WO2023084278A1 - Water purification system using ultraviolet light - Google Patents

Water purification system using ultraviolet light Download PDF

Info

Publication number
WO2023084278A1
WO2023084278A1 PCT/IB2021/060428 IB2021060428W WO2023084278A1 WO 2023084278 A1 WO2023084278 A1 WO 2023084278A1 IB 2021060428 W IB2021060428 W IB 2021060428W WO 2023084278 A1 WO2023084278 A1 WO 2023084278A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
electrode
water purification
water
fluid
Prior art date
Application number
PCT/IB2021/060428
Other languages
Spanish (es)
French (fr)
Inventor
David Magín FLÓREZ RUBIO
Rafael Fernando DÍEZ MEDINA
Original Assignee
Pontificia Universidad Javeriana
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Javeriana filed Critical Pontificia Universidad Javeriana
Priority to PCT/IB2021/060428 priority Critical patent/WO2023084278A1/en
Publication of WO2023084278A1 publication Critical patent/WO2023084278A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light

Definitions

  • the present disclosure is related to fluid purification systems. Particularly, the present disclosure relates to water purification systems that use radiation for their purification processes, but do not use mercury.
  • W02011013083A1 discloses a device (100) for disinfecting a conductive liquid (106), comprising: a discharge container (102) filled with discharge gas (101), the walls of said container (102) being made of dielectric material .
  • W02011013083A1 also discloses a first electrode (103) located inside said container (102); a second electrode (104) located outside of said container (102); and a drive circuit (105) configured to couple to said first and second electrodes and cause said discharge gas (101) to discharge when both said container (102) and said second electrode (104) are immersed in said conductive liquid ( 106).
  • CN209161551U discloses a purifier with a kind of spiral channel structure and the UV sterilization unit with the structure, where said spiral channel structure is characterized in that it includes a casing (1), the helical deflector plates are Equipped with the interior of the casing (1) (3), the helical baffle plates (3) and the casing (1) collectively form a spiral channel (4).
  • the water inlet pipe is additionally provided in the casing (1) (5) and the water outlet (6), the water inlet pipe (5) and the water outlet (6) and the spiral channel ( 4) make up the water flow trail.
  • a device that allows it to be turned on immediately for operation and that allows instant disinfection of the water, without requiring periodic change of filters and without altering the properties of the water such as odor, taste or chemical composition of the water.
  • the present disclosure corresponds to a water purification system, which comprises a UV lamp located inside a water container, said water container includes an inlet and an outlet for the water.
  • Said water purification system also includes a first electrode with a spiral shape arranged around the UV lamp, making contact with the surface of said UV lamp and with the inner surface of the water container, said first electrode is connected to ground and In turn, it guides the circulation of the water around the lamp and up to the outlet, through which said water exits towards the water storage container.
  • the UV lamp also includes a second electrode located inside the UV lamp, an electrical transformer connected to the first electrode and to the second electrode, a resonant inverter type power circuit managed by a control unit that receives energy from a power source. external power supply.
  • a fluid comes into contact with the outer surface of the lamp following the path determined by the first electrode, and travels around the UV lamp as it is purified by the UV radiation emitted by the UV lamp, and then the purified fluid it is stored in the water storage container to be dispensed through the final outlet to the user.
  • FIG. 1 illustrates a water purification system comprising a lamp inside a container, an electrode around the lamp, a fluid inlet connected to the electrode around the lamp, and a fluid outlet connected to the storage container. water.
  • FIG. 2a illustrates an exploded view of a purification system including a UV lamp, a spiral-shaped first electrode disposed around the UV lamp, a second electrode located within the UV lamp, a cylinder configured to contain the UV lamp, a top cap configured to be disposed at one end of the cylinder, and a bottom cap configured to be disposed at another end of the cylinder.
  • the FIG. 2b illustrates a fluid container comprising three parts, a container, a container lid, and a base that connects to one end of the container, wherein the container further includes a valve.
  • FIG. 3 illustrates an exploded view of the elements of FIG. 2a inside the container of FIG. 2b.
  • FIG. 4 illustrates a power supply connected to a control unit which in turn is connected to an electrical transformer.
  • Said electrical transformer is connected to the UV lamp and a first electrode.
  • FIG. 5 illustrates a first valve connected to a solenoid valve, a flow sensor connected to the solenoid valve, where the flow sensor is connected to a water purification system which is in turn connected to a second valve. Furthermore, in said FIG. 5 the solenoid valve and the flow sensor are connected to a control unit.
  • the present disclosure corresponds to a water purification system (100), which comprises a UV lamp (2) located inside a water purification container (1), said container (1) includes an inlet (4 ) and an outlet for the water.
  • Said water purification system (100) also includes a first electrode (6) with a spiral shape arranged around the UV lamp (2) and located between said UV lamp (2) and the inner surface of the water purification container. (1).
  • said first electrode (6) has an external surface, is connected to ground (19) and in turn has a fluid inlet (4) through which water circulates and an outlet where said water comes out, and it can be stored in a water storage container (3).
  • the control unit (10) is configured to generate electrical activation signals for the electrodes (6 , 7).
  • a fluid enters the water purification container (1) through the inlet, and travels along the first electrode (6) as it is irradiated by the UV radiation emitted by the UV lamp. (2).
  • a source of fluid is connected with the inlet (4) of the water purification container (1), then a fluid enters through the inlet (4) following the path determined by the shape of the first electrode (6). , that is, the water moves over the external surface of the first electrode (6) and in contact with the UV lamp (2).
  • the previous Uo allows the fluid to move around the UV lamp (2) since the first electrode (6) has a spiral shape and is in contact with both the external surface of the lamp and the internal surface of the purification vessel. of water (1) where said UV lamp (2) is located.
  • a fluid source will be understood as a source configured to dispense water or any other liquid to be purified from microorganisms.
  • the fluid source can be the water supply of a residence or any type of room.
  • fluid or fluid to be purified will be understood as a liquid such as water which may contain microorganisms and it is desired to be purified for consumption.
  • the UV lamp (2) emits intense ultraviolet light that inactivates the DNA of microorganisms in the water, leaving it 99.99% free of bacteria and viruses.
  • the water purification system includes a first electrode (6) arranged on the external surface of the UV lamp (2), and a second electrode (7) inside said UV lamp (2), and that in addition , said electrodes are connected to a power source (11), allows said electrodes to power the UV lamp (2).
  • the first electrode (6) is connected to ground (19), allows that electric discharges do not occur in said first electrode (6), thus avoiding accidents.
  • the fact that the first electrode (6) has a spiral shape and is in contact with the UV lamp (2) means that other types of electrodes do not have to be used that can reduce the amount of UV radiation that is emitted from said lamp. lamp towards the water to be purified. Said first electrode (6) can have between 5 and 15 turns, which allows the fluid to move along the UV lamp (2).
  • the fact that the fluid moves inside the water purification container (1) and over the first spiral-shaped electrode (6), increases the surface that is irradiated by the UV lamp (2), which improves fluid purification efficiency compared to other water purification systems.
  • the above also allows the exposure time of the water to be increased, promoting similar UV radiation doses for all irradiated water particles.
  • efficiency is increased since radiation attenuation is avoided, as occurs in other types of systems that require a "jacket" or a quartz coating to contain the UV lamp (2) and separate it from the fluid.
  • the UV lamp (2) is arranged inside a water purification container (1) which can be located inside or to the side of the water storage container (3) or outside this water storage container (3).
  • a water purification container (1) which can be located inside or to the side of the water storage container (3) or outside this water storage container (3).
  • Uv lamp Ultraviolet lamp
  • the purification container (1) is made up of a container that can be a cylinder (la) which has a first end and a second end. Said first end of the cylinder (la) is connected to a first cover (Ib), while the second end is connected to a second cover (1c), where the UV lamp (2) and the first electrode (6) are arranged inside the cylinder (la).
  • the water purification container (1) is made up of three parts, which are the cylinder (la), a first cover (Ib) and a second cover (1c), allows a user to remove the UV lamp (2 ) from the water storage container (3) to perform maintenance on the UV lamp (2) or to replace it without any risk of accident.
  • the cylinder (la) can be arranged vertically or horizontally.
  • the first end is an upper end that connects with the first cap (Ib), while the second end is a lower end that connects with the second cap (1c).
  • the second cover (1c) can include a lamp container inlet (14) which is connected to the first electrode (6). Eo above allows a fluid to enter through the inlet of the lamp container (14) towards said water purification container (1) so that it can later be purified. Referring to FIG.
  • the water purification container (1) is made up of a cylinder (la) arranged vertically, a first lid (Ib) arranged at the upper end of the cylinder (la) and a second lid (1c) arranged at the bottom. lower end of it.
  • said water purification container (1) can be contained in the water storage container (3), and in turn the first cover (Ib) can have a fluid outlet, while the second cover (1c) can have a fluid inlet. This allows a fluid to enter the water purification container (1) from the lower end, move to the upper end, and then water flow out from the first lid (Ib) and enter the water storage container. (3).
  • the cylinder (la) of the water purification container (1) can be transparent, which allows a user that the UV lamp (2) is visible to a user during its operation, allowing to visually verify the operation of the system. water purification (100) of the present disclosure.
  • the water storage container (3) can also be made up of three parts, a container, a top cover (3a) and a structure (3b), where said structure (3b) has a support face that is optionally supported on a surface.
  • Said structure (3b) can also include a support face where the container is supported, which contains the UV lamp (2), the first electrode (6), the second electrode (7), and the purification container (1). when said UV lamp (2) is contained therein.
  • Said structure (3b) also allows the control unit (10) and the electrical transformer (18) to be contained in such a way that they are isolated from the outside, preventing them from being damaged by any external condition such as humidity, for example.
  • Both the material of the cylinder (la) and the container of the water storage container (3) can be selected from the group consisting of polyvinyl chloride (PVC); Chlorinated Polyvinyl Chloride (CPVC); polyethylene terephthalate (PET), polyamides (PA) (eg PA12, PA6, PA66); polychlorotrifluoroethylene (PCTFE); polyvinylidene fluoride (PVDF), reinforced with fibers (eg glass, aramid, polyester), polytetrafluoride ethylene (PTFE); ethylene-chlorotrifluoroethylene (ECTFE); plastics (polyester, vinylester, epoxy, vinyl resins), equivalent materials known to a person moderately versed in the matter, or a combination of the above.
  • PVC polyvinyl chloride
  • CPVC Chlorinated Polyvinyl Chloride
  • PET polyethylene terephthalate
  • PA polyamides
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvin
  • the inlet (4) of the water purification container (1) can be connected to a first valve (8) configured to allow the inlet flow of fluid to the first electrode (6).
  • the container of the water storage container (3) is the place where the fluid from the water purification container (1) is stored, and can be connected to a second valve (9) through which a user can control the purified fluid you want to dispense.
  • Both the first valve (8) and the second valve (9) can be selected from the group consisting of check valves, gate valves, ball valves or spherical valve, safety or pressure relief valve, globe valve (or seat), butterfly valve, diaphragm valve, rotary valve, check valve, such as swing clapper valve, spring loaded valve, piston valve, ball check valve, and poppet valve.
  • a solenoid valve (17) can be connected, where said solenoid valve (17) is in turn connected to the control unit (10).
  • the solenoid valve (17) is configured to allow fluid to enter the water purification container (1), thanks to an activation command given by the control unit (10).
  • a series of sensors can be connected to measure the amount of fluid being purified.
  • a first sensor (15) connected to the control unit (10) can be arranged, where said sensor is configured to obtain temperature data from the UV lamp (2) and send it to the control unit (10), which makes it possible to identify if it has the desired temperature or has an abnormal temperature value.
  • the UV lamp (2) can also be connected to a UV intensity sensor connected to the control unit (10), wherein said intensity sensor is configured to obtain UV intensity data from the UV lamp ( 2) and send it to the control unit (10).
  • a second sensor (16) can also be arranged inside the water storage container (3), which is a fluid level sensor configured to obtain data on the amount of fluid stored in the water storage container. water (3) and send it to the control unit (10).
  • a flow sensor (13) can be connected, which is connected to the control unit (10) and is configured to obtain a flow data of the fluid that enters the the inlet (4) of the water purification container (l). Where said flow data is sent to the control unit (10).
  • said sensors allow obtaining data on the temperature and intensity of the UV lamp (2), the inlet flow at the inlet (4) of the water purification container (1), and the level inside the water storage container (3), which allows modifying the parameters of the current waveform generated by the control unit (10) and the electrical transformer (18) to control the dose that the lamp water is receiving UV (2).
  • the above allows regulating the inflow of water entering the water purification system (100) of the present disclosure through the solenoid valve (17) and also allows controlling the intensity of the UV lamp (2).
  • the control unit (10) when the second sensor (16) corresponding to the level sensor identifies that the water storage container (3) is full, the control unit (10) it turns off the UV lamp (2) and closes the solenoid valve (17), since no more fluid can enter to be purified. This makes it possible to reduce the energy consumption of the water purification system (100) of the present disclosure since the UV lamp (2) will work with a greater or lesser intensity depending on the amount of fluid being purified according to the information provided by the sensors described above.
  • an electrical signal is selected from electrical waves of alternating current or direct current, pulsed, alternating or non-alternating pulse train, electrical signal of square wave with variation of useful cycle, triangular wave, sawtooth wave , amplitude modulated wave, frequency modulated wave, phase modulated wave, pulse position modulated, or combinations of these.
  • These electrical signals are generated by the control unit (10) or by a signal generator or combinations of the above based on instructions readable by means of computation.
  • the fluid quantity data, the temperature data and the flow data are sent to the control unit 10, and may be stored in a memory module of the control unit.
  • control unit (10) can be selected from the group made up of: programmable logic controllers (PLC), microprocessors, DSCs (Digital Signal Controller), FPGAs (Field Programmable Gate Array, for its ), CPLDs (Complex Programmable Logic Device), ASICs (Application Specific Integrated Circuit), SoCs (System on Chip), PsoCs (Programmable System on Chip), computers, servers, tablets, cell phones, smartphones, signal generators and equivalent control units known to a person moderately versed in the matter and combinations thereof.
  • PLC programmable logic controllers
  • microprocessors DSCs (Digital Signal Controller)
  • FPGAs Field Programmable Gate Array, for its
  • CPLDs Complex Programmable Logic Device
  • ASICs Application Specific Integrated Circuit
  • SoCs System on Chip
  • PsoCs Programmable System on Chip
  • computers servers, tablets, cell phones, smartphones, signal generators and equivalent control units known to a person moderately versed in the matter and combinations thereof.
  • control unit memory module can be selected from RAM (Cache, SRAM, DRAM, DDR), ROM (Flash, Cache, HDD, SSD, EPROM, EEPROM, Removable ROM (eg SD ( miniSD, microSD, etc), MMC (MultiMedia Card), Compact Flash, SMC (Smart Media Card), SDC (Secure Digital Card), MS (Memory Stick), among others)), CD-ROM, digital versatile discs (DVD for Digital Versatile Disc) or other optical storage, magnetic cassettes, magnetic tapes, storage or any other media that can be used to store information and can be accessed with the control unit. Instructions, data structures, computer program modules are generally incorporated into memory registers. Some examples of data structure are: a text sheet or a spreadsheet, a database.
  • control unit (10) is connected with a resonant inverter (12), where the control unit (10) together with said resonant inverter (12) and the electrical transformer (18) and the electrodes (6, 7) generate a current waveform supplied to the UV lamp (2).
  • the resonant inverter (12) allows to change the way in which the current is fed to the UV lamp (2), which allows to improve the efficiency of the power supply (11) and thus reduce the amount of energy used during the purification process of a fluid to be purified.
  • the power source (11) can be a battery, or an alternating voltage electrical connection or a continuous voltage.
  • the electrical transformer (18) can have a special low capacitance construction, for example, have a toroidal shape and preferably have a low parasitic capacitance, which allows proper operation of the lamp, and improves the efficiency of the resonant inverter (12). . Additionally, by implementing the transformer with this technique, the lighting of the lamp with the external electrode connected to ground is achieved, which is not possible with any type of transformer manufacturing.
  • control unit (10) can be connected to a user interface (20) which can be made up of at least one button connected to the control unit (10), where said button allows to activate or deactivate
  • a user interface (20) which can be made up of at least one button connected to the control unit (10), where said button allows to activate or deactivate
  • the UV lamp (2) can also include a plurality of buttons or a touch screen that allow the control of the electrovalve (17) and the intensity of the UV lamp (2).
  • Ua user interface (20) can also comprise a display panel connected to the control unit (10), where said display panel configured to show information temperature and intensity of the UV lamp (2), level of the storage container of water (3), among others.
  • the display panel can be configured to display the data obtained by the sensors described above, so that these can be observed by a user.
  • the above allows the user interface (20) to be configured to obtain fluid input or output parameters. That is, through the user interface (20) a user can control the amount of fluid entering into the water purification system (100) and also allows a user to control the intensity of the UV lamp (2).
  • Said display panel is selected from the group consisting of: CRT screen, VGA screen, SVGA screen, Plasma screen, ECD screen, EED screen, TouchScreen screen, or MultiTouch screen.
  • a water purification system (100) was developed comprising: - a UV lamp (2) with a radiation range between 5-15mW/cm 2 , located inside a water storage container (3), said water storage container (3) includes an outlet (5);
  • first tubular electrode (6) with a spiral shape arranged around the UV lamp (2) and located between said UV lamp (2) and the water storage container (3), said first electrode (6) is connected ground (19);
  • a water purification container (1) that has a fluid inlet (4) through which the water circulates and an outlet through which said water leaves towards the water storage container (3);
  • control unit (10) connected to the first electrode (6), the second electrode (7) and to a power supply (11) with 100 to 200W.
  • the power supply (11) has a power of 160W with a frequency of 80kHz, and the volume of passage through UV is 1.97U at the input (4).
  • CFU Colony-forming units in the analyzed volume.
  • UFP Plaque-forming units in the analyzed volume.
  • Table 1 shows the data of the four samples, the degrees of turbidity of each one, and the initial concentration of the colony-forming units in the volume analyzed each lOOmL, and of the nephelometric units of turbidity each liter of each of the samples.
  • the water purification system (100) of EXAMPLE 1 was installed in the village of San Lorenzo, La Mesa, Cundinamarca and the system was connected to the aqueduct of said village.
  • the following Table 3 shows that the first sample is an untreated sample of the water from the aqueduct of the village. For their part, the following samples correspond to samples of purified water using the device of EXAMPLE 1.
  • the water purification system (100) had the following operating conditions: - The treatment speed was 330ml/minute.
  • the power supply (11) had a consumption of 200W, a power of 98.5 V RMS, a frequency of 80kHz.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physical Water Treatments (AREA)

Abstract

The present disclosure relates to a water purification system, which comprises a UV lamp located inside a water purification vessel. Said water purification vessel includes an outlet and a first spiral-shaped electrode arranged around the UV lamp and located between said UV lamp and the water purification vessel. Said first electrode is grounded and provided in turn with a fluid inlet through which the water flows. Furthermore, it also includes a second electrode located inside the UV lamp, an electrical transformer connected to the first electrode and to the second electrode, and a control unit connected to the first electrode, to the second electrode and to a power supply. When a fluid enters the first electrode, it moves inside the electrode as it is purified by the UV radiation emitted by the UV lamp and is then dispensed.

Description

SISTEMA DE PURIFICACIÓN DE AGUA CON EUZ ULTRAVIOLETA WATER PURIFICATION SYSTEM WITH ULTRAVIOLET EUZ
CAMPO TÉCNICO TECHNICAL FIELD
La presente divulgación está relacionada con sistemas de purificación de fluidos. Particularmente, la presente divulgación está relacionada con sistemas de purificación de agua que utilizan la radiación para sus procesos de purificación, pero no usan mercurio. The present disclosure is related to fluid purification systems. Particularly, the present disclosure relates to water purification systems that use radiation for their purification processes, but do not use mercury.
DESCRIPCIÓN DEL ESTADO DE LA TÉCNICA DESCRIPTION OF THE STATE OF THE ART
Actualmente, gran parte del mundo no cuenta con agua potable, teniendo en cuenta que, aunque se vea limpia, dicha agua contiene microorganismos que pueden generar enfermedades. Los sistemas tradicionales de desinfección de agua para consumo humano en punto de uso tienen inconvenientes como recambio de filtros periódico, poca eficiencia o alteración de las propiedades del agua. Dentro de las alternativas de purificación más utilizadas se encuentran el agua embotellada, sistemas de cloración, ozonizadores y /o filtros mecánicos, como aquellos de Carbón activado, Ósmosis, Cerámicos, membranas, entre otros. Currently, much of the world does not have drinking water, taking into account that, although it looks clean, said water contains microorganisms that can cause diseases. Traditional water disinfection systems for human consumption at the point of use have drawbacks such as periodic filter replacement, low efficiency, or changes in water properties. Among the most widely used purification alternatives are bottled water, chlorination systems, ozonators and/or mechanical filters, such as those of activated carbon, osmosis, ceramics, membranes, among others.
Estas soluciones pueden generar desperdicios plásticos, requerir una gran infraestructura, alteran el sabor del agua si se almacena durante un tiempo prolongado, requieren un mantenimiento e inversión de dinero frecuente, requieren transporte y no garantizan la eliminación de virus. Adicionalmente, se ha evidenciado que sistemas de desinfección de agua usando radiación UV es una alternativa. Sin embargo, las lámparas UV de mercurio deben estar encendidas permanentemente lo cual implica alto consumo de energía, tiene un Post-uso complejo y un riesgo de contaminar el agua, debido al contenido de mercurio. These solutions can generate plastic waste, require a large infrastructure, alter the taste of water if stored for a long time, require frequent maintenance and investment of money, require transportation, and do not guarantee virus removal. Additionally, it has been shown that water disinfection systems using UV radiation is an alternative. However, mercury UV lamps must be on permanently, which implies high energy consumption, complex post-use and a risk of contaminating water, due to the mercury content.
Teniendo en cuenta lo anterior, algunos de los desarrollos relacionados con la purificación de agua son los siguientes W02011013083A1 y CN209161551U. Particularmente, W02011013083A1 divulga un dispositivo (100) para desinfectar un líquido conductor (106), que comprende: un recipiente de descarga (102) lleno de gas de descarga (101), estando las paredes de dicho recipiente (102) compuestas de material dieléctrico. W02011013083A1 también divulga un primer electrodo (103) ubicado dentro de dicho recipiente (102); un segundo electrodo (104) ubicado fuera de dicho recipiente (102); y un circuito de excitación (105) configurado para acoplarse a dicho primer y segundo electrodo y hacer que dicho gas de descarga (101) se descargue cuando tanto dicho recipiente (102) como dicho segundo electrodo (104) se sumergen en dicho líquido conductor (106). Taking the above into account, some of the developments related to water purification are the following: W02011013083A1 and CN209161551U. In particular, W02011013083A1 discloses a device (100) for disinfecting a conductive liquid (106), comprising: a discharge container (102) filled with discharge gas (101), the walls of said container (102) being made of dielectric material . W02011013083A1 also discloses a first electrode (103) located inside said container (102); a second electrode (104) located outside of said container (102); and a drive circuit (105) configured to couple to said first and second electrodes and cause said discharge gas (101) to discharge when both said container (102) and said second electrode (104) are immersed in said conductive liquid ( 106).
Además, en cuanto a W02011013083A1, si un usuario enciende involuntariamente la fuente de alimentación del circuito de activación, el gas de descarga en el recipiente de descarga no se descargará si el recipiente de descarga y el segundo electrodo no se sumergen simultáneamente en el líquido conductor; por lo tanto, no se genera radiación ultravioleta nociva para la piel humana. In addition, as for W02011013083A1, if a user inadvertently turns on the drive circuit power supply, the discharge gas in the discharge container will not be discharged if the discharge container and the second electrode are not simultaneously immersed in the conductive liquid. ; therefore, harmful ultraviolet radiation is not generated for human skin.
Por su parte, CN209161551U divulga un purificador con una especie de estructura de canal en espiral y la unidad de esterilización UV con la estructura, donde dicha estructura de canal en espiral, se caracteriza porque incluye una carcasa (1), las placas deflectoras helicoidales están equipadas con el interior de la carcasa (1) (3), las placas deflectoras helicoidales (3) y la carcasa (1) forman colectivamente una espiral canal (4). La tubería de entrada de agua se proporciona adicionalmente en la carcasa (1) (5) y la salida de agua (6), la tubería de entrada de agua (5) y la salida de agua (6) y el canal en espiral (4) constituyen el flujo de agua sendero. For its part, CN209161551U discloses a purifier with a kind of spiral channel structure and the UV sterilization unit with the structure, where said spiral channel structure is characterized in that it includes a casing (1), the helical deflector plates are Equipped with the interior of the casing (1) (3), the helical baffle plates (3) and the casing (1) collectively form a spiral channel (4). The water inlet pipe is additionally provided in the casing (1) (5) and the water outlet (6), the water inlet pipe (5) and the water outlet (6) and the spiral channel ( 4) make up the water flow trail.
Por lo tanto, se requiere un dispositivo que permita ser encendido para su funcionamiento en forma inmediata y que permita una desinfección instantánea del agua, sin requerir cambio periódico de filtros y sin alterar las propiedades del agua como olor, sabor o composición química del agua. Therefore, a device is required that allows it to be turned on immediately for operation and that allows instant disinfection of the water, without requiring periodic change of filters and without altering the properties of the water such as odor, taste or chemical composition of the water.
BREVE DESCRIPCIÓN La presente divulgación corresponde a un sistema de purificación de agua, que comprende una lámpara UV localizada dentro de un recipiente de agua, dicho recipiente de agua incluye una entrada y una salida para el agua. Dicho sistema de purificación de agua también incluye un primer electrodo con una forma de espiral dispuesto alrededor de la lámpara UV, haciendo contacto con la superficie de dicha lámpara UV y con la superficie intema del recipiente de agua, dicho primer electrodo está conectado a tierra y a su vez guía la circulación del agua alrededor de la lámpara y hasta la salida, por donde sale dicha agua hacia el recipiente de almacenamiento de agua. SHORT DESCRIPTION The present disclosure corresponds to a water purification system, which comprises a UV lamp located inside a water container, said water container includes an inlet and an outlet for the water. Said water purification system also includes a first electrode with a spiral shape arranged around the UV lamp, making contact with the surface of said UV lamp and with the inner surface of the water container, said first electrode is connected to ground and In turn, it guides the circulation of the water around the lamp and up to the outlet, through which said water exits towards the water storage container.
Por otro lado, también incluye un segundo electrodo localizado dentro de la lámpara UV, un transformador eléctrico conectado al primer electrodo y al segundo electrodo, un circuito de potencia de tipo inversor resonante manejado por una unidad de control que recibe la energía de una fuente de alimentación eléctrica extema. Donde un fluido entra en contacto con la superficie externa de la lámpara siguiente la trayectoria determinada por el primer electrodo, y se desplaza alrededor la lámpara UV a medida que es purificado por la radiación UV emitida por la lámpara UV, y luego, el fluido purificado se almacena en el recipiente de almacenamiento de agua para ser dispensado mediante la salida final al usuario. On the other hand, it also includes a second electrode located inside the UV lamp, an electrical transformer connected to the first electrode and to the second electrode, a resonant inverter type power circuit managed by a control unit that receives energy from a power source. external power supply. Where a fluid comes into contact with the outer surface of the lamp following the path determined by the first electrode, and travels around the UV lamp as it is purified by the UV radiation emitted by the UV lamp, and then the purified fluid it is stored in the water storage container to be dispensed through the final outlet to the user.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La FIG. 1 ilustra un sistema de purificación de agua que comprende una lámpara dentro de un recipiente o contenedor, un electrodo alrededor de la lámpara, una entrada de fluido conectada con el electrodo alrededor de la lámpara y una salida de fluido conectada con el contenedor de almacenamiento de agua. The FIG. 1 illustrates a water purification system comprising a lamp inside a container, an electrode around the lamp, a fluid inlet connected to the electrode around the lamp, and a fluid outlet connected to the storage container. water.
La FIG. 2a ilustra una vista en explosión de un sistema de purificación que incluye una lámpara UV, un primer electrodo con forma de espiral dispuesto alrededor de la lámpara UV, un segundo electrodo localizado dentro de la lámpara UV, un cilindro configurado para contener la lámpara UV, una tapa superior configurada para disponerse en un extremo del cilindro, y una tapa inferior configurada para disponerse en otro extremo del cilindro. La FIG. 2b ilustra un contenedor de fluido que comprende tres partes, un contenedor, una tapa de contenedor y una base que se conecta con un extremo del contenedor, en donde el contenedor incluye además una válvula. The FIG. 2a illustrates an exploded view of a purification system including a UV lamp, a spiral-shaped first electrode disposed around the UV lamp, a second electrode located within the UV lamp, a cylinder configured to contain the UV lamp, a top cap configured to be disposed at one end of the cylinder, and a bottom cap configured to be disposed at another end of the cylinder. The FIG. 2b illustrates a fluid container comprising three parts, a container, a container lid, and a base that connects to one end of the container, wherein the container further includes a valve.
La FIG. 3 ilustra una vista sin explosionar de los elementos de la FIG. 2a dentro del contenedor de la FIG. 2b. The FIG. 3 illustrates an exploded view of the elements of FIG. 2a inside the container of FIG. 2b.
La FIG. 4 ilustra una fuente de alimentación conectada con una unidad de control que a su vez está conectada con un transformador eléctrico. Dicho transformador eléctrico está conectado con la lámpara UV y un primer electrodo. The FIG. 4 illustrates a power supply connected to a control unit which in turn is connected to an electrical transformer. Said electrical transformer is connected to the UV lamp and a first electrode.
La FIG. 5 ilustra una primera válvula conectada con una electroválvula, un sensor de flujo conectado con la electroválvula, donde el sensor de flujo está conectado con un sistema de purificación de agua que está conectado a su vez con una segunda válvula. Además, en dicha FIG. 5 la electroválvula y el sensor de flujo se conectan con una unidad de control. The FIG. 5 illustrates a first valve connected to a solenoid valve, a flow sensor connected to the solenoid valve, where the flow sensor is connected to a water purification system which is in turn connected to a second valve. Furthermore, in said FIG. 5 the solenoid valve and the flow sensor are connected to a control unit.
DESCRIPCIÓN DETALLADA DETAILED DESCRIPTION
Actualmente, y a pesar de que el agua se vea transparente, el agua que consumen los seres vivos puede contener múltiples patógenos que pueden ocasionar enfermedades gastrointestinales u de otra índole. Además, si bien en muchos lugares en donde el agua es almacenada y en cuerpos de agua esta es correctamente tratada, un mal mantenimiento de tanques y tuberías por donde el agua es conducida hace que esta se contamine. Currently, and despite the fact that the water looks transparent, the water that living beings consume may contain multiple pathogens that can cause gastrointestinal or other diseases. Furthermore, although in many places where water is stored and in bodies of water it is properly treated, poor maintenance of tanks and pipes through which water is conducted causes it to become contaminated.
Por lo tanto, la presente divulgación corresponde a un sistema de purificación de agua (100), que comprende una lámpara UV (2) localizada dentro de un recipiente de purificación de agua (1), dicho recipiente (1) incluye una entrada (4) y una salida para el agua. Dicho sistema de purificación de agua (100) también incluye un primer electrodo (6) con una forma de espiral dispuesto alrededor de la lámpara UV (2) y localizado entre dicha lámpara UV (2) y la superficie intema del recipiente de purificación de agua (1). Por su parte, dicho primer electrodo (6) cuenta con una superficie extema, está conectado a tierra (19) y a su vez cuenta con una entrada (4) de fluido por donde circula el agua y una salida por donde sale dicha agua, y puede ser almacenada en un recipiente de almacenamiento de agua (3). Therefore, the present disclosure corresponds to a water purification system (100), which comprises a UV lamp (2) located inside a water purification container (1), said container (1) includes an inlet (4 ) and an outlet for the water. Said water purification system (100) also includes a first electrode (6) with a spiral shape arranged around the UV lamp (2) and located between said UV lamp (2) and the inner surface of the water purification container. (1). For its part, said first electrode (6) has an external surface, is connected to ground (19) and in turn has a fluid inlet (4) through which water circulates and an outlet where said water comes out, and it can be stored in a water storage container (3).
Por otro lado, también incluye un segundo electrodo (7) localizado dentro de la lámpara UV (2), un transformador eléctrico (18) conectado por un lado al primer electrodo (6) y al segundo electrodo (7), y una unidad de control (10) conectada con el primer electrodo (6), el segundo electrodo (7) y a una fuente de alimentación (11), donde la unidad de control (10) está configurada para generar unas señales eléctricas de activación de los electrodos (6, 7). On the other hand, it also includes a second electrode (7) located inside the UV lamp (2), an electrical transformer (18) connected on one side to the first electrode (6) and to the second electrode (7), and a unit of control (10) connected to the first electrode (6), the second electrode (7) and to a power source (11), where the control unit (10) is configured to generate electrical activation signals for the electrodes (6 , 7).
Teniendo en cuenta lo anterior, un fluido entra en el recipiente de purificación de agua (1) a través de la entrada, y se desplaza a lo largo primer electrodo (6) a medida que es irradiada por la radiación UV emitida por la lámpara UV (2). Considering the above, a fluid enters the water purification container (1) through the inlet, and travels along the first electrode (6) as it is irradiated by the UV radiation emitted by the UV lamp. (2).
Haciendo referencia a la FIG. 1, una fuente de fluido está conectada con la entrada (4) del recipiente de purificación de agua (1), luego, un fluido entra a través de la entrada (4) siguiendo la trayectoria determinada por la forma del primer electrodo (6), es decir, el agua se desplaza por la superficie extema del primer electrodo (6) y en contacto con la lámpara UV (2). Uo anterior permite que el fluido se desplace alrededor de la lámpara UV (2) puesto que el primer electrodo (6) tiene una forma en espiral y está en contacto tanto con la superficie externa de la lámpara como con la superficie interna del recipiente de purificación de agua (1) donde se encuentra dicha lámpara UV (2). Referring to FIG. 1, a source of fluid is connected with the inlet (4) of the water purification container (1), then a fluid enters through the inlet (4) following the path determined by the shape of the first electrode (6). , that is, the water moves over the external surface of the first electrode (6) and in contact with the UV lamp (2). The previous Uo allows the fluid to move around the UV lamp (2) since the first electrode (6) has a spiral shape and is in contact with both the external surface of the lamp and the internal surface of the purification vessel. of water (1) where said UV lamp (2) is located.
Uo anterior permite que el fluido sea purificado por la radiación UV emitida por la lámpara UV (2) siguiendo una trayectoria y con un tiempo determinado de exposición al UV, y luego, el fluido purificado sale del recipiente de purificación de agua (1). Además, dicho fluido purificado se puede almacenar en el recipiente de almacenamiento de agua (3), el cual incluye una salida, en donde el fluido puede ser luego ser dispensado a través de la salida (5) del recipiente de almacenamiento de agua (3). Para el entendimiento de la presente se entenderá por fuente de fluido, a una fuente configurada para dispensar agua o cualquier otro líquido a ser purificado de microorganismos. Por ejemplo, la fuente de fluido puede ser el suministro de agua de una residencia o de cualquier tipo de estancia. Además, para el entendimiento de la presente divulgación se entenderá por fluido o fluido a purificar, a un líquido como agua el cual puede contener microorganismos y se desea ser purificado para su consumo. The above allows the fluid to be purified by the UV radiation emitted by the UV lamp (2) following a trajectory and with a determined UV exposure time, and then the purified fluid leaves the water purification container (1). Furthermore, said purified fluid can be stored in the water storage container (3), which includes an outlet, where the fluid can then be dispensed through the outlet (5) of the water storage container (3). ). For the understanding of the present, a fluid source will be understood as a source configured to dispense water or any other liquid to be purified from microorganisms. For example, the fluid source can be the water supply of a residence or any type of room. In addition, for the understanding of the present disclosure, fluid or fluid to be purified will be understood as a liquid such as water which may contain microorganisms and it is desired to be purified for consumption.
Por su parte, la lámpara UV (2) emite una luz ultravioleta intensa que inactiva el ADN de los microorganismos que están en el agua, dejándola 99,99% libre de bacterias y virus. Adicionalmente, el hecho que el sistema de purificación de agua incluya un primer electrodo (6) dispuesto en la superficie extema de la lámpara UV (2), y un segundo electrodo (7) dentro de dicha lámpara UV (2), y que además, dichos electrodos estén conectados a una fuente de alimentación (11), permite que dichos electrodos alimenten la lámpara UV (2). Además, que el primer electrodo (6) esté conectado a tierra (19), permite que no ocurran descargas eléctricas en dicho primer electrodo (6) evitando así que haya accidentes. Adicionalmente, que el primer electrodo (6) tenga una forma en espiral y esté en contacto con la lámpara UV (2), permite que no se tengan que utilizar otros tipos de electrodo que puedan reducir la cantidad de radicación UV que es emitida desde dicha lámpara hacia el agua a purificar. Dicho primer electrodo (6) puede tener entre 5 y 15 espiras, lo que permite que el fluido se desplace a lo largo de la lámpara UV (2). For its part, the UV lamp (2) emits intense ultraviolet light that inactivates the DNA of microorganisms in the water, leaving it 99.99% free of bacteria and viruses. Additionally, the fact that the water purification system includes a first electrode (6) arranged on the external surface of the UV lamp (2), and a second electrode (7) inside said UV lamp (2), and that in addition , said electrodes are connected to a power source (11), allows said electrodes to power the UV lamp (2). In addition, the fact that the first electrode (6) is connected to ground (19), allows that electric discharges do not occur in said first electrode (6), thus avoiding accidents. Additionally, the fact that the first electrode (6) has a spiral shape and is in contact with the UV lamp (2), means that other types of electrodes do not have to be used that can reduce the amount of UV radiation that is emitted from said lamp. lamp towards the water to be purified. Said first electrode (6) can have between 5 and 15 turns, which allows the fluid to move along the UV lamp (2).
Por otro lado, el hecho que el fluido se desplace dentro del recipiente de purificación de agua (1) y sobre el primer electrodo (6) con forma de espiral, aumenta la superficie que es irradiada por la lámpara UV (2), lo que mejora la eficiencia de purificación de fluido en comparación con otros sistemas de purificación de agua. Además, lo anterior también permite que se aumente el tiempo de exposición del agua, propiciando unas dosis de radiación UV similar para todas las partículas de agua radiadas. Asimismo, al tener contacto directo entre la lámpara UV (2) y el agua a purificar se aumenta la eficiencia pues se evita atenuación de la radiación como ocurre en otro tipo de sistemas que requieren una “chaqueta” o un recubrimiento de cuarzo para contener la lámpara UV (2)y separarla del fluido. Haciendo referencia a la FIG. 1 y a la FIG. 2a, la lámpara UV (2) está dispuesta dentro de un recipiente de purificación de agua (1) el cual se puede encontrar dentro o a un lado del recipiente de almacenamiento de agua (3) o por fuera de esterecipiente de almacenamiento de agua (3)lámpara UV. Particularmente, cuando un fluido sale del recipiente de purificación de agua (1) hacia el recipiente de almacenamiento de agua (3), dicho fluido purificado queda almacenado en el recipiente de almacenamiento de agua (3)recipiente de purificación de agua (1), permitiendo que el fluido purificado lámpara UVesté disponible para su uso. On the other hand, the fact that the fluid moves inside the water purification container (1) and over the first spiral-shaped electrode (6), increases the surface that is irradiated by the UV lamp (2), which improves fluid purification efficiency compared to other water purification systems. In addition, the above also allows the exposure time of the water to be increased, promoting similar UV radiation doses for all irradiated water particles. Likewise, by having direct contact between the UV lamp (2) and the water to be purified, efficiency is increased since radiation attenuation is avoided, as occurs in other types of systems that require a "jacket" or a quartz coating to contain the UV lamp (2) and separate it from the fluid. Referring to FIG. 1 and to FIG. 2a, the UV lamp (2) is arranged inside a water purification container (1) which can be located inside or to the side of the water storage container (3) or outside this water storage container (3). )Uv lamp. Particularly, when a fluid leaves the water purification container (1) towards the water storage container (3), said purified fluid is stored in the water storage container (3) water purification container (1), allowing the UV lamp purified fluid to be available for use.
Por otro lado, y haciendo referencia a la FIG. 2a, el recipiente de purificación (1) está conformado por un recipiente que puede ser un cilindro (la) el cual cuenta con un primer extremo y un segundo extremo. Dicho primer extremo del cilindro (la) se conecta con una primera tapa (Ib), mientras que el segundo extremo se conecta con una segunda tapa (1c), en donde la lámpara UV (2) y el primer electrodo (6) están dispuestos dentro del cilindro (la). On the other hand, and referring to FIG. 2a, the purification container (1) is made up of a container that can be a cylinder (la) which has a first end and a second end. Said first end of the cylinder (la) is connected to a first cover (Ib), while the second end is connected to a second cover (1c), where the UV lamp (2) and the first electrode (6) are arranged inside the cylinder (la).
El hecho que el recipiente de purificación de agua (1) esté conformado por tres partes que son el cilindro (la), una primera tapa (Ib) y una segunda tapa (1c), permite que un usuario pueda retirar la lámpara UV (2) del recipiente de almacenamiento de agua (3) para realizar un mantenimiento a la lámpara UV (2) o para realizar un reemplazo de esta sin que exista algún riesgo de accidente. The fact that the water purification container (1) is made up of three parts, which are the cylinder (la), a first cover (Ib) and a second cover (1c), allows a user to remove the UV lamp (2 ) from the water storage container (3) to perform maintenance on the UV lamp (2) or to replace it without any risk of accident.
Además, el cilindro (la) puede estar dispuesto en forma vertical u horizontal. Por ejemplo, cuando el cilindro (la) está dispuesto de forma vertical el primer extremo es un extremo superior que se conecta con la primera tapa (Ib), mientras que el segundo extremo es un extremo inferior que se conecta con la segunda tapa (1c). Por otro lado, segunda tapa (1c) puede incluir una entrada de recipiente de lámpara (14) la cual está conectada con el primer electrodo (6). Eo anterior permite que un fluido entre a través de la entrada de recipiente de lámpara (14) hacia dicho recipiente de purificación de agua (1) para que posteriormente, pueda ser purificado. Haciendo referencia a la FIG. 2a, el recipiente de purificación de agua (1) está conformado por un cilindro (la) dispuesto de forma vertical, una primera tapa (Ib) dispuesto en el extremo superior del cilindro (la) y una segunda tapa (1c) dispuesta en el extremo inferior del mismo. Además, dicho recipiente de purificación de agua (1) puede estar contenido en el recipiente de almacenamiento de agua (3), y a su vez la primera tapa (Ib) puede tener una salida de fluido, mientras que la segunda tapa (1c) puede tener una entrada de fluido. Lo anterior permite que un fluido entre al recipiente de purificación de agua (1) desde el extremo inferior, se desplace hacia el extremo superior, y luego, el agua salga desde la primera tapa (Ib) y entre en el recipiente de almacenamiento de agua (3). In addition, the cylinder (la) can be arranged vertically or horizontally. For example, when the cylinder (la) is arranged vertically, the first end is an upper end that connects with the first cap (Ib), while the second end is a lower end that connects with the second cap (1c). ). On the other hand, the second cover (1c) can include a lamp container inlet (14) which is connected to the first electrode (6). Eo above allows a fluid to enter through the inlet of the lamp container (14) towards said water purification container (1) so that it can later be purified. Referring to FIG. 2a, the water purification container (1) is made up of a cylinder (la) arranged vertically, a first lid (Ib) arranged at the upper end of the cylinder (la) and a second lid (1c) arranged at the bottom. lower end of it. In addition, said water purification container (1) can be contained in the water storage container (3), and in turn the first cover (Ib) can have a fluid outlet, while the second cover (1c) can have a fluid inlet. This allows a fluid to enter the water purification container (1) from the lower end, move to the upper end, and then water flow out from the first lid (Ib) and enter the water storage container. (3).
Adicionalmente, el cilindro (la) del recipiente de purificación de agua (1) puede ser transparente, lo que permite a un usuario que la lámpara UV (2) sea visible para un usuario durante su funcionamiento, permitiendo verificar visualmente el funcionamiento del sistema de purificación de agua (100) de la presente divulgación. Additionally, the cylinder (la) of the water purification container (1) can be transparent, which allows a user that the UV lamp (2) is visible to a user during its operation, allowing to visually verify the operation of the system. water purification (100) of the present disclosure.
Por otro lado, y haciendo referencia a la FIG. 2b y a la FIG. 3, el recipiente de almacenamiento de agua (3) también puede estar conformado por tres partes, un contenedor, una tapa superior (3a) y una estructura (3b), donde dicha estructura (3b) tiene una cara de apoyo que opcionalmente se apoya sobre una superficie. Dicha estructura (3b) también puede incluir una cara de soporte en donde se soporta el contenedor, el cual contiene la lámpara UV (2), el primer electrodo (6) el segundo electrodo (7), y el recipiente de purificación (1) cuando dicha lámpara UV (2) está contenida en este. On the other hand, and referring to FIG. 2b and to FIG. 3, the water storage container (3) can also be made up of three parts, a container, a top cover (3a) and a structure (3b), where said structure (3b) has a support face that is optionally supported on a surface. Said structure (3b) can also include a support face where the container is supported, which contains the UV lamp (2), the first electrode (6), the second electrode (7), and the purification container (1). when said UV lamp (2) is contained therein.
Dicha estructura (3b) también permite contener la unidad de control (10) y el transformador eléctrico ( 18) de tal manera que estos queden aislados del exterior evitando que sean dañados por alguna condición extema como por ejemplo, humedad. Said structure (3b) also allows the control unit (10) and the electrical transformer (18) to be contained in such a way that they are isolated from the outside, preventing them from being damaged by any external condition such as humidity, for example.
Tanto el material del cilindro (la) como del contenedor del recipiente de almacenamiento de agua (3) se pueden seleccionar del grupo conformado por policloruro de vinilo (PVC, por sus siglas en inglés); de policloruro de vinilo clorado (CPVC, por sus siglas en inglés); tereftalato de polietileno (PET, por sus siglas en inglés), poliamidas (PA) (v.g. PA12, PA6, PA66); policlorotrifluoretileno (PCTFE, por sus siglas en inglés); polifluoruro de vinilideno (PVDF, por sus siglas en inglés), reforzados con fibras (v.g. de vidrio, aramida, poliéster), politetrafluoruro de etileno (PTFE, por sus siglas en inglés); etileno- clorotrifluoroetileno (ECTFE, por sus siglas en inglés); plásticos (resinas poliéster, vinilester, epóxicas, vinílicas), materiales equivalentes conocidos por una persona medianamente versada en la materia o combinación de las anteriores. Both the material of the cylinder (la) and the container of the water storage container (3) can be selected from the group consisting of polyvinyl chloride (PVC); Chlorinated Polyvinyl Chloride (CPVC); polyethylene terephthalate (PET), polyamides (PA) (eg PA12, PA6, PA66); polychlorotrifluoroethylene (PCTFE); polyvinylidene fluoride (PVDF), reinforced with fibers (eg glass, aramid, polyester), polytetrafluoride ethylene (PTFE); ethylene-chlorotrifluoroethylene (ECTFE); plastics (polyester, vinylester, epoxy, vinyl resins), equivalent materials known to a person moderately versed in the matter, or a combination of the above.
Por otro lado, y haciendo referencia a la FIG. 5, a la entrada (4) del recipiente de purificación de agua (1) se puede conectar a una primera válvula (8) configurada para permitir el flujo de ingreso de fluido hacia el primer electrodo (6). On the other hand, and referring to FIG. 5, the inlet (4) of the water purification container (1) can be connected to a first valve (8) configured to allow the inlet flow of fluid to the first electrode (6).
Por su parte y haciendo referencia a la FIG. 2b y FIG. 3, el contenedor del recipiente de almacenamiento de agua (3) es el lugar en donde se almacena el fluido proveniente del recipiente de purificación de agua (1), y puede estar conectado con una segunda válvula (9) por donde un usuario puede controlar el fluido purificado que desea dispensar. For its part and referring to FIG. 2b and FIG. 3, the container of the water storage container (3) is the place where the fluid from the water purification container (1) is stored, and can be connected to a second valve (9) through which a user can control the purified fluid you want to dispense.
Tanto la primera válvula (8) como la segunda válvula (9) se pueden seleccionar del grupo conformado por válvulas de retención, válvulas de compuerta, válvulas de bola o válvula esférica, válvula de seguridad o de alivio de presión, válvula de globo (o de asiento), válvula mariposa, válvula de diafragma, válvula rotatoria, válvula antirretomo, como como por ejemplo válvula de clapeta oscilante, válvula de muelle, válvula de pistón, válvula de retención de bola, y válvula de asiento. Both the first valve (8) and the second valve (9) can be selected from the group consisting of check valves, gate valves, ball valves or spherical valve, safety or pressure relief valve, globe valve (or seat), butterfly valve, diaphragm valve, rotary valve, check valve, such as swing clapper valve, spring loaded valve, piston valve, ball check valve, and poppet valve.
Además, haciendo referencia a la FIG. 5, entre la entrada (4) y la primera válvula (8) se puede conectar una electroválvula (17), donde dicha electroválvula (17) está conectada a su vez con la unidad de control (10). La electroválvula (17) está configurada para permitir el ingreso de fluido hacia el recipiente de purificación de agua (1), gracias a un comando de activación dado por la unidad de control (10). Furthermore, referring to FIG. 5, between the inlet (4) and the first valve (8) a solenoid valve (17) can be connected, where said solenoid valve (17) is in turn connected to the control unit (10). The solenoid valve (17) is configured to allow fluid to enter the water purification container (1), thanks to an activation command given by the control unit (10).
Haciendo referencia nuevamente a la FIG. 3, dentro del recipiente de almacenamiento de agua (3) se pueden conectar una serie de sensores que permiten medir la cantidad de fluido que se está purificando. Particularmente, dentro del recipiente de almacenamiento de agua (3) se puede disponer un primer sensor (15) conectado con la unidad de control (10), en donde dicho sensor está configurado para obtener un dato de temperatura de la lámpara UV (2) y enviarlo hacia la unidad de control (10), lo que permite identificar si esta tiene la temperatura deseada o tiene un valor de temperatura anormal. Además, la lámpara UV (2) también puede estar conectada con un sensor de intensidad de UV conectado con la unidad de control (10), en donde dicho sensor de intensidad está configurado para obtener un dato de la intensidad UV de la lámpara UV (2) y enviarlo hacia la unidad de control (10). Referring again to FIG. 3, inside the water storage container (3) a series of sensors can be connected to measure the amount of fluid being purified. Particularly, inside the storage container of water (3) a first sensor (15) connected to the control unit (10) can be arranged, where said sensor is configured to obtain temperature data from the UV lamp (2) and send it to the control unit (10), which makes it possible to identify if it has the desired temperature or has an abnormal temperature value. In addition, the UV lamp (2) can also be connected to a UV intensity sensor connected to the control unit (10), wherein said intensity sensor is configured to obtain UV intensity data from the UV lamp ( 2) and send it to the control unit (10).
Por otro lado, dentro del recipiente de almacenamiento de agua (3) también se puede disponer un segundo sensor (16) el cual es un sensor de nivel de fluido configurado para obtener un dato de la cantidad de fluido almacenada en el recipiente de almacenamiento de agua (3) y enviarlo hacia la unidad de control (10). On the other hand, a second sensor (16) can also be arranged inside the water storage container (3), which is a fluid level sensor configured to obtain data on the amount of fluid stored in the water storage container. water (3) and send it to the control unit (10).
Además, entre la primera válvula (8) y la electroválvula (17) se puede conectar un sensor de flujo (13) que está conectado con la unidad de control (10) y está configurado para obtener un dato de flujo del fluido que ingresa a la entrada (4) del recipiente de purificación de agua (l). Donde dicho dato de flujo es enviado hacia la unidad de control (10). In addition, between the first valve (8) and the solenoid valve (17) a flow sensor (13) can be connected, which is connected to the control unit (10) and is configured to obtain a flow data of the fluid that enters the the inlet (4) of the water purification container (l). Where said flow data is sent to the control unit (10).
Haciendo referencia a la FIG. 5, y como se mencionó anteriormente, dichos sensores permiten obtener un dato de temperatura y la intensidad de la lámpara UV (2), el flujo de entrada en la entrada (4) del recipiente de purificación de agua (1), y el nivel dentro del recipiente de almacenamiento de agua (3), lo que permite modificar los parámetros de la forma de onda de corriente generada por la unidad de control (10) y el transformador eléctrico (18) para controlar la dosis que está recibiendo el agua lámpara UV (2). Uo anterior permite regular el flujo de entrada de agua que ingresa en el sistema de purificación de agua (100) de la presente divulgación mediante la electroválvula (17) y además, también permite controlar la intensidad de la lámpara UV (2). Referring to FIG. 5, and as previously mentioned, said sensors allow obtaining data on the temperature and intensity of the UV lamp (2), the inlet flow at the inlet (4) of the water purification container (1), and the level inside the water storage container (3), which allows modifying the parameters of the current waveform generated by the control unit (10) and the electrical transformer (18) to control the dose that the lamp water is receiving UV (2). The above allows regulating the inflow of water entering the water purification system (100) of the present disclosure through the solenoid valve (17) and also allows controlling the intensity of the UV lamp (2).
Por ejemplo, cuando segundo sensor (16) correspondiente al sensor de nivel identifica que el recipiente de almacenamiento de agua (3) está lleno, la unidad de control (10) apaga la lámpara UV (2) y cierra la electroválvula (17), puesto que no puede ingresar más fluido para ser purificado. Lo anterior permite reducir el consumo energético del sistema de purificación de agua (100) de la presente divulgación puesto que la lámpara UV (2) funcionará con mayor o menor intensidad dependiente de la cantidad de fluido que se esté purificando según la información brindada por los sensores anteriormente descritos. For example, when the second sensor (16) corresponding to the level sensor identifies that the water storage container (3) is full, the control unit (10) it turns off the UV lamp (2) and closes the solenoid valve (17), since no more fluid can enter to be purified. This makes it possible to reduce the energy consumption of the water purification system (100) of the present disclosure since the UV lamp (2) will work with a greater or lesser intensity depending on the amount of fluid being purified according to the information provided by the sensors described above.
Para el entendimiento de la presente divulgación una señal eléctrica se selecciona de ondas eléctricas de corriente alterna o corriente directa, pulsada, tren de impulsos altemos o no altemos, señal eléctrica de onda cuadrada con variación de ciclo útil, onda triangular, onda diente de sierra, onda modulada en amplitud, onda modulada en frecuencia, onda modulada en fase, modulada por posición de pulsos o combinaciones de estas. Estas señales eléctricas son generadas por la unidad de control (10) o por un generador de señales o combinaciones de los anteriores con base en instmcciones legibles por medio de cómputo. For the understanding of the present disclosure, an electrical signal is selected from electrical waves of alternating current or direct current, pulsed, alternating or non-alternating pulse train, electrical signal of square wave with variation of useful cycle, triangular wave, sawtooth wave , amplitude modulated wave, frequency modulated wave, phase modulated wave, pulse position modulated, or combinations of these. These electrical signals are generated by the control unit (10) or by a signal generator or combinations of the above based on instructions readable by means of computation.
Particularmente, el dato de cantidad de fluido, el dato de temperatura y el dato de flujo son enviados a la unidad de control (10), y pueden ser almacenados en un módulo de memoria de la unidad de control. Particularly, the fluid quantity data, the temperature data and the flow data are sent to the control unit 10, and may be stored in a memory module of the control unit.
Por otro lado, la unidad de control (10) se puede seleccionar del grupo conformado por: controladores lógicos programables (PLC), microprocesadores, DSCs (Digital Signal Controller, por sus siglas en inglés), FPGAs (Field Programmable Gate Array, por sus siglas en inglés), CPLDs (Complex Programmable Logic Device, por sus siglas en inglés), ASICs (Application Specific Integrated Circuit, por sus siglas en inglés), SoCs (System on Chip, por sus siglas en inglés), PsoCs (Programmable System on Chip, por sus siglas en inglés), computadores, servidores, tabletas, celulares, celulares inteligentes, generadores de señales y unidades de control equivalentes conocidas por una persona medianamente versada en la materia y combinaciones de estas. On the other hand, the control unit (10) can be selected from the group made up of: programmable logic controllers (PLC), microprocessors, DSCs (Digital Signal Controller), FPGAs (Field Programmable Gate Array, for its ), CPLDs (Complex Programmable Logic Device), ASICs (Application Specific Integrated Circuit), SoCs (System on Chip), PsoCs (Programmable System on Chip), computers, servers, tablets, cell phones, smartphones, signal generators and equivalent control units known to a person moderately versed in the matter and combinations thereof.
Además, el módulo de memoria de la unidad de control puede seleccionarse entre memorias RAM (memoria caché, SRAM, DRAM, DDR), memoria ROM (Flash, Caché, discos duros, SSD, EPROM, EEPROM, memorias ROM extraíbles (v.g. SD (miniSD, microSD, etc), MMC (MultiMedia Card ), Compact Flash, SMC (Smart Media Card), SDC (Secure Digital Card), MS (Memory Stick), entre otras)), CD-ROM, discos versátiles digitales (DVD por las siglas en inglés de Digital Versatile Disc) u otro almacenamiento óptico, casetes magnéticos, cintas magnéticas, almacenamiento o cualquier otro medio que pueda usarse para almacenar información y a la que se puede acceder con la unidad de control. En los registros de memoria generalmente se incorporan instrucciones, estructuras de datos, módulos de programas informáticos. Algunos ejemplos de estructura de datos son: una hoja de texto o una hoja de cálculo, una base de datos. In addition, the control unit memory module can be selected from RAM (Cache, SRAM, DRAM, DDR), ROM (Flash, Cache, HDD, SSD, EPROM, EEPROM, Removable ROM (eg SD ( miniSD, microSD, etc), MMC (MultiMedia Card), Compact Flash, SMC (Smart Media Card), SDC (Secure Digital Card), MS (Memory Stick), among others)), CD-ROM, digital versatile discs (DVD for Digital Versatile Disc) or other optical storage, magnetic cassettes, magnetic tapes, storage or any other media that can be used to store information and can be accessed with the control unit. Instructions, data structures, computer program modules are generally incorporated into memory registers. Some examples of data structure are: a text sheet or a spreadsheet, a database.
Por otro lado, y haciendo referencia a la FIG. 4 la unidad de control (10) se conecta con un inversor resonante (12), donde la unidad de control (10) junto con dicho inversor resonante (12) y el transformador eléctrico (18) y los electrodos (6, 7) generan una forma de onda de corriente suministrada a la lámpara UV (2). Particularmente, el inversor resonante (12) permite cambiar la forma en que la corriente es alimentada a la lámpara UV (2), lo que permite mejorar la eficiencia de la fuente de alimentación (11) y así reducir la cantidad de energía usada durante el proceso de purificación de un fluido a purificar. On the other hand, and referring to FIG. 4 the control unit (10) is connected with a resonant inverter (12), where the control unit (10) together with said resonant inverter (12) and the electrical transformer (18) and the electrodes (6, 7) generate a current waveform supplied to the UV lamp (2). Particularly, the resonant inverter (12) allows to change the way in which the current is fed to the UV lamp (2), which allows to improve the efficiency of the power supply (11) and thus reduce the amount of energy used during the purification process of a fluid to be purified.
Por su parte, la fuente de alimentación (11) puede ser una batería, o una acometida eléctrica de voltaje alterno o un voltaje continuo. For its part, the power source (11) can be a battery, or an alternating voltage electrical connection or a continuous voltage.
El transformador eléctrico (18) puede tener una construcción especial de baja capacitancia, por ejemplo, tener una forma toroidal y preferiblemente tiene una baja capacitancia parásita, lo que permite el funcionamiento adecuado de la lámpara, y mejora la eficiencia del inversor resonante (12). Adicionalmente, implementando el transformador con esta técnica se logra el encendido de la lámpara con el electrodo extemo conectado a tierra, lo cual no es posible con cualquier tipo de fabricación del transformador. The electrical transformer (18) can have a special low capacitance construction, for example, have a toroidal shape and preferably have a low parasitic capacitance, which allows proper operation of the lamp, and improves the efficiency of the resonant inverter (12). . Additionally, by implementing the transformer with this technique, the lighting of the lamp with the external electrode connected to ground is achieved, which is not possible with any type of transformer manufacturing.
Lo anterior permite mejorar la eficiencia, es decir, se requiere menos energía para cierto nivel de radiación UV emitida por la lámpara UV (2), que con otras fuentes de alimentación para descargas de tipo DBD. Además, lo anterior también permite predecir y ajustar con más precisión el nivel de radiación UV. This makes it possible to improve efficiency, that is, less energy is required for a certain level of UV radiation emitted by the UV lamp (2), than with other sources of energy. power supply for DBD type discharges. In addition, the above also allows the level of UV radiation to be more precisely predicted and adjusted.
Por otro lado, la unidad de control (10) se puede conectar con una interfaz de usuario (20) la cual puede estar conformada por al menos un pulsador conectado con la unidad de control (10), en donde dicho pulsador permite activar o desactivar la lámpara UV (2), también puede incluir una pluralidad de pulsadores o una pantalla táctil que permiten controlar la electro válvula (17) y la intensidad lámpara UV (2). On the other hand, the control unit (10) can be connected to a user interface (20) which can be made up of at least one button connected to the control unit (10), where said button allows to activate or deactivate The UV lamp (2) can also include a plurality of buttons or a touch screen that allow the control of the electrovalve (17) and the intensity of the UV lamp (2).
Ua interfaz de usuario (20) también puede comprender un panel de visualización conectado con la unidad de control (10), donde dicho panel de visualización configurado para mostrar información temperatura e intensidad de la lámpara UV (2), nivel del recipiente de almacenamiento de agua (3), entre otros. Particularmente, panel de visualización puede estar configurado para visualizar los datos obtenidos por los sensores anteriormente descritos, para que estos puedan ser observados por un usuario. Ua user interface (20) can also comprise a display panel connected to the control unit (10), where said display panel configured to show information temperature and intensity of the UV lamp (2), level of the storage container of water (3), among others. In particular, the display panel can be configured to display the data obtained by the sensors described above, so that these can be observed by a user.
Uo anterior permite que la interfaz de usuario (20) esté configurada para obtener unos parámetros de ingreso o salida de fluido. Es decir, mediante la interfaz de usuario (20) un usuario puede controlar la cantidad de fluido que ingresa dentro del sistema de purificación de agua (100) y también permite a un usuario controlar la intensidad de la lámpara UV (2). The above allows the user interface (20) to be configured to obtain fluid input or output parameters. That is, through the user interface (20) a user can control the amount of fluid entering into the water purification system (100) and also allows a user to control the intensity of the UV lamp (2).
Dicho panel de visualización se selecciona del grupo conformado por: pantalla CRT, pantalla VGA, pantalla SVGA, pantalla Plasma, pantalla ECD, pantalla EED, pantalla TouchScreen, o pantalla MultiTouch. Said display panel is selected from the group consisting of: CRT screen, VGA screen, SVGA screen, Plasma screen, ECD screen, EED screen, TouchScreen screen, or MultiTouch screen.
EJEMPLOSEXAMPLES
EJEMPLO 1 EXAMPLE 1
Se desarrolló un sistema de purificación de agua (100) que comprende: - una lámpara UV (2) con un rango de radiación entre 5-15mW/cm2, localizada dentro de un recipiente de almacenamiento de agua (3), dicho recipiente de almacenamiento de agua (3) incluye una salida (5); A water purification system (100) was developed comprising: - a UV lamp (2) with a radiation range between 5-15mW/cm 2 , located inside a water storage container (3), said water storage container (3) includes an outlet (5);
- un primer electrodo (6) tubular con una forma de espiral dispuesto alrededor de la lámpara UV (2) y localizado entre dicha lámpara UV (2) y el recipiente de almacenamiento de agua (3), dicho primer electrodo (6) está conectado a tierra (19); - a first tubular electrode (6) with a spiral shape arranged around the UV lamp (2) and located between said UV lamp (2) and the water storage container (3), said first electrode (6) is connected ground (19);
- un recipiente de purificación de agua (1) que cuenta con una entrada (4) de fluido por donde circula el agua y una salida por donde sale dicha agua hacia el recipiente de almacenamiento de agua (3); - a water purification container (1) that has a fluid inlet (4) through which the water circulates and an outlet through which said water leaves towards the water storage container (3);
- un segundo electrodo (7) localizado dentro de la lámpara UV (2); - a second electrode (7) located inside the UV lamp (2);
- un transformador eléctrico (18) con 5kV pico en secundario, conectado al primer electrodo (6) y al segundo electrodo (7); - An electrical transformer (18) with 5kV peak in secondary, connected to the first electrode (6) and to the second electrode (7);
- una unidad de control (10) conectada con el primer electrodo (6), el segundo electrodo (7) y a una fuente de alimentación (11) con 100 a 200W. - a control unit (10) connected to the first electrode (6), the second electrode (7) and to a power supply (11) with 100 to 200W.
Donde la fuente de alimentación (11) tiene una potencia de 160W con una frecuencia de 80kHz., y el volumen de paso por UV es de 1,97U en la entrada (4). Where the power supply (11) has a power of 160W with a frequency of 80kHz, and the volume of passage through UV is 1.97U at the input (4).
Con dicho sistema de purificación de agua (100) se hicieron cuatro pruebas con fluidos tomados de una fuente hídrica que contenía E. coli y CB390, en donde UFC, UFP y UNT corresponden a: With said water purification system (100), four tests were carried out with fluids taken from a water source containing E. coli and CB390, where UFC, UFP and UNT correspond to:
UFC: Unidades formadoras de colonias en el volumen analizado. CFU: Colony-forming units in the analyzed volume.
UFP: Unidades formadoras de placa en el volumen analizado. UFP: Plaque-forming units in the analyzed volume.
UNT: Unidad nefelométrica de turbidez.
Figure imgf000016_0001
Figure imgf000017_0001
UNT: Nephelometric turbidity unit.
Figure imgf000016_0001
Figure imgf000017_0001
Teniendo en cuenta lo anterior, en la Tabla 1 se muestran los datos de las cuatro muestras, los grados de turbidez de cada una, y la concentración inicial de las unidades formadoras de colonias en el volumen analizado cada lOOmL, y de las unidades nefelométrica de turbidez cada litro de cada una de las muestras. Taking the above into account, Table 1 shows the data of the four samples, the degrees of turbidity of each one, and the initial concentration of the colony-forming units in the volume analyzed each lOOmL, and of the nephelometric units of turbidity each liter of each of the samples.
Por su parte, según la Tabla 2 se muestran los datos de las cuatro muestras, los grados de turbidez de cada una, y la concentración final de las muestras después que estas fueran purificadas mediante el sistema de purificación de agua (100) de las unidades formadoras de colonias en el volumen analizado cada lOOmL, y de las unidades nefelométrica de turbidez cada litro de cada una de las muestras. EJEMPLO 2 On the other hand, according to Table 2, the data of the four samples, the degrees of turbidity of each one, and the final concentration of the samples after they were purified by means of the water purification system (100) of the units are shown. colony-forming units in the volume analyzed each lOOmL, and in the nephelometric units of turbidity each liter of each one of the samples. EXAMPLE 2
Se instaló el sistema de purificación de agua (100) del EJEMPLO 1 en la vereda San Lorenzo, La Mesa, Cundinamarca y se conectó el sistema en el acueducto de dicha vereda. The water purification system (100) of EXAMPLE 1 was installed in the village of San Lorenzo, La Mesa, Cundinamarca and the system was connected to the aqueduct of said village.
En la siguiente Tabla 3 se muestra que la primera muestra es una muestra sin tratar del agua proveniente del acueducto de la vereda. Por su parte, las siguientes muestras corresponden a muestras de agua purificada mediante el dispositivo del EJEMPLO 1.
Figure imgf000018_0001
The following Table 3 shows that the first sample is an untreated sample of the water from the aqueduct of the village. For their part, the following samples correspond to samples of purified water using the device of EXAMPLE 1.
Figure imgf000018_0001
Tabla 3 Table 3
Además, el sistema de purificación de agua (100) tenía las siguientes condiciones de operación: - La velocidad de tratamiento era 330ml/minuto. In addition, the water purification system (100) had the following operating conditions: - The treatment speed was 330ml/minute.
La fuente de alimentación (11) tenía un consumo de 200W, una potencia de 98,5 V RMS, una frecuencia de 80kHz. The power supply (11) had a consumption of 200W, a power of 98.5 V RMS, a frequency of 80kHz.
Se debe entender que la presente invención no se halla limitada a las modalidades descritas e ilustradas, pues como será evidente para una persona versada en el arte, existen variaciones y modificaciones posibles que no se apartan del espíritu de la invención, el cual solo se encuentra definido por las siguientes reivindicaciones. It must be understood that the present invention is not limited to the modalities described and illustrated, since as will be evident to a person versed in the art, there are possible variations and modifications that do not depart from the spirit of the invention, which is only found defined by the following claims.

Claims

REIVINDICACIONES
1. Un sistema de purificación de agua (100), que comprende: 1. A water purification system (100), comprising:
- una lámpara UV (2) localizada dentro de un recipiente de purificación de agua (1), dicho recipiente de purificación de agua (1) incluye una entrada y una salida, dicha lámpara UV (2) está configurada para emitir una radiación UV; - a UV lamp (2) located inside a water purification container (1), said water purification container (1) includes an inlet and an outlet, said UV lamp (2) is configured to emit UV radiation;
- un primer electrodo (6) con una forma de espiral dispuesto alrededor de la lámpara UV (2) y localizado entre dicha lámpara UV (2) y el recipiente de purificación de agua (1), dicho primer electrodo (6) está conectado a tierra (19); - a first electrode (6) with a spiral shape arranged around the UV lamp (2) and located between said UV lamp (2) and the water purification container (1), said first electrode (6) is connected to land (19);
- un segundo electrodo (7) localizado dentro de la lámpara UV (2); - a second electrode (7) located inside the UV lamp (2);
- un transformador eléctrico (18) conectado al primer electrodo (6) y al segundo electrodo (7); - an electrical transformer (18) connected to the first electrode (6) and to the second electrode (7);
- una unidad de control (10) conectada con el primer electrodo (6), el segundo electrodo (7) y a una fuente de alimentación (11), donde la unidad de control (10) está configurada para generar unas señales eléctricas de activación de los electrodos (6, 7); en donde un fluido entra en el recipiente de purificación de agua (1) a través de la entrada, y se desplaza a lo largo primer electrodo (6) a medida que es irradiada por la radiación UV emitida por la lámpara UV (2). - a control unit (10) connected to the first electrode (6), the second electrode (7) and to a power source (11), where the control unit (10) is configured to generate electrical activation signals of the electrodes (6, 7); wherein a fluid enters the water purification container (1) through the inlet, and travels along the first electrode (6) as it is irradiated by UV radiation emitted by the UV lamp (2).
2. El sistema de la Reivindicación 1, en donde la lámpara UV (2) está dispuesta dentro de un recipiente de purificación de agua (1) el cual está configurado para transmitir un fluido hacia un recipiente de almacenamiento de agua (3). 2. The system of Claim 1, wherein the UV lamp (2) is arranged inside a water purification container (1) which is configured to transmit a fluid to a water storage container (3).
3. El sistema de la Reivindicación 1, en donde la lámpara UV (2) es una lámpara excimer. 3. The system of Claim 1, wherein the UV lamp (2) is an excimer lamp.
4. El sistema de la Reivindicación 1, en donde la unidad de control (10) se conecta con un inversor resonante (12), donde la unidad de control (10) junto con dicho el inversor resonante (12) y el transformador eléctrico (18) genera una señal de activación que es suministrada a los electrodos (6, 7). 4. The system of Claim 1, wherein the control unit (10) is connected to a resonant inverter (12), wherein the control unit (10) together with said resonant inverter (12) and the electrical transformer ( 18) generates an activation signal that is supplied to the electrodes (6, 7).
5. El sistema de la Reivindicación 1, en donde el transformador eléctrico (18) tiene una forma toroidal. 5. The system of Claim 1, wherein the electrical transformer (18) has a toroidal shape.
6. El sistema de la Reivindicación 2, en donde a la entrada (4) del recipiente de purificación de agua (1) se conecta a una primera válvula (8) configurada para permitir el ingreso de fluido hacia dicho recipiente de purificación de agua (1). 6. The system of Claim 2, wherein the inlet (4) of the water purification container (1) is connected to a first valve (8) configured to allow fluid to enter said water purification container ( 1).
7. El sistema de la Reivindicación 6, en donde el recipiente de almacenamiento de agua (3) incluye una salida que se conecta a una segunda válvula (9) que permite la salida del fluido almacenado en dicho recipiente de almacenamiento de agua (3). 7. The system of Claim 6, wherein the water storage container (3) includes an outlet that is connected to a second valve (9) that allows the fluid stored in said water storage container (3) to exit. .
8. El sistema de la Reivindicación 7, en donde entre la entrada (4) y la primera válvula (8) se conecta una electroválvula (17), dicha electroválvula (17) está conectada a su vez con la unidad de control (10) que está configurada para controlar la electroválvula (17), y así permitir el ingreso de fluido hacia el recipiente de purificación de agua (1). 8. The system of Claim 7, wherein between the inlet (4) and the first valve (8) a solenoid valve (17) is connected, said solenoid valve (17) is in turn connected to the control unit (10) which is configured to control the solenoid valve (17), and thus allow the fluid to enter the water purification container (1).
9. El sistema de la Reivindicación 8, en donde entre la primera válvula (8) y la electroválvula (17) se conecta un sensor de flujo (13), dicho sensor de flujo (13) está conectado con la unidad de control (10) y está configurada para obtener un dato de flujo del fluido que ingresa a la entrada (4) del recipiente de purificación de agua (1). 9. The system of Claim 8, wherein a flow sensor (13) is connected between the first valve (8) and the solenoid valve (17), said flow sensor (13) is connected to the control unit (10 ) and is configured to obtain flow data from the fluid that enters the inlet (4) of the water purification container (1).
10. El sistema de la Reivindicación 9, en donde la unidad de control (10) se conecta con una interfaz de usuario (20) configurada para obtener unos parámetros de ingreso o salida de fluido. . 10. The system of Claim 9, wherein the control unit (10) is connected to a user interface (20) configured to obtain fluid input or output parameters. .
PCT/IB2021/060428 2021-11-11 2021-11-11 Water purification system using ultraviolet light WO2023084278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2021/060428 WO2023084278A1 (en) 2021-11-11 2021-11-11 Water purification system using ultraviolet light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2021/060428 WO2023084278A1 (en) 2021-11-11 2021-11-11 Water purification system using ultraviolet light

Publications (1)

Publication Number Publication Date
WO2023084278A1 true WO2023084278A1 (en) 2023-05-19

Family

ID=86335157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/060428 WO2023084278A1 (en) 2021-11-11 2021-11-11 Water purification system using ultraviolet light

Country Status (1)

Country Link
WO (1) WO2023084278A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19507189A1 (en) * 1995-03-02 1996-09-12 Stengelin Gmbh & Co Kg Processing medium, esp. water, gas mixt. or air, in UV excimer-emitter
US6265835B1 (en) * 1998-10-09 2001-07-24 Jorge M. Parra Energy-efficient ultraviolet source and method
WO2006079982A1 (en) * 2005-01-28 2006-08-03 Philips Intellectual Property & Standards Gmbh Treatment system comprising a dielectric barrier discharge lamp
US20130221236A1 (en) * 2010-11-16 2013-08-29 Koninklijke Philips Electronics N.V. Dielectric barrier discharge lamp device, and optical fluid treatment device provided with the dielectric barrier discharge lamp device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19507189A1 (en) * 1995-03-02 1996-09-12 Stengelin Gmbh & Co Kg Processing medium, esp. water, gas mixt. or air, in UV excimer-emitter
US6265835B1 (en) * 1998-10-09 2001-07-24 Jorge M. Parra Energy-efficient ultraviolet source and method
WO2006079982A1 (en) * 2005-01-28 2006-08-03 Philips Intellectual Property & Standards Gmbh Treatment system comprising a dielectric barrier discharge lamp
US20130221236A1 (en) * 2010-11-16 2013-08-29 Koninklijke Philips Electronics N.V. Dielectric barrier discharge lamp device, and optical fluid treatment device provided with the dielectric barrier discharge lamp device

Similar Documents

Publication Publication Date Title
ES2388299T3 (en) UV light treatment chamber
ES2292535T3 (en) UV DISINFECTION SYSTEM AND PROCEDURE TO TREAT DRINKING WATER.
JP5374697B2 (en) UV sterilization water purifier and UV LED unit used for it
EP2234926B1 (en) Ultraviolet light treatment chamber
ES2822308T3 (en) Liquid purification apparatus and method
KR102436767B1 (en) A method, system and apparatus for treatment of fluids
ES2741327T3 (en) Liquid purification group and beverage dispenser
US20130048545A1 (en) Water Disinfection Using Deep Ultraviolet Light
US20100178201A1 (en) In-line treatment of liquids and gases by light irradiation
US9168321B2 (en) Toroidal-shaped treatment device for disinfecting a fluid such as air or water
WO2017040750A1 (en) Fluid disinfection using ultraviolet light
CN105963731A (en) Systems and methods for performing the bacterial disinfection of a fluid using point radiation sources
AU2010234785A1 (en) Ultraviolet light treatment chamber
US11072543B2 (en) Water disinfection chamber and system with UVC LEDs
CN106477666A (en) Water cleaning systems and method for disinfection
US20160096748A1 (en) Optical fluid treatment device
JP6199389B2 (en) Aquaculture sterilization system
WO2023084278A1 (en) Water purification system using ultraviolet light
ES2740999T3 (en) UV device
US20050109690A1 (en) System and method for purifying water with human power
US20160176727A1 (en) Apparatus for uv disinfection of a liquid
WO2007086829A1 (en) Accessory for providing ultraviolet disinfection to a water dispenser
WO2011103269A1 (en) Radiation delivery systems for fluid and vessel decontamination
CN215711926U (en) Intelligent sterilizing faucet
WO2007078294A1 (en) Drinking water pitcher incorporating ultraviolet (uv) disinfection feature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21963903

Country of ref document: EP

Kind code of ref document: A1