WO2022202836A1 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
WO2022202836A1
WO2022202836A1 PCT/JP2022/013271 JP2022013271W WO2022202836A1 WO 2022202836 A1 WO2022202836 A1 WO 2022202836A1 JP 2022013271 W JP2022013271 W JP 2022013271W WO 2022202836 A1 WO2022202836 A1 WO 2022202836A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat
heat medium
heat exchanger
circuit
Prior art date
Application number
PCT/JP2022/013271
Other languages
English (en)
French (fr)
Inventor
宣伯 清水
Original Assignee
サンデン・アドバンストテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・アドバンストテクノロジー株式会社 filed Critical サンデン・アドバンストテクノロジー株式会社
Priority to US18/281,369 priority Critical patent/US20240157761A1/en
Priority to CN202280019561.9A priority patent/CN116981579A/zh
Priority to DE112022001678.7T priority patent/DE112022001678T5/de
Publication of WO2022202836A1 publication Critical patent/WO2022202836A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3213Control means therefor for increasing the efficiency in a vehicle heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3261Cooling devices information from a variable is obtained related to temperature of the air at an evaporating unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3267Cooling devices information from a variable is obtained related to the operation of an expansion valve

Definitions

  • the present invention relates to a heat pump type vehicle air conditioner applied to a vehicle, in particular, a vehicle air conditioner that absorbs heat from a heat medium circulating in a heat medium circuit connected to a refrigerant circuit and utilizes the heat to heat the vehicle interior.
  • a vehicle air conditioner that absorbs heat from a heat medium circulating in a heat medium circuit connected to a refrigerant circuit and utilizes the heat to heat the vehicle interior.
  • a compressor, an indoor heat exchanger, an outdoor heat exchanger, and an expansion valve are connected to a refrigerant circuit.
  • a heat pump type vehicle air conditioner is known.
  • a refrigerant circuit is provided with a battery temperature adjustment device as a heat medium circuit through a refrigerant-heat medium heat exchanger, and the heat of the battery is recovered and used for heating operation.
  • a battery temperature adjustment device as a heat medium circuit through a refrigerant-heat medium heat exchanger, and the heat of the battery is recovered and used for heating operation.
  • heat absorption of the refrigerant during heating operation is performed in a plurality of modes including an outside air heat absorption mode in which an outdoor heat exchanger is used and a waste heat recovery mode in which a refrigerant-heat medium heat exchanger is used. It is running by switching modes as needed.
  • the electronic expansion valve provided on the refrigerant inlet side of the outdoor heat exchanger and the electronic expansion valve provided in front of the refrigerant inlet of the refrigerant-heat medium heat exchanger are used to divide the refrigerant. This is achieved by adjusting the branch flow rate.
  • the present invention has been made in view of such circumstances, and has an object to suppress disturbance in the temperature of the air supplied to the passenger compartment and to keep the temperature constant when the heating mode is switched.
  • One aspect of the present invention is a compressor that compresses the refrigerant, an outdoor heat exchanger that performs heat exchange between the refrigerant and the outside air, a radiator that heats the air supplied to the vehicle interior, and the outdoor heat exchanger.
  • a refrigerant circuit including a first electronic expansion valve provided on a refrigerant inlet side, a refrigerant-heat medium heat exchanger, and a second electronic expansion valve provided on a refrigerant inlet side of the refrigerant-heat medium heat exchanger; and a heat medium is circulated to perform heat exchange between the refrigerant and the heat medium in the refrigerant-heat medium heat exchanger; and a control device for controlling the refrigerant circuit and the heat medium circuit, wherein In a heating operation for heating the vehicle interior using the radiator, the control device includes an outside air heat absorption heating mode in which the refrigerant discharged from the compressor and radiated in the radiator absorbs heat from the outdoor heat exchanger; and a waste heat recovery
  • the heating mode when the heating mode is switched, disturbance of the temperature of the air supplied to the vehicle interior can be suppressed, and the temperature can be kept constant.
  • FIG. 1 is a block diagram showing a schematic configuration of a heat pump ECU as a control device for a vehicle air conditioner according to an embodiment of the present invention
  • FIG. 4 is a diagram showing the flow of refrigerant in the refrigerant circuit R in the outside air heat absorption heating mode in the vehicle air conditioner according to the embodiment of the present invention.
  • FIG. FIG. 4 is a diagram showing the flow of refrigerant in the refrigerant circuit R in the waste heat recovery heating mode and the flow of the heat medium in the device temperature adjustment circuit when adjusting the temperature of the battery in the vehicle air conditioner according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing the flow of the refrigerant in the refrigerant circuit R in the waste heat recovery heating mode and the flow of the heat medium when adjusting the temperature of the motor unit in the device temperature adjustment circuit in the vehicle air conditioner according to the embodiment of the present invention.
  • FIG. . In the vehicle air conditioner according to the embodiment of the present invention, a diagram showing the flow of the refrigerant in the refrigerant circuit R in the waste heat recovery heating mode and the flow of the heat medium when adjusting the temperature of the battery and the motor unit in the device temperature adjustment circuit. is. In the vehicle air conditioner according to the embodiment of the present invention, FIG. FIG.
  • FIG. 4 is a diagram showing the flow of refrigerant in the refrigerant circuit R in the combined heating mode and the flow of the heat medium when adjusting the temperature of the motor unit in the device temperature adjustment circuit in the vehicle air conditioner according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing the flow of the refrigerant in the refrigerant circuit R in the combined heating mode and the flow of the heat medium when adjusting the temperatures of the battery and the motor unit in the device temperature adjustment circuit in the vehicle air conditioner according to the embodiment of the present invention. .
  • the compressor, the outdoor expansion valve, the chiller expansion valve, the first 4 is a graph showing control over a circulation pump and a second circulation pump and the results thereof;
  • 1 shows a schematic configuration of a refrigerant circuit R1 of a vehicle air conditioner according to Modification 1 of the embodiment of the present invention;
  • 4 shows a schematic configuration of a refrigerant circuit R2 of a vehicle air conditioner according to Modification 2 of the embodiment of the present invention.
  • 4 shows a schematic configuration of a refrigerant circuit R3 of a vehicle air conditioner according to Modification 3 of the embodiment of the present invention;
  • FIG. 1 shows a schematic configuration of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • the vehicle air conditioner 1 can be applied to a vehicle such as an electric vehicle (EV) that is not equipped with an engine (internal combustion engine) or a so-called hybrid vehicle that shares an engine and an electric motor for running.
  • a vehicle is equipped with a battery (for example, a lithium battery), and is driven by supplying electric power charged in the battery from an external power source to a motor unit including a motor for running.
  • the vehicle air conditioner 1 is also driven by electric power supplied from the battery.
  • the vehicle air conditioner 1 includes a refrigerant circuit R, and performs heat pump operation using the refrigerant circuit R to air-condition (heat, cool, dehumidify, and defrost) the vehicle interior.
  • the equipment temperature adjustment circuit 61 as a heat medium circuit connected to the refrigerant circuit R is used to cool and warm up the electric equipment such as the battery 55 and the motor unit 65 .
  • a refrigerant is a circulating medium in a refrigerant circuit R that undergoes state changes in a heat pump (compression, condensation, expansion, evaporation), and a heat medium is a heat medium that heats without such state changes. It is a medium that absorbs and dissipates heat.
  • the refrigerant circuit R is provided in an electric compressor 2 for compressing refrigerant and in an air flow passage 3 of an HVAC unit 10 through which air in the vehicle is ventilated and circulated.
  • An indoor condenser (heat radiator) 4 as an indoor heat exchanger that heats the air supplied to the vehicle interior by radiating heat
  • an outdoor expansion valve 6 that decompresses and expands the refrigerant during heating
  • a radiator that heats the refrigerant during cooling
  • An outdoor heat exchanger 7 that functions as a condenser
  • An indoor heat exchanger 7 that functions as a condenser
  • an indoor expansion valve 8 that decompresses and expands the refrigerant
  • air A heat absorber 9 as an indoor heat exchanger provided in the flow passage 3 and cooling the air supplied to the vehicle interior by allowing the refrigerant to absorb heat from the outside and outside
  • Both the outdoor expansion valve 6 and the indoor expansion valve 8 are electronic expansion valves driven by a pulse motor (not shown), and the degree of opening is appropriately controlled between fully closed and fully opened depending on the number of pulses applied to the pulse motor. .
  • the outdoor expansion valve 6 decompresses and expands the refrigerant flowing out of the indoor condenser 4 and flowing into the outdoor heat exchanger 7 .
  • the outdoor expansion valve 6 is set so that the SC (subcool) value, which is an index of the achievement degree of supercooling at the refrigerant outlet of the indoor condenser 4, becomes a predetermined target value during heating operation using the outdoor heat exchanger 7.
  • the heat pump ECU 11 which will be described later, controls the degree of opening (SC control).
  • the indoor expansion valve 8 decompresses and expands the refrigerant flowing into the heat absorber 9 and adjusts the amount of heat absorbed by the refrigerant in the heat absorber 9 .
  • the outdoor heat exchanger 7 is provided with an outdoor fan 15 .
  • the outdoor blower 15 forcibly blows outside air to the outdoor heat exchanger 7 to exchange heat between the outside air and the refrigerant, so that the outside air is blown to the outdoor heat exchanger 7 even when the vehicle is stopped. .
  • the refrigerant outlet of the outdoor heat exchanger 7 and the refrigerant inlet of the heat absorber 9 are connected by a refrigerant pipe 13A.
  • a check valve 18 and an indoor expansion valve 8 are provided in order from the outdoor heat exchanger 7 side in the refrigerant pipe 13A.
  • the check valve 18 is provided in the refrigerant pipe 13A so that the direction toward the heat absorber 9 is the forward direction.
  • the refrigerant pipe 13A is branched into the refrigerant pipe 13B at a position closer to the outdoor heat exchanger 7 than the check valve 18 is.
  • a refrigerant pipe 13B branched from the refrigerant pipe 13A is connected to the refrigerant inlet of the accumulator 12 .
  • the refrigerant pipe 13B is provided with an electromagnetic valve 21 and a check valve 20 that are opened during heating in order from the outdoor heat exchanger 7 side.
  • the check valve 20 is connected so that the direction toward the accumulator 12 is the forward direction.
  • a refrigerant pipe 13C is branched between the solenoid valve 21 and the check valve 20 of the refrigerant pipe 13B.
  • a refrigerant pipe 13C branched from the refrigerant pipe 13B is connected to a refrigerant outlet of the heat absorber 9 .
  • a refrigerant outlet of the accumulator 12 and the compressor 2 are connected by a refrigerant pipe 13D.
  • the refrigerant outlet of the compressor 2 and the refrigerant inlet of the indoor condenser 4 are connected by a refrigerant pipe 13E.
  • One end of the refrigerant pipe 13F is connected to the refrigerant outlet of the indoor condenser 4, and the other end of the refrigerant pipe 13F is branched into the refrigerant pipe 13G and the refrigerant pipe 13H before the outdoor expansion valve 6 (refrigerant upstream side).
  • One branched refrigerant pipe 13 ⁇ /b>H is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6 .
  • the other branched refrigerant pipe 13 ⁇ /b>G is connected between the check valve 18 of the refrigerant pipe A and the indoor expansion valve 8 .
  • a solenoid valve 22 is provided on the refrigerant upstream side of the connection point between the refrigerant pipe 13G and the refrigerant pipe A. As shown in FIG.
  • the refrigerant pipe 13G is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18, and bypasses the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18. circuit.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with an outside air intake and an inside air intake (representatively shown as an intake 25 in FIG. 1).
  • a suction switching damper 26 is provided at the suction port 25 .
  • the intake switching damper 26 appropriately switches between the inside air (inside air circulation) that is the air inside the vehicle compartment and the outside air (outside air introduction) that is the air outside the vehicle compartment, and introduces the air into the air flow passage 3 from the intake port 25 .
  • An indoor air blower (blower fan) 27 for supplying the introduced inside air and outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26 .
  • An auxiliary heater (not shown) is provided in the air flow passage 3 on the air downstream side of the indoor condenser 4 with respect to the air flow in the air flow passage 3 .
  • the auxiliary heater is composed of, for example, a PTC heater (electric heater), and supplements the heating of the passenger compartment by generating heat when the auxiliary heater is energized.
  • the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is transferred to the indoor condenser 4 and
  • An air mix damper 28 is provided for adjusting the ratio of ventilation to the auxiliary heater.
  • the auxiliary heating means for example, hot water heated by compressor waste heat may be circulated through a heater core disposed in the air flow passage 3 to heat the blown air.
  • a refrigerant-heat medium heat exchanger 64 is connected to the refrigerant circuit R.
  • the refrigerant-heat medium heat exchanger 64 includes a refrigerant flow path 64A and a heat medium flow path 64B, constitutes a part of the refrigerant circuit R, and at the same time constitutes a part of the device temperature adjustment circuit 61 as a heat medium circuit. do.
  • the refrigerant-heat medium heat exchanger 64 is connected to the refrigerant circuit R as follows.
  • one end of a refrigerant pipe 72 as a branch circuit is connected downstream of the check valve 18 provided in the refrigerant pipe 13A and upstream of the indoor expansion valve 8 .
  • the other end of the refrigerant pipe 72 is connected to the inlet of the refrigerant flow path 64 A of the refrigerant-heat medium heat exchanger 64 .
  • a chiller expansion valve 73 is provided in the refrigerant pipe 72 .
  • the chiller expansion valve 73 is an electronic expansion valve driven by a pulse motor (not shown), and the degree of opening is appropriately controlled between fully closed and fully opened depending on the number of pulses applied to the pulse motor.
  • the chiller expansion valve 73 decompresses and expands the refrigerant flowing into the refrigerant passage 64A of the refrigerant-heat medium heat exchanger 64, and reduces the degree of superheat of the refrigerant downstream of the refrigerant passage 64A of the refrigerant-heat medium heat exchanger 64. to adjust.
  • refrigerant pipe 75 One end of a refrigerant pipe 75 is connected to the outlet of the refrigerant flow path 64A of the refrigerant-heat medium heat exchanger 64.
  • the other end of refrigerant pipe 75 is connected between check valve 20 and accumulator 12 in refrigerant pipe 13B.
  • the chiller expansion valve 73, the refrigerant flow path 64A of the refrigerant-heat medium heat exchanger 64, and the like also constitute a part of the refrigerant circuit R.
  • the refrigerant circulating in the refrigerant circuit R exchanges heat with the heat medium circulating in the device temperature adjustment circuit 61 by the refrigerant-heat medium heat exchanger 64 .
  • the device temperature adjustment circuit 61 adjusts the temperature of the battery 55 and the motor unit 65 by circulating the heat medium through the temperature-adjustable objects such as the battery 55 and the motor unit 65 .
  • the motor unit 65 also includes an electric motor for traveling and a heat-generating device such as an inverter circuit for driving the electric motor.
  • a device that is mounted on the vehicle and generates heat can be applied.
  • the device temperature adjustment circuit 61 includes a first circulation pump 62 and a second circulation pump 63 as circulation devices for circulating the heat medium to the battery 55 and the motor unit 65, an air-heat medium heat exchanger 67, and a flow path.
  • Three-way valves 81, 82 and 83 are provided as switching devices, which are connected by heat medium pipes 68A to 68D.
  • the refrigerant-heat medium heat exchanger 64 In the refrigerant-heat medium heat exchanger 64, one end of the heat medium pipe 68A is connected to the refrigerant discharge side of the heat medium flow path 64B, and the other end of the heat medium pipe 68A is connected to the heat medium inlet.
  • a three-way valve 83, a battery 55, a three-way valve 82, an air-heat medium heat exchanger 67, a three-way valve 81, a first circulation A pump 62 is provided in order from the heat medium discharge side of the refrigerant-heat medium heat exchanger 64.
  • a three-way valve 83 In order from the heat medium discharge side of the refrigerant-heat medium heat exchanger 64, a three-way valve 83, a battery 55, a three-way valve 82, an air-heat medium heat exchanger 67, a three-way valve 81, a first circulation A pump 62 is provided.
  • one end of the heat medium pipe 68B bypassing the battery 55 is connected to the heat medium downstream side of the three-way valve 83, and the other end of the heat medium pipe 68B is connected to the three-way valve 82 of the heat medium pipe 68A. are also connected to the downstream side of the heat medium.
  • One end of the heat medium pipe 68C is provided on the side opposite to the heat medium pipe 68B of the three-way valve 82, and the other end of the heat medium pipe 68C is connected to the first circulation pump 62 of the heat medium pipe 68A and the three-way valve 81. connected between
  • One end of the heat medium pipe 68D is provided between the three-way valve 82 of the heat medium pipe 68A and the air-heat medium heat exchanger 67, and the other end of the heat medium pipe 68D is connected to the first circulation pump of the heat medium pipe 68A. 62 is connected upstream of the heat medium.
  • the heat medium pipe 68D is provided with a motor unit 65 and a second circulation pump 63 in this order from the heat medium upstream side.
  • the heat medium used in the device temperature adjustment circuit 61 for example, water, refrigerants such as HFO-1234yf, liquids such as coolant, and gases such as air can be used.
  • coolant is used as a heat medium.
  • a jacket structure is provided around the battery 55 and the motor unit 65 so that, for example, a heat medium can flow with the battery 55 and the motor unit 65 in a heat exchange relationship.
  • the chiller expansion valve 73 When the chiller expansion valve 73 is open, part or all of the refrigerant flowing out of the refrigerant pipe 13G or the outdoor heat exchanger 7 flows into the refrigerant pipe 72 and is decompressed by the chiller expansion valve 73, and then the refrigerant-heat medium It flows into the refrigerant channel 64A of the heat exchanger 64 and evaporates.
  • the heat medium that circulates through the device temperature adjustment circuit 61 and absorbs heat from the battery 55 and the motor unit 65 flows into the heat medium flow path 64B of the refrigerant-heat medium heat exchanger 64 .
  • the refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64B in the process of flowing through the refrigerant flow path 64A of the refrigerant-heat medium heat exchanger 64, and is sucked into the compressor 2 via the accumulator 12.
  • FIG. 2 shows a schematic configuration of the heat pump ECU 11 as a control device for the vehicle air conditioner 1.
  • the heat pump ECU 11 is communicatively connected to a vehicle controller 35, which controls the entire vehicle including running, via an in-vehicle network such as CAN (Controller Area Network) or LIN (Local Interconnect Network), and transmits and receives information.
  • a microcomputer as an example of a computer having a processor can be applied to both the heat pump ECU 11 and the vehicle controller 35 .
  • the heat pump ECU 11 includes an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle, an HVAC intake temperature sensor 36 that detects the temperature of air sucked into the air flow passage 3 from the intake port 25, and an air temperature sensor 36 that detects the temperature of the air in the vehicle interior.
  • An inside air temperature sensor 37 that detects the temperature Tin, a blowout temperature sensor 41 that detects the temperature of the air blown into the vehicle interior from the blowout port 29, and a discharge pressure sensor that detects the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2 42, a discharge temperature sensor 43 that detects the discharge refrigerant temperature Td of the compressor 2, a suction temperature sensor 44 that detects the suction refrigerant temperature Ts of the compressor 2, an indoor condenser temperature sensor 46 that detects the temperature TCI of the indoor condenser 4, an indoor An indoor condenser pressure sensor 47 that detects the pressure of the condenser 4 (refrigerant pressure immediately after leaving the indoor condenser 4: indoor condenser outlet pressure Pci), a heat absorber temperature sensor 48 that detects the temperature Te of the heat absorber 9, and the heat absorber 9 A heat absorber pressure sensor 49 that detects the refrigerant pressure, an air conditioning operation unit 53 for setting the set temperature and switching of air conditioning operation, an
  • the outputs of the heat pump ECU 11 include the compressor 2, the outdoor fan 15, the indoor fan (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outdoor expansion valve 6, the indoor expansion valve 8, the electromagnetic valves 21, 22, three-way valves 81, 82, 83, chiller expansion valve 73, first circulation pump 62, and second circulation pump 63 are connected.
  • the heat pump ECU 11 controls these based on the output of each sensor, the setting input by the air conditioning operation unit 53 and the information from the vehicle controller 35 .
  • the heat pump ECU 11 (control device) in the present embodiment has an outside air heat absorption heating mode in which heat is absorbed only by the outdoor heat exchanger 7, and a waste heat recovery heat heating mode in which heat is absorbed only by the refrigerant-heat medium heat exchanger 64. Execute by switching modes. Also, when switching between the heating mode and the waste heat recovery mode, heat is absorbed by both the outdoor heat exchanger 7 and the refrigerant-heat medium heat exchanger 64 . Therefore, the vehicle air conditioner according to the present embodiment can perform three heating modes including an outside air absorption heating mode, a waste heat recovery heating mode, and a combined heating mode. Each heating mode will be described below.
  • FIG. 3 shows the flow (arrows) of the refrigerant in the refrigerant circuit R in the outside air heat absorption heating mode. Heating operation is selected by the heat pump ECU 11 (auto mode) or by manual operation (manual mode) of the air conditioning operation unit 53, and when the heat pump ECU 11 executes the outside air heat absorption heating mode, the electromagnetic valve 21 is opened to expand the room. The valve 8 is fully closed. Also, the chiller expansion valve 73 and the electromagnetic valve 22 are fully closed.
  • the compressor 2 and the indoor fan 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor fan 27 to the indoor condenser 4 and the auxiliary heater (not shown).
  • the air mix damper 28 adjusts the ratio of the air blown from the indoor fan 27 to the indoor condenser 4 and the auxiliary heater (not shown).
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the indoor condenser 4 .
  • the air in the air circulation passage 3 is passed through the indoor condenser 4, the air in the air circulation passage 3 is heated by the high-temperature refrigerant in the indoor condenser 4, while the refrigerant in the indoor condenser 4 transfers heat to the air. It is robbed, cooled, condensed and liquefied.
  • the refrigerant liquefied in the indoor condenser 4 After the refrigerant liquefied in the indoor condenser 4 leaves the indoor condenser 4, it reaches the outdoor expansion valve 6 through the refrigerant pipes 13F and 13H. After being decompressed by the outdoor expansion valve 6 , the refrigerant flows into the outdoor heat exchanger 7 .
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and absorbs heat from the outside air that flows in as the vehicle travels or the outside air that is blown by the outdoor blower 15 . That is, the refrigerant circuit R becomes a heat pump.
  • the heat pump ECU 11 calculates a target indoor condenser pressure PCO (a target value of the pressure PCI of the indoor condenser 4) from the target blowout temperature TAO, and calculates the target indoor condenser pressure PCO and the refrigerant in the indoor condenser 4 detected by the indoor condenser pressure sensor 47.
  • the rotation speed of the compressor 2 is controlled based on the pressure (indoor condenser pressure PCI, i.e., the pressure on the high pressure side of the refrigerant circuit R), and the temperature of the indoor condenser 4 detected by the indoor condenser temperature sensor 46 (indoor condenser temperature TCI).
  • the opening degree of the outdoor expansion valve 6 is controlled, and the degree of subcooling of the refrigerant at the outlet of the indoor condenser 4 is controlled. Further, when the heating capacity of the indoor capacitor 4 is insufficient, an auxiliary heater (not shown) is energized to generate heat to complement the heating.
  • Waste heat recovery heating mode (MODE2) 4 to 6 show the flow of the refrigerant in the refrigerant circuit R and the flow of the heat medium in the device temperature adjustment circuit 61 in the waste heat recovery heating mode.
  • the heat pump ECU 11 closes the solenoid valve 21 , fully closes the outdoor expansion valve 6 and the indoor expansion valve 8 , and opens the solenoid valve 22 .
  • the chiller expansion valve 73 is opened to control the degree of valve opening.
  • the compressor 2 and the indoor fan 27 are operated.
  • the refrigerant evaporated in the refrigerant flow path 64A flows through the refrigerant pipe 75 into the downstream side of the check valve 20 of the refrigerant pipe 13B, passes through the accumulator 12 and the refrigerant pipe 13D, and is sucked into the compressor 2, repeating the circulation.
  • the device temperature adjustment circuit 61 adjusts the temperature of the battery 55 to recover heat from the battery 55 (FIG. 4), and adjusts the temperature of the motor unit 65 to recover heat from the motor unit 65 (FIG. 4). 5) and a case where the temperatures of the battery 55 and the motor unit 65 are adjusted and heat is recovered from both (FIG. 6).
  • the heat medium When heat is to be recovered from the battery 55 shown in FIG. 4, the heat medium is circulated by the first circulation pump 62, flows through the three-way valve 83, exchanges heat in the battery 55, and then flows through the three-way valve 82. It flows into the pipe 68C and reaches the heat medium flow path 64B of the refrigerant-heat medium heat exchanger 64 via the heat medium pipe 68A.
  • the heat medium is cooled by absorbing heat from the refrigerant that evaporates in the refrigerant flow path 64A of the refrigerant-heat medium heat exchanger 64 .
  • the heat medium cooled by the heat absorbing action of the refrigerant leaves the refrigerant-heat medium heat exchanger 64 and flows into the battery 55 again by the first circulation pump 62, repeating circulation.
  • the heat medium When heat is recovered from the motor unit 65 shown in FIG. 5, the heat medium is circulated by the first circulation pump 62 and the second circulation pump 63 and flows through the three-way valve 83. After heat exchange in the motor unit 65 , from the heat medium pipe 68D to the heat medium flow path 64B of the refrigerant-heat medium heat exchanger 64 via the three-way valve 81 and the heat medium pipe 68A. The heat medium is cooled by absorbing heat from the refrigerant that evaporates in the refrigerant flow path 64A of the refrigerant-heat medium heat exchanger 64 .
  • the heat medium cooled by the heat absorbing action of the refrigerant exits the refrigerant-heat medium heat exchanger 64 and passes through the heat medium pipe 68A, the three-way valve 83, the heat medium pipe 68B and the heat medium pipe 68B by the first circulation pump 62 and the second circulation pump 63.
  • the circulation of flowing into the motor unit 65 again through the medium pipe 68D is repeated.
  • the heat medium pipe 68D After that, it is sucked into the second circulation pump 63 in the heat medium pipe 68D and reaches the heat medium flow path 64B of the refrigerant-heat medium heat exchanger 64 via the three-way valve 81 and the heat medium pipe 68A.
  • the heat medium is cooled by absorbing heat from the refrigerant that evaporates in the refrigerant flow path 64A of the refrigerant-heat medium heat exchanger 64 .
  • the heat medium cooled by the heat absorption action of the refrigerant exits the refrigerant-heat medium heat exchanger 64 and flows into the battery 55 again through the heat medium pipe 68A and the three-way valve 83 by the first circulation pump 62 and the second circulation pump 63. Repeat the cycle to
  • the refrigerant in the refrigerant circuit R evaporates in the refrigerant-heat medium heat exchanger 64 and absorbs heat only from the heat medium in the device temperature adjustment circuit 61 . That is, the refrigerant does not flow into the outdoor heat exchanger 7 and evaporate.
  • the battery 55 and the motor unit 65 are cooled while solving the problem of frost formation on the heat exchanger 7, and the heat pumped up from the battery 55 and the motor unit 65 (subject to temperature control) is transferred to the indoor condenser 4 to operate the vehicle. You can heat the room.
  • Combined heating mode (waste heat recovery parallel mode) 7 to 9 show the flow of the refrigerant in the refrigerant circuit R and the flow of the heat medium in the device temperature adjustment circuit 61 in the combined heating mode.
  • the heat pump ECU 11 further opens the electromagnetic valve 22 and the chiller expansion valve 73 to control the valve opening degree in the state of the outside air heat absorption heating mode in the heating operation of the refrigerant circuit R shown in FIG. and As a result, part of the refrigerant coming out of the indoor condenser 4 is branched on the refrigerant upstream side of the outdoor expansion valve 6 and flows into the refrigerant pipe 72 through the refrigerant pipe 13G.
  • the refrigerant that has flowed into the refrigerant pipe 72 is decompressed by the chiller expansion valve 73, flows through the refrigerant pipe 72 into the refrigerant flow path 64A of the refrigerant-heat medium heat exchanger 64, and evaporates. At this time, it exerts an endothermic action.
  • the refrigerant evaporated in the refrigerant flow path 64A enters the downstream side of the check valve 20 of the refrigerant pipe 13B through the refrigerant pipe 74, passes through the accumulator 12 and the refrigerant pipe 13D, and is sucked into the compressor 2, repeating circulation.
  • the heat medium in the device temperature adjustment circuit 61 adjusts the temperature of the battery 55 to recover heat from the battery 55 (FIG. 7), as in the waste heat recovery heating mode described above.
  • the heat medium When heat is recovered from the battery 55 shown in FIG. 7, the heat medium is circulated by the first circulation pump 62, and after heat exchange in the battery 55 flowing through the three-way valve 83, the heat medium flows through the three-way valve 82. It flows into the pipe 68C and reaches the heat medium flow path 64B of the refrigerant-heat medium heat exchanger 64 via the heat medium pipe 68A.
  • the heat medium is cooled by absorbing heat from the refrigerant that evaporates in the refrigerant flow path 64A of the refrigerant-heat medium heat exchanger 64 .
  • the heat medium cooled by the heat absorbing action of the refrigerant leaves the refrigerant-heat medium heat exchanger 64 and flows into the battery 55 again by the first circulation pump 62, repeating circulation.
  • the heat medium When heat is recovered from the motor unit 65 shown in FIG. 8, the heat medium is circulated by the first circulation pump 62 and the second circulation pump 63 and flows through the three-way valve 83. After heat exchange in the motor unit 65 , from the heat medium pipe 68D to the heat medium flow path 64B of the refrigerant-heat medium heat exchanger 64 via the three-way valve 81 and the heat medium pipe 68A. The heat medium is cooled by absorbing heat from the refrigerant that evaporates in the refrigerant flow path 64A of the refrigerant-heat medium heat exchanger 64 .
  • the heat medium cooled by the heat absorbing action of the refrigerant exits the refrigerant-heat medium heat exchanger 64 and passes through the heat medium pipe 68A, the three-way valve 83, the heat medium pipe 68B and the heat medium pipe 68B by the first circulation pump 62 and the second circulation pump 63.
  • the circulation of flowing into the motor unit 65 again through the medium pipe 68D is repeated.
  • the heat is further exchanged in the motor unit 65 via the three-way valve 82 and the heat medium pipe 68D. After that, it is sucked into the second circulation pump 63 in the heat medium pipe 68D and reaches the heat medium flow path 64B of the refrigerant-heat medium heat exchanger 64 via the three-way valve 81 and the heat medium pipe 68A.
  • the heat medium is cooled by absorbing heat from the refrigerant that evaporates in the refrigerant flow path 64A of the refrigerant-heat medium heat exchanger 64 .
  • the heat medium cooled by the heat absorption action of the refrigerant exits the refrigerant-heat medium heat exchanger 64 and flows into the battery 55 again through the heat medium pipe 68A and the three-way valve 83 by the first circulation pump 62 and the second circulation pump 63. Repeat the cycle to
  • the outdoor heat exchanger 7 and the refrigerant-heat medium heat exchanger 64 are connected in parallel with respect to the flow of the refrigerant in the refrigerant circuit R, so the refrigerant flows through the outdoor heat exchanger 7 and It flows to the refrigerant-heat medium heat exchanger 64 and evaporates in each. Therefore, the outdoor heat exchanger 7 absorbs heat from the outside air, and the refrigerant-heat medium heat exchanger 4 also absorbs heat from the heat medium. As a result, heat is drawn from the battery 55 and the motor unit 65 via the heat medium, and while the battery 55 and the motor unit 65 are cooled, the drawn heat is transferred to the indoor capacitor 4 and used for heating the passenger compartment. become able to.
  • FIG. 10 is a graph showing control of the compressor 2, the outdoor expansion valve 6, the chiller expansion valve 73, the first circulation pump 62, and the second circulation pump 63 by the heat pump ECU 32, and the results thereof. (Input), and the lower part shows the result (Output) of the control shown in the upper part.
  • the dashed line indicates the reference (conventional) example, and the solid line indicates the control and control results for the vehicle air conditioner 1 according to the present embodiment.
  • the opening of the chiller expansion valve 73 is controlled to the target value. Further, along with the opening degree control of the chiller expansion valve 73, the rotation speed of the compressor 2 is reduced based on the high-pressure side pressure of the refrigerant circuit R, that is, the temperature of the air supplied from the air outlet 29 into the passenger compartment. to control. Since the operations of the first circulation pump 62 and the second circulation pump 63 are not changed, the flow rate of the heat medium circulating through the refrigerant-heat medium heat exchanger 64 is also not changed.
  • the degree of opening of the chiller expansion valve 73 becomes the target value when the outdoor expansion valve 6 is closed.
  • the pressure on the low-pressure side of the refrigerant circuit R especially the pressure of the refrigerant on the downstream side of the refrigerant-heat medium heat exchanger 64, suddenly rises.
  • the rotation speed of the compressor 2 is reduced, it is not enough to reduce the rotation speed, and the temperature of the air supplied from the air outlet 29 to the passenger compartment is disturbed, causing discomfort to the occupants. may give
  • the heat pump ECU 11 controls to close the outdoor expansion valve 6 when switching from the outside air heat absorption heating mode to the waste heat recovery heating mode. Control is performed to temporarily increase the degree of superheat of the pressure of the refrigerant on the downstream side (refrigerant outlet side) of the heat medium heat exchanger 64 .
  • the heat pump ECU 11 controls to close the outdoor expansion valve 6, and until the outdoor expansion valve 6 is fully closed, that is, the switching from the outside air heat absorption heating mode to the waste heat recovery heating mode is started. to the completion of switching (operation period in combined heating mode), the chiller expansion valve 73 is controlled to open gently to a predetermined degree of opening.
  • the rotation speed of the compressor 2 is reduced based on the high-pressure side pressure of the refrigerant circuit R, that is, the temperature of the air supplied from the air outlet 29 into the passenger compartment. to control.
  • the chiller expansion valve 73 opens slowly to a predetermined opening degree and does not fully open, so the rotational speed of the compressor 2 decreases more gently than in the above-described reference example.
  • the first circulation pump 62 and the second circulation pump 63 are controlled to temporarily reduce the flow rate (circulation amount) of the heat medium circulating through the device temperature adjustment circuit 61, and then increase the flow rate of the heat medium again. The original flow rate is restored before the outdoor expansion valve 6 is fully closed. Note that switching to the waste heat recovery heating mode is completed when the outdoor expansion valve 6 is fully closed and heat exchange between the outside air and the refrigerant in the outdoor heat exchanger 7 is no longer performed.
  • the chiller expansion valve 73 is throttled to a predetermined degree of opening (not fully open), and the flow rate of the heat medium temporarily decreases. Therefore, the temperature of the heat medium during the operation period in the combined heating mode is higher than in the reference example described above, that is, the amount of heat absorbed from the heat medium by the refrigerant in the refrigerant-heat medium heat exchanger 64 is small.
  • the degree of superheat on the downstream side (refrigerant outlet side) of the refrigerant-heat medium heat exchanger 64 is increased, and the pressure on the low pressure side of the refrigerant circuit R, particularly the refrigerant-heat medium heat exchanger 64 can suppress a sudden rise in the refrigerant pressure on the downstream side of the .
  • the heat pump ECU 11 further increases the opening degree of the chiller expansion valve 73 after a predetermined time has elapsed from the start of switching from the outside air heat absorption heating mode to the waste heat recovery heating mode, for example, when switching to the waste heat recovery heating mode is completed. to control.
  • the amount of heat absorbed by the refrigerant from the heat medium increases in the refrigerant-heat medium heat exchanger 64, and the degree of superheat of the refrigerant on the downstream side (refrigerant outlet side) of the refrigerant-heat medium heat exchanger 64 gradually decreases.
  • the refrigerant pressure downstream of the refrigerant-heat medium heat exchanger 64 also decreases.
  • the refrigerant downstream of the refrigerant-heat medium heat exchanger 64 (refrigerant outlet side) is increased to suppress a sudden rise in the pressure on the low-pressure side of the refrigerant circuit R, particularly the refrigerant pressure on the downstream side of the refrigerant-heat medium heat exchanger 64 .
  • the temperature of the air blown out from the indoor condenser 4 and thus the temperature of the air supplied to the passenger compartment can be suppressed and kept constant.
  • the refrigerant pipe 13F from the indoor condenser 4 of the refrigerant circuit R to the entrance of the outdoor heat exchanger 7 is longer than other refrigerant pipes and has a large diameter, so that the amount of refrigerant during heating can be reduced. can be increased.
  • a receiver cycle may be formed by arranging a receiver as a refrigerant reservoir on the refrigerant high pressure side of the refrigerant circuit R, for example, at the refrigerant outlet of the outdoor heat exchanger 7 .
  • FIG. 11 shows a schematic configuration of a refrigerant circuit R1 of a vehicle air conditioner according to Modification 1 of the embodiment described above.
  • a refrigerant passage 91A of a refrigerant-heat medium exchanger 91 is connected to the refrigerant circuit R1 of the vehicle air conditioner according to Modification 1, and a heat medium circuit 90 is connected to a heat medium passage 91B of the refrigerant-heat medium exchanger 91. is connected.
  • the refrigerant flow path 91A of the refrigerant-heat medium exchanger 91 forms part of the refrigerant circuit R1, and the heat medium flow path 91B of the refrigerant-heat medium exchanger 91 forms part of the heat medium circuit 90.
  • An indoor capacitor 4 is provided in the heat medium circuit 90 .
  • the high-temperature and high-pressure refrigerant discharged from the compressor 2 exchanges heat with the heat medium circulated in the heat medium circuit 90 by the circulation pump 94 in the refrigerant-heat medium exchanger 91, and is cooled by the heat medium. condensed and liquefied.
  • the heat medium in the heat medium circuit 90 becomes hot, and the air in the air flow passage 3 that is ventilated to the indoor condenser 4 is heated by the high temperature heat medium that circulates through the indoor condenser 4 .
  • FIG. 12 shows a schematic configuration of a refrigerant circuit R2 of a vehicle air conditioner according to Modification 2 of the embodiment described above.
  • a refrigerant passage 93A of a refrigerant-heat medium exchanger 93 is connected to the refrigerant circuit R1 of the vehicle air conditioner according to Modification 2, and a heat medium circuit 92 is connected to a heat medium passage 93B of the refrigerant-heat medium exchanger 93. is connected.
  • a refrigerant flow path 93A of the refrigerant-heat medium exchanger 93 constitutes a part of the refrigerant circuit R2
  • a heat medium flow path 93B of the refrigerant-heat medium exchanger 93 constitutes a part of the heat medium circuit 92.
  • An outdoor heat exchanger 7 is provided in the heat medium circuit 92 .
  • the refrigerant circuit 92 heat is exchanged between the heat medium and the outside air that flows in as the vehicle travels or the outside air that is blown by the outdoor blower 15.
  • the refrigerant liquefied in the indoor condenser 4 reaches the outdoor expansion valve 6 through the refrigerant pipes 13F and 13H.
  • the refrigerant flows into the refrigerant-heat medium exchanger 93 .
  • the refrigerant exchanges heat in the refrigerant-heat medium exchanger 93 with the heat medium circulated through the heat medium circuit 92 by the circulation pump 95 .
  • the low-temperature, low-pressure refrigerant exiting the refrigerant-heat medium exchanger 93 flows into the accumulator 12 through the refrigerant pipes 13A and 13B, the solenoid valve 21, and the check valve 20.
  • FIG. 13 shows a schematic configuration of a refrigerant circuit R3 of a vehicle air conditioner according to Modification 3 of the embodiment described above.
  • a refrigerant passage 91A of the refrigerant-heat medium exchanger 91 and a refrigerant passage 93A of the refrigerant-heat medium exchanger 93 are connected to the refrigerant circuit R3 of the vehicle air conditioner according to the third modification.
  • a heat medium circuit 90 is connected to the heat medium flow path 91B of the refrigerant-heat medium exchanger 91, and a heat medium circuit 92 is connected to the heat medium flow path 93B of the refrigerant-heat medium exchanger 93.
  • the refrigerant flow path 91A of the refrigerant-heat medium exchanger 91 forms part of the refrigerant circuit R3, and the heat medium flow path 91B of the refrigerant-heat medium exchanger 91 forms part of the heat medium circuit 90.
  • a refrigerant flow path 93A of the refrigerant-heat medium exchanger 93 constitutes a part of the refrigerant circuit R3, and a heat medium flow path 93B of the refrigerant-heat medium exchanger 93 constitutes a part of the heat medium circuit 92.
  • the indoor condenser 4 is provided in the heat medium circuit 90 and the outdoor heat exchanger 7 is provided in the heat medium circuit 92 .
  • the high-temperature, high-pressure refrigerant discharged from the compressor 2 exchanges heat with the heat medium circulated in the heat medium circuit 90 by the circulation pump 94 in the refrigerant-heat medium exchanger 81, and is cooled by the heat medium being deprived of heat. Condensate and liquefy. On the other hand, the temperature of the heat medium in the heat medium circuit 90 becomes high, and the air in the air circulation passage 3 is passed through the indoor condenser 4 . heated.
  • the refrigerant circuit 92 heat is exchanged between the heat medium and the outside air that flows in as the vehicle travels or the outside air that is blown by the outdoor blower 15.
  • the refrigerant liquefied in the indoor condenser 4 reaches the outdoor expansion valve 6 through the refrigerant pipes 13F and 13H.
  • the refrigerant flows into the refrigerant-heat medium exchanger 93 .
  • the refrigerant exchanges heat in the refrigerant-heat medium exchanger 93 with the heat medium circulated through the heat medium circuit 92 by the circulation pump 95 .
  • the low-temperature, low-pressure refrigerant exiting the refrigerant-heat medium exchanger 93 flows into the accumulator 12 through the refrigerant pipes 13A and 13B, the solenoid valve 21, and the check valve 20.
  • the heat pump ECU 11 controls to close the outdoor expansion valve 6, and until the outdoor expansion valve 6 is fully closed, that is, the switching from the outside air heat absorption heating mode to the waste heat recovery heating mode is started. to the completion of switching (operation period in combined heating mode), the chiller expansion valve 73 is controlled to open gently to a predetermined degree of opening.
  • the refrigerant-heat medium heat exchanger 64 of the refrigerant By increasing the degree of superheat on the downstream side (refrigerant outlet side), a rapid rise in the pressure on the low-pressure side of the refrigerant circuit R, particularly the refrigerant pressure on the downstream side of the refrigerant-heat medium heat exchanger 64, is suppressed. As a result, the temperature of the air blown out from the indoor condenser 4, and thus the temperature of the air supplied to the passenger compartment, can be suppressed and kept constant.
  • 1 vehicle air conditioner
  • 2 compressor
  • 3 air flow passage
  • 4 indoor condenser
  • 6 outdoor expansion valve
  • 7 outdoor heat exchanger
  • 8 indoor expansion valve
  • 9 heat absorber
  • 11 heat pump ECU (control device)
  • 61 equipment temperature adjustment circuit
  • 62 first circulation pump
  • 63 second circulation pump
  • 64, 91, 93 refrigerant-heat medium heat exchanger
  • 73 chiller expansion valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

暖房モードの切替時において、車室内に供給する空気温度の乱れを抑制し、温度を一定に保つ。 圧縮機、室外熱交換器、放熱器、室外熱交換器の冷媒入口側に設けられる第1電子膨張弁、冷媒-熱媒体熱交換器、及び、冷媒-熱媒体熱交換器の冷媒入口側に設けられる第2電子膨張弁を含む冷媒回路と、熱媒体を循環させて冷媒-熱媒体熱交換器において冷媒と熱媒体との間で熱交換を行わせる熱媒体回路と、冷媒回路及び熱媒体回路を制御する制御装置とを備え、制御装置は、室外熱交換器から吸熱させる外気吸熱暖房モードと、冷媒-熱媒体熱交換器から吸熱させる廃熱回収暖房モードと、を有し、外気吸熱暖房モードから廃熱回収暖房モードへの切替時に、第1電子膨張弁を閉じると共に、冷媒-熱媒体熱交換器の下流側の冷媒過熱度を上昇させるように制御する、車両用空調装置を提供する。

Description

車両用空調装置
 本発明は、車両に適用されるヒートポンプ式の車両用空調装置であって、特に、冷媒回路に接続された熱媒体回路を循環する熱媒体から吸熱して車室内の暖房に利用する車両用空調装置に関する。
 従来、圧縮機、室内熱交換器、室外熱交換器、及び膨張弁が接続された冷媒回路を備え、室内熱交換器において冷媒と熱交換した空気を車室内に供給して車室内の空調を行うヒートポンプ式の車両用空調装置が知られている。
 このような車両用空調装置において、例えば、冷媒回路に冷媒-熱媒体熱交換器を介して熱媒体回路としてのバッテリ温度調整装置を設け、バッテリの熱を回収して暖房運転に利用するものがある。例えば、特許文献1の車両用空調装置では、暖房運転時の冷媒の吸熱を、室外熱交換器で行う外気吸熱モードと冷媒-熱媒体熱交換器で行う廃熱回収モードと、を含む複数のモードを必要に応じて切り替えて実行している。これらのモード間の切り替えは、室外熱交換器の冷媒入口側に設けた電子膨張弁と、冷媒-熱媒体熱交換器の冷媒入口前に設けた電子膨張弁とを用いて冷媒を分流させたり分流量を調整したりすることにより実現している。
特開2018-184108号公報
 しかしながら、暖房運転時の外気吸熱モードから廃熱回収モードへの切替の際に、バッテリ温度調整装置を循環する熱媒体の温度が外気温度に比して高温である場合には、冷媒回路を循環する低圧側の冷媒、すなわち、冷媒-熱媒体熱交換器を通過する冷媒の圧力(温度)が急激に上昇してしまう。このとき、圧縮機の回転数を制御しても十分でなく、室内熱交換器から吹き出されて車室内へ供給される空気の温度が乱れてしまうことがある。
 本発明は、このような事情に鑑みてなされたものであり、暖房モードの切替時において、車室内へ供給される空気の温度の乱れを抑制し、温度を一定に保つこと、などを課題としている。
 本発明の一形態は、冷媒を圧縮する圧縮機、冷媒と外気との間で熱交換を行わせる室外熱交換器、車室内に供給される空気を加熱する放熱器、前記室外熱交換器の冷媒入口側に設けられる第1電子膨張弁、冷媒-熱媒体熱交換器、及び、前記冷媒-熱媒体熱交換器の冷媒入口側に設けられる第2電子膨張弁を含む冷媒回路と、熱媒体を循環させて前記冷媒-熱媒体熱交換器において冷媒と熱媒体との間で熱交換を行わせる熱媒体回路と、前記冷媒回路及び前記熱媒体回路を制御する制御装置と、を備え、前記制御装置は、前記放熱器を用いて前記車室内を暖房する暖房運転において、前記圧縮機から吐出し前記放熱器において放熱した冷媒に、前記室外熱交換器から吸熱させる外気吸熱暖房モードと、前記冷媒-熱媒体熱交換器から吸熱させる廃熱回収暖房モードと、を有し、前記外気吸熱暖房モードから前記廃熱回収暖房モードへの切替時に、前記第1電子膨張弁を閉じるように制御するとともに、前記冷媒-熱媒体熱交換器の下流側の冷媒過熱度を上昇させるように制御する、車両用空調装置を提供する。
 本発明によれば、暖房モードの切替時において、車室内に供給させる空気の温度の乱れを抑制し、温度を一定に保つことができる。
本発明の実施形態に係る車両用空調装置の冷媒回路Rの概略構成を示す図である。 本発明の実施形態に係る車両用空調装置の制御装置としてのヒートポンプECUの概略構成を示すブロック図である。 本発明の実施形態に係る車両用空調装置において、外気吸熱暖房モードにおける冷媒回路Rの冷媒の流れを示す図である。 本発明の実施形態に係る車両用空調装置において、廃熱回収暖房モードにおける冷媒回路Rの冷媒の流れ及び機器温度調整回路においてバッテリの温度を調整する場合の熱媒体の流れを示す図である。 本発明の実施形態に係る車両用空調装置において、廃熱回収暖房モードにおける冷媒回路Rの冷媒の流れ及び機器温度調整回路においてモータユニットの温度を調整する場合の熱媒体の流れを示す図である。 本発明の実施形態に係る車両用空調装置において、廃熱回収暖房モードにおける冷媒回路Rの冷媒の流れ及び機器温度調整回路においてバッテリ及びモータユニットの温度を調整する場合の熱媒体の流れを示す図である。 本発明の実施形態に係る車両用空調装置において、併用暖房モードにおける冷媒回路Rの冷媒の流れ及び機器温度調整回路においてバッテリの温度を調整する場合の熱媒体の流れを示す図である。 本発明の実施形態に係る車両用空調装置において、併用暖房モードにおける冷媒回路Rの冷媒の流れ及び機器温度調整回路においてモータユニットの温度を調整する場合の熱媒体の流れを示す図である。 本発明の実施形態に係る車両用空調装置において、併用暖房モードにおける冷媒回路Rの冷媒の流れ及び機器温度調整回路においてバッテリ及びモータユニットの温度を調整する場合の熱媒体の流れを示す図である。 本発明の実施形態に係る車両用空調装置において、外気吸熱暖房モード(MODE1)から廃熱回収暖房モード(MODE3)への切替時の制御に関し、圧縮機、室外膨張弁、チラー膨張弁、第1循環ポンプ及び第2循環ポンプに対する制御と、その結果を示すグラフである。 本発明の実施形態の変形例1に係る車両用空調装置の冷媒回路R1の概略構成を示す。 本発明の実施形態の変形例2に係る車両用空調装置の冷媒回路R2の概略構成を示す。 本発明の実施形態の変形例3に係る車両用空調装置の冷媒回路R3の概略構成を示す。
 以下、本発明の実施形態について、図面を参照しつつ詳細に説明する。以下の説明において、同一の符号は同一の機能の部位を示しており、各図における重複説明は適宜省略する。
 図1に、本発明の実施形態に係る車両用空調装置1の概略構成を示す。車両用空調装置1は、例えば、エンジン(内燃機関)が搭載されていない電気自動車(EV)やエンジンと走行用の電動モータを供用する所謂ハイブリッド自動車などの車両に適用することができる。このような車両は、バッテリ(例えば、リチウム電池)が搭載され、外部電源からバッテリに充電された電力を、走行用のモータを含むモータユニットに供給することで駆動し、走行する。車両用空調装置1も、バッテリから供給される電力によって駆動する。
 本実施形態に係る車両用空調装置1は、冷媒回路Rを備え、冷媒回路Rを用いたヒートポンプ運転を行うことにより車室内の空調(暖房、冷房、除湿、及び除霜)を行う。また、冷媒回路Rに接続される熱媒体回路としての機器温度調整回路61を用いてバッテリ55やモータユニット65等の電装機器に対する冷却や暖機を行う。なお、以下の説明において、冷媒とは、ヒートポンプ(圧縮・凝縮・膨張・蒸発)における状態変化を伴う冷媒回路Rの循環媒体であり、熱媒体とは、このような状態変化を伴わずに熱の吸収と放熱を行う媒体である。
 冷媒回路Rは、冷媒を圧縮する電動式の圧縮機2と、車室内の空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒を放熱させて車室内に供給する空気を加熱する室内熱交換器としての室内コンデンサ(放熱器)4と、暖房時に冷媒を減圧膨張させる室外膨張弁6と、冷房時には冷媒を放熱させる放熱器(凝縮器)として機能し、暖房時には冷媒を吸熱させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させて車室内に供給する空気を冷却する室内熱交換器としての吸熱器9と、アキュムレータ12等が冷媒配管13A~13Hにより接続されて構成されている。
 室外膨張弁6及び室内膨張弁8は、いずれも図示しないパルスモータにより駆動される電子膨張弁であり、パルスモータに加えられるパルス数によって全閉から全開までの間で開度が適宜制御される。室外膨張弁6は、室内コンデンサ4から流出し室外熱交換器7に流入する冷媒を減圧膨張させる。また、室外膨張弁6は、室外熱交換器7を用いた暖房運転時に、室内コンデンサ4の冷媒出口における過冷却の達成度合いの指標となるSC(サブクール)値が予め定めた目標値となるように、後述するヒートポンプECU11により開度が制御される(SC制御)。室内膨張弁8は、吸熱器9に流入する冷媒を減圧膨張させると共に、吸熱器9における冷媒の吸熱量を調整する。
 室外熱交換器7には、室外送風機15が設けられている。室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させ、停車中にも室外熱交換器7に外気が通風されるようになっている。
 室外熱交換器7の冷媒出口と吸熱器9の冷媒入口とは冷媒配管13Aにより接続されている。冷媒配管13Aには、室外熱交換器7側から順に、逆止弁18と室内膨張弁8とが設けられている。逆止弁18は、吸熱器9に向かう方向が順方向となるように冷媒配管13Aに設けられる。冷媒配管13Aは、逆止弁18よりも室外熱交換器7側の位置で冷媒配管13Bに分岐している。
 冷媒配管13Aから分岐した冷媒配管13Bは、アキュムレータ12の冷媒入口に接続されている。冷媒配管13Bには、室外熱交換器7側から順に、暖房時に開放される電磁弁21及び逆止弁20が設けられている。逆止弁20は、アキュムレータ12に向かう方向が順方向となるように接続されている。冷媒配管13Bの電磁弁21と逆止弁20との間は冷媒配管13Cに分岐している。冷媒配管13Bから分岐した冷媒配管13Cは、吸熱器9の冷媒出口に接続されている。アキュムレータ12の冷媒出口と圧縮機2とは、冷媒配管13Dにより接続されている。
 圧縮機2の冷媒出口と室内コンデンサ4の冷媒入口とは、冷媒配管13Eにより接続されている。室内コンデンサ4の冷媒出口には冷媒配管13Fの一端が接続され、冷媒配管13Fの他端側は室外膨張弁6の手前(冷媒上流側)で冷媒配管13Gと冷媒配管13Hに分岐している。分岐した一方の冷媒配管13Hが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Gは、冷媒配管Aの逆止弁18と室内膨張弁8との間に接続されている。冷媒配管13Gの冷媒配管Aとの接続点より冷媒上流側には、電磁弁22が設けられている。
 これにより、冷媒配管13Gは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続され、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスする回路となる。
 吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されている(図1では吸込口25として代表して示す)。吸込口25には吸込切換ダンパ26が設けられている。吸込切換ダンパ26により、車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とを適宜切り換えて吸込口25から空気流通路3内に導入する。吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 空気流通路3の空気の流れに対して、室内コンデンサ4の空気下流側となる空気流通路3内には、補助ヒータ(図示せず)が設けられている。補助ヒータは、例えば、PTCヒータ(電気ヒータ)から構成され、補助ヒータが通電されて発熱することにより車室内の暖房を補完する。
 室内コンデンサ4の空気上流側における空気流通路3内には、空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を室内コンデンサ4及び補助ヒータに通風する割合を調整するエアミックスダンパ28が設けられている。
 なお、補助暖房手段として、例えば、圧縮機廃熱によって加熱した温水を空気流通路3に配置したヒータコアに循環させることにより、送風空気を加熱する形態とすることもできる。
 冷媒回路Rには、冷媒-熱媒体熱交換器64が接続されている。冷媒-熱媒体熱交換器64は、冷媒流路64Aと熱媒体流路64Bとを備え、冷媒回路Rの一部を構成すると同時に、熱媒体回路としての機器温度調整回路61の一部を構成する。
 具体的には、冷媒-熱媒体熱交換器64は冷媒回路Rに以下のように接続される。
 冷媒回路Rにおいて、冷媒配管13Aに設けられた逆止弁18の下流側であって、室内膨張弁8の冷媒上流側には、分岐回路としての冷媒配管72の一端が接続されている。冷媒配管72の他端は、冷媒-熱媒体熱交換器64の冷媒流路64Aの入口に接続されている。冷媒配管72にはチラー膨張弁73が設けられている。
 チラー膨張弁73は、図示しないパルスモータにより駆動される電子膨張弁であり、パルスモータに加えられるパルス数によって全閉から全開までの間で開度が適宜制御される。チラー膨張弁73は、冷媒-熱媒体熱交換器64の冷媒流路64Aに流入する冷媒を減圧膨張させると共に、冷媒-熱媒体熱交換器64の冷媒流路64Aの下流側における冷媒の過熱度を調整する。
 冷媒-熱媒体熱交換器64の冷媒流路64Aの出口には冷媒配管75の一端が接続されている。冷媒配管75の他端は冷媒配管13Bにおいて逆止弁20とアキュムレータ12との間に接続されている。このように、これらのチラー膨張弁73、冷媒-熱媒体熱交換器64の冷媒流路64A等も冷媒回路Rの一部を構成する。
 冷媒回路Rを循環する冷媒は、冷媒-熱媒体熱交換器64によって、機器温度調整回路61を循環する熱媒体と熱交換を行う。機器温度調整回路61は、バッテリ55やモータユニット65等の被温調対象に熱媒体を循環させてバッテリ55やモータユニット65の温度を調整する。なお、モータユニット65には、走行用の電動モータと電動モータを駆動するインバータ回路等の発熱機器も含まれる。被温調対象として、バッテリ55やモータユニット65の他に、車両に搭載されて発熱する機器を適用することができる。
 機器温度調整回路61は、バッテリ55やモータユニット65に熱媒体を循環させるための循環装置としての第1循環ポンプ62及び第2循環ポンプ63と、空気-熱媒体熱交換器67と、流路切換装置としての三方弁81,82,83とを備え、これらが熱媒体配管68A~68Dにより接続されて構成されている。
 冷媒-熱媒体熱交換器64において、熱媒体流路64Bの冷媒吐出側に熱媒体配管68Aの一端が接続され、熱媒体入口に熱媒体配管68Aの他端が接続されている。熱媒体配管68Aには、冷媒-熱媒体熱交換器64の熱媒体吐出側から順に、三方弁83、バッテリ55、三方弁82、空気-熱媒体熱交換器67、三方弁81、第1循環ポンプ62が設けられている。このように、冷媒-熱媒体熱交換器64の熱媒体流路64Bは機器温度調整回路61の一部を構成する。
 熱媒体配管68Aにおいて、三方弁83の熱媒体下流側には、バッテリ55をバイパスする熱媒体配管68Bの一端が接続され、熱媒体配管68Bの他端は、熱媒体配管68Aの三方弁82よりも熱媒体下流側に接続される。
 三方弁82の、熱媒体配管68Bの反対側には、熱媒体配管68Cの一端が設けられ、熱媒体配管68Cの他端は、熱媒体配管68Aの第1循環ポンプ62と三方弁81との間に接続されている。
 熱媒体配管68Aの三方弁82と空気-熱媒体熱交換器67との間には熱媒体配管68Dの一端が設けられ、熱媒体配管68Dの他端は、熱媒体配管68Aの第1循環ポンプ62よりも熱媒体上流側に接続される。熱媒体配管68Dには、熱媒体上流側から順にモータユニット65及び第2循環ポンプ63が設けられている。
 機器温度調整回路61をこのような構成とすることで、三方弁81,82,83を制御して、機器温度調整回路61においてバッテリ55のみ、モータユニット65のみ、または、バッテリ55及びモータユニット65の双方に熱媒体を循環させて、これらの温度を調整することができる。
 機器温度調整回路61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、本実施形態ではクーラントを熱媒体として採用している。また、バッテリ55やモータユニット65の周囲には例えば熱媒体が当該バッテリ55やモータユニット65と熱交換関係で流通可能なジャケット構造が施されているものとする。
 チラー膨張弁73が開いている場合、冷媒配管13Gや室外熱交換器7から流出した冷媒の一部又は全部は、冷媒配管72に流入しチラー膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Aに流入して蒸発する。一方、冷媒-熱媒体熱交換器64の熱媒体流路64Bには、機器温度調整回路61を循環し、バッテリ55やモータユニット65から吸熱した熱媒体が流入する。冷媒は、冷媒-熱媒体熱交換器64の冷媒流路64Aを流れる過程で熱媒体流路64Bを流れる熱媒体から吸熱した後、アキュムレータ12を経て圧縮機2に吸い込まれる。
 図2に、車両用空調装置1の制御装置としてのヒートポンプECU11の概略構成を示す。ヒートポンプECU11は、走行を含む車両全般の制御を司る車両コントローラ35とCAN(Controller Area Network)やLIN(Local Interconnect Network)等の車載ネットワークにより相互に通信可能に接続され、情報の送受信を行う。ヒートポンプECU11及び車両コントローラ35には何れもプロセッサを備えたコンピュータの一例としてのマイクロコンピュータを適用することができる。
 ヒートポンプECU11には、以下の各センサや検出器が接続され、これらの各センサや検出器等の出力が入力される。
 具体的には、ヒートポンプECU11には、車両の外気温度Tamを検出する外気温度センサ33、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36、車室内の空気の温度Tinを検出する内気温度センサ37、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42、圧縮機2の吐出冷媒温度Tdを検出する吐出温度センサ43、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ44、室内コンデンサ4の温度TCIを検出する室内コンデンサ温度センサ46、室内コンデンサ4の圧力(室内コンデンサ4を出た直後の冷媒圧力:室内コンデンサ出口圧力Pci)を検出する室内コンデンサ圧力センサ47と、吸熱器9の温度Teを検出する吸熱器温度センサ48、吸熱器9の冷媒圧力を検出する吸熱器圧力センサ49、設定温度や空調運転の切り換えを設定するための空調操作部53、室外熱交換器7の温度TXOを検出する室外熱交換器温度センサ54、室外熱交換器7の冷媒圧力PXOを検出する室外熱交換器圧力センサ56、及び、ヒートポンプECU11には、冷媒-熱媒体熱交換器64の熱媒体流路64Bを出て熱媒体回路を循環する熱媒体の温度Tw(以下、「チラー水温」という)を検出する熱媒体温度センサ79、が接続されている。
 一方、ヒートポンプECU11の出力には、圧縮機2、室外送風機15、室内送風機(ブロワファン)27、吸込切換ダンパ26、エアミックスダンパ28、室外膨張弁6、室内膨張弁8と、電磁弁21,22、三方弁81,82,83、チラー膨張弁73、第1循環ポンプ62、第2循環ポンプ63が接続されている。ヒートポンプECU11は各センサの出力と空調操作部53にて入力された設定、車両コントローラ35からの情報に基づいてこれらを制御する。
 以下、このように構成された車両用空調装置1における暖房運転時の動作について説明する。本実施形態におけるヒートポンプECU11(制御装置)は、暖房運転において、室外熱交換器7のみによって吸熱を行う外気吸熱暖房モードと、冷媒-熱媒体熱交換器64のみによって吸熱を行う廃熱回収熱暖房モードとを切り替えて実行する。また、暖房モードと廃熱回収モードとの切替時には、室外熱交換器7及び冷媒-熱媒体熱交換器64の双方によって吸熱を行うことになる。したがって、本実施形態における車両用空調装置では、外気吸熱暖房モード、廃熱回収暖房モード、及び、併用暖房モードを含む3つの暖房モードを実行することができる。
 以下、各暖房モードについて説明する。
(1)外気吸熱暖房モード(MODE1)
 図3は、外気吸熱暖房モードにおける冷媒回路Rの冷媒の流れ(矢印)を示している。ヒートポンプECU11により(オートモード)、或いは、空調操作部53へのマニュアル操作(マニュアルモード)により暖房運転が選択され、ヒートポンプECU11が外気吸熱暖房モードを実行する場合、電磁弁21を開放し、室内膨張弁8を全閉とする。また、チラー膨張弁73及び電磁弁22を全閉とする。
 圧縮機2、及び、室内送風機27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が室内コンデンサ4及び補助ヒータ(図示せず)に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は室内コンデンサ4に流入する。室内コンデンサ4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は室内コンデンサ4内の高温冷媒により加熱され、一方、室内コンデンサ4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 室内コンデンサ4で液化した冷媒は室内コンデンサ4を出た後、冷媒配管13F、13Hを経て室外膨張弁6に至る。冷媒は、室外膨張弁6で減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、車両の走行により流入する外気、或いは、室外送風機15にて通風される外気から吸熱する。即ち、冷媒回路Rがヒートポンプとなる。
 そして、室外熱交換器7を出た低温低圧の冷媒は冷媒配管13A及び冷媒配管13B、電磁弁21、逆止弁20を経てアキュムレータ12に流入する。冷媒はアキュムレータ12で気液分離された後、ガス冷媒が冷媒配管13Dを経て圧縮機2に吸い込まれる循環を繰り返す。室内コンデンサ4にて加熱された空気は吹出口29から吹き出される。これにより、車室内の暖房が行われることとなる。
 ヒートポンプECU11は、目標吹出温度TAOから目標室内コンデンサ圧力PCO(室内コンデンサ4の圧力PCIの目標値)を算出し、この目標室内コンデンサ圧力PCOと、室内コンデンサ圧力センサ47が検出する室内コンデンサ4の冷媒圧力(室内コンデンサ圧力PCI、すなわち、冷媒回路Rの高圧側圧力)に基づいて圧縮機2の回転数を制御すると共に、室内コンデンサ温度センサ46が検出する室内コンデンサ4の温度(室内コンデンサ温度TCI)及び室内コンデンサ圧力センサ47が検出する室内コンデンサ圧力PCIに基づいて室外膨張弁6の弁開度を制御し、室内コンデンサ4の出口における冷媒の過冷却度を制御する。また、室内コンデンサ4による暖房能力が不足する場合には補助ヒータ(図示せず)に通電して発熱させ、暖房を補完する。
 (2)廃熱回収暖房モード(MODE2)
 図4~図6は、廃熱回収暖房モードにおける冷媒回路Rの冷媒の流れ及び機器温度調整回路61の熱媒体の流れを示している。
 廃熱回収暖房モードでは、ヒートポンプECU11は電磁弁21を閉じ、室外膨張弁6と室内膨張弁8を全閉とし、電磁弁22を開く。また、チラー膨張弁73を開いてその弁開度を制御する状態とする。圧縮機2及び室内送風機27を運転する。
 これにより、室内コンデンサ4から出た全ての冷媒が電磁弁22に流れ、冷媒配管13Gを経て冷媒配管72に流入する。冷媒は、冷媒配管72を通過してチラー膨張弁73で減圧された後、冷媒配管72を経て冷媒-熱媒体熱交換器64の冷媒流路64Aに流入して蒸発する。このときに吸熱作用を発揮する。冷媒流路64Aで蒸発した冷媒は、冷媒配管75を経て冷媒配管13Bの逆止弁20の下流側に流入し、アキュムレータ12、冷媒配管13Dを経て圧縮機2に吸い込まれる循環を繰り返す。
 一方、機器温度調整回路61では、バッテリ55の温度を調整してバッテリ55から熱を回収する場合(図4)、モータユニット65の温度を調整してモータユニット65から熱を回収する場合(図5)、バッテリ55及びモータユニット65の温度を調整して、両者から熱回収する場合(図6)の3つの場合がある。
 図4に示すバッテリ55から熱を回収する場合には、熱媒体は、第1循環ポンプ62により循環され、三方弁83を経て流入したバッテリ55において熱交換した後、三方弁82を経て熱媒体配管68Cに流入し、熱媒体配管68Aを経て冷媒-熱媒体熱交換器64の熱媒体流路64Bに至る。熱媒体は、冷媒-熱媒体熱交換器64の冷媒流路64A内で蒸発する冷媒により吸熱されて冷却される。冷媒の吸熱作用で冷却された熱媒体は、冷媒-熱媒体熱交換器64を出て第1循環ポンプ62により再びバッテリ55に流入する循環を繰り返す。
 図5に示すモータユニット65から熱を回収する場合には、熱媒体は、第1循環ポンプ62及び第2循環ポンプ63により循環され、三方弁83を経て流入したモータユニット65において熱交換した後、熱媒体配管68Dから三方弁81及び熱媒体配管68Aを経て冷媒-熱媒体熱交換器64の熱媒体流路64Bに至る。熱媒体は、冷媒-熱媒体熱交換器64の冷媒流路64A内で蒸発する冷媒により吸熱されて冷却される。冷媒の吸熱作用で冷却された熱媒体は、冷媒-熱媒体熱交換器64を出て第1循環ポンプ62及び第2循環ポンプ63により熱媒体配管68A、三方弁83、熱媒体配管68B及び熱媒体配管68Dを経て再びモータユニット65に流入する循環を繰り返す。
 図6に示すバッテリ55及びモータユニット65の両者から熱を回収する場合には、熱媒体は、第1循環ポンプ62及び第2循環ポンプ63により循環され、三方弁83を経て、バッテリ55において熱交換した後、三方弁82及び熱媒体配管68Dを経て更にモータユニット65において熱交換する。
 その後、熱媒体配管68Dにおいて第2循環ポンプ63に吸い込まれ、三方弁81及び熱媒体配管68Aを経て冷媒-熱媒体熱交換器64の熱媒体流路64Bに至る。熱媒体は、冷媒-熱媒体熱交換器64の冷媒流路64A内で蒸発する冷媒により吸熱されて冷却される。冷媒の吸熱作用で冷却された熱媒体は、冷媒-熱媒体熱交換器64を出て第1循環ポンプ62及び第2循環ポンプ63により熱媒体配管68A、三方弁83を経て再びバッテリ55に流入する循環を繰り返す。
 このように廃熱回収単独モードでは、冷媒回路Rの冷媒が冷媒-熱媒体熱交換器64にて蒸発し、機器温度調整回路61の熱媒体のみから吸熱する。即ち、冷媒は室外熱交換器7に流入して蒸発することは無く、冷媒は熱媒体を介してバッテリ55、モータユニット65、またはバッテリ55とモータユニット65から熱を汲み上げることになるので、室外熱交換器7への着霜の問題を解消しながら、バッテリ55及びモータユニット65を冷却し、バッテリ55及びモータユニット65(被温調対象)から汲み上げた熱を室内コンデンサ4に搬送して車室内を暖房することができる。
 (3)併用暖房モード(廃熱回収並列モード)
 図7~図9は、併用暖房モードにおける冷媒回路Rの冷媒の流れ及び機器温度調整回路61の熱媒体の流れを示している。
 併用暖房モードでは、ヒートポンプECU11は図3に示した冷媒回路Rの暖房運転における外気吸熱暖房モードの状態で、更に電磁弁22を開き、チラー膨張弁73も開いてその弁開度を制御する状態とする。これにより、室内コンデンサ4から出た冷媒の一部が室外膨張弁6の冷媒上流側で分流され、冷媒配管13Gを経て冷媒配管72に流入する。
 冷媒配管72に流入した冷媒は、チラー膨張弁73で減圧された後、冷媒配管72を経て冷媒-熱媒体熱交換器64の冷媒流路64Aに流入して蒸発する。このときに吸熱作用を発揮する。冷媒流路64Aで蒸発した冷媒は、冷媒配管74を経て冷媒配管13Bの逆止弁20下流側に入り、アキュムレータ12、冷媒配管13Dを経て圧縮機2に吸い込まれる循環を繰り返す。
 一方、機器温度調整回路61における熱媒体は、上述した廃熱回収暖房モードと同様に、バッテリ55の温度を調整してバッテリ55から熱を回収する場合(図7)、モータユニット65の温度を調整してモータユニット65から熱を回収する場合(図8)、バッテリ55及びモータユニット65の温度を調整して、両者から熱回収する場合(図9)の3つの場合がある。
 図7に示すバッテリ55から熱を回収する場合には、熱媒体は、第1循環ポンプ62により循環され、三方弁83を経て流入したバッテリ55において熱交換した後、三方弁82を経て熱媒体配管68Cに流入し、熱媒体配管68Aを経て冷媒-熱媒体熱交換器64の熱媒体流路64Bに至る。熱媒体は、冷媒-熱媒体熱交換器64の冷媒流路64A内で蒸発する冷媒により吸熱されて冷却される。冷媒の吸熱作用で冷却された熱媒体は、冷媒-熱媒体熱交換器64を出て第1循環ポンプ62により再びバッテリ55に流入する循環を繰り返す。
 図8に示すモータユニット65から熱を回収する場合には、熱媒体は、第1循環ポンプ62及び第2循環ポンプ63により循環され、三方弁83を経て流入したモータユニット65において熱交換した後、熱媒体配管68Dから三方弁81及び熱媒体配管68Aを経て冷媒-熱媒体熱交換器64の熱媒体流路64Bに至る。熱媒体は、冷媒-熱媒体熱交換器64の冷媒流路64A内で蒸発する冷媒により吸熱されて冷却される。冷媒の吸熱作用で冷却された熱媒体は、冷媒-熱媒体熱交換器64を出て第1循環ポンプ62及び第2循環ポンプ63により熱媒体配管68A、三方弁83、熱媒体配管68B及び熱媒体配管68Dを経て再びモータユニット65に流入する循環を繰り返す。
 図9に示すバッテリ55及びモータユニット65の両者から熱を回収する場合には、熱媒体は、第1循環ポンプ62及び第2循環ポンプ63により循環され、三方弁83を経て、バッテリ55において熱交換した後、三方弁82及び熱媒体配管68Dを経て更にモータユニット65において熱交換する。その後、熱媒体配管68Dにおいて第2循環ポンプ63に吸い込まれ、三方弁81及び熱媒体配管68Aを経て冷媒-熱媒体熱交換器64の熱媒体流路64Bに至る。熱媒体は、冷媒-熱媒体熱交換器64の冷媒流路64A内で蒸発する冷媒により吸熱されて冷却される。冷媒の吸熱作用で冷却された熱媒体は、冷媒-熱媒体熱交換器64を出て第1循環ポンプ62及び第2循環ポンプ63により熱媒体配管68A、三方弁83を経て再びバッテリ55に流入する循環を繰り返す。
 このように、併用暖房モードでは、冷媒回路Rの冷媒の流れに対して室外熱交換器7と冷媒-熱媒体熱交換器64が並列に接続されているので、冷媒が室外熱交換器7と冷媒-熱媒体熱交換器64に流れてそれぞれで蒸発する。従って、室外熱交換器7によって外気から吸熱すると共に、冷媒-熱媒体熱交換器4によって熱媒体からも吸熱することになる。これにより、熱媒体を介してバッテリ55及びモータユニット65から熱を汲み上げ、バッテリ55及びモータユニット65を冷却しながら、汲み上げた熱を室内コンデンサ4に搬送し、車室内の暖房に利用することができるようになる。
 (暖房運転のモード切替)
 以下、図10を用いて、外気吸熱暖房モード(MODE1)から廃熱回収暖房モード(MODE3)への切替時の制御について説明する。
 図10は、ヒートポンプECU32による圧縮機2、室外膨張弁6、チラー膨張弁73、第1循環ポンプ62及び第2循環ポンプ63に対する制御と、その結果を示すグラフであり、上段にヒートポンプECU32による制御(Input)、下段に上段に示す制御の結果(Output)を示す。また、図10において、破線は参考(従来)例について、実線は本実施形態における車両用空調装置1についての制御及び制御結果を示す。
(1)参考例におけるモード切替制御
 参考例に係る車両用空調装置では、外気吸熱暖房モードから排熱回収暖房モードへの切替時に、ヒートポンプECU11により、冷媒-熱媒体熱交換器64において冷媒と熱媒体とを熱交換させるために、チラー膨張弁73を一定の速度で開度が狙い値となるように制御する。
 本参考例では、室外膨張弁6が全閉となるまでの間に、すなわち、外気吸熱暖房モードから廃熱回収暖房モードへの切替開始から切替完了までの間(併用暖房モードによる運転期間)に、チラー膨張弁73の開度が狙い値となるように制御する。また、チラー膨張弁73の開度制御に伴って、冷媒回路Rの高圧側圧力、すなわち、吹出口29から車室内に供給される空気の温度に基づいて圧縮機2の回転数を減少させるように制御する。第1循環ポンプ62及び第2循環ポンプ63の動作は変化させないため、冷媒-熱媒体熱交換器64を循環する熱媒体の流量も変化しない。
 この場合、図10に示すように、室外膨張弁6が閉じたときにチラー膨張弁73の開度が狙い値となるので、熱媒体からの吸熱を早期に行うことができるが、熱媒体の温度が外気温に比して高温の場合は、冷媒回路Rの低圧側圧力、特に、冷媒-熱媒体熱交換器64の下流側の冷媒の圧力が急激に上昇してしまう。このとき、圧縮機2の回転数が減少しているものの、回転数を減少させるだけでは不十分であり、吹出口29から車室内へ供給される空気の温度が乱れてしまい、乗員に不快感を与えるおそれがある。
(2)本実施形態におけるモード切替制御
 本実施形態においては、ヒートポンプECU11は、外気吸熱暖房モードから廃熱回収暖房モードへの切替時に、室外膨張弁6を閉じるように制御し、同時に、冷媒-熱媒体熱交換器64の下流側(冷媒出口側)の冷媒の圧力の過熱度を一時的に上昇させるように制御する。
 具体的には、ヒートポンプECU11は、室外膨張弁6を閉じるように制御し、室外膨張弁6が全閉となるまでの間に、すなわち、外気吸熱暖房モードから廃熱回収暖房モードへの切替開始から切替完了までの間(併用暖房モードによる運転期間)に、チラー膨張弁73を緩やかに所定の開度まで開くように制御する。
 また、チラー膨張弁73の開度制御に伴って、冷媒回路Rの高圧側圧力、すなわち、吹出口29から車室内に供給される空気の温度に基づいて圧縮機2の回転数を減少させるように制御する。このとき、チラー膨張弁73は、所定の開度まで緩やかに開き、全開とならないことから、圧縮機2の回転数は上述の参考例よりも緩やかに減少する。さらに、第1循環ポンプ62及び第2循環ポンプ63を制御して、機器温度調整回路61を循環する熱媒体の流量(循環量)を一時的に減少させ、再び熱媒体の流量を増加させて室外膨張弁6が全閉となるまでに元の流量に戻す。なお、廃熱回収暖房モードへの切替は、室外膨張弁6が全閉となり室外熱交換器7における外気と冷媒との熱交換が行われなくなると完了する。
 併用暖房モードによる運転期間は、チラー膨張弁73が所定の開度に絞られており(全開でない)、かつ、熱媒体の流量が一時的に減少する。このため、上述の参考例に比して、併用暖房モードによる運転期間における熱媒体の温度が高く、つまり、冷媒-熱媒体熱交換器64での冷媒による熱媒体からの吸熱量が小さい。このように制御することで、冷媒-熱媒体熱交換器64の下流側(冷媒出口側)の過熱度を上昇させて、冷媒回路Rの低圧側圧力、特に、冷媒-熱媒体熱交換器64の下流側の冷媒圧力の急上昇を抑制することができる。
 また、ヒートポンプECU11は、外気吸熱暖房モードから廃熱回収暖房モードへの切替開始から所定時間経過後、例えば、廃熱回収暖房モードへの切替完了時に、チラー膨張弁73の開度をさらに大きくなるよう制御する。これにより、冷媒-熱媒体熱交換器64において冷媒による熱媒体からの吸熱量が増加し、冷媒の冷媒-熱媒体熱交換器64の下流側(冷媒出口側)の過熱度が徐々に低下し、冷媒-熱媒体熱交換器64の下流側の冷媒圧力も低下する。
 このように、本実施形態に係る車両用空調装置1によれば、外気吸熱暖房モードから廃熱回収暖房モードへの切替時において、冷媒の冷媒-熱媒体熱交換器64の下流側(冷媒出口側)の過熱度を上昇させて、冷媒回路Rの低圧側圧力、特に、冷媒-熱媒体熱交換器64の下流側の冷媒圧力の急上昇を抑制する。これにより、室内コンデンサ4からの吹出空気温度、ひいては車室内に供給する空気の温度の乱れを抑制し、一定に保つことができる。
 なお、冷媒回路Rの室内コンデンサ4から室外熱交換器7入口までの冷媒配管13Fに、他の冷媒配管に比して、長く、太径の冷媒配管を用いることで、暖房時の冷媒量を増加させることができる。また、冷媒回路Rの冷媒高圧側、例えば、室外熱交換器7の冷媒出口に冷媒貯留部としてレシーバを配置してレシーバサイクルとしてもよい。
 (変形例1)
 図11に、上述した実施形態の変形例1に係る車両用空調装置の冷媒回路R1の概略構成を示す。変形例1に係る車両用空調装置の冷媒回路R1には、冷媒-熱媒体交換器91の冷媒流路91Aが接続され、冷媒-熱媒体交換器91の熱媒体流路91Bに熱媒体回路90が接続されている。冷媒-熱媒体交換器91の冷媒流路91Aは、冷媒回路R1の一部を構成し、冷媒-熱媒体交換器91の熱媒体流路91Bは熱媒体回路90の一部を構成する。熱媒体回路90には、室内コンデンサ4が設けられている。
 したがって、圧縮機2から吐出した高温高圧の冷媒は、冷媒-熱媒体交換器91において熱媒体回路90を循環ポンプ94によって循環させられる熱媒体と熱交換し、熱媒体に熱を奪われて冷却され、凝縮液化する。熱媒体回路90における熱媒体は高温となり、室内コンデンサ4に通風される空気流通路3内の空気が室内コンデンサ4を循環する高温の熱媒体により加熱される。
 (変形例2)
 図12に、上述した実施形態の変形例2に係る車両用空調装置の冷媒回路R2の概略構成を示す。変形例2に係る車両用空調装置の冷媒回路R1には、冷媒-熱媒体交換器93の冷媒流路93Aが接続され、冷媒-熱媒体交換器93の熱媒体流路93Bに熱媒体回路92が接続されている。冷媒-熱媒体交換器93の冷媒流路93Aは、冷媒回路R2の一部を構成し、冷媒-熱媒体交換器93の熱媒体流路93Bは熱媒体回路92の一部を構成する。熱媒体回路92には、室外熱交換器7が設けられている。
 熱媒体回路92では、熱媒体と、車両の走行により流入する外気、或いは、室外送風機15にて通風される外気とが熱交換する。室内コンデンサ4で液化した冷媒は室内コンデンサ4を出た後、冷媒配管13F、13Hを経て室外膨張弁6に至る。冷媒は、室外膨張弁6で減圧された後、冷媒-熱媒体交換器93に流入する。冷媒は、冷媒-熱媒体交換器93において熱媒体回路92を循環ポンプ95によって循環させられる熱媒体と熱交換する。冷媒-熱媒体交換器93を出た低温低圧の冷媒は冷媒配管13A及び冷媒配管13B、電磁弁21、逆止弁20を経てアキュムレータ12に流入する。
 (変形例3)
 図13に、上述した実施形態の変形例3に係る車両用空調装置の冷媒回路R3の概略構成を示す。変形例3に係る車両用空調装置の冷媒回路R3には、冷媒-熱媒体交換器91の冷媒流路91A及び、冷媒-熱媒体交換器93の冷媒流路93Aが接続されている。また、冷媒-熱媒体交換器91の熱媒体流路91Bに熱媒体回路90が接続され、冷媒-熱媒体交換器93の熱媒体流路93Bには熱媒体回路92が接続されている。
 冷媒-熱媒体交換器91の冷媒流路91Aは、冷媒回路R3の一部を構成し、冷媒-熱媒体交換器91の熱媒体流路91Bは熱媒体回路90の一部を構成する。冷媒-熱媒体交換器93の冷媒流路93Aは、冷媒回路R3の一部を構成し、冷媒-熱媒体交換器93の熱媒体流路93Bは熱媒体回路92の一部を構成する。室内コンデンサ4は熱媒体回路90に設けられ、室外熱交換器7は熱媒体回路92に設けられている。
 圧縮機2から吐出した高温高圧の冷媒は、冷媒-熱媒体交換器81において熱媒体回路90を循環ポンプ94によって循環させられる熱媒体と熱交換し、熱媒体に熱を奪われて冷却され、凝縮液化する。一方、熱媒体回路90における熱媒体は高温となり、室内コンデンサ4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は室内コンデンサ4を循環する高温の熱媒体により加熱される。
 熱媒体回路92では、熱媒体と、車両の走行により流入する外気、或いは、室外送風機15にて通風される外気とが熱交換する。室内コンデンサ4で液化した冷媒は室内コンデンサ4を出た後、冷媒配管13F、13Hを経て室外膨張弁6に至る。冷媒は、室外膨張弁6で減圧された後、冷媒-熱媒体交換器93に流入する。冷媒は、冷媒-熱媒体交換器93において熱媒体回路92を循環ポンプ95によって循環させられる熱媒体と熱交換する。冷媒-熱媒体交換器93を出た低温低圧の冷媒は冷媒配管13A及び冷媒配管13B、電磁弁21、逆止弁20を経てアキュムレータ12に流入する。
 変形例1~変形例3に係る車両用空調装置においても、外気吸熱暖房モード、廃熱回収暖房モード、及び、併用暖房モードを含む3つの暖房モードを実行することができる。そして、外気吸熱暖房モード(MODE1)から廃熱回収暖房モード(MODE3)への切替時に、室外膨張弁6を閉じるように制御し、同時に、冷媒-熱媒体熱交換器64の下流側(冷媒出口側)の冷媒の圧力の過熱度を一時的に上昇させるように制御する(図10参照)。具体的には、ヒートポンプECU11は、室外膨張弁6を閉じるように制御し、室外膨張弁6が全閉となるまでの間に、すなわち、外気吸熱暖房モードから廃熱回収暖房モードへの切替開始から切替完了までの間(併用暖房モードによる運転期間)に、チラー膨張弁73を緩やかに所定の開度まで開くように制御する。
 このように制御することにより、変形例1~変形例3に係る車両用空調装置においても、外気吸熱暖房モードから廃熱回収暖房モードへの切替時に、冷媒の冷媒-熱媒体熱交換器64の下流側(冷媒出口側)の過熱度を上昇させて、冷媒回路Rの低圧側圧力、特に、冷媒-熱媒体熱交換器64の下流側の冷媒圧力の急上昇を抑制する。これにより、室内コンデンサ4からの吹出空気温度、ひいては車室内に供給する空気の温度の乱れを抑制し、一定に保つことができる。
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。
 1:車両用空調装置,2:圧縮機,3:空気流通路,4:室内コンデンサ、6:室外膨張弁,7:室外熱交換器,8:室内膨張弁,9:吸熱器,11:ヒートポンプECU(制御装置),61:機器温度調整回路,62:第1循環ポンプ,63:第2循環ポンプ,64,91,93:冷媒-熱媒体熱交換器,73:チラー膨張弁
 

Claims (7)

  1.  冷媒を圧縮する圧縮機、冷媒と外気との間で熱交換を行わせる室外熱交換器、車室内に供給される空気を加熱する放熱器、前記室外熱交換器の冷媒入口側に設けられる第1電子膨張弁、冷媒-熱媒体熱交換器、及び、前記冷媒-熱媒体熱交換器の冷媒入口側に設けられる第2電子膨張弁を含む冷媒回路と、
     熱媒体を循環させて前記冷媒-熱媒体熱交換器において冷媒と熱媒体との間で熱交換を行わせる熱媒体回路と、
     前記冷媒回路及び前記熱媒体回路を制御する制御装置と、を備え、
     前記制御装置は、
     前記放熱器を用いて前記車室内を暖房する暖房運転において、
     前記圧縮機から吐出し前記放熱器において放熱した冷媒に、
     前記室外熱交換器から吸熱させる外気吸熱暖房モードと、
     前記冷媒-熱媒体熱交換器から吸熱させる廃熱回収暖房モードと、を有し、
     前記外気吸熱暖房モードから前記廃熱回収暖房モードへの切替時に、前記第1電子膨張弁を閉じるように制御するとともに、前記冷媒-熱媒体熱交換器の下流側の冷媒過熱度を上昇させるように制御する、車両用空調装置。
  2.  前記制御装置は、前記第2電子膨張弁の開度を制御することにより、前記冷媒-熱媒体熱交換器の下流側の冷媒過熱度を上昇させる請求項1記載の車両用空調装置。
  3.  前記制御装置は、前記廃熱回収暖房モードへ切替開始から所定時間経過後に、前記第2電子膨張弁の開度を制御することにより、前記冷媒-熱媒体熱交換器の下流側の冷媒過熱度を下降させる請求項1または請求項2記載の車両用空調装置。
  4.  前記熱媒体回路に、前記熱媒体を循環させるポンプが設けられ、
     前記制御装置は、前記外気吸熱暖房モードから前記廃熱回収暖房モードへの切替時に、前記ポンプの回転数を制御することにより前記熱媒体の循環量を減少させる請求項1から請求項3の何れか1項記載の車両用空調装置。
  5.  前記室外熱交換器の冷媒出口に冷媒貯留部を設けた請求項1から請求項4のいずれか1項記載の車両用空調装置。
  6.  前記冷媒回路において、前記放熱器から前記室外熱交換器の冷媒入口までの冷媒配管に、他の冷媒配管に比して、長く、太径の冷媒配管を用いる請求項1から請求項4のいずれか1項記載の車両用空調装置。
  7.  前記熱媒体回路は、機器温度調整回路であって、
     前記機器温度調整回路に熱媒体を循環させて車両に搭載される被温調対象から前記冷媒-熱媒体熱交換器によって熱を回収する、請求項1から請求項6のいずれか1項記載の車両用空調装置。
     
     
     
PCT/JP2022/013271 2021-03-24 2022-03-22 車両用空調装置 WO2022202836A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/281,369 US20240157761A1 (en) 2021-03-24 2022-03-22 Vehicle air conditioning apparatus
CN202280019561.9A CN116981579A (zh) 2021-03-24 2022-03-22 车用空调装置
DE112022001678.7T DE112022001678T5 (de) 2021-03-24 2022-03-22 Fahrzeugklimaanlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-050560 2021-03-24
JP2021050560A JP7494139B2 (ja) 2021-03-24 2021-03-24 車両用空調装置

Publications (1)

Publication Number Publication Date
WO2022202836A1 true WO2022202836A1 (ja) 2022-09-29

Family

ID=83395853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013271 WO2022202836A1 (ja) 2021-03-24 2022-03-22 車両用空調装置

Country Status (5)

Country Link
US (1) US20240157761A1 (ja)
JP (1) JP7494139B2 (ja)
CN (1) CN116981579A (ja)
DE (1) DE112022001678T5 (ja)
WO (1) WO2022202836A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182203A (ja) * 2002-12-06 2004-07-02 Mitsubishi Heavy Ind Ltd 車両用空気調和装置の制御方法および車両用空気調和装置
JP2011105150A (ja) * 2009-11-18 2011-06-02 Hitachi Ltd 車両用空調装置
JP2018140720A (ja) * 2017-02-28 2018-09-13 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2019209938A (ja) * 2018-06-08 2019-12-12 株式会社デンソー 車両用冷凍サイクル装置
JP2020034228A (ja) * 2018-08-30 2020-03-05 サンデンホールディングス株式会社 車両空調装置用ヒートポンプシステム
JP2020050155A (ja) * 2018-09-27 2020-04-02 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6884028B2 (ja) 2017-04-26 2021-06-09 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP7221650B2 (ja) 2018-10-31 2023-02-14 サンデン株式会社 車両用空気調和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182203A (ja) * 2002-12-06 2004-07-02 Mitsubishi Heavy Ind Ltd 車両用空気調和装置の制御方法および車両用空気調和装置
JP2011105150A (ja) * 2009-11-18 2011-06-02 Hitachi Ltd 車両用空調装置
JP2018140720A (ja) * 2017-02-28 2018-09-13 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2019209938A (ja) * 2018-06-08 2019-12-12 株式会社デンソー 車両用冷凍サイクル装置
JP2020034228A (ja) * 2018-08-30 2020-03-05 サンデンホールディングス株式会社 車両空調装置用ヒートポンプシステム
JP2020050155A (ja) * 2018-09-27 2020-04-02 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置

Also Published As

Publication number Publication date
JP2022148755A (ja) 2022-10-06
DE112022001678T5 (de) 2024-01-18
US20240157761A1 (en) 2024-05-16
JP7494139B2 (ja) 2024-06-03
CN116981579A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
US10889163B2 (en) Heat pump system
JP6838518B2 (ja) 冷凍サイクル装置
JP7173064B2 (ja) 熱管理システム
KR101511508B1 (ko) 차량용 히트 펌프 시스템
CN112638674B (zh) 制冷循环装置
CN112739562B (zh) 制冷循环装置
JP2018177219A (ja) 車両用熱管理装置
WO2017159495A1 (ja) 空調装置
WO2022181110A1 (ja) 空調装置
KR101941026B1 (ko) 차량용 히트 펌프 시스템
JP7164986B2 (ja) 車両用空気調和装置
JP2022051623A (ja) 冷凍サイクル装置
WO2022202841A1 (ja) 車両用空調装置
WO2022064946A1 (ja) 車両用空調装置
WO2022202839A1 (ja) 車両用空調装置
WO2022202836A1 (ja) 車両用空調装置
WO2023002993A1 (ja) 車両用空調装置
JP6854668B2 (ja) 車両用空気調和装置
WO2022064945A1 (ja) 車両用空調装置
WO2023140206A1 (ja) 車両用空調装置
KR101461989B1 (ko) 차량용 히트 펌프 시스템 및 그 제어방법
WO2023140205A1 (ja) 車両用空調装置
US20240375485A1 (en) Vehicle air conditioning apparatus
JP2019064532A (ja) 車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775618

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280019561.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18281369

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022001678

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775618

Country of ref document: EP

Kind code of ref document: A1