WO2022087885A1 - Active energy ray-curable aqueous resin composition, active energy ray-curable aqueous coating material, and article coated with the coating material - Google Patents

Active energy ray-curable aqueous resin composition, active energy ray-curable aqueous coating material, and article coated with the coating material Download PDF

Info

Publication number
WO2022087885A1
WO2022087885A1 PCT/CN2020/124346 CN2020124346W WO2022087885A1 WO 2022087885 A1 WO2022087885 A1 WO 2022087885A1 CN 2020124346 W CN2020124346 W CN 2020124346W WO 2022087885 A1 WO2022087885 A1 WO 2022087885A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
active energy
energy ray
curable aqueous
Prior art date
Application number
PCT/CN2020/124346
Other languages
French (fr)
Inventor
Chao Zhang
Shiliang Wang
Original Assignee
Dic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic Corporation filed Critical Dic Corporation
Priority to JP2022553640A priority Critical patent/JP2023511217A/en
Priority to CN202080105248.8A priority patent/CN116209695A/en
Priority to PCT/CN2020/124346 priority patent/WO2022087885A1/en
Priority to EP20959048.8A priority patent/EP4237462A1/en
Publication of WO2022087885A1 publication Critical patent/WO2022087885A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D135/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0866Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being an aqueous medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • C08G18/6229Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • C08G18/673Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen containing two or more acrylate or alkylacrylate ester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to an active energy ray-curable aqueous resin composition, an active energy ray-curable aqueous coating material, and an article coated with the coating material.
  • An active energy ray-curable composition is used as a hard coating agent for plastic substrates of home electric appliances, cellular phones, and the like in view of the characteristics of little heat history to coating substrates and excellent hardness and scratch properties of coating films.
  • An example of the active energy ray-curable composition is an active energy ray-curable composition (solvent-type active energy ray-curable composition) containing a polymer having a polymerizable unsaturated double bond, such as acryl acrylate or the like, a polymer not having an unsaturated double bond, such as a polymerizable acrylic resin or the like, a polymerizable monomer, and an organic solvent serving as a diluent.
  • the coating material when used as a coating material for spray coating, the coating material is required to contain as large as 50 to 90%by mass of the organic solvent. Therefore, when a cured coating film is formed on a substrate surface such as a plastic or the like by using an active energy ray-curable coating material containing the resin composition, there is a problem of worsening the working environment due to the volatilization of the organic solvent in the coating material. The volatilized organic solvent also causes atmospheric pollution.
  • a production method which includes neutralizing a specific polyurethane acrylate-modified polyacrylate resin by adding an alkali solution, producing an anionic ultraviolet-curable resin (for example, refer to PTL 1) .
  • an anionic ultraviolet-curable resin for example, refer to PTL 1
  • a cured coating film of the resin produced by the production method has unsatisfactory adhesion, warm-water resistance, and chemical resistance.
  • an active energy ray-curable aqueous resin composition which can produce a cured coating film having excellent adhesion, warm-water resistance, and chemical resistance.
  • An object to be solved by the present invention is to provide an active energy ray-curable aqueous resin composition which can produce a cured coating film having excellent adhesion, warm-water resistance, and chemical resistance, an active energy ray-curable aqueous coating material containing the composition, and an article coated with the coating material.
  • an active energy ray-curable aqueous resin composition containing a reaction product of a hydroxyl group-having acrylic polymer and a specific isocyanate group-having urethane acrylate, and an aqueous medium, leading to completion of the present invention.
  • the present invention relates to an active energy ray-curable aqueous resin composition containing a reaction product (X) of a hydroxyl group-having acrylic polymer (A) and an isocyanate group-having urethane (meth) acrylate (B) , and an aqueous medium (Y) , the urethane (meth) acrylate (B) having a carboxyl group and two or more (meth) acryloyl groups, and also relates to an active energy ray-curable aqueous coating material containing the composition and an article coated with the coating material.
  • an active energy ray-curable aqueous resin composition of the present invention is useful for an active energy ray-curable aqueous coating material which can form a cured coating film having excellent adhesion, warm-water resistance, and chemical resistance, and various articles can be coated with the coating material. Therefore, the active energy ray-curable aqueous resin composition of the present invention can be preferably used for a coating material for coating articles such as bodies of home electric appliances such as a refrigerator, a television, an air conditioner, and the like, casings of information terminals such as a cellular phone, a smartphone, a personal computer, and the like, containers of automotive interior member cosmetics, packaging materials with high designability, and the like.
  • An active energy ray-curable aqueous resin composition of the present invention contains a reaction product (X) of a hydroxyl group-having acrylic polymer (A) and an isocyanate group-having urethane (meth) acrylate (B) , and an aqueous medium, the urethane (meth) acrylate (B) having a carboxyl group and two or more (meth) acryloyl groups.
  • the acrylic polymer (A) is described.
  • the acrylic polymer (A) is produced by copolymerizing a hydroxyl group-having acrylic monomer (a1) with an unsaturated monomer (a2) other than the acrylic monomer (a1) .
  • the acrylic monomer (a1) is a compound having a hydroxyl group and a (meth) acryloyl group.
  • examples of the acrylic monomer (a1) include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxy-n-butyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-n-butyl (meth) acrylate, 3-hydroxy-n-butyl (meth) acrylate, 1, 4-cyclohexanedimethanol mono (meth) acrylate, N- (2-hydroxyethyl) (meth) acrylamide, glycerin mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate
  • Examples of the unsaturated monomer (a2) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate, cyclohexyl (meth) acrylate, 4-
  • the amount of the acrylic monomer (a1) used is preferably 5%to 70%by mass and more preferably 10%to 50%by mass in the monomer components used as raw materials of the acrylic polymer (A) .
  • the amount of the unsaturated monomer (a2) used is the residue obtained by subtracting the ratio of the acrylic monomer (a1) used from a total of 100%by mass of the monomer components used as raw materials of the acrylic polymer (A) .
  • a method for producing the acrylic polymer (A) is, for example, a method of copolymerizing the acrylic monomer (a1) with the unsaturated monomer (a2) using a polymerization initiator in an organic solvent.
  • the organic solved used is preferably an alcohol compound, a ketone compound, an ester compound, an ether compound, an amide compound, a sulfoxide compound, or a hydrocarbon compound.
  • Examples thereof include methanol, ethanol, propanol, n-butanol, iso-butanol, tert-butanol, 3-methoxybutanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, diisopropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycolmonomethyl ether, propylene glycolmonopropyl ether, propylene glycol monobutyl ether, propylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene
  • dialkylene glycol dialkyl ethers such as ethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol dimethyl ether, and the like are more preferred.
  • polymerization initiator examples include organic peroxides: ketone peroxide compounds such as cyclohexanone peroxide, 3, 3, 5-trimethylcyclohexanone peroxide, methylcyclohexanone peroxide, and the like; peroxyketal compounds such as 1, 1-bis (tert-butylperoxy) -3, 3, 5-trimethylcyclohexane, 1, 1-bis (tert-butylperoxy) cyclohexane, n-butyl-4, 4-bis (tert-butylperoxy) valerate, 2, 2-bis (4, 4-di-tert-butylperoxycyclohexyl) propane, 2, 2-bis (4, 4-di-tert-amylperoxycyclohexyl) propane, 2, 2-bis (4, 4-di-tert-hexylperoxycyclohexyl) propane, 2, 2-bis (4, 4-di-tert-octylperoxycyclohexyl) propane,2, 2-bis
  • a chain transfer agent such as lauryl mercaptan, 2-mercaptoethanol, thioglycerol, ethylthioglycolic acid, octylthioglycolic acid, or the like, may be used.
  • the hydroxyl value of the acrylic polymer (A) is preferably 20 to 300 mgKOH/g and more preferably 40 to 200 mgKOH/g.
  • the weight-average molecular weight (Mw) of the acrylic polymer (A) is preferably within a range of 2,000 to 50,000, more preferably within a range of 3,000 to 30,000, and still more preferably within a range of 3,000 to 20,000.
  • the weight-average molecular weight (Mw) is the value in terms of polystyrene based on gel permeation chromatography (abbreviated as "GPC” hereinafter) measurement.
  • the isocyanate group-having urethane (meth) acrylate (B) has an isocyanate group, a carboxyl group, and two or more (meth) acryloyl groups.
  • the urethane (meth) acrylate (B) can be produced by, for example, urethane reaction of a polyisocyanate (b1) , a carboxyl group-having polyol (b2) , and a hydroxyl group-having polyfunctional acrylate (b3) , which are used as essential raw materials.
  • polyisocyanate (b1) examples include aromatic diisocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, m-xylylene diisocyanate, m-phenylenebis (dimethylmethylene) diisocyanate, and the like; aliphatic or alicyclic diisocyanate compounds such as hexamethylene diisocyanate, lysine diisocyanate, 1, 3-bis (isocyanatomethyl) cyclohexane, 2-methyl-1, 3-diisocyanatocyclohexane, 2-methyl-1, 5-diisocyanatocyclohexane, 4, 4′-dicyclohexylmethane diisocyanate, isophorone diisocyanate, and the like; and the like.
  • aromatic diisocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, m-xylylene diiso
  • polyisocyanate (b1) examples include isocyanate group-having prepolymers produced by addition reaction of the diisocyanate compounds described above with a polyhydric alcohol; isocyanurate ring-having compounds produced by cyclization trimerization of the diisocyanate compounds described above; urea bond or biuret bond-having polyisocyanate compounds produced by reaction of the diisocyanate compounds described above with water; homopolymers of isocyanate group-having acrylic monomers such as 2-isocyanatoethyl (meth) acrylate, 3-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, (meth) acryloyl isocyanate, and the like; isocyanate group-having copolymers produced by copolymerizing the isocyanate group-having acrylic monomers with another acrylic monomer, a vinyl ester compound, a vinyl ether compound, an aromatic vinyl monomer, fluoroolefin
  • the polyisocyanate (b1) can be used alone or in combination of two or more.
  • Examples of the carboxyl group-having polyol (b2) include 2, 2-dimethylolpropionic acid, 2, 2-dimethylolbutanoic acid, 2, 2-dimethylolvaleic acid, and the like. Among these, from the viewpoint of reaction with isocyanate, 2, 2-dimethylolpropionic acid and 2, 2-dimethylolbutanoic acid are preferred. Also, carboxyl group-having polyester polyols produced by the carboxyl group-having glycol with various polycarboxylic acids can be used.
  • the carboxyl group-having polyols (b2) can be used alone or in combination of two or more.
  • Examples of the hydroxyl group-having polyfunctional (meth) acrylate (b3) include trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, isocyanuric acid EO-modified diacrylate, and the like. From the viewpoint of satisfying both warm-water resistance of a coating film and water dispersibility, pentaerythritol tri (meth) acrylate is preferred.
  • the hydroxyl group-having polyfunctional (meth) acrylates (b3) can be used alone or in combination of two or more.
  • a polyol not having the carboxyl group and a monofunctional (meth) acrylate can also be used as raw materials for the urethane (meth) acrylate (B) .
  • Examples of a method for reacting the polyisocyanate (b1) , the carboxyl group-having polyol (b2) , and the hydroxyl group-having polyfunctional acrylate (b3) include a method of simultaneously reacting the polyisocyanate (b1) , the carboxyl group-having polyol (b2) , and the hydroxyl group-having polyfunctional acrylate (b3) , a method of reacting the polyisocyanate (b1) with the carboxyl group-having polyol (b2) , and then reacting the hydroxyl group-having polyfunctional acrylate (b3) , a method of reacting the polyisocyanate (b1) with the hydroxyl group-having polyfunctional acrylate (b3) , and then reacting the carboxyl group-having polyol (b2) , and the like.
  • urethane reaction can be performed without a catalyst but can be performed in the presence of a urethanization catalyst in order to promoting the proceeding of the reaction.
  • the urethanization catalyst include amine compounds such as pyridine, pyrrole, triethylamine, diethylamine, dibutylamine, and the like; phosphine compounds such as triphenylphosphine, triethylphosphine, and the like; organic tin compounds such as dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, dibutyltin diacetate, tin octylate, and the like; organic metal compounds such as zinc octylate and the like; and the like.
  • the isocyanate group content of the urethane (meth) acrylate (B) is preferably 1%to 5%by mass.
  • the weight-average molecular weight of the urethane (meth) acrylate (B) is preferably 1,000 to 10,000.
  • the reaction product (X) can be produced by urethane reaction of the hydroxyl group-having acrylic polymer (A) with the isocyanate group-having urethane (meth) acrylate (B) .
  • the mass ratio (A/B) of the acrylic polymer (A) to the urethane (meth) acrylate (B) is preferably within a range of 0.25 to 4.0 and more preferably within a range of 0.5 to 3.0 in view of improvement in dispersibility in water and improvement in storage stability of the resultant active energy ray-curable aqueous resin composition.
  • the molar ratio (A/B) of hydroxyl groups possessed by the acrylic polymer (A) to isocyanate groups possessed by the urethane (meth) acrylate is preferably within a range of 0.8 to 1.2 and more preferably within a range of 0.9 to 1.1 in view of improvement in dispersibility in water and improvement in storage stability of the resultant active energy ray-curable aqueous resin composition.
  • the acid value of the reaction product (X) is preferably 10 to 60 mgKOH/g.
  • the reaction product (X) is a reaction product of the acrylic polymer (A) and the urethane (meth) acrylate (B) , but in view of more improvement in adhesion, preferably the reaction product (X) is a reaction product containing polycarbonate diol (P) as an essential raw material.
  • the polycarbonate diol (P) is, for example, obtained by reaction of diol with a carbonate ester or phosgene.
  • diol 1, 3-propanediol, 1, 2-propanediol, 2-methyl-1, 3-propanediol, 2, 2-dimethyl-1, 3-propanediol, 2-butyl-2-ethyl-1, 3-propanediol, 1, 2-butanediol, 1, 3-butanediol, 1, 4-butanediol, 1, 5-pentanediol, 2, 4-pentanediol, 2-methyl-1, 3-pentanediol, 3-Methyl-1, 5-pentanediol, 1, 6-hexanediol, 1, 5-hexanediol, 2-ethyl-1, 3-hexanediol, and the like. In view of more improvement in adhesion, 1, 4-butanediol or 1, 5-pentanediol are preferred.
  • the number-average molecular weight of the polycarbonate diol (P) is preferably 500 to 3,000 and more preferably 500 to 2,000.
  • the amount of the polycarbonate diol (P) used is preferably 5%to 20%by mass and more preferably 5%to 10%by mass in the reaction product (X) .
  • Examples of the reaction methods of the acrylic polymer (A) , the urethane (meth) acrylate (B) , and the polycarbonate diol (P) include a method of simultaneously reacting the acrylic polymer (A) , the urethane (meth) acrylate (B) , and the polycarbonate diol (P) , a method of reacting the polyisocyanate (b1) with the polycarbonate diol (P) and then the carboxyl group-having polyol (b2) and the hydroxyl group-having polyfunctional acrylate (b3) , a method of reacting the polyisocyanate (b1) with the hydroxyl group-having polyfunctional acrylate (b3) and the polycarbonate diol (P) , and then reacting the carboxyl group-having polyol (b2) , and the like.
  • the active energy ray-curable aqueous resin composition of the present invention contains the reaction product (X) produced by reacting the acrylic polymer (A) with the urethane (meth) acrylate (B) , but in view of more improvement in chemical resistance, the composition preferably contains a polyfunctional (meth) acrylate (C) in addition to the reaction product (X) .
  • Examples of the polyfunctional (meth) acrylate (C) include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1, 3-dutanediol di (meth) acrylate, 1, 4-butanediol di (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, hydroxypivalic acid ester neopentyl glycol di (meth) acrylate, bisphenol A-di (meth) acrylate, bisphenol A-EO-modified di (meth)
  • the polyfunctional (meth) acrylates (C) can be used alone or in combination of two or more.
  • aqueous medium (Y) examples include water, a hydrophilic organic solvent, and a mixture thereof.
  • the hydrophilic organic solvent is preferably a water-miscible organic solvent miscible with water without being separated from water, and particularly preferably an organic solvent having a water solubility (the number of grams of an organic solvent dissolved in 100 g of water) at 25°C of 3 g or more.
  • water-miscible organic solvent examples include alcohol solvents such as methanol, ethanol, propanol, butanol, 3-methoxybutanol, 3-methyl-3-methoxybutanol, and the like; ketone solvents such as acetone, methyl ether ketone, and the like; glycol ether solvents such as ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, ethylene glycolmonopropyl ether, ethylene glycol monoisopropyl ether, monobutyl ether, diethylene glycolmonomethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, propylene glycol monomethyl ether
  • the active energy ray-curable aqueous resin composition of the present invention contains the reaction product (X) and the aqueous medium (Y) , and the reaction product (X) is preferably dissolved or dispersed in the aqueous medium (Y) and is more preferably a dispersion.
  • a method for dissolving or dispersing the reaction product (X) in the aqueous medium (Y) is preferably a method of neutralizing the acid group possessed by the reaction product (X) with a basic compound and then mixing with the aqueous medium (Y) .
  • Examples of the basic compound include organic amines such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, butylamine, dibutylamine, tributylamine, monoalkanol amine such as N, N-dimethylethanol amine, 2-aminoethanol, and the like, diethanolamine, diisopropanolamine, dibutanolamine, and the like; inorganic basic compounds such as ammonia, sodium hydroxide, potassium hydroxide, and the like; quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetra-n-butylammonium hydroxide, trimethylbenzylammonium hydroxide, and the like; and the like.
  • organic amine and ammonia may be ammonia water
  • These basic compounds can be used alone or in combination of two or more.
  • the amount of the basic compound used is preferably such an amount that the neutralization ratio of carboxyl groups in the reaction product (X) is within a range of 50%to 100%.
  • An active energy ray-curable aqueous coating material of the present invention contains the active energy ray-curable aqueous resin composition of the present invention, and other usable compounds include additives such as an antistatic agent, an anti-foaming agent, a viscosity adjuster, a light-resistant stabilizer, a weather-resistant stabilizer, a heat-resistant stabilizer, an ultraviolet absorber, an antioxidant, a leveling agent, a pigment dispersant, and the like.
  • additives such as an antistatic agent, an anti-foaming agent, a viscosity adjuster, a light-resistant stabilizer, a weather-resistant stabilizer, a heat-resistant stabilizer, an ultraviolet absorber, an antioxidant, a leveling agent, a pigment dispersant, and the like.
  • a cured coating film can be formed by applying the active energy ray-curable aqueous coating material of the present invention to a substrate and then irradiating the coating material with active energy rays.
  • active energy rays represents ultraviolet light or ionizing radiation such as electron beams, ⁇ -rays, ⁇ -rays, y-rays, or the like.
  • curability is preferably improved by adding a photopolymerization initiator (D) to the active energy ray-curable aqueous coating material of the present invention. If required, curability can also be improved by further adding a photosensitizer.
  • Examples of the photopolymerization initiator (D) include an intramolecular cleavage-type photopolymerization initiator and a hydrogen abstraction-type photopolymerization initiator.
  • Examples of the intramolecular cleavage-type photopolymerization initiator include acetophenone-based compounds such as diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyl dimethylketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenyl ketone, 2-methyl-2-morpholino (4-tiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, and the like; benzolins such as benzoin, benzoin methyl ether,
  • examples of the hydrogen abstraction-type photopolymerization initiator include benzophenone-based compounds such as benzophenone, methyl-4-phenylbenzophenone o-benzoylbenzoate, 4, 4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide, acrylated benzophenone, 3, 3′, 4, 4′-tetra (tert-butylperoxycarbonyl) benzophenone, 3, 3′-dimethyl-4-methoxybenzophenone, and the like; thioxanthone-based compounds such as 2-isopropyl thioxanthone, 2, 4-dimethyl thioxanthone, 2, 4-diethyl thioxanthone, 2, 4-dichlorothioxanthone, and the like; aminobenzophenone-based compounds such as Michler ketone, 4, 4′-diethyl aminobenzophenone, and
  • the photosensitizer examples include amines such as aliphatic amines, aromatic amines, and the like; ureas such as o-tolylthiourea and the like; sulfur compounds such as sodium diethyl dithiophosphate, s-benzylisothiouronium-p-toluene sulfonate, and the like.
  • the amount of each of the photopolymerization initiator and photosensitizer used is preferably 0.05 to 20 parts by mass and more preferably 0.5 to 10 parts by mass relative to 100 parts by mass of the nonvolatile components in the active energy ray-curable aqueous coating material of the present invention.
  • the active energy ray-curable aqueous coating material can be used as a coating material for coating various articles.
  • articles which can be coated with the active energy ray-curable aqueous coating material of the present invention include bodies of home electric appliances such as a refrigerator, a television, an air conditioner, and the like; casings of information terminals of a cellular phone, a smartphone, a personal computer, and the like; containers of automobile interior member cosmetics, packaging materials with high designability; and the like.
  • a coating method for the active energy ray-curable aqueous coating material of the present invention depends on applications, and examples thereof include methods of a gravure coater, a roll coater, a comma coater, a knife coater, an air knife coater, a curtain coater, a kiss coater, a shower coater, a wheeler coater, a spin coater, dipping, screen printing, a spray, an applicator, a bar coater, and the like.
  • examples of the active energy ray for curing the active energy ray-curable aqueous coating material of the present invention include ultraviolet light and ionizing radiation such as electron beams, ⁇ -rays, ⁇ -rays, y-rays, and the like.
  • an energy source or curing device include a sterilizing lamp, a fluorescent lamp for ultraviolet light, a carbon arc, a xenon lamp, a high-pressure mercury lamp for copying, a medium-pressure or high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, an electrodeless lamp, a metal halide lamp, ultraviolet light from a light source such as natural light or the like, an electron beam from a scanning-type or curtain-type electron beam accelerator, and the like.
  • Measurement apparatus high-speed GPC apparatus
  • RI differential refractometer
  • Injection amount 100 ⁇ L (tetrahydrofuran solution at a sample concentration of 4 mg/mL)
  • Standard sample A calibration curve was formed by using the following monodisperse polystyrene.
  • Acrylic polymers (A-2) and (A-3) were produced by the same method as in Synthesis Example 1 except that 2-hydrocyethyl methacrylate used in Synthesis Example 1 was changed as shown in Table 1.
  • Table 1 shows the compositions of the acrylic polymers produced in Synthesis Examples 1 to 3.
  • HEMA hydroxyethyl methacrylate
  • FM3 3-mole caprolactone adduct of hydroxyethyl methacrylate (manufactured by Daicel Corporation)
  • AM-130G methoxypolyethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd. )
  • urethane (meth) acrylate (B-2) having a carboxyl group and two or more (meth) acryloyl groups.
  • Urethane (meth) acrylate (RB-1) was produced by the same method as in Synthesis Example 4 except that 485.5 parts by mass of pentaerythritol triacrylate used in Synthesis Example 4 was changed to 119.1 parts by mass of 2-hydroxyethyl acrylate.
  • Active energy ray-curable aqueous resin compositions (2) and (3) were produced by the same method as in Example 1 except that the acrylic polymer (A-1) used in Example 1 was changed to the acrylic polymer (A-2) or (A-3) .
  • Active energy ray-curable aqueous resin compositions (5) and (6) were produced by the same method as in Example 2 except that the urethane (meth) acrylate (B-1) used in Example 2 was changed to the urethane (meth) acrylate (B-2) or (B-3) .
  • An active energy ray-curable aqueous resin composition (R1) was produced by the same method as in Example 1 except that the urethane (meth) acrylate (B-1) used in Example 1 was changed to the urethane (meth) acrylate (RB-1) .
  • An active energy ray-curable aqueous resin composition (R2) was produced by the same method as in Example 1 except that the urethane (meth) acrylate (B-1) used in Example 1 was changed to the urethane (meth) acrylate (RB-1) , and the ethylene oxide adduct of trimethylolpropane triacrylate was not used.
  • the active energy ray-curable aqueous resin composition produced as described above was mixed with a photopolymerization initiator ( "Irgacure 500" manufactured by BASF Japan Ltd., eutecticmixture of 1-hydroxycyclohexylphenyl ketone and benzophenone at a molar ratio of 1 ⁇ 1) at 5%by mass per solid content of the active energy ray-curable aqueous resin composition, thereby preparing an intended active energy ray-curable aqueous coating material.
  • a photopolymerization initiator "Irgacure 500" manufactured by BASF Japan Ltd., eutecticmixture of 1-hydroxycyclohexylphenyl ketone and benzophenone at a molar ratio of 1 ⁇ 1
  • the coating film on the ABS plate or PC plate was cut with a cutter to make 10 ⁇ 10 1-mm square cuts, and a peeling test with a cellophane tape was performed to evaluate coating film adhesion based on the number of remaining squares according to the following criteria.
  • the cured coating film on the ABS plate was immersed together with the ABS plate as a substrate in warm water of 80°C for 2 hours, then taken out, and dried at 25°C for 2 hours. Then, the same peeling test with a cellophane tape as described above was performed to evaluate coating film adhesion after immersion in warm water based on the number of remaining squares according to the following criteria.
  • the cured coating film on the ABS plate was immersed together with the ABS plate as a substrate in an aqueous NaOH solution of 60°C with pH 9 for 1 hour, then taken out, and dried at 25°C for 1 hour. Then, the same peeling test with a cellophane tape as described above was performed to evaluate chemical resistance based on the number of remaining squares according to the following criteria.
  • Table 2 shows the evaluation results of Examples 1 to 4.
  • Table 3 shows the evaluation results of Examples 5 to 7 and Comparative Examples 1 and 2.
  • EOTEMPA ethylene oxide adduct (about 1-mole ethylene oxide adduct per acrylate) of trimethylolpropane triacrylate
  • the coating film formed from the active energy ray-curable aqueous resin composition of the present invention has excellent coating film adhesion, warm-water resistance, and chemical resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Paints Or Removers (AREA)

Abstract

An active energy ray-curable aqueous resin composition includes a reaction product (X) of a hydroxyl group-having acrylic polymer (A) and an isocyanate group-having urethane (meth) acrylate (B), and an aqueous medium (Y), the urethane (meth) acrylate (B) having a carboxyl group and two or more (meth) acryloyl groups. The active energy ray-curable aqueous resin composition is useful for an active energy ray-curable aqueous coating film which can form a cured coating film having excellent adhesion, warm-water resistance, and chemical resistance, and the coating material can be coated on various articles.

Description

ACTIVE ENERGY RAY-CURABLE AQUEOUS RESIN COMPOSITION, ACTIVE ENERGY RAY-CURABLE AQUEOUS COATING MATERIAL, AND ARTICLE COATED WITH THE COATING MATERIAL [Technical Field]
The present invention relates to an active energy ray-curable aqueous resin composition, an active energy ray-curable aqueous coating material, and an article coated with the coating material.
[Background Art]
An active energy ray-curable composition is used as a hard coating agent for plastic substrates of home electric appliances, cellular phones, and the like in view of the characteristics of little heat history to coating substrates and excellent hardness and scratch properties of coating films. An example of the active energy ray-curable composition is an active energy ray-curable composition (solvent-type active energy ray-curable composition) containing a polymer having a polymerizable unsaturated double bond, such as acryl acrylate or the like, a polymer not having an unsaturated double bond, such as a polymerizable acrylic resin or the like, a polymerizable monomer, and an organic solvent serving as a diluent. For example, when the active energy ray-curable composition is used as a coating material for spray coating, the coating material is required to contain as large as 50 to 90%by mass of the organic solvent. Therefore, when a cured coating film is formed on a substrate surface such as a plastic or the like by using an active energy ray-curable coating material containing the resin composition, there is a problem  of worsening the working environment due to the volatilization of the organic solvent in the coating material. The volatilized organic solvent also causes atmospheric pollution.
Under the circumstances, a production method is proposed, which includes neutralizing a specific polyurethane acrylate-modified polyacrylate resin by adding an alkali solution, producing an anionic ultraviolet-curable resin (for example, refer to PTL 1) . However, a cured coating film of the resin produced by the production method has unsatisfactory adhesion, warm-water resistance, and chemical resistance.
Therefore, there is required an active energy ray-curable aqueous resin composition which can produce a cured coating film having excellent adhesion, warm-water resistance, and chemical resistance.
[Citation List]
[Patent Literature]
[PTL 1]
Chinese Patent Application Publication No. CN109942772A
[Summary of Invention]
[Technical Problem]
An object to be solved by the present invention is to provide an active energy ray-curable aqueous resin composition which can produce a cured coating film having excellent adhesion, warm-water resistance, and chemical resistance, an active energy ray-curable aqueous coating material containing the composition, and an article coated with the coating material.
[Solution to Problem]
As a result of repeated earnest investigations for solving the problem, the inventors of the present invention found that the problem is solved by an active energy ray-curable aqueous resin  composition containing a reaction product of a hydroxyl group-having acrylic polymer and a specific isocyanate group-having urethane acrylate, and an aqueous medium, leading to completion of the present invention.
That is, the present invention relates to an active energy ray-curable aqueous resin composition containing a reaction product (X) of a hydroxyl group-having acrylic polymer (A) and an isocyanate group-having urethane (meth) acrylate (B) , and an aqueous medium (Y) , the urethane (meth) acrylate (B) having a carboxyl group and two or more (meth) acryloyl groups, and also relates to an active energy ray-curable aqueous coating material containing the composition and an article coated with the coating material.
[Advantageous Effects of Invention]
An active energy ray-curable aqueous resin composition of the present invention is useful for an active energy ray-curable aqueous coating material which can form a cured coating film having excellent adhesion, warm-water resistance, and chemical resistance, and various articles can be coated with the coating material. Therefore, the active energy ray-curable aqueous resin composition of the present invention can be preferably used for a coating material for coating articles such as bodies of home electric appliances such as a refrigerator, a television, an air conditioner, and the like, casings of information terminals such as a cellular phone, a smartphone, a personal computer, and the like, containers of automotive interior member cosmetics, packaging materials with high designability, and the like.
[Description of Embodiments]
An active energy ray-curable aqueous resin composition of the present invention contains a reaction product (X) of a hydroxyl group-having acrylic polymer (A) and an isocyanate group-having  urethane (meth) acrylate (B) , and an aqueous medium, the urethane (meth) acrylate (B) having a carboxyl group and two or more (meth) acryloyl groups.
First, the acrylic polymer (A) is described. The acrylic polymer (A) is produced by copolymerizing a hydroxyl group-having acrylic monomer (a1) with an unsaturated monomer (a2) other than the acrylic monomer (a1) .
The acrylic monomer (a1) is a compound having a hydroxyl group and a (meth) acryloyl group. Examples of the acrylic monomer (a1) include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxy-n-butyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-n-butyl (meth) acrylate, 3-hydroxy-n-butyl (meth) acrylate, 1, 4-cyclohexanedimethanol mono (meth) acrylate, N- (2-hydroxyethyl) (meth) acrylamide, glycerin mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, a lactone-modified (meth) acrylate having a hydroxyl group at a terminal, and the like. These acrylic monomers (a1) can be used alone or in combination of two or more.
Examples of the unsaturated monomer (a2) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate, cyclohexyl (meth) acrylate, 4-tert-butylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, benzyl  (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, ethoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, (meth) acrylic acid, (meth) acrylamide, N, N-dimethyl (meth) acrylamide, (meth) acrylonitrile, 3- (meth) acryloylpropyl trimethoxysilane, N, N-dimethylaminoethyl (meth) acrylate, glycidyl (meth) acrylate, aromatic vinyl monomers such as styrene, α-methylstyrene, p-methylstyrene, p-methoxystyrene, and the like. These unsaturated monomers (a2) can be used alone or in combination of two or more.
From the viewpoint of reaction points with urethane acrylate, the amount of the acrylic monomer (a1) used is preferably 5%to 70%by mass and more preferably 10%to 50%by mass in the monomer components used as raw materials of the acrylic polymer (A) . The amount of the unsaturated monomer (a2) used is the residue obtained by subtracting the ratio of the acrylic monomer (a1) used from a total of 100%by mass of the monomer components used as raw materials of the acrylic polymer (A) .
A method for producing the acrylic polymer (A) is, for example, a method of copolymerizing the acrylic monomer (a1) with the unsaturated monomer (a2) using a polymerization initiator in an organic solvent. The organic solved used is preferably an alcohol compound, a ketone compound, an ester compound, an ether compound, an amide compound, a sulfoxide compound, or a hydrocarbon compound. Examples thereof include methanol, ethanol, propanol, n-butanol, iso-butanol, tert-butanol, 3-methoxybutanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, diisopropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycolmonomethyl ether, propylene glycolmonopropyl  ether, propylene glycol monobutyl ether, propylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, dimethyl formamide, dimethyl acetamide, N-methyl pyrrolidone, dimethyl sulfoxide, tetrahydrofuran, dioxane, toluene, xylene, and the like. Among these, from the viewpoint of improving storage stability of the resultant active energy ray-curable aqueous resin composition, dialkylene glycol dialkyl ethers such as ethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol dimethyl ether, and the like are more preferred.
Examples of the polymerization initiator include organic peroxides: ketone peroxide compounds such as cyclohexanone peroxide, 3, 3, 5-trimethylcyclohexanone peroxide, methylcyclohexanone peroxide, and the like; peroxyketal compounds such as 1, 1-bis (tert-butylperoxy) -3, 3, 5-trimethylcyclohexane, 1, 1-bis (tert-butylperoxy) cyclohexane, n-butyl-4, 4-bis (tert-butylperoxy) valerate, 2, 2-bis (4, 4-di-tert-butylperoxycyclohexyl) propane, 2, 2-bis (4, 4-di-tert-amylperoxycyclohexyl) propane, 2, 2-bis (4, 4-di-tert-hexylperoxycyclohexyl) propane, 2, 2-bis (4, 4-di-tert-octylperoxycyclohexyl) propane,2, 2-bis (4, 4-dicumylperoxycyclohexyl) propane, and the like; hydroperoxides such as cumene hydroperoxide, 2, 5-dimethylhexane-2, 5-dihydroperoxide, and the like; dialkyl peroxide compounds such as 1, 3-bis (tert-butylperoxy-m-isopropyl) benzene, 2, 5-dimethyl-2, 5-di (tert-butylperoxy) hexane, diisopropylbenzene peroxide, tert-butylcumyl peroxide, and the like; diacyl peroxide compounds such as decanoyl peroxide, lauroyl peroxide, benzoyl peroxide, 2, 4-dichlorobenzoyl peroxide, and the like; peroxycarbonate compounds such as bis (tert-butylcyclohexyl) peroxycarbonate and the like; and peroxyester compounds such as tert-butylperoxy-2-ethyl  hexanoate, tert-butyl peroxybenzoate, 2, 5-dimethyl-2, 5-di (benzoylperoxy) hexane, and the like; and azo compounds such as 2, 2′-azobisisobutyronitrile, 1, 1′-azobis (cyclohexane-1-carbonitrile) and the like.
In addition, when the acrylic polymer (A) is produced, if required, a chain transfer agent, such as lauryl mercaptan, 2-mercaptoethanol, thioglycerol, ethylthioglycolic acid, octylthioglycolic acid, or the like, may be used.
In view of improvement in water dispersibility and water resistance of a coating film, the hydroxyl value of the acrylic polymer (A) is preferably 20 to 300 mgKOH/g and more preferably 40 to 200 mgKOH/g.
In view of improvement in dispersibility in water and improvement in storage stability of the resultant active energy ray-curable aqueous resin composition, the weight-average molecular weight (Mw) of the acrylic polymer (A) is preferably within a range of 2,000 to 50,000, more preferably within a range of 3,000 to 30,000, and still more preferably within a range of 3,000 to 20,000. The weight-average molecular weight (Mw) is the value in terms of polystyrene based on gel permeation chromatography (abbreviated as "GPC" hereinafter) measurement.
The isocyanate group-having urethane (meth) acrylate (B) has an isocyanate group, a carboxyl group, and two or more (meth) acryloyl groups.
The urethane (meth) acrylate (B) can be produced by, for example, urethane reaction of a polyisocyanate (b1) , a carboxyl group-having polyol (b2) , and a hydroxyl group-having polyfunctional acrylate (b3) , which are used as essential raw materials.
Examples of the polyisocyanate (b1) include aromatic diisocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, m-xylylene diisocyanate, m-phenylenebis (dimethylmethylene) diisocyanate, and the like; aliphatic or alicyclic diisocyanate compounds such as hexamethylene diisocyanate, lysine diisocyanate, 1, 3-bis (isocyanatomethyl) cyclohexane, 2-methyl-1, 3-diisocyanatocyclohexane, 2-methyl-1, 5-diisocyanatocyclohexane, 4, 4′-dicyclohexylmethane diisocyanate, isophorone diisocyanate, and the like; and the like. Among these, because of excellent yellowing resistance, the aliphatic or alicyclic diisocyanate compounds are preferred.
Other usable examples of the polyisocyanate (b1) include isocyanate group-having prepolymers produced by addition reaction of the diisocyanate compounds described above with a polyhydric alcohol; isocyanurate ring-having compounds produced by cyclization trimerization of the diisocyanate compounds described above; urea bond or biuret bond-having polyisocyanate compounds produced by reaction of the diisocyanate compounds described above with water; homopolymers of isocyanate group-having acrylic monomers such as 2-isocyanatoethyl (meth) acrylate, 3-isopropenyl-α, α-dimethylbenzyl isocyanate, (meth) acryloyl isocyanate, and the like; isocyanate group-having copolymers produced by copolymerizing the isocyanate group-having acrylic monomers with another acrylic monomer, a vinyl ester compound, a vinyl ether compound, an aromatic vinyl monomer, fluoroolefin, or the like; and the like.
The polyisocyanate (b1) can be used alone or in combination of two or more.
Examples of the carboxyl group-having polyol (b2) include 2, 2-dimethylolpropionic acid, 2, 2-dimethylolbutanoic acid,  2, 2-dimethylolvaleic acid, and the like. Among these, from the viewpoint of reaction with isocyanate, 2, 2-dimethylolpropionic acid and 2, 2-dimethylolbutanoic acid are preferred. Also, carboxyl group-having polyester polyols produced by the carboxyl group-having glycol with various polycarboxylic acids can be used.
The carboxyl group-having polyols (b2) can be used alone or in combination of two or more.
Examples of the hydroxyl group-having polyfunctional (meth) acrylate (b3) include trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, isocyanuric acid EO-modified diacrylate, and the like. From the viewpoint of satisfying both warm-water resistance of a coating film and water dispersibility, pentaerythritol tri (meth) acrylate is preferred.
The hydroxyl group-having polyfunctional (meth) acrylates (b3) can be used alone or in combination of two or more.
If required, a polyol not having the carboxyl group and a monofunctional (meth) acrylate can also be used as raw materials for the urethane (meth) acrylate (B) .
Examples of a method for reacting the polyisocyanate (b1) , the carboxyl group-having polyol (b2) , and the hydroxyl group-having polyfunctional acrylate (b3) include a method of simultaneously reacting the polyisocyanate (b1) , the carboxyl group-having polyol (b2) , and the hydroxyl group-having polyfunctional acrylate (b3) , a method of reacting the polyisocyanate (b1) with the carboxyl group-having polyol (b2) , and then reacting the hydroxyl group-having polyfunctional acrylate (b3) , a method of reacting the polyisocyanate (b1) with the hydroxyl group-having polyfunctional acrylate (b3) , and  then reacting the carboxyl group-having polyol (b2) , and the like.
In the present invention, urethane reaction can be performed without a catalyst but can be performed in the presence of a urethanization catalyst in order to promoting the proceeding of the reaction. Examples of the urethanization catalyst include amine compounds such as pyridine, pyrrole, triethylamine, diethylamine, dibutylamine, and the like; phosphine compounds such as triphenylphosphine, triethylphosphine, and the like; organic tin compounds such as dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, dibutyltin diacetate, tin octylate, and the like; organic metal compounds such as zinc octylate and the like; and the like.
From the viewpoint of warm-water resistance of the resultant coating film, the isocyanate group content of the urethane (meth) acrylate (B) is preferably 1%to 5%by mass.
The weight-average molecular weight of the urethane (meth) acrylate (B) is preferably 1,000 to 10,000.
The reaction product (X) can be produced by urethane reaction of the hydroxyl group-having acrylic polymer (A) with the isocyanate group-having urethane (meth) acrylate (B) .
The mass ratio (A/B) of the acrylic polymer (A) to the urethane (meth) acrylate (B) is preferably within a range of 0.25 to 4.0 and more preferably within a range of 0.5 to 3.0 in view of improvement in dispersibility in water and improvement in storage stability of the resultant active energy ray-curable aqueous resin composition.
The molar ratio (A/B) of hydroxyl groups possessed by the acrylic polymer (A) to isocyanate groups possessed by the urethane (meth) acrylate is preferably within a range of 0.8 to  1.2 and more preferably within a range of 0.9 to 1.1 in view of improvement in dispersibility in water and improvement in storage stability of the resultant active energy ray-curable aqueous resin composition.
In view of more improvement in water dispersibility, the acid value of the reaction product (X) is preferably 10 to 60 mgKOH/g.
The reaction product (X) is a reaction product of the acrylic polymer (A) and the urethane (meth) acrylate (B) , but in view of more improvement in adhesion, preferably the reaction product (X) is a reaction product containing polycarbonate diol (P) as an essential raw material.
The polycarbonate diol (P) is, for example, obtained by reaction of diol with a carbonate ester or phosgene.
Examples of the diol, 1, 3-propanediol, 1, 2-propanediol, 2-methyl-1, 3-propanediol, 2, 2-dimethyl-1, 3-propanediol, 2-butyl-2-ethyl-1, 3-propanediol, 1, 2-butanediol, 1, 3-butanediol, 1, 4-butanediol, 1, 5-pentanediol, 2, 4-pentanediol, 2-methyl-1, 3-pentanediol, 3-Methyl-1, 5-pentanediol, 1, 6-hexanediol, 1, 5-hexanediol, 2-ethyl-1, 3-hexanediol, and the like. In view of more improvement in adhesion, 1, 4-butanediol or 1, 5-pentanediol are preferred.
In view of more improvement in water dispersibility, the number-average molecular weight of the polycarbonate diol (P) is preferably 500 to 3,000 and more preferably 500 to 2,000.
In view of more improvement in adhesion, the amount of the polycarbonate diol (P) used is preferably 5%to 20%by mass and more preferably 5%to 10%by mass in the reaction product (X) .
Examples of the reaction methods of the acrylic polymer (A) ,  the urethane (meth) acrylate (B) , and the polycarbonate diol (P) include a method of simultaneously reacting the acrylic polymer (A) , the urethane (meth) acrylate (B) , and the polycarbonate diol (P) , a method of reacting the polyisocyanate (b1) with the polycarbonate diol (P) and then the carboxyl group-having polyol (b2) and the hydroxyl group-having polyfunctional acrylate (b3) , a method of reacting the polyisocyanate (b1) with the hydroxyl group-having polyfunctional acrylate (b3) and the polycarbonate diol (P) , and then reacting the carboxyl group-having polyol (b2) , and the like.
The active energy ray-curable aqueous resin composition of the present invention contains the reaction product (X) produced by reacting the acrylic polymer (A) with the urethane (meth) acrylate (B) , but in view of more improvement in chemical resistance, the composition preferably contains a polyfunctional (meth) acrylate (C) in addition to the reaction product (X) . Examples of the polyfunctional (meth) acrylate (C) include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1, 3-dutanediol di (meth) acrylate, 1, 4-butanediol di (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, hydroxypivalic acid ester neopentyl glycol di (meth) acrylate, bisphenol A-di (meth) acrylate, bisphenol A-EO-modified di (meth) acrylate, isocyanuric acid EO-modified diacrylate, isocyanuric acid EO-modified triacrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-modified tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol hexa (meth) acrylate, and the like. From the viewpoint of water dispersibility of a resin and warm-water resistance of a coating film, trimethylolpropane EO-modified tri (meth) acrylate is  preferred.
The polyfunctional (meth) acrylates (C) can be used alone or in combination of two or more.
Examples of the aqueous medium (Y) include water, a hydrophilic organic solvent, and a mixture thereof. The hydrophilic organic solvent is preferably a water-miscible organic solvent miscible with water without being separated from water, and particularly preferably an organic solvent having a water solubility (the number of grams of an organic solvent dissolved in 100 g of water) at 25℃ of 3 g or more. Examples of the water-miscible organic solvent include alcohol solvents such as methanol, ethanol, propanol, butanol, 3-methoxybutanol, 3-methyl-3-methoxybutanol, and the like; ketone solvents such as acetone, methyl ether ketone, and the like; glycol ether solvents such as ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, ethylene glycolmonopropyl ether, ethylene glycol monoisopropyl ether, monobutyl ether, diethylene glycolmonomethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycolmonomethyl ether, dipropylene glycol dimethyl ether, and the like; and the like. These water-miscible organic solvents may be used alone or in combination of two or more.
The active energy ray-curable aqueous resin composition of the present invention contains the reaction product (X) and the aqueous medium (Y) , and the reaction product (X) is preferably dissolved or dispersed in the aqueous medium (Y) and is more  preferably a dispersion.
A method for dissolving or dispersing the reaction product (X) in the aqueous medium (Y) is preferably a method of neutralizing the acid group possessed by the reaction product (X) with a basic compound and then mixing with the aqueous medium (Y) .
Examples of the basic compound include organic amines such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, butylamine, dibutylamine, tributylamine, monoalkanol amine such as N, N-dimethylethanol amine, 2-aminoethanol, and the like, diethanolamine, diisopropanolamine, dibutanolamine, and the like; inorganic basic compounds such as ammonia, sodium hydroxide, potassium hydroxide, and the like; quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetra-n-butylammonium hydroxide, trimethylbenzylammonium hydroxide, and the like; and the like. Among these, an organic amine and ammonia (may be ammonia water) are preferably used. These basic compounds can be used alone or in combination of two or more.
In view of improving the storage stability of the active energy ray-curable aqueous resin composition, the amount of the basic compound used is preferably such an amount that the neutralization ratio of carboxyl groups in the reaction product (X) is within a range of 50%to 100%.
An active energy ray-curable aqueous coating material of the present invention contains the active energy ray-curable aqueous resin composition of the present invention, and other usable compounds include additives such as an antistatic agent, an anti-foaming agent, a viscosity adjuster, a light-resistant stabilizer, a weather-resistant stabilizer, a heat-resistant stabilizer, an ultraviolet absorber, an antioxidant, a leveling agent, a pigment dispersant, and the like.
Also, a cured coating film can be formed by applying the active energy ray-curable aqueous coating material of the present invention to a substrate and then irradiating the coating material with active energy rays. The term "active energy rays" represents ultraviolet light or ionizing radiation such as electron beams, α-rays, β-rays, y-rays, or the like. When a cured coating film is formed by irradiation with ultraviolet light as the active energy rays, curability is preferably improved by adding a photopolymerization initiator (D) to the active energy ray-curable aqueous coating material of the present invention. If required, curability can also be improved by further adding a photosensitizer. While when ionizing radiation such as electron beams, α-rays, β-rays, y-rays, or the like is used, curing rapidly proceeds without using the photopolymerization initiator and the photosensitizer, and thus the photopolymerization initiator (D) and the photosensitizer particularly need not be added.
Examples of the photopolymerization initiator (D) include an intramolecular cleavage-type photopolymerization initiator and a hydrogen abstraction-type photopolymerization initiator. Examples of the intramolecular cleavage-type photopolymerization initiator include acetophenone-based compounds such as diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyl dimethylketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenyl ketone, 2-methyl-2-morpholino (4-tiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, and the like; benzolins such as benzoin, benzoin methyl ether, benzoin isopropyl ether, and the like; acylphosphine oxide-based compounds such as 2, 4, 6-trimethylbenzoin diphenylphosphine oxide, bis (2, 4, 6-trimethylbenzoyl) -phenyl phosphine oxide, and the like; benzyl; methylphenyl  glyoxyester; and the like.
On the other hand, examples of the hydrogen abstraction-type photopolymerization initiator include benzophenone-based compounds such as benzophenone, methyl-4-phenylbenzophenone o-benzoylbenzoate, 4, 4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide, acrylated benzophenone, 3, 3′, 4, 4′-tetra (tert-butylperoxycarbonyl) benzophenone, 3, 3′-dimethyl-4-methoxybenzophenone, and the like; thioxanthone-based compounds such as 2-isopropyl thioxanthone, 2, 4-dimethyl thioxanthone, 2, 4-diethyl thioxanthone, 2, 4-dichlorothioxanthone, and the like; aminobenzophenone-based compounds such as Michler ketone, 4, 4′-diethyl aminobenzophenone, and the like; 10-butyl-2-chloroacridone, 2-ethyl anthraquinone, 9, 10-phenanthrenequinone, camphorquinone; and the like. These photopolymerization initiators (D) can be used alone or in combination of two or more.
Examples of the photosensitizer include amines such as aliphatic amines, aromatic amines, and the like; ureas such as o-tolylthiourea and the like; sulfur compounds such as sodium diethyl dithiophosphate, s-benzylisothiouronium-p-toluene sulfonate, and the like.
The amount of each of the photopolymerization initiator and photosensitizer used is preferably 0.05 to 20 parts by mass and more preferably 0.5 to 10 parts by mass relative to 100 parts by mass of the nonvolatile components in the active energy ray-curable aqueous coating material of the present invention.
In addition, the active energy ray-curable aqueous coating material can be used as a coating material for coating various articles. Examples of articles which can be coated with the active energy ray-curable aqueous coating material of the  present invention include bodies of home electric appliances such as a refrigerator, a television, an air conditioner, and the like; casings of information terminals of a cellular phone, a smartphone, a personal computer, and the like; containers of automobile interior member cosmetics, packaging materials with high designability; and the like.
A coating method for the active energy ray-curable aqueous coating material of the present invention depends on applications, and examples thereof include methods of a gravure coater, a roll coater, a comma coater, a knife coater, an air knife coater, a curtain coater, a kiss coater, a shower coater, a wheeler coater, a spin coater, dipping, screen printing, a spray, an applicator, a bar coater, and the like.
As described above, examples of the active energy ray for curing the active energy ray-curable aqueous coating material of the present invention include ultraviolet light and ionizing radiation such as electron beams, α-rays, β-rays, y-rays, and the like. Specific examples of an energy source or curing device include a sterilizing lamp, a fluorescent lamp for ultraviolet light, a carbon arc, a xenon lamp, a high-pressure mercury lamp for copying, a medium-pressure or high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, an electrodeless lamp, a metal halide lamp, ultraviolet light from a light source such as natural light or the like, an electron beam from a scanning-type or curtain-type electron beam accelerator, and the like.
[EXAMPLES]
The present invention is described in further detail below by giving examples. In addition, the weight-average molecular weight (Mw) of a polymer was measured under the following GPC measurement conditions.
[GPC measurement condition]
Measurement apparatus: high-speed GPC apparatus
( "HLC-8220GPC" manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series and used.
"TSKgel G5000" (7.8 mm I.D. x 30 cm) × 1
"TSKgel G4000" (7.8 mm I.D. x 30 cm) x 1
"TSKgel G3000" (7.8 mm I.D. x 30 cm) x 1
"TSKgel G2000" (7.8 mm I.D. x 30 cm) x 1
Detector: RI (differential refractometer)
Column Temperature: 40℃
Eluent: tetrahydrofuran (THF)
Flow rate: 1.0 mL/min
Injection amount: 100 μL (tetrahydrofuran solution at a sample concentration of 4 mg/mL)
Standard sample: A calibration curve was formed by using the following monodisperse polystyrene.
[Monodisperse polystyrene]
"TSKgel standard polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-20" manufactured by Tosoh  Corporation
"TSKgel standard polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-550" manufactured by Tosoh Corporation
(SYNTHESIS EXAMPLE 1: Synthesis of acrylic polymer (A-1) ) In a reactor provided with a stirrer, a thermometer, an inert gas inlet tube, a dropping funnel, and a reflux tube, 291 parts by mass of diethylene glycol dimethyl ether as an initial solvent was charged and heated to 130℃. Then, there were dropped over 3 hours, a monomer mixture composed of 355.2 parts by mass of methyl methacrylate, 231.6 parts by mass of n-butyl methacrylate, 42.2 parts by mass of styrene, 90.0 parts by mass of 2-hydroxyethyl methacrylate, and 8.4 parts by mass of methoxypolyethylene glycol acrylate ( "AM-130G" manufactured by Shin-Nakamura Chemical Co., Ltd. ) , and a initiator solution composed of 33.7 parts by mass of tert-butylperhydroxy 2-ethyl hexanoate and 33.7 parts by mass of diethylene glycol dimethyl ether. The resultant mixture was held for 3 hours and then the temperature was decreased, producing a solution of acrylic polymer (A-1) with a nonvolatile content of 70.1%by mass.
(SYNTHESIS EXAMPLES 2 and 3: Synthesis of acrylic polymers (A-2) and (A-3) )
Acrylic polymers (A-2) and (A-3) were produced by the same method as in Synthesis Example 1 except that 2-hydrocyethyl methacrylate used in Synthesis Example 1 was changed as shown in Table 1.
Table 1 shows the compositions of the acrylic polymers produced in Synthesis Examples 1 to 3.
[Table 1]
Figure PCTCN2020124346-appb-000001
Abbreviations in Table 1 are as follows.
HEMA: hydroxyethyl methacrylate
FM3: 3-mole caprolactone adduct of hydroxyethyl methacrylate (manufactured by Daicel Corporation)
MMA: methyl methacrylate
BMA: butyl methacrylate
ST: styrene
AM-130G: methoxypolyethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd. )
(SYNTHESIS EXAMPLE 4: Synthesis of urethane (meth) acrylate (B-1) )
In a reactor provided with a stirrer, a thermometer, an inert gas inlet tube, and a reflux tube, 416.7 parts by mass of isophorone diisocyanate, 485.5 parts by mass ofpentaerythritol triacrylate, 3.1 parts by mass of dibutylhydroxytoluene, and  0.3 parts by mass of methoquinone were charged, heated to 80℃, and reacted for 2 hours. Then, 125.7 parts by mass of dimethylolpropionic acid was added and further reacted for 2 hours, producing urethane (meth) acrylate (B-1) having a carboxyl group and two or more (meth) acryloyl groups.
(SYNTHESIS EXAMPLE 5: Synthesis of urethane (meth) acrylate (B-2) )
In a reactor provided with a stirrer, a thermometer, an inert gas inlet tube, and a reflux tube, 416.7 parts by mass of isophorone diisocyanate, 410.5 parts by mass ofpentaerythritol triacrylate, 150 parts by mass of polycarbonate diol ( "DURANOL T5651" manufactured by Asahi Kasei Chemicals Corporation; hereinafter abbreviated as "polycarbonate diol (P-1) " ) , 3.1 parts by mass of dibutylhydroxytoluene, and 0.3 parts by mass of methoquinone were charged, heated to 80℃, and reacted for 2 hours. Then, 125.7 parts by mass of dimethylolpropionic acid was added and further reacted for 2 hours, producing urethane (meth) acrylate (B-2) having a carboxyl group and two or more (meth) acryloyl groups.
(SYNTHESIS EXAMPLE 6: Synthesis of urethane (meth) acrylate (B-3) )
In a reactor provided with a stirrer, a thermometer, an inert gas inlet tube, and a reflux tube, 416.7 parts by mass of isophorone diisocyanate, 485.5 parts by mass of isocyanuric acid EO-modified diacrylate, 3.1 parts by mass of dibutylhydroxytoluene, and 0.3 parts by mass of methoquinone were charged, heated to 80℃, and reacted for 2 hours. Then, 125.7 parts by mass of dimethylolpropionic acid was added and further reacted for 2 hours, producing urethane (meth) acrylate (B-3) having a carboxyl group and two or more (meth) acryloyl groups.
(SYNTHESIS EXAMPLE 7: Synthesis of urethane (meth) acrylate (RB-1) )
Urethane (meth) acrylate (RB-1) was produced by the same method as in Synthesis Example 4 except that 485.5 parts by mass of pentaerythritol triacrylate used in Synthesis Example 4 was changed to 119.1 parts by mass of 2-hydroxyethyl acrylate.
(EXAMPLE 1: Synthesis of active energy ray-curable aqueous resin composition (1) )
In a reactor provided with a stirrer, a thermometer, an inert gas inlet tube, and a reflux tube, 1085.8 parts by mass of the acrylic polymer (A-1) produced in Synthesis Example 1, 1031.3 parts by mass of the urethane (meth) acrylate (B-1) , and 228.0 parts by mass of ethylene oxide adduct of trimethlolpropane triacrylate were charged, heated to 80℃, and reacted for 2 hours, producing a reaction product (X-1) having a carboxyl group and two or more (meth) acryloyl groups.
Next, 75.7 parts by mass of triethylamine was charged, and 2219.1 parts by mass of water was further charged, producing an active energy ray-curable aqueous resin composition (1) .
(EXAMPLES 2 and 3: Synthesis of active energy ray-curable aqueous resin compositions (2) and (3) )
Active energy ray-curable aqueous resin compositions (2) and (3) were produced by the same method as in Example 1 except that the acrylic polymer (A-1) used in Example 1 was changed to the acrylic polymer (A-2) or (A-3) .
(EXAMPLE 4: Synthesis of active energy ray-curable aqueous resin composition (4) )
In a reactor provided with a stirrer, a thermometer, an inert gas inlet tube, and a reflux tube, 1085.8 parts by mass of the acrylic polymer (A-1) produced in Synthesis Example 1, 1031.3 parts by mass of the urethane (meth) acrylate (B-1) , 150 parts by mass of the polycarbonate diol (P-1) and 228.0 parts by mass of ethylene oxide adduct of trimethlolpropane triacrylate were charged, heated to 80℃, and reacted for 2 hours, producing a reaction product (X-1) having a carboxyl group and two or more  (meth) acryloyl groups.
Next, 75.7 parts by mass of triethylamine was charged, and 2219.1 parts by mass of water was further charged, producing an active energy ray-curable aqueous resin composition (4) .
(EXAMPLES 5 and 6: Synthesis of active energy ray-curable aqueous resin compositions (5) and (6) )
Active energy ray-curable aqueous resin compositions (5) and (6) were produced by the same method as in Example 2 except that the urethane (meth) acrylate (B-1) used in Example 2 was changed to the urethane (meth) acrylate (B-2) or (B-3) .
(EXAMPLE 7: Synthesis of active energy ray-curable aqueous resin composition (7) )
In a reactor provided with a stirrer, a thermometer, an inert gas inlet tube, and a reflux tube, 1093.8 parts by mass of the acrylic polymer (A-2) and 1031.3 parts by mass of the urethane (meth) acrylate (B-1) were charged, heated to 80℃, and reacted for 2 hours, producing a reaction product (X-7) having a carboxyl group and two or more (meth) acryloyl groups. Next, 75.7 parts by mass of triethylamine was charged, and 2219.1 parts by mass of water was further charged, producing an active energy ray-curable aqueous resin composition (7) .
(COMPARATIVE EXAMPLE 1: Synthesis of active energy ray-curable aqueous resin composition (R1) )
An active energy ray-curable aqueous resin composition (R1) was produced by the same method as in Example 1 except that the urethane (meth) acrylate (B-1) used in Example 1 was changed to the urethane (meth) acrylate (RB-1) .
(COMPARATIVE EXAMPLE 2: Synthesis of active energy ray-curable aqueous resin composition (R2) )
An active energy ray-curable aqueous resin composition (R2) was produced by the same method as in Example 1 except that the urethane (meth) acrylate (B-1) used in Example 1 was changed to  the urethane (meth) acrylate (RB-1) , and the ethylene oxide adduct of trimethylolpropane triacrylate was not used.
[Preparation of active energy ray-curable aqueous coating material]
The active energy ray-curable aqueous resin composition produced as described above was mixed with a photopolymerization initiator ( "Irgacure 500" manufactured by BASF Japan Ltd., eutecticmixture of 1-hydroxycyclohexylphenyl ketone and benzophenone at a molar ratio of 1∶1) at 5%by mass per solid content of the active energy ray-curable aqueous resin composition, thereby preparing an intended active energy ray-curable aqueous coating material.
[Formation of cured coating film for evaluation] An ABS (acrylonitrile-butadiene-styrene copolymer) plate and a PC (polycarbonate) plate were coated by spraying the active energy ray-curable aqueous coating material so that the film thickness after drying was 10 μm, pre-dried for 10 minutes at a temperature of 60℃ in a dryer, and then irradiated with ultraviolet light with an irradiation amount of 0.8 J/cm 2 by using a high-pressure mercury lamp with an output of 80 W/cm, forming a cured coating film for evaluation.
[Evaluation of adhesion of coating film]
The coating film on the ABS plate or PC plate was cut with a cutter to make 10 × 10 1-mm square cuts, and a peeling test with a cellophane tape was performed to evaluate coating film adhesion based on the number of remaining squares according to the following criteria.
A: 95 to 100
B: 60 to 94
C: 59 or less
[Evaluation of warm-water resistance]
The cured coating film on the ABS plate was immersed together  with the ABS plate as a substrate in warm water of 80℃ for 2 hours, then taken out, and dried at 25℃ for 2 hours. Then, the same peeling test with a cellophane tape as described above was performed to evaluate coating film adhesion after immersion in warm water based on the number of remaining squares according to the following criteria.
A: 95 to 100
B: 60 to 94
C: 59 or less
[Evaluation of chemical resistance]
The cured coating film on the ABS plate was immersed together with the ABS plate as a substrate in an aqueous NaOH solution of 60℃ with pH 9 for 1 hour, then taken out, and dried at 25℃ for 1 hour. Then, the same peeling test with a cellophane tape as described above was performed to evaluate chemical resistance based on the number of remaining squares according to the following criteria.
A: 95 to 100
B: 60 to 94
C: 59 or less
Table 2 shows the evaluation results of Examples 1 to 4. [0085]
[Table 2]
Figure PCTCN2020124346-appb-000002
Table 3 shows the evaluation results of Examples 5 to 7 and Comparative Examples 1 and 2.
Figure PCTCN2020124346-appb-000003
Abbreviations in Table 2 are as follows.
EOTEMPA: ethylene oxide adduct (about 1-mole ethylene oxide adduct per acrylate) of trimethylolpropane triacrylate
It was confirmed that the coating film formed from the active energy ray-curable aqueous resin composition of the present invention has excellent coating film adhesion, warm-water resistance, and chemical resistance.
On the other hand, in Comparative Examples 1 and 2 not using the urethane (meth) acrylate (B) having a carboxyl group and two or more (meth) acryloyl groups, which was an essential component of the present invention, it was confirmed that the resultant coating film has unsatisfactory coating film adhesion, warm-water resistance, and chemical resistance.

Claims (6)

  1. An active energy ray-curable aqueous resin composition comprising:
    a reaction product (X) of a hydroxyl group-having acrylic polymer (A) and an isocyanate group-having urethane (meth) acrylate (B) ; and
    an aqueous medium (Y) ,
    wherein the urethane (meth) acrylate (B) has a carboxyl group and two or more (meth) acryloyl groups.
  2. The active energy ray-curable aqueous resin composition according to Claim 1, wherein the urethane (meth) acrylate (B) is a reaction product of a polyisocyanate (b1) , a carboxyl group-having polyol (b2) , and a hydroxyl group-having polyfunctional (meth) acrylate (b3) .
  3. The active energy ray-curable aqueous resin composition according to Claim 1 or 2, further comprising polyfunctional (meth) acrylate (C) .
  4. The active energy ray-curable aqueous resin composition according to any one of Claims 1 to 3, wherein the reaction product (X) is a reaction product containing polycarbonate diol (P) as an essential raw material.
  5. An active energy ray-curable aqueous coating material comprising the active energy ray-curable aqueous resin composition according to any one of Claims 1 to 4.
  6. An article comprising the active energy ray-curable aqueous coating material according to Claim 5 coated thereon.
PCT/CN2020/124346 2020-10-28 2020-10-28 Active energy ray-curable aqueous resin composition, active energy ray-curable aqueous coating material, and article coated with the coating material WO2022087885A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022553640A JP2023511217A (en) 2020-10-28 2020-10-28 Active energy ray-curable water-based resin composition, active energy ray-curable water-based paint, and article coated with said paint
CN202080105248.8A CN116209695A (en) 2020-10-28 2020-10-28 Active energy ray-curable aqueous resin composition, active energy ray-curable aqueous paint, and article coated with the paint
PCT/CN2020/124346 WO2022087885A1 (en) 2020-10-28 2020-10-28 Active energy ray-curable aqueous resin composition, active energy ray-curable aqueous coating material, and article coated with the coating material
EP20959048.8A EP4237462A1 (en) 2020-10-28 2020-10-28 Active energy ray-curable aqueous resin composition, active energy ray-curable aqueous coating material, and article coated with the coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/124346 WO2022087885A1 (en) 2020-10-28 2020-10-28 Active energy ray-curable aqueous resin composition, active energy ray-curable aqueous coating material, and article coated with the coating material

Publications (1)

Publication Number Publication Date
WO2022087885A1 true WO2022087885A1 (en) 2022-05-05

Family

ID=81381653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124346 WO2022087885A1 (en) 2020-10-28 2020-10-28 Active energy ray-curable aqueous resin composition, active energy ray-curable aqueous coating material, and article coated with the coating material

Country Status (4)

Country Link
EP (1) EP4237462A1 (en)
JP (1) JP2023511217A (en)
CN (1) CN116209695A (en)
WO (1) WO2022087885A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184267A (en) * 1992-12-17 1994-07-05 Mitsui Toatsu Chem Inc Optically curable resin composition having excellent adhesivity
JPH08311153A (en) * 1995-05-23 1996-11-26 Toppan Printing Co Ltd Urethane (meth)acrylic prepolymer, polymerizable prepolymer emulsifying agent and active energy ray-curing type aqueous resin composition
JP2002012823A (en) * 2000-04-27 2002-01-15 Kansai Paint Co Ltd Aqueous coating material composition
JP2002173516A (en) * 2000-12-05 2002-06-21 Mitsubishi Chemicals Corp Actinic energy ray-curable aqueous emulsion composition
JP3990426B2 (en) * 2005-10-19 2007-10-10 武蔵塗料株式会社 UV curable aqueous coating composition
CN103270065A (en) * 2010-12-27 2013-08-28 氰特表面技术有限公司 Radiation curable compositions
CN103443146A (en) * 2011-03-25 2013-12-11 树脂核动力工业有限公司 Waterborne coating composition
JP2014196410A (en) * 2013-03-29 2014-10-16 Dic株式会社 Active energy ray-curable composition, active energy ray-curable coating material, article coated with the same
CN108137761A (en) * 2015-12-22 2018-06-08 日本合成化学工业株式会社 Active energy ray-curable resin composition, active energy ray curable emulsion compositions and coating agent composition
EP3712190A1 (en) * 2019-03-18 2020-09-23 ALLNEX AUSTRIA GmbH Binder for an aqueous coating composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345131A (en) * 1999-06-03 2000-12-12 Nippon Synthetic Chem Ind Co Ltd:The Re-release type adhesive composition
JP2006255635A (en) * 2005-03-18 2006-09-28 Nippon Kasei Chem Co Ltd Production method of polyurethane based resin curing coat
JP5821854B2 (en) * 2010-08-25 2015-11-24 宇部興産株式会社 Aqueous polyurethane resin dispersion, process for producing the same, and use thereof
CN101982513B (en) * 2010-10-27 2014-02-19 中国科学院长春应用化学研究所 Finish paint composite and preparation method and use method thereof
CN105504144B (en) * 2015-12-22 2017-07-14 湖南松井新材料有限公司 Antifog resin of UV-curable water-borne and preparation method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184267A (en) * 1992-12-17 1994-07-05 Mitsui Toatsu Chem Inc Optically curable resin composition having excellent adhesivity
JPH08311153A (en) * 1995-05-23 1996-11-26 Toppan Printing Co Ltd Urethane (meth)acrylic prepolymer, polymerizable prepolymer emulsifying agent and active energy ray-curing type aqueous resin composition
JP2002012823A (en) * 2000-04-27 2002-01-15 Kansai Paint Co Ltd Aqueous coating material composition
JP2002173516A (en) * 2000-12-05 2002-06-21 Mitsubishi Chemicals Corp Actinic energy ray-curable aqueous emulsion composition
JP3990426B2 (en) * 2005-10-19 2007-10-10 武蔵塗料株式会社 UV curable aqueous coating composition
CN103270065A (en) * 2010-12-27 2013-08-28 氰特表面技术有限公司 Radiation curable compositions
CN103443146A (en) * 2011-03-25 2013-12-11 树脂核动力工业有限公司 Waterborne coating composition
JP2014196410A (en) * 2013-03-29 2014-10-16 Dic株式会社 Active energy ray-curable composition, active energy ray-curable coating material, article coated with the same
JP6225375B2 (en) * 2013-03-29 2017-11-08 Dic株式会社 Active energy ray curable composition, active energy ray curable paint, and article coated with the paint
CN108137761A (en) * 2015-12-22 2018-06-08 日本合成化学工业株式会社 Active energy ray-curable resin composition, active energy ray curable emulsion compositions and coating agent composition
EP3712190A1 (en) * 2019-03-18 2020-09-23 ALLNEX AUSTRIA GmbH Binder for an aqueous coating composition

Also Published As

Publication number Publication date
EP4237462A1 (en) 2023-09-06
CN116209695A (en) 2023-06-02
JP2023511217A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
JP6067235B2 (en) Urethane (meth) acrylate and curable resin composition containing the same
US9605174B2 (en) Active energy ray curable aqueous resin composition, active energy ray curable aqueous coating material, and article coated with the coating material
JP6225375B2 (en) Active energy ray curable composition, active energy ray curable paint, and article coated with the paint
JP2014196409A (en) Active energy ray-curable aqueous resin composition, active energy ray-curable aqueous coating, article applied with the coating
JP6469341B2 (en) A curable resin composition and a coating composition containing the same.
JP2007191507A (en) Coating agent composition
WO2022087885A1 (en) Active energy ray-curable aqueous resin composition, active energy ray-curable aqueous coating material, and article coated with the coating material
US12116441B2 (en) Polycarbonate-modified acrylic resin, paint, and plastic molded article painted by said paint
CN107286320B (en) Active energy ray-curable composition
JP2015157962A (en) Curable composition, cured product thereof, molded article, and display member
WO2024044931A1 (en) Aqueous resin dispersion, aqueous paint, and article coated with the aqueous paint
JP6083264B2 (en) Active energy ray-curable aqueous resin composition
KR20200115233A (en) An antistatic agent for active energy-ray curable resin composition, active energy-ray curable resin composition, cured film and film
CN110678516B (en) Aqueous resin composition, aqueous coating material, and article
CN105073802B (en) Resin combination, bottom-coating and by the formed products after the paint spraying
EP4043507B1 (en) Water-based resin composition, water-based paint, and plastic molded article painted by said water-based paint
JP7338807B2 (en) Aqueous dispersion for metallic paint and aqueous metallic paint
JP7298150B2 (en) Polycarbonate-modified acrylic resin, paint, and plastic molded article coated with said paint
CN113166363B (en) Urethane (meth) acrylate resin, curable resin composition, and cured product
WO2019065571A1 (en) Curable resin composition, paint, and article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553640

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020959048

Country of ref document: EP

Effective date: 20230530