WO2023042923A1 - Foam stabilizer for polyurethane foam, polyurethane foam, and polyurethane foam laminate, and methods for producing same - Google Patents

Foam stabilizer for polyurethane foam, polyurethane foam, and polyurethane foam laminate, and methods for producing same Download PDF

Info

Publication number
WO2023042923A1
WO2023042923A1 PCT/JP2022/034979 JP2022034979W WO2023042923A1 WO 2023042923 A1 WO2023042923 A1 WO 2023042923A1 JP 2022034979 W JP2022034979 W JP 2022034979W WO 2023042923 A1 WO2023042923 A1 WO 2023042923A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
parts
polyurethane foam
polymerizable unsaturated
foam stabilizer
Prior art date
Application number
PCT/JP2022/034979
Other languages
French (fr)
Japanese (ja)
Inventor
康弘 大岩
卓暉 鬼澤
Original Assignee
楠本化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楠本化成株式会社 filed Critical 楠本化成株式会社
Priority to JP2023548529A priority Critical patent/JPWO2023042923A1/ja
Publication of WO2023042923A1 publication Critical patent/WO2023042923A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates

Definitions

  • the present invention relates to a foam stabilizer for polyurethane foams, polyurethane foams, polyurethane foam laminates, and methods for producing these.
  • Polyurethane foam is made by mixing polyisocyanate with NCO (isocyanate) groups and polyol with OH (hydroxyl) groups together with catalysts, foaming agents, foam stabilizers, etc., and performing foaming reaction and resinification reaction at the same time. It is a homogeneous plastic foam obtained by applying Polyurethane foams are broadly classified into flexible polyurethane foams (hereinafter referred to as “soft urethane foams”) and rigid polyurethane foams (hereinafter referred to as “rigid urethane foams").
  • Patent Document 1 discloses a polyurethane foam foam stabilizer containing at least a polyether-modified silicone compound synthesized by a hydrosilylation reaction between an organohydrogenpolysiloxane and an allyl group-containing polyoxyalkylene compound. .
  • rigid urethane foam has an excellent feature of self-adhesion. Due to this self-adhesiveness, a mixture of polyisocyanate, polyol, catalyst, foaming agent, foam stabilizer, etc. is directly foamed on the surface of the object (base material) such as metal, plywood, concrete, etc. to generate rigid urethane foam. As a result, a heat insulating layer strongly adhered to the object can be formed without using an adhesive.
  • cyclic siloxane contained in the silicone-based foam stabilizer diffuses into the air, causing damage to electrical and electronic circuits and affecting semiconductor production lines.
  • cyclic siloxanes are considered to be environmental pollutants, and the reduction of emissions and restrictions on their use are being considered.
  • the present invention has been made in view of the above circumstances, and has a foam stabilizing ability equal to or higher than that of a silicone foam stabilizer without using a silicone foam stabilizer, and a polypropylene resin or the like.
  • a foam stabilizer for polyurethane foam capable of imparting sufficient adhesive strength to a polyurethane foam even to a difficult-to-adhere substrate, a polyurethane foam obtained using this foam stabilizer, and a laminate of this polyurethane foam on the surface of a substrate
  • An object of the present invention is to provide polyurethane foam laminates and methods for producing them.
  • the present inventors have made intensive studies to solve the above problems, and found that a copolymer of a specific polymerizable unsaturated monomer having an ether group and a specific polymerizable unsaturated monomer having a hydrophobic group.
  • a polyurethane foam that, when used as a foam stabilizer, has a foam-stabilizing ability equal to or greater than that of a silicone-based foam stabilizer, and that can impart sufficient adhesive strength to polyurethane foam even to difficult-to-adhere substrates such as polypropylene resin.
  • the present inventors have found that a foam stabilizer can be obtained, and have completed the present invention based on this finding.
  • the present invention provides a foam stabilizer for polyurethane foam which is mixed with a polyisocyanate and a polyol and used for the production of polyurethane foam, wherein the structural unit derived from the polymerizable unsaturated monomer (A) is % by mass, and a copolymer containing 5 to 95% by mass of structural units derived from the polymerizable unsaturated monomer (B), and the polymerizable unsaturated monomer (A) is represented by the following general formula (1 ), and the polymerizable unsaturated monomer (B) is a polymerizable unsaturated monomer group that does not satisfy the general formula (1) and has a hydrophobic group
  • a foam stabilizer for polyurethane foam which is at least one monomer selected from the above.
  • R1-( CmH2mO ) n -R2 ( 1) (In the general formula (1), R1 is a (meth)acrylic group, R2 is a hydrogen atom, a (meth)acrylic group, or an alkyl or aryl group having 1 to 22 carbon atoms, and m is A natural number of 2 to 4, and n is a natural number of 1 to 100.)
  • the SP value of the foam stabilizer for polyurethane foam is preferably 1.0 to 3.1 lower than the SP value of the polyol.
  • the copolymer may have a weight average molecular weight of 1,000 to 500,000.
  • the copolymer contains, as the polymerizable unsaturated monomer (A), only polymerizable unsaturated monomers in which R1 in the general formula (1) is a (meth)acrylic group. is preferred.
  • the hydrophobic group of the polymerizable unsaturated monomer (B) may be a linear, branched or cyclic hydrocarbon group.
  • the hydrophobic group of the polymerizable unsaturated monomer (B) may be free of oxygen atoms, nitrogen atoms, fluorine atoms and silicon atoms.
  • the present invention is obtained by foaming and curing a urethane raw material mixture Mu containing at least a polyisocyanate, a polyol, and the foam stabilizer for polyurethane foam described above, and the urethane raw material mixture Mu is obtained by foaming and curing the foam stabilizer Mu.
  • the SP value of the foam stabilizer is preferably 1.0 to 3.1 lower than the SP value of the polyol.
  • the present invention provides a polyurethane foam lamination in which a substrate selected from the group consisting of polypropylene resin, polyethylene resin, fluororesin and silicone resin, or a substrate coated with wax, and the polyurethane foam described above are laminated. is the body.
  • the present invention also provides a method for producing a polyurethane foam foam stabilizer mixed with a polyisocyanate and a polyol and used for producing a polyurethane foam, wherein the polymerizable unsaturated monomer (A) is added in an amount of 5 to 95% by mass.
  • a method for producing a polyurethane foam foam stabilizer comprising at least one monomer selected from a group of saturated monomers.
  • R1-( CmH2mO ) n -R2 ( 1)
  • R1 is a (meth)acryl group
  • R2 is a hydrogen atom, (meth)acryl group, an alkyl group having 1 to 22 carbon atoms or an aryl group
  • m is 2 is a natural number from ⁇ 4
  • n is a natural number from 1 to 100.
  • the SP value of the foam stabilizer is preferably 1.0 to 3.1 lower than the SP value of the polyol.
  • the copolymer may have a weight average molecular weight of 1,000 to 500,000.
  • the copolymer contains, as the polymerizable unsaturated monomer (A), only polymerizable unsaturated monomers in which R1 in the general formula (1) is a (meth)acrylic group. is preferred.
  • the hydrophobic group of the polymerizable unsaturated monomer (B) may be a linear, branched or cyclic hydrocarbon group.
  • the hydrophobic group of the polymerizable unsaturated monomer (B) may be free of oxygen atoms, nitrogen atoms, fluorine atoms and silicon atoms.
  • the present invention includes a foam stabilizer mixing step of mixing a polyol and the foam stabilizer for polyurethane foam described above to obtain a polyol mixture Mo, and foaming and curing while mixing the polyol mixture Mo and a polyisocyanate. and a foam production step of obtaining a polyurethane foam.
  • the present invention includes a lamination step of laminating a substrate selected from the group consisting of polypropylene resin, polyethylene resin, fluororesin and silicone resin, or a substrate coated with wax, and polyurethane foam, wherein
  • the said polyurethane foam is a manufacturing method of the polyurethane-foam laminated body which is the foam obtained by the manufacturing method of the polyurethane foam mentioned above.
  • a copolymer of a specific polymerizable unsaturated monomer having an ether group and a specific polymerizable unsaturated monomer having a hydrophobic group is used as a foam stabilizer in producing a polyurethane foam.
  • a foam stabilizer for polyurethane foam having a foam stabilizer equal to or higher than that of a silicone-based foam stabilizer and to impart sufficient adhesion to a difficult-to-adhere base material such as a polypropylene resin to a polyurethane foam. becomes possible.
  • (meth)acrylic group refers to at least one selected from “acrylic group” and “methacrylic group”
  • (meth)acrylate refers to at least one selected from “acrylate” and “methacrylate”. 1 species.
  • a foam stabilizer for polyurethane foam according to a preferred embodiment of the present invention is mixed with polyisocyanate, polyol and other components (catalyst, blowing agent, etc.) and used to produce polyurethane foam.
  • the foam stabilizer according to the present invention comprises, as essential components, a copolymer X containing a structural unit A derived from a polymerizable unsaturated monomer (A) and a structural unit B derived from a polymerizable unsaturated monomer (B).
  • this copolymer X is composed of a hydrophobic trunk polymer derived from the polymerizable unsaturated monomer (B) and a hydrophilic branch polymer having an ether group derived from the polymerizable unsaturated monomer (A). is a graft copolymer having a molecular skeleton of
  • the copolymer X in the foam stabilizer according to the present invention, it is possible to obtain a foam stabilizer for polyurethane foam having a foam stabilizing ability equal to or greater than that of a silicone-based foam stabilizer. It is possible to impart sufficient adhesive strength to the polyurethane foam even to difficult-to-adhere substrates such as resins and polyethylene resins.
  • the "foam stabilizing ability" in the present specification means the ability to sufficiently exert the role of the foam stabilizing agent described below, specifically, the foam volume of the polyurethane foam is large and the cell diameter of the polyurethane foam is It means the performance that can reduce
  • the role of the foam stabilizer in the production of polyurethane foam is to improve the compatibility of each component (polyisocyanate, polyol, etc.) of the polyurethane raw material and to lower the surface tension of the mixed solution of the polyurethane raw material.
  • the gas involved in the mixed solution can be easily dispersed, so that the cells in the foam can be made uniform and stabilized, and coarsening and non-uniformity of the cells can be suppressed.
  • foam volume volume of foam containing cells
  • cell diameter of the produced polyurethane foam.
  • the foam volume and cell diameter of these polyurethane foams also greatly affect the physical properties of the polyurethane foam (eg, heat insulation, water resistance, heat resistance, cushioning properties, shock absorption, sound absorption, weight, etc.).
  • the term "difficult-to-adhere base material” refers to a base material that is difficult to bond with a polyurethane foam using a self-adhesive property of a rigid polyurethane foam or a general adhesive. say.
  • difficult-to-adhere substrates include substrates such as polypropylene resin, polyethylene resin, fluororesin, and silicone resin, and substrates coated with wax.
  • the "adhesive strength" in this specification includes both the adhesive strength based on the self-adhesiveness of rigid polyurethane foam and the adhesive strength with polyurethane foam using a general adhesive. The essential components and optional components contained in the foam stabilizer according to the present invention are described in detail below.
  • the polymerizable unsaturated monomer (A) is a polymerizable unsaturated monomer having at least one ether group represented by general formula (1) below.
  • the "polymerizable unsaturated monomer” in the present invention means "a monomer having a polymerizable unsaturated hydrocarbon group (carbon-carbon double bond or triple bond)”.
  • R1 is a (meth)acryl group
  • R2 is a hydrogen atom, a (meth)acryl group, an alkyl group having 1 to 22 carbon atoms or an aryl group
  • m is 2 to 4 is a natural number
  • n is a natural number from 1 to 100.
  • Examples of the polymerizable unsaturated monomer (A) include (meth)acrylates, allyl ethers, vinyl ethers, and the like.
  • (meth)acrylates include polyethylene glycol mono(meth)acrylate, poly(ethylene-propylene)glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, polytetramethylene glycol mono(meth)acrylate, methoxy Polyethylene glycol (meth)acrylate, methoxypolypropylene glycol (meth)acrylate, methoxypoly(ethylene-propylene)glycol (meth)acrylate, methoxypoly(ethylene-tetramethyleneglycol (meth)acrylate, butoxypoly(ethylene-propyleneglycol) (meth)acrylate , octoxypolyethylene glycol (meth)acrylate, lauroxypolyethyleneglycol (meth)acrylate, stearoxypolyethyleneglycol (meth)acrylate, behenyloxypolyethyleneglycol (meth)acrylate, phenoxypolyethyleneglycol (meth)acrylate, phenoxy
  • allyl ethers examples include polyethylene glycol monoallyl ether, polypropylene glycol monoallyl ether, methoxypolyethylene glycol allyl ether, polyethylene glycol polypropylene glycol monoallyl ether, butoxypolyethylene glycol polypropylene glycol monoallyl ether, polyethylene glycol diallyl ether, and polypropylene glycol. Diallyl ether etc. are mentioned.
  • vinyl ethers examples include polyethylene glycol monovinyl ether and polypropylene glycol monovinyl ether.
  • the above monomers may be used singly or in combination of two or more.
  • R2 in the general formula (1) is a (meth)acryl group, an alkyl group having 1 to 22 carbon atoms or an aryl group having 1 to 22 carbon atoms. is preferred, and an alkyl group having 1 to 22 carbon atoms is more preferred.
  • an ether group-containing polymerizable unsaturated monomer (A) in which R1 in general formula (1) is a (meth)acrylic group As the constituent monomers of the copolymer X, an ether group-containing polymerizable unsaturated monomer in which R1 in the general formula (1) is a vinyl ether group or an allyl group, and a polymerizable unsaturated monomer in which R1 is a (meth)acrylic group It may be used in combination with (A).
  • the adhesive strength to the difficult-to-adhere substrate can be increased more than when R1 is used in combination with a polymerizable unsaturated monomer (A) other than a (meth)acrylic group (for example, a vinyl ether group, an allyl group, etc.).
  • R2 in the general formula (1) is a hydrogen atom, a (meth)acryl group, an alkyl group having 1 to 22 carbon atoms, or an aryl group. It is essential to use a polyunsaturated monomer (A).
  • the alkyl chain length m of the ether chain of the polymerizable unsaturated monomer (A) is a natural number of 2 or more and 4 or less. If m is 5 or more, the effect as a polar group, that is, the effect of imparting hydrophilicity to the copolymer X may not be expected. It is generally difficult to obtain an ether group-containing polymerizable unsaturated monomer satisfying general formula (1) where m is 5 or more.
  • the ether chain length n of the polymerizable unsaturated monomer (A) is a natural number of 1 or more and 100 or less, preferably 4 or more and 50 or less, more preferably 4 or more and 23 or less. If n exceeds 100, there is a possibility that the effect of imparting sufficient adhesive strength to the substrate to the polyurethane foam cannot be obtained. Incidentally, it is generally difficult to obtain an ether group-containing polymerizable unsaturated monomer satisfying general formula (1) where n exceeds 100.
  • the content of the structural unit A derived from the polymerizable unsaturated monomer (A) is 5% by mass or more and 95% by mass or less when the total mass of the structural unit A and the structural unit B is 100% by mass. If the content of the structural unit A is less than 5% by mass, the adhesive strength to difficult-to-bond substrates will be insufficient. On the other hand, if the content of the structural unit A exceeds 95% by mass, the foam stabilizing ability of the foam stabilizer deteriorates. In order to increase the adhesive strength to difficult-to-bond substrates, the content of structural unit A is preferably 10% by mass or more. Moreover, in order to improve the foam stabilizing ability, the content of the structural unit A is preferably 90% by mass or less.
  • the polymerizable unsaturated monomer (B) is at least one monomer selected from the group of polymerizable unsaturated monomers that do not satisfy general formula (1) above and have a hydrophobic group. That is, the polymerizable unsaturated monomer (B) is a polymerizable unsaturated monomer that is different from the polymerizable unsaturated monomer (A) and has a hydrophobic group.
  • the hydrophobic group possessed by the polymerizable unsaturated monomer (B) is, for example, a linear, branched or cyclic hydrocarbon group. Also, the hydrophobic group preferably does not contain any of oxygen, nitrogen, fluorine and silicon atoms.
  • the hydrophobic group of the polymerizable unsaturated monomer (B) is a functional group such as those described above, it is possible to achieve both high levels of foam stabilizing ability and adhesion to hard-to-adhere substrates.
  • Examples of the polymerizable unsaturated monomer (B) include (meth)acrylates, vinyl ethers, vinyl esters, dialkyl maleates, dialkyl fumarate, dialkyl itaconate, aromatic hydrocarbon-based vinyl compounds, ⁇ -olefin compounds, and the like.
  • (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, normal propyl (meth)acrylate, isopropyl (meth)acrylate, normal butyl (meth)acrylate, isobutyl (meth)acrylate, tertiary Butyl (meth)acrylate, hexyl (meth)acrylate, normal octyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isononyl (meth)acrylate, normal decyl (meth)acrylate, isodecyl (meth)acrylate Acrylates, Lauryl (meth)acrylate, Stearyl (meth)acrylate, Isostearyl (meth)acrylate, Oleyl (meth)acrylate, Behenyl (meth)acrylate, Benzyl (meth)acrylate, Cyclohexy
  • vinyl ethers include methyl vinyl ether, ethyl vinyl ether, normal propyl vinyl ether, isopropyl vinyl ether, normal butyl vinyl ether, isobutyl vinyl ether, tertiary butyl vinyl ether, normal octyl vinyl ether, 2-ethylhexyl vinyl ether, decyl vinyl ether, lauryl vinyl ether, stearyl vinyl ether, behenyl vinyl ether and the like.
  • vinyl esters include vinyl acetate, vinyl neononanoate, vinyl 2,2-dimethyloctanoate, and vinyl neoundecanoate.
  • dialkyl maleates include dimethyl maleate, diethyl maleate, diisopropyl maleate, dibutyl maleate, di-2-ethylhexyl maleate, dilauryl maleate, and distearyl maleate.
  • dialkyl fumarate include dimethyl fumarate, diethyl fumarate, diisopropyl fumarate, dibutyl fumarate, di-2-ethylhexyl fumarate, dilauryl fumarate, and distearyl fumarate.
  • dialkyl itaconate examples include dimethyl itaconate, dibutyl itaconate, di-2-ethylhexyl itaconate, dilauryl itaconate, and distearyl itaconate.
  • aromatic hydrocarbon-based vinyl compounds include styrene, ⁇ -methylstyrene, chlorostyrene, and vinyltoluene.
  • ⁇ -olefin compounds include 1-hexene, 1-octene, 1-dodecene and the like.
  • the above monomers may be used singly or in combination of two or more.
  • the number of carbon atoms in the hydrophobic group possessed by the polymerizable unsaturated monomer (B) is preferably 2 or more and 22 or less. , 4 or more and 18 or less.
  • the content of the structural unit B derived from the polymerizable unsaturated monomer (B) is 5% by mass or more and 95% by mass or less when the total mass of the structural unit A and the structural unit B is 100% by mass. If the content of the structural unit B is less than 5% by mass, the foam stabilizing ability of the foam stabilizer deteriorates. On the other hand, if the content of the structural unit B exceeds 95% by mass, the adhesive strength to difficult-to-bond substrates will be insufficient. In order to improve the foam stabilizing ability, the content of the structural unit B is preferably 10% by mass or more. Moreover, in order to increase the adhesive strength to the difficult-to-bond substrate, the content of the structural unit B is preferably 90% by mass or less.
  • the copolymer X according to the present invention is a structural unit derived from a copolymerizable unsaturated monomer (C) different from both the copolymerizable unsaturated monomer (A) and the copolymerizable unsaturated monomer (B) described above. It may further contain C.
  • the foam stabilizing ability improves, but the adhesive strength to the difficult-to-adhere substrate tends to decrease.
  • a polymerizable unsaturated monomer (C) may be added to the monomer mixture Mm when synthesizing the copolymer X.
  • a polymerizable unsaturated monomer (C) it is also possible to improve surface activity (performance to reduce surface tension) and affinity (adhesiveness) with a substrate.
  • Examples of the copolymerizable unsaturated monomer (C) include, for example, hydroxyl group-containing (meth)acrylates which are monoesterified products of (meth)acrylic acid and a dihydric alcohol having 2 to 8 carbon atoms, and glycol (meth)acrylates.
  • hydroxyl group-containing (meth)acrylates which are monoesterified products of (meth)acrylic acid and a dihydric alcohol having 2 to 8 carbon atoms
  • glycol (meth)acrylates examples include, for example, hydroxyl group-containing (meth)acrylates which are monoesterified products of (meth)acrylic acid and a dihydric alcohol having 2 to 8 carbon atoms, and glycol (meth)acrylates.
  • acrylamide or methacrylamides hydrophilic vinyl compounds
  • carboxyl group-containing polymerizable unsaturated monomers ether group-containing polymerizable unsaturated monomers
  • reactive silicones having methacryloyloxy groups
  • hydroxyl group-containing (meth)acrylates which are monoesterified products of (meth)acrylic acid and a dihydric alcohol having 2 to 8 carbon atoms, include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth) ) acrylate, 2-hydroxy-1-methylethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 3-hydroxy-2,2-dimethylpropyl (meth)acrylate and the like.
  • glycol (meth)acrylates examples include methoxypolyethylene glycol (meth)acrylate, methoxypropylene glycol (meth)acrylate, phenoxyethylene glycol (meth)acrylate, and phenoxypropylene glycol (meth)acrylate.
  • acrylamides or methacrylamides include acrylamide, N-methylacrylamide, N-methylmethacrylamide, N-methylolacrylamide butyl ether, N-methylolmethacrylamide butyl ether, N-ethylacrylamide, N-ethylmethacrylamide, Nn - propylacrylamide, Nn-propylmethacrylamide, N-isopropylacrylamide, N-isopropylmethacrylamide, N-cyclopropylacrylamide, N-cyclopropylmethacrylamide, diacetoneacrylamide, diacetonemethacrylamide, N-hydroxymethylacrylamide , N-hydroxymethylmethacrylamide, N-hydroxyethylacrylamide, N-hydroxyethylmethacrylamide, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N,N-diethylacrylamide, N,N-diethylmethacrylamide , N-methyl, N-ethylacryl
  • hydrophilic vinyl compounds include N-vinyl-2-pyrrolidone.
  • carboxyl group-containing polymerizable unsaturated monomers include (meth)acrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, ⁇ -carboxyethyl acrylate and the like.
  • ether group-containing unsaturated monomers include, for example, tetrahydrofurfuryl (meth)acrylate, glycidyl (meth)acrylate, (3-ethyloxetan-3-yl)methyl (Meth)acrylate, cyclic trimethylolpropane formal (meth)acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl)methyl (meth)acrylate and the like.
  • reactive silicone having a methacryloyloxy group Commercial products of reactive silicone having a methacryloyloxy group include, for example, Silaplane FM-0711, FM-0721, FM-0725 and TM-0701T manufactured by JNC Corporation, AK-5 and AK- manufactured by Toagosei Co., Ltd. 30, X22-164A, X22-164B and X22-164C manufactured by Shin-Etsu Silicone Co., Ltd.;
  • fluorine-containing (meth)acrylate monomers include trifluoroethyl (meth)acrylate, tetrafluoropropyl (meth)acrylate, octafluoropentyl (meth)acrylate, and tridecafluorooctyl (meth)acrylate.
  • polyfunctional unsaturated monomers examples include divinylbenzene, ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, tetramethylene glycol di(meth)acrylate, 1,6-hexamethylene glycol di(meth)acrylate. ) acrylate, neopentyl glycol di(meth)acrylate, and the like.
  • These monomers may be used singly or in combination of two or more.
  • the content of the structural unit C derived from the polymerizable unsaturated monomer (C) is 50 when the total mass of the polymerizable unsaturated monomer (A) and the polymerizable unsaturated monomer (B) is 100 parts by mass. It is preferably no more than parts by mass. If the content of the structural unit C exceeds 50 parts by mass, it may adversely affect the foam stabilizing ability, the adhesive strength to difficult-to-adhere substrates, the stability of the polyurethane foam, and the like.
  • the weight average molecular weight Mw of the copolymer X according to the present invention is preferably 1,000 to 500,000, more preferably 5,000 to 500,000, and even more preferably 5,000 to 100,000.
  • the weight-average molecular weight Mw is within the above range, high foam stabilizing ability can be exhibited while maintaining adhesive strength to difficult-to-adhere substrates at a practical level or higher.
  • the weight average molecular weight is preferably 5,000 or more and 40,000 or less.
  • the weight average molecular weight Mw exceeds 500,000, although it has a high foam stabilizing ability, poorly dispersed substances (undispersed aggregates) may occur and the effect of the foam stabilizing agent may not be sufficiently exhibited.
  • the molecular weight Mw is preferably 500,000 or less.
  • the weight average molecular weight Mw is a value calculated based on the molecular weight of standard polystyrene from a chromatogram measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the solubility parameter (hereinafter referred to as "SP value") of the foam stabilizer according to the present invention is lower than the SP value of polyol, which is a raw material for producing polyurethane foam, and the difference ( SP difference) is preferably in the range of 1.0 or more and 3.1 or less.
  • the foam stabilizer dissolves in the mixed solution of the polyurethane foam raw materials, and the effect of adding the foam stabilizer (foam stabilization ability is sufficiently exhibited. effect) may not be obtained.
  • the SP difference exceeds 3.1, the foam stabilizer cannot be finely dispersed in the mixed solution of the polyurethane foam raw materials, and the foam is broken rather than stabilized (acts like an antifoaming agent).
  • the SP difference is more preferably 1.3 or more, and even more preferably 1.5 or more.
  • the SP difference is more preferably 2.9 or less, even more preferably 2.8 or less, and even more preferably 2.0 or less.
  • the SP value of the polyol is the value measured by the turbidity point titration method
  • the SP value of the foam stabilizer is the value calculated by the Fedors calculation method.
  • the SP value by turbidity point titration can be measured by the following method (see SUH, CLARKE, JPSA-1, 5, 1671-1681 (1967)).
  • a poor solvent is added dropwise to this sample solution at a measurement temperature of 20° C. using a 50 ml buret, and the drop amount (turbidity point) is defined as the point at which turbidity occurs (turbidity point titration).
  • ⁇ ml is the SP value of the poor solvent (n-hexane in this specification) when titrated with a low SP poor solvent
  • Vmh is the poor solvent at the turbid point when titrated with a high SP poor solvent (here The molecular volume [mL/mol] of the ion-exchanged water) and ⁇ mh respectively indicate the SP value of the poor solvent (here, ion-exchanged water) when titrated with a high SP poor solvent.
  • Vml, Vmh, ⁇ ml and ⁇ mh in formula (2) can be calculated by the following formulas (2a) and (2b) using the titration amount titrated with each poor solvent.
  • Vm V1V2/( ⁇ 1V2+ ⁇ 2V1) (2a)
  • ⁇ m ⁇ 1 ⁇ 1+ ⁇ 2 ⁇ 2 (2b)
  • Vm is Vml or Vmh
  • ⁇ m is ⁇ ml or ⁇ mh
  • V1 is the molecular volume of the sample solution solvent (acetone in this specification) at the turbid point [mL/mol]
  • V2 is the molecular volume [mL/mol] of the poor solvent (here, ion-exchanged water or n-hexane) at the turbid point
  • ⁇ 1 is the volume fraction of the sample solution solvent (here, acetone) at the turbid point
  • ⁇ 2 indicates the volume fraction of the poor solvent (in this specification, ion-exchanged water or n-hexane) at the turbid point.
  • the SP value of the polyol was measured by the turbidity point titration method described above.
  • the SP value by the Fedors calculation method is F. It can be calculated by the calculation method described in "Polymer Engineering and Science” by Fedors, 14(2), 147 (1974). In the Fedors calculation method, the SP value is calculated based on the cohesive energy and molecular volume of the substituent (atom or atomic group) of the target compound.
  • the use of the foam stabilizer according to the present invention is not particularly limited as long as it is used as a foam stabilizer for controlling the foam volume, cell diameter, etc. of a foam in the production of polyurethane foam. However, it can be particularly suitably used as a foam stabilizer for rigid polyurethane foams.
  • the method for producing a foam stabilizer for polyurethane foam according to the present invention described above includes a polymerization step of obtaining the copolymer X described above.
  • the copolymer X is a monomer mixture containing 5 to 95% by mass of the above polymerizable unsaturated monomer (A) and 5 to 95% by mass of the above polymerizable unsaturated monomer (B). It is synthesized by copolymerizing Mm. A predetermined amount of the polymerizable unsaturated monomer (C) described above may be added to the monomer mixture Mm used for synthesizing the copolymer X, if necessary.
  • the method for synthesizing the copolymer X according to the present invention is not particularly limited, and known methods such as a solution polymerization method, a dispersion polymerization method, a bulk polymerization method, an emulsion polymerization method, a suspension polymerization method, and a living radical polymerization method.
  • a polymerization method is used.
  • the polymerization initiator known azo polymerization initiators, peroxides and the like can be used, and an appropriate initiator may be used depending on the type of polymerization reaction.
  • the blending amount of the polymerizable unsaturated monomer (A) is 5% by mass or more and 95% by mass or less when the total mass of the polymerizable unsaturated monomer (A) and the polymerizable unsaturated monomer (B) is 100% by mass. is. If the content of the polymerizable unsaturated monomer (A) is less than 5% by mass, the adhesive strength to difficult-to-adhere substrates will be insufficient. On the other hand, when the blending amount of the polymerizable unsaturated monomer (A) exceeds 95% by mass, the foam stabilizing ability of the foam stabilizing agent deteriorates.
  • the blending amount of the polymerizable unsaturated monomer (A) is preferably 10% by mass or more. Moreover, in order to improve the foam stabilizing ability, the blending amount of the polymerizable unsaturated monomer (A) is preferably 90% by mass or less.
  • the blending amount of the polymerizable unsaturated monomer (B) is 5% by mass or more and 95% by mass when the total mass of the polymerizable unsaturated monomer (A) and the polymerizable unsaturated monomer (B) is 100% by mass. % or less. If the blending amount of the polymerizable unsaturated monomer (B) is less than 5% by mass, the foam stabilizing ability of the foam stabilizing agent is deteriorated. On the other hand, if the blending amount of the polymerizable unsaturated monomer (B) exceeds 95% by mass, the adhesive strength to difficult-to-adhere substrates will be insufficient.
  • the blending amount of the polymerizable unsaturated monomer (B) is preferably 10% by mass or more. Moreover, in order to increase the adhesive strength to the difficult-to-adhere substrate, the blending amount of the polymerizable unsaturated monomer (B) is preferably 90% by mass or less.
  • the blending amount of the polymerizable unsaturated monomer (C) is 50 parts by mass or less when the total mass of the polymerizable unsaturated monomer (A) and the polymerizable unsaturated monomer (B) is 100 parts by mass. is preferred. If the blending amount of the polymerizable unsaturated monomer (C) exceeds 50 parts by mass, it may adversely affect the foam stabilizing ability, the adhesive strength to difficult-to-adhere substrates, the stability of the polyurethane foam, and the like.
  • the polyurethane foam according to the present invention is a foam obtained by foaming and curing a urethane raw material mixture Mu (mixed solution as a polyurethane foam raw material) containing a polyisocyanate, a polyol, and the foam stabilizer for polyurethane foam described above. is.
  • Polyurethane foams according to the present invention include all rigid polyurethane foams, flexible polyurethane foams and semi-rigid polyurethane foams.
  • rigid polyurethane foam has an excellent feature of self-adhesion that is not found in other heat insulating materials. This is due to the property that a layer strongly adhered to the object can be formed by directly foaming the mixed solution on the surface of the object such as metal, plywood, concrete, resin, etc., without using an adhesive. be. Using this property, the surface of the object (substrate) such as a composite panel, laminate board, etc. can be cured simply by applying the mixed solution to the object by spraying and foaming and curing the mixed solution on the surface of various objects.
  • Polyurethane foam laminates can be produced in which polyurethane foam is laminated to If the surface of the object (base material) is previously coated with a primer or the like, the polyurethane foam can be adhered to the surface of the object more strongly.
  • the content of the foam stabilizer according to the present invention is preferably 0.1% by mass or more and 5.0% by mass or less in the urethane raw material mixture Mu (mixed solution as a polyurethane foam raw material). If the content of the foam stabilizer is less than 0.1% by mass, the foam stabilizing ability may deteriorate. On the other hand, if the content of the foam stabilizer exceeds 5.0% by mass, the mechanical properties of the polyurethane foam may deteriorate, and it may cause stickiness and contamination. From the viewpoint of increasing the foam stabilizing ability, the content of the foam stabilizer is more preferably 0.3% by mass or more, further preferably 0.7% by mass or more, and 1.5% by mass or more. It is even more preferred to have In addition, from the viewpoint of increasing adhesive strength, the content of the foam stabilizer is more preferably 2.5% by mass or less, further preferably 1.5% by mass or less, and 0.7% by mass or less. is even more preferable.
  • the SP value of the foam stabilizer according to the present invention is 1.0 to 3.1 lower than the SP value of the polyol that is the raw material for producing the polyurethane foam, that is, the SP value of the polyol It is preferably low and the difference (SP difference) is in the range of 1.0 or more and 3.1 or less.
  • the polyurethane foam of the present invention can be suitably used as a building material, a ship for oil and gas transportation, and a heat retaining material, a heat insulating material, etc. in electric appliances such as a refrigerator.
  • a heat retaining material such as a heat insulating material
  • it can be used as a foam for the spraying method because it is easy to perform insulation work.
  • the method for producing a polyurethane foam according to the present invention described above includes a foam stabilizer mixing step and a foam producing step.
  • the foam stabilizer mixing step In the foam stabilizer mixing step, the polyol and the foam stabilizer for polyurethane foam described above are mixed to obtain a polyol mixture Mo.
  • the polyol mixture Mo of the present invention may contain a foaming agent, a catalyst, other additives, and the like.
  • a method for mixing each raw material in the polyol mixture Mo a known method can be used. For example, each raw material can be mixed by stirring using a disper.
  • Each component in the polyol mixture Mo will be described in detail below.
  • polyol Polyol
  • the polyol used in the method for producing the polyurethane foam of the present invention is not particularly limited as long as it is generally used for the production of polyurethane foam.
  • Examples include polyester polyol, polyether polyol, polyether ester polyol, and polylactone polyol. , polycarbonate polyols, aromatic polyols, alicyclic polyols, aliphatic polyols, polymer polyols, and the like.
  • polyester polyols and polyether polyols are suitable as the polyols of the present invention.
  • Polyester polyols include, for example, polymers obtained by dehydration condensation of polybasic acids and polyhydric alcohols, and ring-opening polymerization of lactones such as ⁇ -caprolactone, ⁇ -methyl- ⁇ -caprolactone and methylvalerolactone. and condensates of hydroxycarboxylic acids and the above polyhydric alcohols.
  • the polybasic acid include adipic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, malonic acid, succinic acid, and naphthalenedicarboxylic acid.
  • Polyhydric alcohols used in the synthesis of polyester polyols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butanediol, pentanediol, hexanediol, neopentyl glycol, octanediol, nonanediol, bisphenol A, and the like. is mentioned.
  • hydroxycarboxylic acids include, for example, castor oil, reaction products of castor oil and ethylene glycol, and the like.
  • polyether polyols examples include alkylene oxide adducts of polyhydric alcohols.
  • polyhydric alcohols used in the synthesis of polyether polyols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butanediol, neopentyl glycol, glycerin, pentaerythritol, trimethylolpropane, sorbitol, and the like.
  • examples of the alkylene oxide include ethylene oxide and propylene oxide.
  • polyether ester polyols include those obtained by reacting the above-described polyether polyols with polybasic acids to esterify them, and those having both polyether and polyester segments in one molecule.
  • polylactone polyols examples include polypropiolactone glycol, polycaprolactone glycol, and polyvalerolactone glycol.
  • Polycarbonate polyols are obtained by dealcoholization reaction of hydroxyl group-containing compounds such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, octanediol and nonanediol with diethylene carbonate, dipropylene carbonate and the like. polyols and the like.
  • aromatic polyols examples include bisphenol A, bisphenol F, phenol novolak, and cresol novolak.
  • Alicyclic polyols include, for example, cyclohexanediol, methylcyclohexanediol, isophoronediol, dicyclohexylmethanediol, and dimethyldicyclohexylmethanediol.
  • examples of aliphatic polyols include ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, and the like.
  • polyols may be used singly or in combination of two or more.
  • the hydroxyl value of these polyols is preferably 10 to 600 mgKOH/g, more preferably 30 to 500 mgKOH/g.
  • the hydroxyl value in the present invention is a value measured according to JIS-K0070.
  • the blending amount of polyol is preferably 20 to 80% by mass when the total amount of polyurethane foam raw materials is taken as 100% by mass.
  • the foam stabilizer according to the present invention is blended in order to increase the compatibility of each component (polyisocyanate, polyol, etc.) of the polyurethane raw material and to reduce the surface tension of the mixed solution of the polyurethane raw material.
  • the gas involved in the mixed solution can be easily dispersed, so that the cells in the foam can be made uniform and stabilized, and the cell structure (foam volume, cell diameter, etc.) can be adjusted.
  • This cell structure has a great influence on the physical properties of the polyurethane foam.
  • the polyurethane foam foam stabilizer described above is used in the present invention.
  • the blending amount of the foam stabilizer according to the present invention is preferably 0.1% by mass or more and 5.0% by mass or less in the urethane raw material mixture Mu (mixed solution as a polyurethane foam raw material). If the amount of the foam stabilizer is less than 0.1% by mass, the foam-stabilizing ability may be lowered. On the other hand, if the amount of the foam stabilizer exceeds 5.0% by mass, the mechanical properties of the polyurethane foam may be lowered, and stickiness and contamination may be caused. From the viewpoint of enhancing the foam stabilizing ability, the amount of the foam stabilizer is more preferably 0.3% by mass or more, further preferably 0.7% by mass or more, and more preferably 1.5% by mass or more. It is even more preferred to have In addition, from the viewpoint of increasing the adhesive strength, the amount of the foam stabilizer is more preferably 2.5% by mass or less, further preferably 1.5% by mass or less, and 0.7% by mass or less. is even more preferable.
  • foaming agent improves the foaming action when the polyisocyanate (first liquid) and other components (second liquid) are mixed to form a foam (polyurethane foam). Specifically, it is blended to promote foaming of the urethane resin.
  • foaming agents include organic physical foaming agents such as water, hydrocarbons, chlorinated aliphatic hydrocarbons, fluorine compounds, hydrochlorofluorocarbons, hydrofluorocarbons, hydrofluoroolefins, ethers, or mixtures thereof, or , nitrogen gas, oxygen gas, argon gas, and carbon dioxide gas.
  • organic physical foaming agents such as water, hydrocarbons, chlorinated aliphatic hydrocarbons, fluorine compounds, hydrochlorofluorocarbons, hydrofluorocarbons, hydrofluoroolefins, ethers, or mixtures thereof, or , nitrogen gas, oxygen gas, argon gas, and carbon dioxide gas.
  • One of these foaming agents may be used alone, or two or more thereof may be used in combination.
  • hydrocarbon examples include propane, butane, pentane, hexane, heptane, cyclopropane, cyclobutane, cyclopentane, cyclohexane, and cycloheptane.
  • chlorinated aliphatic hydrocarbons examples include dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride and the like.
  • fluorine compounds examples include CHF 3 , CH 2 F 2 , CH 3 F and the like.
  • Hydrochlorofluorocarbons include, for example, trichloromonofluoromethane, trichlorotrifluoroethane, dichloromonofluoroethane (e.g., HCFC141b (1,1-dichloro-1-fluoroethane), HCFC22 (chlorodifluoromethane), HCFC142b (1 -chloro-1,1-difluoroethane)) and the like.
  • hydrofluorocarbons include HFC-245fa (1,1,1,3,3-pentafluoropropane) and HFC-365mfc (1,1,1,3,3-pentafluorobutane).
  • hydrofluoroolefins include HFO-1233zd ((E)-1-chloro-3,3,3-trifluoropropene).
  • Ethers include, for example, diisopropyl ether and the like.
  • the blending amount of the foaming agent is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the polyol.
  • the catalyst used in the method for producing a polyurethane foam according to the present invention mainly includes a trimerization catalyst. Moreover, you may use a foaming catalyst and a resin-forming catalyst as a catalyst.
  • trimerization catalyst is blended in order to react and trimerize the isocyanate groups contained in the polyisocyanate described later, thereby promoting the formation of isocyanurate rings.
  • trimerization catalysts can be used, for example, tris(dimethylaminomethyl)phenol, 2,4-bis(dimethylaminomethyl)phenol, 2,4,6-tris(dialkylaminoalkyl)hexahydro-S - Nitrogen-containing aromatic compounds such as triazine, carboxylic acid alkali metal salts such as potassium acetate, potassium 2-ethylhexanoate and potassium octylate, tertiary ammonium salts such as trimethylammonium salts, triethylammonium salts and triphenylammonium salts, Examples include quaternary ammonium salts such as tetramethylammonium salts, tetraethylammonium salts, tetrapheny
  • the blending amount of the trimerization catalyst is preferably 0.5 to 20% by mass when the total of the raw materials for the polyurethane foam is 100% by mass.
  • a foaming catalyst accelerates the reaction between polyisocyanate and water. Specifically, it is blended to promote foaming of the mixed solution of the polyurethane foam raw materials by the carbon dioxide generated by the reaction of the polyisocyanate and water.
  • the foaming catalyst a known one can be used. acid-block type catalysts in which the substance is neutralized with carboxylic acid;
  • the blending amount of the foaming catalyst is preferably 0.1 to 10% by mass when the total amount of the raw materials for the polyurethane foam is 100% by mass.
  • a resinification catalyst (metal catalyst) is added to promote the reaction between polyisocyanate and polyol.
  • a known resinification catalyst can be used, and examples thereof include metal salts of lead, tin, bismuth, copper, zinc, cobalt, nickel and the like.
  • organic acid metal salts composed of lead, tin, bismuth, copper, zinc, cobalt, nickel and the like are suitable as the resinification catalyst.
  • the blending amount of the resinification catalyst is preferably 0.1 to 10% by mass when the total of the raw materials for the polyurethane foam is 100% by mass.
  • the polyol mixture Mo of the present invention contains flame retardants, dispersants, cross-linking agents, chain extenders, fillers, dyes, pigments, antioxidants, ultraviolet absorbers, antibacterial agents, etc., as long as they do not impair the effects of the present invention. known additives may be blended.
  • a flame retardant is added to impart flame retardancy to the polyurethane foam according to the present invention.
  • red phosphorus is not included as a flame retardant.
  • red phosphorus reacts with water to produce phosphoric acid.
  • the generated phosphoric acid corrodes the polyurethane resin and may open holes up to the surface of the resin. In this case, the mechanical strength of the polyurethane foam is lowered.
  • the present invention does not contain red phosphorus as a flame retardant in order to obtain sufficient adhesive strength to hard-to-adhere substrates.
  • a dispersant is added to improve the dispersibility of additives such as flame retardants in the mixed solution of polyurethane foam raw materials.
  • the cross-linking agent is added to adjust the hardness of the polyurethane foam.
  • the polyol mixture Mo obtained in the foam stabilizer mixing step and the polyisocyanate are foamed and cured while being mixed to obtain a polyurethane foam.
  • a known method can be used as a method for mixing the polyol mixture Mo and the polyisocyanate and a method for foaming the polyol mixture Mo and the polyisocyanate in the foam generation step. , foaming and resin curing reactions proceed.
  • the polyisocyanates that can be used in the present invention are described in detail below.
  • polyisocyanate Polyisocyanate
  • polyisocyanate Polyisocyanate
  • the polyisocyanate used in the method for producing the polyurethane foam of the present invention is not particularly limited as long as it is generally used for the production of polyurethane foam. isocyanate and the like.
  • examples of the aromatic polyisocyanate include phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, dimethyldiphenylmethane diisocyanate, triphenylmethane triisocyanate, naphthalene diisocyanate, and polymethylene polyphenyl polyisocyanate.
  • examples of the alicyclic polyisocyanate include cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, dimethyldicyclohexylmethane diisocyanate, and the like.
  • examples of the aliphatic polyisocyanate include methylene diisocyanate, ethylene diisocyanate, propylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, and the like.
  • These polyisocyanates may be used singly or in combination of two or more.
  • the isocyanate index of the polyurethane foam used in the present invention is preferably 100-600.
  • the isocyanate index is used as an index indicating the mixing ratio of polyol and polyisocyanate, and is obtained by dividing the number of moles of isocyanate groups (NCO) in polyisocyanate by the total number of moles of all active hydrogen groups in the polyurethane foam raw material. It is a value obtained by multiplying the value by 100, and is calculated by [(NCO equivalent in polyurethane foam raw material/equivalent of active hydrogen in polyurethane foam raw material) ⁇ 100].
  • the blending amount of polyisocyanate is preferably 20 to 80% by mass when the total amount of polyurethane foam raw materials is taken as 100% by mass.
  • the polyurethane foam laminate according to the present invention is a laminate in which the polyurethane foam described above is laminated on the surface of a substrate.
  • the substrate on which the polyurethane foam of the present invention is laminated is a substrate selected from the group consisting of polypropylene resin, polyethylene resin, fluororesin and silicone resin, or a difficult-to-adhere substrate such as a substrate coated with wax.
  • the term "difficult-to-adhere base material” refers to a base material that is difficult to bond with a polyurethane foam using the self-adhesiveness of a rigid polyurethane foam or with a general adhesive, as described above.
  • the "wax" in the present invention is not particularly limited, and known waxes such as waxes, paraffin waxes, and lustering agents containing microwax as a main component can be used, for example.
  • a silicone-based foam stabilizer is used as a foam stabilizer for producing polyurethane foam.
  • the reason why the polyurethane foam does not have sufficient adhesion to the above-mentioned difficult-to-adhere substrate is due to the use of the silicone-based foam stabilizer.
  • the reason for this is presumed by the present inventors as follows. There is the concept of adhesion work, which indicates the work of separating objects 1 and 2 that are in contact with each other at the interface.
  • the ether group-containing polymerizable unsaturated monomer (A) as described above and a polymerizable unsaturated monomer having a hydrophobic group ( A copolymer X obtained by copolymerizing a monomer mixture Mm containing B) is used as a foam stabilizer.
  • a copolymer X obtained by copolymerizing a monomer mixture Mm containing B is used as a foam stabilizer.
  • the foam stabilizer according to the present invention can exhibit foam-stabilizing ability without lowering the surface free energy of the polyurethane foam as much as the silicone-based foam stabilizer. Therefore, the polyurethane foam obtained using the foam stabilizer according to the present invention has a larger work of adhesion Wa than when a silicone-based foam stabilizer is used, and thus has sufficient adhesion even to a difficult-to-bond substrate. Forces can be imparted to polyurethane foam.
  • the method for producing a polyurethane foam laminate according to the present invention comprises a substrate selected from the group consisting of polypropylene resin, polyethylene resin, fluororesin and silicone resin, or a wax-coated substrate (difficult-to-bond substrate); It includes a lamination step of laminating polyurethane foam, which is a foam obtained by the manufacturing method described above.
  • a mixed solution of polyurethane foam raw materials is applied to a substrate, and foamed and cured directly on the surface of the substrate to laminate a layer of polyurethane foam on the surface of the substrate.
  • a mixed solution of polyurethane foam raw materials is applied to the target base material by spraying or the like, and the mixed solution is applied to the surface of the base material.
  • a polyurethane foam laminate in which polyurethane foam is laminated to the surface of an object such as a composite panel, laminate board, etc., simply by foaming and curing the .
  • the polyol mixture Mo and the polyisocyanate can be mixed in advance in a spraying device such as a sprayer immediately before the application of the polyurethane foam raw material (construction of the foam).
  • the surface of the object (base material) is previously coated with a primer, etc., it becomes possible to bond the polyurethane foam to the surface of the object more strongly.
  • foam stabilizers of Synthesis Examples 1 to 60 and Foam Stabilizer Comparative Examples 1 and 2 were synthesized as follows.
  • foam stabilizer comparative examples 3 and 4 commercially available silicone foam stabilizers were prepared. Details of the method for synthesizing the foam stabilizer and commercially available products are described below.
  • Synthesis example 2 175.0 parts of ethyl acrylate, 62.5 parts of dibutyl fumarate, methoxy polyethylene glycol methacrylate (trade name NK Ester M-40G: Shin-Nakamura Chemical Co., Ltd.) 12.5 parts, 100.0 parts of propylene glycol monomethyl ether and 45.0 parts of tertiary-amylperoxy-2-ethylhexanoate 50% solution, and the reaction temperature during dropping was A copolymer as a foam stabilizer in Synthesis Example 2 was obtained in the same manner as in Synthesis Example 1, except that the temperature was set to 125°C. The synthesized copolymer had a weight average molecular weight of 1900 and an SP value of 10.1.
  • Synthesis Example 10 0 parts, 12.5 parts of 2-hydroxyethyl methacrylate, 137.5 parts of methoxypolyethylene glycol acrylate (trade name Blenmer AME-400: manufactured by NOF Corporation), 50.0 parts of butyl acetate and tertiary - amyl peroxy - Copolymerization as a foam stabilizer in Synthesis Example 10 was carried out in the same manner as in Synthesis Example 1 except that 5.0 parts of a 50% solution of 2-ethylhexanoate was used and the reaction temperature during dropping was set to 130 ° C. got a union. The weight average molecular weight of the synthesized copolymer was 16000 and the SP value was 9.6.
  • Synthesis was performed in the same manner as in Synthesis Example 1. A copolymer as a foam stabilizer of Example 11 was obtained. The synthesized copolymer had a weight average molecular weight of 21,500 and an SP value of 9.7.
  • a copolymer as a foam stabilizer of Synthesis Example 14 was obtained in the same manner as in Synthesis Example 1 except that 5.6 parts of the solution was used and the reaction temperature during dropping was set to 110°C.
  • the synthesized copolymer had a weight average molecular weight of 68,100 and an SP value of 9.7.
  • Synthesis Example 1 100.0 parts of methoxyethyl acrylate (trade name: 2-MTA: manufactured by Osaka Organic Chemical Industry Co., Ltd.), 100.0 parts of methoxypolyethylene glycol acrylate (trade name: Blemmer AME-400: manufactured by NOF Corporation),
  • the procedure of Synthesis Example 1 was repeated except that 50.0 parts of butyl acetate and 5.0 parts of a 50% solution of tertiary-amylperoxy-2-ethylhexanoate were used, and the reaction temperature during dropping was set to 130°C.
  • a copolymer as a foam stabilizer of Synthesis Example 23 was obtained by the method.
  • the synthesized copolymer had a weight average molecular weight of 12,100 and an SP value of 9.4.
  • a copolymer as a foam stabilizer of Synthesis Example 30 was obtained by the method. Due to the presence of cationic groups, the weight average molecular weight of the synthesized copolymer could not be measured. Moreover, the SP value of the synthesized copolymer was 9.2.
  • a copolymer as a foam stabilizer of Synthesis Example 44 was obtained in the same manner as in Synthesis Example 1, except that 0.0 part was used and the reaction temperature during dropping was set to 130°C.
  • the synthesized copolymer had a weight average molecular weight of 7900 and an SP value of 9.2.
  • a copolymer as a foam stabilizer of Synthesis Example 46 was obtained in the same manner as in Synthesis Example 1, except that 4.4 parts of the solution was used and the reaction temperature during dropping was set to 130°C.
  • the synthesized copolymer had a weight average molecular weight of 14400 and an SP value of 9.5.
  • Synthesis Example 53 125.0 parts of isostearyl acrylate, 12.5 parts of 2-hydroxyethyl acrylate, 5.0 parts of hydroxypropyl acrylate as a dropping solution (b-53) instead of the dropping solution (b-1) of Synthesis Example 1, methoxy polyethylene Glycol acrylate (trade name Blemmer AME-400: manufactured by NOF Corporation) 107.5 parts, propylene glycol monomethyl ether 100.0 parts and tertiary-amylperoxy-2-ethylhexanoate 50% solution 15.0 parts was used, and a copolymer as a foam stabilizer of Synthesis Example 53 was obtained in the same manner as in Synthesis Example 1, except that the reaction temperature during dropping was set to 120°C.
  • the synthesized copolymer had a weight average molecular weight of 2900 and an SP value of 8.8.
  • Foam Stabilizer Comparative Example 3 Foam Stabilizer As a foam stabilizer in Comparative Example 3, a silicone-based foam stabilizer (trade name SH193: manufactured by Dow Toray Industries, Inc.) was prepared.
  • Foam Stabilizer Comparative Example 4 Foam Stabilizer As a foam stabilizer in Comparative Example 4, a silicone foam stabilizer (trade name: L-3184J, manufactured by Momentive) was prepared.
  • Table 1 shows the compositions and physical properties of Synthesis Examples 1-60 and Foam Stabilizer Comparative Examples 1-2 synthesized as described above.
  • polyols As shown in Table 2, as polyols, two types of polyester polyols, specifically RFK-505 manufactured by Kawasaki Kasei Co., Ltd. (hydroxyl value: 250 mg KOH / g, OH equivalent: 224.40) 13.75 and 17.00 parts of FLEXOREZ A308 (hydroxyl value: 260 mgKOH/g, OH equivalent: 215.77) manufactured by King Industries. The SP value of these polyols (mixture) was 11.9 (measured by turbidity point titration method).
  • trimerization catalyst 0.70 parts of TOYOCAT TR-20 manufactured by Tosoh Corporation and 0.50 parts of potassium 2-ethylhexanoate manufactured by Tokyo Chemical Industry Co., Ltd. were used, and as a resinification catalyst (metal catalyst) , 0.10 parts of K-KAT 348 manufactured by King Industries, and 0.60 parts of tetramethylethylenediamine manufactured by Tokyo Chemical Industry Co., Ltd. was used as a foaming catalyst.
  • the isocyanate index of the polyurethane foam obtained with the formulation shown in Table 2 is 450.
  • the foam stabilizing ability of the foam stabilizers of Synthesis Examples and Foam Stabilizer Comparative Examples was evaluated by measuring the bulkiness (foam volume) and cell diameter of the polyurethane foams obtained as described above. The larger the bulkiness of the polyurethane foam and the smaller the cell diameter of the polyurethane foam, the more excellent the foam stabilizer becomes. Specifically, the bulkiness and cell diameter of the polyurethane foam were evaluated according to the following criteria. The cell diameter of the polyurethane foam was measured by microscopic observation of the cross section of the obtained polyurethane foam sample.
  • ⁇ Bulk height of polyurethane foam (foam volume)> 5 Foaming volume of 1200 mL or more 4 Foaming volume of 1000 mL or more and less than 1200 mL 3 Foaming volume of 800 mL or more and less than 1000 mL 2 Foaming volume of 600 mL or more and less than 800 mL 1 Foaming volume of less than 600 mL ⁇ Polyurethane foam cell diameter> 5 Bubble diameter is less than 0.5 mm 4 Bubble diameter is 0.5 mm or more and less than 1.0 mm 3 Bubble diameter is 1.0 mm or more and less than 2.0 mm 2 Bubble diameter is 2.0 mm or more and less than 3.0 mm 1 Bubble diameter is 3.0 mm or more. 0 mm or more
  • base materials 1a and 1b (two sheets) having a thickness of 2 mm to which polyurethane foam is to be adhered were placed on a jig (not shown) with a spacer 2 interposed therebetween so as to have a predetermined gap.
  • the urethane raw material mixture Mu (mixed solution) of the polyurethane foam raw materials obtained as described above is injected into the gap between the two substrates placed on the jig to form the substrate 1a and the substrate 1b.
  • a tensile shear test piece P was prepared by laminating with a polyurethane foam 3. After allowing the test piece to stand at 20° C.
  • FIG. 1(a) is a side view of the tensile shear test piece P
  • FIG. 1(b) is a top view of the tensile shear test piece P.
  • the polyurethane foam 3 cannot actually be seen from the upper surface of the tensile shear test piece P, in FIG. clearly shown.
  • Adhesion strength S is 140 kPa or more 4 Adhesion strength S is 120 kPa or more and less than 140 kPa 3 Adhesion strength S is 100 kPa or more and less than 120 kPa 2 Adhesion strength S is 80 kPa or more and less than 100 kPa 1 Adhesion strength S is less than 80 kPa
  • Test Example 1 Example of adhering polyurethane foam to a polypropylene resin substrate
  • the foam stabilizers of Synthesis Examples 1 to 60 and Foam Stabilizer Comparative Examples 1 to 4 were blended in the amounts (% by mass) shown in Table 3 below, using a urethane raw material mixture Mu of polyurethane foam raw materials.
  • This is an example of evaluating the performance of the polyurethane foams produced in Examples 1-1 to 1-64 and Comparative Examples 1-1 to 1-4.
  • the foam stabilizing ability of the foam stabilizers used in Examples 1-1 to 1-64 and Comparative Examples 1-1 to 1-4 was evaluated by the method described above.
  • Polypropylene (PP) resin was used as the substrates 1a and 1b, and the adhesion of the polyurethane foam 3 to the substrates 1a and 1b was evaluated.
  • polymerizable unsaturated monomer (A) when a polymerizable unsaturated monomer in which R1 in the general formula (1) is an acrylic group is used alone, when used in combination with other polymerizable unsaturated monomers It had a higher adhesive strength to difficult-to-adhere substrates.
  • the amount of the foam stabilizer is preferably 0.7% by mass or more, more preferably 1.5% by mass or more.
  • the amount of the foam stabilizer is preferably 2.5% by mass or less, more preferably 1.5% by mass or less, and 0.7% by mass or less. It is even more preferable to have
  • the SP value of the foam stabilizer is lower than the SP value of the polyol, and the difference between the SP values is 1.0 or more.
  • the foam stabilizing ability can be enhanced while maintaining good adhesive strength (evaluation of 3 or more).
  • the SP value difference is more preferably 1.3 or more, and further preferably 1.5 or more and 2.0 or less.
  • the weight average molecular weight of the copolymer used as a foam stabilizer is above the practical level when it is 5000 to 500000. It can be seen that it has a high foam stabilizing ability while maintaining adhesive strength to difficult-to-adhere substrates.
  • the weight-average molecular weight exceeds 500,000, although it has a high foam stabilizing ability, poorly dispersed substances (undispersed aggregates) are generated (see Example 1-27), and the effect of the foam stabilizing agent is sufficiently exhibited. Therefore, the weight average molecular weight is preferably 500,000 or less.
  • Example 6 is an example in which a polymerizable unsaturated monomer (B) having many branched hydrophobic groups is used.
  • the hydrophobic group has a large number of branched portions, the hydrophobic group tends to be oriented on the surface, resulting in relatively low adhesion to the difficult-to-adhere base material.
  • Example 38 is an example in which the same polymerizable unsaturated monomer (B) as in Example 6 is used, and the blending amount of the polymerizable unsaturated monomer (B) is less than in Example 6. .
  • the foam stabilizing ability was slightly lowered, the adhesive strength to difficult-to-adhere substrates was greatly improved.
  • Example 14 is an example in which the blending amount of the polymerizable unsaturated monomer (B) is as large as 60%. Therefore, in Example 14, although the foam stabilizing ability was high, the adhesion to the difficult-to-bond substrate was relatively low.
  • Example 46 is an example in which the same polymerizable unsaturated monomer (B) as in Example 14 is used, and the blending amount of the polymerizable unsaturated monomer (B) is less than in Example 14. . As a result, it can be seen that although the foam stabilizing ability was slightly lowered, the adhesive strength to difficult-to-adhere substrates was greatly improved.
  • Comparative Example 1-1 which used a foam stabilizer synthesized without blending the polymerizable unsaturated monomer (A), resulted in inferior foam stabilizing ability and adhesive strength to difficult-to-adhere substrates.
  • Comparative Example 1-2 which used a foam stabilizer synthesized without blending the polymerizable unsaturated monomer (B), resulted in inferior foam-stabilizing performance.
  • Comparative Examples 1-3 and 1-4 using a silicone-based foam stabilizer resulted in poor adhesion to difficult-to-adhere substrates.
  • Test Example 2 Example of adhering polyurethane foam to a polyethylene resin substrate
  • the foam stabilizers of Synthesis Examples 2, 5, 7, 9, 10, 13, 15, 21, 22, 25, 28, and 34 and Foam Stabilizer Comparative Examples 1 and 3 were used as shown in Table 4 below.
  • the performance of the polyurethane foams of Examples 2-1 to 2-12 and Comparative Examples 2-1 to 2-2 prepared using the urethane raw material mixture Mu of the polyurethane foam raw material blended in the compounding amount (% by mass) was evaluated.
  • polyethylene (PE) resin was used as the substrates 1a and 1b of the tensile shear test piece P for Examples 2-1 to 2-12 and Comparative Examples 2-1 to 2-2 by the method described above.
  • the adhesive strength of the polyurethane foam 3 to the substrates 1a and 1b was evaluated.
  • Test Example 3 is a urethane raw material mixture of polyurethane foam raw materials in which the foam stabilizers of Synthesis Examples 16, 21, 25, and 34 and Foam Stabilizer Comparative Examples 3 and 4 are blended in the amounts (% by mass) shown in Table 5 below. This is an example of evaluating the performance of the polyurethane foams of Reference Examples 3-1 to 3-6 produced using Mu.
  • polyacetal (POM) resin was used as the substrates 1a and 1b of the tensile shear test piece P for Reference Examples 3-1 to 3-6 by the method described above, and the substrates 1a and 1b of the polyurethane foam 3 were used. was evaluated. These evaluation results are shown in Table 5.
  • the adhesive strength shown in Table 5 is not an index based on the evaluation criteria described above, but an actual measurement value of adhesive strength S (kPa) in a tensile shear test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

[Problem] To provide: a foam stabilizer that is for polyurethane foam, and that has, without using a silicone-based foam stabilizer, a foam stabilizing ability comparable to or better than that of a silicone-based foam stabilizer, and can provide, to a polyurethane foam, a sufficient adhesive strength with respect to even a hardly-adhesive base material such as polypropylene resins; a polyurethane foam obtained by using said foam stabilizer; a polyurethane foam laminate obtained by laminating said polyurethane foam on the surface of a base material; and methods for producing same. [Solution] This foam stabilizer is for a polyurethane foam and is to be mixed with a polyisocyanate and a polyol for use in production of a polyurethane foam. The foam stabilizer contains a copolymer including 5-95 mass% of a structural unit derived from a polymerizable unsaturated monomer (A) that includes an ether group and 5-95 mass% of a structural unit derived from a polymerizable unsaturated monomer (B) that includes a hydrophobic group.

Description

ポリウレタンフォーム用整泡剤、ポリウレタンフォームおよびポリウレタンフォーム積層体、ならびにこれらの製造方法Foam stabilizer for polyurethane foam, polyurethane foam and polyurethane foam laminate, and method for producing the same
 本発明は、ポリウレタンフォーム用整泡剤、ポリウレタンフォームおよびポリウレタンフォーム積層体、ならびにこれらの製造方法に関する。 The present invention relates to a foam stabilizer for polyurethane foams, polyurethane foams, polyurethane foam laminates, and methods for producing these.
 ポリウレタンフォームは、NCO(イソシアネート)基を有するポリイソシアネートとOH(ヒドロキシル)基を有するポリオールとを、触媒、発泡剤、整泡剤等と一緒に混合し、泡化反応と樹脂化反応を同時に行わせることにより得られる、均一なプラスチック発泡体である。ポリウレタンフォームは、軟質ポリウレタンフォーム(以下、「軟質ウレタンフォーム」と記載する。)と硬質ポリウレタンフォーム(以下、「硬質ウレタンフォーム」と記載する。)に大別される。 Polyurethane foam is made by mixing polyisocyanate with NCO (isocyanate) groups and polyol with OH (hydroxyl) groups together with catalysts, foaming agents, foam stabilizers, etc., and performing foaming reaction and resinification reaction at the same time. It is a homogeneous plastic foam obtained by applying Polyurethane foams are broadly classified into flexible polyurethane foams (hereinafter referred to as "soft urethane foams") and rigid polyurethane foams (hereinafter referred to as "rigid urethane foams").
 ポリウレタンフォームの製造に使用される整泡剤としては、一般に、シリコーンオイル等のシリコーン系整泡剤が使用される(例えば、特許文献1を参照)。特許文献1には、少なくともオルガノハイドロジェンポリシロキサンとアリル基含有ポリオキシアルキレン化合物とのヒドロシリル化反応により合成されるポリエーテル変性シリコーン化合物を含有してなるポリウレタンフォーム用整泡剤が開示されている。 A silicone-based foam stabilizer such as silicone oil is generally used as a foam stabilizer used in the production of polyurethane foam (see, for example, Patent Document 1). Patent Document 1 discloses a polyurethane foam foam stabilizer containing at least a polyether-modified silicone compound synthesized by a hydrosilylation reaction between an organohydrogenpolysiloxane and an allyl group-containing polyoxyalkylene compound. .
 また、硬質ウレタンフォームには、自己接着性という優れた特徴がある。この自己接着性により、金属、合板、コンクリート等の対象物(基材)の表面において、ポリイソシアネート、ポリオール、触媒、発泡剤、整泡剤等の混合物を直接発泡させて硬質ウレタンフォームを生成させることにより、接着剤を使わなくとも、対象物に強く接着した断熱層を形成することができる。 In addition, rigid urethane foam has an excellent feature of self-adhesion. Due to this self-adhesiveness, a mixture of polyisocyanate, polyol, catalyst, foaming agent, foam stabilizer, etc. is directly foamed on the surface of the object (base material) such as metal, plywood, concrete, etc. to generate rigid urethane foam. As a result, a heat insulating layer strongly adhered to the object can be formed without using an adhesive.
特開2007-186557号公報JP 2007-186557 A
 しかしながら、ポリプロピレン樹脂、ポリエチレン樹脂、フッ素樹脂、シリコーン樹脂等の基材や、ワックスが表面に塗布された基材等の難接着基材の表面に、硬質ウレタンフォームを自己接着性により接着させようとしても、十分な接着力が得られない。その原因としては、本発明者らが検討したところによれば、ほとんどのポリウレタンフォームに使用されているシリコーン系の整泡剤が一因と判明した。 However, attempts have been made to self-adhesively bond rigid urethane foam to the surface of difficult-to-adhere base materials such as base materials such as polypropylene resin, polyethylene resin, fluororesin, and silicone resin, and base materials coated with wax. However, sufficient adhesive strength cannot be obtained. As for the cause, according to the studies by the present inventors, it was found that one of the factors is the silicone-based foam stabilizer used in most polyurethane foams.
 また、シリコーン系整泡剤に含有されている環状シロキサンが気中に拡散することによって、電気電子回路への障害が発生したり、半導体製造ラインへ影響したりすることなどが懸念されている。さらに、環状シロキサンは、欧米では、環境汚染物質として排出量の削減や使用の制限が検討されている。 In addition, there are concerns that the cyclic siloxane contained in the silicone-based foam stabilizer diffuses into the air, causing damage to electrical and electronic circuits and affecting semiconductor production lines. Furthermore, in Europe and the United States, cyclic siloxanes are considered to be environmental pollutants, and the reduction of emissions and restrictions on their use are being considered.
 そこで、本発明は、上記事情に鑑みてなされたものであり、シリコーン系整泡剤を使用せずに、シリコーン系整泡剤と同等以上の整泡能を有し、かつ、ポリプロピレン樹脂等の難接着基材に対しても十分な接着力をポリウレタンフォームに付与できるポリウレタンフォーム用整泡剤、この整泡剤を用いて得られたポリウレタンフォーム、およびこのポリウレタンフォームが基材表面に積層されたポリウレタンフォーム積層体、ならびにこれらの製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and has a foam stabilizing ability equal to or higher than that of a silicone foam stabilizer without using a silicone foam stabilizer, and a polypropylene resin or the like. A foam stabilizer for polyurethane foam capable of imparting sufficient adhesive strength to a polyurethane foam even to a difficult-to-adhere substrate, a polyurethane foam obtained using this foam stabilizer, and a laminate of this polyurethane foam on the surface of a substrate An object of the present invention is to provide polyurethane foam laminates and methods for producing them.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、エーテル基を有する特定の重合性不飽和モノマーと、疎水基を有する特定の重合性不飽和モノマーとの共重合体を整泡剤として用いることにより、シリコーン系整泡剤と同等以上の整泡能を有し、かつ、ポリプロピレン樹脂等の難接着基材に対しても十分な接着力をポリウレタンフォームに付与できるポリウレタンフォーム用整泡剤が得られることを見出し、この知見に基づいて本発明を完成させた。 The present inventors have made intensive studies to solve the above problems, and found that a copolymer of a specific polymerizable unsaturated monomer having an ether group and a specific polymerizable unsaturated monomer having a hydrophobic group. A polyurethane foam that, when used as a foam stabilizer, has a foam-stabilizing ability equal to or greater than that of a silicone-based foam stabilizer, and that can impart sufficient adhesive strength to polyurethane foam even to difficult-to-adhere substrates such as polypropylene resin. The present inventors have found that a foam stabilizer can be obtained, and have completed the present invention based on this finding.
 すなわち、本発明は、ポリイソシアネートおよびポリオールと混合され、ポリウレタンフォームの製造に使用されるポリウレタンフォーム用整泡剤であって、重合性不飽和モノマー(A)から誘導される構成単位を5~95質量%、および重合性不飽和モノマー(B)から誘導される構成単位を5~95質量%含む共重合体を含有しており、前記重合性不飽和モノマー(A)は、下記一般式(1)で表される少なくとも1種のエーテル基含有モノマーであり、前記重合性不飽和モノマー(B)は、前記一般式(1)を満足せず、かつ、疎水基を有する重合性不飽和モノマー群より選ばれる少なくとも1種のモノマーである、ポリウレタンフォーム用整泡剤である。
 R1-(C2mO)n-R2 ・・・(1)
(前記一般式(1)において、R1は、(メタ)アクリル基であり、R2は、水素原子、(メタ)アクリル基、または炭素数1~22のアルキル基もしくはアリール基であり、mは、2~4の自然数であり、nは、1~100の自然数である。)
That is, the present invention provides a foam stabilizer for polyurethane foam which is mixed with a polyisocyanate and a polyol and used for the production of polyurethane foam, wherein the structural unit derived from the polymerizable unsaturated monomer (A) is % by mass, and a copolymer containing 5 to 95% by mass of structural units derived from the polymerizable unsaturated monomer (B), and the polymerizable unsaturated monomer (A) is represented by the following general formula (1 ), and the polymerizable unsaturated monomer (B) is a polymerizable unsaturated monomer group that does not satisfy the general formula (1) and has a hydrophobic group A foam stabilizer for polyurethane foam, which is at least one monomer selected from the above.
R1-( CmH2mO ) n -R2 ( 1)
(In the general formula (1), R1 is a (meth)acrylic group, R2 is a hydrogen atom, a (meth)acrylic group, or an alkyl or aryl group having 1 to 22 carbon atoms, and m is A natural number of 2 to 4, and n is a natural number of 1 to 100.)
 本発明の他の態様において、前記ポリウレタンフォーム用整泡剤のSP値が、前記ポリオールのSP値よりも1.0~3.1低いことが好ましい。 In another aspect of the present invention, the SP value of the foam stabilizer for polyurethane foam is preferably 1.0 to 3.1 lower than the SP value of the polyol.
 本発明の一態様において、前記共重合体の重量平均分子量が、1000~500000であってもよい。 In one aspect of the present invention, the copolymer may have a weight average molecular weight of 1,000 to 500,000.
 本発明の他の態様において、前記共重合体が、前記重合性不飽和モノマー(A)として、前記一般式(1)におけるR1が(メタ)アクリル基である重合性不飽和モノマーのみを含むことが好ましい。 In another aspect of the present invention, the copolymer contains, as the polymerizable unsaturated monomer (A), only polymerizable unsaturated monomers in which R1 in the general formula (1) is a (meth)acrylic group. is preferred.
 本発明の他の態様において、前記重合性不飽和モノマー(B)の疎水基が、直鎖状、分岐鎖状または環状の炭化水素基であってもよい。 In another aspect of the present invention, the hydrophobic group of the polymerizable unsaturated monomer (B) may be a linear, branched or cyclic hydrocarbon group.
 本発明の他の態様において、前記重合性不飽和モノマー(B)の疎水基が、酸素原子、窒素原子、フッ素原子およびケイ素原子を含まなくてもよい。 In another aspect of the present invention, the hydrophobic group of the polymerizable unsaturated monomer (B) may be free of oxygen atoms, nitrogen atoms, fluorine atoms and silicon atoms.
 また、本発明は、ポリイソシアネートと、ポリオールと、上述したポリウレタンフォーム用整泡剤とを少なくとも含むウレタン原料混合物Muを発泡および硬化させることにより得られ、前記ウレタン原料混合物Muは、前記整泡剤を0.1質量%~5.0質量%含む、ポリウレタンフォームである。 Further, the present invention is obtained by foaming and curing a urethane raw material mixture Mu containing at least a polyisocyanate, a polyol, and the foam stabilizer for polyurethane foam described above, and the urethane raw material mixture Mu is obtained by foaming and curing the foam stabilizer Mu. A polyurethane foam containing 0.1% by mass to 5.0% by mass.
 本発明の一態様において、前記整泡剤のSP値が、前記ポリオールのSP値よりも1.0~3.1低いことが好ましい。 In one aspect of the present invention, the SP value of the foam stabilizer is preferably 1.0 to 3.1 lower than the SP value of the polyol.
 また、本発明は、ポリプロピレン樹脂、ポリエチレン樹脂、フッ素樹脂およびシリコーン樹脂からなる群より選ばれる基材、または、ワックスが塗布された基材と、上述したポリウレタンフォームとが積層された、ポリウレタンフォーム積層体である。 Further, the present invention provides a polyurethane foam lamination in which a substrate selected from the group consisting of polypropylene resin, polyethylene resin, fluororesin and silicone resin, or a substrate coated with wax, and the polyurethane foam described above are laminated. is the body.
 また、本発明は、ポリイソシアネートおよびポリオールと混合され、ポリウレタンフォームの製造に使用されるポリウレタンフォーム用整泡剤の製造方法であって、重合性不飽和モノマー(A)を5~95質量%と、重合性不飽和モノマー(B)を5~95質量%とを含有するモノマー混合物Mmを共重合させた共重合体を得る重合工程を含み、前記重合性不飽和モノマー(A)は、下記一般式(1)で表される少なくとも1種のエーテル基含有モノマーであり、前記重合性不飽和モノマー(B)は、前記一般式(1)を満足せず、かつ、疎水基を有する重合性不飽和モノマー群より選ばれる少なくとも1種のモノマーである、ポリウレタンフォーム用整泡剤の製造方法である。
 R1-(C2mO)n-R2 ・・・(1)
(前記一般式(1)において、R1は、(メタ)アクリル基であり、R2は、水素原子、(メタ)アクリル基または炭素数1~22のアルキル基もしくはアリール基であり、mは、2~4の自然数であり、nは、1~100の自然数である。)
The present invention also provides a method for producing a polyurethane foam foam stabilizer mixed with a polyisocyanate and a polyol and used for producing a polyurethane foam, wherein the polymerizable unsaturated monomer (A) is added in an amount of 5 to 95% by mass. , a polymerization step of obtaining a copolymer by copolymerizing a monomer mixture Mm containing 5 to 95% by mass of a polymerizable unsaturated monomer (B), wherein the polymerizable unsaturated monomer (A) is the following general It is at least one ether group-containing monomer represented by formula (1), and the polymerizable unsaturated monomer (B) is a polymerizable unsaturated monomer that does not satisfy general formula (1) and has a hydrophobic group. A method for producing a polyurethane foam foam stabilizer comprising at least one monomer selected from a group of saturated monomers.
R1-( CmH2mO ) n -R2 ( 1)
(In the general formula (1), R1 is a (meth)acryl group, R2 is a hydrogen atom, (meth)acryl group, an alkyl group having 1 to 22 carbon atoms or an aryl group, and m is 2 is a natural number from ~4, and n is a natural number from 1 to 100.)
 本発明の他の態様において、前記整泡剤のSP値が、前記ポリオールのSP値よりも1.0~3.1低いことが好ましい。 In another aspect of the present invention, the SP value of the foam stabilizer is preferably 1.0 to 3.1 lower than the SP value of the polyol.
 本発明の一態様において、前記共重合体の重量平均分子量が、1000~500000であってもよい。 In one aspect of the present invention, the copolymer may have a weight average molecular weight of 1,000 to 500,000.
 本発明の他の態様において、前記共重合体が、前記重合性不飽和モノマー(A)として、前記一般式(1)におけるR1が(メタ)アクリル基である重合性不飽和モノマーのみを含むことが好ましい。 In another aspect of the present invention, the copolymer contains, as the polymerizable unsaturated monomer (A), only polymerizable unsaturated monomers in which R1 in the general formula (1) is a (meth)acrylic group. is preferred.
 本発明の他の態様において、前記重合性不飽和モノマー(B)の疎水基が、直鎖状、分岐鎖状または環状の炭化水素基であってもよい。 In another aspect of the present invention, the hydrophobic group of the polymerizable unsaturated monomer (B) may be a linear, branched or cyclic hydrocarbon group.
 本発明の他の態様において、前記重合性不飽和モノマー(B)の疎水基が、酸素原子、窒素原子、フッ素原子およびケイ素原子を含まなくてもよい。 In another aspect of the present invention, the hydrophobic group of the polymerizable unsaturated monomer (B) may be free of oxygen atoms, nitrogen atoms, fluorine atoms and silicon atoms.
 また、本発明は、ポリオールと、上述したポリウレタンフォーム用整泡剤とを混合し、ポリオール混合物Moを得る整泡剤混合工程と、前記ポリオール混合物Moと、ポリイソシアネートとを混合しながら発泡および硬化させ、ポリウレタンフォームを得る発泡体生成工程と、を含む、ポリウレタンフォームの製造方法である。 Further, the present invention includes a foam stabilizer mixing step of mixing a polyol and the foam stabilizer for polyurethane foam described above to obtain a polyol mixture Mo, and foaming and curing while mixing the polyol mixture Mo and a polyisocyanate. and a foam production step of obtaining a polyurethane foam.
 また、本発明は、ポリプロピレン樹脂、ポリエチレン樹脂、フッ素樹脂およびシリコーン樹脂からなる群より選ばれる基材、または、ワックスが塗布された基材と、ポリウレタンフォームとを積層する積層工程を含み、前記積層工程において、前記ポリウレタンフォームは、上述したポリウレタンフォームの製造方法により得られた発泡体である、ポリウレタンフォーム積層体の製造方法である。 Further, the present invention includes a lamination step of laminating a substrate selected from the group consisting of polypropylene resin, polyethylene resin, fluororesin and silicone resin, or a substrate coated with wax, and polyurethane foam, wherein The process WHEREIN: The said polyurethane foam is a manufacturing method of the polyurethane-foam laminated body which is the foam obtained by the manufacturing method of the polyurethane foam mentioned above.
 本発明によれば、エーテル基を有する特定の重合性不飽和モノマーと、疎水基を有する特定の重合性不飽和モノマーとの共重合体を、ポリウレタンフォームを製造する際の整泡剤として用いることにより、シリコーン系整泡剤と同等以上の整泡能を有するポリウレタンフォーム用整泡剤を得ること、および、ポリプロピレン樹脂等の難接着基材に対しても十分な接着力をポリウレタンフォームに付与することが可能となる。 According to the present invention, a copolymer of a specific polymerizable unsaturated monomer having an ether group and a specific polymerizable unsaturated monomer having a hydrophobic group is used as a foam stabilizer in producing a polyurethane foam. To obtain a foam stabilizer for polyurethane foam having a foam stabilizer equal to or higher than that of a silicone-based foam stabilizer, and to impart sufficient adhesion to a difficult-to-adhere base material such as a polypropylene resin to a polyurethane foam. becomes possible.
実施例における引張せん断試験片の形状を示す模式図である。It is a schematic diagram which shows the shape of the tensile-shear test piece in an Example.
 以下、図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本発明において、「(メタ)アクリル基」は「アクリル基」および「メタクリル基」から選ばれる少なくとも1種をいい、「(メタ)アクリレート」は「アクリレート」および「メタクリレート」から選ばれる少なくとも1種をいう。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the present invention, "(meth)acrylic group" refers to at least one selected from "acrylic group" and "methacrylic group", and "(meth)acrylate" refers to at least one selected from "acrylate" and "methacrylate". 1 species.
[ポリウレタンフォーム用整泡剤]
 本発明の好適な実施形態に係るポリウレタンフォーム用整泡剤は、ポリイソシアネート、ポリオールおよびその他の成分(触媒、発泡剤等)と混合され、ポリウレタンフォームの製造に使用される。本発明に係る整泡剤は、重合性不飽和モノマー(A)から誘導される構成単位A、および重合性不飽和モノマー(B)から誘導される構成単位Bを含む共重合体Xを必須成分として含有する。この共重合体Xは、より具体的には、重合性不飽和モノマー(B)に由来する疎水性幹ポリマーと、重合性不飽和モノマー(A)に由来するエーテル基を有する親水性枝ポリマーとを分子骨格とするグラフト共重合体である。このように、本発明に係る整泡剤が共重合体Xを含有することにより、シリコーン系整泡剤と同等以上の整泡能を有するポリウレタンフォーム用整泡剤を得ることができるとともに、ポリプロピレン樹脂、ポリエチレン樹脂等の難接着基材に対しても十分な接着力をポリウレタンフォームに付与することが可能となる。
[Foam stabilizer for polyurethane foam]
A foam stabilizer for polyurethane foam according to a preferred embodiment of the present invention is mixed with polyisocyanate, polyol and other components (catalyst, blowing agent, etc.) and used to produce polyurethane foam. The foam stabilizer according to the present invention comprises, as essential components, a copolymer X containing a structural unit A derived from a polymerizable unsaturated monomer (A) and a structural unit B derived from a polymerizable unsaturated monomer (B). contains as More specifically, this copolymer X is composed of a hydrophobic trunk polymer derived from the polymerizable unsaturated monomer (B) and a hydrophilic branch polymer having an ether group derived from the polymerizable unsaturated monomer (A). is a graft copolymer having a molecular skeleton of Thus, by including the copolymer X in the foam stabilizer according to the present invention, it is possible to obtain a foam stabilizer for polyurethane foam having a foam stabilizing ability equal to or greater than that of a silicone-based foam stabilizer. It is possible to impart sufficient adhesive strength to the polyurethane foam even to difficult-to-adhere substrates such as resins and polyethylene resins.
 ここで、本明細書における「整泡能」とは、以下に述べる整泡剤の役割を十分に発揮させる性能、具体的には、ポリウレタンフォームの発泡容積を大きく、かつ、ポリウレタンフォームの気泡径を小さくできる性能のことを意味することとする。ポリウレタンフォームの製造における整泡剤の役割は、ポリウレタン原料の各成分(ポリイソシアネート、ポリオール等)の相溶性を高めるとともに、ポリウレタン原料の混合溶液の表面張力を低下させることである。これにより、混合溶液に巻き込まれるガスの分散が容易になるため、発泡体中の気泡を均一化および安定化させ、気泡の粗大化や不均一化を抑制できる。その結果、製造されたポリウレタンフォームの発泡容積(気泡を含む発泡体の容積)や気泡径を制御することが可能となる。これらのポリウレタンフォームの発泡容積や気泡径は、ポリウレタンフォームの物性(例えば、断熱性、耐水性、耐熱性、クッション性、衝撃吸収性、吸音性、重量等)にも大きな影響を及ぼす。 Here, the "foam stabilizing ability" in the present specification means the ability to sufficiently exert the role of the foam stabilizing agent described below, specifically, the foam volume of the polyurethane foam is large and the cell diameter of the polyurethane foam is It means the performance that can reduce The role of the foam stabilizer in the production of polyurethane foam is to improve the compatibility of each component (polyisocyanate, polyol, etc.) of the polyurethane raw material and to lower the surface tension of the mixed solution of the polyurethane raw material. As a result, the gas involved in the mixed solution can be easily dispersed, so that the cells in the foam can be made uniform and stabilized, and coarsening and non-uniformity of the cells can be suppressed. As a result, it is possible to control the foam volume (volume of foam containing cells) and cell diameter of the produced polyurethane foam. The foam volume and cell diameter of these polyurethane foams also greatly affect the physical properties of the polyurethane foam (eg, heat insulation, water resistance, heat resistance, cushioning properties, shock absorption, sound absorption, weight, etc.).
 また、本明細書において「難接着基材」とは、硬質ポリウレタンフォームの自己接着性を利用した接着、あるいは、一般的な接着剤を用いたポリウレタンフォームとの接着が困難な基材のことをいう。難接着基材としては、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、フッ素樹脂、シリコーン樹脂等の基材や、ワックスが表面に塗布された基材が挙げられる。さらに、本明細書における「接着力」は、硬質ポリウレタンフォームの自己接着性に基づく接着力、および、一般的な接着剤を用いたポリウレタンフォームとの接着力のいずれをも含む。以下、本発明に係る整泡剤に含まれる必須成分および任意成分について詳細に述べる。 In this specification, the term "difficult-to-adhere base material" refers to a base material that is difficult to bond with a polyurethane foam using a self-adhesive property of a rigid polyurethane foam or a general adhesive. say. Examples of difficult-to-adhere substrates include substrates such as polypropylene resin, polyethylene resin, fluororesin, and silicone resin, and substrates coated with wax. Furthermore, the "adhesive strength" in this specification includes both the adhesive strength based on the self-adhesiveness of rigid polyurethane foam and the adhesive strength with polyurethane foam using a general adhesive. The essential components and optional components contained in the foam stabilizer according to the present invention are described in detail below.
(重合性不飽和モノマー(A))
 重合性不飽和モノマー(A)は、下記一般式(1)で表される少なくとも1種のエーテル基を有する重合性不飽和モノマーである。なお、本発明における「重合性不飽和モノマー」とは、「重合可能な不飽和炭化水素基(炭素炭素間の二重結合または三重結合)を有するモノマー」を意味する。
  R1-(C2mO)n-R2 ・・・(1)
(Polymerizable unsaturated monomer (A))
The polymerizable unsaturated monomer (A) is a polymerizable unsaturated monomer having at least one ether group represented by general formula (1) below. In addition, the "polymerizable unsaturated monomer" in the present invention means "a monomer having a polymerizable unsaturated hydrocarbon group (carbon-carbon double bond or triple bond)".
R1-( CmH2mO ) n -R2 ( 1)
 上記一般式(1)において、R1は、(メタ)アクリル基であり、R2は、水素原子、(メタ)アクリル基または炭素数1~22のアルキル基もしくはアリール基であり、mは、2~4の自然数であり、nは、1~100の自然数である。 In the above general formula (1), R1 is a (meth)acryl group, R2 is a hydrogen atom, a (meth)acryl group, an alkyl group having 1 to 22 carbon atoms or an aryl group, and m is 2 to 4 is a natural number, and n is a natural number from 1 to 100.
 重合性不飽和モノマー(A)としては、例えば、(メタ)アクリレート類、アリルエーテル類、ビニルエーテル類等が挙げられる。 Examples of the polymerizable unsaturated monomer (A) include (meth)acrylates, allyl ethers, vinyl ethers, and the like.
 (メタ)アクリレート類としては、例えば、ポリエチレングリコールモノ(メタ)アクリレート、ポリ(エチレン-プロピレン)グリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリテトラメチレングリコールモノ(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、メトキシポリ(エチレン-プロピレン)グリコール(メタ)アクリレート、メトキシポリ(エチレン-テトラメチレングリコール(メタ)アクリレート、ブトキシポリ(エチレン-プロピレングリコール)(メタ)アクリレート、オクトキシポリエチレングリコール(メタ)アクリレート、ラウロキシポリエチレングリコール(メタ)アクリレート、ステアロキシポリエチレングリコール(メタ)アクリレート、べへニロキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エトキシレートポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。 Examples of (meth)acrylates include polyethylene glycol mono(meth)acrylate, poly(ethylene-propylene)glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, polytetramethylene glycol mono(meth)acrylate, methoxy Polyethylene glycol (meth)acrylate, methoxypolypropylene glycol (meth)acrylate, methoxypoly(ethylene-propylene)glycol (meth)acrylate, methoxypoly(ethylene-tetramethyleneglycol (meth)acrylate, butoxypoly(ethylene-propyleneglycol) (meth)acrylate , octoxypolyethylene glycol (meth)acrylate, lauroxypolyethyleneglycol (meth)acrylate, stearoxypolyethyleneglycol (meth)acrylate, behenyloxypolyethyleneglycol (meth)acrylate, phenoxypolyethyleneglycol (meth)acrylate, phenoxypolypropylene glycol (meth)acrylate, nonylphenoxy polyethylene glycol (meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, ethoxylate polypropylene glycol di(meth)acrylate, polytetramethylene glycol di(meth)acrylate, 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate and the like.
 アリルエーテル類としては、例えば、ポリエチレングリコールモノアリルエーテル、ポリプロピレングリコールモノアリルエーテル、メトキシポリエチレングリコールアリルエーテル、ポリエチレングリコールポリプロピレングリコールモノアリルエーテル、ブトキシポリエチレングリコールポリプロピレングリコールモノアリルエーテル、ポリエチレングリコールジアリルエーテル、ポリプロピレングリコールジアリルエーテル等が挙げられる。 Examples of allyl ethers include polyethylene glycol monoallyl ether, polypropylene glycol monoallyl ether, methoxypolyethylene glycol allyl ether, polyethylene glycol polypropylene glycol monoallyl ether, butoxypolyethylene glycol polypropylene glycol monoallyl ether, polyethylene glycol diallyl ether, and polypropylene glycol. Diallyl ether etc. are mentioned.
 ビニルエーテル類としては、例えば、ポリエチレングリコールモノビニルエーテル、ポリプロピレングリコールモノビニルエーテル等が挙げられる。 Examples of vinyl ethers include polyethylene glycol monovinyl ether and polypropylene glycol monovinyl ether.
 上述したモノマーは、1種を単独で用いてもよく、あるいは2種以上を併用してもよい。 The above monomers may be used singly or in combination of two or more.
 これらのモノマーの中でも、重合性不飽和モノマー(A)としては、一般式(1)のR2が、(メタ)アクリル基、炭素数1~22のアルキル基または炭素数1~22のアリール基であることが好ましく、炭素数1~22のアルキル基であることがより好ましい。このような重合性不飽和モノマー(A)を用いることにより、ポリウレタンフォームに十分な基材への接着力を付与する効果を高めることができる。 Among these monomers, as the polymerizable unsaturated monomer (A), R2 in the general formula (1) is a (meth)acryl group, an alkyl group having 1 to 22 carbon atoms or an aryl group having 1 to 22 carbon atoms. is preferred, and an alkyl group having 1 to 22 carbon atoms is more preferred. By using such a polymerizable unsaturated monomer (A), it is possible to enhance the effect of imparting sufficient adhesion to a substrate to the polyurethane foam.
 本発明に係る共重合体Xの構成モノマーとしては、一般式(1)のR1が(メタ)アクリル基であるエーテル基含有重合性不飽和モノマー(A)を使用することが必須である。ただし、共重合体Xの構成モノマーとして、一般式(1)のR1がビニルエーテル基またはアリル基であるエーテル基含有重合性不飽和モノマーを、R1が(メタ)アクリル基である重合性不飽和モノマー(A)と併用してもよい。ただし、共重合体Xの構成モノマーとしては、R1が(メタ)アクリル基である重合性不飽和モノマー(A)を単独で用いることが好適である。これにより、R1が(メタ)アクリル基以外(例えば、ビニルエーテル基、アリル基等)の重合性不飽和モノマー(A)と併用した場合よりも、難接着基材に対する接着力を高めることができる。 As a constituent monomer of the copolymer X according to the present invention, it is essential to use an ether group-containing polymerizable unsaturated monomer (A) in which R1 in general formula (1) is a (meth)acrylic group. However, as the constituent monomers of the copolymer X, an ether group-containing polymerizable unsaturated monomer in which R1 in the general formula (1) is a vinyl ether group or an allyl group, and a polymerizable unsaturated monomer in which R1 is a (meth)acrylic group It may be used in combination with (A). However, as a constituent monomer of the copolymer X, it is preferable to use alone a polymerizable unsaturated monomer (A) in which R1 is a (meth)acrylic group. As a result, the adhesive strength to the difficult-to-adhere substrate can be increased more than when R1 is used in combination with a polymerizable unsaturated monomer (A) other than a (meth)acrylic group (for example, a vinyl ether group, an allyl group, etc.).
 また、本発明に係る共重合体Xの構成モノマーとしては、一般式(1)のR2が水素原子、(メタ)アクリル基または炭素数1~22のアルキル基もしくはアリール基であるエーテル基含有重合性不飽和モノマー(A)を使用することが必須である。ただし、共重合体Xの構成モノマーとして、一般式(1)のR2がビニルエーテル基またはアリル基であるエーテル基含有重合性不飽和モノマーを、R2が水素原子、(メタ)アクリル基または炭素数1~22のアルキル基もしくはアリール基である重合性不飽和モノマー(A)と併用してもよい。 Further, as constituent monomers of the copolymer X according to the present invention, R2 in the general formula (1) is a hydrogen atom, a (meth)acryl group, an alkyl group having 1 to 22 carbon atoms, or an aryl group. It is essential to use a polyunsaturated monomer (A). However, as a constituent monomer of the copolymer X, an ether group-containing polymerizable unsaturated monomer in which R2 in the general formula (1) is a vinyl ether group or an allyl group, R2 is a hydrogen atom, a (meth)acrylic group or a carbon number of 1 It may be used in combination with a polymerizable unsaturated monomer (A) which is an alkyl group or aryl group of ∼22.
 重合性不飽和モノマー(A)のエーテル鎖におけるアルキル鎖長mは、2以上4以下の自然数である。mが5以上となると、極性基としての効果、すなわち、共重合体Xへの親水性付与効果を期待できなくなる恐れがある。なお、mが5以上の一般式(1)を満足するエーテル基含有重合性不飽和モノマーの入手は、一般に困難である。 The alkyl chain length m of the ether chain of the polymerizable unsaturated monomer (A) is a natural number of 2 or more and 4 or less. If m is 5 or more, the effect as a polar group, that is, the effect of imparting hydrophilicity to the copolymer X may not be expected. It is generally difficult to obtain an ether group-containing polymerizable unsaturated monomer satisfying general formula (1) where m is 5 or more.
 重合性不飽和モノマー(A)のエーテル鎖長nは、1以上100以下の自然数であり、4以上50以下であることが好ましく、4以上23以下であることがより好ましい。nが100を超えると、ポリウレタンフォームに十分な基材への接着力を付与する効果が得られなくなる恐れがある。なお、nが100超の一般式(1)を満足するエーテル基含有重合性不飽和モノマーの入手は、一般に困難である。 The ether chain length n of the polymerizable unsaturated monomer (A) is a natural number of 1 or more and 100 or less, preferably 4 or more and 50 or less, more preferably 4 or more and 23 or less. If n exceeds 100, there is a possibility that the effect of imparting sufficient adhesive strength to the substrate to the polyurethane foam cannot be obtained. Incidentally, it is generally difficult to obtain an ether group-containing polymerizable unsaturated monomer satisfying general formula (1) where n exceeds 100.
 重合性不飽和モノマー(A)から誘導される構成単位Aの含有割合は、構成単位Aと構成単位Bの合計質量を100質量%としたときに、5質量%以上95質量%以下である。構成単位Aの含有割合が5質量%未満であると、難接着基材への接着力が不足する。一方、構成単位Aの含有割合が95質量%を超えると、整泡剤による整泡能が悪化する。難接着基材への接着力を高めるためには、構成単位Aの含有割合は、10質量%以上であることが好ましい。また、整泡能を高めるためには、構成単位Aの含有割合は、90質量%以下であることが好ましい。 The content of the structural unit A derived from the polymerizable unsaturated monomer (A) is 5% by mass or more and 95% by mass or less when the total mass of the structural unit A and the structural unit B is 100% by mass. If the content of the structural unit A is less than 5% by mass, the adhesive strength to difficult-to-bond substrates will be insufficient. On the other hand, if the content of the structural unit A exceeds 95% by mass, the foam stabilizing ability of the foam stabilizer deteriorates. In order to increase the adhesive strength to difficult-to-bond substrates, the content of structural unit A is preferably 10% by mass or more. Moreover, in order to improve the foam stabilizing ability, the content of the structural unit A is preferably 90% by mass or less.
(重合性不飽和モノマー(B))
 重合性不飽和モノマー(B)は、上記一般式(1)を満足せず、かつ、疎水基を有する重合性不飽和モノマー群より選ばれる少なくとも1種のモノマーである。すなわち、重合性不飽和モノマー(B)は、重合性不飽和モノマー(A)とは異なり、かつ、疎水基を有する重合性不飽和モノマーである。
(Polymerizable unsaturated monomer (B))
The polymerizable unsaturated monomer (B) is at least one monomer selected from the group of polymerizable unsaturated monomers that do not satisfy general formula (1) above and have a hydrophobic group. That is, the polymerizable unsaturated monomer (B) is a polymerizable unsaturated monomer that is different from the polymerizable unsaturated monomer (A) and has a hydrophobic group.
 重合性不飽和モノマー(B)が有する疎水基は、例えば、直鎖状、分岐鎖状または環状の炭化水素基である。また、この疎水基は、酸素原子、窒素原子、フッ素原子およびケイ素原子のいずれの原子をも含まないことが好ましい。重合性不飽和モノマー(B)の疎水基が上記のような官能基であることにより、整泡能と難接着基材に対する接着力を高いレベルで両立させることができる。 The hydrophobic group possessed by the polymerizable unsaturated monomer (B) is, for example, a linear, branched or cyclic hydrocarbon group. Also, the hydrophobic group preferably does not contain any of oxygen, nitrogen, fluorine and silicon atoms. When the hydrophobic group of the polymerizable unsaturated monomer (B) is a functional group such as those described above, it is possible to achieve both high levels of foam stabilizing ability and adhesion to hard-to-adhere substrates.
 重合性不飽和モノマー(B)としては、例えば、(メタ)アクリレート類、ビニルエーテル類、ビニルエステル類、マレイン酸ジアルキルエステル類、フマル酸ジアルキルエステル類、イタコン酸ジアルキルエステル類、芳香族炭化水素系ビニル化合物、α-オレフィン化合物等が挙げられる。 Examples of the polymerizable unsaturated monomer (B) include (meth)acrylates, vinyl ethers, vinyl esters, dialkyl maleates, dialkyl fumarate, dialkyl itaconate, aromatic hydrocarbon-based vinyl compounds, α-olefin compounds, and the like.
 (メタ)アクリレート類としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ノルマルプロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ノルマルブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ターシャリーブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ノルマルオクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、ノルマルデシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、オレイル(メタ)アクリレート、ベヘニル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等が挙げられる。 Examples of (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, normal propyl (meth)acrylate, isopropyl (meth)acrylate, normal butyl (meth)acrylate, isobutyl (meth)acrylate, tertiary Butyl (meth)acrylate, hexyl (meth)acrylate, normal octyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isononyl (meth)acrylate, normal decyl (meth)acrylate, isodecyl (meth)acrylate Acrylates, Lauryl (meth)acrylate, Stearyl (meth)acrylate, Isostearyl (meth)acrylate, Oleyl (meth)acrylate, Behenyl (meth)acrylate, Benzyl (meth)acrylate, Cyclohexyl (meth)acrylate, Isobornyl (meth)acrylate etc.
 ビニルエーテル類としては、例えば、メチルビニルエーテル、エチルビニルエーテル、ノルマルプロピルビニルエーテル、イソプロピルビニルエーテル、ノルマルブチルビニルエーテル、イソブチルビニルエーテル、ターシャリーブチルビニルエーテル、ノルマルオクチルビニルエーテル、2-エチルヘキシルビニルエーテル、デシルビニルエーテル、ラウリルビニルエーテル、ステアリルビニルエーテル、ベヘニルビニルエーテル等が挙げられる。また、ビニルエステル類としては、例えば、酢酸ビニル、ネオノナン酸ビニル、2,2-ジメチルオクタン酸ビニル、およびネオウンデカン酸ビニル等が挙げられる。 Examples of vinyl ethers include methyl vinyl ether, ethyl vinyl ether, normal propyl vinyl ether, isopropyl vinyl ether, normal butyl vinyl ether, isobutyl vinyl ether, tertiary butyl vinyl ether, normal octyl vinyl ether, 2-ethylhexyl vinyl ether, decyl vinyl ether, lauryl vinyl ether, stearyl vinyl ether, behenyl vinyl ether and the like. Examples of vinyl esters include vinyl acetate, vinyl neononanoate, vinyl 2,2-dimethyloctanoate, and vinyl neoundecanoate.
 マレイン酸ジアルキルエステル類としては、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジイソプロピル、マレイン酸ジブチル、マレイン酸ジ2-エチルヘキシル、マレイン酸ジラウリル、マレイン酸ジステアリル等が挙げられる。また、フマル酸ジアルキルエステル類としては、例えば、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジイソプロピル、フマル酸ジブチル、フマル酸ジ2-エチルヘキシル、フマル酸ジラウリル、フマル酸ジステアリル等が挙げられる。さらに、イタコン酸ジアルキルエステル類としては、例えば、イタコン酸ジメチル、イタコン酸ジブチル、イタコン酸ジ2-エチルヘキシル、イタコン酸ジラウリル、イタコン酸ジステアリル等が挙げられる。 Examples of dialkyl maleates include dimethyl maleate, diethyl maleate, diisopropyl maleate, dibutyl maleate, di-2-ethylhexyl maleate, dilauryl maleate, and distearyl maleate. Examples of dialkyl fumarate include dimethyl fumarate, diethyl fumarate, diisopropyl fumarate, dibutyl fumarate, di-2-ethylhexyl fumarate, dilauryl fumarate, and distearyl fumarate. Furthermore, examples of the dialkyl itaconate include dimethyl itaconate, dibutyl itaconate, di-2-ethylhexyl itaconate, dilauryl itaconate, and distearyl itaconate.
 芳香族炭化水素系ビニル化合物としては、例えば、スチレン、α-メチルスチレン、クロロスチレン、ビニルトルエン等が挙げられる。また、α-オレフィン化合物としては、例えば、1-ヘキセン、1-オクテン、1-ドデセン等が挙げられる。 Examples of aromatic hydrocarbon-based vinyl compounds include styrene, α-methylstyrene, chlorostyrene, and vinyltoluene. Examples of α-olefin compounds include 1-hexene, 1-octene, 1-dodecene and the like.
 上述したモノマーは、1種を単独で用いてもよく、あるいは2種以上を併用してもよい。 The above monomers may be used singly or in combination of two or more.
 また、整泡能および難接着基材への接着力の付与効果をバランスよく発揮させるため、重合性不飽和モノマー(B)が有する疎水基の炭素数は、2以上22以下であることが好ましく、4以上18以下であることがより好ましい。 In addition, in order to exhibit the effect of imparting foam stabilizing ability and adhesive strength to difficult-to-adhere substrates in a well-balanced manner, the number of carbon atoms in the hydrophobic group possessed by the polymerizable unsaturated monomer (B) is preferably 2 or more and 22 or less. , 4 or more and 18 or less.
 重合性不飽和モノマー(B)から誘導される構成単位Bの含有割合は、構成単位Aと構成単位Bの合計質量を100質量%としたときに、5質量%以上95質量%以下である。構成単位Bの含有割合が5質量%未満であると、整泡剤による整泡能が悪化する。一方、構成単位Bの含有割合が95質量%を超えると、難接着基材への接着力が不足する。整泡能を高めるためには、構成単位Bの含有割合は、10質量%以上であることが好ましい。また、難接着基材への接着力を高めるためには、構成単位Bの含有割合は、90質量%以下であることが好ましい。 The content of the structural unit B derived from the polymerizable unsaturated monomer (B) is 5% by mass or more and 95% by mass or less when the total mass of the structural unit A and the structural unit B is 100% by mass. If the content of the structural unit B is less than 5% by mass, the foam stabilizing ability of the foam stabilizer deteriorates. On the other hand, if the content of the structural unit B exceeds 95% by mass, the adhesive strength to difficult-to-bond substrates will be insufficient. In order to improve the foam stabilizing ability, the content of the structural unit B is preferably 10% by mass or more. Moreover, in order to increase the adhesive strength to the difficult-to-bond substrate, the content of the structural unit B is preferably 90% by mass or less.
 なお、全体的な傾向として、重合性不飽和モノマー(B)の疎水基の炭素数が多い方、または重合性不飽和モノマー(B)の配合量が多い方が整泡能は高くなるが、接着力は低下する。また、重合性不飽和モノマー(B)の疎水基に分岐があることにより、疎水基が表面に配向しやすくなるため、整泡能が高くなるが、接着力は低下する。 As a general trend, the higher the number of carbon atoms in the hydrophobic group of the polymerizable unsaturated monomer (B) or the higher the amount of the polymerizable unsaturated monomer (B), the higher the foam stabilizing ability. Adhesion is reduced. In addition, since the hydrophobic groups of the polymerizable unsaturated monomer (B) are branched, the hydrophobic groups are more likely to be oriented on the surface, so that the foam stabilizing ability is enhanced, but the adhesive strength is lowered.
(共重合性不飽和モノマー(C))
 本発明に係る共重合体Xは、上述した共重合性不飽和モノマー(A)および共重合性不飽和モノマー(B)のいずれとも異なる共重合性不飽和モノマー(C)から誘導される構成単位Cをさらに含有していてもよい。
(Copolymerizable unsaturated monomer (C))
The copolymer X according to the present invention is a structural unit derived from a copolymerizable unsaturated monomer (C) different from both the copolymerizable unsaturated monomer (A) and the copolymerizable unsaturated monomer (B) described above. It may further contain C.
 ここで、重合性不飽和モノマー(A)の配合量が多いほど難接着基材への接着力が良好になるが、整泡能は低下する傾向にある。一方、重合性不飽和モノマー(B)の配合量が多いほど整泡能が良好になるが、難接着基材への接着力は低下する傾向にある。このように、重合性不飽和モノマー(A)と重合性不飽和モノマー(B)とはトレードオフの関係にある。そこで、このトレードオフの解消のために、本発明では、共重合体Xを合成する際のモノマー混合物Mmに重合性不飽和モノマー(C)をさらに配合してもよい。また、重合性不飽和モノマー(C)を配合することで、界面活性能(表面張力を低下させる性能)や基材との親和性(接着性)を向上させることも可能となる。 Here, the larger the amount of the polymerizable unsaturated monomer (A) blended, the better the adhesion to difficult-to-adhere substrates, but the foam stabilizing ability tends to decrease. On the other hand, as the blending amount of the polymerizable unsaturated monomer (B) increases, the foam stabilizing ability improves, but the adhesive strength to the difficult-to-adhere substrate tends to decrease. Thus, there is a trade-off relationship between the polymerizable unsaturated monomer (A) and the polymerizable unsaturated monomer (B). Therefore, in order to eliminate this trade-off, in the present invention, a polymerizable unsaturated monomer (C) may be added to the monomer mixture Mm when synthesizing the copolymer X. In addition, by blending the polymerizable unsaturated monomer (C), it is also possible to improve surface activity (performance to reduce surface tension) and affinity (adhesiveness) with a substrate.
 共重合性不飽和モノマー(C)としては、例えば、(メタ)アクリル酸と炭素数2~8の2価アルコールとのモノエステル化物である水酸基含有の(メタ)アクリレート類、グリコール(メタ)アクリレート類、アクリルアミドまたはメタクリルアミド類、親水性ビニル化合物類、カルボキシル基含有重合性不飽和モノマー類、エーテル基含有重合性不飽和モノマー類、メタクリロイルオキシ基を有する反応性シリコーン、フッ素含有(メタ)アクリレートモノマー類、多官能性不飽和モノマー類等が挙げられる。 Examples of the copolymerizable unsaturated monomer (C) include, for example, hydroxyl group-containing (meth)acrylates which are monoesterified products of (meth)acrylic acid and a dihydric alcohol having 2 to 8 carbon atoms, and glycol (meth)acrylates. acrylamide or methacrylamides, hydrophilic vinyl compounds, carboxyl group-containing polymerizable unsaturated monomers, ether group-containing polymerizable unsaturated monomers, reactive silicones having methacryloyloxy groups, fluorine-containing (meth)acrylate monomers and polyfunctional unsaturated monomers.
 (メタ)アクリル酸と炭素数2~8の2価アルコールとのモノエステル化物である水酸基含有の(メタ)アクリレート類としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-1-メチルエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシ-2,2-ジメチルプロピル(メタ)アクリレート等が挙げられる。また、グリコール(メタ)アクリレート類としては、例えば、メトキシポリエチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、フェノキシエチレングリコール(メタ)アクリレート、フェノキシプロピレングリコール(メタ)アクリレート等が挙げられる。 Examples of hydroxyl group-containing (meth)acrylates, which are monoesterified products of (meth)acrylic acid and a dihydric alcohol having 2 to 8 carbon atoms, include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth) ) acrylate, 2-hydroxy-1-methylethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 3-hydroxy-2,2-dimethylpropyl (meth)acrylate and the like. Examples of glycol (meth)acrylates include methoxypolyethylene glycol (meth)acrylate, methoxypropylene glycol (meth)acrylate, phenoxyethylene glycol (meth)acrylate, and phenoxypropylene glycol (meth)acrylate.
 アクリルアミドまたはメタクリルアミド類としては、例えば、アクリルアミド、N-メチルアクリルアミド、N-メチルメタクリルアミド、N-メチロールアクリルアミドブチルエーテル、N-メチロールメタクリルアミドブチルエーテル、N-エチルアクリルアミド、N-エチルメタクリルアミド、N-n-プロピルアクリルアミド、N-n-プロピルメタクリルアミド、N-イソプロピルアクリルアミド、N-イソプロピルメタクリルアミド、N-シクロプロピルアクリルアミド、N-シクロプロピルメタクリルアミド、ダイアセトンアクリルアミド、ダイアセトンメタクリルアミド、N-ヒドロキシメチルアクリルアミド、N-ヒドロキシメチルメタクリルアミド、N-ヒドロキシエチルアクリルアミド、N-ヒドロキシエチルメタクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジエチルメタクリルアミド、N-メチル,N-エチルアクリルアミド、N-メチル,N-エチルメタクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアミノプロピルメタクリルアミド、N-メチロールアクリルアミドメチルエーテル、N-メチロールメタクリルアミドメチルエーテル、N-メチロールアクリルアミドエチルエーテル、N-メチロールメタクリルアミドエチルエーテル、N-メチロールアクリルアミドプロピルエーテル、N-メチロールメタクリルアミドプロピルエーテル、アクリロイルモルホリン、メタクリロイルモルホリン等が挙げられる。 Examples of acrylamides or methacrylamides include acrylamide, N-methylacrylamide, N-methylmethacrylamide, N-methylolacrylamide butyl ether, N-methylolmethacrylamide butyl ether, N-ethylacrylamide, N-ethylmethacrylamide, Nn - propylacrylamide, Nn-propylmethacrylamide, N-isopropylacrylamide, N-isopropylmethacrylamide, N-cyclopropylacrylamide, N-cyclopropylmethacrylamide, diacetoneacrylamide, diacetonemethacrylamide, N-hydroxymethylacrylamide , N-hydroxymethylmethacrylamide, N-hydroxyethylacrylamide, N-hydroxyethylmethacrylamide, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N,N-diethylacrylamide, N,N-diethylmethacrylamide , N-methyl, N-ethylacrylamide, N-methyl,N-ethylmethacrylamide, N,N-dimethylaminopropylacrylamide, N,N-dimethylaminopropylmethacrylamide, N-methylolacrylamide methyl ether, N-methylolmethacrylamide amidomethyl ether, N-methylol acrylamide ethyl ether, N-methylol methacrylamide ethyl ether, N-methylol acrylamide propyl ether, N-methylol methacrylamide propyl ether, acryloylmorpholine, methacryloylmorpholine and the like.
 親水性ビニル化合物類としては、例えば、N-ビニル-2-ピロリドンが挙げられる。また、カルボキシル基含有重合性不飽和モノマー類としては、例えば、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、β-カルボキシエチルアクリレート等が挙げられる。さらに、エーテル基含有不飽和モノマー類(一般式(1)を満足しないモノマー)としては、例えば、テトラヒドロフルフリル(メタ)アクリレート、グリシジル(メタ)アクリレート、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート、環状トリメチロールプロパンホルマール(メタ)アクリレート、(2ーメチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート等が挙げられる。 Examples of hydrophilic vinyl compounds include N-vinyl-2-pyrrolidone. Examples of carboxyl group-containing polymerizable unsaturated monomers include (meth)acrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, β-carboxyethyl acrylate and the like. Further, ether group-containing unsaturated monomers (monomers not satisfying general formula (1)) include, for example, tetrahydrofurfuryl (meth)acrylate, glycidyl (meth)acrylate, (3-ethyloxetan-3-yl)methyl (Meth)acrylate, cyclic trimethylolpropane formal (meth)acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl)methyl (meth)acrylate and the like.
 メタクリロイルオキシ基を有する反応性シリコーンの市販品としては、例えば、JNC株式会社製のサイラプレーンFM-0711、FM-0721、FM-0725およびTM-0701T、東亞合成会社製のAK-5およびAK-30、信越シリコーン株式会社製のX22-164A、X22-164BおよびX22-164C等がある。 Commercial products of reactive silicone having a methacryloyloxy group include, for example, Silaplane FM-0711, FM-0721, FM-0725 and TM-0701T manufactured by JNC Corporation, AK-5 and AK- manufactured by Toagosei Co., Ltd. 30, X22-164A, X22-164B and X22-164C manufactured by Shin-Etsu Silicone Co., Ltd.;
 フッ素含有(メタ)アクリレートモノマーとしては、例えば、トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、トリデカフルオロオクチル(メタ)アクリレート等が挙げられる。 Examples of fluorine-containing (meth)acrylate monomers include trifluoroethyl (meth)acrylate, tetrafluoropropyl (meth)acrylate, octafluoropentyl (meth)acrylate, and tridecafluorooctyl (meth)acrylate.
 多官能性不飽和モノマー類としては、例えば、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、1,6-ヘキサメチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等が挙げられる。 Examples of polyfunctional unsaturated monomers include divinylbenzene, ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, tetramethylene glycol di(meth)acrylate, 1,6-hexamethylene glycol di(meth)acrylate. ) acrylate, neopentyl glycol di(meth)acrylate, and the like.
 これらのモノマーは、1種を単独で用いてもよく、あるいは2種以上を併用してもよい。 These monomers may be used singly or in combination of two or more.
 重合性不飽和モノマー(C)から誘導される構成単位Cの含有割合は、重合性不飽和モノマー(A)および重合性不飽和モノマー(B)の合計質量を100質量部としたときに、50質量部以下であることが好ましい。構成単位Cの含有割合が50質量部を超えると、整泡能、難接着基材に対する接着力およびポリウレタンフォームの安定性等に悪影響を与える可能性がある。 The content of the structural unit C derived from the polymerizable unsaturated monomer (C) is 50 when the total mass of the polymerizable unsaturated monomer (A) and the polymerizable unsaturated monomer (B) is 100 parts by mass. It is preferably no more than parts by mass. If the content of the structural unit C exceeds 50 parts by mass, it may adversely affect the foam stabilizing ability, the adhesive strength to difficult-to-adhere substrates, the stability of the polyurethane foam, and the like.
(共重合体Xの重量平均分子量)
 本発明に係る共重合体Xの重量平均分子量Mwは、1000以上500000以下であることが好ましく、5000以上500000以下であることがより好ましく、5000以上100000以下であることがさらに好ましい。重量平均分子量Mwが上記範囲内であることにより、実用レベル以上の難接着基材への接着力を保持したまま、高い整泡能を発揮できる。整泡能をさらに高めるという観点からは、重量平均分子量が5000以上40000以下であることが好ましい。なお、重量平均分子量Mwが500000を超えると、高い整泡能は有するものの、分散不良物(未分散凝集物)が発生し、整泡剤の効果が十分に発揮されない場合があるため、重量平均分子量Mwは500000以下であることが好ましい。
(Weight average molecular weight of copolymer X)
The weight average molecular weight Mw of the copolymer X according to the present invention is preferably 1,000 to 500,000, more preferably 5,000 to 500,000, and even more preferably 5,000 to 100,000. When the weight-average molecular weight Mw is within the above range, high foam stabilizing ability can be exhibited while maintaining adhesive strength to difficult-to-adhere substrates at a practical level or higher. From the viewpoint of further enhancing the foam stabilizing ability, the weight average molecular weight is preferably 5,000 or more and 40,000 or less. If the weight average molecular weight Mw exceeds 500,000, although it has a high foam stabilizing ability, poorly dispersed substances (undispersed aggregates) may occur and the effect of the foam stabilizing agent may not be sufficiently exhibited. The molecular weight Mw is preferably 500,000 or less.
 本明細書において、重量平均分子量Mwは、ゲルパーミエーションクロマトグラフ(GPC)で測定したクロマトグラムから標準ポリスチレンの分子量を基準にして算出した値である。なお、後述する実施例における重量平均分子量Mwの測定では、GPCの測定機器として、「HLC8320GPC」(東ソー株式会社製、商品名)を使用し、カラムとして、「TSKgel GMHxL」×2本、「TSKgel G-2500HxL」、「TSKgel G-2000HxL」(いずれも東ソー株式会社製、商品名)の合計4本を用い、移動相をテトラヒドロフランとし、検出器をRIとし、測定温度40℃、流速1cc/分の条件で測定を実施した。 In this specification, the weight average molecular weight Mw is a value calculated based on the molecular weight of standard polystyrene from a chromatogram measured by gel permeation chromatography (GPC). In addition, in the measurement of the weight average molecular weight Mw in the examples described later, "HLC8320GPC" (manufactured by Tosoh Corporation, trade name) was used as the GPC measuring instrument, and the columns were "TSKgel GMHxL" x 2, "TSKgel G-2500HxL" and "TSKgel G-2000HxL" (both manufactured by Tosoh Corporation, trade names), using a total of four, using tetrahydrofuran as the mobile phase, using RI as the detector, measuring temperature at 40°C, and flow rate at 1 cc/min. Measurement was performed under the conditions of
(整泡剤のSP値)
 また、本発明に係る整泡剤の溶解性パラメータ(以下、「SP値」と記載する。)は、ポリウレタンフォームを製造する際の原料となるポリオールのSP値よりも低く、かつ、その差(SP差)は、1.0以上3.1以下の範囲内であることが好ましい。SP差を1.0以上3.1以下の範囲内とすることにより、ポリウレタンフォームの難接着基材への十分な接着力を保持したまま、整泡剤の整泡能を上記の範囲外の場合よりもさらに高めることができる。一方、SP差が1.0未満(>0)であると、整泡剤がポリウレタンフォーム原料の混合溶液中に溶解してしまい、整泡剤の添加効果(整泡能が十分に発揮される効果)が得られなくなる場合がある。また、SP差が3.1を超えると、整泡剤がポリウレタンフォーム原料の混合溶液中に微分散できなくなり、気泡を安定化させるよりも破泡させてしまう(消泡剤的な働きをしてしまう)傾向がある。整泡剤の添加効果を高めるという観点からは、SP差は1.3以上であることがより好ましく、1.5以上であることがさらに好ましい。また、気泡を安定化させるという観点からは、SP差は2.9以下であることがより好ましく、2.8以下であることがさらに好ましく、2.0以下であることがさらに一層好ましい。
(SP value of foam stabilizer)
Further, the solubility parameter (hereinafter referred to as "SP value") of the foam stabilizer according to the present invention is lower than the SP value of polyol, which is a raw material for producing polyurethane foam, and the difference ( SP difference) is preferably in the range of 1.0 or more and 3.1 or less. By setting the SP difference within the range of 1.0 or more and 3.1 or less, while maintaining sufficient adhesive strength of the polyurethane foam to the difficult-to-adhere substrate, the foam stabilizing ability of the foam stabilizer can be adjusted outside the above range. It can be even higher than the case. On the other hand, when the SP difference is less than 1.0 (>0), the foam stabilizer dissolves in the mixed solution of the polyurethane foam raw materials, and the effect of adding the foam stabilizer (foam stabilization ability is sufficiently exhibited. effect) may not be obtained. In addition, when the SP difference exceeds 3.1, the foam stabilizer cannot be finely dispersed in the mixed solution of the polyurethane foam raw materials, and the foam is broken rather than stabilized (acts like an antifoaming agent). tend to From the viewpoint of enhancing the effect of adding the foam stabilizer, the SP difference is more preferably 1.3 or more, and even more preferably 1.5 or more. From the viewpoint of stabilizing bubbles, the SP difference is more preferably 2.9 or less, even more preferably 2.8 or less, and even more preferably 2.0 or less.
 本明細書において、ポリオールのSP値は濁点滴定法により測定された値であり、整泡剤のSP値はFedorsの計算法により算出された値である。 In this specification, the SP value of the polyol is the value measured by the turbidity point titration method, and the SP value of the foam stabilizer is the value calculated by the Fedors calculation method.
 濁点滴定法によるSP値は、次の方法により測定できる(SUH、CLARKE、J.P.S.A-1、5、1671~1681(1967)を参照)。まず、SP値の測定対象となるポリオールまたは整泡剤0.5gを100mlビーカーに秤量し、このビーカー内に、アセトン10mlをホールピペットを用いて加え、マグネティックスターラーにより溶解したものをサンプル溶液として使用する。このサンプル溶液に対して測定温度20℃で、50mlビュレットを用いて貧溶剤を滴下し、濁りが生じた点を滴下量(濁点)とする(濁点滴定)。貧溶剤については、高SP値を有する貧溶剤(以下、「高SP貧溶剤」と略記する。)としてイオン交換水を使用し、低SP値を有する貧溶剤(以下、「低SP貧溶剤」と略記する。)としてn-ヘキサンを使用し、それぞれの貧溶剤を別々に用いた濁点滴定を行う。ポリオールまたは整泡剤のSP値δは、下記計算式(2)によって算出される。
 δ=(Vml1/2δml+Vmh1/2δmh)/(Vml1/2+Vmh1/2) (2)
The SP value by turbidity point titration can be measured by the following method (see SUH, CLARKE, JPSA-1, 5, 1671-1681 (1967)). First, 0.5 g of the polyol or foam stabilizer to be measured for the SP value was weighed into a 100 ml beaker, 10 ml of acetone was added to the beaker using a whole pipette, and the solution dissolved with a magnetic stirrer was used as a sample solution. do. A poor solvent is added dropwise to this sample solution at a measurement temperature of 20° C. using a 50 ml buret, and the drop amount (turbidity point) is defined as the point at which turbidity occurs (turbidity point titration). Regarding the poor solvent, deionized water is used as a poor solvent having a high SP value (hereinafter abbreviated as "high SP poor solvent"), and a poor solvent having a low SP value (hereinafter, "low SP poor solvent" abbreviated as ), and perform turbidity point titration using each poor solvent separately. The SP value δ of the polyol or foam stabilizer is calculated by the following formula (2).
δ=(Vml 1/2 δml+Vmh 1/2 δmh)/(Vml 1/2 +Vmh 1/2 ) (2)
 上記式(2)において、Vmlは、低SP貧溶剤を用いて滴定した場合の濁点における貧溶剤(本明細書ではn-ヘキサン)の分子容(=分子量/密度)[mL/mol]、δmlは、低SP貧溶剤を用いて滴定した場合の貧溶剤(本明細書ではn-ヘキサン)のSP値、Vmhは、高SP貧溶剤を用いて滴定した場合の濁点における貧溶剤(本明細書ではイオン交換水)の分子容[mL/mol]、δmhは、高SP貧溶剤を用いて滴定した場合の貧溶剤(本明細書ではイオン交換水)のSP値をそれぞれ示す。 In the above formula (2), Vml is the molecular volume (= molecular weight / density) of the poor solvent (n-hexane in this specification) at the turbid point when titrated with a low SP poor solvent [mL / mol], δml is the SP value of the poor solvent (n-hexane in this specification) when titrated with a low SP poor solvent, Vmh is the poor solvent at the turbid point when titrated with a high SP poor solvent (here The molecular volume [mL/mol] of the ion-exchanged water) and δmh respectively indicate the SP value of the poor solvent (here, ion-exchanged water) when titrated with a high SP poor solvent.
 式(2)におけるVml、Vmh、δmlおよびδmhは、各貧溶剤で滴定した滴定量を用いて、以下の式(2a)および(2b)により算出できる。
  Vm=V1V2/(φ1V2+φ2V1) (2a)
  δm=φ1δ1+φ2δ2        (2b)
Vml, Vmh, δml and δmh in formula (2) can be calculated by the following formulas (2a) and (2b) using the titration amount titrated with each poor solvent.
Vm=V1V2/(φ1V2+φ2V1) (2a)
δm=φ1δ1+φ2δ2 (2b)
 上記式(2a)、(2b)において、Vmは、VmlまたはVmh、δmは、δmlまたはδmh、V1は、濁点におけるサンプル溶液の溶剤(本明細書ではアセトン)の分子容[mL/mol]、V2は、濁点における貧溶剤(本明細書ではイオン交換水またはn-ヘキサン)の分子容[mL/mol]、φ1は、濁点におけるサンプル溶液の溶剤(本明細書ではアセトン)の体積分率、φ2は、濁点における貧溶剤(本明細書ではイオン交換水またはn-ヘキサン)の体積分率をそれぞれ示す。 In the above formulas (2a) and (2b), Vm is Vml or Vmh, δm is δml or δmh, V1 is the molecular volume of the sample solution solvent (acetone in this specification) at the turbid point [mL/mol], V2 is the molecular volume [mL/mol] of the poor solvent (here, ion-exchanged water or n-hexane) at the turbid point, φ1 is the volume fraction of the sample solution solvent (here, acetone) at the turbid point, φ2 indicates the volume fraction of the poor solvent (in this specification, ion-exchanged water or n-hexane) at the turbid point.
 なお、後述する実施例においては、上述した濁点滴定法によりポリオールのSP値を測定した。 In addition, in the examples described later, the SP value of the polyol was measured by the turbidity point titration method described above.
 また、Fedorsの計算法によるSP値は、R.F.Fedorsにより著された「Polymer Engineering and Science」14(2),147(1974)に記載の計算方法により、算出できる。Fedorsの計算法では、SP値は、対象となる化合物が有する置換基(原子または原子団)の凝集エネルギーおよび分子容に基づき、算出される。 Also, the SP value by the Fedors calculation method is F. It can be calculated by the calculation method described in "Polymer Engineering and Science" by Fedors, 14(2), 147 (1974). In the Fedors calculation method, the SP value is calculated based on the cohesive energy and molecular volume of the substituent (atom or atomic group) of the target compound.
 なお、後述する実施例においては、このFedorsの計算法により合成例および比較合成例の整泡剤のSP値を算出した。 In the examples described later, the SP values of the foam stabilizers in Synthesis Examples and Comparative Synthesis Examples were calculated by this Fedors calculation method.
(整泡剤の用途)
 本発明に係る整泡剤の用途は、ポリウレタンフォームの製造の際に、発泡体の発泡容積や気泡径等を制御するために用いられる整泡剤としての用途であれば特に制限されるものではないが、硬質ポリウレタンフォーム用の整泡剤として特に好適に使用できる。
(Use of foam stabilizer)
The use of the foam stabilizer according to the present invention is not particularly limited as long as it is used as a foam stabilizer for controlling the foam volume, cell diameter, etc. of a foam in the production of polyurethane foam. However, it can be particularly suitably used as a foam stabilizer for rigid polyurethane foams.
[整泡剤の製造方法]
 上述した本発明に係るポリウレタンフォーム用整泡剤の製造方法は、上述した共重合体Xを得る重合工程を含む。重合工程において、共重合体Xは、上述した重合性不飽和モノマー(A)を5~95質量%と、上述した重合性不飽和モノマー(B)を5~95質量%とを含有するモノマー混合物Mmを共重合させることにより合成される。共重合体Xの合成に用いるモノマー混合物Mmには、必要に応じて、上述した重合性不飽和モノマー(C)を所定量配合してもよい。
[Method for producing foam stabilizer]
The method for producing a foam stabilizer for polyurethane foam according to the present invention described above includes a polymerization step of obtaining the copolymer X described above. In the polymerization step, the copolymer X is a monomer mixture containing 5 to 95% by mass of the above polymerizable unsaturated monomer (A) and 5 to 95% by mass of the above polymerizable unsaturated monomer (B). It is synthesized by copolymerizing Mm. A predetermined amount of the polymerizable unsaturated monomer (C) described above may be added to the monomer mixture Mm used for synthesizing the copolymer X, if necessary.
(重合法)
 本発明に係る共重合体Xを合成する方法は特に制限されるものではなく、溶液重合法、分散重合法、塊状重合法、乳化重合法、懸濁重合法、リビングラジカル重合法等の公知の重合法が用いられる。また、重合開始剤としては、公知のアゾ重合開始剤、過酸化物等を用いることができ、重合反応の種類によって適切な開始剤を使用すればよい。
(Polymerization method)
The method for synthesizing the copolymer X according to the present invention is not particularly limited, and known methods such as a solution polymerization method, a dispersion polymerization method, a bulk polymerization method, an emulsion polymerization method, a suspension polymerization method, and a living radical polymerization method. A polymerization method is used. As the polymerization initiator, known azo polymerization initiators, peroxides and the like can be used, and an appropriate initiator may be used depending on the type of polymerization reaction.
(重合性不飽和モノマー(A)の配合量)
 重合性不飽和モノマー(A)の配合量は、重合性不飽和モノマー(A)と重合性不飽和モノマー(B)の合計質量を100質量%としたときに、5質量%以上95質量%以下である。重合性不飽和モノマー(A)の配合量が5質量%未満であると、難接着基材への接着力が不足する。一方、重合性不飽和モノマー(A)の配合量が95質量%を超えると、整泡剤による整泡能が悪化する。難接着基材への接着力を高めるためには、重合性不飽和モノマー(A)の配合量は、10質量%以上であることが好ましい。また、整泡能を高めるためには、重合性不飽和モノマー(A)の配合量は、90質量%以下であることが好ましい。
(Addition amount of polymerizable unsaturated monomer (A))
The blending amount of the polymerizable unsaturated monomer (A) is 5% by mass or more and 95% by mass or less when the total mass of the polymerizable unsaturated monomer (A) and the polymerizable unsaturated monomer (B) is 100% by mass. is. If the content of the polymerizable unsaturated monomer (A) is less than 5% by mass, the adhesive strength to difficult-to-adhere substrates will be insufficient. On the other hand, when the blending amount of the polymerizable unsaturated monomer (A) exceeds 95% by mass, the foam stabilizing ability of the foam stabilizing agent deteriorates. In order to increase the adhesive strength to the difficult-to-adhere substrate, the blending amount of the polymerizable unsaturated monomer (A) is preferably 10% by mass or more. Moreover, in order to improve the foam stabilizing ability, the blending amount of the polymerizable unsaturated monomer (A) is preferably 90% by mass or less.
(重合性不飽和モノマー(B)の配合量)
 また、重合性不飽和モノマー(B)の配合量は、重合性不飽和モノマー(A)と重合性不飽和モノマー(B)の合計質量を100質量%としたときに、5質量%以上95質量%以下である。重合性不飽和モノマー(B)の配合量が5質量%未満であると、整泡剤による整泡能が悪化する。一方、重合性不飽和モノマー(B)の配合量が95質量%を超えると、難接着基材への接着力が不足する。整泡能を高めるためには、重合性不飽和モノマー(B)の配合量は、10質量%以上であることが好ましい。また、難接着基材への接着力を高めるためには、重合性不飽和モノマー(B)の配合量は、90質量%以下であることが好ましい。
(Addition amount of polymerizable unsaturated monomer (B))
Further, the blending amount of the polymerizable unsaturated monomer (B) is 5% by mass or more and 95% by mass when the total mass of the polymerizable unsaturated monomer (A) and the polymerizable unsaturated monomer (B) is 100% by mass. % or less. If the blending amount of the polymerizable unsaturated monomer (B) is less than 5% by mass, the foam stabilizing ability of the foam stabilizing agent is deteriorated. On the other hand, if the blending amount of the polymerizable unsaturated monomer (B) exceeds 95% by mass, the adhesive strength to difficult-to-adhere substrates will be insufficient. In order to improve the foam stabilizing ability, the blending amount of the polymerizable unsaturated monomer (B) is preferably 10% by mass or more. Moreover, in order to increase the adhesive strength to the difficult-to-adhere substrate, the blending amount of the polymerizable unsaturated monomer (B) is preferably 90% by mass or less.
(重合性不飽和モノマー(C)の配合量)
 さらに、重合性不飽和モノマー(C)の配合量は、重合性不飽和モノマー(A)および重合性不飽和モノマー(B)の合計質量を100質量部としたときに、50質量部以下であることが好ましい。重合性不飽和モノマー(C)の配合量が50質量部を超えると、整泡能、難接着基材に対する接着力およびポリウレタンフォームの安定性等に悪影響を与える可能性がある。
(Additional amount of polymerizable unsaturated monomer (C))
Furthermore, the blending amount of the polymerizable unsaturated monomer (C) is 50 parts by mass or less when the total mass of the polymerizable unsaturated monomer (A) and the polymerizable unsaturated monomer (B) is 100 parts by mass. is preferred. If the blending amount of the polymerizable unsaturated monomer (C) exceeds 50 parts by mass, it may adversely affect the foam stabilizing ability, the adhesive strength to difficult-to-adhere substrates, the stability of the polyurethane foam, and the like.
[ポリウレタンフォーム]
 本発明に係るポリウレタンフォームは、ポリイソシアネートと、ポリオールと、上述したポリウレタンフォーム用整泡剤とを含むウレタン原料混合物Mu(ポリウレタンフォーム原料としての混合溶液)を発泡および硬化させることにより得られる発泡体である。本発明に係るポリウレタンフォームとしては、硬質ポリウレタンフォーム、軟質ポリウレタンフォーム、半硬質ポリウレタンフォームのすべてが含まれる。
[Polyurethane foam]
The polyurethane foam according to the present invention is a foam obtained by foaming and curing a urethane raw material mixture Mu (mixed solution as a polyurethane foam raw material) containing a polyisocyanate, a polyol, and the foam stabilizer for polyurethane foam described above. is. Polyurethane foams according to the present invention include all rigid polyurethane foams, flexible polyurethane foams and semi-rigid polyurethane foams.
 これらのうち、硬質ポリウレタンフォームには、他の断熱材料にはない自己接着性という優れた特徴がある。これは、接着剤を使わなくても、金属、合板、コンクリート、樹脂等の対象物表面に上記混合溶液を直接発泡させることにより、対象物に強く接着した層を形成することができるという性質である。この性質を利用して、対象物へスプレーにより混合溶液を塗布し、各種対象物の表面で混合溶液を発泡および硬化させるだけで、複合パネル、ラミネートボード等のような対象物(基材)表面にポリウレタンフォームが積層されたポリウレタンフォーム積層体を製造できる。なお、対象物(基材)の表面に、予めプライマー塗布等をしておけば、ポリウレタンフォームをさらに強力に対象物表面に接着させることが可能である。 Of these, rigid polyurethane foam has an excellent feature of self-adhesion that is not found in other heat insulating materials. This is due to the property that a layer strongly adhered to the object can be formed by directly foaming the mixed solution on the surface of the object such as metal, plywood, concrete, resin, etc., without using an adhesive. be. Using this property, the surface of the object (substrate) such as a composite panel, laminate board, etc. can be cured simply by applying the mixed solution to the object by spraying and foaming and curing the mixed solution on the surface of various objects. Polyurethane foam laminates can be produced in which polyurethane foam is laminated to If the surface of the object (base material) is previously coated with a primer or the like, the polyurethane foam can be adhered to the surface of the object more strongly.
(整泡剤の含有量)
 本発明に係る整泡剤の含有量は、上記ウレタン原料混合物Mu(ポリウレタンフォーム原料としての混合溶液)中に、0.1質量%以上5.0質量%以下であることが好適である。整泡剤の含有量が0.1質量%未満であると、整泡能が低下する恐れがある。一方、整泡剤の含有量が5.0質量%を超えると、ポリウレタンフォームの機械物性の低下、ならびに、べたつきや汚染の原因となる可能性がある。整泡能を高めるという観点からは、整泡剤の含有量が0.3質量%以上であることがより好ましく、0.7質量%以上であることがさらに好ましく、1.5質量%以上であることがさらに一層好ましい。また、接着力を高めるという観点からは、整泡剤の含有量が2.5質量%以下であることがより好ましく、1.5質量%以下であることがさらに好ましく、0.7質量%以下であることがさらに一層好ましい。
(Content of foam stabilizer)
The content of the foam stabilizer according to the present invention is preferably 0.1% by mass or more and 5.0% by mass or less in the urethane raw material mixture Mu (mixed solution as a polyurethane foam raw material). If the content of the foam stabilizer is less than 0.1% by mass, the foam stabilizing ability may deteriorate. On the other hand, if the content of the foam stabilizer exceeds 5.0% by mass, the mechanical properties of the polyurethane foam may deteriorate, and it may cause stickiness and contamination. From the viewpoint of increasing the foam stabilizing ability, the content of the foam stabilizer is more preferably 0.3% by mass or more, further preferably 0.7% by mass or more, and 1.5% by mass or more. It is even more preferred to have In addition, from the viewpoint of increasing adhesive strength, the content of the foam stabilizer is more preferably 2.5% by mass or less, further preferably 1.5% by mass or less, and 0.7% by mass or less. is even more preferable.
(整泡剤のSP値)
 上述したように、本発明に係る整泡剤のSP値は、ポリウレタンフォームを製造する際の原料となるポリオールのSP値よりも1.0~3.1低い、すなわち、ポリオールのSP値よりも低く、かつ、その差(SP差)は、1.0以上3.1以下の範囲内であることが好ましい。
(SP value of foam stabilizer)
As described above, the SP value of the foam stabilizer according to the present invention is 1.0 to 3.1 lower than the SP value of the polyol that is the raw material for producing the polyurethane foam, that is, the SP value of the polyol It is preferably low and the difference (SP difference) is in the range of 1.0 or more and 3.1 or less.
(ポリウレタンフォームの用途)
 本発明のポリウレタンフォームは、建材、石油およびガス運搬用船舶、ならびに冷蔵庫等の電化製品における保温材、断熱材等として好適に使用できる。特に、鉄筋コンクリート造の建築等では、断熱施工が容易であるため,吹付工法用の発泡体として用いることができる。
(Uses of polyurethane foam)
INDUSTRIAL APPLICABILITY The polyurethane foam of the present invention can be suitably used as a building material, a ship for oil and gas transportation, and a heat retaining material, a heat insulating material, etc. in electric appliances such as a refrigerator. In particular, in reinforced concrete buildings, etc., it can be used as a foam for the spraying method because it is easy to perform insulation work.
[ポリウレタンフォームの製造方法]
 上述した本発明に係るポリウレタンフォームの製造方法は、整泡剤混合工程と、発泡体生成工程と、を含む。
[Method for producing polyurethane foam]
The method for producing a polyurethane foam according to the present invention described above includes a foam stabilizer mixing step and a foam producing step.
(整泡剤混合工程)
 整泡剤混合工程では、ポリオールと、上述したポリウレタンフォーム用整泡剤とを混合し、ポリオール混合物Moが得られる。本発明のポリオール混合物Moには、ポリオールおよび整泡剤に加え、発泡剤、触媒、その他の添加剤等が添加されてもよい。ポリオール混合物Moにおける各原料の混合方法としては公知の方法を用いることができ、例えば、ディスパーを用いた撹拌などにより各原料を混合できる。以下、ポリオール混合物Mo中の各成分について詳述する。
(Foam stabilizer mixing step)
In the foam stabilizer mixing step, the polyol and the foam stabilizer for polyurethane foam described above are mixed to obtain a polyol mixture Mo. In addition to the polyol and the foam stabilizer, the polyol mixture Mo of the present invention may contain a foaming agent, a catalyst, other additives, and the like. As a method for mixing each raw material in the polyol mixture Mo, a known method can be used. For example, each raw material can be mixed by stirring using a disper. Each component in the polyol mixture Mo will be described in detail below.
(ポリオール)
 ポリオールは、本発明に係るポリウレタンフォームの製造における硬化剤として配合される。本発明のポリウレタンフォームの製造方法で用いられるポリオールとしては、一般にポリウレタンフォームの製造に使用されるものであれば特に制限されず、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリエーテルエステルポリオール、ポリラクトンポリオール、ポリカーボネートポリオール、芳香族ポリオール、脂環族ポリオール、脂肪族ポリオール、ポリマーポリオール等が挙げられる。これらのうち、本発明のポリオールとしては、ポリエステルポリオールおよびポリエーテルポリオールが好適である。
(polyol)
Polyols are incorporated as curing agents in the production of polyurethane foams according to the present invention. The polyol used in the method for producing the polyurethane foam of the present invention is not particularly limited as long as it is generally used for the production of polyurethane foam. Examples include polyester polyol, polyether polyol, polyether ester polyol, and polylactone polyol. , polycarbonate polyols, aromatic polyols, alicyclic polyols, aliphatic polyols, polymer polyols, and the like. Among these, polyester polyols and polyether polyols are suitable as the polyols of the present invention.
 ポリエステルポリオールとしては、例えば、多塩基酸と多価アルコールとを脱水縮合して得られる重合体、ε-カプロラクトン、α-メチル-ε-カプロラクトン、メチルバレロラクトン等のラクトンを開環重合して得られる重合体、ヒドロキシカルボン酸と上記多価アルコール等との縮合物等が挙げられる。上記多塩基酸としては、例えば、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸、マロン酸、コハク酸、ナフタレンジカルボン酸等が挙げられる。また、ポリエステルポリオールの合成に使用される多価アルコールとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、オクタンジオール、ノナンジオール、ビスフェノールA等が挙げられる。さらに、ヒドロキシカルボン酸としては、例えば、ひまし油、ひまし油とエチレングリコールの反応生成物等が挙げられる。 Polyester polyols include, for example, polymers obtained by dehydration condensation of polybasic acids and polyhydric alcohols, and ring-opening polymerization of lactones such as ε-caprolactone, α-methyl-ε-caprolactone and methylvalerolactone. and condensates of hydroxycarboxylic acids and the above polyhydric alcohols. Examples of the polybasic acid include adipic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, malonic acid, succinic acid, and naphthalenedicarboxylic acid. Polyhydric alcohols used in the synthesis of polyester polyols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butanediol, pentanediol, hexanediol, neopentyl glycol, octanediol, nonanediol, bisphenol A, and the like. is mentioned. Furthermore, hydroxycarboxylic acids include, for example, castor oil, reaction products of castor oil and ethylene glycol, and the like.
 ポリエーテルポリオールとしては、例えば、多価アルコールのアルキレンオキサイド付加物等が挙げられる。ポリエーテルポリオールの合成に使用される多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブタンジオール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、トリメチロールプロパン、ソルビトール等が挙げられる。また、上記アルキレンオキサイドとしては、例えば、エチレンオキサイド、プロピレンオキサイド等が挙げられる。 Examples of polyether polyols include alkylene oxide adducts of polyhydric alcohols. Examples of polyhydric alcohols used in the synthesis of polyether polyols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butanediol, neopentyl glycol, glycerin, pentaerythritol, trimethylolpropane, sorbitol, and the like. . Moreover, examples of the alkylene oxide include ethylene oxide and propylene oxide.
 ポリエーテルエステルポリオールとしては、例えば、上述したポリエーテルポリオールと多塩基酸とを反応させてエステル化したもの、または、1分子内にポリエーテルとポリエステルの両方のセグメントを有するもの等が挙げられる。 Examples of polyether ester polyols include those obtained by reacting the above-described polyether polyols with polybasic acids to esterify them, and those having both polyether and polyester segments in one molecule.
 ポリラクトンポリオールとしては、例えば、ポリプロピオラクトングリコール、ポリカプロラクトングリコール、ポリバレロラクトングリコール等が挙げられる。また、ポリカーボネートポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオール等の水酸基含有化合物と、ジエチレンカーボネート、ジプロピレンカーボネート等との脱アルコール反応により得られるポリオール等が挙げられる。 Examples of polylactone polyols include polypropiolactone glycol, polycaprolactone glycol, and polyvalerolactone glycol. Polycarbonate polyols are obtained by dealcoholization reaction of hydroxyl group-containing compounds such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, octanediol and nonanediol with diethylene carbonate, dipropylene carbonate and the like. polyols and the like.
 芳香族ポリオールとしては、例えば、ビスフェノールA、ビスフェノールF、フェノールノボラック、クレゾールノボラック等が挙げられる。また、脂環族ポリオールとしては、例えば、シクロヘキサンジオール、メチルシクロヘキサンジオール、イソホロンジオール、ジシクロヘキシルメタンジオール、ジメチルジシクロヘキシルメタンジオール等が挙げられる。さらに、脂肪族ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール等が挙げられる。 Examples of aromatic polyols include bisphenol A, bisphenol F, phenol novolak, and cresol novolak. Alicyclic polyols include, for example, cyclohexanediol, methylcyclohexanediol, isophoronediol, dicyclohexylmethanediol, and dimethyldicyclohexylmethanediol. Furthermore, examples of aliphatic polyols include ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, and the like.
 これらのポリオールは、1種を単独で用いてもよく、あるいは2種以上を併用してもよい。また、これらのポリオールの水酸基価は、10~600mgKOH/gであることが好ましく、30~500mgKOH/gであることがより好ましい。本発明における水酸基価は、JIS-K0070に準じて測定した値である。 These polyols may be used singly or in combination of two or more. Moreover, the hydroxyl value of these polyols is preferably 10 to 600 mgKOH/g, more preferably 30 to 500 mgKOH/g. The hydroxyl value in the present invention is a value measured according to JIS-K0070.
 ポリオールの配合量は、ポリウレタンフォーム原料の合計を100質量%としたときに、20~80質量%であることが好ましい。 The blending amount of polyol is preferably 20 to 80% by mass when the total amount of polyurethane foam raw materials is taken as 100% by mass.
(整泡剤)
 本発明に係る整泡剤は、上述したように、ポリウレタン原料の各成分(ポリイソシアネート、ポリオール等)の相溶性を高めるとともに、ポリウレタン原料の混合溶液の表面張力を低下させるために配合される。これにより、混合溶液に巻き込まれるガスの分散が容易になるため、発泡体中の気泡を均一化および安定化させ、気泡構造(発泡容積、気泡径等)を調整することができる。この気泡構造が、ポリウレタンフォームの物性に大きな影響を与えることとなる。このような整泡剤として、本発明では、上述したポリウレタンフォーム用整泡剤が用いられる。
(foam stabilizer)
As described above, the foam stabilizer according to the present invention is blended in order to increase the compatibility of each component (polyisocyanate, polyol, etc.) of the polyurethane raw material and to reduce the surface tension of the mixed solution of the polyurethane raw material. As a result, the gas involved in the mixed solution can be easily dispersed, so that the cells in the foam can be made uniform and stabilized, and the cell structure (foam volume, cell diameter, etc.) can be adjusted. This cell structure has a great influence on the physical properties of the polyurethane foam. As such a foam stabilizer, the polyurethane foam foam stabilizer described above is used in the present invention.
 本発明に係る整泡剤の配合量は、上記ウレタン原料混合物Mu(ポリウレタンフォーム原料としての混合溶液)中に、0.1質量%以上5.0質量%以下であることが好適である。整泡剤の配合量が0.1質量%未満であると、整泡能が低下する恐れがある。一方、整泡剤の配合量が5.0質量%を超えると、ポリウレタンフォームの機械物性の低下、ならびに、べたつきや汚染の原因となる可能性がある。整泡能を高めるという観点からは、整泡剤の配合量が0.3質量%以上であることがより好ましく、0.7質量%以上であることがさらに好ましく、1.5質量%以上であることがさらに一層好ましい。また、接着力を高めるという観点からは、整泡剤の配合量が2.5質量%以下であることがより好ましく、1.5質量%以下であることがさらに好ましく、0.7質量%以下であることがさらに一層好ましい。 The blending amount of the foam stabilizer according to the present invention is preferably 0.1% by mass or more and 5.0% by mass or less in the urethane raw material mixture Mu (mixed solution as a polyurethane foam raw material). If the amount of the foam stabilizer is less than 0.1% by mass, the foam-stabilizing ability may be lowered. On the other hand, if the amount of the foam stabilizer exceeds 5.0% by mass, the mechanical properties of the polyurethane foam may be lowered, and stickiness and contamination may be caused. From the viewpoint of enhancing the foam stabilizing ability, the amount of the foam stabilizer is more preferably 0.3% by mass or more, further preferably 0.7% by mass or more, and more preferably 1.5% by mass or more. It is even more preferred to have In addition, from the viewpoint of increasing the adhesive strength, the amount of the foam stabilizer is more preferably 2.5% by mass or less, further preferably 1.5% by mass or less, and 0.7% by mass or less. is even more preferable.
(発泡剤)
 発泡剤は、ポリイソシアネート(第1液)とそれ以外との成分(第2液)とを混合して発泡体(ポリウレタンフォーム)を形成する際の発泡作用を良好にする。具体的には、ウレタン樹脂の発泡を促進するために配合される。
(foaming agent)
The foaming agent improves the foaming action when the polyisocyanate (first liquid) and other components (second liquid) are mixed to form a foam (polyurethane foam). Specifically, it is blended to promote foaming of the urethane resin.
 発泡剤としては、例えば、水、炭化水素、塩素化脂肪族炭化水素、フッ素化合物、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボン、ハイドロフルオロオレフィン、エーテル類、もしくは、これらの混合物等の有機系物理発泡剤、または、窒素ガス、酸素ガス、アルゴンガス、二酸化炭素ガス等の無機系物理発泡剤等が挙げられる。これらの発泡剤は、1種を単独で用いてもよく、あるいは、2種以上を併用してもよい。 Examples of foaming agents include organic physical foaming agents such as water, hydrocarbons, chlorinated aliphatic hydrocarbons, fluorine compounds, hydrochlorofluorocarbons, hydrofluorocarbons, hydrofluoroolefins, ethers, or mixtures thereof, or , nitrogen gas, oxygen gas, argon gas, and carbon dioxide gas. One of these foaming agents may be used alone, or two or more thereof may be used in combination.
 ここで、上記炭化水素としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン等が挙げられる。塩素化脂肪族炭化水素としては、例えば、ジクロロエタン、プロピルクロリド、イソプロピルクロリド、ブチルクロリド、イソブチルクロリド、ペンチルクロリド、イソペンチルクロリド等が挙げられる。フッ素化合物としては、例えば、CHF、CH、CHF等が挙げられる。ハイドロクロロフルオロカーボンとしては、例えば、トリクロルモノフルオロメタン、トリクロルトリフルオロエタン、ジクロロモノフルオロエタン、(例えば、HCFC141b(1,1-ジクロロ-1-フルオロエタン)、HCFC22(クロロジフルオロメタン)、HCFC142b(1-クロロ-1,1-ジフルオロエタン))等が挙げられる。ハイドロフルオロカーボンとしては、例えば、HFC-245fa(1,1,1,3,3-ペンタフルオロプロパン)、HFC-365mfc(1,1,1,3,3-ペンタフルオロブタン)等が挙げられる。ハイドロフルオロオレフィンとしては、例えば、HFO-1233zd((E)-1-クロロ-3,3,3-トリフルオロプロペン)等が挙げられる。エーテル類としては、例えば、ジイソプロピルエーテル等が挙げられる。 Examples of the hydrocarbon include propane, butane, pentane, hexane, heptane, cyclopropane, cyclobutane, cyclopentane, cyclohexane, and cycloheptane. Examples of chlorinated aliphatic hydrocarbons include dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride and the like. Examples of fluorine compounds include CHF 3 , CH 2 F 2 , CH 3 F and the like. Hydrochlorofluorocarbons include, for example, trichloromonofluoromethane, trichlorotrifluoroethane, dichloromonofluoroethane (e.g., HCFC141b (1,1-dichloro-1-fluoroethane), HCFC22 (chlorodifluoromethane), HCFC142b (1 -chloro-1,1-difluoroethane)) and the like. Examples of hydrofluorocarbons include HFC-245fa (1,1,1,3,3-pentafluoropropane) and HFC-365mfc (1,1,1,3,3-pentafluorobutane). Examples of hydrofluoroolefins include HFO-1233zd ((E)-1-chloro-3,3,3-trifluoropropene). Ethers include, for example, diisopropyl ether and the like.
 発泡剤の配合量は、ポリオール100質量部に対して、0.1~50質量部であることが好ましい。 The blending amount of the foaming agent is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the polyol.
(触媒)
 本発明に係るポリウレタンフォームの製造方法で用いられる触媒としては、主に、三量化触媒が挙げられる。また、触媒として、泡化触媒や樹脂化触媒を使用してもよい。
(catalyst)
The catalyst used in the method for producing a polyurethane foam according to the present invention mainly includes a trimerization catalyst. Moreover, you may use a foaming catalyst and a resin-forming catalyst as a catalyst.
<三量化触媒>
 三量化触媒は、後述するポリイソシアネートに含まれるイソシアネート基を反応させて三量化させ、イソシアヌレート環の生成を促進するために配合される。三量化触媒としては、公知のものを使用でき、例えば、トリス(ジメチルアミノメチル)フェノール、2,4-ビス(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジアルキルアミノアルキル)ヘキサヒドロ-S-トリアジン等の窒素含有芳香族化合物、酢酸カリウム、2-エチルヘキサン酸カリウム、オクチル酸カリウム等のカルボン酸アルカリ金属塩、トリメチルアンモニウム塩、トリエチルアンモニウム塩、トリフェニルアンモニウム塩等の3級アンモニウム塩、テトラメチルアンモニウム塩、テトラエチルアンモニウム、テトラフェニルアンモニウム塩等の4級アンモニウム塩等が挙げられる。
<Trimerization catalyst>
The trimerization catalyst is blended in order to react and trimerize the isocyanate groups contained in the polyisocyanate described later, thereby promoting the formation of isocyanurate rings. Known trimerization catalysts can be used, for example, tris(dimethylaminomethyl)phenol, 2,4-bis(dimethylaminomethyl)phenol, 2,4,6-tris(dialkylaminoalkyl)hexahydro-S - Nitrogen-containing aromatic compounds such as triazine, carboxylic acid alkali metal salts such as potassium acetate, potassium 2-ethylhexanoate and potassium octylate, tertiary ammonium salts such as trimethylammonium salts, triethylammonium salts and triphenylammonium salts, Examples include quaternary ammonium salts such as tetramethylammonium salts, tetraethylammonium salts, tetraphenylammonium salts and the like.
 三量化触媒の配合量は、ポリウレタンフォーム原料の合計を100質量%としたときに、0.5~20質量%であることが好ましい。 The blending amount of the trimerization catalyst is preferably 0.5 to 20% by mass when the total of the raw materials for the polyurethane foam is 100% by mass.
<泡化触媒>
 泡化触媒は、ポリイソシアネートと水との反応を促進する。具体的には、ポリイソシアネートと水との反応により生成する炭酸ガスによりポリウレタンフォーム原料の混合溶液の泡化を促進するために配合される。泡化触媒としては、公知のものを使用でき、例えば、ビス(2-ジメチルアミノエチル)エーテル、N,N-ジメチルアルキルアミン、テトラメチルエチレンジアミン等の鎖状第3級アミン、3級アミン樹脂組成物がカルボン酸で中和された酸ブロック型の触媒等が挙げられる。
<Foaming catalyst>
A foaming catalyst accelerates the reaction between polyisocyanate and water. Specifically, it is blended to promote foaming of the mixed solution of the polyurethane foam raw materials by the carbon dioxide generated by the reaction of the polyisocyanate and water. As the foaming catalyst, a known one can be used. acid-block type catalysts in which the substance is neutralized with carboxylic acid;
 泡化触媒の配合量は、ポリウレタンフォーム原料の合計を100質量%としたときに、0.1~10質量%であることが好ましい。 The blending amount of the foaming catalyst is preferably 0.1 to 10% by mass when the total amount of the raw materials for the polyurethane foam is 100% by mass.
<樹脂化触媒>
 樹脂化触媒(金属触媒)は、ポリイソシアネートとポリオールとの反応を促進するために配合される。樹脂化触媒としては、公知のものを使用でき、例えば、鉛、錫、ビスマス、銅、亜鉛、コバルト、ニッケル等からなる金属塩が挙げられる。これらのうち、鉛、錫、ビスマス、銅、亜鉛、コバルト、ニッケル等からなる有機酸金属塩が、樹脂化触媒として好適である。
<Resin catalyst>
A resinification catalyst (metal catalyst) is added to promote the reaction between polyisocyanate and polyol. A known resinification catalyst can be used, and examples thereof include metal salts of lead, tin, bismuth, copper, zinc, cobalt, nickel and the like. Among these, organic acid metal salts composed of lead, tin, bismuth, copper, zinc, cobalt, nickel and the like are suitable as the resinification catalyst.
 樹脂化触媒の配合量は、ポリウレタンフォーム原料の合計を100質量%としたときに、0.1~10質量%であることが好ましい。 The blending amount of the resinification catalyst is preferably 0.1 to 10% by mass when the total of the raw materials for the polyurethane foam is 100% by mass.
(その他の添加剤)
 本発明のポリオール混合物Moには、本発明の効果を阻害しない範囲で、難燃剤、分散剤、架橋剤、鎖延長剤、充填剤、染料、顔料、酸化防止剤、紫外線吸収剤、抗菌剤等の公知の添加剤が配合されてもよい。
(Other additives)
The polyol mixture Mo of the present invention contains flame retardants, dispersants, cross-linking agents, chain extenders, fillers, dyes, pigments, antioxidants, ultraviolet absorbers, antibacterial agents, etc., as long as they do not impair the effects of the present invention. known additives may be blended.
 難燃剤は、本発明に係るポリウレタンフォームに難燃性を付与するために配合される。ただし、本発明においては、難燃剤として赤リンは含まない。本発明のポリウレタンフォーム原料として赤リンを使用すると、難接着基材に対する十分な接着力が得られない。本発明者らは、その理由を以下のように考えている。赤リンは、水と反応してリン酸を生成する。生成されたリン酸はポリウレタン樹脂を浸食しながら樹脂表面まで穴を開ける場合がある。この場合、ポリウレタンフォームの機械的強度が低下する。その結果、ポリウレタンフォームの基材に対する接着力の低下を引き起こす可能性がある。したがって、本発明では難接着基材に対する十分な接着力を得るため、難燃剤として赤リンを含まない。 A flame retardant is added to impart flame retardancy to the polyurethane foam according to the present invention. However, in the present invention, red phosphorus is not included as a flame retardant. When red phosphorus is used as the raw material for the polyurethane foam of the present invention, sufficient adhesion to hard-to-bond substrates cannot be obtained. The inventors consider the reason as follows. Red phosphorus reacts with water to produce phosphoric acid. The generated phosphoric acid corrodes the polyurethane resin and may open holes up to the surface of the resin. In this case, the mechanical strength of the polyurethane foam is lowered. As a result, there is a possibility of causing a decrease in adhesion of the polyurethane foam to the substrate. Therefore, the present invention does not contain red phosphorus as a flame retardant in order to obtain sufficient adhesive strength to hard-to-adhere substrates.
 分散剤は、ポリウレタンフォーム原料の混合溶液中での難燃剤等の添加剤の分散性を良好にするために配合される。また、架橋剤は、ポリウレタンフォームの硬さを調整するために配合される。 A dispersant is added to improve the dispersibility of additives such as flame retardants in the mixed solution of polyurethane foam raw materials. Moreover, the cross-linking agent is added to adjust the hardness of the polyurethane foam.
(発泡体生成工程)
 発泡体生成工程では、整泡剤混合工程で得られたポリオール混合物Moと、ポリイソシアネートとを混合しながら発泡および硬化させることで、ポリウレタンフォームが得られる。発泡体生成工程におけるポリオール混合物Moとポリイソシアネートとの混合方法および発泡方法としては公知の方法を用いることができ、例えば、手撹拌などによりポリオール混合物Moとポリイソシアネートとを撹拌しながら混合することで、発泡および樹脂の硬化反応が進行する。以下、本発明で使用可能なポリイソシアネートについて詳述する。
(Foam generation process)
In the foam production step, the polyol mixture Mo obtained in the foam stabilizer mixing step and the polyisocyanate are foamed and cured while being mixed to obtain a polyurethane foam. A known method can be used as a method for mixing the polyol mixture Mo and the polyisocyanate and a method for foaming the polyol mixture Mo and the polyisocyanate in the foam generation step. , foaming and resin curing reactions proceed. The polyisocyanates that can be used in the present invention are described in detail below.
(ポリイソシアネート)
 ポリイソシアネートは、本発明に係るポリウレタンフォームの製造における主剤として配合される。本発明のポリウレタンフォームの製造方法で用いられるポリイソシアネートとしては、一般にポリウレタンフォームの製造に使用されるものであれば特に制限されず、例えば、芳香族ポリイソシアネート、脂環族ポリイソシアネート、脂肪族ポリイソシアネート等が挙げられる。
(polyisocyanate)
Polyisocyanate is blended as a main ingredient in the production of the polyurethane foam according to the present invention. The polyisocyanate used in the method for producing the polyurethane foam of the present invention is not particularly limited as long as it is generally used for the production of polyurethane foam. isocyanate and the like.
 ここで、上記芳香族ポリイソシアネートとしては、例えば、フェニレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ジメチルジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネート、ナフタレンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート等が挙げられる。 Here, examples of the aromatic polyisocyanate include phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, dimethyldiphenylmethane diisocyanate, triphenylmethane triisocyanate, naphthalene diisocyanate, and polymethylene polyphenyl polyisocyanate. .
 また、上記脂環族ポリイソシアネートとしては、例えば、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ジメチルジシクロヘキシルメタンジイソシアネート等が挙げられる。 In addition, examples of the alicyclic polyisocyanate include cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, dimethyldicyclohexylmethane diisocyanate, and the like.
 さらに、上記脂肪族ポリイソシアネートとしては、例えば、メチレンジイソシアネート、エチレンジイソシアネート、プロピレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート等が挙げられる。 Further, examples of the aliphatic polyisocyanate include methylene diisocyanate, ethylene diisocyanate, propylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, and the like.
 これらのポリイソシアネートは、1種を単独で用いてもよく、あるいは2種以上を併用してもよい。 These polyisocyanates may be used singly or in combination of two or more.
 ここで、本発明で用いられるポリウレタンフォームのイソシアネートインデックスは、100~600であることが好ましい。なお、イソシアネートインデックスは、ポリオールとポリイソシアネートの配合割合を示す指標として用いられ、ポリイソシアネートにおけるイソシアネート基(NCO)のモル数をポリウレタンフォームの原料中におけるすべての活性水素基の合計モル数で除した値に100を乗じた値であり、[(ポリウレタンフォーム原料中のNCO当量/ポリウレタンフォーム原料中の活性水素の当量)×100]で計算される。 Here, the isocyanate index of the polyurethane foam used in the present invention is preferably 100-600. The isocyanate index is used as an index indicating the mixing ratio of polyol and polyisocyanate, and is obtained by dividing the number of moles of isocyanate groups (NCO) in polyisocyanate by the total number of moles of all active hydrogen groups in the polyurethane foam raw material. It is a value obtained by multiplying the value by 100, and is calculated by [(NCO equivalent in polyurethane foam raw material/equivalent of active hydrogen in polyurethane foam raw material)×100].
 ポリイソシアネートの配合量は、ポリウレタンフォーム原料の合計を100質量%としたときに、20~80質量%であることが好ましい。 The blending amount of polyisocyanate is preferably 20 to 80% by mass when the total amount of polyurethane foam raw materials is taken as 100% by mass.
[ポリウレタンフォーム積層体]
 本発明に係るポリウレタンフォーム積層体は、基材の表面に、上述したポリウレタンフォームが積層された積層体である。本発明のポリウレタンフォームが積層される基材は、ポリプロピレン樹脂、ポリエチレン樹脂、フッ素樹脂およびシリコーン樹脂からなる群より選ばれる基材、または、ワックスが塗布された基材等の難接着基材である。「難接着基材」とは、上述したように、硬質ポリウレタンフォームの自己接着性を利用した接着、あるいは、一般的な接着剤を用いたポリウレタンフォームとの接着が困難な基材のことをいう。また、本発明における「ワックス」としては、特に制限されず、例えば、ろう、パラフィンろう、ミクロワックスを主成分としたつや出し剤等の公知のワックスを使用できる。
[Polyurethane foam laminate]
The polyurethane foam laminate according to the present invention is a laminate in which the polyurethane foam described above is laminated on the surface of a substrate. The substrate on which the polyurethane foam of the present invention is laminated is a substrate selected from the group consisting of polypropylene resin, polyethylene resin, fluororesin and silicone resin, or a difficult-to-adhere substrate such as a substrate coated with wax. . The term "difficult-to-adhere base material" refers to a base material that is difficult to bond with a polyurethane foam using the self-adhesiveness of a rigid polyurethane foam or with a general adhesive, as described above. . The "wax" in the present invention is not particularly limited, and known waxes such as waxes, paraffin waxes, and lustering agents containing microwax as a main component can be used, for example.
 ここで、一般に、ポリウレタンフォームを製造する際の整泡剤としては、シリコーン系の整泡剤が使用されている。本発明者らが検討したところによれば、上記の難接着基材に対してポリウレタンフォームの十分な接着力が得られないのは、シリコーン系整泡剤の使用に起因するものと考えられる。この理由を、以下のように本発明者らは推測している。界面で接している物体1と物体2とを引き離す仕事のことを示す接着仕事という概念がある。物体1と物体2の表面自由エネルギーをそれぞれγとγとし、物体1と物体2との界面における界面自由エネルギーをγ12とすると、接着仕事Waは、以下の式で表され、この式はデュプレ式と呼ばれている。
 Wa =γ+γ2-γ12
Here, generally, a silicone-based foam stabilizer is used as a foam stabilizer for producing polyurethane foam. According to the studies by the present inventors, it is believed that the reason why the polyurethane foam does not have sufficient adhesion to the above-mentioned difficult-to-adhere substrate is due to the use of the silicone-based foam stabilizer. The reason for this is presumed by the present inventors as follows. There is the concept of adhesion work, which indicates the work of separating objects 1 and 2 that are in contact with each other at the interface. Assuming that the surface free energies of Object 1 and Object 2 are γ1 and γ2 , respectively, and the interfacial free energy at the interface between Object 1 and Object 2 is γ12 , the work of adhesion Wa is expressed by the following equation, is called the duple formula.
Wa = γ 1 + γ 2 - γ 12
 このデュプレ式から、各物体の表面自由エネルギーγ、γが高いほど接着仕事Waが大きくなり、物体1と物体2とは剥離し難くなる(接着力が高くなる)。シリコーン系整泡剤は、ポリウレタンフォームの表面自由エネルギーを低下させるため、接着仕事Waが小さくなる。その結果、難接着基材に対する十分な接着力が得られない。 From this Dupre's formula, the higher the surface free energies γ 1 and γ 2 of each object, the greater the work of adhesion Wa, and the more difficult it is to separate the objects 1 and 2 (the higher the adhesive strength). Since the silicone-based foam stabilizer lowers the surface free energy of the polyurethane foam, the work of adhesion Wa is reduced. As a result, sufficient adhesive strength to difficult-to-bond substrates cannot be obtained.
 そこで、本発明においては、整泡剤として、シリコーン系整泡剤を使用せずに、上述したようなエーテル基含有重合性不飽和モノマー(A)と、疎水基を有する重合性不飽和モノマー(B)を含むモノマー混合物Mmを共重合させて得られる共重合体Xを整泡剤として使用している。これにより、シリコーン系整泡剤と同等以上の整泡能を有するポリウレタンフォーム用整泡剤を得ること、および、上記のような難接着基材に対しても十分な接着力をポリウレタンフォームに付与することが可能となる。この理由を、以下のように本発明者らは推測している。すなわち、本発明に係る整泡剤は、シリコーン系整泡剤ほどポリウレタンフォームの表面自由エネルギーを低下させることなく整泡能を発揮することができる。そのため、本発明に係る整泡剤を使用して得られたポリウレタンフォームは、シリコーン系整泡剤を使用した場合よりも接着仕事Waが大きくなるため、難接着基材に対しても十分な接着力をポリウレタンフォームに付与できる。 Therefore, in the present invention, without using a silicone-based foam stabilizer as a foam stabilizer, the ether group-containing polymerizable unsaturated monomer (A) as described above and a polymerizable unsaturated monomer having a hydrophobic group ( A copolymer X obtained by copolymerizing a monomer mixture Mm containing B) is used as a foam stabilizer. As a result, it is possible to obtain a foam stabilizer for polyurethane foam having a foam stabilizing ability equal to or higher than that of a silicone-based foam stabilizer, and to provide polyurethane foam with sufficient adhesion even to the above-described difficult-to-adhere substrates. It becomes possible to The reason for this is presumed by the present inventors as follows. That is, the foam stabilizer according to the present invention can exhibit foam-stabilizing ability without lowering the surface free energy of the polyurethane foam as much as the silicone-based foam stabilizer. Therefore, the polyurethane foam obtained using the foam stabilizer according to the present invention has a larger work of adhesion Wa than when a silicone-based foam stabilizer is used, and thus has sufficient adhesion even to a difficult-to-bond substrate. Forces can be imparted to polyurethane foam.
[ポリウレタンフォーム積層体の製造方法]
 本発明に係るポリウレタンフォーム積層体の製造方法は、ポリプロピレン樹脂、ポリエチレン樹脂、フッ素樹脂およびシリコーン樹脂からなる群より選ばれる基材、または、ワックスが塗布された基材(難接着基材)と、上述した製造方法により得られた発泡体であるポリウレタンフォームとを積層する積層工程を含む。本発明におけるポリウレタンフォーム積層体の製造方法には、基材にポリウレタンフォーム原料の混合溶液を塗布し、基材の表面で直接発泡および硬化させることにより、基材の表面にポリウレタンフォームの層を積層する場合だけでなく、ポリウレタンフォームを予め作製した後に、作製されたポリウレタンフォームを、接着剤等を用いて基材と接着させる場合も含まれる。前者の場合は、主に硬質ポリウレタンフォームの自己接着性を利用して、ポリウレタンフォームを基材と接着させる。
[Method for manufacturing polyurethane foam laminate]
The method for producing a polyurethane foam laminate according to the present invention comprises a substrate selected from the group consisting of polypropylene resin, polyethylene resin, fluororesin and silicone resin, or a wax-coated substrate (difficult-to-bond substrate); It includes a lamination step of laminating polyurethane foam, which is a foam obtained by the manufacturing method described above. In the method for producing a polyurethane foam laminate of the present invention, a mixed solution of polyurethane foam raw materials is applied to a substrate, and foamed and cured directly on the surface of the substrate to laminate a layer of polyurethane foam on the surface of the substrate. It includes not only the case of forming a polyurethane foam, but also the case of adhering the produced polyurethane foam to a base material using an adhesive or the like after preparing the polyurethane foam in advance. In the former case, the self-adhesiveness of rigid polyurethane foam is mainly used to adhere the polyurethane foam to the substrate.
 硬質ポリウレタンフォームの自己接着性を利用してポリウレタンフォームを基材と接着させる場合には、対象物となる基材へスプレー等によりポリウレタンフォーム原料の混合溶液を塗布し、基材の表面で混合溶液を発泡および硬化させるだけで、複合パネル、ラミネートボード等のような対象物表面にポリウレタンフォームが積層されたポリウレタンフォーム積層体を製造できる。この際、予めポリオール混合物Moとポリイソシアネートとを、ポリウレタンフォーム原料の塗布(発泡体の施工)の直前に、スプレーなどの吹付装置内で混合して用いることができる。 When using the self-adhesiveness of rigid polyurethane foam to bond polyurethane foam to a base material, a mixed solution of polyurethane foam raw materials is applied to the target base material by spraying or the like, and the mixed solution is applied to the surface of the base material. It is possible to produce a polyurethane foam laminate in which polyurethane foam is laminated to the surface of an object such as a composite panel, laminate board, etc., simply by foaming and curing the . In this case, the polyol mixture Mo and the polyisocyanate can be mixed in advance in a spraying device such as a sprayer immediately before the application of the polyurethane foam raw material (construction of the foam).
 なお、対象物(基材)の表面に、予めプライマー塗布等を施しておけば、ポリウレタンフォームをさらに強力に対象物表面に接着させることが可能となる。 If the surface of the object (base material) is previously coated with a primer, etc., it becomes possible to bond the polyurethane foam to the surface of the object more strongly.
 以上、本発明の好適な実施の形態について説明したが、本発明は上述した形態に限定されない。すなわち、特許請求の範囲に記載された発明の範囲内で当業者が想到し得る他の形態または各種の変更例についても本発明の技術的範囲に属するものと理解される。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments. That is, it is understood that other forms or various modifications that can be conceived by those skilled in the art within the scope of the invention described in the claims also belong to the technical scope of the present invention.
 以下、本発明について、実施例を挙げて具体的に説明する。なお、本発明はこれらの実施例に何ら制約されるものではない。また、実施例中の「%」および「部」は特に断らない限り、「質量%」および「質量部」を示す。 The present invention will be specifically described below with reference to examples. It should be noted that the present invention is in no way restricted to these examples. Also, "%" and "parts" in the examples indicate "% by mass" and "parts by mass" unless otherwise specified.
[整泡剤の合成]
 まず、以下のようにして、合成例1~60ならびに整泡剤比較例1および2の整泡剤を合成した。また、整泡剤比較例3および4として、市販のシリコーン系整泡剤を準備した。以下、整泡剤の合成方法および市販品の詳細を述べる。
[Synthesis of foam stabilizer]
First, foam stabilizers of Synthesis Examples 1 to 60 and Foam Stabilizer Comparative Examples 1 and 2 were synthesized as follows. As foam stabilizer comparative examples 3 and 4, commercially available silicone foam stabilizers were prepared. Details of the method for synthesizing the foam stabilizer and commercially available products are described below.
(合成例1)
 撹拌装置、還流冷却器、滴下ポンプおよび容器、ならびに、温度計および窒素ガス導入管を備えた1000mlの反応容器に、溶剤(a-1)としてプロピレングリコールモノメチルエーテル200.0部を仕込んだ。その後、窒素ガス気流下で撹拌しながら内温を100℃まで昇温した。上記滴下容器に滴下溶液(b-1)としてエチルアクリレート237.5部、メトキシポリエチレングリコールメタクリレート(商品名 NKエステルM-40G:新中村化学株式会社製)12.5部、プロピレングリコールモノメチルエーテル100.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液40.0部からなる混合物を仕込んだ。次に、反応容器の内温を100℃に維持しながら、上記滴下溶液(b-1)を90分間かけて均一に滴下した。滴下終了後、100℃で60分間反応温度を維持した後、ターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 3.0部を加え、120分間にわたり100℃を維持し、反応を行った。反応終了後、エバポレーターにて脱溶剤を行い、合成例1の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は2700であり、SP値は10.2であった。
(Synthesis example 1)
200.0 parts of propylene glycol monomethyl ether as solvent (a-1) was charged into a 1000 ml reaction vessel equipped with a stirrer, reflux condenser, dropping pump and vessel, as well as a thermometer and a nitrogen gas inlet tube. After that, the internal temperature was raised to 100° C. while stirring under a nitrogen gas stream. 237.5 parts of ethyl acrylate, 12.5 parts of methoxypolyethylene glycol methacrylate (trade name: NK Ester M-40G: manufactured by Shin-Nakamura Chemical Co., Ltd.), and 100 parts of propylene glycol monomethyl ether were added to the dropping container as the dropping solution (b-1). A mixture of 0 parts and 40.0 parts of a 50% solution of tertiary-amylperoxy-2-ethylhexanoate was charged. Next, while maintaining the internal temperature of the reaction vessel at 100° C., the dropping solution (b-1) was uniformly dropped over 90 minutes. After the dropwise addition was completed, the reaction temperature was maintained at 100°C for 60 minutes, then 3.0 parts of a 50% solution of tertiary-amylperoxy-2-ethylhexanoate was added, and the reaction was continued at 100°C for 120 minutes. gone. After completion of the reaction, the solvent was removed by an evaporator to obtain a copolymer as a foam stabilizer in Synthesis Example 1. The synthesized copolymer had a weight average molecular weight of 2700 and an SP value of 10.2.
(合成例2)
 合成例1の滴下溶液(b-1)の代わりに滴下溶液(b-2)としてエチルアクリレート175.0部、ジブチルフマレート62.5部、メトキシポリエチレングリコールメタクリレート(商品名 NKエステルM-40G:新中村化学株式会社製)12.5部、プロピレングリコールモノメチルエーテル100.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 45.0部を用い、滴下時の反応温度を125℃に設定した以外は、合成例1と同様の手法により、合成例2の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は1900であり、SP値は10.1であった。
(Synthesis example 2)
175.0 parts of ethyl acrylate, 62.5 parts of dibutyl fumarate, methoxy polyethylene glycol methacrylate (trade name NK Ester M-40G: Shin-Nakamura Chemical Co., Ltd.) 12.5 parts, 100.0 parts of propylene glycol monomethyl ether and 45.0 parts of tertiary-amylperoxy-2-ethylhexanoate 50% solution, and the reaction temperature during dropping was A copolymer as a foam stabilizer in Synthesis Example 2 was obtained in the same manner as in Synthesis Example 1, except that the temperature was set to 125°C. The synthesized copolymer had a weight average molecular weight of 1900 and an SP value of 10.1.
(合成例3)
 合成例1の滴下溶液(b-1)の代わりに滴下溶液(b-3)としてエチルアクリレート212.5部、メトキシポリエチレングリコールメタクリレート(商品名 NKエステルM-40G:新中村化学株式会社製)37.5部、プロピレングリコールモノメチルエーテル50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 10.0部を用いた以外は、合成例1と同様の手法により合成例3の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は13500であり、SP値は10.1であった。
(Synthesis Example 3)
212.5 parts of ethyl acrylate as a dropping solution (b-3) instead of the dropping solution (b-1) of Synthesis Example 1, methoxy polyethylene glycol methacrylate (trade name NK Ester M-40G: manufactured by Shin-Nakamura Chemical Co., Ltd.) 37 .5 parts, 50.0 parts of propylene glycol monomethyl ether, and 10.0 parts of a 50% solution of tertiary-amylperoxy-2-ethylhexanoate. to obtain a copolymer as a foam stabilizer. The synthesized copolymer had a weight average molecular weight of 13,500 and an SP value of 10.1.
(合成例4)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート200部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-4)としてイソステアリルアクリレート12.5部、メトキシポリエチレングリコールメタクリレート(商品名 NKエステルM-40G:新中村化学株式会社製)237.5部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 2.0部を用いた以外は、合成例1と同様の手法により、合成例4の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は246100であり、SP値は9.5であった。
(Synthesis Example 4)
Using 200 parts of butyl acetate as a solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and isostearyl acrylate 12 as a dropping solution (b-4) instead of the dropping solution (b-1) .5 parts, 237.5 parts of methoxypolyethylene glycol methacrylate (trade name: NK Ester M-40G: manufactured by Shin-Nakamura Chemical Co., Ltd.), 50.0 parts of butyl acetate and 50 parts of tertiary-amylperoxy-2-ethylhexanoate % solution was used in the same manner as in Synthesis Example 1 to obtain a copolymer as a foam stabilizer in Synthesis Example 4. The synthesized copolymer had a weight average molecular weight of 246,100 and an SP value of 9.5.
(合成例5)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート150部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-5)として2-エチルヘキシルアクリレート60.0部、メトキシポリエチレングリコールメタクリレート(商品名 NKエステルM-40G:新中村化学株式会社製)120.0部、メトキシポリエチレングリコールメタクリレート(商品名 NKエステルM-450G:新中村化学株式会社製)20.0部、ブチルアセテート100.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 4.0部を用い、滴下時の反応温度を120℃に設定した以外は、合成例1と同様の手法により、合成例5の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は14300であり、SP値は9.4であった。
(Synthesis Example 5)
Using 150 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and 2-ethylhexyl acrylate as the dropping solution (b-5) instead of the dropping solution (b-1). 60.0 parts, methoxypolyethylene glycol methacrylate (trade name NK Ester M-40G: manufactured by Shin-Nakamura Chemical Co., Ltd.) 120.0 parts, methoxy polyethylene glycol methacrylate (trade name NK Ester M-450G: manufactured by Shin-Nakamura Chemical Co., Ltd.) 20.0 parts, 100.0 parts of butyl acetate and 4.0 parts of a 50% solution of tertiary-amylperoxy-2-ethylhexanoate were used, and the reaction temperature during dropping was set to 120 ° C. Synthesis A copolymer as a foam stabilizer in Synthesis Example 5 was obtained in the same manner as in Example 1. The synthesized copolymer had a weight average molecular weight of 14,300 and an SP value of 9.4.
(合成例6)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-6)として2,2-ジメチルオクタン酸ビニル(商品名 ベオバ10:HEXON製)87.5部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)162.5部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 5.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例6の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は12000であり、SP値は9.4であった。
(Synthesis Example 6)
Using 120 parts of butyl acetate as a solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, dropping solution (b-6) instead of dropping solution (b-1) 2,2- Vinyl dimethyloctanoate (trade name VEOVA 10: manufactured by HEXON) 87.5 parts, methoxypolyethylene glycol acrylate (trade name Blenmer AME-400: manufactured by NOF Corporation) 162.5 parts, butyl acetate 50.0 parts and tertiary -Amylperoxy-2-ethylhexanoate 50% solution 5.0 parts was used, and the foam stabilization of Synthesis Example 6 was performed in the same manner as in Synthesis Example 1, except that the reaction temperature during dropping was set to 130 ° C. A copolymer was obtained as an agent. The synthesized copolymer had a weight average molecular weight of 12000 and an SP value of 9.4.
(合成例7)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-7)としてブチルアクリレート25.0部、シリコーン変性メタクリレート(商品名 サイラプレーンTM-0701T:株式会社 JNC製)25.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)200.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.5部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例7の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は11000であり、SP値は9.4であった。
(Synthesis Example 7)
Using 120 parts of butyl acetate as solvent (a-2) instead of solvent (a-1) in Synthesis Example 1, and adding 25 parts of butyl acrylate as dropping solution (b-7) instead of dropping solution (b-1). 0 parts, silicone-modified methacrylate (trade name: Silaplane TM-0701T: manufactured by JNC Co., Ltd.) 25.0 parts, methoxypolyethylene glycol acrylate (trade name: Blemmer AME-400: manufactured by NOF Corporation) 200.0 parts, butyl acetate 50.0 parts and 6.5 parts of a 50% solution of tertiary-amylperoxy-2-ethylhexanoate were used, and the reaction temperature during dropping was set to 130 ° C., in the same manner as in Synthesis Example 1. , to obtain a copolymer as a foam stabilizer in Synthesis Example 7. The synthesized copolymer had a weight average molecular weight of 11,000 and an SP value of 9.4.
(合成例8)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-8)として2-エチルヘキシルアクリレート75.0部、スチレン25.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)150.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 5.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例8の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は11100であり、SP値は9.6であった。
(Synthesis Example 8)
Using 120 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and using 2-ethylhexyl acrylate as the dropping solution (b-8) instead of the dropping solution (b-1) 75.0 parts, 25.0 parts of styrene, 150.0 parts of methoxypolyethylene glycol acrylate (trade name Blenmar AME-400: manufactured by NOF Corporation), 50.0 parts of butyl acetate and tertiary - amylperoxy -2- The copolymer as a foam stabilizer of Synthesis Example 8 was prepared in the same manner as in Synthesis Example 1, except that 5.0 parts of a 50% solution of ethylhexanoate was used and the reaction temperature during dropping was set to 130°C. Obtained. The synthesized copolymer had a weight average molecular weight of 11,100 and an SP value of 9.6.
(合成例9)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-9)として2-エチルヘキシルアクリレート75.0部、アクリル酸12.5部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)162.5部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 5.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例9の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は11200であり、SP値は9.6であった。
(Synthesis Example 9)
Using 120 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and using 2-ethylhexyl acrylate as the dropping solution (b-9) instead of the dropping solution (b-1) 75.0 parts, 12.5 parts of acrylic acid, 162.5 parts of methoxypolyethylene glycol acrylate (trade name Blenmer AME-400: manufactured by NOF Corporation), 50.0 parts of butyl acetate and tertiary-amylperoxy-2 - Copolymer as a foam stabilizer of Synthesis Example 9 in the same manner as in Synthesis Example 1 except that 5.0 parts of a 50% solution of ethylhexanoate was used and the reaction temperature during dropping was set to 130 ° C. got The synthesized copolymer had a weight average molecular weight of 11,200 and an SP value of 9.6.
(合成例10)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-10)としてイソブチルアクリレート100.0部、2-ヒドロキシエチルメタクリレート12.5部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)137.5部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 5.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例10の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は16000であり、SP値は9.6であった。
(Synthesis Example 10)
120 parts of butyl acetate was used as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and 100 parts of isobutyl acrylate was used as the dropping solution (b-10) instead of the dropping solution (b-1). 0 parts, 12.5 parts of 2-hydroxyethyl methacrylate, 137.5 parts of methoxypolyethylene glycol acrylate (trade name Blenmer AME-400: manufactured by NOF Corporation), 50.0 parts of butyl acetate and tertiary - amyl peroxy - Copolymerization as a foam stabilizer in Synthesis Example 10 was carried out in the same manner as in Synthesis Example 1 except that 5.0 parts of a 50% solution of 2-ethylhexanoate was used and the reaction temperature during dropping was set to 130 ° C. got a union. The weight average molecular weight of the synthesized copolymer was 16000 and the SP value was 9.6.
(合成例11)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート250部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-11)として2-エチルヘキシルアクリレート60.0部、ポリエチレングリコールジアクリレート(商品名 ミラマーM280:MIWON製)70.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)70.0部、ブチルアセテート83.3部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 10.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例11の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は21500であり、SP値は9.7であった。
(Synthesis Example 11)
Using 250 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and using 2-ethylhexyl acrylate as the dropping solution (b-11) instead of the dropping solution (b-1) 60.0 parts, polyethylene glycol diacrylate (trade name Miramar M280: manufactured by MIWON) 70.0 parts, methoxypolyethylene glycol acrylate (trade name Blenmer AME-400: manufactured by NOF Corporation) 70.0 parts, butyl acetate 83.0 parts. 3 parts and 10.0 parts of a 50% solution of tertiary-amylperoxy-2-ethylhexanoate were used, and the reaction temperature during dropping was set to 130 ° C. Synthesis was performed in the same manner as in Synthesis Example 1. A copolymer as a foam stabilizer of Example 11 was obtained. The synthesized copolymer had a weight average molecular weight of 21,500 and an SP value of 9.7.
(合成例12)
 合成例1の滴下溶液(b-1)の代わりに滴下溶液(b-12)としてエチルアクリレート30.0部、ステアロキシポリエチレングリコールメタクリレート(商品名 ブレンマーPSE-1300:株式会社日油製)70.0部、プロピレングリコールモノメチルエーテル200.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.0部を用いた以外は、合成例1と同様の手法により、合成例12の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は15500であり、SP値は9.4であった。
(Synthesis Example 12)
30.0 parts of ethyl acrylate as a dropping solution (b-12) instead of the dropping solution (b-1) of Synthesis Example 1, stearoxy polyethylene glycol methacrylate (trade name Blenmer PSE-1300: manufactured by NOF Corporation)70. 0 parts, 200.0 parts of propylene glycol monomethyl ether, and 6.0 parts of a 50% solution of tertiary-amylperoxy-2-ethylhexanoate were used. to obtain a copolymer as a foam stabilizer. The synthesized copolymer had a weight average molecular weight of 15,500 and an SP value of 9.4.
(合成例13)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-13)として2-エチルヘキシルアクリレート50.0部、イソブチルビニルエーテル25.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)175.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 2.0部を用いた以外は、合成例1と同様の手法により、合成例13の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は9600であり、SP値は9.4であった。
(Synthesis Example 13)
Using 120 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and using 2-ethylhexyl acrylate as the dropping solution (b-13) instead of the dropping solution (b-1) 50.0 parts, 25.0 parts of isobutyl vinyl ether, 175.0 parts of methoxypolyethylene glycol acrylate (trade name Blenmer AME-400: manufactured by NOF Corporation), 50.0 parts of butyl acetate and tertiary-amylperoxy-2 - A copolymer as a foam stabilizer of Synthesis Example 13 was obtained in the same manner as in Synthesis Example 1, except that 2.0 parts of a 50% solution of ethylhexanoate was used. The weight average molecular weight of the synthesized copolymer was 9600 and the SP value was 9.4.
(合成例14)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-14)としてブチルアクリレート222.84部、メトキシポリエチレングリコールアクリレート(商品名 NKエステルAM-230G:新中村化学株式会社製)148.56部、ブチルアセテート100.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 5.6部を用い、滴下時の反応温度を110℃に設定した以外は、合成例1と同様の手法により、合成例14の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は68100であり、SP値は9.7であった。
(Synthesis Example 14)
120 parts of butyl acetate was used as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and 222 parts of butyl acrylate was used as the dropping solution (b-14) instead of the dropping solution (b-1). 84 parts, 148.56 parts of methoxypolyethylene glycol acrylate (trade name NK Ester AM-230G: manufactured by Shin-Nakamura Chemical Co., Ltd.), 100.0 parts of butyl acetate and 50% tertiary-amylperoxy-2-ethylhexanoate A copolymer as a foam stabilizer of Synthesis Example 14 was obtained in the same manner as in Synthesis Example 1 except that 5.6 parts of the solution was used and the reaction temperature during dropping was set to 110°C. The synthesized copolymer had a weight average molecular weight of 68,100 and an SP value of 9.7.
(合成例15)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-15)として2-エチルヘキシルアクリレート148.56部、メトキシポリエチレングリコールアクリレート(商品名 NKエステルAM-230G:新中村化学株式会社製)222.84部、ブチルアセテート120.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 3.7部を用い、滴下時の反応温度を110℃に設定した以外は、合成例1と同様の手法により、合成例15の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は19200であり、SP値は9.4であった。
(Synthesis Example 15)
Using 120 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and using 2-ethylhexyl acrylate as the dropping solution (b-15) instead of the dropping solution (b-1) 148.56 parts, 222.84 parts of methoxypolyethylene glycol acrylate (trade name NK Ester AM-230G: manufactured by Shin-Nakamura Chemical Co., Ltd.), 120.0 parts of butyl acetate and tertiary-amylperoxy-2-ethylhexanoate A copolymer as a foam stabilizer of Synthesis Example 15 was obtained in the same manner as in Synthesis Example 1 except that 3.7 parts of a 50% solution was used and the reaction temperature during dropping was set to 110°C. The synthesized copolymer had a weight average molecular weight of 19200 and an SP value of 9.4.
(合成例16)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-16)としてラウリルメタクリレート176.0部、メトキシポリエチレングリコールメタクリレート(商品名 ミラマーM193:MIWON社製)264.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.6部を用い、滴下時の反応温度を125℃に設定した以外は、合成例1と同様の手法により、合成例16の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は35100であり、SP値は9.3であった。
(Synthesis Example 16)
Using 120 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and adding 176 parts of lauryl methacrylate as the dropping solution (b-16) instead of the dropping solution (b-1). 0 parts, 264.0 parts of methoxypolyethylene glycol methacrylate (trade name Miramar M193: manufactured by MIWON), 50.0 parts of butyl acetate and 6.6 parts of tertiary-amylperoxy-2-ethylhexanoate 50% solution. A copolymer as a foam stabilizer of Synthesis Example 16 was obtained in the same manner as in Synthesis Example 1, except that the reaction temperature during dropping was set to 125°C. The synthesized copolymer had a weight average molecular weight of 35,100 and an SP value of 9.3.
(合成例17)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-17)としてラウリルアクリレート132.0部、メトキシポリエチレングリコールアクリレート(商品名 NKエステルAM-130G:新中村化学株式会社製)308.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.6部を用い、滴下時の反応温度を125℃に設定した以外は、合成例1と同様の手法により、合成例17の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は14400であり、SP値は9.4であった。
(Synthesis Example 17)
Using 120 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and adding 132 parts of lauryl acrylate as the dropping solution (b-17) instead of the dropping solution (b-1). 0 parts, 308.0 parts of methoxypolyethylene glycol acrylate (trade name NK Ester AM-130G: manufactured by Shin-Nakamura Chemical Co., Ltd.), 50.0 parts of butyl acetate and 50% of tertiary-amylperoxy-2-ethylhexanoate A copolymer as a foam stabilizer of Synthesis Example 17 was obtained in the same manner as in Synthesis Example 1 except that 6.6 parts of the solution was used and the reaction temperature during dropping was set to 125°C. The synthesized copolymer had a weight average molecular weight of 14400 and an SP value of 9.4.
(合成例18)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-18)としてラウリルメタクリレート132.0部、メトキシポリエチレングリコールアクリレート(商品名 NKエステルAM-130G:新中村化学株式会社製)308.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.6部を用い、滴下時の反応温度を125℃に設定した以外は、合成例1と同様の手法により、合成例18の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は16100であり、SP値は9.4であった。
(Synthesis Example 18)
Using 120 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and adding 132 parts of lauryl methacrylate as the dropping solution (b-18) instead of the dropping solution (b-1). 0 parts, 308.0 parts of methoxypolyethylene glycol acrylate (trade name NK Ester AM-130G: manufactured by Shin-Nakamura Chemical Co., Ltd.), 50.0 parts of butyl acetate and 50% of tertiary-amylperoxy-2-ethylhexanoate A copolymer as a foam stabilizer of Synthesis Example 18 was obtained in the same manner as in Synthesis Example 1 except that 6.6 parts of the solution was used and the reaction temperature during dropping was set to 125°C. The synthesized copolymer had a weight average molecular weight of 16,100 and an SP value of 9.4.
(合成例19)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-19)としてラウリルメタクリレート132.0部、メトキシポリエチレングリコールメタクリレート(商品名 ミラマーM193:MIWON社製)308.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.6部を用い、滴下時の反応温度を125℃に設定した以外は、合成例1と同様の手法により、合成例19の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は32300であり、SP値は9.3であった。
(Synthesis Example 19)
Using 120 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and adding 132 parts of lauryl methacrylate as the dropping solution (b-19) instead of the dropping solution (b-1). 0 parts, 308.0 parts of methoxypolyethylene glycol methacrylate (trade name Miramar M193: manufactured by MIWON), 50.0 parts of butyl acetate and 6.6 parts of tertiary-amylperoxy-2-ethylhexanoate 50% solution. A copolymer as a foam stabilizer of Synthesis Example 19 was obtained in the same manner as in Synthesis Example 1, except that the reaction temperature during dropping was set to 125°C. The synthesized copolymer had a weight average molecular weight of 32,300 and an SP value of 9.3.
(合成例20)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-20)としてイソステアリルアクリレート87.9部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)205.1部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 20.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例20の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は6300であり、SP値は9.0であった。
(Synthesis Example 20)
Using 120 parts of butyl acetate as a solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and isostearyl acrylate 87 as a dropping solution (b-20) instead of the dropping solution (b-1) .9 parts, 205.1 parts of methoxypolyethylene glycol acrylate (trade name: Blenmar AME-400: manufactured by NOF Corporation), 50.0 parts of butyl acetate and tertiary-amylperoxy-2-ethylhexanoate 50% solution A copolymer as a foam stabilizer of Synthesis Example 20 was obtained in the same manner as in Synthesis Example 1 except that 20.0 parts of the copolymer was used and the reaction temperature during dropping was set to 130°C. The synthesized copolymer had a weight average molecular weight of 6300 and an SP value of 9.0.
(合成例21)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-21)としてイソステアリルアクリレート58.6部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)234.4部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 1.5部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例21の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は10400であり、SP値は9.2であった。
(Synthesis Example 21)
Using 120 parts of butyl acetate as a solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and isostearyl acrylate 58 as a dropping solution (b-21) instead of the dropping solution (b-1) .6 parts, 234.4 parts of methoxypolyethylene glycol acrylate (trade name: Blemmer AME-400: manufactured by NOF Corporation), 50.0 parts of butyl acetate and 50% solution of tertiary-amylperoxy-2-ethylhexanoate A copolymer as a foam stabilizer of Synthesis Example 21 was obtained in the same manner as in Synthesis Example 1, except that 1.5 parts was used and the reaction temperature during dropping was set to 130°C. The weight average molecular weight of the synthesized copolymer was 10400 and the SP value was 9.2.
(合成例22)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-22)としてイソステアリルアクリレート29.3部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)263.7部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 1.5部を用い、滴下時の反応温度を110℃に設定した以外は、合成例1と同様の手法により、合成例22の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は15500であり、SP値は9.4であった。
(Synthesis Example 22)
Using 120 parts of butyl acetate as a solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and isostearyl acrylate 29 as a dropping solution (b-22) instead of the dropping solution (b-1). .3 parts, 263.7 parts of methoxypolyethylene glycol acrylate (trade name: Blenmer AME-400: manufactured by NOF Corporation), 50.0 parts of butyl acetate and 50% solution of tertiary-amylperoxy-2-ethylhexanoate A copolymer as a foam stabilizer of Synthesis Example 22 was obtained in the same manner as in Synthesis Example 1, except that 1.5 parts of the copolymer was used and the reaction temperature during dropping was set to 110°C. The synthesized copolymer had a weight average molecular weight of 15,500 and an SP value of 9.4.
(合成例23)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-23)としてイソステアリルアクリレート50.0部、メトキシエチルアクリレート(商品名 2-MTA:大阪有機化学工業株式会社製)100.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)100.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 5.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例23の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は12100であり、SP値は9.4であった。
(Synthesis Example 23)
Using 120 parts of butyl acetate as a solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and adding 50 parts of isostearyl acrylate as a dropping solution (b-23) instead of the dropping solution (b-1). .0 parts, 100.0 parts of methoxyethyl acrylate (trade name: 2-MTA: manufactured by Osaka Organic Chemical Industry Co., Ltd.), 100.0 parts of methoxypolyethylene glycol acrylate (trade name: Blemmer AME-400: manufactured by NOF Corporation), The procedure of Synthesis Example 1 was repeated except that 50.0 parts of butyl acetate and 5.0 parts of a 50% solution of tertiary-amylperoxy-2-ethylhexanoate were used, and the reaction temperature during dropping was set to 130°C. A copolymer as a foam stabilizer of Synthesis Example 23 was obtained by the method. The synthesized copolymer had a weight average molecular weight of 12,100 and an SP value of 9.4.
(合成例24)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-24)としてイソステアリルアクリレート42.1部、イソボルニルメタクリレート42.1部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)198.8部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 4.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例24の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は9500であり、SP値は9.3であった。
(Synthesis Example 24)
Using 120 parts of butyl acetate as a solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and isostearyl acrylate 42 as a dropping solution (b-24) instead of the dropping solution (b-1) .1 part, 42.1 parts of isobornyl methacrylate, 198.8 parts of methoxypolyethylene glycol acrylate (trade name Blenmer AME-400: manufactured by NOF Corporation), 50.0 parts of butyl acetate and tertiary-amylperoxy- Copolymerization as a foam stabilizer in Synthesis Example 24 was carried out in the same manner as in Synthesis Example 1 except that 4.0 parts of a 50% solution of 2-ethylhexanoate was used and the reaction temperature during dropping was set to 130 ° C. got a union. The synthesized copolymer had a weight average molecular weight of 9500 and an SP value of 9.3.
(合成例25)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-25)としてC18~24アルキルメタクリレート(ブレンマーVMA-70:株式会社日油製)29.3部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)263.7部、ブチルアセテート200.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.7部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例25の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は9200であり、SP値は9.2であった。
(Synthesis Example 25)
Using 120 parts of butyl acetate as a solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, dropping solution (b-25) instead of dropping solution (b-1) C18-24 alkyl Methacrylate (Blenmer VMA-70: manufactured by NOF Corporation) 29.3 parts, methoxy polyethylene glycol acrylate (trade name Blenmer AME-400: manufactured by NOF Corporation) 263.7 parts, butyl acetate 200.0 parts and tertiary -Amylperoxy-2-ethylhexanoate 50% solution 6.7 parts was used, and the foam stabilization of Synthesis Example 25 was performed in the same manner as in Synthesis Example 1, except that the reaction temperature during dropping was set to 130 ° C. A copolymer was obtained as an agent. The synthesized copolymer had a weight average molecular weight of 9200 and an SP value of 9.2.
(合成例26)
 合成例1の溶剤(a-1)の代わりに溶剤(a-3)としてイソブチルアセテート400部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-26)としてラウリルメタクリレート46.9部、メトキシポリエチレングリコールメタクリレート(商品名 NKエステルM-40G:新中村化学株式会社製)109.4部、イソブチルアセテート100.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 0.2部を用い、滴下時の反応温度を85℃に設定した以外は、合成例1と同様の手法により、合成例26の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は365200であり、SP値は9.4であった。
(Synthesis Example 26)
Using 400 parts of isobutyl acetate as a solvent (a-3) instead of the solvent (a-1) in Synthesis Example 1, and adding 46.5 parts of lauryl methacrylate as a dropping solution (b-26) instead of the dropping solution (b-1). 9 parts, 109.4 parts of methoxypolyethylene glycol methacrylate (trade name NK Ester M-40G: manufactured by Shin-Nakamura Chemical Co., Ltd.), 100.0 parts of isobutyl acetate and 50% of tertiary-amylperoxy-2-ethylhexanoate A copolymer as a foam stabilizer of Synthesis Example 26 was obtained in the same manner as in Synthesis Example 1, except that 0.2 part of the solution was used and the reaction temperature during dropping was set to 85°C. The synthesized copolymer had a weight average molecular weight of 365,200 and an SP value of 9.4.
(合成例27)
 合成例1の溶剤(a-1)の代わりに溶剤(a-3)としてイソブチルアセテート400部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-27)としてラウリルメタクリレート46.9部、メトキシポリエチレングリコールメタクリレート(商品名 NKエステルM-40G:新中村化学株式会社製)109.4部、イソブチルアセテート100.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 0.2部を用い、滴下時の反応温度を85℃に設定し、追加分のターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液を加えない以外は、合成例1と同様の手法により、合成例27の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は590700であり、SP値は9.4であった。
(Synthesis Example 27)
Using 400 parts of isobutyl acetate as the solvent (a-3) instead of the solvent (a-1) in Synthesis Example 1, and adding 46.5 parts of lauryl methacrylate as the dropping solution (b-27) instead of the dropping solution (b-1). 9 parts, 109.4 parts of methoxypolyethylene glycol methacrylate (trade name NK Ester M-40G: manufactured by Shin-Nakamura Chemical Co., Ltd.), 100.0 parts of isobutyl acetate and 50% of tertiary-amylperoxy-2-ethylhexanoate Same as Synthesis Example 1 except that 0.2 part of the solution was used, the reaction temperature during dropping was set to 85° C., and no additional tertiary-amylperoxy-2-ethylhexanoate 50% solution was added. A copolymer as a foam stabilizer of Synthesis Example 27 was obtained by the method of. The synthesized copolymer had a weight average molecular weight of 590,700 and an SP value of 9.4.
(合成例28)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート150部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-28)としてラウリルメタクリレート40.0部、メトキシポリエチレングリコールメタクリレート(商品名 ミラマーM193:MIWON社製)360.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例28の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は17700であり、SP値は9.3であった。
(Synthesis Example 28)
Using 150 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and adding 40 parts of lauryl methacrylate as the dropping solution (b-28) instead of the dropping solution (b-1). 0 parts, 360.0 parts of methoxypolyethylene glycol methacrylate (trade name Miramar M193: manufactured by MIWON), 50.0 parts of butyl acetate and 6.0 parts of tertiary-amylperoxy-2-ethylhexanoate 50% solution. A copolymer as a foam stabilizer of Synthesis Example 28 was obtained in the same manner as in Synthesis Example 1, except that the reaction temperature during dropping was set to 130°C. The synthesized copolymer had a weight average molecular weight of 17700 and an SP value of 9.3.
(合成例29)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート150部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-29)として2-エチルヘキシルアクリレート75.0部、テトラヒドロフルフリルアクリレート(商品名 ビスコート#150:大阪有機化学工業株式会社製)25.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)150.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例29の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は10300であり、SP値は9.3であった。
(Synthesis Example 29)
Using 150 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and using 2-ethylhexyl acrylate as the dropping solution (b-29) instead of the dropping solution (b-1) 75.0 parts, tetrahydrofurfuryl acrylate (trade name: Viscoat #150: manufactured by Osaka Organic Chemical Industry Co., Ltd.) 25.0 parts, methoxypolyethylene glycol acrylate (trade name: Blemmer AME-400: manufactured by NOF Corporation) 150.0 parts Parts, 50.0 parts of butyl acetate and 6.0 parts of tertiary-amylperoxy-2-ethylhexanoate 50% solution were used, and the reaction temperature during dropping was set to 130 ° C., except that Synthesis Example 1 and A copolymer as a foam stabilizer of Synthesis Example 29 was obtained in the same manner. The synthesized copolymer had a weight average molecular weight of 10,300 and an SP value of 9.3.
(合成例30)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-30)として2-エチルヘキシルアクリレート75.0部、ジメチルアミノエチルメタクリレート(商品名 アクリエステルDM:三菱ケミカル株式会社製)25.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)150.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例30の整泡剤としての共重合体を得た。カチオン性基を有しているため、合成した共重合体の重量平均分子量は測定できなかった。また、合成した共重合体のSP値は9.2であった。
(Synthesis Example 30)
Using 120 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and using 2-ethylhexyl acrylate as the dropping solution (b-30) instead of the dropping solution (b-1) 75.0 parts, dimethylaminoethyl methacrylate (trade name Acryester DM: manufactured by Mitsubishi Chemical Corporation) 25.0 parts, methoxypolyethylene glycol acrylate (trade name Blemmer AME-400: manufactured by NOF Corporation) 150.0 parts, The procedure of Synthesis Example 1 was repeated except that 50.0 parts of butyl acetate and 6.0 parts of a 50% solution of tertiary-amylperoxy-2-ethylhexanoate were used, and the reaction temperature during dropping was set to 130°C. A copolymer as a foam stabilizer of Synthesis Example 30 was obtained by the method. Due to the presence of cationic groups, the weight average molecular weight of the synthesized copolymer could not be measured. Moreover, the SP value of the synthesized copolymer was 9.2.
(合成例31)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-31)として2-エチルヘキシルアクリレート75.0部、アクリロイルモルフォリン(商品名 ACMO:KJケミカルズ株式会社製)25.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)150.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例31の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は13900であり、SP値は9.3であった。
(Synthesis Example 31)
Using 120 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and using 2-ethylhexyl acrylate as the dropping solution (b-31) instead of the dropping solution (b-1) 75.0 parts, acryloyl morpholine (trade name ACMO: manufactured by KJ Chemicals Co., Ltd.) 25.0 parts, methoxypolyethylene glycol acrylate (trade name Blemmer AME-400: manufactured by NOF Corporation) 150.0 parts, butyl acetate 50 0 part and 6.0 parts of a 50% solution of tertiary-amylperoxy-2-ethylhexanoate were used, and the reaction temperature during dropping was set to 130 ° C., in the same manner as in Synthesis Example 1, A copolymer as a foam stabilizer of Synthesis Example 31 was obtained. The synthesized copolymer had a weight average molecular weight of 13,900 and an SP value of 9.3.
(合成例32)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-32)として2-エチルヘキシルアクリレート75.0部、フェノキシエチルアクリレート(商品名 ビスコート#192:大阪有機化学工業株式会社製)25.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)150.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例32の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は10600であり、SP値は9.3であった。
(Synthesis Example 32)
Using 120 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and using 2-ethylhexyl acrylate as the dropping solution (b-32) instead of the dropping solution (b-1) 75.0 parts, phenoxyethyl acrylate (trade name: Viscoat #192: manufactured by Osaka Organic Chemical Industry Co., Ltd.) 25.0 parts, methoxypolyethylene glycol acrylate (trade name: Blemmer AME-400: manufactured by NOF Corporation) 150.0 parts , 50.0 parts of butyl acetate and 6.0 parts of a 50% solution of tertiary-amylperoxy-2-ethylhexanoate were used, and the reaction temperature during dropping was set to 130 ° C. Same as in Synthesis Example 1. A copolymer as a foam stabilizer of Synthesis Example 32 was obtained by the method of. The synthesized copolymer had a weight average molecular weight of 10600 and an SP value of 9.3.
(合成例33)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-33)として2-エチルヘキシルアクリレート87.5部、2,2,2-トリフルオロエチルアクリレート(商品名 ビスコート3F:大阪有機化学工業株式会社製)12.5部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)150.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例33の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は10100であり、SP値は9.2であった。
(Synthesis Example 33)
Using 120 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and using 2-ethylhexyl acrylate as the dropping solution (b-33) instead of the dropping solution (b-1) 87.5 parts, 2,2,2-trifluoroethyl acrylate (trade name: Viscoat 3F: manufactured by Osaka Organic Chemical Industry Co., Ltd.) 12.5 parts, methoxypolyethylene glycol acrylate (trade name: Blemmer AME-400: NOF Corporation ), 50.0 parts of butyl acetate and 6.0 parts of a 50% solution of tertiary-amylperoxy-2-ethylhexanoate, except that the reaction temperature during dropping was set to 130 ° C. A copolymer as a foam stabilizer of Synthesis Example 33 was obtained in the same manner as in Synthesis Example 1. The synthesized copolymer had a weight average molecular weight of 10,100 and an SP value of 9.2.
(合成例34)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-34)としてラウリルアクリレート75.0部、メトキシポリエチレングリコールメタクリレート(商品名 ミラマーM193:MIWON社製)175.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 10.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例34の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は9300であり、SP値は9.2であった。
(Synthesis Example 34)
Using 120 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and adding 75 parts of lauryl acrylate as the dropping solution (b-34) instead of the dropping solution (b-1). 0 parts, 175.0 parts of methoxypolyethylene glycol methacrylate (trade name Miramar M193: manufactured by MIWON), 50.0 parts of butyl acetate and 10.0 parts of tertiary-amylperoxy-2-ethylhexanoate 50% solution. A copolymer as a foam stabilizer of Synthesis Example 34 was obtained in the same manner as in Synthesis Example 1, except that the reaction temperature during dropping was set to 130°C. The weight average molecular weight of the synthesized copolymer was 9300 and the SP value was 9.2.
(合成例35)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-35)として2-エチルヘキシルアクリレート75.0部、メトキシポリエチレングリコールメタクリレート(商品名 ミラマーM193:MIWON社製)175.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 11.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例35の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は10000であり、SP値は9.3であった。
(Synthesis Example 35)
Using 120 parts of butyl acetate as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and using 2-ethylhexyl acrylate as the dropping solution (b-35) instead of the dropping solution (b-1) 75.0 parts, 175.0 parts of methoxypolyethylene glycol methacrylate (trade name Miramar M193: manufactured by MIWON), 50.0 parts of butyl acetate and tertiary-amylperoxy-2-ethylhexanoate 50% solution 11.0 A copolymer as a foam stabilizer of Synthesis Example 35 was obtained in the same manner as in Synthesis Example 1, except that the reaction temperature during dropping was set to 130°C. The synthesized copolymer had a weight average molecular weight of 10,000 and an SP value of 9.3.
(合成例36)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-36)としてラウリルアクリレート176.0部、メトキシポリエチレングリコールアクリレート(商品名 NKエステルAM-130G:新中村化学株式会社製)264.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.6部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例36の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は15400であり、SP値は9.4であった。
(Synthesis Example 36)
120 parts of butyl acetate was used as the solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and 176 parts of lauryl acrylate was used as the dropping solution (b-36) instead of the dropping solution (b-1). 0 parts, 264.0 parts of methoxypolyethylene glycol acrylate (trade name NK Ester AM-130G: manufactured by Shin-Nakamura Chemical Co., Ltd.), 50.0 parts of butyl acetate and 50% of tertiary-amylperoxy-2-ethylhexanoate A copolymer as a foam stabilizer of Synthesis Example 36 was obtained in the same manner as in Synthesis Example 1 except that 6.6 parts of the solution was used and the reaction temperature during dropping was set to 130°C. The synthesized copolymer had a weight average molecular weight of 15400 and an SP value of 9.4.
(合成例37)
 合成例1の滴下溶液(b-1)の代わりに滴下溶液(b-37)としてエチルアクリレート212.5部、ポリエチレングリコールモノアクリレート(商品名 ブレンマーAE-400:株式会社日油製)37.5部、プロピレングリコールモノメチルエーテル50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 12.5部を用い、滴下時の反応温度を120℃に設定した以外は、合成例1と同様の手法により、合成例37の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は7200であり、SP値は10.2であった。
(Synthesis Example 37)
Ethyl acrylate 212.5 parts as a dropping solution (b-37) instead of the dropping solution (b-1) of Synthesis Example 1, polyethylene glycol monoacrylate (trade name Blemmer AE-400: manufactured by NOF Corporation) 37.5 Parts, 50.0 parts of propylene glycol monomethyl ether and 12.5 parts of a 50% solution of tertiary-amylperoxy-2-ethylhexanoate were used, and the reaction temperature during dropping was set to 120 ° C. Synthesis Example A copolymer as a foam stabilizer of Synthesis Example 37 was obtained in the same manner as in Example 1. The synthesized copolymer had a weight average molecular weight of 7200 and an SP value of 10.2.
(合成例38)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-38)として2,2-ジメチルオクタン酸ビニル(商品名 ベオバ10:HEXON製)50.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)200.0部、ブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 5.5部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例38の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は9200であり、SP値は9.2であった。
(Synthesis Example 38)
Using 120 parts of butyl acetate as a solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, a dropping solution (b-38) instead of the dropping solution (b-1) 2,2- Vinyl dimethyloctanoate (trade name VEOVA 10: manufactured by HEXON) 50.0 parts, methoxypolyethylene glycol acrylate (trade name Blenmer AME-400: manufactured by NOF Corporation) 200.0 parts, butyl acetate 50.0 parts and tertiary -Amylperoxy-2-ethylhexanoate 50% solution 5.5 parts was used, and the foam stabilization of Synthesis Example 38 was performed in the same manner as in Synthesis Example 1, except that the reaction temperature during dropping was set to 130 ° C. A copolymer was obtained as an agent. The synthesized copolymer had a weight average molecular weight of 9200 and an SP value of 9.2.
(合成例39)
 合成例1の溶剤(a-1)の代わりに溶剤(a-3)としてイソブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-39)として2-エチルヘキシルアクリレート50.0部、ジエチレングリコールモノビニルエーテル25.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)175.0部、イソブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 2.0部を用い、滴下時の反応温度を105℃に設定した以外は、合成例1と同様の手法により、合成例39の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は11900であり、SP値は9.5であった。
(Synthesis Example 39)
Using 120 parts of isobutyl acetate as a solvent (a-3) instead of the solvent (a-1) in Synthesis Example 1, and 2-ethylhexyl acrylate as a dropping solution (b-39) instead of the dropping solution (b-1) 50.0 parts, 25.0 parts of diethylene glycol monovinyl ether, 175.0 parts of methoxypolyethylene glycol acrylate (trade name Blenmar AME-400: manufactured by NOF Corporation), 50.0 parts of isobutyl acetate and tertiary - amyl peroxy - Copolymerization as a foam stabilizer of Synthesis Example 39 was carried out in the same manner as in Synthesis Example 1, except that 2.0 parts of a 50% solution of 2-ethylhexanoate was used and the reaction temperature during dropping was set to 105 ° C. got a union. The synthesized copolymer had a weight average molecular weight of 11,900 and an SP value of 9.5.
(合成例40)
 合成例1の溶剤(a-1)の代わりに溶剤(a-3)としてイソブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-40)として2-エチルヘキシルアクリレート50.0部、ブトキシポリエチレングリコール-ポリプロピレングリコールアリルエーテル(商品名 ユニセーフPKA-5015:株式会社日油製)25.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)175.0部、イソブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例40の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は9200であり、SP値は9.2であった。
(Synthesis Example 40)
Using 120 parts of isobutyl acetate as the solvent (a-3) instead of the solvent (a-1) in Synthesis Example 1, and using 2-ethylhexyl acrylate as the dropping solution (b-40) instead of the dropping solution (b-1) 50.0 parts, butoxy polyethylene glycol-polypropylene glycol allyl ether (trade name Unisafe PKA-5015: manufactured by NOF Corporation) 25.0 parts, methoxy polyethylene glycol acrylate (trade name Blenmer AME-400: manufactured by NOF Corporation) 175.0 parts, 50.0 parts of isobutyl acetate and 6.0 parts of tertiary-amylperoxy-2-ethylhexanoate 50% solution were used, except that the reaction temperature during dropping was set to 130 ° C. Synthesis A copolymer as a foam stabilizer of Synthesis Example 40 was obtained in the same manner as in Example 1. The synthesized copolymer had a weight average molecular weight of 9200 and an SP value of 9.2.
(合成例41)
 合成例1の溶剤(a-1)の代わりに溶剤(a-3)としてイソブチルアセテート350部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-41)として2-エチルヘキシルアクリレート60.0部、ポリエチレングリコールジアクリレート(商品名 ミラマーM280:MIWON製)140.0部、イソブチルアセテート116.7部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 20.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例41の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は10800であり、SP値は9.5であった。
(Synthesis Example 41)
Using 350 parts of isobutyl acetate as a solvent (a-3) instead of the solvent (a-1) in Synthesis Example 1, and 2-ethylhexyl acrylate as a dropping solution (b-41) instead of the dropping solution (b-1) 60.0 parts, polyethylene glycol diacrylate (trade name Miramar M280: manufactured by MIWON) 140.0 parts, isobutyl acetate 116.7 parts and tertiary-amylperoxy-2-ethylhexanoate 50% solution 20.0 parts was used, and a copolymer as a foam stabilizer of Synthesis Example 41 was obtained in the same manner as in Synthesis Example 1, except that the reaction temperature during dropping was set to 130°C. The synthesized copolymer had a weight average molecular weight of 10800 and an SP value of 9.5.
(合成例42)
 合成例1の溶剤(a-1)の代わりに溶剤(a-3)としてイソブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-42)として2-エチルヘキシルアクリレート75.0部、2,2,2-トリフルオロエチルアクリレート(商品名 ビスコート3F:大阪有機化学工業株式会社製)25.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)150.0部、イソブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例42の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は10500であり、SP値は9.7であった。
(Synthesis Example 42)
Using 120 parts of isobutyl acetate as the solvent (a-3) instead of the solvent (a-1) in Synthesis Example 1, and 2-ethylhexyl acrylate as the dropping solution (b-42) instead of the dropping solution (b-1). 75.0 parts, 2,2,2-trifluoroethyl acrylate (trade name: Viscoat 3F: manufactured by Osaka Organic Chemical Industry Co., Ltd.) 25.0 parts, methoxy polyethylene glycol acrylate (trade name: Blemmer AME-400: NOF Corporation ), 50.0 parts of isobutyl acetate and 6.0 parts of a 50% solution of tertiary-amylperoxy-2-ethylhexanoate, except that the reaction temperature during dropping was set to 130 ° C. A copolymer as a foam stabilizer of Synthesis Example 42 was obtained by the same method as in Synthesis Example 1. The synthesized copolymer had a weight average molecular weight of 10500 and an SP value of 9.7.
(合成例43)
 合成例1の溶剤(a-1)の代わりに溶剤(a-3)としてイソブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-43)として2-エチルヘキシルアクリレート50.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)200.0部、イソブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例43の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は9100であり、SP値は9.3であった。
(Synthesis Example 43)
Using 120 parts of isobutyl acetate as the solvent (a-3) instead of the solvent (a-1) in Synthesis Example 1, and using 2-ethylhexyl acrylate as the dropping solution (b-43) instead of the dropping solution (b-1) 50.0 parts, 200.0 parts of methoxypolyethylene glycol acrylate (trade name Brenmer AME-400: manufactured by NOF Corporation), 50.0 parts of isobutyl acetate and 50% of tertiary-amylperoxy-2-ethylhexanoate A copolymer as a foam stabilizer of Synthesis Example 43 was obtained in the same manner as in Synthesis Example 1 except that 6.0 parts of the solution was used and the reaction temperature during dropping was set to 130°C. The weight average molecular weight of the synthesized copolymer was 9100 and the SP value was 9.3.
(合成例44)
 合成例1の溶剤(a-1)の代わりに溶剤(a-3)としてイソブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-44)としてステアリルアクリレート50.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)200.0部、イソブチルアセテート50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 6.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例44の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は7900であり、SP値は9.2であった。
(Synthesis Example 44)
Using 120 parts of isobutyl acetate as a solvent (a-3) instead of the solvent (a-1) in Synthesis Example 1, and adding 50 parts of stearyl acrylate as a dropping solution (b-44) instead of the dropping solution (b-1). 0 parts, 200.0 parts of methoxypolyethylene glycol acrylate (trade name: Blemmer AME-400: manufactured by NOF Corporation), 50.0 parts of isobutyl acetate and tertiary-amylperoxy-2-ethylhexanoate 50% solution 6 A copolymer as a foam stabilizer of Synthesis Example 44 was obtained in the same manner as in Synthesis Example 1, except that 0.0 part was used and the reaction temperature during dropping was set to 130°C. The synthesized copolymer had a weight average molecular weight of 7900 and an SP value of 9.2.
(合成例45)
 合成例1の滴下溶液(b-1)の代わりに滴下溶液(b-45)としてエチルアクリレート212.5部、フェノキシエチルアクリレート(商品名 ビスコート#192:大阪有機化学工業株式会社製)37.5部、プロピレングリコールモノメチルエーテル100.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 25.0部を用い、滴下時の反応温度を105℃に設定した以外は、合成例1と同様の手法により、合成例45の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は3400であり、SP値は10.2であった。
(Synthesis Example 45)
Ethyl acrylate 212.5 parts as a dropping solution (b-45) instead of the dropping solution (b-1) of Synthesis Example 1, phenoxyethyl acrylate (trade name Viscoat # 192: manufactured by Osaka Organic Chemical Industry Co., Ltd.) 37.5 Parts, 100.0 parts of propylene glycol monomethyl ether and 25.0 parts of a 50% solution of tertiary-amyl peroxy-2-ethylhexanoate were used, and the reaction temperature during dropping was set to 105 ° C. Synthesis Example A copolymer as a foam stabilizer of Synthesis Example 45 was obtained in the same manner as in Example 1. The synthesized copolymer had a weight average molecular weight of 3400 and an SP value of 10.2.
(合成例46)
 合成例1の溶剤(a-1)の代わりに溶剤(a-3)としてイソブチルアセテート120部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-46)としてブチルアクリレート90.0部、メトキシポリエチレングリコールアクリレート(商品名 NKエステルAM-230G:新中村化学株式会社製)210.0部、イソブチルアセテート100.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 4.4部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、合成例46の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は14400であり、SP値は9.5であった。
(Synthesis Example 46)
120 parts of isobutyl acetate was used as the solvent (a-3) instead of the solvent (a-1) in Synthesis Example 1, and 90 parts of butyl acrylate was used as the dropping solution (b-46) instead of the dropping solution (b-1). 0 parts, 210.0 parts of methoxypolyethylene glycol acrylate (trade name NK Ester AM-230G: manufactured by Shin-Nakamura Chemical Co., Ltd.), 100.0 parts of isobutyl acetate and 50% of tertiary-amylperoxy-2-ethylhexanoate A copolymer as a foam stabilizer of Synthesis Example 46 was obtained in the same manner as in Synthesis Example 1, except that 4.4 parts of the solution was used and the reaction temperature during dropping was set to 130°C. The synthesized copolymer had a weight average molecular weight of 14400 and an SP value of 9.5.
(合成例47)
 合成例1の溶剤(a-1)の代わりに溶剤(a-4)としてトルエン200部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-47)としてラウリルメタクリレート18.8部、メトキシポリエチレングリコールメタクリレート(商品名 NKエステルM-40G:新中村化学株式会社製)43.8部、トルエン50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 0.4部を用い、滴下時の反応温度を90℃に設定した以外は、合成例1と同様の手法により、合成例47の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は67700であり、SP値は9.4であった。
(Synthesis Example 47)
Using 200 parts of toluene as a solvent (a-4) instead of the solvent (a-1) in Synthesis Example 1, dropping solution (b-1) instead of dropping solution (b-47) Lauryl methacrylate 18.8 Part, 43.8 parts of methoxypolyethylene glycol methacrylate (trade name NK Ester M-40G: manufactured by Shin-Nakamura Chemical Co., Ltd.), 50.0 parts of toluene and tertiary-amylperoxy-2-ethylhexanoate 50% solution 0 A copolymer as a foam stabilizer of Synthesis Example 47 was obtained in the same manner as in Synthesis Example 1, except that 4 parts were used and the reaction temperature during dropping was set to 90°C. The synthesized copolymer had a weight average molecular weight of 67700 and an SP value of 9.4.
(合成例48)
 合成例1の溶剤(a-1)の代わりに溶剤(a-4)としてトルエン400部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-48)としてラウリルメタクリレート37.5部、メトキシポリエチレングリコールメタクリレート(商品名 NKエステルM-40G:新中村化学株式会社製)87.5部、トルエン100.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 0.4部を用い、滴下時の反応温度を90℃に設定した以外は、合成例1と同様の手法により、合成例48の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は88300であり、SP値は9.4であった。
(Synthesis Example 48)
Using 400 parts of toluene as a solvent (a-4) instead of the solvent (a-1) in Synthesis Example 1, dropping solution (b-1) instead of dropping solution (b-48) Lauryl methacrylate 37.5 Part, 87.5 parts of methoxypolyethylene glycol methacrylate (trade name NK Ester M-40G: manufactured by Shin-Nakamura Chemical Co., Ltd.), 100.0 parts of toluene and tertiary-amylperoxy-2-ethylhexanoate 50% solution 0 A copolymer as a foam stabilizer of Synthesis Example 48 was obtained in the same manner as in Synthesis Example 1, except that 4 parts were used and the reaction temperature during dropping was set to 90°C. The synthesized copolymer had a weight average molecular weight of 88,300 and an SP value of 9.4.
(合成例49)
 合成例1の溶剤(a-1)の代わりに溶剤(a-3)としてイソブチルアセテート400部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-49)としてラウリルメタクリレート46.9部、メトキシポリエチレングリコールメタクリレート(商品名 NKエステルM-40G:新中村化学株式会社製)109.4部、イソブチルアセテート68.7部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 0.4部を用い、滴下時の反応温度を90℃に設定した以外は、合成例1と同様の手法により、合成例49の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は177100であり、SP値は9.4であった。
(Synthesis Example 49)
Using 400 parts of isobutyl acetate as a solvent (a-3) instead of the solvent (a-1) in Synthesis Example 1, and adding 46.5 parts of lauryl methacrylate as a dropping solution (b-49) instead of the dropping solution (b-1). 9 parts, 109.4 parts of methoxypolyethylene glycol methacrylate (trade name NK Ester M-40G: manufactured by Shin-Nakamura Chemical Co., Ltd.), 68.7 parts of isobutyl acetate and 50% of tertiary-amylperoxy-2-ethylhexanoate A copolymer as a foam stabilizer of Synthesis Example 49 was obtained in the same manner as in Synthesis Example 1 except that 0.4 parts of the solution was used and the reaction temperature during dropping was set to 90°C. The synthesized copolymer had a weight average molecular weight of 177,100 and an SP value of 9.4.
(合成例50)
 合成例1の溶剤(a-1)の代わりに溶剤(a-3)としてイソブチルアセテート400部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-50)としてラウリルメタクリレート46.9部、メトキシポリエチレングリコールメタクリレート(商品名 NKエステルM-40G:新中村化学株式会社製)109.4部、イソブチルアセテート100.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 0.3部を用い、滴下時の反応温度を85℃に設定した以外は、合成例1と同様の手法により、合成例50の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は296000であり、SP値は9.4であった。
(Synthesis Example 50)
Using 400 parts of isobutyl acetate as a solvent (a-3) instead of the solvent (a-1) in Synthesis Example 1, and adding 46.5 parts of lauryl methacrylate as a dropping solution (b-50) instead of the dropping solution (b-1). 9 parts, 109.4 parts of methoxypolyethylene glycol methacrylate (trade name NK Ester M-40G: manufactured by Shin-Nakamura Chemical Co., Ltd.), 100.0 parts of isobutyl acetate and 50% of tertiary-amylperoxy-2-ethylhexanoate A copolymer as a foam stabilizer of Synthesis Example 50 was obtained in the same manner as in Synthesis Example 1, except that 0.3 part of the solution was used and the reaction temperature during dropping was set to 85°C. The synthesized copolymer had a weight average molecular weight of 296,000 and an SP value of 9.4.
(合成例51)
 合成例1の溶剤(a-1)プロピレングリコールモノメチルエーテル400部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-51)としてイソステアリルアクリレート25.0部、2-ヒドロキシエチルアクリレート140.0部、ヒドロキシプロピルアクリレート60.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)25.0部、プロピレングリコールモノメチルエーテル150.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 15.0部を用い、滴下時の反応温度を120℃に設定した以外は、合成例1と同様の手法により、合成例51の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は2800であり、SP値は11.5であった。
(Synthesis Example 51)
Using 400 parts of the solvent (a-1) propylene glycol monomethyl ether of Synthesis Example 1, 25.0 parts of isostearyl acrylate as a dropping solution (b-51) instead of the dropping solution (b-1), 2-hydroxyethyl 140.0 parts of acrylate, 60.0 parts of hydroxypropyl acrylate, 25.0 parts of methoxypolyethylene glycol acrylate (trade name Blenmer AME-400: manufactured by NOF Corporation), 150.0 parts of propylene glycol monomethyl ether and tertiary amyl Using 15.0 parts of a 50% solution of peroxy-2-ethylhexanoate, the foam stabilizer of Synthesis Example 51 was prepared in the same manner as in Synthesis Example 1 except that the reaction temperature during dropping was set to 120 ° C. was obtained. The synthesized copolymer had a weight average molecular weight of 2800 and an SP value of 11.5.
(合成例52)
 合成例1の滴下溶液(b-1)の代わりに滴下溶液(b-52)としてイソステアリルアクリレート68.2部、2-ヒドロキシエチルアクリレート95.5部、ヒドロキシプロピルアクリレート40.9部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)68.2部、プロピレングリコールモノメチルエーテル100.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 10.0部を用い、滴下時の反応温度を120℃に設定した以外は、合成例1と同様の手法により、合成例52の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は4700であり、SP値は10.4であった。
(Synthesis Example 52)
68.2 parts of isostearyl acrylate, 95.5 parts of 2-hydroxyethyl acrylate, 40.9 parts of hydroxypropyl acrylate as a dropping solution (b-52) instead of the dropping solution (b-1) of Synthesis Example 1, methoxy polyethylene Glycol acrylate (trade name Blemmer AME-400: manufactured by NOF Corporation) 68.2 parts, propylene glycol monomethyl ether 100.0 parts and tertiary-amylperoxy-2-ethylhexanoate 50% solution 10.0 parts was used, and a copolymer as a foam stabilizer of Synthesis Example 52 was obtained in the same manner as in Synthesis Example 1, except that the reaction temperature during dropping was set to 120°C. The synthesized copolymer had a weight average molecular weight of 4700 and an SP value of 10.4.
(合成例53)
 合成例1の滴下溶液(b-1)の代わりに滴下溶液(b-53)としてイソステアリルアクリレート125.0部、2-ヒドロキシエチルアクリレート12.5部、ヒドロキシプロピルアクリレート5.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)107.5部、プロピレングリコールモノメチルエーテル100.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 15.0部を用い、滴下時の反応温度を120℃に設定した以外は、合成例1と同様の手法により、合成例53の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は2900であり、SP値は8.8であった。
(Synthesis Example 53)
125.0 parts of isostearyl acrylate, 12.5 parts of 2-hydroxyethyl acrylate, 5.0 parts of hydroxypropyl acrylate as a dropping solution (b-53) instead of the dropping solution (b-1) of Synthesis Example 1, methoxy polyethylene Glycol acrylate (trade name Blemmer AME-400: manufactured by NOF Corporation) 107.5 parts, propylene glycol monomethyl ether 100.0 parts and tertiary-amylperoxy-2-ethylhexanoate 50% solution 15.0 parts was used, and a copolymer as a foam stabilizer of Synthesis Example 53 was obtained in the same manner as in Synthesis Example 1, except that the reaction temperature during dropping was set to 120°C. The synthesized copolymer had a weight average molecular weight of 2900 and an SP value of 8.8.
(合成例54)
 合成例1の滴下溶液(b-1)の代わりに滴下溶液(b-54)としてイソステアリルアクリレート100.0部、2-ヒドロキシエチルアクリレート12.5部、ヒドロキシプロピルアクリレート5.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)132.5部、プロピレングリコールモノメチルエーテル100.0部および2,2-ジ(ターシャリー-アミルパーオキシ)ブタン 55%溶液 14.0部を用い、滴下時の反応温度を120℃に設定した以外は、合成例1と同様の手法により、合成例54の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は3800であり、SP値は8.9であった。
(Synthesis Example 54)
100.0 parts of isostearyl acrylate, 12.5 parts of 2-hydroxyethyl acrylate, 5.0 parts of hydroxypropyl acrylate as a dropping solution (b-54) instead of the dropping solution (b-1) of Synthesis Example 1, methoxy polyethylene Glycol acrylate (trade name: Blemmer AME-400: manufactured by NOF Corporation) 132.5 parts, 100.0 parts of propylene glycol monomethyl ether and 2,2-di(tertiary-amylperoxy)butane 55% solution 14.0 A copolymer as a foam stabilizer of Synthesis Example 54 was obtained in the same manner as in Synthesis Example 1, except that the reaction temperature during dropping was set to 120°C. The synthesized copolymer had a weight average molecular weight of 3800 and an SP value of 8.9.
(合成例55)
 合成例1の溶剤(a-1)プロピレングリコールモノメチルエーテル400部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-55)としてイソステアリルアクリレート37.5部、2-ヒドロキシエチルアクリレート112.5部、ヒドロキシプロピルアクリレート50.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)50.0部、プロピレングリコールモノメチルエーテル150.0部および2,2-ジ(ターシャリー-アミルパーオキシ)ブタン 55%溶液 15.0部を用い、滴下時の反応温度を120℃に設定した以外は、合成例1と同様の手法により、合成例55の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は3500であり、SP値は10.9であった。
(Synthesis Example 55)
Using 400 parts of the solvent (a-1) propylene glycol monomethyl ether of Synthesis Example 1, 37.5 parts of isostearyl acrylate as a dropping solution (b-55) instead of the dropping solution (b-1), 2-hydroxyethyl 112.5 parts of acrylate, 50.0 parts of hydroxypropyl acrylate, 50.0 parts of methoxypolyethylene glycol acrylate (trade name Blenmer AME-400: manufactured by NOF Corporation), 150.0 parts of propylene glycol monomethyl ether and 2,2- The foam stabilizer of Synthesis Example 55 was prepared in the same manner as in Synthesis Example 1, except that 15.0 parts of a 55% solution of di(tertiary-amylperoxy)butane was used and the reaction temperature during dropping was set to 120 ° C. A copolymer was obtained as The synthesized copolymer had a weight average molecular weight of 3500 and an SP value of 10.9.
(合成例56)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート200部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-56)としてラウリルメタクリレート75.0部、メトキシポリエチレングリコールメタクリレート(商品名 NKエステルM-40G:新中村化学株式会社製)175.0部、ブチルアセテート100.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 20.0部を用い、滴下時の反応温度を120℃に設定した以外は、合成例1と同様の手法により、合成例56の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は9200であり、SP値は9.4であった。
(Synthesis Example 56)
Using 200 parts of butyl acetate as a solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and adding 75 parts of lauryl methacrylate as a dropping solution (b-56) instead of the dropping solution (b-1). 0 parts, 175.0 parts of methoxypolyethylene glycol methacrylate (trade name NK Ester M-40G: manufactured by Shin-Nakamura Chemical Co., Ltd.), 100.0 parts of butyl acetate and 50% tertiary-amylperoxy-2-ethylhexanoate A copolymer as a foam stabilizer of Synthesis Example 56 was obtained in the same manner as in Synthesis Example 1, except that 20.0 parts of the solution was used and the reaction temperature during dropping was set to 120°C. The weight average molecular weight of the synthesized copolymer was 9200 and the SP value was 9.4.
(合成例57)
 合成例1の溶剤(a-1)プロピレングリコールモノメチルエーテル400部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-57)としてイソステアリルアクリレート50.0部、2-ヒドロキシエチルアクリレート97.5部、ヒドロキシプロピルアクリレート40.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)62.5部、プロピレングリコールモノメチルエーテル150.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 15.0部を用い、滴下時の反応温度を120℃に設定した以外は、合成例1と同様の手法により、合成例57の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は2500であり、SP値は10.6であった。
(Synthesis Example 57)
Using 400 parts of the solvent (a-1) propylene glycol monomethyl ether of Synthesis Example 1, 50.0 parts of isostearyl acrylate as a dropping solution (b-57) instead of the dropping solution (b-1), 2-hydroxyethyl 97.5 parts of acrylate, 40.0 parts of hydroxypropyl acrylate, 62.5 parts of methoxypolyethylene glycol acrylate (trade name Blenmer AME-400: manufactured by NOF Corporation), 150.0 parts of propylene glycol monomethyl ether and tertiary amyl Using 15.0 parts of a 50% solution of peroxy-2-ethylhexanoate, the foam stabilizer of Synthesis Example 57 was prepared in the same manner as in Synthesis Example 1 except that the reaction temperature during dropping was set to 120 ° C. was obtained. The synthesized copolymer had a weight average molecular weight of 2500 and an SP value of 10.6.
(合成例58)
 合成例1の溶剤(a-1)プロピレングリコールモノメチルエーテル400部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-58)としてイソステアリルアクリレート75.0部、2-ヒドロキシエチルアクリレート62.5部、ヒドロキシプロピルアクリレート25.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)87.5部、プロピレングリコールモノメチルエーテル150.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 15.0部を用い、滴下時の反応温度を120℃に設定した以外は、合成例1と同様の手法により、合成例58の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は2600であり、SP値は9.9であった。
(Synthesis Example 58)
Using 400 parts of the solvent (a-1) propylene glycol monomethyl ether of Synthesis Example 1, 75.0 parts of isostearyl acrylate as a dropping solution (b-58) instead of the dropping solution (b-1), 2-hydroxyethyl 62.5 parts of acrylate, 25.0 parts of hydroxypropyl acrylate, 87.5 parts of methoxypolyethylene glycol acrylate (trade name Blenmer AME-400: manufactured by NOF Corporation), 150.0 parts of propylene glycol monomethyl ether and tertiary amyl Using 15.0 parts of a 50% solution of peroxy-2-ethylhexanoate, the foam stabilizer of Synthesis Example 58 was prepared in the same manner as in Synthesis Example 1 except that the reaction temperature during dropping was set to 120 ° C. was obtained. The synthesized copolymer had a weight average molecular weight of 2600 and an SP value of 9.9.
(合成例59)
 合成例1の溶剤(a-1)プロピレングリコールモノメチルエーテル250部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-59)としてイソステアリルアクリレート87.5部、2-ヒドロキシエチルアクリレート35.0部、ヒドロキシプロピルアクリレート15.0部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)112.5部、プロピレングリコールモノメチルエーテル100.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 15.0部を用い、滴下時の反応温度を120℃に設定した以外は、合成例1と同様の手法により、合成例59の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は2900であり、SP値は9.4であった。
(Synthesis Example 59)
Using 250 parts of the solvent (a-1) propylene glycol monomethyl ether of Synthesis Example 1, 87.5 parts of isostearyl acrylate as a dropping solution (b-59) instead of the dropping solution (b-1), 2-hydroxyethyl 35.0 parts of acrylate, 15.0 parts of hydroxypropyl acrylate, 112.5 parts of methoxypolyethylene glycol acrylate (trade name Blenmer AME-400: manufactured by NOF Corporation), 100.0 parts of propylene glycol monomethyl ether and tertiary amyl Using 15.0 parts of a 50% solution of peroxy-2-ethylhexanoate, the foam stabilizer of Synthesis Example 59 was prepared in the same manner as in Synthesis Example 1 except that the reaction temperature during dropping was set to 120 ° C. was obtained. The synthesized copolymer had a weight average molecular weight of 2900 and an SP value of 9.4.
(合成例60)
 合成例1の溶剤(a-1)プロピレングリコールモノメチルエーテル250部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-60)としてイソステアリルアクリレート85.0部、2-ヒドロキシエチルアクリレート17.5部、ヒドロキシプロピルアクリレート7.5部、メトキシポリエチレングリコールアクリレート(商品名 ブレンマーAME-400:株式会社日油製)140.0部、プロピレングリコールモノメチルエーテル50.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 15.0部を用い、滴下時の反応温度を120℃に設定した以外は、合成例1と同様の手法により、合成例60の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は2700であり、SP値は9.1であった。
(Synthesis Example 60)
Using 250 parts of the solvent (a-1) propylene glycol monomethyl ether of Synthesis Example 1, 85.0 parts of isostearyl acrylate as a dropping solution (b-60) instead of the dropping solution (b-1), 2-hydroxyethyl 17.5 parts of acrylate, 7.5 parts of hydroxypropyl acrylate, 140.0 parts of methoxypolyethylene glycol acrylate (trade name Blenmer AME-400: manufactured by NOF Corporation), 50.0 parts of propylene glycol monomethyl ether and tertiary amyl Using 15.0 parts of a 50% solution of peroxy-2-ethylhexanoate, the foam stabilizer of Synthesis Example 60 was prepared in the same manner as in Synthesis Example 1 except that the reaction temperature during dropping was set to 120 ° C. was obtained. The synthesized copolymer had a weight average molecular weight of 2700 and an SP value of 9.1.
(整泡剤比較例1)
 合成例1の溶剤(a-1)の代わりに溶剤(a-2)としてブチルアセテート150部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-h1)としてイソステアリルアクリレート293.0部、ブチルアセテート30.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 2.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、整泡剤比較例1の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は4600であり、SP値は8.2であった。
(Foam Stabilizer Comparative Example 1)
Using 150 parts of butyl acetate as a solvent (a-2) instead of the solvent (a-1) in Synthesis Example 1, and isostearyl acrylate 293 as a dropping solution (b-h1) instead of the dropping solution (b-1) .0 parts, 30.0 parts of butyl acetate and 2.0 parts of a 50% solution of tertiary-amylperoxy-2-ethylhexanoate, except that the reaction temperature during dropping was set to 130 ° C. Synthesis Example A copolymer as a foam stabilizer in Foam Stabilizer Comparative Example 1 was obtained in the same manner as in Example 1. The synthesized copolymer had a weight average molecular weight of 4600 and an SP value of 8.2.
(比較合成例2)
 合成例1の溶剤(a-1)プロピレングリコールモノメチルエーテル400部を用いて、滴下溶液(b-1)の代わりに滴下溶液(b-h2)として2-ヒドロキシエチルアクリレート175.0部、ヒドロキシプロピルアクリレート75.0部、プロピレングリコールモノメチルエーテル150.0部およびターシャリー-アミルパーオキシ-2-エチルヘキサノエイト50%溶液 15.0部を用い、滴下時の反応温度を130℃に設定した以外は、合成例1と同様の手法により、整泡剤比較例2の整泡剤としての共重合体を得た。合成した共重合体の重量平均分子量は2400であり、SP値は12.3であった。
(Comparative Synthesis Example 2)
Using 400 parts of the solvent (a-1) propylene glycol monomethyl ether of Synthesis Example 1, 175.0 parts of 2-hydroxyethyl acrylate as a dropping solution (b-h2) instead of the dropping solution (b-1), hydroxypropyl 75.0 parts of acrylate, 150.0 parts of propylene glycol monomethyl ether and 15.0 parts of tertiary-amyl peroxy-2-ethylhexanoate 50% solution were used, except that the reaction temperature during dropping was set to 130 ° C. obtained a copolymer as a foam stabilizer in Foam Stabilizer Comparative Example 2 in the same manner as in Synthesis Example 1. The synthesized copolymer had a weight average molecular weight of 2400 and an SP value of 12.3.
(整泡剤比較例3)
 整泡剤比較例3の整泡剤として、シリコーン系整泡剤(商品名 SH193:ダウ・東レ株式会社製)を準備した。
(Foam Stabilizer Comparative Example 3)
Foam Stabilizer As a foam stabilizer in Comparative Example 3, a silicone-based foam stabilizer (trade name SH193: manufactured by Dow Toray Industries, Inc.) was prepared.
(整泡剤比較例4)
 整泡剤比較例4の整泡剤として、シリコーン系整泡剤(商品名 L-3184J:モメンティブ社製)を準備した。
(Foam Stabilizer Comparative Example 4)
Foam Stabilizer As a foam stabilizer in Comparative Example 4, a silicone foam stabilizer (trade name: L-3184J, manufactured by Momentive) was prepared.
 以上のようにして合成した合成例1~60および整泡剤比較例1~2の組成および物性を表1に示す。 Table 1 shows the compositions and physical properties of Synthesis Examples 1-60 and Foam Stabilizer Comparative Examples 1-2 synthesized as described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[ポリウレタンフォームの作製]
 次に、上述したようにして得られた合成例1~60および整泡剤比較例1~4の整泡剤を用い、下記表2に示すポリウレタンフォーム原料の配合にて、実施例および比較例のポリウレタンフォームを作製した。なお、後述する試験例1~3において、それぞれ、整泡剤を含有しない「blank」としてのポリウレタンフォームも作製した。具体的には、以下のようにしてポリウレタンフォームを作製した。
[Preparation of polyurethane foam]
Next, using the foam stabilizers of Synthesis Examples 1 to 60 and Foam Stabilizer Comparative Examples 1 to 4 obtained as described above, the polyurethane foam raw materials shown in Table 2 below were blended in Examples and Comparative Examples. of polyurethane foam was produced. In addition, in Test Examples 1 to 3 described later, polyurethane foams as "blanks" containing no foam stabilizer were also produced. Specifically, a polyurethane foam was produced as follows.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(原料)
 表2に示すように、ポリオールとしては、2種類のポリエステルポリオール、具体的には、川崎化成工業株式会社製のRFK-505(水酸基価:250mgKOH/g、OH当量:224.40) 13.75部と、King Industries社製のFLEXOREZ A308(水酸基価:260mgKOH/g、OH当量:215.77) 17.00部を用いた。これらのポリオール(混合物)のSP値は、11.9(濁点滴定法による測定値)であった。
(material)
As shown in Table 2, as polyols, two types of polyester polyols, specifically RFK-505 manufactured by Kawasaki Kasei Co., Ltd. (hydroxyl value: 250 mg KOH / g, OH equivalent: 224.40) 13.75 and 17.00 parts of FLEXOREZ A308 (hydroxyl value: 260 mgKOH/g, OH equivalent: 215.77) manufactured by King Industries. The SP value of these polyols (mixture) was 11.9 (measured by turbidity point titration method).
 また、発泡剤として、水 0.60部およびシクロペンタン(東京化成工業株式会社製) 4.00部を用いた。 Also, 0.60 parts of water and 4.00 parts of cyclopentane (manufactured by Tokyo Chemical Industry Co., Ltd.) were used as foaming agents.
 また、三量化触媒として、東ソー株式会社製のTOYOCAT TR-20 0.70部と、東京化成工業株式会社製の2-エチルヘキサン酸カリウム 0.50部を用い、樹脂化触媒(金属触媒)として、King Industries社製のK-KAT 348 0.10部を用い、泡化触媒として、東京化成工業株式会社製のテトラメチルエチレンジアミン 0.60部を用いた。 Also, as a trimerization catalyst, 0.70 parts of TOYOCAT TR-20 manufactured by Tosoh Corporation and 0.50 parts of potassium 2-ethylhexanoate manufactured by Tokyo Chemical Industry Co., Ltd. were used, and as a resinification catalyst (metal catalyst) , 0.10 parts of K-KAT 348 manufactured by King Industries, and 0.60 parts of tetramethylethylenediamine manufactured by Tokyo Chemical Industry Co., Ltd. was used as a foaming catalyst.
 さらに、ポリイソシアネートとしては、ポリMDI(ジフェニルメタンジイソシアネート)である東ソー株式会社製のミリオネートMR-200(NCO含有率:31%、NCO当量:135.48)を用いた。 Furthermore, as the polyisocyanate, Millionate MR-200 (NCO content: 31%, NCO equivalent: 135.48) manufactured by Tosoh Corporation, which is poly-MDI (diphenylmethane diisocyanate), was used.
 なお、表2に示す配合で得られるポリウレタンフォームのイソシアネートインデックスは450である。 The isocyanate index of the polyurethane foam obtained with the formulation shown in Table 2 is 450.
(作製方法)
 表2のパートAに記載の各原料および合成例1~60および整泡剤比較例1~4のいずれかの整泡剤を順次加え、ラボディスパーを用いて撹拌しながら混合した。次に、表2のパートAに記載の各原料を合計で18.6gおよび上記の整泡剤(ポリオール混合物Mo)と、表2のパートBに記載のポリイソシアネート 52.9gを順次ポリカップに加え、手撹拌により撹拌しながら混合した。なお、整泡剤は、ポリウレタンフォーム原料の合計量(パートAに記載の各原料とパートBに記載のポリイソシアネートと整泡剤の合計量)を基準として、後述する表3~表5に記載された添加量(質量%)で配合した。
(Manufacturing method)
Each raw material described in Part A of Table 2 and any of the foam stabilizers of Synthesis Examples 1 to 60 and Foam Stabilizer Comparative Examples 1 to 4 were sequentially added and mixed with stirring using a Lab Disper. Next, a total of 18.6 g of each raw material listed in Part A of Table 2, the above foam stabilizer (polyol mixture Mo), and 52.9 g of the polyisocyanate listed in Part B of Table 2 are sequentially added to the polycup. were mixed while stirring by hand stirring. The foam stabilizer is described in Tables 3 to 5 below, based on the total amount of polyurethane foam raw materials (the total amount of each raw material described in Part A and the polyisocyanate and foam stabilizer described in Part B). It was blended in the specified amount (% by mass).
[整泡能および接着力の付与効果評価方法]
 上述したようにして作製したポリウレタンフォームについて、発泡剤の整泡能およびポリウレタンフォームへの接着力の付与効果を評価した。
[Method for evaluating effect of imparting foam stabilizing ability and adhesive strength]
The foam stabilizing ability of the blowing agent and the effect of imparting adhesive strength to the polyurethane foam were evaluated for the polyurethane foam produced as described above.
(整泡能の評価)
 上述したようにして得られたポリウレタンフォームの嵩高さ(発泡容積)および気泡径を測定することにより、合成例および整泡剤比較例の整泡剤の整泡能を評価した。ポリウレタンフォームの嵩高さが大きいほど、また、ポリウレタンフォームの気泡径が小さいほど整泡能に優れた整泡剤となる。ポリウレタンフォームの嵩高さおよび気泡径は、具体的には、以下の基準で評価した。なお、ポリウレタンフォームの気泡径は、得られたポリウレタンフォームのサンプル断面の顕微鏡観察により測定した。
<ポリウレタンフォームの嵩高さ(フォーム嵩)>
  5 発泡容積が1200mL以上
  4 発泡容積が1000mL以上1200mL未満
  3 発泡容積が800mL以上1000mL未満
  2 発泡容積が600mL以上800mL未満
  1 発泡容積が600mL未満
<ポリウレタンフォームの気泡径>
  5 気泡径が0.5mm未満
  4 気泡径が0.5mm以上1.0mm未満
  3 気泡径が1.0mm以上2.0mm未満
  2 気泡径が2.0mm以上3.0mm未満
  1 気泡径が3.0mm以上
(Evaluation of foam stabilizing ability)
The foam stabilizing ability of the foam stabilizers of Synthesis Examples and Foam Stabilizer Comparative Examples was evaluated by measuring the bulkiness (foam volume) and cell diameter of the polyurethane foams obtained as described above. The larger the bulkiness of the polyurethane foam and the smaller the cell diameter of the polyurethane foam, the more excellent the foam stabilizer becomes. Specifically, the bulkiness and cell diameter of the polyurethane foam were evaluated according to the following criteria. The cell diameter of the polyurethane foam was measured by microscopic observation of the cross section of the obtained polyurethane foam sample.
<Bulk height of polyurethane foam (foam volume)>
5 Foaming volume of 1200 mL or more 4 Foaming volume of 1000 mL or more and less than 1200 mL 3 Foaming volume of 800 mL or more and less than 1000 mL 2 Foaming volume of 600 mL or more and less than 800 mL 1 Foaming volume of less than 600 mL <Polyurethane foam cell diameter>
5 Bubble diameter is less than 0.5 mm 4 Bubble diameter is 0.5 mm or more and less than 1.0 mm 3 Bubble diameter is 1.0 mm or more and less than 2.0 mm 2 Bubble diameter is 2.0 mm or more and less than 3.0 mm 1 Bubble diameter is 3.0 mm or more. 0 mm or more
 (接着力の評価)
 図1に示すように、ポリウレタンフォームを接着させる厚さ2mmの基材1a、1b(2枚)を、スペーサ2を介して所定の間隙を有するように治具(図示せず。)に設置した。次に、治具に設置した2枚の基材間の間隙に、上述したようにして得られたポリウレタンフォーム原料のウレタン原料混合物Mu(混合溶液)を注入し、基材1aと基材1bとをポリウレタンフォーム3により貼り合わせることで、引張せん断試験片Pを作製した。この試験片を20℃で2日間静置した後、引張せん断接着強さを測定した。なお、図1(a)は、引張せん断試験片Pの側面図であり、図1(b)は、引張せん断試験片Pの上面図である。また、実際には、引張せん断試験片Pの上面からポリウレタンフォーム3を視認することはできないが、図1(b)においては、ポリウレタンフォーム3の位置を示すため、ポリウレタンフォーム3を破線にて模式的に示している。
(Evaluation of adhesive strength)
As shown in FIG. 1, base materials 1a and 1b (two sheets) having a thickness of 2 mm to which polyurethane foam is to be adhered were placed on a jig (not shown) with a spacer 2 interposed therebetween so as to have a predetermined gap. . Next, the urethane raw material mixture Mu (mixed solution) of the polyurethane foam raw materials obtained as described above is injected into the gap between the two substrates placed on the jig to form the substrate 1a and the substrate 1b. A tensile shear test piece P was prepared by laminating with a polyurethane foam 3. After allowing the test piece to stand at 20° C. for 2 days, the tensile shear bond strength was measured. 1(a) is a side view of the tensile shear test piece P, and FIG. 1(b) is a top view of the tensile shear test piece P. As shown in FIG. Although the polyurethane foam 3 cannot actually be seen from the upper surface of the tensile shear test piece P, in FIG. clearly shown.
 引張せん断接着強さは、テンシロンRTE-1210引張試験機(株式会社エー・アンド・デイ社製)を用いて測定した。具体的には、試験片Pの両端を上記の引張試験機に固定し、引張速度10mm/min(移動速度一定)にて引っ張り、試験片Pが破壊されるまでの最大荷重F(N)を測定した。この最大荷重F(N)を試験片Pの断面積A(mm)で除し、下記式(3)により接着強さS(kPa)を求めた。
  S=F/A・10 (3)
The tensile shear bond strength was measured using a Tensilon RTE-1210 tensile tester (manufactured by A&D Co., Ltd.). Specifically, both ends of the test piece P are fixed to the above tensile tester, pulled at a tensile speed of 10 mm / min (constant moving speed), and the maximum load F (N) until the test piece P is destroyed It was measured. This maximum load F (N) was divided by the cross-sectional area A (mm 2 ) of the test piece P, and the bonding strength S (kPa) was determined by the following formula (3).
S=F/A·10 3 (3)
 以上のようにして求めた接着強さS(kPa)に基づき、以下の基準でポリウレタンフォームの基材に対する接着力を評価した。
  5 接着強さSが140kPa以上
  4 接着強さSが120kPa以上140kPa未満
  3 接着強さSが100kPa以上120kPa未満
  2 接着強さSが80kPa以上100kPa未満
  1 接着強さSが80kPa未満
Based on the adhesive strength S (kPa) obtained as described above, the adhesive strength of the polyurethane foam to the substrate was evaluated according to the following criteria.
5 Adhesion strength S is 140 kPa or more 4 Adhesion strength S is 120 kPa or more and less than 140 kPa 3 Adhesion strength S is 100 kPa or more and less than 120 kPa 2 Adhesion strength S is 80 kPa or more and less than 100 kPa 1 Adhesion strength S is less than 80 kPa
[試験例1:ポリウレタンフォームをポリプロピレン樹脂基材に接着した例]
 試験例1は、合成例1~60および整泡剤比較例1~4の整泡剤を下記表3に記載の配合量(質量%)で配合したポリウレタンフォーム原料のウレタン原料混合物Muを用いて作製された実施例1-1~1-64および比較例1-1~1-4のポリウレタンフォームの性能を評価した例である。本試験例では、上述した方法により実施例1-1~1-64および比較例1-1~1-4で用いた整泡剤の整泡能を評価するとともに、上記引張せん断試験片Pの基材1a、1bとしてポリプロピレン(PP)樹脂を用い、ポリウレタンフォーム3の基材1a、1bに対する接着力を評価した。これらの評価結果を表3に示す。
[Test Example 1: Example of adhering polyurethane foam to a polypropylene resin substrate]
In Test Example 1, the foam stabilizers of Synthesis Examples 1 to 60 and Foam Stabilizer Comparative Examples 1 to 4 were blended in the amounts (% by mass) shown in Table 3 below, using a urethane raw material mixture Mu of polyurethane foam raw materials. This is an example of evaluating the performance of the polyurethane foams produced in Examples 1-1 to 1-64 and Comparative Examples 1-1 to 1-4. In this test example, the foam stabilizing ability of the foam stabilizers used in Examples 1-1 to 1-64 and Comparative Examples 1-1 to 1-4 was evaluated by the method described above. Polypropylene (PP) resin was used as the substrates 1a and 1b, and the adhesion of the polyurethane foam 3 to the substrates 1a and 1b was evaluated. These evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3に示すように、実施例1-1~1-64のポリウレタンフォームについては、いずれも、実用レベル(評価2以上)の整泡能および接着力を有していた。 As shown in Table 3, all of the polyurethane foams of Examples 1-1 to 1-64 had foam stabilizing ability and adhesion at a practical level (evaluation of 2 or higher).
 ここで、実施例1-39、1-40および1-43の比較から、重合性不飽和モノマー(A)として、一般式(1)のR1がアクリル基である重合性不飽和モノマーを単独で用いた場合、R1がアクリル基である重合性不飽和モノマーとR1がビニルエーテル基である重合性不飽和モノマーを併用した場合、およびR1がアクリル基である重合性不飽和モノマーとR1がアリル基である重合性不飽和モノマーを併用した場合のいずれも、優れた整泡能を有し、かつ、PP樹脂のような難接着基材に対しても高い接着力を有することがわかる。これらの中でも、重合性不飽和モノマー(A)として、一般式(1)のR1がアクリル基である重合性不飽和モノマーを単独で用いた場合に、他の重合性不飽和モノマーと併用した場合よりも難接着基材に対する高い接着力を有していた。 Here, from a comparison of Examples 1-39, 1-40 and 1-43, as the polymerizable unsaturated monomer (A), a polymerizable unsaturated monomer in which R1 in general formula (1) is an acrylic group was used alone. When the polymerizable unsaturated monomer in which R1 is an acrylic group and the polymerizable unsaturated monomer in which R1 is a vinyl ether group are used in combination, and when the polymerizable unsaturated monomer in which R1 is an acrylic group and the polymerizable unsaturated monomer in which R1 is an allyl group are used in combination, It can be seen that all of the cases in which a certain polymerizable unsaturated monomer is used in combination have excellent foam stabilizing ability and high adhesion even to difficult-to-adhere substrates such as PP resin. Among them, as the polymerizable unsaturated monomer (A), when a polymerizable unsaturated monomer in which R1 in the general formula (1) is an acrylic group is used alone, when used in combination with other polymerizable unsaturated monomers It had a higher adhesive strength to difficult-to-adhere substrates.
 次に、実施例1-43と1-44との比較から、重合性不飽和モノマー(B)が有する疎水基の炭素数が大きい方が、整泡能が高くなる一方で、接着力が低下することがわかるまた。実施例1-21と1-44との比較から、重合性不飽和モノマー(B)が有する疎水基が分岐鎖を有することにより、整泡能がやや低下する一方で、接着力が高くなることがわかる。これは、直鎖の疎水基の方がPP樹脂のような難接着基材の表面との親和性が低下することに起因すると推測される。 Next, from a comparison of Examples 1-43 and 1-44, the larger the number of carbon atoms in the hydrophobic group of the polymerizable unsaturated monomer (B), the higher the foam stabilizing ability, but the lower the adhesive strength. Also found to be. From a comparison between Examples 1-21 and 1-44, it can be seen that the presence of a branched chain in the hydrophobic group of the polymerizable unsaturated monomer (B) slightly reduces the foam stabilizing ability, while increasing the adhesive force. I understand. This is presumed to be due to the fact that the straight-chain hydrophobic group has lower affinity with the surface of the difficult-to-adhere base material such as PP resin.
 次に、実施例1-22および1-61~64の比較から、整泡剤の配合量が多くなるほど、整泡能は高くなる一方で、接着力が低下することがわかる。整泡能を高めるという観点からは、整泡剤の配合量が0.7質量%以上であることが好ましく、1.5質量%以上であることがより好ましい。また、接着力を高めるという観点からは、整泡剤の配合量が2.5質量%以下であることが好ましく、1.5質量%以下であることがより好ましく、0.7質量%以下であることがさらに好ましい。 Next, from a comparison of Examples 1-22 and 1-61 to 1-64, it can be seen that the more the amount of the foam stabilizer added, the higher the foam-stabilizing ability, but the lower the adhesive strength. From the viewpoint of enhancing the foam stabilizing ability, the amount of the foam stabilizer is preferably 0.7% by mass or more, more preferably 1.5% by mass or more. In addition, from the viewpoint of increasing the adhesive strength, the amount of the foam stabilizer is preferably 2.5% by mass or less, more preferably 1.5% by mass or less, and 0.7% by mass or less. It is even more preferable to have
 次に、実施例1-51~55および1-57~60の比較から、整泡剤のSP値は、ポリオールのSP値よりも低く、かつ、そのSP値の差は1.0以上2.8以下である場合に、良好な(評価3以上の)接着力を保持したまま、整泡能を高めることができる。整泡能をさらに高めるという観点からは、SP値の差が1.3以上であることがより好ましく、1.5以上2.0以下であることがさらに好ましい。 Next, from a comparison of Examples 1-51 to 1-55 and 1-57 to 60, the SP value of the foam stabilizer is lower than the SP value of the polyol, and the difference between the SP values is 1.0 or more. When it is 8 or less, the foam stabilizing ability can be enhanced while maintaining good adhesive strength (evaluation of 3 or more). From the viewpoint of further increasing the foam stabilizing ability, the SP value difference is more preferably 1.3 or more, and further preferably 1.5 or more and 2.0 or less.
 次に、実施例1-26、1-27、1-47~50および1-56の比較から、整泡剤として用いる共重合体の重量平均分子量は、5000~500000のときに、実用レベル以上の難接着基材への接着力を保持したまま、高い整泡能を有することがわかる。なお、重量平均分子量が500000を超えると、高い整泡能は有するものの、分散不良物(未分散凝集物)が発生し(実施例1-27を参照)、整泡剤の効果が十分に発揮されない可能性があるため、重量平均分子量は500000以下であることが好ましい。 Next, from a comparison of Examples 1-26, 1-27, 1-47 to 50 and 1-56, the weight average molecular weight of the copolymer used as a foam stabilizer is above the practical level when it is 5000 to 500000. It can be seen that it has a high foam stabilizing ability while maintaining adhesive strength to difficult-to-adhere substrates. When the weight-average molecular weight exceeds 500,000, although it has a high foam stabilizing ability, poorly dispersed substances (undispersed aggregates) are generated (see Example 1-27), and the effect of the foam stabilizing agent is sufficiently exhibited. Therefore, the weight average molecular weight is preferably 500,000 or less.
 実施例6は、重合性不飽和モノマー(B)として疎水基に分岐部が多いものを使用した例である。このように、疎水基に分岐部を多く有すると、疎水基が表面に配向しやすくなるため、難接着基材への接着力が比較的低いものとなった。これに対して、実施例38は、実施例6と同じ重合性不飽和モノマー(B)を用い、かつ、重合性不飽和モノマー(B)の配合量を実施例6よりも少なくした例である。その結果、整泡能はやや低下したが、難接着基材への接着力が大幅に改善されていることがわかる。 Example 6 is an example in which a polymerizable unsaturated monomer (B) having many branched hydrophobic groups is used. Thus, when the hydrophobic group has a large number of branched portions, the hydrophobic group tends to be oriented on the surface, resulting in relatively low adhesion to the difficult-to-adhere base material. On the other hand, Example 38 is an example in which the same polymerizable unsaturated monomer (B) as in Example 6 is used, and the blending amount of the polymerizable unsaturated monomer (B) is less than in Example 6. . As a result, it can be seen that although the foam stabilizing ability was slightly lowered, the adhesive strength to difficult-to-adhere substrates was greatly improved.
 実施例14は、重合性不飽和モノマー(B)の配合量が60%と多い例である。そのため、実施例14は、整泡能は高いものの、難接着基材への接着力が比較的低い結果となった。これに対して、実施例46は、実施例14と同じ重合性不飽和モノマー(B)を用い、かつ、重合性不飽和モノマー(B)の配合量を実施例14よりも少なくした例である。その結果、整泡能はやや低下したが、難接着基材への接着力が大幅に改善されていることがわかる。 Example 14 is an example in which the blending amount of the polymerizable unsaturated monomer (B) is as large as 60%. Therefore, in Example 14, although the foam stabilizing ability was high, the adhesion to the difficult-to-bond substrate was relatively low. On the other hand, Example 46 is an example in which the same polymerizable unsaturated monomer (B) as in Example 14 is used, and the blending amount of the polymerizable unsaturated monomer (B) is less than in Example 14. . As a result, it can be seen that although the foam stabilizing ability was slightly lowered, the adhesive strength to difficult-to-adhere substrates was greatly improved.
 一方、重合性不飽和モノマー(A)を配合せずに合成した整泡剤を使用した比較例1-1は、整泡能および難接着基材への接着力のいずれも劣る結果となった。また、重合性不飽和モノマー(B)を配合せずに合成した整泡剤を使用した比較例1-2は、整泡能に劣る結果となった。さらに、シリコーン系整泡剤を使用した比較例1-3および1-4は、難接着基材への接着力に劣る結果となった。 On the other hand, Comparative Example 1-1, which used a foam stabilizer synthesized without blending the polymerizable unsaturated monomer (A), resulted in inferior foam stabilizing ability and adhesive strength to difficult-to-adhere substrates. . Further, Comparative Example 1-2, which used a foam stabilizer synthesized without blending the polymerizable unsaturated monomer (B), resulted in inferior foam-stabilizing performance. Furthermore, Comparative Examples 1-3 and 1-4 using a silicone-based foam stabilizer resulted in poor adhesion to difficult-to-adhere substrates.
[試験例2:ポリウレタンフォームをポリエチレン樹脂基材に接着した例]
 試験例2は、合成例2、5、7、9、10、13、15、21、22、25、28、34および整泡剤比較例1、3の整泡剤を下記表4に記載の配合量(質量%)で配合したポリウレタンフォーム原料のウレタン原料混合物Muを用いて作製された実施例2-1~2-12および比較例2-1~2-2のポリウレタンフォームの性能を評価した例である。本試験例では、上述した方法により実施例2-1~2-12および比較例2-1~2-2について、上記引張せん断試験片Pの基材1a、1bとしてポリエチレン(PE)樹脂を用い、ポリウレタンフォーム3の基材1a、1bに対する接着力を評価した。これらの評価結果を表4に示す。
[Test Example 2: Example of adhering polyurethane foam to a polyethylene resin substrate]
In Test Example 2, the foam stabilizers of Synthesis Examples 2, 5, 7, 9, 10, 13, 15, 21, 22, 25, 28, and 34 and Foam Stabilizer Comparative Examples 1 and 3 were used as shown in Table 4 below. The performance of the polyurethane foams of Examples 2-1 to 2-12 and Comparative Examples 2-1 to 2-2 prepared using the urethane raw material mixture Mu of the polyurethane foam raw material blended in the compounding amount (% by mass) was evaluated. For example. In this test example, polyethylene (PE) resin was used as the substrates 1a and 1b of the tensile shear test piece P for Examples 2-1 to 2-12 and Comparative Examples 2-1 to 2-2 by the method described above. , the adhesive strength of the polyurethane foam 3 to the substrates 1a and 1b was evaluated. These evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表4に示すように、PE樹脂を基材として用いた場合は、PP樹脂を基材として用いた場合(試験例1)と比較して全体的に難接着基材への接着力が劣っていたが、試験例1の場合とほぼ同様の傾向を示していた。 As shown in Table 4, when the PE resin was used as the base material, the adhesive strength to the hard-to-bond base material was generally inferior to that when the PP resin was used as the base material (Test Example 1). However, almost the same tendency as in Test Example 1 was shown.
[試験例3:ポリウレタンフォームをポリアセタール樹脂基材に接着した参考例]
 試験例3は、合成例16、21、25、34および整泡剤比較例3、4の整泡剤を下記表5に記載の配合量(質量%)で配合したポリウレタンフォーム原料のウレタン原料混合物Muを用いて作製された参考例3-1~3-6のポリウレタンフォームの性能を評価した例である。本試験例では、上述した方法により参考例3-1~3-6について、上記引張せん断試験片Pの基材1a、1bとしてポリアセタール(POM)樹脂を用い、ポリウレタンフォーム3の基材1a、1bに対する接着力を評価した。これらの評価結果を表5に示す。なお、表5に示す接着強さとしては、上述した評価基準に基づく指標ではなく、引張せん断試験における接着強さS(kPa)の実測値を示している。
[Test Example 3: Reference Example in which Polyurethane Foam is Adhered to a Polyacetal Resin Substrate]
Test Example 3 is a urethane raw material mixture of polyurethane foam raw materials in which the foam stabilizers of Synthesis Examples 16, 21, 25, and 34 and Foam Stabilizer Comparative Examples 3 and 4 are blended in the amounts (% by mass) shown in Table 5 below. This is an example of evaluating the performance of the polyurethane foams of Reference Examples 3-1 to 3-6 produced using Mu. In this test example, polyacetal (POM) resin was used as the substrates 1a and 1b of the tensile shear test piece P for Reference Examples 3-1 to 3-6 by the method described above, and the substrates 1a and 1b of the polyurethane foam 3 were used. was evaluated. These evaluation results are shown in Table 5. The adhesive strength shown in Table 5 is not an index based on the evaluation criteria described above, but an actual measurement value of adhesive strength S (kPa) in a tensile shear test.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表5に示すように、基材としてPOM樹脂を用いた場合、シリコーン系整泡剤を使用した参考例3-5および3-6においても、基材への接着力が高かった。これに対して、合成例16、21、25および34の整泡剤を使用した参考例3-1~3-4においては、シリコーン系整泡剤を使用した参考例3-5および3-6の接着力よりもはるかに高い結果となった。このように、シリコーン系整泡剤を使用した場合にポリウレタンフォームとの接着力に問題がない基材であっても、本発明の整泡剤を使用することにより、シリコーン系整泡剤を使用した場合よりも、基材への接着力が高められることが示唆された。 As shown in Table 5, when the POM resin was used as the base material, the adhesion to the base material was also high in Reference Examples 3-5 and 3-6 using the silicone foam stabilizer. On the other hand, in Reference Examples 3-1 to 3-4 using the foam stabilizers of Synthesis Examples 16, 21, 25 and 34, Reference Examples 3-5 and 3-6 using silicone foam stabilizers The result was much higher than the adhesive strength of Thus, even with a substrate that does not have a problem with adhesion to polyurethane foam when a silicone foam stabilizer is used, the foam stabilizer of the present invention can be used to prevent the use of a silicone foam stabilizer. It was suggested that the adhesive force to the substrate is enhanced more than when

Claims (17)

  1.  ポリイソシアネートおよびポリオールと混合され、ポリウレタンフォームの製造に使用されるポリウレタンフォーム用整泡剤であって、
     重合性不飽和モノマー(A)から誘導される構成単位を5~95質量%、および重合性不飽和モノマー(B)から誘導される構成単位を5~95質量%含む共重合体を含有しており、
     前記重合性不飽和モノマー(A)は、下記一般式(1)で表される少なくとも1種のエーテル基含有モノマーであり、
     R1-(C2mO)n-R2 ・・・(1)
    (前記一般式(1)において、R1は、(メタ)アクリル基であり、R2は、水素原子、(メタ)アクリル基または炭素数1~22のアルキル基もしくはアリール基であり、mは、2~4の自然数であり、nは、1~100の自然数である。)
     前記重合性不飽和モノマー(B)は、前記一般式(1)を満足せず、かつ、疎水基を有する重合性不飽和モノマー群より選ばれる少なくとも1種のモノマーであることを特徴とする、ポリウレタンフォーム用整泡剤。
    A foam stabilizer for polyurethane foam mixed with a polyisocyanate and a polyol and used in the production of polyurethane foam,
    Containing a copolymer containing 5 to 95% by mass of structural units derived from the polymerizable unsaturated monomer (A) and 5 to 95% by mass of structural units derived from the polymerizable unsaturated monomer (B) cage,
    The polymerizable unsaturated monomer (A) is at least one ether group-containing monomer represented by the following general formula (1),
    R1-( CmH2mO ) n -R2 ( 1)
    (In the general formula (1), R1 is a (meth)acryl group, R2 is a hydrogen atom, a (meth)acryl group, an alkyl group having 1 to 22 carbon atoms or an aryl group, and m is 2 is a natural number from ~4, and n is a natural number from 1 to 100.)
    The polymerizable unsaturated monomer (B) is at least one monomer selected from the group of polymerizable unsaturated monomers that do not satisfy the general formula (1) and have a hydrophobic group, Foam stabilizer for polyurethane foam.
  2.  前記整泡剤のSP値が、前記ポリオールのSP値よりも1.0~3.1低いことを特徴とする、請求項1に記載のポリウレタンフォーム用整泡剤。 The foam stabilizer for polyurethane foam according to claim 1, characterized in that the SP value of said foam stabilizer is 1.0 to 3.1 lower than the SP value of said polyol.
  3.  前記共重合体の重量平均分子量が、1000~500000であることを特徴とする、請求項1または2に記載のポリウレタンフォーム用整泡剤。 The foam stabilizer for polyurethane foam according to claim 1 or 2, wherein the copolymer has a weight average molecular weight of 1,000 to 500,000.
  4.  前記共重合体が、前記重合性不飽和モノマー(A)として、前記一般式(1)におけるR1が(メタ)アクリル基である重合性不飽和モノマーのみを含むことを特徴とする、請求項1~3のいずれか一項に記載のポリウレタンフォーム用整泡剤。 Claim 1, wherein the copolymer contains, as the polymerizable unsaturated monomer (A), only a polymerizable unsaturated monomer in which R1 in the general formula (1) is a (meth)acrylic group. 4. The foam stabilizer for polyurethane foam according to any one of -3.
  5.  前記重合性不飽和モノマー(B)の疎水基が、直鎖状、分岐鎖状または環状の炭化水素基であることを特徴とする、請求項1~4のいずれか一項に記載のポリウレタンフォーム用整泡剤。 The polyurethane foam according to any one of claims 1 to 4, wherein the hydrophobic group of the polymerizable unsaturated monomer (B) is a linear, branched or cyclic hydrocarbon group. foam stabilizer.
  6.  前記重合性不飽和モノマー(B)の疎水基が、酸素原子、窒素原子、フッ素原子およびケイ素原子を含まないことを特徴とする、請求項1~5のいずれか一項に記載のポリウレタンフォーム用整泡剤。 The polyurethane foam according to any one of claims 1 to 5, wherein the hydrophobic group of the polymerizable unsaturated monomer (B) does not contain an oxygen atom, a nitrogen atom, a fluorine atom and a silicon atom. Foam stabilizer.
  7.  ポリイソシアネートと、ポリオールと、請求項1~6のいずれか一項に記載のポリウレタンフォーム用整泡剤とを少なくとも含むウレタン原料混合物を発泡および硬化させることにより得られ、
     前記ウレタン原料混合物は、前記整泡剤を0.1質量%~5.0質量%含むことを特徴とする、ポリウレタンフォーム。
    Obtained by foaming and curing a urethane raw material mixture containing at least a polyisocyanate, a polyol, and the foam stabilizer for polyurethane foam according to any one of claims 1 to 6,
    A polyurethane foam, wherein the urethane raw material mixture contains 0.1% by mass to 5.0% by mass of the foam stabilizer.
  8.  前記整泡剤のSP値が、前記ポリオールのSP値よりも1.0~3.1低いことを特徴とする、請求項7に記載のポリウレタンフォーム。 The polyurethane foam according to claim 7, wherein the SP value of the foam stabilizer is 1.0 to 3.1 lower than the SP value of the polyol.
  9.  ポリプロピレン樹脂、ポリエチレン樹脂、フッ素樹脂およびシリコーン樹脂からなる群より選ばれる基材、または、ワックスが塗布された基材と、請求項7または8に記載のポリウレタンフォームとが積層された、ポリウレタンフォーム積層体。 A polyurethane foam lamination obtained by laminating a substrate selected from the group consisting of polypropylene resin, polyethylene resin, fluororesin and silicone resin, or a substrate coated with wax, and the polyurethane foam according to claim 7 or 8. body.
  10.  ポリイソシアネートおよびポリオールと混合され、ポリウレタンフォームの製造に使用されるポリウレタンフォーム用整泡剤の製造方法であって、
     重合性不飽和モノマー(A)を5~95質量%と、重合性不飽和モノマー(B)を5~95質量%とを含有するモノマー混合物を共重合させた共重合体を得る重合工程を含み、
     前記重合性不飽和モノマー(A)は、下記一般式(1)で表される少なくとも1種のエーテル基含有モノマーであり、
     R1-(C2mO)n-R2 ・・・(1)
    (前記一般式(1)において、R1は、(メタ)アクリル基であり、R2は、水素原子、(メタ)アクリル基または炭素数1~22のアルキル基もしくはアリール基であり、mは、2~4の自然数であり、nは、1~100の自然数である。)
     前記重合性不飽和モノマー(B)は、前記一般式(1)を満足せず、かつ、疎水基を有する重合性不飽和モノマー群より選ばれる少なくとも1種のモノマーであることを特徴とする、ポリウレタンフォーム用整泡剤の製造方法。
    A method for producing a foam stabilizer for polyurethane foam mixed with polyisocyanate and polyol and used for producing polyurethane foam, comprising:
    A polymerization step of obtaining a copolymer by copolymerizing a monomer mixture containing 5 to 95% by mass of a polymerizable unsaturated monomer (A) and 5 to 95% by mass of a polymerizable unsaturated monomer (B). ,
    The polymerizable unsaturated monomer (A) is at least one ether group-containing monomer represented by the following general formula (1),
    R1-( CmH2mO ) n -R2 ( 1)
    (In the general formula (1), R1 is a (meth)acryl group, R2 is a hydrogen atom, a (meth)acryl group, an alkyl group having 1 to 22 carbon atoms or an aryl group, and m is 2 is a natural number from ~4, and n is a natural number from 1 to 100.)
    The polymerizable unsaturated monomer (B) is at least one monomer selected from the group of polymerizable unsaturated monomers that do not satisfy the general formula (1) and have a hydrophobic group, A method for producing a foam stabilizer for polyurethane foam.
  11.  前記整泡剤のSP値が、前記ポリオールのSP値よりも1.0~3.1低いことを特徴とする、請求項10に記載のポリウレタンフォーム用整泡剤の製造方法。 The method for producing a foam stabilizer for polyurethane foam according to claim 10, wherein the SP value of the foam stabilizer is 1.0 to 3.1 lower than the SP value of the polyol.
  12.  前記共重合体の重量平均分子量が、1000~500000であることを特徴とする、請求項10または11に記載のポリウレタンフォーム用整泡剤の製造方法。 The method for producing a foam stabilizer for polyurethane foam according to claim 10 or 11, wherein the copolymer has a weight average molecular weight of 1,000 to 500,000.
  13.  前記共重合体が、前記重合性不飽和モノマー(A)として、前記一般式(1)におけるR1が(メタ)アクリル基である重合性不飽和モノマーのみを含むことを特徴とする、請求項10~12のいずれか一項に記載のポリウレタンフォーム用整泡剤の製造方法。 Claim 10, wherein the copolymer contains, as the polymerizable unsaturated monomer (A), only a polymerizable unsaturated monomer in which R1 in the general formula (1) is a (meth)acrylic group. 13. The method for producing a foam stabilizer for polyurethane foam according to any one of 12.
  14.  前記重合性不飽和モノマー(B)の疎水基が、直鎖状、分岐鎖状または環状の炭化水素基であることを特徴とする、請求項10~13のいずれか一項に記載のポリウレタンフォーム用整泡剤の製造方法。 The polyurethane foam according to any one of claims 10 to 13, wherein the hydrophobic group of the polymerizable unsaturated monomer (B) is a linear, branched or cyclic hydrocarbon group. A method for producing a foam stabilizer for
  15.  前記重合性不飽和モノマー(B)の疎水基が、酸素原子、窒素原子、フッ素原子およびケイ素原子を含まないことを特徴とする、請求項10~14のいずれか一項に記載のポリウレタンフォーム用整泡剤の製造方法。 The polyurethane foam according to any one of claims 10 to 14, wherein the hydrophobic group of the polymerizable unsaturated monomer (B) does not contain an oxygen atom, a nitrogen atom, a fluorine atom and a silicon atom. A method for producing a foam stabilizer.
  16.  ポリオールと、請求項1~6のいずれか一項に記載のポリウレタンフォーム用整泡剤とを混合し、ポリオール混合物を得る整泡剤混合工程と、
     前記ポリオール混合物と、ポリイソシアネートとを混合しながら発泡および硬化させ、ポリウレタンフォームを得る発泡体生成工程と、
    を含むことを特徴とする、ポリウレタンフォームの製造方法。
    A foam stabilizer mixing step of mixing a polyol and the polyurethane foam foam stabilizer according to any one of claims 1 to 6 to obtain a polyol mixture;
    a foam production step of foaming and curing the polyol mixture and polyisocyanate while mixing to obtain a polyurethane foam;
    A method for producing a polyurethane foam, comprising:
  17.  ポリプロピレン樹脂、ポリエチレン樹脂、フッ素樹脂およびシリコーン樹脂からなる群より選ばれる基材、または、ワックスが塗布された基材と、ポリウレタンフォームとを積層する積層工程を含み、
     前記積層工程において、前記ポリウレタンフォームは、請求項16に記載のポリウレタンフォームの製造方法により得られた発泡体であることを特徴とする、ポリウレタンフォーム積層体の製造方法。
    A lamination step of laminating a substrate selected from the group consisting of polypropylene resin, polyethylene resin, fluororesin and silicone resin, or a substrate coated with wax, and polyurethane foam,
    A method for producing a polyurethane foam laminate, wherein in the laminating step, the polyurethane foam is a foam obtained by the method for producing a polyurethane foam according to claim 16.
PCT/JP2022/034979 2021-09-17 2022-09-20 Foam stabilizer for polyurethane foam, polyurethane foam, and polyurethane foam laminate, and methods for producing same WO2023042923A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023548529A JPWO2023042923A1 (en) 2021-09-17 2022-09-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-152684 2021-09-17
JP2021152684 2021-09-17

Publications (1)

Publication Number Publication Date
WO2023042923A1 true WO2023042923A1 (en) 2023-03-23

Family

ID=85602995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034979 WO2023042923A1 (en) 2021-09-17 2022-09-20 Foam stabilizer for polyurethane foam, polyurethane foam, and polyurethane foam laminate, and methods for producing same

Country Status (2)

Country Link
JP (1) JPWO2023042923A1 (en)
WO (1) WO2023042923A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199015A (en) * 1984-03-22 1985-10-08 Daikin Ind Ltd Foam stabilizer
JP2007186557A (en) * 2006-01-12 2007-07-26 Shin Etsu Chem Co Ltd Foam stabilizer for polyurethane foam and method for producing polyurethane foam
JP2009167285A (en) * 2008-01-16 2009-07-30 Bridgestone Corp Polyurethane foam molding
JP2010536965A (en) * 2007-08-23 2010-12-02 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト EO / PO block copolymer as stabilizer for PUR foam
WO2018074257A1 (en) * 2016-10-18 2018-04-26 東レ・ダウコーニング株式会社 Polyether-modified silicone composition, surfactant, foam stabilizer, polyurethane foam forming composition, and cosmetic preparation including said composition, and method for producing said composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199015A (en) * 1984-03-22 1985-10-08 Daikin Ind Ltd Foam stabilizer
JP2007186557A (en) * 2006-01-12 2007-07-26 Shin Etsu Chem Co Ltd Foam stabilizer for polyurethane foam and method for producing polyurethane foam
JP2010536965A (en) * 2007-08-23 2010-12-02 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト EO / PO block copolymer as stabilizer for PUR foam
JP2009167285A (en) * 2008-01-16 2009-07-30 Bridgestone Corp Polyurethane foam molding
WO2018074257A1 (en) * 2016-10-18 2018-04-26 東レ・ダウコーニング株式会社 Polyether-modified silicone composition, surfactant, foam stabilizer, polyurethane foam forming composition, and cosmetic preparation including said composition, and method for producing said composition

Also Published As

Publication number Publication date
JPWO2023042923A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
TW200906883A (en) New urethane (meth)acrylates and their use in curable coating compositions
WO2009142143A1 (en) Manufacturing method for hard polyurethane foam
WO2008062790A1 (en) Method for producing polymer-dispersed polyol
JP5482234B2 (en) Urethane-modified acrylic resin and coating agent and adhesive using the same
WO2008062792A1 (en) Method for producing hard polyurethane foam
WO2008062794A1 (en) Method for producing hard polyurethane foam
JP2007211040A (en) One-pack type moisture-curable composition, sealing material composition and adhesive composition
Abdel-Wakil et al. Assessment of vinyl acetate polyurethane-based graft terpolymers for emulsion coatings: Synthesis and characterization
KR101455422B1 (en) Aqueous urethane resin composition
JP6801125B2 (en) Paint composition
JP2007291223A (en) One-pack type urethane type moisture-curable composition
WO2023042923A1 (en) Foam stabilizer for polyurethane foam, polyurethane foam, and polyurethane foam laminate, and methods for producing same
JP6281217B2 (en) Radical polymerizable resin composition and civil engineering building material
WO1996030438A1 (en) Catalyst system for adherent rigid foam
JP6855655B2 (en) Acrylic polymer and antistatic agent containing it, antistatic resin composition
JP2014177583A (en) Curable composition and laminate
JP6399336B2 (en) Aqueous primer composition
CN104159940A (en) Urethane (meth)acrylate resin composition and coating material
JP6135669B2 (en) Coating agent, and coating film and film using the same
EP2748233B1 (en) Polyether alcohols containing particles
JP2010090269A (en) Moisture-curable composition
JP4589876B2 (en) Polyurethane foam and sealing material using the same
JP2008208263A (en) Foam of active energy ray curable resin and its manufacturing method
KR20190045232A (en) Promoting plastic adhesion for 2K polyurethane adhesives
JP7445102B2 (en) Adhesive resin composition and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22870069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548529

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22870069

Country of ref document: EP

Kind code of ref document: A1