WO2022137725A1 - 基板処理装置、基板処理方法、および紫外線照射ユニット - Google Patents
基板処理装置、基板処理方法、および紫外線照射ユニット Download PDFInfo
- Publication number
- WO2022137725A1 WO2022137725A1 PCT/JP2021/036998 JP2021036998W WO2022137725A1 WO 2022137725 A1 WO2022137725 A1 WO 2022137725A1 JP 2021036998 W JP2021036998 W JP 2021036998W WO 2022137725 A1 WO2022137725 A1 WO 2022137725A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultraviolet
- light
- substrate
- processing container
- measuring device
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 88
- 238000000034 method Methods 0.000 title claims description 12
- 239000007789 gas Substances 0.000 claims abstract description 57
- 239000001301 oxygen Substances 0.000 claims abstract description 37
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 37
- 230000005540 biological transmission Effects 0.000 claims abstract description 27
- 230000007246 mechanism Effects 0.000 claims abstract description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 16
- 230000003287 optical effect Effects 0.000 claims abstract 13
- 238000002834 transmittance Methods 0.000 claims description 30
- -1 oxygen radicals Chemical class 0.000 claims description 22
- 238000003672 processing method Methods 0.000 claims description 15
- 230000002159 abnormal effect Effects 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 10
- 150000002831 nitrogen free-radicals Chemical class 0.000 claims description 6
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 12
- 238000001816 cooling Methods 0.000 description 11
- 239000000112 cooling gas Substances 0.000 description 11
- 239000003507 refrigerant Substances 0.000 description 10
- 150000003254 radicals Chemical class 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000007723 transport mechanism Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000011553 magnetic fluid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
Definitions
- the present disclosure relates to a substrate processing apparatus, a substrate processing method, and an ultraviolet irradiation unit.
- an ultraviolet light source (ultraviolet lamp) irradiates a processing container with ultraviolet rays through an ultraviolet transmission window to generate radicals of oxygen-containing gas to perform oxidation treatment on a substrate (for example, Patent Documents 1 and 2). ..
- Patent Document 1 describes that a light amount sensor is inserted into a lamp house that houses an ultraviolet lamp to measure the light amount of the ultraviolet lamp. Further, Patent Document 2 describes a substrate processing apparatus that forms an oxide film using radicals of an oxygen-containing gas generated by irradiation with ultraviolet rays and performs radical nitriding treatment on the oxide film using remote plasma. ing.
- the present disclosure provides a substrate processing apparatus, a substrate processing method, and an ultraviolet irradiation unit capable of appropriately irradiating a processing container with ultraviolet rays through an ultraviolet transmission window to process the substrate.
- the substrate processing apparatus is a substrate processing apparatus that processes a substrate, and includes a processing container for accommodating the substrate, a gas supply mechanism for supplying an oxygen-containing gas into the processing container, and the processing.
- the container is provided with an ultraviolet irradiation unit that irradiates the inside of the container with ultraviolet rays to generate oxygen radicals in the processing container, and the ultraviolet irradiation unit includes an ultraviolet light source that radiates ultraviolet rays from the outside of the processing container into the processing container.
- First light measurement for measuring the light irradiation parameters of the ultraviolet light transmitting window that transmits the ultraviolet rays emitted from the ultraviolet light source into the processing container and the ultraviolet rays that pass through the ultraviolet transmitting window and are irradiated into the processing container. It has a vessel and.
- a substrate processing apparatus capable of appropriately irradiating a processing container with ultraviolet rays through an ultraviolet transmission window to process the substrate are provided.
- 1 and 2 are a vertical sectional view and a horizontal sectional view schematically showing an outline of the configuration of the substrate processing apparatus according to the embodiment.
- the substrate processing apparatus of the present embodiment forms a silicon oxide film on the surface of the substrate W by ultraviolet light radical oxidation treatment, and then performs remote plasma radical nitriding treatment to nitrid the surface of the silicon oxide film.
- the substrate W may be any as long as it has silicon on its surface, and a silicon wafer can be typically mentioned.
- the substrate processing device 1 includes a processing container 10, a gas supply mechanism 20, an exhaust unit 30, a remote plasma unit 40, an ultraviolet irradiation unit 50, and a control unit 60.
- the processing container 10 is for accommodating the substrate W for processing, is made of a metal material, and has a rectangular parallelepiped shape.
- the inside of the processing container 10 has a processing space S for processing the substrate W, and is configured to be decompressible.
- the length direction of the processing container 10 is the X direction
- the width direction orthogonal to the length direction is the Y direction
- the height direction is the Z direction.
- One side wall 10a1 of the processing container 10 is provided with a carry-in outlet 11 for the substrate W, and the carry-in outlet 11 is provided with a gate valve 12 for opening and closing the carry-in outlet 11.
- a stage 13 on which the substrate W is placed is provided in the processing container 10.
- the upper surface of the stage 13 is a mounting surface 13a on which the substrate W is horizontally mounted.
- the substrate W has a circular shape
- the mounting surface 13a also has a circular shape so as to fit the substrate W.
- the substrate processing apparatus 1 has a heater (not shown) for heating the substrate W.
- the heater is provided on the stage 13, for example.
- a rotation shaft 13b is connected to the center of the lower surface of the stage 13.
- the rotary shaft 13b penetrates the bottom wall 10b of the processing container 10 and extends below the processing container 10 and is connected to the rotation drive mechanism 19. Therefore, the rotation drive mechanism 19 rotates the stage 13 via the rotation shaft 13b.
- the rotation shaft 13b and the bottom wall 10b of the processing container 10 are hermetically sealed by a magnetic fluid seal or the like.
- the gas supply mechanism 20 is provided in a gas supply source 21 for supplying gas, a gas supply pipe 22 having one end connected to the gas supply source 21 to supply gas into the processing container 10, and a gas supply in the processing container 10. It has a gas introduction unit 23 connected to the other end of the pipe 22.
- the gas supply source 21 supplies an oxygen-containing gas such as oxygen gas, and an inert gas used as a pressure regulating gas and a purge gas.
- the gas supply pipe 22 is inserted into the processing container 10 from the upper part of the side wall 10a2 facing the one side wall 10a1 on which the carry-in outlet 11 is formed.
- the gas introduction portion 23 extends along the width direction (Y direction in the drawing) of the processing container 10 to the outer position of the upper stage 13 in the processing container 10. As shown in FIG. 2, the gas introduction portion 23 is formed so that a plurality of injection ports 23a are arranged in the width direction (Y direction). Therefore, the oxygen-containing gas supplied from the gas supply source 21 is configured to reach the gas introduction unit 23 through the gas supply pipe 22 and to be discharged from the injection port 23a to the processing space S.
- the exhaust unit 30 includes an exhaust pipe 31 connected to an exhaust hole 15 formed in the bottom wall 10b of the processing container 10, a vacuum pump for exhausting the processing space S via the exhaust pipe 31, and an automatic control valve. 32 and.
- the exhaust hole 15 is formed so as to extend in the width direction (Y direction) at a position on the carry-in outlet 11 side of the bottom wall 10b outside the stage 13.
- the upper end of the exhaust pipe 31 is widened corresponding to the width of the exhaust hole 15.
- the gas introduction section 23 extends in the Y direction on one side of the stage 13, and the exhaust hole 15 extends in the Y direction on the other side of the stage 13, it is introduced from the gas introduction section 23.
- the oxygen-containing gas passes over the stage 13 and flows toward the exhaust hole 15.
- the remote plasma unit 40 has a remote plasma supply source 41 and a radical supply pipe 42 that supplies nitrogen radicals from the remote plasma supply source 41 into the processing container 10.
- the remote plasma supply source 41 is supplied with an inert gas (rare gas) such as argon gas and a nitrogen-containing gas such as nitrogen gas, and a nitrogen radical is generated by a plasma (for example, capacitively coupled plasma) generated by an appropriate plasma generation mechanism.
- a plasma for example, capacitively coupled plasma
- One end of the radical supply pipe 42 is connected to the remote plasma supply source 41, and the other end is connected to the supply hole 16 formed in the side wall 10a2, and the nitrogen radical generated by the remote plasma supply source 41 is connected to the radical supply pipe. It is supplied to the processing space S in the processing container 10 through the 42 and the supply hole 16.
- the ultraviolet irradiation unit 50 transmitted through three ultraviolet light sources 51 provided above the processing container 10, an ultraviolet transmitting window 53 that transmits ultraviolet rays from each ultraviolet light source 51 to the processing container 10, and an ultraviolet transmitting window 53. It has an illuminance meter 55 that measures illuminance, which is a light irradiation parameter of ultraviolet rays.
- the three ultraviolet light sources 51 are linear and are provided in a region facing the mounting surface 13a of the stage 13 in a state where the longitudinal direction is the width direction (Y direction) of the processing container.
- the three ultraviolet light sources 51 are slightly longer than the diameter of the stage 13, and each has the same length.
- the length of the processing container 10 is set so that the end positions in the width direction (Y direction) are at the same position. They are arranged in the vertical direction (X direction). Further, the three ultraviolet light sources 51 are provided so that the distances in the Z direction to the substrate W on the stage 13 are equal to each other.
- the three ultraviolet light sources 51 are of the same type having the same characteristics such as wavelength and maximum output, and emit ultraviolet rays having a wavelength of 172 nm, for example. Further, the three ultraviolet light sources 51 are controlled so that the outputs from the respective ultraviolet light sources 51 are equal to each other when the oxide film is formed.
- none of the three ultraviolet light sources 51 is located on the rotation axis 13b of the stage 13, that is, on the center of the substrate W mounted on the stage 13, and is offset from the center of the substrate W. ..
- the ultraviolet rays emitted from the ultraviolet light source 51 pass through the opening 17 provided in the ceiling wall 10c of the processing container 10, further pass through the ultraviolet transmission window 53, and are irradiated into the processing container 10.
- the ultraviolet ray transmitting window 53 is made of a material that transmits ultraviolet rays, for example, quartz.
- the illuminance meter 55 is connected to the hole 18 formed in the side wall 10a3 between the side wall 10a1 and the side wall 10a2, and measures the illuminance of the light guided from the hole 18.
- the hole 18 is provided in the portion of the side wall 10a3 corresponding to the position directly below the one closest to the gas introduction portion 23 among the three ultraviolet light sources 51 (see FIG. 2).
- the hole 18 may be provided in a portion corresponding to a position directly below the other ultraviolet light source 51.
- the illuminance meter 55 measures the illuminance of the ultraviolet rays transmitted through the ultraviolet transmitting window 53, and the measured value is used to determine whether the ultraviolet transmittance of the ultraviolet transmitting window 53 is normal.
- Each of the three ultraviolet light sources 51 is housed in the case 52, and the ultraviolet rays from the ultraviolet light source 51 are configured so as not to be emitted in directions other than the opening 17.
- a light source illuminance meter 56 for measuring illuminance, which is a light irradiation parameter, is provided in the case 52.
- the light source illuminance meter 56 is for directly measuring the illuminance of the ultraviolet light source 51 to determine the deterioration of the ultraviolet light source 51.
- the outside of the three cases 52 containing the ultraviolet light source 51 is covered with a cover 54.
- the control unit 60 controls the gas supply mechanism 20, the exhaust unit 30, the remote plasma unit 40, the ultraviolet irradiation unit 50, and the rotation drive mechanism 19 that constitute the substrate processing device 1.
- the control unit 60 includes a main control unit having a CPU, an input device, an output device, a display device, and a storage device. Then, the processing of the substrate processing apparatus 1 is controlled based on the processing recipe stored in the storage medium of the storage apparatus. Further, the control unit 60 determines whether or not the processing container 10 is appropriately irradiated with ultraviolet rays based on the measurement result of the illuminance meter 55, and also functions as a control unit of the ultraviolet irradiation unit 50.
- the ultraviolet irradiation unit 50 further has a cooling mechanism 70.
- the ultraviolet light transmitting window 53 may have a high temperature due to radiant heat from a heater (not shown) for heating the stage 13, and the light transmittance decreases when the temperature becomes high.
- the ultraviolet light source 51 may have a high temperature due to its own heat generation or the like, and if it is used in a state of high temperature, its life will be shortened. Therefore, the cooling mechanism 70 is configured to cool the ultraviolet transmission window 53 and the ultraviolet light source 51.
- the cooling mechanism 70 includes a cooling gas flow path 71 provided in an annular shape around the opening 17 of the ceiling wall 10c, and a gas formed from the cooling gas flow path 71 toward the opening 17. It has a spout 72. Two (pair) of gas outlets 72 are provided so as to face each other with the opening 17 interposed therebetween. However, the number of gas outlets 72 is not limited to two, and may be three or more, and a plurality of pairs may be provided.
- the gas outlet 72 is provided so as to be inclined downward so as to face the ultraviolet ray transmitting window 53.
- Cooling gas is supplied to the cooling gas flow path 71 from a cooling gas supply source (not shown) via a pipe.
- a cooling gas supply source not shown
- an inert gas such as nitrogen gas or argon gas can be used.
- the cooling gas can be blown to the ultraviolet transmission window 53, so that the ultraviolet transmission window 53 can be cooled, the ultraviolet transmission window 53 is heated, and the transmittance is lowered. It can be prevented from doing so. Further, the ultraviolet light source 51 arranged at a position facing the ultraviolet light transmitting window 53 can also be cooled by the cooling gas blown to the ultraviolet transmitting window 53, and the life of the ultraviolet light source 51 can be extended.
- the cooling gas sprayed on the ultraviolet transmission window 53 is discharged to the outside of the cover 54 through the discharge port (not shown) provided on the case 52 and the cover 54.
- Ozone is generated by the ultraviolet rays radiated from the ultraviolet light source 51, and the generated ozone is discharged together with the cooling gas through the discharge port.
- the cooling gas also functions as a purge gas that emits ozone.
- a cooling mechanism 80 as shown in FIG. 4 may be provided.
- the cooling mechanism 80 has a single refrigerant flow path 81 through which a liquid refrigerant flows, and the single refrigerant flow path 81 is crawled around the three ultraviolet transmission windows 51 in a single stroke.
- One end of the refrigerant flow path 81 is a refrigerant supply port 82, and the other end is a refrigerant discharge port 83, and the refrigerant circulates from the refrigerant supply source (not shown) through a pipe (not shown). It is supposed to be done.
- the refrigerant for example, water can be used, but other liquids may be used. Since the cooling mechanism 80 uses a liquid refrigerant, the cooling efficiency is high.
- FIG. 5 is a flowchart for explaining a substrate processing method. The following processing operations are performed under the control of the control unit 60.
- the gate valve 12 is opened, and the substrate W is carried into the processing container 10 by a transport mechanism (not shown) via the carry-in / outlet 11 (step ST1).
- the carried-in substrate W is delivered from the transport mechanism to the stage 13 via a support pin (not shown) provided on the stage 13.
- the transport mechanism is retracted from the processing container 10 and the gate valve 12 is closed.
- the substrate W on the stage 13 is first treated with oxygen radicals (step ST2).
- the pressure of the treatment space S is adjusted while the treatment space S is exhausted by the exhaust unit 30, and an oxygen-containing gas, for example, oxygen gas is supplied to the treatment space S.
- the pressure at this time may be in the range of 0.1 Torr to 10 Torr, and the flow rate of the oxygen-containing gas may be 100 sccm to 1500 sccm.
- the heating temperature of the substrate W by the heater may be 500 to 1000 ° C.
- ultraviolet rays are radiated from the ultraviolet light source 51 of the ultraviolet irradiation unit 50, and the processing space S is irradiated through the ultraviolet transmission window 53.
- ultraviolet rays are absorbed by oxygen in the oxygen-containing gas supplied to the processing space S to form oxygen radicals, and the oxygen radicals oxidize the surface of the substrate W.
- oxygen radical treatment for a desired time, a silicon oxide film having a thickness of 0.2 nm to 2 nm is formed on the surface of the substrate W.
- the emission of ultraviolet rays from the ultraviolet light source 51 and the introduction of oxygen gas into the treatment space S are stopped, the inside of the treatment container 10 is purged, and the oxygen content in the treatment container 10 is contained. Discharge residual gas such as gas.
- the substrate W on which the silicon oxide film is formed is subjected to nitrogen radical treatment (step ST3).
- the pressure of the treatment space S is adjusted while the treatment space S is exhausted by the exhaust unit 30, and the nitrogen radicals generated by the remote plasma supply source 41 of the remote plasma unit 40 are supplied to the treatment space S. ..
- the pressure in the processing space S at this time may be in the range of 0.01 to 50 Torr.
- the heating temperature of the substrate W by the heater may be 500 to 1000 ° C. It is preferably carried out at the same temperature as the temperature at the time of oxygen radical treatment.
- a capacitively coupled plasma is generated by, for example, high frequency power while supplying, for example, 1 to 1000 sccm of nitrogen gas and, for example, 100 to 2000 sccm of inert gas, for example, argon gas as a nitrogen-containing gas in the container.
- inert gas for example, argon gas
- the stage 13 is kept rotated by the rotation drive mechanism 19.
- Such nitrogen radical treatment is performed for a desired time to nitrid the silicon oxide film formed on the substrate W.
- the supply of nitrogen radicals from the remote plasma supply source 41 is stopped, the inside of the processing container 10 is purged, and the residual gas in the processing container 10 is discharged. Then, the substrate W is carried out from the processing container by the reverse procedure of carrying in.
- the nitrogen concentration in the membrane may be higher than the standard.
- the illuminance which is the light irradiation parameter of the ultraviolet rays transmitted through the ultraviolet transmitting window 53, is measured by the illuminance meter 55, and the presence or absence of an abnormality in the ultraviolet transmittance of the ultraviolet transmitting window 53 is determined from the measurement results (step ST4).
- the illuminance which is a light irradiation parameter, is a parameter related to the irradiation energy of ultraviolet rays, and whether or not the ultraviolet rays irradiated to the oxygen-containing gas in the processing container 10 are sufficient for oxygen radical generation by measuring the illuminance. Can be determined. If the transmittance of the ultraviolet light transmitting window 53 is low, the illuminance of the ultraviolet rays irradiated to the oxygen-containing gas in the processing container 10 is low. Therefore, by measuring the illuminance of the ultraviolet rays irradiated in the processing container 10, the illuminance of the ultraviolet rays is measured. It is possible to grasp the abnormality of the transmittance of the ultraviolet ray transmitting window 53.
- the illuminance measurement by the illuminance meter 55 may be performed for each processing of the substrate W, may be performed after processing a plurality of substrates W, or may be performed for each lot. It may also be the timing of maintenance. That is, step ST4 is executed after performing the above steps ST1 to 3 a set number of times.
- step ST4 can be performed by the procedure shown in FIG.
- a reference value of the illuminance after passing through the ultraviolet transmission window 53 is set in the control unit 60 (step ST11).
- the reference value is, for example, a value obtained by adding a preset allowable value to the illuminance value measured by the illuminance meter 55 for the ultraviolet rays transmitted through the new ultraviolet ray transmitting window, for example, in which the transmittance is not lowered. ..
- ultraviolet rays are irradiated from the ultraviolet light source 51 at the timing when the processing is not performed in the processing container 10, and the illuminance of the ultraviolet rays is measured by the illuminometer 55 (step ST12).
- the timing at which the processing is not performed is, for example, before the substrate W is carried into the processing container 10, or after the substrate W is carried out.
- the inside of the processing container 10 is, for example, an inert gas atmosphere.
- the measured value of the illuminance measured by the illuminance meter 55 in the control unit 60 is compared with the reference value (step ST13). Then, when the measured value is equal to or higher than the reference value, it is determined that the transmittance of the ultraviolet transmissive window 53 is normal (step ST14). On the other hand, when the measured value is lower than the reference value, it is determined that the transmittance of the ultraviolet light transmitting window 53 is abnormal (step ST15).
- the ultraviolet ray transmitting window 53 is cleaned or the ultraviolet ray transmitting window 53 is replaced.
- the ultraviolet transmittance of the ultraviolet transmitting window 53 was normal or abnormal, based on the illuminance measured by the illuminance meter 55 when the ultraviolet transmitting window 53 was normal.
- the illuminance of the light source illuminance meter 56 that directly measures the illuminance of the ultraviolet light source 51 can also be used as a reference. That is, it is also possible to monitor whether the ultraviolet transmittance of the ultraviolet transmitting window 53 is normal or abnormal from the measured value of the illuminance meter 55 and the measured value of the light source illuminance meter 56.
- the illuminance measured by the illuminance meter 55 and the illuminance measured by the illuminance meter 56 for a light source are compared, and when these differences are equal to or less than a specific value, it is determined that the transmittance of the ultraviolet transmission window 53 is normal. If it is larger than a specific difference, it may be determined that the transmittance of the ultraviolet transmission window 53 is abnormal.
- an index showing the relationship between the illuminance measured by the illuminance meter 55 and the illuminance measured by the illuminance meter 56 for the light source for example, measured by the illuminance meter 55 with respect to the illuminance (I2) measured by the illuminance meter 56 for the light source.
- the ratio (I1 / I2) of the illuminance (I1) may be calculated, and it may be determined from the value whether the transmittance of the ultraviolet light transmitting window 53 is normal or abnormal.
- oxygen radical treatment is performed by oxygen radicals formed by irradiating oxygen gas with ultraviolet rays and then nitrogen radical treatment is performed by remote plasma treatment is shown, but only oxygen radical treatment is performed. It may be what you do.
- oxygen radical treatment is performed by oxygen radicals formed by irradiating oxygen gas with ultraviolet rays and then nitrogen radical treatment is performed by remote plasma treatment is shown, but only oxygen radical treatment is performed. It may be what you do.
- a silicon oxide film is formed by oxygen radical treatment is shown, the present invention is not limited to the silicon oxide film.
- the illuminance is measured as the light irradiation parameter of the ultraviolet rays transmitted from the ultraviolet light source through the ultraviolet transmission window and the ultraviolet rays directly irradiated from the ultraviolet light source is shown, but the present invention is not limited to this. Parameters such as illuminance and amount of light may be measured.
- Substrate processing device, 10 Processing container, 13; Stage, 20; Gas supply mechanism, 21; Gas supply source, 22; Gas supply pipe, 23; Gas introduction unit, 30; Exhaust unit, 40; Remote plasma supply mechanism , 50; UV irradiation unit, 51; UV light source, 53; UV transmission window, 55; luminometer, 56; light source luminometer, 60; control unit, W; substrate
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Formation Of Insulating Films (AREA)
Abstract
基板処理装置は、基板を収容する処理容器と、処理容器内に酸素含有ガスを供給するガス供給機構と、処理容器内に紫外線を照射して処理容器内に酸素ラジカルを生成する紫外線照射ユニットとを備え、紫外線照射ユニットは、処理容器の外部から処理容器内に紫外線を放射する紫外線光源と、紫外線光源から放射された紫外線を処理容器内に透過する紫外線透過窓と、紫外線透過窓を透過し処理容器内に照射される紫外線の光照射パラメータを測定する第1の光測定器とを有する。
Description
本開示は、基板処理装置、基板処理方法、および紫外線照射ユニットに関する。
紫外線光源(紫外線ランプ)から紫外線透過窓を介して処理容器に紫外線を照射し、酸素含有ガスのラジカルを生成して基板に酸化処理を行う技術が知られている(例えば特許文献1、2)。
特許文献1には、紫外線ランプを収納するランプハウスに光量センサを挿入して紫外線ランプの光量を測定することが記載されている。また、特許文献2には、紫外線照射により生成された酸素含有ガスのラジカルを用いて酸化膜を形成し、当該酸化膜に対し、リモートプラズマを用いてラジカル窒化処理を行う基板処理装置が記載されている。
本開示は、紫外線透過窓を介して処理容器内に適切に紫外線を照射して基板に処理を行える基板処理装置、基板処理方法、および紫外線照射ユニットを提供する。
本開示の一態様に係る基板処理装置は、基板に処理を施す基板処理装置であって、基板を収容する処理容器と、前記処理容器内に酸素含有ガスを供給するガス供給機構と、前記処理容器内に紫外線を照射して前記処理容器内に酸素ラジカルを生成する紫外線照射ユニットと、を備え、前記紫外線照射ユニットは、前記処理容器の外部から前記処理容器内に紫外線を放射する紫外線光源と、前記紫外線光源から放射された紫外線を前記処理容器内に透過する紫外線透過窓と、前記紫外線透過窓を透過し前記処理容器内に照射される紫外線の光照射パラメータを測定する第1の光測定器と、を有する。
本開示によれば、紫外線透過窓を介して処理容器内に適切に紫外線を照射して基板に処理を行える基板処理装置、基板処理方法、および紫外線照射ユニットが提供される。
以下、添付図面を参照して実施形態について説明する。
図1および図2は、一実施形態に係る基板処理装置の構成の概略を模式的に示す縦断面図および横断面図である。
図1および図2は、一実施形態に係る基板処理装置の構成の概略を模式的に示す縦断面図および横断面図である。
本実施形態の基板処理装置は、基板Wの表面に紫外光ラジカル酸化処理によりシリコン酸化膜を形成し、続いてリモートプラズマラジカル窒化処理を行い上記シリコン酸化膜の表面を窒化するものである。基板Wとしては、表面にシリコンを有するものであればよく、典型的にはシリコンウエハを挙げることができる。
図1に示すように、基板処理装置1は、処理容器10と、ガス供給機構20と、排気部30と、リモートプラズマユニット40と、紫外線照射ユニット50と、制御部60とを有する。
処理容器10は、基板Wを収容して処理を行うためのものであり、金属材料で構成され、直方体形状をなしている。処理容器10の内部は、基板Wを処理する処理空間Sを有し、減圧可能に構成されている。なお、図1および図2において、処理容器10の長さ方向をX方向、長さ方向に直交する幅方向をY方向、高さ方向をZ方向とする。
処理容器10の一つの側壁10a1には、基板Wの搬入出口11が設けられており、この搬入出口11には、当該搬入出口11を開閉するゲートバルブ12が設けられている。
処理容器10内には、基板Wを載置するステージ13が設けられている。ステージ13は、上面が基板Wを水平に載置する載置面13aとなっている。図示の例では、基板Wが円形をなし、載置面13aも基板Wに適合するように円形をなしている。基板処理装置1は、基板Wを加熱するためのヒータ(図示せず)を有している。ヒータは例えばステージ13に設けられている。ステージ13の下面の中心には回転軸13bが接続されている。回転軸13bは処理容器10の底壁10bを貫通して処理容器10の下方に延びており、回転駆動機構19に接続されている。したがって、回転駆動機構19により回転軸13bを介してステージ13が回転される。回転軸13bと処理容器10の底壁10bとの間は、磁性流体シール等により気密にシールされている。
ガス供給機構20は、ガスを供給するガス供給源21と、ガス供給源21に一端が接続されガスを処理容器10内に供給するガス供給管22と、処理容器10内に設けられ、ガス供給管22の他端に接続されたガス導入部23とを有する。ガス供給源21は、酸素ガス等の酸素含有ガス、および調圧ガスおよびパージガスとして用いる不活性ガスを供給する。
ガス供給管22は、搬入出口11が形成された一つの側壁10a1に対向する側壁10a2の上部から処理容器10内に挿通されている。ガス導入部23は、処理容器10内の上部のステージ13の外側位置に、処理容器10の幅方向(図中Y方向)に沿って延在している。ガス導入部23には、図2に示すように、複数の噴射口23aが幅方向(Y方向)に並ぶように形成されている。したがって、ガス供給源21から供給された酸素含有ガスは、ガス供給管22を通ってガス導入部23に至り、噴射口23aから処理空間Sへ吐出されるように構成されている。
排気部30は、処理容器10の底壁10bに形成された排気孔15に接続される排気管31と、排気管31を介して処理空間Sを排気する真空ポンプや自動制御バルブを含む排気装置32とを有する。排気孔15は、底壁10bのステージ13外側の搬入出口11側の位置に幅方向(Y方向)に延在するように形成されている。排気管31は上端が排気孔15の幅に対応して広くなっている。
上記のように、ガス導入部23がステージ13の一方側にY方向に延在し、排気孔15がステージ13の他方側にY方向に延在しているため、ガス導入部23から導入された酸素含有ガスはステージ13上を通過し排気孔15に向かうように流れる。
リモートプラズマユニット40は、リモートプラズマ供給源41と、リモートプラズマ供給源41から処理容器10内へ窒素ラジカルを供給するラジカル供給管42とを有する。リモートプラズマ供給源41は、アルゴンガス等の不活性ガス(希ガス)と窒素ガス等の窒素含有ガスが供給され、適宜のプラズマ生成機構により生成されたプラズマ(例えば容量結合プラズマ)により、窒素ラジカルを生成する。ラジカル供給管42は、一端がリモートプラズマ供給源41に接続され、他端が側壁10a2に形成された供給孔16に接続されており、リモートプラズマ供給源41で生成された窒素ラジカルがラジカル供給管42および供給孔16を介して処理容器10内の処理空間Sに供給される。
紫外線照射ユニット50は、処理容器10の上方に設けられた3本の紫外線光源51と、各紫外線光源51からの紫外線を処理容器10へ透過する紫外線透過窓53と、紫外線透過窓53を透過した紫外線の光照射パラメータである照度を測定する照度計55とを有する。
3本の紫外線光源51は、線状をなし、ステージ13の載置面13aと対向する領域に、長手方向を処理容器の幅方向(Y方向)にした状態で設けられている。3本の紫外線光源51は、ステージ13の直径よりわずかに長く、それぞれ同じ長さを有しており、幅方向(Y方向)端部位置が同じ位置になるようにして、処理容器10の長さ方向(X方向)に配列されている。また、3本の紫外線光源51は、互いにステージ13上の基板WまでのZ方向の距離が等しくなるように設けられている。
3本の紫外線光源51は、波長や最大出力等の特性が互いに等しい同種のものであり、例えば波長が172nmの紫外線を放射するものである。さらに、3本の紫外線光源51は、酸化膜の形成時には、各紫外線光源51からの出力が互い等しくなるよう制御される。
また、3本の紫外線光源51は、平面視において、いずれもステージ13の回転軸13bすなわち当該ステージ13に載置された基板Wの中心上に位置せず、基板Wの中心からオフセットされている。
紫外線光源51から放射された紫外線は、処理容器10の天井壁10cに設けられた開口部17を通過し、さらに紫外線透過窓53を透過して処理容器10内に照射される。
紫外線透過窓53は、各紫外線光源51に対応して3つ設けられており、紫外線光源51と同程度の長さを有している。紫外線透過窓53は、紫外線を透過する材料、例えば石英で構成されている。
照度計55は、側壁10a1および側壁10a2の間の側壁10a3に形成された孔18に接続されており、孔18から導かれる光の照度を測定する。孔18は、側壁10a3の、3本の紫外線光源51のうち最もガス導入部23に近いものの直下位置に対応した部分に設けられている(図2参照)。なお、孔18は、他の紫外線光源51の直下位置に対応した部分に設けられていてもよい。
照度計55は、紫外線透過窓53を透過した紫外線の照度を測定し、その測定値は紫外線透過窓53の紫外線透過率が正常かどうかを判定するために用いられる。
3本の紫外線光源51は、それぞれケース52内に収容され、紫外線光源51からの紫外線は開口部17以外の方向には射出されないように構成されている。ケース52内には、光照射パラメータである照度を測定する光源用照度計56が設けられている。光源用照度計56は、紫外線光源51の照度を直接測定して紫外線光源51の劣化を判定するためのものである。紫外線光源51を収容した3つのケース52の外側は、カバー54で覆われている。
制御部60は、基板処理装置1を構成するガス供給機構20、排気部30、リモートプラズマユニット40、紫外線照射ユニット50、回転駆動機構19を制御する。制御部60は、CPUを有する主制御部と、入力装置、出力装置、表示装置、および記憶装置とを有している。そして、記憶装置の記憶媒体に記憶された処理レシピに基づいて基板処理装置1の処理が制御される。また、制御部60は、照度計55の測定結果に基づいて、処理容器10内に紫外線が適切に照射されているか否かを判定し、紫外線照射ユニット50の制御部としても機能する。
図3に示すように、紫外線照射ユニット50は、さらに、冷却機構70を有している。紫外線透過窓53は、ステージ13を加熱するためのヒータ(図示せず)からの輻射熱等により高温となることがあり、高温になるとその光透過率が低下してしまう。また、紫外線光源51は、自身の発熱等により、高温となることがあり、高温のままの状態で使用されるとその寿命が短くなってしまう。そこで、冷却機構70は、紫外線透過窓53および紫外線光源51を冷却するように構成されている。
図3に示すように、冷却機構70は、天井壁10cの開口部17の周囲に環状に設けられた冷却ガス流路71と、冷却ガス流路71から開口部17に向けて形成されたガス噴出口72とを有する。ガス噴出口72は、開口部17を挟んで対向するように2つ(一対)設けられている。ただし、ガス噴出口72の数は2つに限らず、3つ以上であってよく、複数対設けられていてもよい。ガス噴出口72は、紫外線透過窓53に向かうように下方に傾斜して設けられている。冷却ガス流路71には、冷却ガス供給源(図示せず)から配管を介して冷却ガスが供給される。冷却ガスとしては、窒素ガスやアルゴンガス等の不活性ガスを用いることができる。
以上のような冷却機構70を設けることにより、冷却ガスを紫外線透過窓53に吹きつけることができるので、紫外線透過窓53を冷却することができ、紫外線透過窓53が加熱されて透過率が低下することを防止することができる。また、紫外線透過窓53に吹きつけた冷却ガスにより紫外線透過窓53に対向する位置に配置されている紫外線光源51も冷却することができ、紫外線光源51の寿命を長くすることもできる。
紫外線透過窓53に吹き付けた冷却ガスは、ケース52およびカバー54に設けられた排出口(図示せず)を介してカバー54の外側へ排出される。紫外線光源51から放射された紫外線によりオゾンが発生するが、発生したオゾンは冷却ガスとともに排出口を介して排出される。換言すると、冷却ガスはオゾンを排出するパージガスとしても機能する。
冷却機構70の代わりに、図4に示すような冷却機構80を設けてもよい。冷却機構80は、液体状の冷媒が流れる単一の冷媒流路81を有し、この単一の冷媒流路81が3つの紫外線透過窓51の周囲に一筆書き状に這い回されている。冷媒流路81の一方の端部は冷媒供給ポート82、他方の端部は冷媒排出ポート83となっており、冷媒供給源(図示せず)から配管(図示せず)を介して冷媒が循環されるようになっている。冷媒としては例えば水を用いることができるが、他の液体であってもよい。冷却機構80では液体の冷媒を用いるので冷却効率が高い。
次に、基板処理装置1における基板Wの処理方法について説明する。
図5は基板処理方法を説明するためのフローチャートである。なお、以下の処理動作は、制御部60による制御のもとで行われる。
図5は基板処理方法を説明するためのフローチャートである。なお、以下の処理動作は、制御部60による制御のもとで行われる。
まず、ゲートバルブ12を開け、搬入出口11を介して、搬送機構(図示せず)により基板Wを処理容器10内に搬入する(ステップST1)。搬入された基板Wは、ステージ13に設けられた支持ピン(図示せず)を介して、搬送機構からステージ13に受け渡される。その後、搬送機構を処理容器10から退避させ、ゲートバルブ12を閉じる。
この状態で、ステージ13上の基板Wに対して、最初に酸素ラジカル処理を行う(ステップST2)。
酸素ラジカル処理に際しては、排気部30により処理空間Sを排気しつつ処理空間Sの調圧を行うとともに、酸素含有ガス、例えば酸素ガスを処理空間Sへ供給する。このときの圧力は0.1Torr~10Torrの範囲内であってよく、酸素含有ガスの流量は100sccm~1500sccmであってよい。また、ヒータ(図示せず)による基板Wの加熱温度は500~1000℃であってよい。
そして、回転駆動機構19によりステージ13を回転しつつ、紫外線照射ユニット50の紫外線光源51から紫外線を放射させ、紫外線透過窓53を介して処理空間Sに照射する。これにより、処理空間Sに供給された酸素含有ガス中の酸素に紫外線が吸収されて酸素ラジカルが形成され、当該酸素ラジカルにより、基板Wの表面が酸化される。このような酸素ラジカル処理が所望の時間実施されることにより、基板Wの表面には0.2nm~2nmの膜厚のシリコン酸化膜が形成される。
酸素ラジカル処理を所望の時間行った後、紫外線光源51からの紫外線の放射、および、処理空間Sへの酸素ガスの導入を停止し、処理容器10内をパージして処理容器10内の酸素含有ガス等の残留ガスを排出する。
次いで、シリコン酸化膜が形成された基板Wに対して、窒素ラジカル処理を行う(ステップST3)。
窒素ラジカル処理に際しては、排気部30により処理空間Sを排気しつつ処理空間Sの調圧を行うとともに、リモートプラズマユニット40のリモートプラズマ供給源41で生成された窒素ラジカルを処理空間Sへ供給する。このときの処理空間Sの圧力は0.01~50Torrの範囲内であってよい。また、ヒータ(図示せず)による基板Wの加熱温度は500~1000℃であってよい。好ましくは酸素ラジカル処理の際の温度と同じ温度で行う。
リモートプラズマ供給源41においては、容器内に窒素含有ガスとして例えば窒素ガスを例えば1~1000sccm、不活性ガス、例えばアルゴンガスを例えば100~2000sccmを供給しつつ、例えば高周波電力によって容量結合プラズマを生成することで、窒素ラジカルが形成される。また、窒素ラジカル処理中も、回転駆動機構19によりステージ13を回転させた状態とする。
このような窒素ラジカル処理を所望の時間行って、基板W上に形成されたシリコン酸化膜を窒化する。
窒素ラジカル処理を所望の時間行った後、リモートプラズマ供給源41からの窒素ラジカルの供給を停止し、処理容器10内をパージして処理容器10内の残留ガスを排出する。そして、搬入の際とは逆の手順により基板Wを処理容器から搬出する。
ところで、以上の酸素ラジカル処理および窒素ラジカル処理後の基板Wについて、膜中の組成分析を行った結果、膜中の窒素濃度が基準よりも高くなることがあることが判明した。
この窒素濃度の上昇は、処理容器10内に紫外線が適切に照射されず、ラジカル酸化による酸化膜の形成が不十分であることが原因であることが見出された。処理容器10内に紫外線が適切に照射されない主な原因は紫外線透過窓の透過率の低下にある。
そこで、紫外線透過窓53を透過した紫外線の光照射パラメータである照度を照度計55により測定し、測定結果から紫外線透過窓53の紫外線透過率の異常の有無を判定する(ステップST4)。
すなわち、光照射パラメータである照度は、紫外線の照射エネルギーに関係するパラメータであり、照度を測定することにより、処理容器10内の酸素含有ガスに照射される紫外線が酸素ラジカル生成に十分か否かを判定することができる。そして、紫外線透過窓53の透過率が低ければ、処理容器10内の酸素含有ガスに照射される紫外線の照度は低くなるため、処理容器10内に照射される紫外線の照度を測定することにより、紫外線透過窓53の透過率の異常を把握することができる。
照度計55による照度の測定は、基板Wの処理ごとに行ってもよいし、基板Wを複数枚処理した後に行ってもよいし、ロットごとであってもよい。また、メンテナンスのタイミングであってもよい。すなわち、上記ステップST1~3を設定された回数行った後にステップST4が実施される。
ステップST4は、具体的には、図6に示す手順で行うことができる。
まず、制御部60に紫外線透過窓53を透過した後の照度の基準値を設定する(ステップST11)。基準値は、例えば、透過率の低下が発生していない例えば新品の紫外線透過窓を透過した紫外線を照度計55で測定した照度の値に対して予め設定された許容値を加えた値とする。
まず、制御部60に紫外線透過窓53を透過した後の照度の基準値を設定する(ステップST11)。基準値は、例えば、透過率の低下が発生していない例えば新品の紫外線透過窓を透過した紫外線を照度計55で測定した照度の値に対して予め設定された許容値を加えた値とする。
次に、処理容器10内で処理を行っていないタイミングで紫外線光源51から紫外線を照射し、照度計55により紫外線の照度を測定する(ステップST12)。処理を行っている際には、酸素ラジカルや窒素ラジカルが存在し、照度を正確に測定することが困難である。処理を行っていないタイミングは、例えば、基板Wを処理容器10に搬入する前、基板Wを搬出した後等である。照度を測定する際には、処理容器10内は例えば不活性ガス雰囲気とされる。
次に、制御部60において照度計55で測定された照度の測定値と基準値とを比較する(ステップST13)。そして、測定値が基準値以上の場合は紫外線透過窓53の透過率が正常と判定する(ステップST14)。一方、測定値が基準値より低い場合は紫外線透過窓53の透過率が異常と判定する(ステップST15)。
紫外線透過窓53の透過率が異常と判定された場合は、紫外線透過窓53をクリーニングするか、または紫外線透過窓53を交換する。
本例により、紫外線透過窓53の透過率が異常のまま基板Wの処理を継続することが防止され、基板Wに対して適切に紫外線を照射して酸素ラジカル処理を行うことができる。
以上の例では、紫外線透過窓53が正常なときに照度計55で測定される照度を基準として、紫外線透過窓53の紫外線透過率が正常か異常かをモニタした。しかし、紫外線光源51の照度を直接測定する光源用照度計56の照度を基準として用いることもできる。すなわち、照度計55の測定値と光源用照度計56の測定値から紫外線透過窓53の紫外線透過率が正常か異常かをモニタすることもできる。
例えば、照度計55で測定された照度と光源用照度計56で測定された照度とを比較し、これらの差が特定の値以下の場合に紫外線透過窓53の透過率が正常と判定し、特定の差より大きい場合に紫外線透過窓53の透過率が異常と判定してもよい。
また、照度計55で測定された照度と光源用照度計56で測定された照度との関係を示す指標、例えば、光源用照度計56で測定された照度(I2)に対する照度計55で測定された照度(I1)の比(I1/I2)を算出し、その値から紫外線透過窓53の透過率が正常か異常かどうかを判定してもよい。
なお、光源用照度計56で測定された照度により、紫外線光源51が正常か異常かを判定することもできる。
以上、実施形態について説明したが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の特許請求の範囲およびその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
例えば、上記実施形態では、酸素ガスに紫外線を照射して形成された酸素ラジカルにより酸素ラジカル処理を行った後、リモートプラズマ処理により窒素ラジカル処理を行った例について示したが、酸素ラジカル処理のみを行うものであってもよい。また、酸素ラジカル処理によりシリコン酸化膜を形成する場合について示したが、シリコン酸化膜に限らない。
また、上記実施形態では、紫外線光源から紫外線透過窓を透過した紫外線、および紫外線光源から直接照射される紫外線の光照射パラメータとして照度を測定する場合を示したが、これに限らず他の光照射パラメータ、例えば光度や光量を測定してもよい。
1;基板処理装置、10;処理容器、13;ステージ、20;ガス供給機構、21;ガス供給源、22;ガス供給管、23;ガス導入部、30;排気部、40;リモートプラズマ供給機構、50;紫外線照射ユニット、51;紫外線光源、53;紫外線透過窓、55;照度計、56;光源用照度計、60;制御部、W;基板
Claims (20)
- 基板に処理を施す基板処理装置であって、
基板を収容する処理容器と、
前記処理容器内に酸素含有ガスを供給するガス供給機構と、
前記処理容器内に紫外線を照射して前記処理容器内に酸素ラジカルを生成する紫外線照射ユニットと、
を備え、
前記紫外線照射ユニットは、
前記処理容器の外部から前記処理容器内に紫外線を放射する紫外線光源と、
前記紫外線光源から放射された紫外線を前記処理容器内に透過する紫外線透過窓と、
前記紫外線透過窓を透過し前記処理容器内に照射される紫外線の光照射パラメータを測定する第1の光測定器と、
を有する、基板処理装置。 - 制御部をさらに備え、前記制御部は、前記第1の光測定器の測定結果に基づいて前記紫外線透過窓の紫外線透過率が正常かどうかを判定する、請求項1に記載の基板処理装置。
- 前記制御部は、前記第1の光測定器の前記光照射パラメータの測定値が基準値よりも低い場合に、前記紫外線透過窓の紫外線透過率が異常であると判定する、請求項2に記載の基板処理装置。
- 前記光照射パラメータは照度であり、前記第1の光測定器は照度計である、請求項1から請求項3のいずれか一項に記載の基板処理装置。
- 前記紫外線光源の光照射パラメータを直接測定する第2の光測定器をさらに備え、前記制御部は、前記第1の光測定器の測定結果と、前記第2の光測定器の測定結果とに基づいて前記紫外線透過窓の紫外線透過率が正常かどうかを判定する、請求項2に記載の基板処理装置。
- 前記制御部は、前記第1の光測定器の光照射パラメータの測定値と、前記第2の光測定器の光照射パラメータの測定値を比較し、これらの差が特定の値以下の場合に前記紫外線透過窓の透過率が正常と判定し、前記特定の値より大きい場合に前記紫外線透過窓の透過率が異常と判定する、請求項5に記載の基板処理装置。
- 前記制御部は、前記第1の光測定器の光照射パラメータの測定値と、前記第2の光測定器の光照射パラメータの測定値との関係を示す指標を算出し、その値から前記紫外線透過窓の透過率が正常かどうかを判定する、請求項5に記載の基板処理装置。
- 前記指標は、前記第2の光測定器で測定された光照射パラメータ(I2)に対する前記第1の光測定器で測定された光照射パラメータ(I1)の比(I1/I2)である、請求項7に記載の基板処理装置。
- 前記光照射パラメータは照度であり、前記第1の光測定器および前記第2の光測定器は照度計である、請求項5から請求項8のいずれか一項に記載の基板処理装置。
- 前記処理容器内に窒素ラジカルを供給するリモートプラズマユニットをさらに備える、請求項1から請求項9のいずれか一項に記載の基板処理装置。
- 基板に処理を施す基板処理方法であって、
基板を処理容器内に設けることと、
前記処理容器内に酸素含有ガスを供給しつつ、前記処理容器の外部に設けられた紫外線光源から紫外線透過窓を介して前記処理容器内に紫外線を照射して酸素ラジカルを生成し、前記処理容器内の前記基板に酸素ラジカル処理を行うことと、
第1の光測定器により前記紫外線光源から前記紫外線透過窓を透過して前記処理容器内に照射した紫外線の光照射パラメータを測定し、その測定値から前記紫外線透過窓の紫外線透過率が正常かどうかを判定することと、
を有する基板処理方法。 - 前記紫外線透過窓の紫外線透過率が正常かどうかを判定することは、前記第1の光測定器の前記光照射パラメータの測定値が基準値よりも低い場合に、前記紫外線透過窓の紫外線透過率が異常であると判定する、請求項11に記載の基板処理方法。
- 前記光照射パラメータは照度であり、前記第1の光測定器は照度計である、請求項11または請求項12に記載の基板処理方法。
- 前記紫外線透過窓の紫外線透過率が正常かどうかを判定することは、前記第1の光測定器の測定結果と、前記紫外線光源の光照射パラメータを直接測定する第2の光学測定器の測定結果とに基づいて前記紫外線透過窓の紫外線透過率が正常かどうかを判定する、請求項11に記載の基板処理方法。
- 前記紫外線透過窓の紫外線透過率が正常かどうかを判定することは、前記第1の光測定器の光照射パラメータの測定値と、前記第2の光測定器の光照射パラメータの測定値を比較し、これらの差が特定の値以下の場合に前記紫外線透過窓の透過率が正常と判定し、前記特定の値より大きい場合に前記紫外線透過窓の透過率が異常と判定する、請求項14に記載の基板処理方法。
- 前記紫外線透過窓の紫外線透過率が正常かどうかを判定することは、前記第1の光測定器の光照射パラメータの測定値と、前記第2の光測定器の光照射パラメータの測定値との関係を示す指標を算出し、その値から前記紫外線透過窓の透過率が正常かどうかを判定する、請求項14に記載の基板処理方法。
- 前記指標は、前記第2の光測定器で測定された光照射パラメータ(I2)に対する前記第1の光測定器で測定された光照射パラメータ(I1)の比(I1/I2)である、請求項16に記載の基板処理方法。
- 前記光照射パラメータは照度であり、前記第1の光測定器および前記第2の光測定器は照度計である、請求項14から請求項17のいずれか一項に記載の基板処理方法。
- 前記酸素ラジカル処理を行うことの後に、リモートプラズマにより前記処理容器に窒素ラジカルを供給して前記基板を窒化することをさらに有する、請求項11から請求項18のいずれか一項に記載の基板処理方法。
- 基板を処理する処理容器内に紫外線を照射する紫外線照射ユニットであって、
前記処理容器の外部から前記処理容器内に紫外線を放射する紫外線光源と、
前記紫外線光源から放射された紫外線を前記処理容器内に透過する紫外線透過窓と、
前記紫外線透過窓を透過し前記処理容器内に照射される紫外線の光照射パラメータを測定する第1の光測定器と、
を有する、紫外線照射ユニット。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-212070 | 2020-12-22 | ||
JP2020212070A JP2022098599A (ja) | 2020-12-22 | 2020-12-22 | 基板処理装置、基板処理方法、および紫外線照射ユニット |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022137725A1 true WO2022137725A1 (ja) | 2022-06-30 |
Family
ID=82157521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/036998 WO2022137725A1 (ja) | 2020-12-22 | 2021-10-06 | 基板処理装置、基板処理方法、および紫外線照射ユニット |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022098599A (ja) |
WO (1) | WO2022137725A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009272595A (ja) * | 2007-07-19 | 2009-11-19 | Asm Japan Kk | 半導体基板をキュアリングするために紫外線照射を管理する方法 |
JP2010186815A (ja) * | 2009-02-10 | 2010-08-26 | Nec Corp | 紫外線照射装置および紫外線照射方法 |
JP2014003150A (ja) * | 2012-06-18 | 2014-01-09 | Tokyo Electron Ltd | 紫外線透過窓の透過率測定装置および紫外線照射量制御方法 |
-
2020
- 2020-12-22 JP JP2020212070A patent/JP2022098599A/ja active Pending
-
2021
- 2021-10-06 WO PCT/JP2021/036998 patent/WO2022137725A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009272595A (ja) * | 2007-07-19 | 2009-11-19 | Asm Japan Kk | 半導体基板をキュアリングするために紫外線照射を管理する方法 |
JP2010186815A (ja) * | 2009-02-10 | 2010-08-26 | Nec Corp | 紫外線照射装置および紫外線照射方法 |
JP2014003150A (ja) * | 2012-06-18 | 2014-01-09 | Tokyo Electron Ltd | 紫外線透過窓の透過率測定装置および紫外線照射量制御方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2022098599A (ja) | 2022-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4131239B2 (ja) | 高速熱処理の急速雰囲気切り替えシステムおよびその方法 | |
KR100722087B1 (ko) | 기판 처리 장치 | |
KR100575955B1 (ko) | 기판 처리 장치 | |
KR100910602B1 (ko) | 기판 처리 시스템 및 기판 처리 방법 | |
US8070910B2 (en) | Shower head structure and treating device | |
JP2019176147A (ja) | 基材処理装置及び方法 | |
JP5077018B2 (ja) | 熱処理装置 | |
KR100671773B1 (ko) | 유전체 배리어 방전 램프에 의한 처리 장치, 및 처리 방법 | |
JP2008244481A (ja) | 液体フィルタを有する紫外線照射装置及び方法 | |
EP1770758A2 (en) | Heating process of the light irradiation type | |
KR20010071982A (ko) | 반도체 처리 시스템의 오존 처리 장치 | |
JP2009054818A (ja) | プラズマ処理装置、プラズマ処理方法および終点検出方法 | |
CN219302267U (zh) | 用于测量处理气体的解离的设备和系统 | |
US10679874B2 (en) | Light irradiation type heat treatment apparatus and heat treatment method | |
JP4830878B2 (ja) | 真空紫外線モニタ及びそれを用いた真空紫外線照射装置 | |
KR20190013471A (ko) | 열처리 장치의 배기 방법 | |
KR20130018822A (ko) | 플라즈마 질화 처리 방법 및 플라즈마 질화 처리 장치 | |
WO2022137725A1 (ja) | 基板処理装置、基板処理方法、および紫外線照射ユニット | |
JP6550964B2 (ja) | 光処理装置およびその製造方法 | |
US9257271B2 (en) | Semiconductor device manufacturing method, substrate processing apparatus, and non-transitory recording medium | |
JP2019203943A (ja) | 基板処理装置 | |
TWI740133B (zh) | 熱處理裝置及熱處理裝置之氣體環境取代方法 | |
KR20200110184A (ko) | 기판 처리 장치 및 기판 처리 방법 | |
JP2005203408A (ja) | エッチング方法 | |
JP2004319559A (ja) | 基板処理方法及び基板処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21909883 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21909883 Country of ref document: EP Kind code of ref document: A1 |