium chloride in water.
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60° C. to form a PVA-based resin layer with a thickness of 13 μm, thereby producing a laminate.
The obtained laminate was uniaxially stretched 2.4 times in the vertical direction (longitudinal direction) in an oven at 130° C. (in-air auxiliary stretching treatment).
Next, the laminate was immersed for 30 seconds in an insolubilization bath (boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C. (insolubilization treatment).
Next, the finally obtained absorption type polarized light was added to a dyeing bath (an iodine aqueous solution obtained by blending iodine and potassium iodide at a weight ratio of 1:7 to 100 parts by weight of water) at a liquid temperature of 30°C. The membrane was immersed for 60 seconds while adjusting the concentration so that the single transmittance (Ts) of the membrane became a desired value (staining treatment).
Next, it was immersed for 30 seconds in a crosslinking bath (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) at a liquid temperature of 40°C. (Crosslinking treatment).
Thereafter, while immersing the laminate in a boric acid aqueous solution (boric acid concentration: 4% by weight, potassium iodide concentration: 5% by weight) at a liquid temperature of 70°C, the laminate was completely rolled in the longitudinal direction (longitudinal direction) between rolls having different circumferential speeds. Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment).
Thereafter, the laminate was immersed in a cleaning bath (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) at a liquid temperature of 20° C. (cleaning treatment).
Thereafter, while drying in an oven kept at about 90°C, it was brought into contact with a SUS heating roll whose surface temperature was kept at about 75°C (drying shrinkage treatment). The shrinkage rate of the laminate in the width direction due to the drying shrinkage treatment was 5.2%.
In this way, an absorption type polarizing film with a thickness of about 5 μm was formed on the resin base material.
An acrylic resin film ("RV-20",
As a result, a polarizing film 1 having a structure of [acrylic resin film/absorption type polarizing film] was obtained. As the water-based adhesive, a water-based adhesive containing a PVA-based resin having an acetoacetyl group, methylolmelamine, and a positively charged alumina colloid (average particle size: 15 nm) was used.
The single transmittance (Ts) of the polarizing film 1 was 43.0%, and the degree of polarization was 99.989%.
上記位相差フィルム1および位相差フィルム2の楕円率を下記のようにして測定した。結果を表2および図6に示す。
<楕円率の測定方法>
偏光フィルム1の吸収型偏光膜側表面にアクリル系粘着剤層(日東電工社製、厚み5μm)を介して位相差フィルムを貼り合わせて、[位相差フィルム/偏光フィルム1]の構成を有する測定試料を得た。測定試料において、位相差フィルムの遅相軸と偏光フィルム1の吸収軸とのなす角度は45°であった。
ミュラーマトリクス・ポラリメーター(Axometrics社製、製品名「Axoscan」)を用いて、23℃で、測定試料の偏光フィルム1側表面に対して法線方向から光を照射し、400nm~700nmの波長領域において10nm毎に透過光の楕円率を測定した。
The ellipticity of the above-mentioned retardation film 1 and retardation film 2 was measured as follows. The results are shown in Table 2 and FIG. 6.
<How to measure ellipticity>
Measurement with a configuration of [retardation film/polarizing film 1] by laminating a retardation film on the absorbing polarizing film side surface of the polarizing film 1 via an acrylic adhesive layer (manufactured by Nitto Denko Corporation, thickness 5 μm) A sample was obtained. In the measurement sample, the angle between the slow axis of the retardation film and the absorption axis of the polarizing film 1 was 45°.
Using a Mueller matrix polarimeter (manufactured by Axometrics, product name "Axoscan"), light was irradiated from the normal direction to the polarizing film 1 side surface of the measurement sample at 23 ° C., and in the wavelength range of 400 nm to 700 nm. The ellipticity of transmitted light was measured every 10 nm.
<楕円率の測定方法>
偏光フィルム1の吸収型偏光膜側表面にアクリル系粘着剤層(日東電工社製、厚み5μm)を介して位相差フィルムを貼り合わせて、[位相差フィルム/偏光フィルム1]の構成を有する測定試料を得た。測定試料において、位相差フィルムの遅相軸と偏光フィルム1の吸収軸とのなす角度は45°であった。
ミュラーマトリクス・ポラリメーター(Axometrics社製、製品名「Axoscan」)を用いて、23℃で、測定試料の偏光フィルム1側表面に対して法線方向から光を照射し、400nm~700nmの波長領域において10nm毎に透過光の楕円率を測定した。
<How to measure ellipticity>
Measurement with a configuration of [retardation film/polarizing film 1] by laminating a retardation film on the absorbing polarizing film side surface of the polarizing film 1 via an acrylic adhesive layer (manufactured by Nitto Denko Corporation, thickness 5 μm) A sample was obtained. In the measurement sample, the angle between the slow axis of the retardation film and the absorption axis of the polarizing film 1 was 45°.
Using a Mueller matrix polarimeter (manufactured by Axometrics, product name "Axoscan"), light was irradiated from the normal direction to the polarizing film 1 side surface of the measurement sample at 23 ° C., and in the wavelength range of 400 nm to 700 nm. The ellipticity of transmitted light was measured every 10 nm.
[実施例1]
製造例1-1で得た位相差フィルム1を4枚重ね、さらに、製造例2で得た偏光フィルム1を重ねて積層体を得た。隣り合うフィルムは、アクリル系粘着剤層(日東電工社製、厚み5μm)を介して貼り合せた。4枚の位相差フィルム1は、片側から順に、λ/4部材1、λ/4部材2、λ/4部材3およびλ/4部材4として、表3に示す軸関係で重ねた。そして、λ/4部材4に偏光フィルム1を重ねた。なお、表3に示す角度は、積層体をλ/4部材1側から見たときの偏光フィルムの吸収型偏光膜の吸収軸方向を基準とした各部材の軸角度であり、「+」は時計回り、「-」は反時計回りを意味する。
[Example 1]
Four retardation films 1 obtained in Production Example 1-1 were stacked, and then the polarizing film 1 obtained in Production Example 2 was stacked to obtain a laminate. Adjacent films were bonded together via an acrylic adhesive layer (manufactured by Nitto Denko Corporation, thickness 5 μm). The four retardation films 1 were stacked in order from one side as λ/4 member 1, λ/4member 2, λ/4 member 3, and λ/4 member 4 in the axial relationship shown in Table 3. Then, the polarizing film 1 was placed on the λ/4 member 4. The angles shown in Table 3 are the axis angles of each member based on the absorption axis direction of the absorption type polarizing film of the polarizing film when the laminate is viewed from the λ/4 member 1 side, and "+" indicates Clockwise, "-" means counterclockwise.
製造例1-1で得た位相差フィルム1を4枚重ね、さらに、製造例2で得た偏光フィルム1を重ねて積層体を得た。隣り合うフィルムは、アクリル系粘着剤層(日東電工社製、厚み5μm)を介して貼り合せた。4枚の位相差フィルム1は、片側から順に、λ/4部材1、λ/4部材2、λ/4部材3およびλ/4部材4として、表3に示す軸関係で重ねた。そして、λ/4部材4に偏光フィルム1を重ねた。なお、表3に示す角度は、積層体をλ/4部材1側から見たときの偏光フィルムの吸収型偏光膜の吸収軸方向を基準とした各部材の軸角度であり、「+」は時計回り、「-」は反時計回りを意味する。
Four retardation films 1 obtained in Production Example 1-1 were stacked, and then the polarizing film 1 obtained in Production Example 2 was stacked to obtain a laminate. Adjacent films were bonded together via an acrylic adhesive layer (manufactured by Nitto Denko Corporation, thickness 5 μm). The four retardation films 1 were stacked in order from one side as λ/4 member 1, λ/4
[比較例1]
λ/4部材1~4として位相差フィルム2を用いたこと以外は実施例1と同様にして、積層体を得た。 [Comparative example 1]
A laminate was obtained in the same manner as in Example 1 except thatretardation film 2 was used as λ/4 members 1 to 4.
λ/4部材1~4として位相差フィルム2を用いたこと以外は実施例1と同様にして、積層体を得た。 [Comparative example 1]
A laminate was obtained in the same manner as in Example 1 except that
<評価>
分光光度計(大塚電子社製、「LPF-200」)を用いて、偏光フィルム1の平行透過率および初期色相(a*値、b*値)ならびに実施例1および比較例1の積層体の平行透過率および平行色相(a*値、b*値)を測定した。平行透過率は、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。偏光フィルムの初期色相は、偏光フィルム1の一方の側に光を入射させた際に他方の側から出射する光の色相である。積層体の平行色相は、偏光方向が偏光フィルム1の吸収軸に直交である直線偏光を積層体のλ/4部材1側から入射させた際に偏光フィルム1側から出射する光の色相である。 <Evaluation>
Using a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., "LPF-200"), the parallel transmittance and initial hue (a * value, b * value) of polarizing film 1 and the laminates of Example 1 and Comparative Example 1 were measured. Parallel transmittance and parallel hue (a * value, b * value) were measured. The parallel transmittance is a Y value measured using a 2-degree field of view (C light source) according to JIS Z8701 and subjected to visibility correction. The initial hue of the polarizing film is the hue of light that is emitted from the other side when light is incident on one side of the polarizing film 1. The parallel hue of the laminate is the hue of light that is emitted from the polarizing film 1 side when linearly polarized light whose polarization direction is perpendicular to the absorption axis of the polarizing film 1 is incident from the λ/4 member 1 side of the laminate. .
分光光度計(大塚電子社製、「LPF-200」)を用いて、偏光フィルム1の平行透過率および初期色相(a*値、b*値)ならびに実施例1および比較例1の積層体の平行透過率および平行色相(a*値、b*値)を測定した。平行透過率は、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。偏光フィルムの初期色相は、偏光フィルム1の一方の側に光を入射させた際に他方の側から出射する光の色相である。積層体の平行色相は、偏光方向が偏光フィルム1の吸収軸に直交である直線偏光を積層体のλ/4部材1側から入射させた際に偏光フィルム1側から出射する光の色相である。 <Evaluation>
Using a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., "LPF-200"), the parallel transmittance and initial hue (a * value, b * value) of polarizing film 1 and the laminates of Example 1 and Comparative Example 1 were measured. Parallel transmittance and parallel hue (a * value, b * value) were measured. The parallel transmittance is a Y value measured using a 2-degree field of view (C light source) according to JIS Z8701 and subjected to visibility correction. The initial hue of the polarizing film is the hue of light that is emitted from the other side when light is incident on one side of the polarizing film 1. The parallel hue of the laminate is the hue of light that is emitted from the polarizing film 1 side when linearly polarized light whose polarization direction is perpendicular to the absorption axis of the polarizing film 1 is incident from the λ/4 member 1 side of the laminate. .
偏光フィルム1の平行透過率および初期色相、ならびに、これらと積層体の平行透過率および平行色相との差を表4に示す。なお、実施例および比較例で作製した積層体は、本発明の実施形態による表示システムの簡易評価モデルである。具体的には、積層体に、λ/4部材1側から入射し、偏光フィルム1側から出射した光は、本発明の実施形態による表示システムにおいて、偏光部材を介して表示素子から前方に出射した第1の直線偏光が第1のλ/4部材および第2のλ/4部材をこの順に透過後、反射型偏光部材およびハーフミラーで反射されることにより第2のλ/4部材をさらに2回透過し、次いで、反射型偏光部材を透過して前方に出射した光として評価することができる。よって、偏光フィルム1の平行透過率と積層体の平行透過率との差(ΔTp=積層体のTp-偏光フィルム1のTp)は、上記表示システムにおける光効率の低下の程度を反映し得る。また、偏光フィルム1の初期色相と積層体の平行色相との差(Δa*b*)は、上記表示システムにおける出射光と透過光との色相の変化の程度を反映し得る。
Table 4 shows the parallel transmittance and initial hue of the polarizing film 1, and the difference between these and the parallel transmittance and parallel hue of the laminate. Note that the laminates produced in Examples and Comparative Examples are simple evaluation models of display systems according to embodiments of the present invention. Specifically, in the display system according to the embodiment of the present invention, light that enters the laminate from the λ/4 member 1 side and exits from the polarizing film 1 side is emitted forward from the display element via the polarizing member. After the first linearly polarized light passes through the first λ/4 member and the second λ/4 member in this order, it is reflected by the reflective polarizing member and the half mirror to further pass through the second λ/4 member. It can be evaluated as light that is transmitted twice, then transmitted through a reflective polarizing member, and emitted forward. Therefore, the difference between the parallel transmittance of the polarizing film 1 and the parallel transmittance of the laminate (ΔTp=Tp of the laminate−Tp of the polarizing film 1) can reflect the degree of reduction in light efficiency in the display system. Further, the difference (Δa * b * ) between the initial hue of the polarizing film 1 and the parallel hue of the laminate can reflect the degree of change in hue between the emitted light and the transmitted light in the display system.
実施例1の積層体を透過した光は、比較例1の積層体を透過した光に比べて色相の変化が抑制されており、また、実施例1の積層体は比較例1の積層体よりも光効率の低下が抑制されている。
The change in hue of the light transmitted through the laminate of Example 1 was suppressed compared to the light transmitted through the laminate of Comparative Example 1. Also, the decrease in light efficiency is suppressed.
本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成または同一の目的を達成することができる構成で置き換えることができる。
The present invention is not limited to the above embodiments, and various modifications are possible. For example, it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that has the same effect, or a configuration that can achieve the same purpose.
本発明の実施形態に係る表示システムは、例えば、VRゴーグル等の表示体に用いられ得る。
The display system according to the embodiment of the present invention can be used for a display body such as VR goggles, for example.
2 表示システム
12 表示素子
14 反射部
14a 反射型偏光部材
16 第一レンズ部
18 ハーフミラー
20 第一位相差部材
22 第二位相差部材
24 第二レンズ部 2Display system 12 Display element 14 Reflection section 14a Reflective polarizing member 16 First lens section 18 Half mirror 20 First retardation member 22 Second retardation member 24 Second lens section
12 表示素子
14 反射部
14a 反射型偏光部材
16 第一レンズ部
18 ハーフミラー
20 第一位相差部材
22 第二位相差部材
24 第二レンズ部 2
Claims (10)
- ユーザに対して画像を表示する表示システムであって、
偏光部材を介して画像を表す光を前方に出射する表示面を有する表示素子と、
前記表示素子の前方に配置され、反射型偏光部材を含み、前記表示素子から出射された光を反射する反射部と、
前記表示素子と前記反射部との間の光路上に配置される第一レンズ部と、
前記表示素子と前記第一レンズ部との間に配置され、前記表示素子から出射された光を透過させ、前記反射部で反射された光を前記反射部に向けて反射させるハーフミラーと、
前記表示素子と前記ハーフミラーとの間の光路上に配置される第1のλ/4部材と、
前記ハーフミラーと前記反射部との間の光路上に配置される第2のλ/4部材と、を備え、
前記第1のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長380nm~700nmの透過光の楕円率が、0.72以上であり、
前記第2のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長380nm~700nmの透過光の楕円率が、0.72以上である、
表示システム。 A display system for displaying images to a user, the display system comprising:
a display element having a display surface that emits light representing an image forward through a polarizing member;
a reflecting section disposed in front of the display element, including a reflective polarizing member, and reflecting light emitted from the display element;
a first lens section disposed on an optical path between the display element and the reflection section;
a half mirror disposed between the display element and the first lens part, which transmits the light emitted from the display element and reflects the light reflected by the reflection part toward the reflection part;
a first λ/4 member disposed on an optical path between the display element and the half mirror;
a second λ/4 member disposed on the optical path between the half mirror and the reflection section,
When linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the first λ/4 member, the ellipticity of transmitted light with a wavelength of 380 nm to 700 nm is 0.72 or more. can be,
When linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the second λ/4 member, the ellipticity of transmitted light with a wavelength of 380 nm to 700 nm is 0.72 or more. be,
display system. - 前記第1のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長550nmの透過光の楕円率が、0.9以上であり、
前記第2のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長550nmの透過光の楕円率が、0.9以上である、請求項1に記載の表示システム。 When linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the first λ/4 member, the ellipticity of transmitted light with a wavelength of 550 nm is 0.9 or more,
When linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the second λ/4 member, the ellipticity of transmitted light with a wavelength of 550 nm is 0.9 or more. The display system according to claim 1. - 前記第1のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長450nmの透過光の楕円率が、波長650nmの透過光の楕円率よりも大きく、
前記第2のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長450nmの透過光の楕円率が、波長650nmの透過光の楕円率よりも大きい、請求項1に記載の表示システム。 When linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the first λ/4 member, the ellipticity of transmitted light with a wavelength of 450 nm is the ellipticity of transmitted light with a wavelength of 650 nm. greater than the rate;
When linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the second λ/4 member, the ellipticity of transmitted light with a wavelength of 450 nm is the ellipticity of transmitted light with a wavelength of 650 nm. 2. The display system of claim 1, wherein the display system is greater than the percentage. - 380nm~700nmの波長領域中、前記第1のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの透過光の楕円率が0.85以上である波長領域が占める割合が70%以上であり、
380nm~700nmの波長領域中、前記第2のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの透過光の楕円率が0.85以上である波長領域が占める割合が70%以上である、請求項1に記載の表示システム。 In the wavelength range of 380 nm to 700 nm, when linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the first λ/4 member, the ellipticity of transmitted light is 0.85. The ratio of the wavelength range that is above is 70% or more,
In the wavelength range of 380 nm to 700 nm, when linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the second λ/4 member, the ellipticity of transmitted light is 0.85. 2. The display system according to claim 1, wherein the proportion of the above wavelength range is 70% or more. - 前記第1のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの透過光が0.85以上の楕円率を示す波長領域の70%以上を、380nm~600nmの波長領域が占め、
前記第2のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの透過光が0.85以上の楕円率を示す波長領域の70%以上を、380nm~600nmの波長領域が占める、請求項1に記載の表示システム。 70% of the wavelength range in which transmitted light exhibits an ellipticity of 0.85 or more when linearly polarized light whose polarization direction makes an angle of 45° with respect to the slow axis is incident on the first λ/4 member. The above is occupied by the wavelength region of 380 nm to 600 nm,
70% of the wavelength range in which transmitted light exhibits an ellipticity of 0.85 or more when linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the second λ/4 member. The display system according to claim 1, wherein the wavelength range from 380 nm to 600 nm occupies the above range. - 前記偏光部材を介して出射された光の偏光方向と前記反射型偏光部材の反射軸とが互いに略直交する、請求項1に記載の表示システム。 The display system according to claim 1, wherein the polarization direction of the light emitted through the polarizing member and the reflection axis of the reflective polarizing member are substantially orthogonal to each other.
- 前記偏光部材を介して出射された光の偏光方向と前記反射型偏光部材の反射軸とが互いに略平行である、請求項1に記載の表示システム。 The display system according to claim 1, wherein the polarization direction of the light emitted through the polarizing member and the reflection axis of the reflective polarizing member are substantially parallel to each other.
- 請求項1から7のいずれか一項に記載の表示システムを具備する表示体。 A display body comprising the display system according to any one of claims 1 to 7.
- 請求項1から7のいずれか一項に記載の表示システムを具備する表示体の製造方法。 A method for manufacturing a display body comprising the display system according to any one of claims 1 to 7.
- 偏光部材を介して出射された画像を表す光を、第1のλ/4部材を通過させるステップと、
前記第1のλ/4部材を通過した光を、ハーフミラーおよび第一レンズ部を通過させるステップと、
前記ハーフミラーおよび前記第一レンズ部を通過した光を、第2のλ/4部材を通過させるステップと、
前記第2のλ/4部材を通過した光を、反射型偏光部材を含む反射部で前記ハーフミラーに向けて反射させるステップと、
前記反射部および前記ハーフミラーで反射させた光を、前記第2のλ/4部材により前記反射部を透過可能にするステップと、を有し、
前記第1のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長380nm~700nmの透過光の楕円率が、0.72以上であり、
前記第2のλ/4部材に偏光方向がその遅相軸に対して45°の角度をなす直線偏光を入射させたときの波長380nm~700nmの透過光の楕円率が、0.72以上である、
表示方法。
passing the light representing the image emitted through the polarizing member through the first λ/4 member;
a step of causing the light that has passed through the first λ/4 member to pass through a half mirror and a first lens portion;
passing the light that has passed through the half mirror and the first lens section through a second λ/4 member;
reflecting the light that has passed through the second λ/4 member toward the half mirror by a reflecting section including a reflective polarizing member;
a step of allowing the light reflected by the reflection part and the half mirror to pass through the reflection part by the second λ/4 member;
When linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the first λ/4 member, the ellipticity of transmitted light with a wavelength of 380 nm to 700 nm is 0.72 or more. can be,
When linearly polarized light whose polarization direction makes an angle of 45° with respect to its slow axis is incident on the second λ/4 member, the ellipticity of transmitted light with a wavelength of 380 nm to 700 nm is 0.72 or more. be,
Display method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380027368.4A CN118891567A (en) | 2022-03-14 | 2023-03-09 | Display system, display method, display body, and method for manufacturing display body |
Applications Claiming Priority (32)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022039286 | 2022-03-14 | ||
JP2022-039285 | 2022-03-14 | ||
JP2022-039286 | 2022-03-14 | ||
JP2022039285 | 2022-03-14 | ||
JP2022077632A JP7516455B2 (en) | 2022-05-10 | 2022-05-10 | Lens portion, laminate, display, manufacturing method of display, and display method |
JP2022-077677 | 2022-05-10 | ||
JP2022077677A JP2023166852A (en) | 2022-05-10 | 2022-05-10 | Lens portion, laminate, display body, method for manufacturing display body, and display method |
JP2022-077632 | 2022-05-10 | ||
JP2022-077657 | 2022-05-10 | ||
JP2022077659A JP2023166841A (en) | 2022-05-10 | 2022-05-10 | Display system, display method, display body, and method for manufacturing display body |
JP2022-077631 | 2022-05-10 | ||
JP2022-077633 | 2022-05-10 | ||
JP2022077631A JP2023134316A (en) | 2022-03-14 | 2022-05-10 | Lens part, laminated body, display body, display body production method, and display method |
JP2022077633A JP7516456B2 (en) | 2022-05-10 | 2022-05-10 | Display method |
JP2022-077659 | 2022-05-10 | ||
JP2022-077658 | 2022-05-10 | ||
JP2022-077678 | 2022-05-10 | ||
JP2022077634A JP7516457B2 (en) | 2022-05-10 | 2022-05-10 | Lens portion, laminate, display, manufacturing method of display, and display method |
JP2022077676A JP2023166851A (en) | 2022-05-10 | 2022-05-10 | Lens portion, laminate, display body, method for manufacturing display body, and display method |
JP2022-077676 | 2022-05-10 | ||
JP2022077678A JP2023166853A (en) | 2022-05-10 | 2022-05-10 | Lens portion, laminate, display body, method for manufacturing display body, and display method |
JP2022077658A JP2023166840A (en) | 2022-05-10 | 2022-05-10 | Display system, display method, display body, and method for manufacturing display body |
JP2022-077679 | 2022-05-10 | ||
JP2022077657A JP2023134317A (en) | 2022-03-14 | 2022-05-10 | Display system, display method, display body, and display body production method |
JP2022077679A JP7516458B2 (en) | 2022-05-10 | 2022-05-10 | Lens portion, laminate, display, manufacturing method of display, and display method |
JP2022-077634 | 2022-05-10 | ||
JP2022-212220 | 2022-12-28 | ||
JP2022212220A JP2024095148A (en) | 2022-12-28 | 2022-12-28 | Display system, display method, display body and manufacturing method of display body |
JP2022-212219 | 2022-12-28 | ||
JP2022212219A JP2024095147A (en) | 2022-12-28 | 2022-12-28 | Display system, display method, display body and manufacturing method of display body |
JP2023-030340 | 2023-02-28 | ||
JP2023030340A JP2024122668A (en) | 2023-02-28 | 2023-02-28 | Display system, display method, display body, and method for manufacturing display body |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023176693A1 true WO2023176693A1 (en) | 2023-09-21 |
Family
ID=88023690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/009078 WO2023176693A1 (en) | 2022-03-14 | 2023-03-09 | Display system, display method, display body, and method for manufacturing display body |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202401086A (en) |
WO (1) | WO2023176693A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1010465A (en) * | 1996-04-24 | 1998-01-16 | Sharp Corp | Optical device and mounting-on-head type display formed by using this optical device |
JP2009086651A (en) * | 2007-09-11 | 2009-04-23 | Toray Ind Inc | Retardation film, circularly polarizing plate and display device using the same |
JP2019526075A (en) * | 2016-08-02 | 2019-09-12 | アップル インコーポレイテッドApple Inc. | Optical system for head mounted display |
JP2021124540A (en) * | 2020-01-31 | 2021-08-30 | キヤノン株式会社 | Image display device |
-
2023
- 2023-03-09 WO PCT/JP2023/009078 patent/WO2023176693A1/en unknown
- 2023-03-14 TW TW112109370A patent/TW202401086A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1010465A (en) * | 1996-04-24 | 1998-01-16 | Sharp Corp | Optical device and mounting-on-head type display formed by using this optical device |
JP2009086651A (en) * | 2007-09-11 | 2009-04-23 | Toray Ind Inc | Retardation film, circularly polarizing plate and display device using the same |
JP2019526075A (en) * | 2016-08-02 | 2019-09-12 | アップル インコーポレイテッドApple Inc. | Optical system for head mounted display |
JP2021124540A (en) * | 2020-01-31 | 2021-08-30 | キヤノン株式会社 | Image display device |
Also Published As
Publication number | Publication date |
---|---|
TW202401086A (en) | 2024-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023176693A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2023176627A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2023176692A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2023176626A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2023176691A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2023176368A1 (en) | Lens part, laminate, display body, and manufacturing method and display method for display body | |
WO2023176365A1 (en) | Lens unit, laminate, display body, method for manufacturing display body, and display method | |
WO2023176625A1 (en) | Lens part, display body, and display method | |
WO2023176624A1 (en) | Lens part, display body, and display method | |
WO2023176363A1 (en) | Display system, display method, display body, and display body manufacturing method | |
WO2023176361A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
WO2023176367A1 (en) | Lens part, laminated body, display body, display body production method, and display method | |
WO2023176366A1 (en) | Lens unit, layered body, display body, display body manufacturing method, and display method | |
JP7516458B2 (en) | Lens portion, laminate, display, manufacturing method of display, and display method | |
JP7547456B2 (en) | Lens portion, display body and display method | |
WO2023176362A1 (en) | Display system, display method, display body, and method for manufacturing display body | |
JP2024122668A (en) | Display system, display method, display body, and method for manufacturing display body | |
JP2024122666A (en) | Display system, display method, display body, and method for manufacturing display body | |
JP2024122667A (en) | Display system, display method, display body, and method for manufacturing display body | |
JP2024095148A (en) | Display system, display method, display body and manufacturing method of display body | |
JP2024095147A (en) | Display system, display method, display body and manufacturing method of display body | |
JP2023166851A (en) | Lens portion, laminate, display body, method for manufacturing display body, and display method | |
JP2023166841A (en) | Display system, display method, display body, and method for manufacturing display body | |
JP2023134317A (en) | Display system, display method, display body, and display body production method | |
JP2023166852A (en) | Lens portion, laminate, display body, method for manufacturing display body, and display method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23770649 Country of ref document: EP Kind code of ref document: A1 |