WO2023140205A1 - 車両用空調装置 - Google Patents
車両用空調装置 Download PDFInfo
- Publication number
- WO2023140205A1 WO2023140205A1 PCT/JP2023/000932 JP2023000932W WO2023140205A1 WO 2023140205 A1 WO2023140205 A1 WO 2023140205A1 JP 2023000932 W JP2023000932 W JP 2023000932W WO 2023140205 A1 WO2023140205 A1 WO 2023140205A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- compressor
- heat exchanger
- hot gas
- circuit
- Prior art date
Links
- 238000004378 air conditioning Methods 0.000 title abstract description 8
- 239000003507 refrigerant Substances 0.000 claims abstract description 251
- 238000010438 heat treatment Methods 0.000 claims abstract description 62
- 239000007789 gas Substances 0.000 description 53
- 238000010586 diagram Methods 0.000 description 15
- 238000001816 cooling Methods 0.000 description 14
- 238000010521 absorption reaction Methods 0.000 description 10
- 239000006096 absorbing agent Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 238000000926 separation method Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- FXRLMCRCYDHQFW-UHFFFAOYSA-N 2,3,3,3-tetrafluoropropene Chemical compound FC(=C)C(F)(F)F FXRLMCRCYDHQFW-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
Definitions
- the present invention relates to a heat pump type vehicle air conditioner that is applied to a vehicle, and more particularly to a vehicle air conditioner that has a plurality of operation modes.
- a vehicle air conditioner mounted on such a vehicle it is known to have a refrigerant circuit connected to a compressor, a radiator (condenser) provided in the air flow passage to dissipate refrigerant heat, a heat absorber (evaporator) provided in the air flow passage to absorb heat from the refrigerant, and an outdoor heat exchanger provided outside the vehicle cabin to heat-exchange the refrigerant with the refrigerant in the air flow passage and supply the air to the vehicle interior to heat or cool the vehicle interior.
- a radiator condenser
- evaporator heat absorber
- an outdoor heat exchanger provided outside the vehicle cabin to heat-exchange the refrigerant with the refrigerant in the air flow passage and supply the air to the vehicle interior to heat or cool the vehicle interior.
- the air mix damper in the air circulation passage adjusts the amount of air blown to the radiator, thereby controlling the blowing temperature of the air supplied to the vehicle interior to the target blowing temperature (for example, Patent Document 1).
- the rotation speed of the compressor 2 is controlled based on the outlet refrigerant pressure Pci of the radiator detected by the pressure sensor and the target pressure PCO, which is the target value of the outlet refrigerant pressure Pci.
- the target pressure PCO is calculated based on the target heater temperature TCO, which is the target value of the outlet refrigerant temperature Tci of the radiator.
- the target heater temperature TCO is calculated higher than the actual outlet refrigerant temperature Tci of the radiator, and accordingly the target pressure PCO is also calculated higher than the originally required pressure.
- the compressor 2 is controlled at a rotation speed higher than the originally required rotation speed, and the refrigerant is excessively heated by the radiator, which is regulated by the air mix damper. That is, heat loss occurs, and appropriate and efficient temperature control cannot be performed.
- the present invention has been made in view of these circumstances, and aims to accurately calculate the target pressure of the outlet refrigerant pressure of the radiator and perform appropriate and efficient temperature control even during heating operation using a hot gas circuit.
- the present invention comprises a refrigerant circuit including a compressor that compresses refrigerant, a radiator that heats the air supplied to the vehicle interior with the heat of the refrigerant, and an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air, and a control device that controls the refrigerant circuit. and a hot gas heating mode for heating the interior of the vehicle with the heat of the refrigerant compressed by the compressor.
- the present invention even during heating operation using a hot gas circuit, it is possible to accurately calculate the target pressure of the refrigerant pressure at the outlet of the radiator and perform appropriate and efficient temperature control.
- FIG. 1 is a block diagram showing a schematic configuration of a control device for a vehicle air conditioner according to an embodiment of the present invention
- FIG. 4 is an explanatory diagram showing the flow of refrigerant in the refrigerant circuit when each operation mode using the hot gas circuit is executed in the vehicle air conditioner according to the embodiment of the present invention
- FIG. 4 is a Mollier diagram showing changes in the state of the refrigerant during execution of the hot gas heating mode and the hot gas mode in the vehicle air conditioner according to the embodiment of the present invention.
- FIG. 4 is a Mollier diagram showing changes in the state of the refrigerant during execution of the battery heating mode in the vehicle air conditioner according to the embodiment of the present invention.
- 4 is a saturation temperature curve table showing the relationship between the outlet refrigerant pressure Pci of the indoor heat exchanger and the saturation temperature.
- FIG. 4 is an explanatory diagram showing the flow of refrigerant in the refrigerant circuit when the outside air heat absorption heating mode is executed in the vehicle air conditioner according to the embodiment of the present invention
- FIG. 4 is a Mollier diagram showing changes in the state of the refrigerant during execution of the outside air heat absorption heating mode in the vehicle air conditioner according to the embodiment of the present invention.
- FIG. 4 is an explanatory diagram showing the flow of refrigerant in the refrigerant circuit when the battery cooling mode is executed in the vehicle air conditioner according to the embodiment of the present invention.
- FIG. 1 shows a schematic configuration of a vehicle air conditioner 1 according to an embodiment of the present invention.
- the vehicle air conditioner 1 can be applied to a vehicle such as an electric vehicle (EV) that is not equipped with an engine (internal combustion engine) or a so-called hybrid vehicle that shares an engine and an electric motor for running.
- a vehicle is equipped with a battery 55 (for example, a lithium battery), and is driven by supplying electric power charged in the battery 55 from an external power supply to a motor unit (not shown) including a driving motor (electric motor).
- the vehicle air conditioner 1 is also powered by the battery 55 and driven.
- the vehicle air conditioner 1 includes a refrigerant circuit R for performing heat pump operation, and a heat medium circuit 60 for adjusting the temperature of the battery 55 as a temperature control target.
- the heat medium circuit 60 is connected to the refrigerant circuit R so as to be capable of exchanging heat via a temperature control target heat exchanger 64, which will be described later.
- the vehicle air conditioner 1 selectively executes various operation modes including air conditioning operation such as heating operation and cooling operation by heat pump operation using the refrigerant circuit R, thereby air conditioning the vehicle interior and adjusting the temperature of the battery 55.
- the heat medium circuit 60 can also adjust the temperature of, for example, a motor unit and other devices mounted on the vehicle that generate heat.
- the refrigerant circuit R consists of a compressor 2 that compresses the refrigerant, an indoor heat exchanger 4 that is provided in the air flow passage 3 of the HVAC unit 10 through which the air in the vehicle is ventilated and circulated, and is a radiator that heats the air supplied to the vehicle by releasing heat from the high-temperature and high-pressure refrigerant discharged from the compressor 2; an outdoor expansion valve 6 that decompresses and expands the refrigerant during heating; An outdoor heat exchanger 7 for exchanging heat between the two, an indoor expansion valve 8 for decompressing and expanding the refrigerant, a heat absorber 9 for cooling the air supplied to the vehicle interior by allowing the refrigerant to absorb heat from outside the vehicle interior during cooling and dehumidification, and an accumulator 12, etc., are connected by refrigerant pipes 13A to 13K.
- the outdoor expansion valve 6 and the indoor expansion valve 8 are both electronic expansion valves driven by a pulse motor (not shown). It adjusts the amount of heat absorbed by the refrigerant in, that is, the cooling capacity of the passing air.
- the refrigerant outlet of the outdoor heat exchanger 7 and the refrigerant inlet of the heat absorber 9 are connected by a refrigerant pipe 13A.
- a check valve 18 and an indoor expansion valve 8 are provided in order from the outdoor heat exchanger 7 side in the refrigerant pipe 13A.
- the check valve 18 is provided in the refrigerant pipe 13A so that the direction toward the heat absorber 9 is the forward direction.
- the refrigerant pipe 13A branches off to the refrigerant pipe 13B at a position closer to the outdoor heat exchanger 7 than the check valve 18 and branches to the refrigerant pipe 13I between the check valve 18 and the indoor expansion valve 8 .
- a refrigerant pipe 13B branched from the refrigerant pipe 13A is connected to the refrigerant inlet of the accumulator 12 .
- the refrigerant pipe 13B is provided with an electromagnetic valve 21 and a check valve 20 that are opened during heating in order from the outdoor heat exchanger 7 side.
- the check valve 20 is connected so that the direction toward the accumulator 12 is the forward direction.
- a refrigerant pipe 13C is branched between the solenoid valve 21 and the check valve 20 of the refrigerant pipe 13B.
- a refrigerant pipe 13C branched from the refrigerant pipe 13B is connected to a refrigerant outlet of the heat absorber 9 .
- a refrigerant outlet of the accumulator 12 and the compressor 2 are connected by a refrigerant pipe 13D.
- the refrigerant outlet of the compressor 2 and the refrigerant inlet of the indoor heat exchanger 4 are connected by a refrigerant pipe 13E.
- One end of the refrigerant pipe 13F is connected to the refrigerant outlet of the indoor heat exchanger 4, and the other end of the refrigerant pipe 13F is branched into the refrigerant pipe 13G and the refrigerant pipe 13H before the outdoor expansion valve 6 (on the refrigerant upstream side).
- One branched refrigerant pipe 13G is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6 .
- the other branched refrigerant pipe 13H is connected between the check valve 18 and the indoor expansion valve 8 of the refrigerant pipe 13A.
- a solenoid valve 22 is provided on the refrigerant upstream side of the connection point between the refrigerant pipe 13H and the refrigerant pipe 13A.
- the solenoid valve 22 may be an electronic expansion valve.
- a refrigerant pipe 13I branched from the refrigerant pipe 13A is connected to the refrigerant flow path 64A of the temperature control target heat exchanger 64, and the refrigerant pipe 13I is provided with a chiller expansion valve 72.
- the chiller expansion valve 72 is an electronic expansion valve driven by a pulse motor (not shown), and its opening is appropriately controlled between fully closed and fully opened depending on the number of pulses applied to the pulse motor.
- the chiller expansion valve 72 decompresses and expands the refrigerant flowing into the refrigerant flow path 64A of the heat exchanger 64 for temperature control.
- One end of the refrigerant pipe 13J is connected to the outlet of the refrigerant flow path 64A of the heat exchanger 64 for temperature control.
- the other end of the refrigerant pipe 13J is connected to the vicinity of the inlet of the accumulator 12 of the refrigerant pipe 13B.
- the refrigerant pipe 13H is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, bypassing the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18. Then, the refrigerant discharged from the compressor 2 flows to the indoor heat exchanger 4 by the refrigerant pipe 13H and the refrigerant pipe 13I, bypasses the outdoor heat exchanger 7, and passes through the temperature control target heat exchanger 64 to form a hot gas circuit in which the refrigerant flows into the suction side of the compressor 2.
- Whether or not to allow the refrigerant to flow into the refrigerant pipe 13G that is, whether or not to use the hot gas circuit can be selected according to the opening/closing of the electromagnetic valve 22 provided in the refrigerant pipe 13H.
- the refrigerant outlet of the compressor 2 and the refrigerant suction side of the accumulator 12 are connected by a refrigerant pipe 13K.
- An electronic expansion valve 24 is provided in the refrigerant pipe 13K, and by opening the electronic expansion valve 24, a bypass circuit can be formed in which the refrigerant discharged from the compressor 2 is sucked into the compressor 2 again.
- the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with an outside air intake and an inside air intake (represented by the intake 25 in FIG. 1).
- a suction switching damper 26 is provided at the suction port 25 .
- the intake switching damper 26 appropriately switches between the inside air, which is the air inside the vehicle compartment, and the outside air, which is the air outside the vehicle compartment, and introduces the air from the intake port 25 into the air flow passage 3 .
- An indoor air blower 27 for supplying the introduced inside air and outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26 .
- An air mix damper 28 is provided in the air flow passage 3 on the air upstream side of the indoor heat exchanger 4 to adjust the ratio of the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 to the indoor heat exchanger 4 and the auxiliary heater 23.
- auxiliary heating means for example, hot water heated by compressor waste heat may be circulated through a heater core arranged in the air flow passage 3 to heat the blown air.
- the heat medium circuit 60 includes a pump 61 for circulating the heat medium in the heat medium circuit 60 to flow the heat medium to the battery 55, and a temperature control target heat exchanger 64.
- the heat medium is passed through the battery 55, which is the temperature control target, to adjust the temperature of the battery 55.
- the heat medium circuit 60 is provided so that the refrigerant circulating in the refrigerant circuit R and the heat medium exchange heat in the temperature control target heat exchanger 64 . That is, in the heat medium circuit 60, the heat medium passes through the heat medium flow path 64B of the heat exchanger 64 for temperature adjustment and exchanges heat with the refrigerant passing through the heat medium flow path 64A of the heat exchanger 64 for temperature adjustment.
- the heat medium whose temperature is adjusted by exchanging heat with the refrigerant passes through the battery 55 by circulating through the heat medium circuit 60 by the pump 61 , thereby adjusting the temperature of the battery 55 .
- the temperature control target heat exchanger 64 constitutes part of the refrigerant circuit R and also constitutes part of the heat medium circuit 60 .
- the heat medium used in the heat medium circuit 60 for example, water, a refrigerant such as HFO-1234yf, a liquid such as a coolant liquid obtained by adding an antifreeze liquid to water, or a gas such as air can be used.
- a coolant liquid is adopted as a heat medium.
- the battery 55 is surrounded by, for example, a jacket structure that allows a heat medium to flow in a heat exchange relationship with the battery 55 .
- FIG. 2 shows a schematic configuration of a control device 100 that controls the vehicle air conditioner 1.
- the control device 100 is connected to the vehicle controller 35, which controls the entire vehicle including the drive control of the motor unit and the charge/discharge control of the battery 55, via an in-vehicle network such as a CAN (Controller Area Network) or a LIN (Local Interconnect Network) so as to be able to communicate with each other, and transmits and receives information.
- CAN Controller Area Network
- LIN Local Interconnect Network
- a computer equipped with a processor such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit), an electric circuit, and a storage element such as a RAM (Random Access Memory) or a ROM (Read Only Memory) can be applied.
- a processor such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit)
- MPU Micro Processing Unit
- a storage element such as a RAM (Random Access Memory) or a ROM (Read Only Memory) can be applied.
- the following sensors and detectors are connected to the control device 100, and the outputs of these sensors and detectors are input.
- illustrations and descriptions of components that are not directly related to the operation of the vehicle air conditioner 1 according to the present embodiment are omitted.
- the control device 100 includes an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle, an HVAC intake temperature sensor 36 that detects the temperature of the air sucked into the air flow passage 3 from the intake port 25, an inside air temperature sensor 37 that detects the air temperature (inside air temperature Tin) in the vehicle compartment, an outlet temperature sensor 41 that detects the temperature of the air blown out from the outlet 29 into the vehicle compartment, and an inlet refrigerant temperature Tcx of the indoor heat exchanger 4.
- an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle
- an HVAC intake temperature sensor 36 that detects the temperature of the air sucked into the air flow passage 3 from the intake port 25
- an inside air temperature sensor 37 that detects the air temperature (inside air temperature Tin) in the vehicle compartment
- an outlet temperature sensor 41 that detects the temperature of the air blown out from the outlet 29 into the vehicle compartment
- An indoor heat exchanger inlet temperature sensor 43 that detects in, a suction temperature/pressure sensor 46 that detects the suction refrigerant temperature TS and the suction refrigerant pressure PS of the compressor 2, an indoor heat exchanger temperature sensor 44 that detects the outlet refrigerant temperature Tci of the indoor heat exchanger 4, an indoor heat exchanger pressure sensor 47 that detects the outlet refrigerant pressure Pci of the indoor heat exchanger 4, and an air conditioning operation unit 53 for setting the set temperature and switching of the air conditioning operation are connected.
- the controller 100 is connected to a battery temperature sensor 76 that detects the temperature of the battery 55, and a heat medium temperature sensor 79 that detects the temperature Tw (chiller water temperature) of the heat medium that exits the heat medium flow path of the temperature control target heat exchanger 64 and enters the battery 55.
- a battery temperature sensor 76 that detects the temperature of the battery 55
- a heat medium temperature sensor 79 that detects the temperature Tw (chiller water temperature) of the heat medium that exits the heat medium flow path of the temperature control target heat exchanger 64 and enters the battery 55.
- Tw carrier water temperature
- the output of the control device 100 is connected to the compressor 2, the indoor fan 27, the suction switching damper 26, the air mix damper 28, the outdoor expansion valve 6, the indoor expansion valve 8, the solenoid valves 21 and 22, the electronic expansion valve 24, the pump 61, and the chiller expansion valve 72.
- the control device 100 controls these based on the output of each sensor, the setting input by the air conditioning operation section 53 and the information from the vehicle controller 35 .
- the optimum operation mode can be selected from a plurality of operation modes and executed according to the environment in which the vehicle equipped with the vehicle air conditioner 1 runs and the state of the vehicle. For example, when the vehicle runs in an extremely low temperature environment below a predetermined temperature, the outdoor heat exchanger 7 cannot absorb heat from the outside air, so the hot gas heating mode is executed to heat the vehicle interior using the hot gas circuit.
- a battery heating mode using a hot gas circuit or a hot gas mode in which heating and battery heating are performed at the same time is executed.
- various operation modes such as an outside air heat absorption heating mode for heating the vehicle interior when heat can be absorbed from the outside air in the outdoor heat exchanger 7, a battery cooling mode for cooling the battery 55, and a cooling mode for cooling the vehicle interior with the air cooled by the heat absorber 9 can be executed.
- the operation of the vehicle air conditioner 1 when executing each operation mode using the hot gas circuit (that is, in this embodiment, the three operation modes of the heating mode, the battery heating mode, and the hot gas mode) will be described.
- FIG. 3 shows the flow of refrigerant in the refrigerant circuit R during execution of each operation mode using the hot gas circuit.
- the thick lines indicate the refrigerant pipes through which the refrigerant flows.
- the hot gas heating mode using the hot gas circuit, the battery heating mode, and the hot gas mode may differ from each other in terms of the rotation speed of the compressor 2, the amount of refrigerant circulating in the refrigerant circuit R, the amount of heat medium circulating in the heat medium circuit 60, and the air flow rate passing through the HVAC unit 10, but the flow path through which the refrigerant circulates or passes through the refrigerant circuit R is the same.
- the control device 100 When the heating operation is selected by the control device 100 (auto mode) or by manual operation (manual mode) of the air conditioning operation unit 53 and the vehicle is traveling in an extremely low temperature environment, the control device 100 starts the heating operation using the hot gas circuit.
- the controller 100 closes the outdoor expansion valve 6 , the indoor expansion valve 8 and the solenoid valve 21 , opens the solenoid valve 22 and chiller expansion valve 72 , and opens the electronic expansion valve 24 .
- a hot gas circuit and a bypass circuit are configured, and the refrigerant can be circulated.
- part of the refrigerant discharged from the compressor 2 circulates through the hot gas circuit and the rest circulates through the bypass circuit. That is, part of the refrigerant discharged from the compressor 2 passes through the indoor heat exchanger 4, passes through the solenoid valve 22 and the chiller expansion valve 72, passes through the temperature control target heat exchanger 64, and returns to the compressor 2 through the accumulator 12.
- the rest of the refrigerant discharged from the compressor 2 returns to the compressor 2 via the electronic expansion valve 24 and the accumulator 12 .
- Hot gas heating mode In the hot gas heating mode, the control device 100 operates the indoor fan 27, and the air mix damper 28 adjusts the ratio of the air blown from the indoor fan 27 to the indoor heat exchanger 4. Also, the pump 61 is not operated and the heat medium is not circulated in the heat medium circuit 60 . That is, the refrigerant does not exchange heat with the heat medium when passing through the temperature control target heat exchanger 64 .
- FIG. 4 shows a Mollier diagram showing changes in the state of the refrigerant in the hot gas heating mode.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 and flowed into the indoor heat exchanger 4 exchanges heat with the air in the air circulation passage 3, whereby the air in the air circulation passage 3 is heated by the refrigerant, and the heated air is blown out from the outlet 29 into the vehicle interior for heating.
- the refrigerant heat-exchanged in the indoor heat exchanger 4 loses heat to the air, is cooled, and condenses.
- the condensed refrigerant After leaving the indoor heat exchanger 4, the condensed refrigerant passes through the refrigerant pipes 13F, 13H, 13A, and 13I, the chiller expansion valve 72, and the temperature control target heat exchanger 64.
- the refrigerant expands in the chiller expansion valve 72 to a low temperature and low pressure, passes through the temperature control target heat exchanger 64 without exchanging heat with the heat medium, and flows into the accumulator 12 via the refrigerant pipes 13J and 13B.
- the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 passes through the refrigerant pipe 13K, is expanded by the electronic expansion valve 24, and flows into the accumulator 12 again. That is, the refrigerant liquefied by the indoor heat exchanger 4 and the refrigerant expanded by the electronic expansion valve 24 after being compressed by the compressor 2 flow into the accumulator 12 .
- the refrigerant that has flowed into the accumulator 12 repeats the circulation of being sucked into the compressor 2 through the refrigerant pipe 13D as gas refrigerant after gas-liquid separation.
- the control device 100 does not operate the indoor fan 27 and puts the indoor heat exchanger 4 into a state in which heat exchange between refrigerant and air is not performed. That is, the refrigerant only passes through the indoor heat exchanger 4 . Further, the pump 61 is operated to circulate the heat medium in the heat medium circuit 60 so that the heat exchange between the refrigerant and the heat medium is performed in the temperature control target heat exchanger 64 .
- FIG. 5 shows a Mollier diagram showing the state change of the refrigerant in the battery heating mode.
- the high-temperature, high-pressure gas refrigerant discharged from the compressor 2 and flowed into the indoor heat exchanger 4 passes through the air in the air flow passage 3 without exchanging heat with the air in the air flow passage 3.
- the refrigerant passes through the refrigerant pipes 13F, 13H, 13A, and 13I in the state of high-temperature and high-pressure gas refrigerant, the chiller expansion valve 72, and the temperature control target heat exchanger 64.
- the refrigerant exchanges heat with the heat medium in the temperature control target heat exchanger 64 , whereby the heat medium circulating in the heat medium circuit 60 is heated by the refrigerant, and the battery 55 is heated by the heated heat medium.
- the refrigerant heat-exchanged in the temperature control target heat exchanger 64 loses heat to the heat medium, is cooled and condensed, and flows into the accumulator 12 through the refrigerant pipes 13J and 13B.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 passes through the refrigerant pipe 13K, is expanded by the electronic expansion valve 24, and flows into the accumulator 12 again. That is, the refrigerant liquefied by the temperature control target heat exchanger 64 and the refrigerant expanded by the electronic expansion valve 24 after being compressed by the compressor 2 flow into the accumulator 12 .
- the refrigerant that has flowed into the accumulator 12 repeats the circulation of being sucked into the compressor 2 through the refrigerant pipe 13D as gas refrigerant after gas-liquid separation.
- Hot gas mode operation mode in which hot gas heating and battery heating are performed simultaneously
- the control device 100 operates the indoor blower 27 and puts the air mix damper 28 in a state of adjusting the ratio of the air blown from the indoor blower 27 to the indoor heat exchanger 4 .
- the pump 61 is operated to circulate the heat medium in the heat medium circuit 60 , and heat exchange between the refrigerant and the heat medium is performed in the heat exchanger 64 for temperature control.
- the Mollier diagram showing the state change of the refrigerant in the hot gas mode is similar to the Mollier diagram showing the state change of the refrigerant in the hot gas heating mode of FIG. 4, so the illustration is omitted.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 and flowed into the indoor heat exchanger 4 exchanges heat with the air in the air circulation passage 3, whereby the air in the air circulation passage 3 is heated by the refrigerant, and the heated air is blown out from the outlet 29 into the vehicle interior for heating.
- the refrigerant heat-exchanged in the indoor heat exchanger 4 loses heat to the air, is cooled, and condenses.
- the condensed refrigerant After leaving the indoor heat exchanger 4, the condensed refrigerant passes through the refrigerant pipes 13F, 13H, 13A, and 13I, the chiller expansion valve 72, and the temperature control target heat exchanger 64.
- the refrigerant exchanges heat with the heat medium in the temperature control target heat exchanger 64 , whereby the heat medium circulating in the heat medium circuit 60 is heated by the refrigerant, and the battery 55 is heated by the heated heat medium.
- the refrigerant heat-exchanged in the temperature control target heat exchanger 64 loses heat to the heat medium, is cooled and condensed, and flows into the accumulator 12 through the refrigerant pipes 13J and 13B.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 passes through the refrigerant pipe 13K, is expanded by the electronic expansion valve 24, and flows into the accumulator 12 again. That is, the refrigerant liquefied by the indoor heat exchanger 4 and the temperature control target heat exchanger 64 and the refrigerant expanded by the electronic expansion valve 24 after being compressed by the compressor 2 flow into the accumulator 12.
- the refrigerant that has flowed into the accumulator 12 repeats the circulation of being sucked into the compressor 2 through the refrigerant pipe 13D as gas refrigerant after gas-liquid separation.
- each operation mode using the hot gas circuit described above an example of using the bypass circuit together was explained, but it is not always necessary to use the bypass circuit, and each operation mode may be executed using only the hot gas circuit.
- the bypass circuit the high-temperature and high-pressure refrigerant that has been compressed by the compressor 2 is returned to the compressor 2 via the bypass circuit, so power in the compressor 2 can be added. Therefore, there is an advantage that the air of the desired temperature can be supplied to the vehicle interior more quickly than when the bypass circuit is not used, and the heat medium in the heat medium circuit 60 can be heated to the desired temperature more quickly.
- the control device 100 controls the compressor 2 based on the outlet refrigerant pressure Pci of the indoor heat exchanger 4 detected by the indoor heat exchanger pressure sensor 47 and the target pressure PCO, which is the target value of the outlet refrigerant pressure Pci, to control heating in the indoor heat exchanger 4.
- the target pressure PCO is usually calculated by referring to the saturation temperature curve table and adding a predetermined correction value to the pressure obtained from the target heater temperature TCO.
- FIG. 6 shows a saturation temperature curve table showing the relationship between refrigerant pressure and saturation temperature.
- the control device 100 calculates the target pressure PCO of the outlet refrigerant pressure Pci of the indoor heat exchanger 4 according to the following formula (1). That is, the target pressure PCO of the outlet refrigerant pressure Pci of the indoor heat exchanger 4 is calculated by using the pressure saturation temperature obtained by subtracting the inlet-side superheat SHcxin of the indoor heat exchanger 4 from the target temperature TCO of the outlet refrigerant temperature of the indoor heat exchanger 4, and referring to the saturation temperature curve table.
- PCO saturation temperature curve table
- SHcxin is the degree of superheat on the inlet side of the indoor heat exchanger 4, and the first-order lag calculation is performed according to the following formula (2).
- SHcxin (INTL * SHcxinz + Tau * SHcxin0)/(INTL + Tau) (2)
- SHcxin is the degree of superheat on the inlet side of the indoor heat exchanger 4
- INTL is the calculation cycle (constant)
- SHcxinz is the previous value of SHcxin
- SHcxin0 is the degree of superheat on the inlet side of the indoor heat exchanger before the first-order lag calculation
- Tau is the time constant of the first-order lag.
- the inlet-side superheat degree SHcxin0 of the indoor heat exchanger before the first-order lag calculation is obtained by subtracting the saturation temperature THsatu from the inlet refrigerant temperature Tcxin of the indoor heat exchanger 4, as represented by the following formula (3).
- SHcxin0 Tcxin ⁇ THsatu (3)
- THsatu is the saturation temperature calculated from the outlet refrigerant pressure Pci of the indoor heat exchanger 4, and can be calculated with reference to the saturation temperature curve table.
- the control device 100 calculates the target pressure PCO, which is the target value of the outlet refrigerant pressure Pci of the radiator, based on the target temperature TCO of the outlet refrigerant temperature and the degree of superheat of the refrigerant.
- the difference between the actual outlet refrigerant temperature Tci of the radiator and the target heater temperature TCO caused by a change in the state of the refrigerant during heating using the hot gas circuit can be suppressed, and the outlet refrigerant temperature Tci of the indoor heat exchanger 4 and the target pressure PCO can be accurately calculated.
- the compressor 2 can be controlled based on the originally required rotation speed, the heating control in the indoor heat exchanger 4 is appropriate, so heat loss is suppressed, and the estimated heating temperature Theat with high estimation accuracy can be used to calculate the air volume ratio SW. Therefore, appropriate and efficient temperature control can be performed. therefore,
- FIG. 7 shows the refrigerant flow (thick line) in the refrigerant circuit R in the outside air heat absorption heating mode.
- FIG. 8 is a Mollier diagram showing the state change of the refrigerant in the outside air heat absorption heating mode.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the indoor heat exchanger 4 .
- the indoor heat exchanger 4 heat is exchanged between the air in the air flow passage 3 and the high-temperature, high-pressure refrigerant. That is, the air in the air flow passage 3 is heated by the refrigerant, and the heated air is blown out from the outlet 29 into the passenger compartment, thereby heating the vehicle.
- the refrigerant passing through the indoor heat exchanger 4 is cooled by being deprived of heat by the air passing through the air circulation passage 3, and condenses and liquefies.
- the liquefied refrigerant reaches the outdoor expansion valve 6 via the refrigerant pipes 13F and 13G.
- the refrigerant flows into the outdoor heat exchanger 7 .
- the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and draws up heat from the outside air that flows in as the vehicle runs or the outside air that is blown by an outdoor fan (not shown) (heat absorption). That is, the refrigerant circuit R becomes a heat pump.
- the low-temperature refrigerant leaving the outdoor heat exchanger 7 flows through the refrigerant pipes 13A and 13B, the electromagnetic valve 21, and the check valve 20 into the accumulator 12, and after gas-liquid separation in the accumulator 12, the gas refrigerant is sucked into the compressor 2 through the refrigerant pipe 13D, thereby repeating the circulation.
- FIG. 9 shows the refrigerant flow in the refrigerant circuit R in the battery cooling mode.
- refrigerant pipes through which the refrigerant flows are indicated by thick lines.
- a Mollier diagram showing the state change of the refrigerant in the battery cooling mode is the same as the Mollier diagram showing the state change of the refrigerant in the outside air heat absorption heating mode shown in FIG.
- the high-temperature, high-pressure refrigerant discharged from the compressor 2 flows into the indoor heat exchanger 4, it only passes through. After being decompressed by the outdoor expansion valve 6 , the refrigerant flows into the outdoor heat exchanger 7 .
- the refrigerant that has flowed into the outdoor heat exchanger 7 is air-cooled by outside air that flows in as the vehicle travels or is blown by an outdoor fan (not shown), and is condensed and liquefied.
- the refrigerant exiting the outdoor heat exchanger 7 flows through the refrigerant pipe 13A, the check valve 18, and the chiller expansion valve 72 into the heat exchanger 64 subject to temperature control, where it evaporates.
- the heat absorbing action at this time cools the heat medium circulating in the heat medium circuit 60 .
- the refrigerant evaporated in the temperature control target heat exchanger 64 reaches the accumulator 12 through the refrigerant pipe 13J, and is sucked into the compressor 2 through the refrigerant pipe 13D, repeating circulation.
- the heat medium cooled by the temperature control target heat exchanger 64 is pumped to the battery 55 by the pump 61 to cool the battery 55 .
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
【課題】ホットガス回路を用いた暖房運転時においても、放熱器の出口冷媒圧力の目標圧力を正確に算出して適正且つ効率的な温調制御を行う。 【解決手段】冷媒を圧縮する圧縮機2、冷媒の熱により車室内に供給する空気を加熱する室内熱交換器(放熱器)4、及び、冷媒と外気とを熱交換させる室外熱交換器7を含む冷媒回路Rと、冷媒回路を制御する制御装置100を備え、冷媒回路は、圧縮機から吐出した冷媒を、室外熱交換器を迂回させ、放熱器を経て圧縮機の吸入側に流入させるホットガス回路を有し、制御装置は、ホットガス回路を利用したホットガス暖房モードを実行可能であり、ホットガス暖房モードにおいて、放熱器の出口冷媒圧力の目標圧力PCOを、放熱器の出口冷媒温度の目標温度TCOから放熱器の入口側過熱度を減じた圧力飽和温度に基づいて算出する、車両用空調装置を提供する。
Description
本発明は、車両に適用されるヒートポンプ式の車両用空調装置であって、特に、複数の運転モードを備えた車両用空調装置に関する。
近年、車両に搭載されたバッテリから供給される電力によって走行用モータを駆動するハイブリッド自動車や電気自動車等の車両が普及している。このような車両に搭載される車両用空調装置として、圧縮機、空気流通路内に設けられて冷媒を放熱させる放熱器(凝縮器)、空気流通路内に設けられて冷媒を吸熱させる吸熱器(蒸発器)、及び、車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器が接続された冷媒回路を備え、空気流通路内の空気を放熱器又は吸熱器において冷媒と熱交換させて車室内に供給することで車室内の暖房や冷房を行うものが知られている。
このような車両用空調装置の暖房運転では、放熱器において空気流通路内を通過する空気の加熱と併せて、空気流通路内のエアミックスダンパにより放熱器に通風される空気の風量を調整することで、車室内へ供給される空気の吹出温度が目標吹出温度となるように制御している(例えば、特許文献1)。
車両用空調装置では、暖房運転時の放熱器による冷媒の加熱の制御に際し、圧力センサによって検出された放熱器の出口冷媒圧力Pciと、出口冷媒圧力Pciの目標値である目標圧力PCOとに基づいて圧縮機2の回転数を制御している。目標圧力PCOは、放熱器の出口冷媒温度Tciの目標値である目標ヒータ温度TCOに基づいて算出される。
ところで、車両用空調装置を搭載した車両が、外気温度が極端に低い環境(極低温環境)下で走行する場合には、室外熱交換器において冷媒が外気から吸熱することができないため、室外熱交換器に冷媒を通過させないホットガス回路を用いたホットガス暖房モードによって車室内を暖房することが考えられる。
ホットガス暖房モードでは、冷媒回路における冷媒の状態変化が通常の運転モードとは異なるため、放熱器の実際の出口冷媒温度Tciと目標ヒータ温度TCOとの乖離が大きく、放熱器の実際の出口冷媒温度Tciよりも目標ヒータ温度TCOが高く算出され、これに伴って目標圧力PCOも本来必要な圧力よりも高く算出されてしまう。このため、圧縮機2は本来必要な回転数よりも高い回転数で制御され、放熱器による冷媒の加熱が過剰となり、これをエアミックスダンパにより調整することとなる。つまり、熱ロスが生じ、適正且つ効率的な温調制御を行うことができない。
本発明は、このような事情に鑑みてなされたものであり、ホットガス回路を用いた暖房運転時においても、放熱器の出口冷媒圧力の目標圧力を正確に算出して適正且つ効率的な温調制御を行うことなどを課題としている。
本発明は、冷媒を圧縮する圧縮機、冷媒の熱により車室内に供給する空気を加熱する放熱器、及び、冷媒と外気とを熱交換させる室外熱交換器を含む冷媒回路と、前記冷媒回路を制御する制御装置を備え、前記冷媒回路は、前記圧縮機から吐出した冷媒を、前記室外熱交換器を迂回させ、前記放熱器を経て前記圧縮機の吸入側に流入させるホットガス回路を有し、前記制御装置は、前記ホットガス回路に冷媒を流通させて、前記圧縮機で圧縮した冷媒の熱により前記車室内を暖房するホットガス暖房モードを実行可能であり、前記ホットガス暖房モードにおいて、前記放熱器の出口冷媒圧力の目標圧力PCOを、前記放熱器の出口冷媒温度の目標温度TCOから前記放熱器の入口側過熱度を減じた圧力飽和温度に基づいて算出する、車両用空調装置を提供する。
本発明によれば、ホットガス回路を用いた暖房運転時においても、放熱器の出口冷媒圧力の目標圧力を正確に算出して適正且つ効率的な温調制御を行うことができる。
以下、本発明を実施するための形態について、図面を参照しつつ詳細に説明する。以下の説明において、同一の符号は同一の機能の部位を示しており、各図における重複説明は適宜省略する。
図1は、本発明の実施形態に係る車両用空調装置1の概略構成を示す。車両用空調装置1は、例えば、エンジン(内燃機関)が搭載されていない電気自動車(EV)やエンジンと走行用の電動モータを供用する所謂ハイブリッド自動車などの車両に適用することができる。このような車両は、バッテリ55(例えば、リチウム電池)が搭載され、外部電源からバッテリ55に充電された電力を、走行用モータ(電動モータ)を含むモータユニット(不図示)に供給することで駆動し、走行する。車両用空調装置1も、バッテリ55から給電されて駆動される。
車両用空調装置1は、ヒートポンプ運転を行うための冷媒回路Rと、温調対象としてバッテリ55の温度を調整する熱媒体回路60とを備えている。熱媒体回路60は、冷媒回路Rに対して後述する温調対象熱交換器64を介して熱交換可能に接続される。車両用空調装置1は、冷媒回路Rを用いたヒートポンプ運転により暖房運転や冷房運転等の空調運転を含む各種運転モードを選択的に実行することで、車室内の空調及びバッテリ55の温度調整を行う。
なお、熱媒体回路60は、温調対象として、バッテリ55以外にも、例えば、モータユニットや、車両に搭載されて発熱するその他の機器の温度調整を行うことができる。
冷媒回路Rは、冷媒を圧縮する圧縮機2と、車室内の空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒を放熱させて車室内に供給する空気を加熱する放熱器である室内熱交換器4と、暖房時に冷媒を減圧膨張させる室外膨張弁6と、冷房時には冷媒を放熱させる放熱器(凝縮器)として機能し、暖房時には冷媒を吸熱させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせるための室外熱交換器7と、冷媒を減圧膨張させる室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させて車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12等が冷媒配管13A~13Kにより接続されて構成されている。
室外膨張弁6及び室内膨張弁8は、いずれも図示しないパルスモータにより駆動される電子膨張弁であり、パルスモータに加えられるパルス数によって全閉から全開までの間で開度が適宜制御される室外膨張弁6は、室外熱交換器7を用いた暖房運転時や除霜運転時に、室内熱交換器4から流出し室外熱交換器7に流入する冷媒を減圧膨張させる室内膨張弁8は、吸熱器9に流入する冷媒を減圧膨張させると共に、吸熱器9における冷媒の吸熱量、つまり通過空気の冷却能力を調整する。
室外熱交換器7の冷媒出口と吸熱器9の冷媒入口とは冷媒配管13Aにより接続されている。冷媒配管13Aには、室外熱交換器7側から順に、逆止弁18と室内膨張弁8とが設けられている。逆止弁18は、吸熱器9に向かう方向が順方向となるように冷媒配管13Aに設けられる。冷媒配管13Aは、逆止弁18よりも室外熱交換器7側の位置で冷媒配管13Bに分岐すると共に、逆止弁18と室内膨張弁8との間で冷媒配管13Iに分岐している。
冷媒配管13Aから分岐した冷媒配管13Bは、アキュムレータ12の冷媒入口に接続されている。冷媒配管13Bには、室外熱交換器7側から順に、暖房時に開放される電磁弁21及び逆止弁20が設けられている。逆止弁20は、アキュムレータ12に向かう方向が順方向となるように接続されている。冷媒配管13Bの電磁弁21と逆止弁20との間は冷媒配管13Cに分岐している。冷媒配管13Bから分岐した冷媒配管13Cは、吸熱器9の冷媒出口に接続されている。アキュムレータ12の冷媒出口と圧縮機2とは、冷媒配管13Dにより接続されている。
圧縮機2の冷媒出口と室内熱交換器4の冷媒入口とは、冷媒配管13Eにより接続されている。室内熱交換器4の冷媒出口には冷媒配管13Fの一端が接続され、冷媒配管13Fの他端側は室外膨張弁6の手前(冷媒上流側)で冷媒配管13Gと冷媒配管13Hに分岐している。分岐した一方の冷媒配管13Gが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Hは、冷媒配管13Aの逆止弁18と室内膨張弁8との間に接続されている。冷媒配管13Hの冷媒配管13Aとの接続点より冷媒上流側には、電磁弁22が設けられている。電磁弁22は電子膨張弁であってもよい。
また、冷媒配管13Aから分岐した冷媒配管13Iは、温調対象熱交換器64の冷媒流路64Aに接続され、冷媒配管13Iには、チラー膨張弁72が設けられている。チラー膨張弁72は、図示しないパルスモータにより駆動される電子膨張弁であり、パルスモータに加えられるパルス数によって全閉から全開までの間で開度が適宜制御される。チラー膨張弁72は温調対象熱交換器64の冷媒流路64Aに流入する冷媒を減圧膨張させる。温調対象熱交換器64の冷媒流路64Aの出口には冷媒配管13Jの一端が接続されている。冷媒配管13Jの他端は、冷媒配管13Bのアキュムレータ12入口近傍に接続されている。
これにより、冷媒配管13Hは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続され、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスする。そして、冷媒配管13Hと冷媒配管13Iとにより、圧縮機2から吐出した冷媒を室内熱交換器4に流し、室外熱交換器7を迂回させて、温調対象熱交換器64とを経て圧縮機2の吸入側に流入させるホットガス回路を構成する。冷媒配管13Hに設けられた電磁弁22の開閉に応じて冷媒配管13Gに冷媒を流入させるか否か、つまりホットガス回路を用いるか否かを選択できるようになっている。
また、圧縮機2の冷媒出口とアキュムレータ12の冷媒吸入側とは冷媒配管13Kにより接続されている。冷媒配管13Kには、電子膨張弁24が設けられ、電子膨張弁24を開状態とすることにより、圧縮機2から吐出した冷媒を再び圧縮機2に吸入させるバイパス回路を構成することができる。
吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されている(図1では吸込口25で代表して示す)。吸込口25には吸込切換ダンパ26が設けられている。吸込切換ダンパ26により、車室内の空気である内気と、車室外の空気である外気とを適宜切り換えて吸込口25から空気流通路3内に導入する。吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機27が設けられている。
室内熱交換器4の空気上流側における空気流通路3内には、空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を室内熱交換器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。
なお、補助暖房手段として、例えば、圧縮機廃熱によって加熱した温水を空気流通路3に配置したヒータコアに循環させることにより、送風空気を加熱する形態とすることもできる。
熱媒体回路60は、熱媒体回路60に熱媒体を循環させてバッテリ55に熱媒体を流すためのポンプ61と、温調対象熱交換器64を備え、温調対象であるバッテリ55に熱媒体を通過させてバッテリ55の温度を調整する。
熱媒体回路60は、温調対象熱交換器64において冷媒回路Rを循環する冷媒と熱媒体とが熱交換するように設けられている。すなわち、熱媒体回路60では、熱媒体が温調対象熱交換器64の熱媒体流路64Bを通過し、温調対象熱交換器64の冷媒流路64Aを通過する冷媒と熱交換する。冷媒と熱交換することで温調された熱媒体が、ポンプ61によって熱媒体回路60を循環することでバッテリ55を通過し、バッテリ55の温度調整を行う。
このように、温調対象熱交換器64は、冷媒回路Rの一部を構成すると同時に、熱媒体回路60の一部をも構成する。
このように、温調対象熱交換器64は、冷媒回路Rの一部を構成すると同時に、熱媒体回路60の一部をも構成する。
熱媒体回路60で使用される熱媒体としては、例えば、水、HFO-1234yfのような冷媒、水に不凍液等を加えたクーラント液等の液体、空気等の気体が採用可能である。尚、本実施形態ではクーラント液を熱媒体として採用している。また、バッテリ55の周囲には例えば、熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。
図2に、車両用空調装置1の制御を司る制御装置100の概略構成を示す。制御装置100は、車両用空調装置1が車両に搭載された際に、モータユニットの駆動制御やバッテリ55の充放電制御を含む車両全般の制御を司る車両コントローラ35とCAN(Controller Area Network)やLIN(Local Interconnect Network)等の車載ネットワークにより相互に通信可能に接続され、情報の送受信を行う。
制御装置100及び車両コントローラ35には、例えば、CPU(Central Processing Unit)又はMPU(Micro Processing Unit)等のプロセッサや電気回路、RAM(Random Access Memory)やROM(Read Only Memory)等の記憶素子を備えたコンピュータを適用することができる。
制御装置100には、以下の各センサや検出器が接続され、これらの各センサや検出器等の出力が入力される。なお、以下の説明において、本実施形態に係る車両用空調装置1による動作に直接関係しない構成については図示及び説明を省略する。
具体的には、制御装置100には、車両の外気温度Tamを検出する外気温度センサ33と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気温度(内気温度Tin)を検出する内気温度センサ37と、吹出口29から車室内に吹出される空気の温度を検出する吹出温度センサ41と、室内熱交換器4の入口冷媒温度Tcxinを検出する室内熱交換器入口温度センサ43と、圧縮機2の吸込冷媒温度TS及び吸込冷媒圧力PSを検出する吸込温度・圧力センサ46と、室内熱交換器4の出口冷媒温度Tciを検出する室内熱交換器温度センサ44と、室内熱交換器4の出口冷媒圧力Pciを検出する室内熱交換器圧力センサ47と、設定温度や空調運転の切換えを設定するための空調操作部53と、が接続されている。
上記のほか、制御装置100には、バッテリ55の温度を検出するバッテリ温度センサ76や、温調対象熱交換器64の熱媒体流路を出てバッテリ55に入る熱媒体の温度Tw(チラー水温)を検出する熱媒体温度センサ79が接続されている。バッテリ55の温度を把握するには、バッテリ温度センサ76又は熱媒体温度センサ79の何れかを適宜用いることができる。
一方、制御装置100の出力には、圧縮機2、室内送風機27、吸込切換ダンパ26、エアミックスダンパ28、室外膨張弁6、室内膨張弁8、電磁弁21,22、電子膨張弁24、ポンプ61、及びチラー膨張弁72が接続されている。制御装置100は各センサの出力と空調操作部53にて入力された設定及び車両コントローラ35からの情報に基づいてこれらを制御する。
このように構成された車両用空調装置1では、車両用空調装置1が搭載された車両が走行する環境や車両の状態に応じて、複数の運転モードから最適な運転モードを選択して実行することができる。例えば、車両が、所定温度未満の極低温環境下で走行する場合には、室外熱交換器7において外気から吸熱を行うことができないため、ホットガス回路を利用して車室内の暖房を行うホットガス暖房モードを実行する。
また、極低温環境下においては、バッテリ55を加熱する必要が生じるため、ホットガス回路を利用したバッテリ加熱モードや、暖房とバッテリの加熱とを同時に行うホットガスモードを実行する。この他、室外熱交換器7において外気から吸熱が可能な場合に車室内の暖房を行う外気吸熱暖房モードや、バッテリ55の冷却を行うバッテリ冷却モード、吸熱器9において冷却された空気により車室内の冷房を行う冷房モード等の各種の運転モードを実行することができる。
以下、本実施形態においては、ホットガス回路を利用した各運転モード(すなわち、本実施形態では、暖房モード、バッテリ加熱モード、及び、ホットガスモードの3つの運転モード)の実行時の車両用空調装置1の動作について説明する。
図3は、ホットガス回路を利用した各運転モードの実行時における冷媒回路Rの冷媒の流れを示している。図3において、冷媒が流れている冷媒配管を太線で示している。ホットガス回路を利用したホットガス暖房モード、バッテリ加熱モード、及び、ホットガスモードは圧縮機2の回転数、冷媒回路Rを循環する冷媒量、熱媒体回路60を循環する熱媒体量、及び、HVACユニット10を通過する送風流量等について互いに異なる場合があるものの、冷媒回路Rにおける冷媒が循環または通過する流路は同一となる。
制御装置100により(オートモード)、又は、空調操作部53へのマニュアル操作(マニュアルモード)により暖房運転が選択され、車両が極低温環境下を走行している場合に、制御装置100はホットガス回路を利用した暖房運転を開始する。制御装置100は、室外膨張弁6、室内膨張弁8及び電磁弁21を閉じ、電磁弁22、チラー膨張弁72を開くと共に、電子膨張弁24を開く。これにより、ホットガス回路、及び、バイパス回路が構成され、冷媒が循環可能となる。
この状態で、圧縮機2の運転を開始すると、圧縮機2から吐出された冷媒は、一部がホットガス回路を循環し、残りがバイパス回路を循環する。すなわち、圧縮機2から吐出された冷媒の一部は、室内熱交換器4を通過し、電磁弁22及びチラー膨張弁72を経て、温調対象熱交換器64を通過し、アキュムレータ12を経て圧縮機2へ戻る。一方、圧縮機2から吐出された冷媒の残りは、電子膨張弁24及びアキュムレータ12を経て圧縮機2へ戻る。
以下、各運転モード間において異なる点、及び、各運転モードの冷媒回路Rを循環する冷媒の状態について説明する。
以下、各運転モード間において異なる点、及び、各運転モードの冷媒回路Rを循環する冷媒の状態について説明する。
(1)ホットガス暖房モード
ホットガス暖房モードにおいて、制御装置100は、室内送風機27を運転し、エアミックスダンパ28が室内送風機27から吹出された空気が室内熱交換器4に通風される割合を調整する状態とする。また、ポンプ61を動作させず、熱媒体回路60に熱媒体を循環させない。つまり、冷媒は、温調対象熱交換器64の通過時に熱媒体との熱交換を行わない。
ホットガス暖房モードにおいて、制御装置100は、室内送風機27を運転し、エアミックスダンパ28が室内送風機27から吹出された空気が室内熱交換器4に通風される割合を調整する状態とする。また、ポンプ61を動作させず、熱媒体回路60に熱媒体を循環させない。つまり、冷媒は、温調対象熱交換器64の通過時に熱媒体との熱交換を行わない。
図4に、ホットガス暖房モードにおける冷媒の状態変化を表したモリエル線図を示す。
圧縮機2から吐出して室内熱交換器4に流入した高温高圧のガス冷媒は、空気流通路3内の空気と熱交換することで、空気流通路3内の空気が冷媒によって加熱され、加熱された空気が吹出口29から車室内へ吹出されて暖房が行われる。室内熱交換器4で熱交換した冷媒は空気に熱を奪われて冷却され、凝縮する。
圧縮機2から吐出して室内熱交換器4に流入した高温高圧のガス冷媒は、空気流通路3内の空気と熱交換することで、空気流通路3内の空気が冷媒によって加熱され、加熱された空気が吹出口29から車室内へ吹出されて暖房が行われる。室内熱交換器4で熱交換した冷媒は空気に熱を奪われて冷却され、凝縮する。
凝縮した冷媒は室内熱交換器4を出た後、冷媒配管13F、13H、13A、13Iを通過してチラー膨張弁72を経て温調対象熱交換器64を通過する。冷媒は、チラー膨張弁72において膨張して低温低圧となり、温調対象熱交換器64において熱媒体との熱交換を行わずに通過し、冷媒配管13J、13Bを経てアキュムレータ12に流入する。
一方、圧縮機2から吐出した高温高圧のガス冷媒は、冷媒配管13Kを経て電子膨張弁24で膨張されて再びアキュムレータ12に流入する。すなわち、アキュムレータ12には、室内熱交換器4で液化した冷媒と、圧縮機2で圧縮された後に電子膨張弁24で膨張された冷媒とが流入することとなる。アキュムレータ12に流入した冷媒は、気液分離された後、ガス冷媒として冷媒配管13Dを経て圧縮機2に吸い込まれる循環を繰り返す。
(2)バッテリ加熱モード
バッテリ加熱モードにおいて、制御装置100は、室内送風機27を運転させず、室内熱交換器4において冷媒と空気との熱交換が行われない状態とする。つまり、冷媒は、室内熱交換器4を通過するのみとなる。また、ポンプ61を動作させ、熱媒体回路60に熱媒体を循環させて温調対象熱交換器64において冷媒と熱媒体との熱交換が行われる状態とする。
(2)バッテリ加熱モード
バッテリ加熱モードにおいて、制御装置100は、室内送風機27を運転させず、室内熱交換器4において冷媒と空気との熱交換が行われない状態とする。つまり、冷媒は、室内熱交換器4を通過するのみとなる。また、ポンプ61を動作させ、熱媒体回路60に熱媒体を循環させて温調対象熱交換器64において冷媒と熱媒体との熱交換が行われる状態とする。
図5に、バッテリ加熱モードにおける冷媒の状態変化を表したモリエル線図を示す。
圧縮機2から吐出して室内熱交換器4に流入した高温高圧のガス冷媒は、空気流通路3内の空気と熱交換せずに通過し、冷媒は室内熱交換器4を出た後、高温高圧のガス冷媒の状態で冷媒配管13F、13H、13A、13Iを通過してチラー膨張弁72を経て温調対象熱交換器64を通過する。冷媒は、温調対象熱交換器64において熱媒体と熱交換することで、熱媒体回路60を循環する熱媒体が冷媒によって加熱され、加熱された熱媒体によりバッテリ55が加熱される。温調対象熱交換器64で熱交換した冷媒は熱媒体に熱を奪われて冷却されて凝縮し、冷媒配管13J、13Bを経てアキュムレータ12に流入する。
圧縮機2から吐出して室内熱交換器4に流入した高温高圧のガス冷媒は、空気流通路3内の空気と熱交換せずに通過し、冷媒は室内熱交換器4を出た後、高温高圧のガス冷媒の状態で冷媒配管13F、13H、13A、13Iを通過してチラー膨張弁72を経て温調対象熱交換器64を通過する。冷媒は、温調対象熱交換器64において熱媒体と熱交換することで、熱媒体回路60を循環する熱媒体が冷媒によって加熱され、加熱された熱媒体によりバッテリ55が加熱される。温調対象熱交換器64で熱交換した冷媒は熱媒体に熱を奪われて冷却されて凝縮し、冷媒配管13J、13Bを経てアキュムレータ12に流入する。
一方、圧縮機2から吐出した高温高圧のガス冷媒は、冷媒配管13Kを経て電子膨張弁24で膨張されて再びアキュムレータ12に流入する。すなわち、アキュムレータ12には、温調対象熱交換器64で液化した冷媒と、圧縮機2で圧縮された後に電子膨張弁24で膨張された冷媒とが流入することとなる。アキュムレータ12に流入した冷媒は、気液分離された後、ガス冷媒として冷媒配管13Dを経て圧縮機2に吸い込まれる循環を繰り返す。
(3)ホットガスモード(ホットガス暖房及びバッテリ加熱を同時に実施する運転モード)
ホットガスモードにおいて、制御装置100は、室内送風機27を運転し、エアミックスダンパ28が室内送風機27から吹出された空気が室内熱交換器4に通風される割合を調整する状態とする。また、ポンプ61を動作させて熱媒体回路60に熱媒体を循環させ、温調対象熱交換器64において冷媒と熱媒体との熱交換が行われる状態とする。
ホットガスモードにおいて、制御装置100は、室内送風機27を運転し、エアミックスダンパ28が室内送風機27から吹出された空気が室内熱交換器4に通風される割合を調整する状態とする。また、ポンプ61を動作させて熱媒体回路60に熱媒体を循環させ、温調対象熱交換器64において冷媒と熱媒体との熱交換が行われる状態とする。
ホットガスモードにおける冷媒の状態変化を表したモリエル線図は、図4のホットガス暖房モードにおける冷媒の状態変化を表したモリエル線図と同様となるので、図示を省略する。
圧縮機2から吐出して室内熱交換器4に流入した高温高圧のガス冷媒は、空気流通路3内の空気と熱交換することで、空気流通路3内の空気が冷媒によって加熱され、加熱された空気が吹出口29から車室内へ吹出されて暖房が行われる。室内熱交換器4で熱交換した冷媒は空気に熱を奪われて冷却され、凝縮する。
圧縮機2から吐出して室内熱交換器4に流入した高温高圧のガス冷媒は、空気流通路3内の空気と熱交換することで、空気流通路3内の空気が冷媒によって加熱され、加熱された空気が吹出口29から車室内へ吹出されて暖房が行われる。室内熱交換器4で熱交換した冷媒は空気に熱を奪われて冷却され、凝縮する。
凝縮した冷媒は室内熱交換器4を出た後、冷媒配管13F、13H、13A、13Iを通過してチラー膨張弁72を経て温調対象熱交換器64を通過する。冷媒は、温調対象熱交換器64において熱媒体と熱交換することで、熱媒体回路60を循環する熱媒体が冷媒によって加熱され、加熱された熱媒体によりバッテリ55が加熱される。温調対象熱交換器64で熱交換した冷媒は熱媒体に熱を奪われて冷却されて凝縮し、冷媒配管13J、13Bを経てアキュムレータ12に流入する。
一方、圧縮機2から吐出した高温高圧のガス冷媒は、冷媒配管13Kを経て電子膨張弁24で膨張されて再びアキュムレータ12に流入する。すなわち、アキュムレータ12には、室内熱交換器4及び温調対象熱交換器64で液化した冷媒と、圧縮機2で圧縮された後に電子膨張弁24で膨張された冷媒とが流入することとなる。アキュムレータ12に流入した冷媒は、気液分離された後、ガス冷媒として冷媒配管13Dを経て圧縮機2に吸い込まれる循環を繰り返す。
なお、上述のホットガス回路を利用した各運転モードでは、バイパス回路を併用する例について説明したが、必ずしもバイパス回路を利用する必要はなく、ホットガス回路のみを利用して各運転モードを実行しても良い。バイパス回路を利用する場合は、圧縮機2で圧縮されて高温高圧となった冷媒を、バイパス回路を経て再び圧縮機2へ戻すため、圧縮機2での動力の上乗せを行うことができる。このため、バイパス回路を利用しない場合に比してより早期に車室内へ所望の温度の空気を供給することができ、より早期に熱媒体回路60の熱媒体を所望の温度まで加熱することができるという利点がある。
(室内熱交換器における加熱制御について)
制御装置100は、上述したホットガス暖房モード及びホットガスモードを含む暖房運転時に、室内熱交換器圧力センサ47によって検出された室内熱交換器4の出口冷媒圧力Pciと、出口冷媒圧力Pciの目標値である目標圧力PCOとに基づいて圧縮機2を制御し、室内熱交換器4における加熱を制御する。
制御装置100は、上述したホットガス暖房モード及びホットガスモードを含む暖房運転時に、室内熱交換器圧力センサ47によって検出された室内熱交換器4の出口冷媒圧力Pciと、出口冷媒圧力Pciの目標値である目標圧力PCOとに基づいて圧縮機2を制御し、室内熱交換器4における加熱を制御する。
制御装置100において、通常、目標圧力PCOは、飽和温度曲線テーブルを参照して目標ヒータ温度TCOから得られる圧力に所定の補正値を加えることで算出される。図6に、冷媒の圧力と飽和温度との関係を示す飽和温度曲線テーブルを示す。
一方、ホットガス回路を用いた暖房運転を行うホットガス暖房モード及びホットガスモードにおいては、図4に示したモリエル線図に示すように、冷媒に過熱度がつくため、目標ヒータ温度TCOが放熱器の実際の出口冷媒温度Tciよりも高く算出されてしまう。このため、上述のように目標圧力PCOを算出すると、圧縮機2は本来必要な回転数よりも高い回転数で制御されることとなる。
そこで、制御装置100は、ホットガス暖房モード及びホットガスモードでは、次の数式(1)に従って室内熱交換器4の出口冷媒圧力Pciの目標圧力PCOを算出する。
すなわち、室内熱交換器4の出口冷媒圧力Pciの目標圧力PCOは、室内熱交換器4の出口冷媒温度の目標温度TCOから室内熱交換器4の入口側過熱度SHcxinを減じた圧力飽和温度を用い、飽和温度曲線テーブルを参照して算出する。
すなわち、室内熱交換器4の出口冷媒圧力Pciの目標圧力PCOは、室内熱交換器4の出口冷媒温度の目標温度TCOから室内熱交換器4の入口側過熱度SHcxinを減じた圧力飽和温度を用い、飽和温度曲線テーブルを参照して算出する。
すなわち、
PCO=飽和温度曲線テーブル(TCO-SHcxin) ・・・(1)
PCO=飽和温度曲線テーブル(TCO-SHcxin) ・・・(1)
SHcxinは室内熱交換器4の入口側過熱度であり、以下に示す数式(2)に従って一次遅れ演算を行う。
SHcxin = (INTL * SHcxinz + Tau * SHcxin0)/(INTL + Tau) …(2)
SHcxin = (INTL * SHcxinz + Tau * SHcxin0)/(INTL + Tau) …(2)
SHcxinは室内熱交換器4の入口側過熱度、INTLは演算周期(定数)、SHcxinzはSHcxinの前回値、SHcxin0は一次遅れ演算前の室内熱交換器の入口側過熱度、Tauは一次遅れの時定数である。
また、一次遅れ演算前の室内熱交換器の入口側過熱度SHcxin0は、一次遅れ演算前の入口側過熱度SHcxin0は、以下の数式(3)で表すように、室内熱交換器4の入口冷媒温度Tcxinから飽和温度THsatuを減ずることで得られる。
SHcxin0=Tcxin-THsatu …(3)
THsatuは、室内熱交換器4の出口冷媒圧力Pciから算出される飽和温度であり、飽和温度曲線テーブルを参照して算出することができる。
SHcxin0=Tcxin-THsatu …(3)
THsatuは、室内熱交換器4の出口冷媒圧力Pciから算出される飽和温度であり、飽和温度曲線テーブルを参照して算出することができる。
なお、一次遅れ演算前の室内熱交換器の入口側過熱度SHcxin0には、上限を付すことが好ましい。
0≦SHcxin0≦20
0≦SHcxin0≦20
以上説明してきたように、本実施形態に係る車両用空調装置1によれば、制御装置100が、放熱器の出口冷媒圧力Pciの目標値である目標圧力PCOを、出口冷媒温度の目標温度TCO及び冷媒の過熱度に基づいて算出する。これにより、ホットガス回路を利用した暖房時の冷媒の状態変化に起因して生じる実際の放熱器の実際の出口冷媒温度Tciと目標ヒータ温度TCOとの乖離を抑制し、室内熱交換器4の出口冷媒温度Tci延いては目標圧力PCOを正確に算出することができる。
したがって、圧縮機2を本来必要な回転数に基づいて制御することができるので、室内熱交換器4における加熱制御が適正となるため、熱ロスを抑制し、推定精度の高い推定加熱温度Theatを用いて風量割合SWを算出することができるので、適正且つ効率的な温調制御を行うことができる。
したがって、
したがって、
なお、図1に示す本実施形態に係る車両用空調装置1において実行可能な他の運転モードの参考例として、以下、外気吸熱暖房モード及びバッテリ冷却モードについて説明する。
(外気吸熱暖房モード)
図7は、外気吸熱暖房モードにおける冷媒回路Rの冷媒の流れ(太線)を示している。また、図8は、外気吸熱暖房モードにおける冷媒の状態変化を示すモリエル線図である。 制御装置100が外気吸熱暖房モードを実行する場合、室外膨張弁6及び電磁弁21を開放し、電磁弁22及び室内膨張弁8、電子膨張弁24、チラー膨張弁72を全閉とする。圧縮機2及び室内送風機27を運転し、エアミックスダンパ28は室内送風機27から吹出された空気が室内熱交換器4に通風される割合を調整する状態とする。
(外気吸熱暖房モード)
図7は、外気吸熱暖房モードにおける冷媒回路Rの冷媒の流れ(太線)を示している。また、図8は、外気吸熱暖房モードにおける冷媒の状態変化を示すモリエル線図である。 制御装置100が外気吸熱暖房モードを実行する場合、室外膨張弁6及び電磁弁21を開放し、電磁弁22及び室内膨張弁8、電子膨張弁24、チラー膨張弁72を全閉とする。圧縮機2及び室内送風機27を運転し、エアミックスダンパ28は室内送風機27から吹出された空気が室内熱交換器4に通風される割合を調整する状態とする。
これにより、圧縮機2から吐出された高温高圧のガス冷媒は室内熱交換器4に流入する。室内熱交換器4において空気流通路3内の空気と高温高圧の冷媒とが熱交換し、すなわち、空気流通路3内の空気が冷媒によって加熱され、加熱された空気が吹出口29から車室内へ吹出されることで暖房が行われる。
一方、室内熱交換器4を通過する冷媒は空気流通路3を通過する空気に熱を奪われて冷却され、凝縮液化する。液化した冷媒は室内熱交換器4を出た後、冷媒配管13F、13Gを経て、室外膨張弁6に至る。冷媒は、室外膨張弁6で減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、車両の走行により流入する外気、或いは、室外送風機(図示せず)にて通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。
そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A、13B、電磁弁21、及び逆止弁20を経てアキュムレータ12に流入し、アキュムレータ12で気液分離された後、ガス冷媒が冷媒配管13Dを経て圧縮機2に吸い込まれる循環を繰り返す。
(バッテリ冷却モード)
図9は、バッテリ冷却モードにおける冷媒回路Rの冷媒の流れを示している。図9において、冷媒が流れる冷媒配管を太線で示している。また、バッテリ冷却モードにおける冷媒の状態変化を示すモリエル線図は、図8に示す外気吸熱暖房モードにおける冷媒の状態変化を示すモリエル線図と同一であるので図示を省略する。
制御装置100がバッテリ冷却モードを実行する場合、室外膨張弁6及びチラー膨張弁72を開放し、電磁弁21、電磁弁22及び室内膨張弁8、電子膨張弁24を全閉とする。そして、室内送風機27を運転させずに圧縮機2を運転する。
図9は、バッテリ冷却モードにおける冷媒回路Rの冷媒の流れを示している。図9において、冷媒が流れる冷媒配管を太線で示している。また、バッテリ冷却モードにおける冷媒の状態変化を示すモリエル線図は、図8に示す外気吸熱暖房モードにおける冷媒の状態変化を示すモリエル線図と同一であるので図示を省略する。
制御装置100がバッテリ冷却モードを実行する場合、室外膨張弁6及びチラー膨張弁72を開放し、電磁弁21、電磁弁22及び室内膨張弁8、電子膨張弁24を全閉とする。そして、室内送風機27を運転させずに圧縮機2を運転する。
これにより、圧縮機2から吐出された高温高圧の冷媒は室内熱交換器4に流入するものの、通過するのみとなり、室内熱交換器4を出た冷媒は冷媒配管13F、13Gを経て、室外膨張弁6に至る。冷媒は、室外膨張弁6で減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は車両の走行により流入する外気、或いは、不図示の室外送風機にて通風される外気によって空冷され、凝縮液化する。
室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18、及びチラー膨張弁72を経て温調対象熱交換器64に流入し、蒸発する。このときの吸熱作用により熱媒体回路60を循環する熱媒体が冷却される。
温調対象熱交換器64で蒸発した冷媒は、冷媒配管13Jを経てアキュムレータ12に至り、冷媒配管13Dを経て圧縮機2に吸い込まれる循環を繰り返す。温調対象熱交換器64にて冷却された熱媒体は、ポンプ61によってバッテリ55に圧送され、バッテリ55を冷却する。
以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれら実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。
1:車両用空調装置、2:圧縮機、3:空気流通路、4:室内熱交換器、6:室外膨張弁、7:室外熱交換器、8:室内膨張弁、9:吸熱器、10:HVACユニット、12:アキュムレータ、13A~13K:冷媒配管、18,20:逆止弁、21,22:電磁弁、24:電子膨張弁、25:吸込口、26:吸込切換ダンパ、27:室内送風機、28:エアミックスダンパ、29:吹出口、55:バッテリ、60:熱媒体回路、61:ポンプ、64:温調対象熱交換器、64A:冷媒流路、64B:熱媒体流路、72:チラー膨張弁、100:制御装置
Claims (5)
- 冷媒を圧縮する圧縮機、冷媒の熱により車室内に供給する空気を加熱する放熱器、及び、冷媒と外気とを熱交換させる室外熱交換器を含む冷媒回路と、
前記冷媒回路を制御する制御装置を備え、
前記冷媒回路は、前記圧縮機から吐出した冷媒を、前記室外熱交換器を迂回させ、前記放熱器を経て前記圧縮機の吸入側に流入させるホットガス回路を有し、
前記制御装置は、
前記ホットガス回路に冷媒を流通させて、前記圧縮機で圧縮した冷媒の熱により前記車室内を暖房するホットガス暖房モードを実行可能であり、
前記ホットガス暖房モードにおいて、前記放熱器の出口冷媒圧力の目標圧力PCOを、前記放熱器の出口冷媒温度の目標温度TCOから前記放熱器の入口側過熱度を減じた圧力飽和温度に基づいて算出する、車両用空調装置。 - 前記制御装置は、前記目標圧力PCOを用いて算出される回転数に従って前記圧縮機を制御する、請求項1記載の車両用空調装置。
- 前記制御装置は、前記入口側過熱度の一次遅れ演算を行う、請求項1又は請求項2記載の車両用空調装置。
- 前記制御装置は、前記入口側過熱度に予め定めた上限値を付す、請求項1から請求項3の何れか1項記載の車両用空調装置。
- 前記ホットガス回路は、前記圧縮機の吐出側と吸入側とを接続して、前記圧縮機から吐出した冷媒を再び前記圧縮機に吸入させるバイパス回路を有する請求項1から請求項4のいずれか1項に記載の車両用空調装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380016628.8A CN118632788A (zh) | 2022-01-24 | 2023-01-16 | 车辆用空调装置 |
DE112023000674.1T DE112023000674T5 (de) | 2022-01-24 | 2023-01-16 | Fahrzeugklimaanlage |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-008931 | 2022-01-24 | ||
JP2022008931A JP2023107643A (ja) | 2022-01-24 | 2022-01-24 | 車両用空調装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023140205A1 true WO2023140205A1 (ja) | 2023-07-27 |
Family
ID=87348777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/000932 WO2023140205A1 (ja) | 2022-01-24 | 2023-01-16 | 車両用空調装置 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2023107643A (ja) |
CN (1) | CN118632788A (ja) |
DE (1) | DE112023000674T5 (ja) |
WO (1) | WO2023140205A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001012830A (ja) * | 1999-06-29 | 2001-01-19 | Denso Corp | 冷凍サイクル装置 |
WO2018074112A1 (ja) * | 2016-10-20 | 2018-04-26 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP2021156567A (ja) * | 2019-11-22 | 2021-10-07 | 株式会社デンソー | 冷凍サイクル装置 |
-
2022
- 2022-01-24 JP JP2022008931A patent/JP2023107643A/ja active Pending
-
2023
- 2023-01-16 CN CN202380016628.8A patent/CN118632788A/zh active Pending
- 2023-01-16 DE DE112023000674.1T patent/DE112023000674T5/de active Pending
- 2023-01-16 WO PCT/JP2023/000932 patent/WO2023140205A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001012830A (ja) * | 1999-06-29 | 2001-01-19 | Denso Corp | 冷凍サイクル装置 |
WO2018074112A1 (ja) * | 2016-10-20 | 2018-04-26 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP2021156567A (ja) * | 2019-11-22 | 2021-10-07 | 株式会社デンソー | 冷凍サイクル装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2023107643A (ja) | 2023-08-03 |
DE112023000674T5 (de) | 2024-11-07 |
CN118632788A (zh) | 2024-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11104205B2 (en) | Vehicle air-conditioning device | |
US11577579B2 (en) | Vehicle air-conditioning device | |
JP6605928B2 (ja) | 車両用空調装置 | |
EP2634021B1 (en) | Heat pump system for vehicle and method of controlling the same | |
JP6838518B2 (ja) | 冷凍サイクル装置 | |
JP7316872B2 (ja) | 車両搭載発熱機器の温度調整装置及びそれを備えた車両用空気調和装置 | |
JP7372732B2 (ja) | 車両用空気調和装置 | |
WO2020110509A1 (ja) | 車両用空気調和装置 | |
EP3878670A1 (en) | In-vehicle temperature control system | |
KR20160110719A (ko) | 차량용 히트 펌프 시스템 | |
JP7280770B2 (ja) | 車両用空気調和装置 | |
JP7221650B2 (ja) | 車両用空気調和装置 | |
KR101941026B1 (ko) | 차량용 히트 펌프 시스템 | |
JP7233986B2 (ja) | 車両用空気調和装置 | |
WO2023140205A1 (ja) | 車両用空調装置 | |
WO2022064946A1 (ja) | 車両用空調装置 | |
WO2023140206A1 (ja) | 車両用空調装置 | |
WO2023140210A1 (ja) | 車両用空調装置 | |
JP7233953B2 (ja) | 車両用空気調和装置 | |
JP7494139B2 (ja) | 車両用空調装置 | |
WO2020045030A1 (ja) | 複合弁及びそれを用いた車両用空気調和装置 | |
WO2023002993A1 (ja) | 車両用空調装置 | |
WO2022137925A1 (ja) | 車両用空調装置 | |
WO2022064945A1 (ja) | 車両用空調装置 | |
CN115320323A (zh) | 热管理系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23743199 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202380016628.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112023000674 Country of ref document: DE |