WO2022080912A1 - IgM 영역을 이용한 융합단백질 플랫폼 - Google Patents

IgM 영역을 이용한 융합단백질 플랫폼 Download PDF

Info

Publication number
WO2022080912A1
WO2022080912A1 PCT/KR2021/014289 KR2021014289W WO2022080912A1 WO 2022080912 A1 WO2022080912 A1 WO 2022080912A1 KR 2021014289 W KR2021014289 W KR 2021014289W WO 2022080912 A1 WO2022080912 A1 WO 2022080912A1
Authority
WO
WIPO (PCT)
Prior art keywords
fusion protein
region
igm
protein
antibody
Prior art date
Application number
PCT/KR2021/014289
Other languages
English (en)
French (fr)
Inventor
하경식
이정민
이홍재
강성묵
Original Assignee
주식회사 아이엠바이오로직스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이엠바이오로직스 filed Critical 주식회사 아이엠바이오로직스
Publication of WO2022080912A1 publication Critical patent/WO2022080912A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70539MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/522CH1 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to a fusion protein platform using an IgM region.
  • the present invention relates to a fusion protein comprising a biologically active molecule and an IgM region.
  • biologically active molecules are of great therapeutic importance.
  • biologically active molecules including soluble proteins, membrane-bound proteins, ligands, and receptors, have weak in vivo stability and have to maintain high concentrations in the body to obtain desired activity. In order to increase the effect, it is required to increase the activity of the biologically active molecule.
  • soluble proteins Among biologically active molecules, soluble proteins, membrane-bound proteins, ligands, and receptors are produced by recombination of all or part of natural proteins that transmit signals in vivo. However, most of these proteins have low binding strength, so a high in vivo concentration must be secured for a sufficient therapeutic effect.
  • recombinant ligands and receptors there are many cases where they do not exhibit sufficient therapeutic effect even at high concentrations compared to their natural forms on the surface of cell membranes. This is because in the case of natural ligands and receptors, a large number of each exists on the cell surface, and a large number of binding sites are generated by intercellular access, resulting in high binding strength.
  • human immunoglobulin or fragments thereof that specifically bind to target substances can be used instead of natural ligands and receptors.
  • Human immunoglobulin (Ig) is a major protein constituting blood and is classified into various isotypes such as IgG, IgM, IgA, IgD, and IgE.
  • the Ig monomer consists of four polypeptide chains classified into two heavy chains and two light chains linked by disulfide bonds, and each chain has a variable region and a constant region. ) is composed of The heavy chain constant region can be further divided into three or four regions, depending on the isotype.
  • Ig specific for a target can be used as a biologically active molecule instead of a ligand and a receptor.
  • Ig has a much greater binding force than that between ligands or receptors, and thus can effectively inhibit target ligand-receptor binding. This action is called an antagonist.
  • some Igs may activate a target ligand or receptor instead of inhibiting the target ligand-receptor binding, and this action is called an agonist.
  • the therapeutic effect can be increased by using recombinant Ig as a biologically active molecule in place of the recombinant ligand and receptor, but a panning operation is required to select Igs that specifically bind to the target molecule from a large number of random Igs. It takes a lot of extra time to increase it.
  • a material having high avidity by binding several biologically active molecules to one molecule may be used.
  • the Fc region Frament crystallizable region
  • a heavy chain constant region of IgG is fused to a protein
  • a biologically active molecule can be labeled with biotin to make a material with high binding activity having four binding sites.
  • the effect of enhancing the binding activity of the Fc fusion protein is not large, and biotin is chemically labeled with a biologically active molecule for biotin-streptavidin binding, and a material having four binding sites is prepared and purified for use as a drug. The process is also difficult.
  • the present inventors have studied a method for enhancing the therapeutic effect of a biologically active molecule.
  • the biologically active molecule is bound to the constant region of IgM, that is, the fragment crystallizable region of IgM
  • the The present invention was completed by experimentally demonstrating that the binding activity (avidity) is improved and thus the therapeutic effect is also increased.
  • One aspect of the present invention provides a fusion protein represented by the following structural formula:
  • Y is a linker
  • the IgM Fc region is a monomer
  • n 0 or 1.
  • b when a is 1, b may be 0 or 1.
  • the fusion protein is [(X)-(Y) 0 -(IgM Fc region)] m -(Z) n , [(X)-(IgM) Fc region)] m -(Z) n or [(X) 1 -(Y) 0 -(IgM Fc region)] m -(Z) n .
  • b when a is 2, b may be 0 or 2.
  • n when m is 5, n may be 1. In another embodiment, when m is 6, n may be 0.
  • the fusion protein may be in a form in which the J chain is bonded to the first IgM Fc region monomer and the fifth IgM Fc region monomer by a disulfide bond. and a representative structure thereof is shown in A and B of FIG. 1 .
  • the fusion protein provided in the present invention has 10 to 12 binding domains through the IgM Fc region to maximize the avidity of biologically active molecules, and to solve the problem of steric hindrance of existing IgM antibodies through a linker. .
  • fusion protein refers to a protein in which some or all of two or more different proteins are bound.
  • the fusion protein includes the amino acid sequence of the protein constituting it, and in addition to the amino acid sequence that allows the protein to be secreted out of the cell, for example, an amino acid sequence such as a signal peptide, but is not limited thereto .
  • the fusion protein may be in a form in which some amino acid sequences constituting the fusion protein are mutated.
  • amino acid substitutions that do not entirely alter the activity of the molecule are known in the art. The most common substitutions are amino acid residues Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thy/Phe, Ala/ It is a substitution between Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly, and a fusion protein of a sequence mutated from the amino acid sequence of the fusion protein provided in the present invention by this substitution are included within the scope of the present invention.
  • mutated fusion proteins with increased structural stability against heat, pH, etc. or increased antibody activity due to mutations or modifications in the amino acid sequence are also included in the scope of the present
  • IgM Fc region is an Fc region (fragment crystallizable region) of immunoglobulin M (Immunoglobulin M; IgM), and refers to the remaining portion except for the Fab region (fragment, antigen binding region) in IgM. .
  • the IgM Fc region is directly or indirectly linked to a biologically active molecule in the fusion protein, wherein the fusion protein serves as a linker, support, carrier, etc. of the biologically active molecule so as to include one or two or more of the biologically active molecule. can be performed.
  • the 'IgM Fc region (IgM Fc region)' may be used interchangeably with the same meaning as 'IgM Fc fragment (IgM Fc fragment)'.
  • the IgM Fc region monomer may be composed of two heavy chains.
  • One heavy chain may include one or more selected from the group consisting of a C ⁇ 2 domain, a C ⁇ 3 domain and a C ⁇ 4 domain.
  • one heavy chain may comprise or consist of a C ⁇ 2 domain, a C ⁇ 3 domain and a C ⁇ 4 domain, or a C ⁇ 2 domain, a C ⁇ 3 domain and a C ⁇ 4 domain.
  • one heavy chain may comprise or consist of a C ⁇ 3 domain and a C ⁇ 4 domain.
  • the IgM Fc region may include or consist of the nucleic acid sequence of SEQ ID NO: 1 or the amino acid sequence of SEQ ID NO: 2.
  • the IgM Fc region monomer may form a pentamer or a hexamer, wherein each monomer may be linked through a disulfide bond.
  • the pentamer represents a structure including 5 monomers
  • the hexamer represents a structure including 6 monomers. Examples of the pentamer are shown in FIGS. 1A and B, and examples of the hexamer are shown in FIGS. 1C and D.
  • linker refers to an amino acid present between each domain of a protein.
  • the linker may exist between the biologically active molecule and the IgM Fc region in the fusion protein, and may serve to connect them.
  • the linker may be at least one selected from the group consisting of an IgD hinge region, an IgA hinge region, an IgG hinge region, and a GS linker.
  • the "hinge region” refers to a portion located in the central portion of the heavy chain of an antibody and connecting two regions of the heavy chain by a disulfide bond.
  • the hinge region is located between and connected to the CH1 and CH2 domains of the heavy chain.
  • IgD has a long hinge region, so it is possible to have great flexibility to form a T-shape with both target binding sites spread apart. This flexibility enables IgD to have a binding activity capable of binding to a multimeric foreign antigen with little binding to its own antigen.
  • the hinge region may include part or all of the hinge region, part or all of the CH1 domain, part or all of the CH2 domain, or a combination thereof.
  • the hinge region may include a part or all of an IgD hinge (hereinafter, 'part or all' is denoted as 'part/all').
  • the hinge region may include a part/all of an IgD hinge and a part/all of an IgD CH1 domain.
  • the hinge region may include a part/all of an IgD hinge and a part/all of an IgD CH2 domain.
  • the hinge region may include a part/all of an IgD hinge, a part/all of an IgD CH1 domain, and a part/all of an IgD CH2 domain.
  • the hinge region may include part/all of an IgA hinge.
  • the hinge region may include a part/all of an IgA hinge and a part/all of an IgA CH1 domain.
  • the hinge region may include a part/all of an IgA hinge and a part/all of an IgA CH2 domain.
  • the hinge region may include a part/all of an IgA hinge, a part/all of an IgA CH1 domain, and a part/all of an IgA CH2 domain.
  • the hinge region may include a part/all of an IgG hinge.
  • the hinge region may include a part/all of an IgG hinge and a part/all of an IgG CH1 domain.
  • the hinge region may include a part/all of an IgG hinge and a part/all of an IgG CH2 domain.
  • the hinge region may include a part/all of an IgG hinge, a part/all of an IgG CH1 domain, and a part/all of an IgG CH2 domain.
  • 'hinge region' may be used interchangeably with the same meaning as 'hinge domain'.
  • the IgD hinge region may include or consist of the nucleic acid sequence of SEQ ID NO: 5 or the amino acid sequence of SEQ ID NO: 6.
  • the IgA hinge region may include or consist of the nucleic acid sequence of SEQ ID NO: 7 or the amino acid sequence of SEQ ID NO: 8.
  • the "GS linker” may be at least one selected from the group consisting of (GS)c, (SG)c, (GGGS)c, (GGGGS)c, GCGS(GGGS)c and GCGGS(GGGGS)c, wherein the c is an integer from 2 to 6. Specifically, it may contain 4 to less than 35 amino acids composed of glycine (Gly; G) and serine (Ser; S), and glycine in order to increase stability through disulfide bonds. It may include 4 to less than 35 amino acids consisting of serine and cysteine (Cys; C), but is not limited thereto.
  • the GS linker may include or consist of the nucleic acid sequence of SEQ ID NO: 9 or the amino acid sequence of SEQ ID NO: 10.
  • biologically active molecule refers to a substance capable of exhibiting a specific action or effect in an organism, for example, by activating or inactivating a specific signaling pathway, promoting or inhibiting the expression of a specific gene, or It refers to a substance capable of enhancing or inhibiting the function of a specific protein, or inducing or inhibiting cell death.
  • the biologically active molecule may exhibit immunoregulation and/or anticancer activity.
  • the biologically active molecule is directly or indirectly linked to the IgM Fc region in the fusion protein, and may serve as a functional group or active moiety capable of exhibiting a desired effect of the fusion protein.
  • an antibody, antigen-binding fragments of antibody, antibody-drug conjugate, antibody-like molecule, antigen-binding of antibody-like molecule Antigen-binding fragments of antibody-like molecules, soluble proteins, membrane-bound proteins, ligands, receptors, virus-like particles, protein toxins, chemokines, cytokines and enzymes It may be one or more selected from the group consisting of, but is not limited thereto.
  • the receptor may be a cytokine receptor and/or an immune checkpoint receptor, but is not limited thereto.
  • the fusion protein according to the present invention may include two or more kinds of biologically active molecules according to a desired purpose, target or effect.
  • the antigen-binding fragment of the antibody is Fab, F(ab') 2 , F(ab) 2 , Fab', Fab 2 , Fab 3 , Fv, scFv, Bis-scFv, minibody, tria It may be one or more selected from the group consisting of body (Triabody), diabody (Diabody), tandem diabody (TandAb), nanobody (Nanobody), tetrabody (Tetrabody), but is not limited thereto.
  • the antigen-binding fragment of the antibody may bind to HLA-G.
  • HLA-G a type 1 HLA, is expressed in the placenta of pregnant women and is involved in the immune tolerance of the fetus.
  • HLA-G binds to NK (natural killer) cell inhibitory receptors ILT2, ILT4, and KIR2DL4 , inhibits NK cells, and promotes the differentiation of regulatory T cells (T regs).
  • NK natural killer
  • KIR2DL4 regulatory T cells
  • cancer cells overexpress HLA-G on the surface, the immunotherapeutic effect for cancer treatment is halved by inhibiting the activities of cytotoxic T-cells, helper T-cells and NK cells involved in cytotoxicity.
  • an antigen-binding fragment that selectively binds to HLA-G and inhibits the binding of HLA-G to an inhibitory receptor can be utilized as an anticancer therapeutic substance.
  • the antigen-binding fragment of the antibody may be a Fab or scFv.
  • the light chain variable region (VL) constituting the Fab or scFv comprises or consists of the nucleic acid sequence of SEQ ID NO: 15 or the amino acid sequence of SEQ ID NO: 16;
  • the heavy chain variable region (VH) and CH1 domains comprise or consist of the nucleic acid sequence of SEQ ID NO: 17 or the amino acid sequence of SEQ ID NO: 18; and/or the heavy chain variable region (VH) may include or consist of the nucleic acid sequence of SEQ ID NO: 19 or the amino acid sequence of SEQ ID NO: 20.
  • the membrane-binding protein may be Human Leukocyte Antigen (HLA), but is not limited thereto.
  • HLA Human Leukocyte Antigen
  • 'HLA' refers to a protein encoded by a human major histocompatibility complex (MHC) gene complex, and is mainly present in a membrane-bound form and is an important immunological agent responsible for the regulation of the immune system.
  • MHC human major histocompatibility complex
  • HLA activates cytotoxic T-cells by presenting a peptide fragment of a foreign or autologous protein on the cell surface from the inside of the cell and allowing it to be recognized and bound to the T-cell antigen receptor (TCR) of the cytotoxic T-cell. make it HLA is largely divided into two types.
  • Type 1 HLA is present on all cell surfaces, whereas type 2 HLA presents specific antigens such as NK cells, macrophages, and dendritic cells. It exists only in cells (Antigen Presenting Cell; APC).
  • the HLA gene is highly polymorphic and expresses six different HLA protein ⁇ chains (two HLA-A, two HLA-B and two HLA-C). Since the type 1 HLA can selectively activate cytotoxic T-cells expressing TCR when a specific peptide fragment is loaded thereto, the recombinant type 1 HLA from which the membrane-bound domain has been removed can be used in cancer It is also used for the treatment of infectious diseases.
  • HLA and MHC are used interchangeably in the art, and HLA is used instead of MHC in humans.
  • HLA is used instead of MHC in humans.
  • the terms 'HLA' and 'MHC' may be used interchangeably with the same meaning.
  • the HLA includes type 1 HLA such as HLA-A, HLA-B, HLA-C, HLA-E, HLA-F and HLA-G; or type 2 HLA, such as HLA-DP, HLA-DM, HLA-DOA, HLA-DOB, HLA-DQ and HLA-DR.
  • type 1 HLA consists of a ⁇ 2m domain, an ⁇ 1 domain, an ⁇ 2 domain and an ⁇ 3 domain
  • the type 2 HLA consists of an ⁇ 1 domain, an ⁇ 2 domain, a ⁇ 1 domain and a ⁇ 2 domain.
  • the HLA of the present invention may include a ⁇ 2m domain, an ⁇ 1 domain, an ⁇ 2 domain or an ⁇ 3 domain, and may include an ⁇ 1 domain, an ⁇ 2 domain, a ⁇ 1 domain and a ⁇ 2 domain.
  • the ⁇ 2 domain may be one in which position 115 is substituted with Glu (glutamic acid; E) in Gln (glutamine; Q).
  • the 84th position may be substituted with Cys (cysteine; C) from Tyr (tyrosine; Y).
  • the HLA may include a substance that specifically binds to the active site of the target T-cell.
  • the substance may selectively activate target T-cells expressing TCR, and/or may increase the stability of HLA.
  • 'target T-cell' may be a T-cell to which the fusion protein of the present invention binds, and may be a cytotoxic T cell (killer T cell; Tc) or a helper T cell (Helper T cell). ; Th).
  • the cytotoxic T-cell is a cell capable of killing cancer cells, cells infected with a virus, or the like, or damaged cells, for example, CD8 + T-cells.
  • CD8 + T-cell protein receptor, CD8 is located on the cell surface and binds to type 1 HLA.
  • the helper T-cells do not directly kill cells, but play a role in activating other immune cells, for example, promoting the production of antibodies in B-cells, activation of cytotoxic T-cells, etc., and CD4 + T - This is the cell.
  • CD4, a protein receptor on CD4 + T-cells is located on the cell surface and binds to type 2 HLA.
  • a specific example of the substance that specifically binds to the active site of the target T-cell may be a peptide, but is not limited thereto.
  • the peptide may be derived from a virus or an animal cell.
  • the virus may be a cytomegalovirus (CMV), but is not limited thereto.
  • CMV is one of the strongest immunogenic antigens on the human immune system and stimulates a very strong CD8 + T-cell response upon human infection.
  • the CD8 + T-cell immune response is primarily activated by the CMV protein pp65, IE-1, and the frequency of CMV-specific T-cells for individual peptides is approximately 1% to 2% of the total CD8 + T-cell repertoire. It is known that the frequency is very high.
  • the HLA comprising CMV may include or consist of the nucleic acid sequence of SEQ ID NO: 11 and/or 13 or the amino acid sequence of SEQ ID NO: 12 and/or 14.
  • the ligand may be EPO (erythropoietin) or an EPO analog, but is not limited thereto.
  • EPO erythropoietin
  • 'EPO' is a hormone protein essential for the production of red blood cells, which acts on hematopoietic stem cells in the bone marrow to promote the differentiation and growth of red blood cells to treat anemia, protect nerves in hypoxic environments such as stroke, and participate in the wound healing process do.
  • it is known to be effective in the treatment of depression and improve memory by participating in the hippocampal response of the brain, synaptic connections, and neuronal networks.
  • the 'EPO analog' is a recombinant protein that performs the same function as EPO and has a different structure, has two additional sugar chains in addition to the three sugar chains of human EPO, and has a blood half-life that is three times or more improved compared to the existing human EPO.
  • the EPO analog may be a ligand, antibody, or antibody fragment capable of binding to and activating an EPO receptor, and a specific example may be NESP (Novel erythropoiesis stimulating protein), but is not limited thereto.
  • the EPO analog may comprise or consist of the nucleic acid sequence of SEQ ID NO: 21 or the amino acid sequence of SEQ ID NO: 22.
  • J chain refers to a polypeptide that is a component of an IgM or IgA antibody and forms a multimer by combining IgM or IgA monomers.
  • the J chain may exist between the IgM Fc region monomers in the fusion protein, and may serve to connect them. Specifically, the J chain may be included when the IgM Fc region monomer forms a pentamer, and may not be included when the IgM Fc region monomer forms a hexamer.
  • the J chain may be bonded to the first IgM Fc region monomer and the fifth IgM Fc region monomer via a disulfide bond, and this structure is 1A and B are shown.
  • the J chain may include or consist of the nucleic acid sequence of SEQ ID NO: 3 or the amino acid sequence of SEQ ID NO: 4.
  • the J chain may be a protein molecule is additionally bound.
  • the protein molecule may exhibit a synergistic effect with respect to the desired effect of the fusion protein of the present invention.
  • an antibody, antigen-binding fragments of antibody, antibody-drug conjugate, antibody-like molecule, antigen-binding of antibody-like molecule selected from the group consisting of antigen-binding fragments of antibody-like molecule, soluble protein, membrane-bound protein, ligand, receptor, virus-like particle, protein toxin and enzyme It may be one or more, but is not limited thereto.
  • the protein molecule may be one or more selected from the group consisting of a co-stimulatory receptor, a cytokine, and a cell engager.
  • the cell tube receptor may be an antibody, specifically, an antibody that binds to a cancer cell or immune cell-specific labeling protein, for example, a T-cell engager.
  • the immune cells are neutrophils, eosinophils, basophils, mast cells, monocytes, macrophages, dendritic cells, NK cells (natural killer cells), and lymphocytes such as B cells and T cells.
  • Another aspect of the present invention provides a nucleic acid molecule encoding the fusion protein.
  • each term is the same as described for the fusion protein unless otherwise specified.
  • nucleic acid molecule has a meaning comprehensively including DNA and RNA molecules, and the nucleotide, which is the basic structural unit in the nucleic acid molecule, includes not only natural nucleotides, but also analogs ( analogues) are also included.
  • sequence of the nucleic acid molecule encoding the fusion protein of the present invention may be modified, and the modifications include additions, deletions, or non-conservative or conservative substitutions of nucleotides.
  • sequences used in the present invention are construed to include sequences exhibiting substantial identity to the sequences described in the sequence listing, provided that mutations with biologically equivalent activity are considered.
  • the term, 'substantial identity' refers to aligning the sequence of the present invention and any other sequences as much as possible, and analyzing the aligned sequence using an algorithm commonly used in the art. 60% homology, more specifically 70% homology, even more specifically 80% homology, most specifically 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97% homology. , means a sequence showing 98% or 99% homology.
  • a sequence having high homology with the sequence represented by SEQ ID NOs: 1 to 22 of the present invention has a high homology of 70% or more, specifically 80% or more, more specifically 90% or more Sequences should also be construed to be included within the scope of the present invention.
  • Another aspect of the present invention provides a vector for expression of a fusion protein comprising the nucleic acid molecule.
  • each term is the same as described for the fusion protein and nucleic acid molecule, unless otherwise specified.
  • the term "vector” is a means for expressing the fusion protein of the present invention, and a plasmid known in the art that can insert or introduce a nucleic acid molecule encoding the fusion protein into a host cell. ), viruses or other vectors.
  • the vector may be constructed as a vector for cloning or a vector for expression. Specific examples may be viral vectors such as plasmid vectors, cosmid vectors, bacteriophage vectors, adenoviral vectors, retroviral vectors and adeno-associated viral vectors, and more specifically, plasmids (eg, pcDNA3 or pcDNA3.1, such as pcDNA3.1).
  • phage such as ⁇ gt4 ⁇ B, ⁇ -Charon, ⁇ z1 and M13, etc.
  • a virus eg, SV40, etc.
  • the vector of the present invention may be one in which a nucleic acid molecule encoding the fusion protein is operably linked to a promoter.
  • operably linked refers to a functional linkage between a nucleic acid expression control sequence (eg, a promoter, signal sequence, or array of transcription regulator binding sites) and another nucleic acid sequence, whereby the control sequence is to regulate the transcription and/or translation of said other nucleic acid sequences.
  • a promoter derived from the genome of a mammalian cell eg, metallotionine promoter, ⁇ -actin promoter, human hegglobin promoter, and human muscle creatine promoter
  • promoters derived from mammalian viruses eg, adenovirus late promoter, vaccinia virus 7.5K promoter, SV40 promoter, cytomegalovirus (CMV) promoter, tk promoter of HSV, mouse mammary tumor virus (MMTV) promoter, HIV LTR promoter, promoter of Moloney virus, promoter of Epstein Barr virus (EBV) and promoter of Loose sarcoma virus (RSV)
  • the recombinant vector of the present invention may include a CMV promoter, but is not limited thereto.
  • a strong promoter capable of propagating transcription eg, tac promoter, lac promoter, lacUV5 promoter, lpp promoter, pL ⁇ promoter, pR ⁇ promoter, rac5 promoter, amp promoter, recA promoter, SP6 promoter, trp promoter and T7 promoter, etc.
  • a ribosome binding site for initiation of translation e.g., HB101, BL21, DH5 ⁇ , etc.
  • Escherichia coli eg, HB101, BL21, DH5 ⁇ , etc.
  • the promoter and operator site of the E e.g, HB101, BL21, DH5 ⁇ , etc.
  • coli tryptophan biosynthesis pathway or the left-handed promoter of phage ⁇ (pL ⁇ promoter) can be used as a regulatory region.
  • the promoter of the toxin protein gene of Bacillus thuringiensis or any promoter that can be expressed in Bacillus bacteria may be used as a regulatory region.
  • the recombinant vector system of the present invention can be constructed through various methods known in the art, and antibiotic resistance genes commonly used in the art as selection markers (eg, ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin) , kanamycin, geneticin, neomycin and tetracycline resistance genes).
  • selection markers eg, ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin
  • kanamycin kanamycin
  • geneticin neomycin and tetracycline resistance genes
  • Another aspect of the present invention provides a host cell into which the vector for expression of the fusion protein is introduced.
  • each term is the same as described in the fusion protein, nucleic acid molecule, and vector for expression of the fusion protein, unless otherwise specified.
  • the term "host cell” refers to a cell that includes the vector for expression of the fusion protein and can stably and continuously clone and express the fusion protein of the present invention.
  • E. coli Escherichia coli
  • Bacillus subtilis Bacillus subtilis
  • Bacillus thuringiensis Bacillus thuringiensis
  • Bacillus genus strains Streptomyces , Pseudomonas , Proteus mirabilis ( Proteus mirabilis ) or prokaryotic host cells such as Staphylococcus ; Fungi such as Aspergillus species , Pichia pastoris , Saccharomyces cerevisiae , Schizosaccharomyces or Neurospora crassa
  • eukaryotic host cells lower eukaryotic cells
  • higher eukaryotic cells such as insect-derived cells
  • plant cells or COS7 cells
  • Another aspect of the present invention provides a method for producing the fusion protein, comprising introducing the vector for expression of the fusion protein into a host cell.
  • each term is the same as described for the fusion protein, nucleic acid molecule, vector and host cell for expression of the fusion protein, unless otherwise specified.
  • the method for preparing the fusion protein of the present invention comprises:
  • the step (a) of introducing the vector of the present invention into a host cell may be a step of preparing a transformant comprising the vector for expression of the fusion protein, and the step of preparing the transformant comprises transforming the host cell. It could be a conversion.
  • transformant refers to an organism in which DNA is introduced into a host and DNA can be replicated as a factor of chromosomes or by the completion of chromosome integration. do.
  • Transformation of the above-described host cells can be performed using any transformation method, and can be easily performed according to conventional methods in the art.
  • CaCl 2 precipitation method CaCl 2 method using DMSO (dimethyl sulfoxide) to increase the efficiency
  • Hanahan method electroporation (electroporation)
  • calcium phosphate precipitation method protoplast fusion method
  • silicon carbide fiber It may include, but is not limited to, a stirring method using Transformation or transfection methods commonly used in the present invention may be used without limitation.
  • the step (b) of culturing the host cell of the present invention may be performed according to a medium and culture conditions known in the art. Such a culture process can be easily adjusted and used by those skilled in the art according to the selected strain. Suspension culture or adherent culture depending on the cell growth method; Depending on the culture method, batch, fed-batch, or continuous culture methods can be used.
  • the medium may contain various carbon sources, nitrogen sources and trace elements.
  • the carbon source include carbohydrates such as glucose, sucrose, lactose, fructose, maltose, starch or cellulose; fats such as soybean oil, sunflower oil, castor oil or coconut oil; fatty acids such as palmitic acid, stearic acid or linoleic acid; alcohols such as glycerol or ethanol; or an organic acid such as acetic acid, and these carbon sources may be used alone or in combination.
  • the nitrogen source examples include, for example, organic nitrogen sources such as peptone, yeast extract, broth, malt extract, corn steep liquor or soybean wheat; or an inorganic nitrogen source such as urea, ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate or ammonium nitrate, these nitrogen sources may be used alone or in combination.
  • organic nitrogen sources such as peptone, yeast extract, broth, malt extract, corn steep liquor or soybean wheat
  • an inorganic nitrogen source such as urea, ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate or ammonium nitrate
  • these nitrogen sources may be used alone or in combination.
  • the trace component examples include phosphorus such as potassium dihydrogen phosphate or dipotassium hydrogen phosphate; metal salts such as magnesium sulfate or iron sulfate.
  • amino acids, vitamins, or suitable precursors may be included.
  • compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid or sulfuric acid can be added to the culture in an appropriate manner during culture to adjust the pH of the culture, and fatty acid polyglycol esters and The same anti-foaming agent may be used, and oxygen or oxygen-containing gas (eg, air) may be injected into the culture to maintain the aerobic state of the culture.
  • oxygen or oxygen-containing gas eg, air
  • it can be cultured by maintaining the temperature of the culture at 20 °C to 45 °C, specifically 25 °C to 40 °C.
  • the step (c) of expressing the fusion protein in the host cell of the present invention may be a step of recovering, purifying and concentrating the fusion protein of the present invention from the culture solution obtained through the step (b).
  • the fusion protein may be used in an unpurified state, or may be used after further recovery, purification and concentration.
  • methods commonly used in the art eg, dialysis, salt precipitation, chromatography, etc.
  • it can be recovered, purified, and concentrated using chromatography (eg, ion exchange chromatography, size exclusion chromatography, or affinity chromatography), and the type and sequence of columns used for this depend on the characteristics of the fusion protein. , can be appropriately selected according to the culture method, etc.
  • the fusion protein platform according to the present invention can form 10 to 12 target binding sites through the IgM Fc region. In addition, it is possible to solve the problem of steric hindrance occurring in the existing IgM antibody through the linker region.
  • the platform can include 10 to 12 biologically active molecules in one fusion protein, thereby maximizing the avidity of the biologically active molecules and thus the therapeutic effect and disease diagnosis.
  • the fusion protein prepared through the platform can significantly improve the effect of recognizing and controlling the target. .
  • A relates to a fusion protein comprising a biologically active molecule, a linker, an IgM Fc region and a J chain, wherein the IgM Fc region forms a pentamer
  • B is a biologically active molecule, an IgM Fc region and a J chain It includes, but does not include a linker, and relates to a fusion protein in which the IgM Fc region forms a pentamer
  • C includes a biologically active molecule, a linker and an IgM Fc region, but does not include a J chain
  • the IgM It relates to a fusion protein in which an Fc region forms a hexamer
  • D includes a biologically active molecule and an IgM Fc region, but does not include a linker and a J chain, wherein the IgM Fc region forms a hexamer It relates to a fusion protein that
  • Figure 2a is an image showing the result of reducing SDS-PAGE analysis of a fusion protein containing HLA (CMVpHLA) as a biologically active molecule.
  • 'Ladder' is a protein size marker;
  • '1' is a fusion protein having the structure of [(CMVpHLA) 2 -(IgD hinge region) 2 -(IgM Fc region)] 5 - (J chain);
  • '2' is [(CMVpHLA) 2 - (linker) 0 - (IgM Fc region)] 5 - (J chain) fusion protein having a structure;
  • '3' is a fusion protein having the structure of [(CMVpHLA) 2 -((GGGGS) 3 ) 2 -(IgM Fc region)] 5 - (J chain);
  • '4' is [(CMVpHLA) 2 - (IgA hinge region) 2 - (IgM Fc region)]
  • Figure 2b is an image showing the result of reducing SDS-PAGE analysis of a fusion protein containing an antibody fragment (IgG Fab; A2014) as a biologically active molecule.
  • 'Ladder' is a protein size marker;
  • '1' is [(A2014) 2 - (IgD hinge region) 2 - (IgM Fc region)] 5 - (J chain) fusion protein having the structure;
  • '2' is [(A2014) 2 - (linker) 0 - (IgM Fc region)] 5 - (J chain) fusion protein having the structure;
  • '3' is a fusion protein having the structure of [(A2014) 2 -((GGGGS) 3 ) 2 -(IgM Fc region)] 5 - (J chain);
  • '4' is [(A2014) 2 - (IgA hinge region) 2 - (IgM Fc region)] 5 - (J chain) fusion protein having
  • Figure 2c is an image showing the result of reducing SDS-PAGE analysis of a fusion protein containing an EPO analog (NESP) as a biologically active molecule.
  • 'Ladder' is a protein size marker;
  • '1' is [(NESP) 2 - (IgD hinge region) 2 - (IgM Fc region)] 5 - (J chain) fusion protein having the structure;
  • '2' is [(NESP) 2 - (linker) 0 - (IgM Fc region)] 5 - (J chain) fusion protein having the structure;
  • '3' indicates NESP as a control.
  • Figure 3a is a graph showing the results of ELISA analysis of the target binding ability of the fusion protein, including HLA (CMVpHLA) as a biologically active molecule.
  • HLA CMVpHLA
  • Figure 3b is a graph showing the results of ELISA analysis of the target binding ability of the fusion protein, including the antibody fragment (IgG Fab; A2014) as a biologically active molecule.
  • Figure 3c is a graph of the results of ELISA analysis of the target binding ability of the fusion protein, including the EPO analog (NESP) as a biologically active molecule.
  • FIG. 4 is a graph showing the result of ELISPOT analysis of IFN- ⁇ secretion by the fusion protein according to the present invention, showing that the fusion protein can induce the activation of CD8 + T cells.
  • FIG. 5a is a graph of FACS results analyzing the degree of CD8 + T cell proliferation by the fusion protein according to the present invention, showing that the fusion protein can induce CD8 + T cell proliferation.
  • A relates to [(CMVpHLA) 2 -(linker) 0 -(IgM Fc region)] 5 -(J chain)
  • B is [(CMVpHLA) 2 -(IgD hinge region) 2 -(IgM Fc region)] 5 - (J chain).
  • FIG. 5b is a graph of FACS results analyzing the degree of CD8 + T cell proliferation by the fusion protein according to the present invention, showing that the fusion protein can induce CD8 + T cell proliferation.
  • A relates to [(CMVpHLA) 2 -(IgD hinge region) 2 -(IgM Fc region)] 5 - (J chain)
  • B relates to [(CMVpHLA) 2 -((GGGGS) 3 ) 2 -(IgM Fc region)] 5 - (J chain)
  • C is [(CMVpHLA) 2 - (IgA hinge region) 2 - (IgM Fc region)] 5 - (J chain)
  • D is [(CMVpHLA) 2 -(IgD hinge region) 2 -(IgM Fc region)] 6 -(J chain) 0
  • E relates to the control CMVpHLA.
  • FIG. 6 is a graph showing the FACS result of analyzing the cytotoxicity caused by the fusion protein according to the present invention, and shows that the fusion protein can induce cancer cell death by activating CD8 + T cells.
  • FIG. 7 is a graph showing the assay result of analyzing the binding activity of the fusion protein according to the present invention to HLA-G-expressing cells, showing that the fusion protein can bind to the HLA-G receptor in the cell.
  • FIG. 8 is a graph showing the results of an ELISA assay analyzing the degree of binding between the recombinant HLA-G protein and the recombinant ILT-2 protein by the fusion protein according to the present invention, wherein the fusion protein binds the HLA-G and ILT-2 proteins. shows that it can be blocked.
  • FIG. 9 is a graph showing the results of FACS analysis of the degree of binding between the recombinant HLA-G protein and the intracellularly expressed ILT-2 protein by the fusion protein according to the present invention, wherein the fusion protein is the HLA-G protein and the intracellularly expressed graph. It shows that it can block the binding of ILT-2 receptor protein.
  • FIG. 10 is a graph of the assay result analyzing the proliferative capacity of EPO-expressing cells by the fusion protein according to the present invention.
  • the fusion protein binds to the intracellularly expressed EPO receptor, and can promote the proliferation of cells expressing it. shows
  • Example 1 a fusion protein comprising an IgM Fc region, a biologically active molecule, a J chain and/or a linker was prepared.
  • Example 1-1 Recombinant plasmid preparation of IgM Fc region, J chain and linker
  • Example 1-1 a recombinant plasmid of IgM Fc region, J chain and/or linker was prepared.
  • the c ⁇ 2 domain, c ⁇ 3 domain and c ⁇ 4 domain of wild-type IgM were used as the IgM Fc region.
  • a recombinant plasmid for expressing the IgM Fc region (SEQ ID NO: 1 or 2) including the c ⁇ 2 domain, the c ⁇ 3 domain and the c ⁇ 4 domain and the J chain (SEQ ID NO: 3 or 4) required for pentamer formation was constructed.
  • human IgD hinge region (SEQ ID NO: 5 or 6), human IgA hinge region (SEQ ID NO: 7 or 8) and (GGGGS) 3 linkers (SEQ ID NO: 9 or 10)
  • a fusion protein recombinant plasmid linked to the IgM Fc region was constructed.
  • Insert DNA was prepared by PCR so that overlap PCR could be performed on the MCS (multiple cloning site) of pcDNA 3.1 (manufacturer: Thermo Scientific) vector using the optimized nucleotides and primers. After overlap PCR, each of the obtained insert DNA and pcDNA 3.1 vectors was treated with DpnI restriction enzyme to remove the template, and each material inserted vector was prepared.
  • Example 1-2 Preparation of fusion protein containing biologically active molecules
  • Example 1-2 a recombinant plasmid of a biologically active molecule was prepared, and it was linked with the recombinant plasmid of the IgM Fc region, J chain and/or linker prepared in Example 1-1, and a fusion protein containing them was prepared. Expression and purification.
  • HLA-A As biologically active molecules, HLA-A, an IgG antibody fragment (IgG Fab), or an EPO analog was used.
  • Example 1-2-1 Preparation of fusion protein containing HLA-A
  • a fusion protein including HLA-A as a biologically active molecule, IgM Fc region, J chain and/or linker was prepared.
  • CMV cytomegalovirus
  • ⁇ 2m Beta-2 microglobulin
  • the HLA-A protein sequence excluding the FLAG tag was linked to the IgM Fc region sequence, and the final recombinant plasmid vector thus constructed was introduced into Expi293 (Thermo Scientific) animal cells, and the fusion protein was quickly introduced A transient expression system was established to secure it.
  • Expi293 ® expression medium was added and diluted to a concentration of 3.0 ⁇ 10 6 cells/mL. Thereafter, 1 ⁇ g/mL of each recombinant plasmid vector was mixed with Opti-MEM ® medium, and the ExpiFectamine ® reagent and Opti-MEM ® medium were mixed according to volume and left at room temperature for 5 minutes.
  • DNA and ExpiFectamine ® reagent were reacted for 15 minutes and added to the flask, treated with enhancer1 and 2 after 16 to 22 hours, and confirmed when the cell viability (viability) is 75% or more on days 4 to 5 and fusion protein was recovered.
  • the expressed fusion protein was purified using IgM affinity chromatography. Specifically, the culture solution obtained from the temporary expression system of Example 5 was filtered through a PES filtration membrane having a pore size of 0.2 ⁇ m to remove impurities. The recovered filtrate was loaded onto an IgM affinity matrix POROSTM CaptureSelectTM IgM Affinity Matrix ® (Thermo Scientific) to purify the fusion protein. IgM affinity chromatography was performed under the following conditions.
  • purification and concentration of the CMVpHLA control protein not including the IgM Fc region was performed as follows.
  • the culture solution obtained from the temporary expression system was filtered through a PES filtration membrane having a pore size of 0.2 ⁇ m to remove impurities.
  • the recovered filtrate was purified by loading on DYKDDDDK (FLAG-tag) affinity matrix Pierce Anti-DYKDDDDK Affinity Resin ® (Thermo Scientific).
  • the fusion protein prepared by the above method was represented by the following structural formula: [(biologically active molecule)-(linker)-(IgM Fc region)]-(J chain).
  • the number of biologically active molecules, linkers, IgM Fc regions and/or J chains included in one fusion protein is indicated by subscripts, and not indicated in one case.
  • Linker is IgD hinge region, IgM Fc region forms pentamer [(CMVpHLA) 2 - (IgA hinge region) 2 - (IgM Fc region)] 5 - (J chain)
  • Linker is IgA hinge region, IgM Fc region forms pentamer [(CMVpHLA) 2 -((GGGGS) 3 ) 2 -(IgM Fc region)] 5 - (J chain)
  • the linker is (GGGGS) 3 and the IgM Fc region forms a pentamer.
  • CMVpHLA 2 -(IgD hinge region) 2 -(IgM Fc region)] 5 -(J chain) is a biologically active molecule, in which two CMVpHLA are transferred through two IgD hinge regions to an IgM Fc region monomer. are bound to each, and the IgM Fc region monomer is a pentamer bound to five, and refers to a fusion protein including one J chain to form the pentamer.
  • the pentameric structure of such a fusion protein may refer to the form shown in FIG. 1A .
  • CMVpHLA 2 - (linker) 0 - (IgM Fc region)] 5 - (J chain) is a biologically active molecule in which each of two CMVpHLA is directly bonded to the IgM Fc region monomer without a linker, and ,
  • the IgM Fc region monomer is a pentamer bonded to five, and refers to a fusion protein including one J chain to form the pentamer.
  • the pentameric structure of such a fusion protein may refer to the form shown in FIG. 1B.
  • Example 1-2-2 Preparation of fusion protein including IgG antibody fragment
  • a fusion protein including an IgG antibody fragment as a biologically active molecule and an IgM Fc region, a J chain and/or a linker was prepared.
  • the A2014 was constructed using the cloning method according to Example 1-1 in which the light chain (SEQ ID NO: 15 or 16), and parts of the heavy chain, VH and CH1 (SEQ ID NO: 17 or 18), among the moieties of the IgG Fab were used.
  • a fusion protein containing an IgG Fc region rather than an IgM Fc region was prepared as a control.
  • the IgG Fc region SEQ ID NO: 19 or 20
  • the CH2 and CH3 domains of IgG were used.
  • the A2014 recombinant plasmid sequence constructed above was linked to the IgM Fc region or IgG Fc region sequence, and the final recombinant plasmid vector constructed in this way was introduced into the cell by the method performed in Example 1-2-1, and the fusion protein was expressed. made it
  • the culture medium was purified and concentrated in the same manner as in 1-2-1, dialyzed against PBS, and stored at -20°C.
  • purification and concentration of the fusion protein containing the IgG Fc region was performed as follows. According to the method of 1-2-1 above, the culture solution obtained from the transient expression system was loaded onto an IgG affinity matrix MabSelect SuRe ® (Cytiva) and purified.
  • IgG affinity chromatography was performed under the following conditions.
  • Linker is IgD hinge region, IgM Fc region forms pentamer [(A2014) 2 - (IgA hinge region) 2 - (IgM Fc region)] 5 - (J chain)
  • Linker is IgA hinge region, IgM Fc region forms pentamer [(A2014) 2 -((GGGGS) 3 ) 2 -(IgM Fc region)] 5 - (J chain)
  • the linker is (GGGGS) 3 and the IgM Fc region forms a pentamer.
  • the fusion proteins prepared by the above method are listed in Table 2 above.
  • A2014 is a biologically active molecule, in which two A2014 are IgM Fc region monomers through two IgD hinge regions. are bound to each, and the IgM Fc region monomer is a pentamer bound to five, and refers to a fusion protein including one J chain to form the pentamer.
  • the pentameric structure of such a fusion protein may refer to the form shown in FIG. 1A .
  • IgM Fc region monomer is a biologically active molecule, wherein each of two A2014s is directly bound to the IgM Fc region monomer without a linker, and ,
  • the IgM Fc region monomer is a pentamer bonded to five, and refers to a fusion protein including one J chain to form the pentamer.
  • the pentameric structure of such a fusion protein may refer to the form shown in FIG. 1B.
  • Example 1-2-3 Preparation of fusion protein containing EPO analogues
  • a fusion protein including an EPO analog as a biologically active molecule and an IgM Fc region, a J chain and/or a linker was prepared.
  • NESP Novel erythropoiesis stimulating protein
  • the NESP (SEQ ID NO: 21 or 22) was linked to the IgM Fc region sequence, and a plasmid vector was constructed using the cloning method according to Example 1.
  • the constructed recombinant plasmid vector was introduced into the cells in the same manner as in Example 1-2-1, the fusion protein was expressed, purified and concentrated, and then dialyzed against PBS and stored at -20°C.
  • fusion protein note [(NESP) 2 - (IgD hinge region) 2 - (IgM Fc region)] 5 - (J chain)
  • Linker is IgD hinge region, IgM Fc region forms pentamer [(NESP) 2 - (Linker) 0 - (IgM Fc region)] 5 - (J chain) Does not contain a linker, the IgM Fc region forms a pentamer NESP Does not contain linker, IgM Fc region and J chain
  • the fusion proteins prepared by the above method are listed in Table 3 above.
  • FIG. 1A a schematic diagram of a fusion protein comprising a biologically active molecule, a linker, an IgM Fc region monomer and a J chain, wherein the IgM Fc region forms a pentamer is shown in FIG. 1A .
  • FIG. 1B a schematic diagram of a fusion protein comprising a biologically active molecule, an IgM Fc region monomer, and a J chain, but not a linker, in which the IgM Fc region forms a pentamer is shown in FIG. 1B .
  • FIG. 1C a schematic diagram of a fusion protein comprising a biologically active molecule, a linker, and an IgM Fc region monomer, but not including a J chain, in which the IgM Fc region forms a hexamer is shown in FIG. 1C .
  • FIG. 1D a schematic diagram of a fusion protein including a biologically active molecule and an IgM Fc region monomer, but not a linker and a J chain, in which the IgM Fc region forms a hexamer is shown in FIG. 1D .
  • the structure of the fusion protein was confirmed using reducing SDS-PAGE.
  • 5x reducing-PAGE sample buffer After mixing 5x reducing-PAGE sample buffer with 2 ⁇ g of each fusion protein, it was heated at 100° C. for 5 minutes, and then left at room temperature for 20 minutes.
  • polyamide gel (12-20%, Invitrogen) into the gel kit, loading the sample and electrophoresing it at 200V for 30 minutes, separating the gel from the kit and adding a staining solution (Coomassie Brilliant Blue staining solution) for 1 hour left for a while.
  • the left gel was transferred to a buffer (destaining buffer; 70% tertiary distilled water, 20% methanol, 10% acetic acid), and the result was confirmed after overnight.
  • each fusion protein comprising an IgM Fc region, a biologically active molecule, a J chain and/or a linker includes all the sizes of the corresponding substances constituting it.
  • Example 1 From the above results, it can be seen that the fusion protein prepared in Example 1 has the desired structure and is properly expressed.
  • Example 2 the binding ability of the fusion protein prepared in Example 1 to the target was analyzed.
  • the target was set differently depending on the biologically active molecule (HLA-A, IgG antibody fragment or EPO analog) included in each fusion protein.
  • Example 2-1 HLA-A-containing fusion protein
  • CMVpHLA HLA
  • the ELISA assay was performed as follows. A 96-well plate was coated with anti-CMVpHLA antibody (Ajou University) at 10 ng/well at 4°C for 16 hours. Plates were then washed with 0.05% PBS-Tween and blocked with 3% dry skim milk. After blocking, a dilution solution containing each fusion protein or control protein was added to the wells and incubated at 37°C for 2 hours. Then, the plate was washed, and HRP-conjugated anti-IgM (F5 ⁇ ) antibody (MERCK) or HRP-conjugated anti-FLAG antibody (Abcam) was diluted 1:5000 and incubated at 37° C. for 1 hour.
  • SPR analysis was performed as follows.
  • the SPR analyzer used Cytiva's Biacore T200.
  • Anti-CMVpHLA mouse Fc antibody Ajou University
  • CM5 chip Cytiva
  • recombinant protein G Abcam
  • CMVpHLA mouse Fc antibody was flowed and coated on the chip in a directional manner.
  • a dilution solution containing each fusion protein or control protein was flowed, and the dissociation reaction was performed with 10 mM glycine-HCl, pH 1.5.
  • the CMVpHLA control protein not including the IgM Fc region had significantly lower binding activity to the target (anti-CMVpHLA antibody).
  • the fusion protein including the IgM Fc region had very high binding activity to the target (anti-CMVpHLA antibody), and the EC 50 value was improved several tens of times compared to the CMVpHLA control protein.
  • ka is the rate at which two substances are attached (association rate constant)
  • kd is the rate at which two substances are dissociated (dissociation rate constant)
  • KD is the binding force
  • Rmax is the angle in SPR when two substances are attached.
  • the maximum RU value and the Avidity score are Rmax/kd values, which indicate the high degree of avidity in SPR.
  • the CMVpHLA control protein not including the IgM Fc region had significantly lower KD value and avidity score (Rmax/Kd) for the target (CMVpHLA mouse Fc antibody).
  • the fusion protein containing the IgM Fc region has significantly higher KD value and avidity score (Rmax / Kd) for the target (CMVpHLA mouse Fc antibody), and shows 100- to 1000-fold improved binding capacity compared to the CMVpHLA control protein. was confirmed.
  • the fusion protein comprising the IgM Fc region and the biologically active molecule according to the present invention has a high level of desired biological activity in cells. It was found that it can be expressed as
  • Example 2-2 Fusion protein including IgG antibody fragment
  • the (A2014)-(IgGFc) control protein including the IgG Fc region had significantly lower binding activity to the HLA-G antigen.
  • the fusion protein including the IgM Fc region had very high binding activity to the HLA-G antigen, and the EC 50 value was improved by about 1000 times or more compared to the (A2014)-(IgGFc) control protein.
  • ka is the rate of association of two substances (association rate constant)
  • kd is the rate of dissociation of two substances (dissociation rate constant)
  • KD is binding force
  • Rmax is the angle in SPR when two substances are attached.
  • the maximum RU value and the Avidity score are Rmax/kd values, indicating the high degree of avidity in SPR.
  • the (A2014)-(IgGFc) control protein including the IgG Fc region had significantly lower KD value and avidity score (Rmax/Kd) for the HLA-G antigen.
  • the fusion protein including the IgM Fc region has significantly higher KD value and avidity score (Rmax / Kd) for the HLA-G antigen, and improved 10-fold to 500-fold compared to the (A2014)-(IgGFc) control protein. It was confirmed that the binding ability was shown.
  • the fusion protein comprising the IgM Fc region and the biologically active molecule according to the present invention has a high level of desired biological activity in cells. It was found that it can be expressed as
  • Example 2-3 Fusion protein containing EPO analogues
  • the fusion protein including the IgM Fc region and NESP had very high binding activity to the EPO receptor.
  • ka is the rate at which two substances are attached (association rate constant)
  • kd is the rate at which two substances are dissociated (dissociation rate constant)
  • KD is the binding force
  • Rmax is the angle in SPR when two substances are attached.
  • the maximum RU value and the Avidity score are Rmax/kd values, which indicate the high degree of avidity in SPR.
  • the NESP control protein not including the IgM Fc region had significantly lower KD value and avidity score (Rmax/Kd) for the EPO receptor.
  • the fusion protein comprising the IgM Fc region and NESP has significantly higher KD value and avidity score (Rmax / Kd) for the EPO receptor, and it was confirmed that the NESP control protein exhibits a 100-fold to 400-fold improved binding ability compared to the control protein. .
  • the fusion protein comprising the IgM Fc region and the biologically active molecule according to the present invention has a high level of desired biological activity in cells. It was found that it can be expressed as
  • Example 3-1 Activation, proliferation induction and cytotoxicity analysis of CD8+ T cells
  • CD8 + T cells were confirmed through IFN- ⁇ ELISPOT assay.
  • PBMC were purchased from Immunospot and used, CD8 + T cells were obtained using a CD8 + T cell isolation kit (Miltenyi Biotec), and ELISPOT analysis was performed using an ELISPOT kit (Immunospot). Then, after washing the plate coated with IFN- ⁇ antibody with PBS, RPMI-1640 (10% FBS) was added to stabilize the antibody, and after removing RPMI-1640, a dilution solution containing each fusion protein or control protein was applied to the plate.
  • PBMCs (6 ⁇ 10 5 cells/well) and CD8 + T cells (2 ⁇ 10 5 cells/well) were put into the wells containing each fusion protein, respectively, and reacted in a 37°C 5% CO 2 incubator for 48 hours. did The reacted plate was washed with PBS to remove cells and materials, and then reacted with Biotinylated IFN- ⁇ antibody at room temperature for 2 hours. After washing with PBS, Strep-AP was added and reacted at room temperature for 1 hour, washed with PBS, and reacted with the substrate for 10 minutes to induce color development. After that, it was analyzed with an ELISPOT reader (AID) and statistical processing was performed using the GraphPad Prism Version 5.0 (GraphPad software) analysis program.
  • AID ELISPOT reader
  • PBMCs purchased from Immunospot 1 ⁇ 10 6 cells/mL were suspended in RPMI-1640 (10% FBS), which were seeded in 12 wells at a density of 1 ⁇ 10 6 cells/well. Thereafter, each fusion protein or control protein was treated at a concentration of 2 nM per well, and 20 U/mL of IL-2 (Peprotech) was added and cultured.
  • IL-2 20 U/mL, IL-7 (Peprotech) 25 ng/mL, and IL-15 (Peprotech) 25 ng/mL were added, and the above three Cytokines were mixed, and a culture medium equal to the initial volume was added.
  • FACS buffer 5% FBS in PBS.
  • the cell suspension was treated with an isotype antibody (Biolegend) to perform Fc blocking, followed by washing with FACS buffer. Thereafter, it was washed with PerCP cy5.5 anti-human CD8 antibody (BD bioscience), and washed after treatment with HLA-A*02:01 CMV pp65 tetramer (MBL).
  • HLA-A*02:01 CMV pp65 tetramer MBL
  • the proliferation of CMV-specific CD8 + T cells was checked using a flow cytometer (BD bioscience, FACSLyricTM).
  • PBMCs purchased from Immunospot 6 ⁇ 10 5 cells/mL were suspended in RPMI-1640 (10% FBS), which were seeded into 6 wells at a density of 1.8 ⁇ 10 6 cells/well. After seeding, each fusion protein or control protein was treated at a concentration of 100 nM per well, and 20 U/mL of IL-2 (Peprotech) and 2 ⁇ g/mL of Anti-human CD28 antibody (Ebioscience) were added and cultured.
  • IL-2 20 U/mL, IL-7 (Peprotech) 25 ng/mL, IL-15 (Peprotech) 25 ng/mL, and anti-human CD28 antibody 2 ⁇ g/mL were added and cultured.
  • IL-7 Peprotech
  • IL-15 Peprotech
  • anti-human CD28 antibody 2 ⁇ g/mL were added and cultured.
  • the above three cytokines and one antibody were mixed, and each fusion protein or control protein was added at the same time as the culture medium was added as much as the initial volume.
  • the above three cytokines and one antibody were mixed and added, and on days 19 to 20, each cell was washed with FACS buffer, and then CD8 + T cells were converted to CD8 + It was obtained using a T cell isolation kit (Miltenyi Biotec).
  • T2 cells T2 cells (ATCC), were reacted with CMVpp65 peptide 50 ⁇ g/mL and 3 ⁇ g/mL B2M (Sino) at 37° C. in a 5% CO 2 incubator for 1 hour.
  • FACS buffer 1 ⁇ 10 6 cells/4 ⁇ M DiO (Invitrogen) was treated and washed after reaction in an incubator at 37° C. 5% CO 2 .
  • DiO-labeled T2 cells and the CD8 + T cells were mixed in each ratio, and after each fusion protein or control protein was added, the reaction was performed for 4 hours.
  • 7AAD Invitrogen
  • the fusion protein containing the IgM Fc region and CMVpHLA increased the amount of IFN- ⁇ produced by about 2 times or more. It was confirmed once again that the binding capacity was high due to IgM Fc.
  • the amount of IFN- ⁇ produced in the fusion protein including both the IgM Fc region and the linker is higher than that of the fusion protein including the IgM Fc region but not including the linker, better biological activity is shown when the linker is linked. could see that
  • the fusion protein containing both the IgM Fc region and the linker has a 3-fold effect of inducing proliferation of CD8 + T cells. It was confirmed that the above was excellent.
  • the fusion protein containing the IgM Fc region and the linker and CMVpHLA was 30 times more effective in inducing proliferation of CD8 + T cells. Confirmed. Furthermore, as shown in FIG. 6 , it was confirmed that the fusion protein including the IgM Fc region and CMVpHLA had higher toxicity to cancer cells, compared to the CMVpHLA control protein not including the IgM Fc region.
  • the fusion protein including the IgM Fc region can induce activation, proliferation and death of cancer cells at a higher level than the protein without the IgM Fc region, and in particular, the IgM Fc region and biological It was found that better biological activity can be exhibited when the active molecule is linked by a linker.
  • Example 3-2 Binding activity to HLA-G expressing cells
  • JEG-3 cells ATCC, 3.5 ⁇ 10 5 cells/100 ⁇ l
  • HLA-G HLA-G
  • FACS buffer 5% FBS in PBS
  • anti-IgM-PE ebioscience
  • anti-IgG Fc-FITC Biolegend
  • the (A2014)-(IgGFc) control protein including an IgG Fc region had significantly lower binding activity to HLA-G expressing cells.
  • the fusion protein containing the IgM Fc region has very high binding activity to the cells, and the maximum MFI (median fluorescence intensity) value is improved by about 2.5 times or more compared to the (A2014)-(IgGFc) control protein. .
  • the fusion protein including the IgM Fc region had a higher activity of binding to the intracellular receptor than the protein not including the IgM Fc region. Therefore, it was found that the fusion protein comprising the IgM Fc region and the biologically active molecule according to the present invention can exhibit a desired biological activity in a cell at a high level.
  • the ILT-2 protein is a receptor protein expressed in immune cells, and when the HLA-G protein binds, the activities of cytotoxic T cells, NK cells, and B cells are suppressed, so that a normal immune response is not caused.
  • ILT-2 antigen R&D systems
  • HLA-G-6x his tag IM Biologics
  • the plate was washed, and HRP-conjugated anti-6x his antibody (abcam) was diluted 1:10,000 and incubated at 37°C for 1 hour. Thereafter, the plate was washed 9 times with 0.05% PBS-Tween, developed with TMB solution (Sigma), and then the reaction was terminated with 1N sulfuric acid (Daejeong Hwageum) and analyzed by VARIOSKAN LUX (Thermo Scientific).
  • JEG-3 cells 3 ⁇ 10 5 cells/tube) purchased from ATCC were lysed with MEM containing 10% FBS. Then, a dilution solution containing each fusion protein or control protein was added to the tube and reacted at 4° C. for 30 minutes. After washing with FACS buffer (5% FBS in PBS), 1.5 ⁇ g of ILT-2 Fc chimera (R&D systems) was treated and reacted at 4° C. for 30 minutes. Washed with FACS buffer, treated with PE-anti-human IgG Fc (Biolegnd), and reacted at 4° C. for 20 minutes. Finally, after washing with FACS buffer, the degree of blocking of the binding between the ILT-2 protein and the intracellularly expressed HLA-G protein was confirmed using a flow cytometer (BD bioscience, FACSLyricTM).
  • the (A2014)-(IgGFc) control protein including the IgG Fc region had significantly lower binding blocking activity of the recombinant HLA-G protein and the ILT-2 protein.
  • the fusion protein including the IgM Fc region had a very high binding blocking activity of the proteins, and the IC 50 value was improved by about 5 to 7 times or more compared to the (A2014)-(IgGFc) control protein.
  • the fusion protein including the IgM Fc region had a very high binding blocking activity to the HLA-G protein expressed in the cells. This suggests that HLA-G expressed on the surface of cancer cells in the body can effectively inhibit binding to ILT-2, an inhibitory receptor of immune cells, thereby increasing the death of cancer cells.
  • the fusion protein including the IgM Fc region had a higher activity of blocking the binding of the antigen to the receptor protein expressed in the cell, compared to the protein not including the IgM Fc region. Therefore, it was found that the fusion protein comprising the IgM Fc region and the biologically active molecule according to the present invention can exhibit a desired biological activity in a cell at a high level.
  • binding activity was confirmed using the EPOR reporter assay purchased from Indigobioscience.
  • Cells were seeded at a density of 150 uL/well in a 96-well cell culture plate (Corning), and then cultured in a 5% CO 2 incubator at 37° C. for 4 to 6 hours. Thereafter, a dilution solution containing each fusion protein or control protein was added to the wells, and cultured in a 5% CO 2 incubator at 37° C. for one day. Then, according to the manufacturer's protocol, 100 uL of the reaction solution was added, and the color was developed at room temperature for 5 minutes, followed by analysis with VARIOSKAN LUX (Thermo Scientific).
  • the fusion protein including the IgM Fc region and the linker induced the proliferation of EPOR overexpressed cells to a higher level. . That is, it was confirmed that the fusion protein comprising the IgM Fc region exhibits excellent binding activity with the intracellular EPO receptor, and the signaling pathway is activated by EPO receptor stimulation, thereby resulting in an effect of improving the proliferative capacity of cells.
  • the fusion protein including the IgM Fc region had a higher ability to bind to an intracellular receptor and thus to induce biological activity, compared to a protein not including the IgM Fc region. Therefore, it was found that the fusion protein comprising the IgM Fc region and the biologically active molecule according to the present invention can exhibit a desired biological activity in a cell at a high level.
  • the biological activity-inducing effect of the fusion protein by the above-described IgM Fc region is that of the biologically active molecule if the biologically active molecule binds to the IgM Fc region. It was found that it appeared regardless of the type or MoA.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 IgM 영역을 이용한 융합단백질 플랫폼에 관한 것이다. 또한, 본 발명은 생물학적 활성분자 및 IgM 영역을 포함하는 융합단백질에 관한 것이다. 본 발명에 따른 융합단백질 플랫폼은 IgM Fc 영역을 통해 10 내지 12개의 타겟 결합 부위를 형성할 수 있다. 또한, 링커 영역을 통해 기존 IgM 항체에서 발생하는 입체 장애 문제를 해결할 수 있다. 따라서, 상기 플랫폼은 하나의 융합단백질에 생물학적 활성분자를 10개 내지 12개로 포함시킬 수 있으며, 이를 통해 생물학적 활성분자의 결합활성(avidity)과 이에 따른 치료 효과 및 질병 진단을 극대화할 수 있다. 또한, 목적에 따라 다양한 생물학적 활성분자를 선택하고, 여러 종류의 생물학적 활성분자를 조합하여 사용하는 것도 가능하므로, 상기 플랫폼을 통해 제조된 융합단백질은 타겟을 인식하고 조절하는 효과가 현저히 향상될 수 있다.

Description

IgM 영역을 이용한 융합단백질 플랫폼
본 발명은 IgM 영역을 이용한 융합단백질 플랫폼에 관한 것이다. 또한, 본 발명은 생물학적 활성분자 및 IgM 영역을 포함하는 융합단백질에 관한 것이다.
생물학적 활성분자는 치료학적으로 매우 중요하다. 그러나 용해성 단백질(soluble protein), 막-결합 단백질(membrane-bound protein), 리간드, 수용체를 포함한 생물학적 활성분자는 생체 내 안정성이 낮고, 원하는 활성을 얻기 위해 높은 체내 농도를 유지해야 한다는 약점을 지녀 치료 효과를 높이기 위하여 생물학적 활성분자의 활성을 높이는 것이 요구된다.
생물학적 활성분자 중 용해성 단백질, 막-결합 단백질, 리간드, 수용체는 생체 내에서 신호를 전달하는 자연적인 단백질 전체 혹은 일부를 재조합하여 생산한 것이다. 그러나 이러한 단백질들은 대부분 낮은 결합력을 가져 충분한 치료 효과를 위하여 높은 생체 내 농도가 확보되어야 한다. 특히 재조합 리간드와 수용체의 경우 세포막 표면에 존재하는 자연적인 형태에 비해 높은 농도에서도 충분한 치료 효과를 발휘하지 못 하는 경우가 다수 존재한다. 이는 자연적인 형태의 리간드와 수용체의 경우 각자가 세포 표면에 다수 존재하여 세포 간 접근에 의해 다수의 결합부가 생성되어 높은 결합력을 가지게 되나, 재조합하여 생산한 리간드와 수용체는 각자 한 개의 결합부 만을 만들 수 있어 각 결합부의 결합력이 자연 상태와 차이가 없다고 하더라도 자연적으로 이루어지는 결합에 비해 낮은 결합력을 가지게 되기 때문이다(Mammen et al., Angew. Chem., Int. Ed., Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors, 1998, 37, 2755.)
생물학적 활성분자의 치료 효과를 높이기 위한 하나의 방법으로, 자연적인 리간드와 수용체 대신 타겟 물질에 특이적으로 결합하는 인간 면역글로불린 혹은 그 절편을 이용할 수 있다. 인간 면역글로불린(Immunoglobulin; Ig)은 혈액을 구성하는 주요 단백질로서 IgG, IgM, IgA, IgD, IgE와 같이 다양한 아이소타입(isotype)으로 구분된다. Ig 단량체는 두 개의 중쇄(heavy chain)와 두 개의 경쇄(light chain)로 분류되는 네 개의 폴리펩타이드 사슬이 이황화 결합으로 연결되어 이루어져 있으며, 각 사슬은 가변 영역(variable region) 및 불변 영역(constant region)으로 구성되어 있다. 중쇄 불변 영역은 아이소타입에 따라 셋 또는 네 부위로 더 나뉘어질 수 있다.
Ig의 가변 영역은 타겟 물질 표면의 특정한 구조(epitope)에 특이적이고 높은 결합력으로 결합하므로, 생물학적 활성분자로 리간드와 수용체 대신 타겟에 특이적인 Ig를 사용할 수 있다. 일반적으로 Ig는 리간드나 수용체간의 결합력보다 훨씬 큰 결합력을 가지고 있어, 타겟 리간드-수용체 결합을 효과적으로 저해할 수 있는데, 이와 같은 작용을 길항제(antagonist)라 한다. 한편, 일부의 Ig는 타겟 리간드-수용체 결합을 저해하는 대신, 타겟 리간드 혹은 수용체를 활성화시킬 수 있는데, 이와 같은 작용을 작용제(agonist)라 한다.
재조합 리간드와 수용체를 대신하여 재조합 Ig를 생물학적 활성분자로 사용하여 치료 효과를 높일 수 있으나, 무작위적인 다수의 Ig로부터 타겟 분자에 특이적으로 결합하는 Ig를 선별하는 패닝 작업이 필요하며, 친화도를 높이기 위해서는 추가적인 기간이 많이 소요된다.
생물학적 활성분자의 치료 효과를 높이기 위한 다른 하나의 방법으로, 한 분자에 여러 개의 생물학적 활성분자를 결합시켜 높은 결합활성(avidity)을 지니는 물질을 이용할 수 있다. 예를 들어, Ig의 아이소타입 중 하나인 IgG의 경우 한 분자당 두 개의 결합 부위를 가져 단량체에 비해 높은 결합활성을 가지므로, IgG의 중쇄불변영역인 Fc 영역(Fragment crystallizable region)을 단백질에 융합시켜 단백질의 안정성과 결합 활성을 높인 물질을 만들 수 있다. 또한 바이오틴 네 분자가 스트렙타비딘 한 분자에 높은 결합력으로 결합하는 것을 이용하여, 바이오틴으로 생물학적 활성분자를 표지하여 네 개의 결합 부위를 가진 높은 결합활성을 지니는 물질을 만들 수 있다. 그러나 Fc 융합 단백질의 결합활성 증대 효과는 크지 않으며, 바이오틴-스트렙타비딘 결합을 위해 바이오틴을 생물학적 활성 분자에 화학적으로 표지하고, 그 중 네 개의 결합 부위를 가지는 물질을 제조하여 약물로 사용하기 위해 정제하는 과정 또한 어려운 실정이다.
본 발명자들은 생물학적 활성분자의 치료 효과를 높이기 위한 방법을 연구한 결과, IgM의 불변 영역(constant region), 즉 IgM의 Fc 영역(Fragment crystallizable region)에 생물학적 활성분자를 결합하는 경우, 생물학적 활성분자의 결합활성(avidity)이 향상되어 이에 따른 치료 효과 또한 증대됨을 실험적으로 입증함에 따라 본 발명을 완성하기에 이르렀다.
본 발명에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 발명에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.
또한, 본 명세서에서 특별히 정의되지 않은 용어들에 대해서는 본 발명이 속하는 기술 분야에서 통상적으로 사용되는 의미를 갖는 것으로 이해되어야 할 것이다. 또한, 문맥상 특별히 정의하지 않은 경우라면, 단수는 복수를 포함하며, 복수는 단수를 포함한다.
본 발명의 하나의 양태는 하기 구조식으로 표시되는, 융합단백질을 제공한다:
[(X)a-(Y)b-(IgM Fc 영역)]m-(Z)n
이때, 상기 구조식에 있어서,
상기 X는 생물학적 활성분자이고,
상기 Y는 링커이고,
상기 IgM Fc 영역은 단량체이고,
상기 Z는 J 사슬이고,
상기 a는 1 또는 2이고, 상기 b는 0, 1 또는 2이고, 상기 m은 5 또는 6이고, 상기 n은 0 또는 1임.
본 발명에 따른 일 구현예에서, 상기 a가 1인 경우, 상기 b는 0 또는 1일 수 있다. 예를 들어, 상기 a가 1이고, 상기 b가 0인 경우, 융합단백질은 [(X)-(Y)0-(IgM Fc 영역)]m-(Z)n, [(X)-(IgM Fc 영역)]m-(Z)n 또는 [(X)1-(Y)0-(IgM Fc 영역)]m-(Z)n 로 상호교환적으로 표시될 수 있다.
다른 일 구현예에서, 상기 a가 2인 경우, 상기 b는 0 또는 2일 수 있다.
또한, 다른 일 구현예에서, 상기 m이 5인 경우, 상기 n은 1일 수 있다. 다른 일 구현예에서, 상기 m이 6인 경우, 상기 n은 0일 수 있다. 예를 들어, 상기 m이 5이고, 상기 n이 1인 경우, 융합단백질은 첫 번째 IgM Fc 영역 단량체와 다섯 번째 IgM Fc 영역 단량체에 J 사슬이 이황화결합(disulfide bond)에 의해 결합되는 형태일 수 있으며, 이의 대표적인 구조는 도 1의 A 및 B에 도시하였다.
본 발명에서 제공하는 융합단백질은 IgM Fc 영역을 통해 10개 내지 12개의 결합 도메인을 구비하여 생물학적 활성분자의 결합활성(avidity)을 극대화하였고, 링커를 통해 기존 IgM 항체가 갖는 입체 장애 문제를 해결하였다.
본 명세서에서 사용되는 용어, "융합단백질"은 서로 다른 2개 이상의 단백질의 일부 또는 전부가 결합된 단백질을 의미한다. 상기 융합단백질은 이를 구성하는 단백질의 아미노산 서열을 포함하며, 이외에 단백질을 세포 밖으로 분비시킬 수 있도록 하는 아미노산 서열, 예를 들어 시그널 펩타이드와 같은 아미노산 서열을 추가로 포함할 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 융합단백질은 이를 구성하는 일부 아미노산 서열이 변이된 형태일 수 있다. 단백질 및 폴리펩타이드에서, 분자의 활성을 전체적으로 변경시키지 않는 아미노산 치환은 당해 분야에 공지되어 있다. 가장 통상적으로 일어나는 치환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thy/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly 간의 치환이며, 이러한 치환에 의하여 본 발명에서 제공하는 융합단백질의 아미노산 서열로부터 변이된 서열의 융합단백질은 본 발명의 범주에 포함된다. 또한, 아미노산 서열상의 변이 또는 수식에 의해 융합단백질의 열, pH 등에 대한 구조적 안정성이 증가하거나 항체 활성이 증가한 변이된 융합단백질 역시 본 발명의 범주에 포함된다.
본 명세서에서 사용되는 용어, "IgM Fc 영역"은 면역글로불린 M (Immunoglobulin M; IgM)의 Fc 영역(fragment crystallizable region)으로서, IgM에서 Fab 영역(fragment, antigen binding region)을 제외한 나머지 부분을 의미한다. 상기 IgM Fc 영역은 융합단백질 내에서 생물학적 활성분자와 직접 또는 간접적으로 연결되며, 여기서 융합단백질은 상기 생물학적 활성분자를 1 또는 2 이상 포함할 수 있도록 생물학적 활성분자의 연결체, 지지체, 담체 등의 역할을 수행할 수 있다. 본 명세서에서, 상기 'IgM Fc 영역(IgM Fc region)'은 'IgM Fc 단편(IgM Fc fragment)'과 동일한 의미로 혼용되어 사용될 수 있다.
구체적으로, 상기 IgM Fc 영역 단량체는 2개의 중쇄로 구성될 수 있다. 1개의 중쇄는 Cμ2 도메인, Cμ3 도메인 및 Cμ4 도메인으로 이루어진 그룹으로부터 선택되는 하나 이상을 포함하는 것일 수 있다. 예를 들어, 1개의 중쇄는 Cμ2 도메인, Cμ3 도메인 및 Cμ4 도메인을 포함하거나 또는 Cμ2 도메인, Cμ3 도메인 및 Cμ4 도메인으로 구성될 수 있다. 또다른 예로서, 1개의 중쇄는 Cμ3 도메인 및 Cμ4 도메인을 포함하거나 또는 Cμ3 도메인 및 Cμ4 도메인으로 구성될 수 있다. 또다른 예로서, 상기 IgM Fc 영역은 서열번호 1의 핵산 서열 또는 서열번호 2의 아미노산 서열을 포함하거나, 상기 서열로 이루어질 수 있다.
또한, 상기 IgM Fc 영역 단량체는 오합체(pentamer) 또는 육합체(hexamer)를 형성할 수 있으며, 이때 각 단량체는 이황화 결합(disulfide bond)을 통해 연결될 수 있다. 상기 오합체는 단량체 5개를 포함하는 구조를 나타내며, 상기 육합체는 단량체 6개를 포함하는 구조를 나타낸다. 상기 오합체의 예는 도 1의 A 및 B에 도시되어 있으며, 상기 육합체의 예는 도 1의 C 및 D에 도시되어 있다.
본 명세서에서 사용되는 용어, "링커"는 단백질의 각 도메인 사이에 존재하는 아미노산을 의미한다. 상기 링커는 융합단백질 내에서 생물학적 활성분자와 IgM Fc 영역 사이에 존재할 수 있고, 이들을 연결하는 역할을 수행할 수 있다. 구체적인 예로, 상기 링커는 IgD 힌지 영역, IgA 힌지 영역, IgG 힌지 영역 및 GS 링커로 이루어진 그룹에서 선택되는 하나 이상일 수 있다.
상기 "힌지(hinge) 영역"은 항체의 중쇄 중앙 부분에 위치하여 중쇄의 두 영역을 이황화 결합으로 연결하고 있는 부분을 의미한다. 힌지 영역은 중쇄의 CH1 도메인과 CH2 도메인 사이에 위치하며, 이들과 연결되어 있다. 짧은 힌지 부위를 가지는 면역글로불린이 Y 형태를 갖는 것과 달리, 구체적으로 IgD는 긴 힌지 부위를 가지고 있어 양쪽의 타겟 결합부위가 벌어져 T자 형태를 이룰 수 있을 정도의 큰 유연성을 가지는 것이 가능하다. 이러한 유연성이 IgD가 자가 항원에 거의 결합하지 않으면서도 다량체 외부 항원에 결합할 수 있는 결합활성을 가질 수 있게 한다.
이때, 상기 힌지 영역은 힌지 영역의 일부 또는 전체, CH1 도메인의 일부 또는 전체, CH2 도메인의 일부 또는 전체, 또는 이들의 조합을 포함하는 것일 수 있다. 예를 들어, 상기 힌지 영역은 IgD 힌지의 일부 또는 전체(이하, '일부 또는 전체'는 '일부/전체'로 표시함)를 포함하는 것일 수 있다. 또다른 예로서, 상기 힌지 영역은 IgD 힌지의 일부/전체 및 IgD CH1 도메인의 일부/전체를 포함하는 것일 수 있다. 또다른 예로서, 상기 힌지 영역은 IgD 힌지의 일부/전체 및 IgD CH2 도메인의 일부/전체를 포함하는 것일 수 있다. 또다른 예로서, 상기 힌지 영역은 IgD 힌지의 일부/전체, IgD CH1 도메인의 일부/전체 및 IgD CH2 도메인의 일부/전체를 포함하는 것일 수 있다. 또다른 예로서, 상기 힌지 영역은 IgA 힌지의 일부/전체를 포함하는 것일 수 있다. 또다른 예로서, 상기 힌지 영역은 IgA 힌지의 일부/전체 및 IgA CH1 도메인의 일부/전체를 포함하는 것일 수 있다. 또다른 예로서, 상기 힌지 영역은 IgA 힌지의 일부/전체 및 IgA CH2 도메인의 일부/전체를 포함하는 것일 수 있다. 또다른 예로서, 상기 힌지 영역은 IgA 힌지의 일부/전체, IgA CH1 도메인의 일부/전체 및 IgA CH2 도메인의 일부/전체를 포함하는 것일 수 있다. 또다른 예로서, 상기 힌지 영역은 IgG 힌지의 일부/전체를 포함하는 것일 수 있다. 또다른 예로서, 상기 힌지 영역은 IgG 힌지의 일부/전체 및 IgG CH1 도메인의 일부/전체를 포함하는 것일 수 있다. 또다른 예로서, 상기 힌지 영역은 IgG 힌지의 일부/전체 및 IgG CH2 도메인의 일부/전체를 포함하는 것일 수 있다. 또다른 예로서, 상기 힌지 영역은 IgG 힌지의 일부/전체, IgG CH1 도메인의 일부/전체 및 IgG CH2 도메인의 일부/전체를 포함하는 것일 수 있다. 본 명세서에서, '힌지 영역'은 '힌지 도메인'과 동일한 의미로 혼용되어 사용될 수 있다. 예를 들어, 상기 IgD 힌지 영역은 서열번호 5의 핵산 서열 또는 서열번호 6의 아미노산 서열을 포함하거나, 상기 서열로 이루어질 수 있다. 또한, 상기 IgA 힌지 영역은 서열번호 7의 핵산 서열 또는 서열번호 8의 아미노산 서열을 포함하거나, 상기 서열로 이루어질 수 있다.
상기 "GS 링커"는 (GS)c, (SG)c, (GGGS)c, (GGGGS)c, GCGS(GGGS)c 및GCGGS(GGGGS)c로 이루어진 그룹에서 선택되는 하나 이상일 수 있으며, 이때 상기 c는 2 내지 6의 정수이다. 구체적으로, 글라이신(Gly; G) 및 세린(Ser; S)으로 구성된 아미노산을 4 내지 35개 미만으로 포함할 수 있으며, 이황화결합을 통해 안정성을 높이기 위하여 글라이신. 세린 및 시스테인(Cys; C)로 구성된 아미노산을 4 내지 35개 미만으로 포함할 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 상기 GS 링커는 서열번호 9의 핵산 서열 또는 서열번호 10의 아미노산 서열을 포함하거나, 상기 서열로 이루어질 수 있다.
본 명세서에서 사용되는 용어, "생물학적 활성분자"는 생물체 내에서 특정 작용 또는 효과를 나타낼 수 있는 물질로서, 예를 들어 특정 신호전달 경로를 활성화 또는 비활성화시킴으로써, 특정 유전자의 발현을 촉진 또는 억제하거나, 특정 단백질의 기능을 강화 또는 억제하거나, 또는 세포의 사멸을 유도 또는 억제하는 등의 기능을 수행할 수 있는 물질을 의미한다. 바람직하게, 상기 생물학적 활성분자는 면역조절(Immune regulation) 및/또는 항암(anticancer) 활성을 나타낼 수 있다. 상기 생물학적 활성분자는 융합단백질 내에서 IgM Fc 영역과 직접 또는 간접적으로 연결되며, 융합단백질이 목적하는 효과를 나타낼 수 있는 작용기 또는 활성 모이어티 역할을 수행할 수 있다.
구체적으로, 항체, 항체의 항원-결합 단편(antigen-binding fragments of antibody), 항체-약물 접합체(antibody-drug conjugate), 항체-유사 분자(antibody-like molecule), 항체-유사 분자의 항원-결합 단편(antigen-binding fragments of antibody-like molecule), 용해성 단백질(soluble protein), 막-결합 단백질(membrane-bound protein), 리간드, 수용체, 바이러스-유사 입자, 단백질 톡신, 케모카인, 사이토카인 및 효소로 이루어진 그룹으로부터 선택되는 하나 이상일 수 있으나, 이에 한정되는 것은 아니다. 이때, 상기 수용체는 사이토카인 수용체 및/또는 면역관문 수용체(immune checkpoint receptor)일 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 본 발명에 따른 융합단백질은 원하는 목적, 타겟 또는 효과에 따라 두 종류 이상의 생물학적 활성분자를 포함할 수 있다.
구체적인 예로, 상기 항체의 항원-결합 단편은 Fab, F(ab')2, F(ab)2, Fab', Fab2, Fab3, Fv, scFv, Bis-scFv, 미니바디(Minibody), 트리아바디(Triabody), 다이아바디(Diabody), 탠덤다이아바디(Tandem Diabody; TandAb), 나노바디(Nanobody), 테트라바디(Tetrabody)로 이루어진 그룹으로부터 선택되는 하나 이상일 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 항체의 항원-결합 단편은 HLA-G에 결합하는 것일 수 있다. HLA-G는 1형 HLA의 한 종류로, 임산부의 태반에서 발현되어 태아의 면역 관용에 관여한다. HLA-G는 NK (natural killer) 세포의 저해 수용체인 ILT2, ILT4, KIR2DL4에 결합하여 NK 세포를 저해하고, 조절 T-세포(regulatory T cell, Treg)의 분화를 촉진시키는 역할을 한다. 또한 암세포가 표면에 HLA-G를 과발현할 경우, 세포독성에 관여하는 세포독성 T-세포, 보조 T-세포 및 NK 세포의 활성을 저해하여 암 치료를 위한 면역치료 효과가 반감된다. 따라서, HLA-G에 선택적으로 결합하여 HLA-G가 저해 수용체에 결합하는 것을 저해하는 항원-결합 단편은 항암 치료 물질로 활용될 수 있다. 예를 들어, 상기 항체의 항원-결합 단편은 Fab 또는 scFv일 수 있다. 또한, 상기 Fab 또는 scFv를 구성하는 경쇄 가변영역(VL)은 서열번호 15의 핵산 서열 또는 서열번호 16의 아미노산 서열을 포함하거나, 상기 서열로 이루어지거나; 중쇄 가변영역(VH) 및 CH1 도메인은 서열번호 17의 핵산 서열 또는 서열번호 18의 아미노산 서열을 포함하거나, 상기 서열로 이루어지거나; 및/또는 중쇄 가변영역(VH)은 서열번호 19의 핵산 서열 또는 서열번호 20의 아미노산 서열을 포함하거나, 상기 서열로 이루어질 수 있다
다른 구체적인 예로, 상기 막-결합 단백질은 HLA(Human Leukocyte Antigen)일 수 있으나, 이에 한정되는 것은 아니다. 상기 용어, 'HLA'는 인간의 주요 조직 적합성 복합체(major histocompatibility complex; MHC) 유전자 복합체에 의해 암호화되는 단백질을 의미하며, 주로 막에 결합된 형태로 존재하여 면역 체계의 조절을 담당하는 중요한 면역학적 분자이다. HLA는 외래 혹은 자가 단백질의 펩타이드 단편을 세포 내부로부터 세포 표면에 제시하고 이를 세포독성 T-세포의 T-세포 항원 수용체(T Cell Receptor; TCR)가 인지, 결합하도록 하여 세포독성 T-세포를 활성화시킨다. HLA는 크게 2가지의 유형으로 나누어지는데, 1형 HLA는 모든 세포 표면에 존재하는 반면, 2형 HLA는 NK 세포(NK cell), 마크로파지(macrophage), 수지상 세포(dendritic cell) 등의 특정 항원제시세포(Antigen Presenting Cell; APC)에만 존재한다. HLA 유전자는 고도의 다형성 특성을 가지며, 6가지의 상이한 HLA 단백질 α쇄들(2개의 HLA-A, 2개의 HLA-B 및 2개의 HLA-C)을 발현시킨다. 상기 1형 HLA는 이에 특정 펩타이드 단편이 로딩(loading)되면 TCR을 발현하는 세포독성 T-세포를 선택적으로 활성화시킬 수 있으므로, 경막 도메인(membrane-bound domain) 부분이 제거된 재조합 1형 HLA는 암이나 감염성 질환 등의 치료에 활용되기도 한다. 또한, 대부분의 1형 HLA는 2형 HLA와 달리, 그루브(groove)에 펩타이드가 로딩되지 않은 빈 상태일 경우에는 불안정하기 때문에 재조합 1형 HLA의 생산 시 대상 합성 펩타이드를 로딩하거나, α쇄에 융합된 형태로 재조합 HLA 단백질을 제조하며, 미생물을 이용하여 발현시키는 경우에는 리폴딩(refolding)이 제대로 이루어지지 않을 우려가 있으므로, 동물세포를 이용하여 발현하는 것이 일반적이다. 당업계에서 HLA와 MHC는 동일한 의미로 혼용되어 사용되며, 인간에서는 MHC 대신 HLA를 사용한다. 본 명세서에서는, 상기 'HLA' 및 'MHC'는 동일한 의미로 혼용되어 사용될 수 있다.
상기 HLA는 HLA-A, HLA-B, HLA-C, HLA-E, HLA-F 및 HLA-G와 같은 1형 HLA; 또는 HLA-DP, HLA-DM, HLA-DOA, HLA-DOB, HLA-DQ 및 HLA-DR과 같은 2형 HLA일 수 있다. 상기 1형 HLA는 β2m 도메인, α1 도메인, α2 도메인 및 α3 도메인으로 이루어져 있으며, 상기 2형 HLA는 α1 도메인, α2 도메인, β1 도메인 및 β2 도메인으로 이루어져 있다. 본 발명의 HLA는 β2m 도메인, α1 도메인, α2 도메인 또는 α3 도메인을 포함하는 것일 수 있으며, α1 도메인, α2 도메인, β1 도메인 및 β2 도메인을 포함하는 것일 수 있다. 이때, 상기 α2 도메인은 115번 위치가 Gln(글루타민; Q)에서 Glu(글루탐산; E)로 치환된 것일 수 있다. 상기 α1 도메인은 84번 위치가 Tyr(티로신; Y)에서 Cys(시스테인; C)로 치환된 것일 수 있다. 상기 α2 도메인의 115번 위치에 존재하는 Gln을 Glu로 치환하는 경우에는, HLA의 CD8+ T-세포에 존재하는 TCR과의 결합력이 치환하지 않는 경우에 비하여 약 1.5배 증가하게 된다. 상기 α1 도메인의 84번 위치에 존재하는 Tyr을 Cys로 치환하는 경우에는, HLA가 이에 결합된 펩타이드와 이황화결합을 하도록 하므로, HLA의 안정성을 높일 수 있다.
또한, 상기 HLA는 표적 T-세포의 활성부위에 특이적으로 결합하는 물질을 포함할 수 있다. 상기 물질은 TCR을 발현하는 표적 T-세포를 선택적으로 활성화시킬 수 있거나, 및/또는 HLA의 안정성을 높일 수도 있다. 상기 용어, '표적 T-세포'는 본 발명의 융합단백질이 결합하는 T-세포일 수 있으며, 세포독성 T-세포(Cytotoxic T cell; killer T cell; Tc) 또는 보조 T-세포(Helper T cell; Th)일 수 있다. 상기 세포독성 T-세포는 암세포, 바이러스 등에 감염된 세포, 또는 손상된 세포 등을 사멸시킬 수 있는 세포이며, 예를 들어 CD8+ T-세포이다. CD8+ T-세포의 단백질 수용체인 CD8은 세포 표면에 위치하여 1형 HLA와 결합한다. 상기 보조 T-세포는 세포를 직접 사멸시키지는 않지만 다른 면역 세포들을 활성화시키는 역할을 수행하며, 예를 들어 B-세포의 항체 생산, 세포독성 T-세포의 활성화 등을 촉진시키는 세포이며, CD4+ T-세포가 이에 해당한다. CD4+ T-세포의 단백질 수용체인 CD4는 세포 표면에 위치하여 2형 HLA와 결합한다.
상기 표적 T-세포의 활성부위에 특이적으로 결합하는 물질의 구체적인 예로는 펩타이드일 수 있으나, 이에 한정되는 것은 아니다. 상기 펩타이드는 바이러스 유래 또는 동물 세포 유래일 수 있다. 이때, 상기 바이러스는 사이토메갈로바이러스(cytomegalovirus; CMV)일 수 있으나, 이에 한정되는 것은 아니다. CMV는 인간 면역 시스템에 대한 가장 강한 면역원성 항원 중 하나이며, 인체 감염 시 매우 강한 CD8+ T-세포 반응을 자극한다. CD8+ T-세포 면역 반응은 CMV 단백질 pp65, IE-1에 의해 주로 활성화되며, 개별 펩타이드에 대한 CMV 특이적 T-세포의 빈도는 총 CD8+ T-세포 레퍼토리의 약 최대 1% 내지 2%의 빈도로 매우 높다고 알려져 있다. 예를 들어, 상기 CMV를 포함하는 HLA는 서열번호 11 및/또는 13의 핵산 서열 또는 서열번호 12 및/또는 14의 아미노산 서열을 포함하거나, 상기 서열로 이루어질 수 있다.
또다른 구체적인 예로, 상기 리간드는 EPO (erythropoietin) 또는 EPO 유사체일 수 있으나, 이에 한정되는 것은 아니다. 상기 용어, 'EPO'는 적혈구 생성에 필수적인 호르몬 단백질로서, 골수에서 조혈모세포에 작용하여 적혈구의 분화와 생장을 촉진하여 빈혈을 치료하며, 뇌졸중과 같은 저산소 환경에서 신경을 보호하며 상처 회복과정에 관여한다. 또한 뇌의 해마반응과 시냅스 연결, 뉴런 네트워크에 관여하여 기억증진을 돕고 우울증 치료에 효과가 있는 것으로 알려져 있다. 상기 'EPO 유사체'는 EPO와 동일 기능을 수행하고 구조가 다른 재조합 단백질로서, 인간 EPO가 가진 3개의 당쇄 이외에 2개의 당쇄를 추가적으로 가지며, 기존 인간 EPO에 비하여 3배 이상 향상된 혈중 반감기를 갖는다. 상기 EPO 유사체는 EPO 수용체에 결합하여 활성화시킬 수 있는 리간드, 항체 또는 항체 단편일 수 있으며, 구체적인 예로 NESP (Novel erythropoiesis stimulating protein)일 수 있으나, 이에 한정되지 않는다. 예를 들어, 상기 EPO 유사체는 서열번호 21의 핵산 서열 또는 서열번호 22의 아미노산 서열을 포함하거나, 상기 서열로 이루어질 수 있다.
본 명세서에서 사용되는 용어, "J 사슬(joining chain)"은 IgM 또는 IgA 항체의 구성 요소로서, IgM 또는 IgA 단량체를 결합하여 다합체를 형성시키는 폴리펩타이드를 의미한다. 상기 J 사슬은 융합단백질 내에서 IgM Fc 영역 단량체 사이에 존재할 수 있고, 이들을 연결하는 역할을 수행할 수 있다. 구체적으로, 상기 J 사슬은 IgM Fc 영역 단량체가 오합체를 형성하는 경우에 포함될 수 있으며, IgM Fc 영역 단량체가 육합체를 형성하는 경우에는 포함되지 않을 수 있다. 더욱 구체적으로, IgM Fc 영역 단량체가 오합체를 형성하는 경우, 상기 J 사슬은 첫 번째 IgM Fc 영역 단량체와 다섯 번째 IgM Fc 영역 단량체에 이황화결합(disulfide bond)을 통해 결합될 수 있으며, 이러한 구조는 도 1의 A 및 B에 도시하였다. 예를 들어, 상기 J 사슬은 서열번호 3의 핵산 서열 또는 서열번호 4의 아미노산 서열을 포함하거나, 상기 서열로 이루어질 수 있다.
또한, 상기 J 사슬은 단백질 분자가 추가로 결합된 것일 수 있다. 이때, 상기 단백질 분자는 본 발명의 융합단백질이 목적하는 효과에 대해 시너지 효과를 나타내는 것일 수 있다. 구체적으로, 항체, 항체의 항원-결합 단편(antigen-binding fragments of antibody), 항체-약물 접합체(antibody-drug conjugate), 항체-유사 분자(antibody-like molecule), 항체-유사 분자의 항원-결합 단편(antigen-binding fragments of antibody-like molecule), 용해성 단백질(soluble protein), 막-결합 단백질(membrane-bound protein), 리간드, 수용체, 바이러스-유사 입자, 단백질 톡신 및 효소로 이루어진 그룹으로부터 선택되는 하나 이상일 수 있으나, 이에 한정되는 것은 아니다. 더욱 구체적으로, 상기 단백질 분자는 공동자극 수용체(co-stimulatory receptor), 사이토카인, 세포관여자(cell engager)로 이루어진 그룹에서 선택되는 하나 이상일 수 있다. 이때, 상기 세포관여자는 항체일 수 있으며, 구체적으로 암세포 또는 면역세포 특이적 표지 단백질에 결합하는 항체, 예를 들어 T 세포 관여항체(T-cell engager)일 수 있다. 또한, 상기 면역세포는 호중구(neutrophil), 호산구(eosinophil), 호염구(basophil), 비만세포(mast cell), 단핵구(monocyte), 대식세포(macrophage), 수지상세포(dendritic cell), NK 세포(natural killer cell), 및 B 세포(B cell), T 세포(T cell) 등의 림프구(lymphocyte)를 포함할 수 있다.
본 발명의 다른 하나의 양태는 상기 융합단백질을 코딩하는 핵산 분자를 제공한다.
본 발명에 따른 핵산 분자에서, 각 용어는 특별히 언급하지 않는 한 상기 융합단백질에서 설명한 바와 같다.
본 명세서에서 사용되는 용어, "핵산 분자"는 DNA 및 RNA 분자를 포괄적으로 포함하는 의미를 가지며, 상기 핵산 분자에서 기본 구성 단위인 뉴클레오티드는 자연의 뉴클레오티드뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogue)도 포함한다. 본 발명의 융합단백질을 코딩하는 핵산 분자의 서열은 변형될 수 있으며, 상기 변형은 뉴클레오티드의 추가, 결실, 또는 비보존적 치환 또는 보존적 치환을 포함한다.
또한, 핵산 서열 및 아미노산 서열을 포함한, 본 발명에서 이용되는 모든 서열은 생물학적으로 균등 활성을 갖는 변이를 고려한다면, 서열목록에 기재된 서열과 실질적인 동일성(substantial identity)을 나타내는 서열도 포함하는 것으로 해석된다. 상기 용어, '실질적인 동일성'은 본 발명의 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인(align)하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 60%의 상동성, 더욱 구체적으로 70%의 상동성, 더더욱 구체적으로 80%의 상동성, 가장 구체적으로 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99%의 상동성을 나타내는 서열을 의미한다.
따라서, 본 발명의 서열번호 1 내지 22로 표시되는 서열과 높은 상동성을 갖는 서열, 예를 들면 그 상동성이 70% 이상, 구체적으로 80% 이상, 더욱 구체적으로 90% 이상의 높은 상동성을 갖는 서열도 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명의 또 다른 하나의 양태는 상기 핵산 분자를 포함하는, 융합단백질 발현용 벡터를 제공한다.
본 발명에 따른 융합단백질 발현용 벡터에서, 각 용어는 특별히 언급하지 않는 한 상기 융합단백질 및 핵산 분자에서 설명한 바와 같다.
본 명세서에서 사용되는 용어, "벡터"는 본 발명의 융합단백질을 발현시키기 위한 수단으로서, 상기 융합단백질을 코딩하는 핵산 분자를 숙주 세포에 삽입 또는 도입할 수 있는, 당업계에 공지된 플라스미드(plasmid), 바이러스 또는 기타 매개체를 의미한다. 상기 벡터는 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 구체적인 예로, 플라스미드 벡터, 코즈미드 벡터, 박테리오파지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노-연관 바이러스 벡터 등의 바이러스 벡터일 수 있고, 더욱 구체적인 예로, 플라스미드(예컨대, pcDNA3 또는 pcDNA3.1 등의 pcDNA 시리즈, pCL, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX 시리즈, pET 시리즈 및 pUC19 등), 파지(예컨대, λgt4·λB, λ-Charon, λΔz1 및 M13 등) 또는 바이러스(예컨대, SV40 등)일 수 있으나, 이에 한정되지 않는다.
본 발명의 벡터는, 상기 융합단백질을 코딩하는 핵산 분자가 프로모터와 작동 가능하게 연결된 것일 수 있다. 상기 용어, "작동 가능하게 연결된"은 핵산 발현조절서열(예컨대, 프로모터, 시그널 서열, 또는 전사조절인자 결합 위치의 어레이)과 다른 핵산 서열 사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절서열은 상기 다른 핵산 서열의 전사 및/또는 해독을 조절하게 된다.
본 발명의 벡터가 발현 벡터이고, 진핵 세포를 숙주로 하는 경우에는, 포유동물 세포의 게놈으로부터 유래된 프로모터(예컨대, 메탈로티오닌 프로모터, β액틴 프로모터, 인간 헤로글로빈 프로모터 및 인간 근육 크레아틴 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터(예컨대, 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, 사이토메갈로바이러스(CMV) 프로모터, HSV의 tk 프로모터, 마우스 유방 종양 바이러스(MMTV) 프로모터, HIV의 LTR 프로모터, 몰로니 바이러스의 프로모터 엡스타인바 바이러스(EBV)의 프로모터 및 로우스 사코마 바이러스(RSV)의 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 포함할 수 있다. 예를 들어, 본 발명의 재조합 벡터는 CMV 프로모터를 포함할 수 있으나, 이에 한정되지 않는다.
본 발명의 벡터가 발현 벡터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터(예컨대, tac 프로모터, lac 프로모터, lacUV5 프로모터, lpp 프로모터, pLλ 프로모터, pRλ 프로모터, rac5 프로모터, amp 프로모터, recA 프로모터, SP6 프로모터, trp 프로모터 및 T7 프로모터 등), 해독의 개시를 위한 리보좀 결합 자리 및 전사/해독 종결 서열을 포함할 수 있다. 예를 들어, 숙주 세포로서 대장균(예컨대, HB101, BL21, DH5α 등)이 이용되는 경우, 대장균 트립토판 생합성 경로의 프로모터 및 오퍼레이터 부위, 또는 파지 λ의 좌향 프로모터(pLλ 프로모터)가 조절부위로서 이용될 수 있고; 숙주 세포로서 바실러스 균이 이용되는 경우, 바실러스 튜린겐시스(Bacillus thuringiensis)의 독소단백질 유전자의 프로모터 또는 바실러스균에서 발현 가능한 어떠한 프로모터라도 조절부위로 이용될 수 있다.
본 발명의 재조합 벡터 시스템은 당업계에 공지된 다양한 방법을 통해 구축될 수 있으며, 선택 표지로서 당업계에서 통상적으로 이용되는 항생제 내성 유전자(예컨대, 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자)를 포함할 수 있다.
본 발명의 또 다른 하나의 양태는 상기 융합단백질 발현용 벡터가 도입된 숙주 세포를 제공한다.
본 발명에 따른 숙주세포에서, 각 용어는 특별히 언급하지 않는 한 상기 융합단백질, 핵산 분자 및 융합단백질 발현용 벡터에서 설명한 바와 같다.
본 명세서에서 사용되는 용어, "숙주 세포"는 상기 융합단백질 발현용 벡터를 포함하며, 본 발명의 융합단백질을 안정적이고 연속적으로 클로닝 및 발현시킬 수 있는 세포를 의미한다. 예를 들어, 대장균(Escherichia coli), 바실러스 서브틸리스(Bacillus subtilis) 및 바실러스 튜린겐시스(Bacillus thuringiensis) 등의 바실러스 속 균주, 스트렙토마이세스(Streptomyces), 슈도모나스(Pseudomonas), 프로테우스 미라빌리스(Proteus mirabilis) 또는 스타필로코쿠스(Staphylococcus)와 같은 원핵 숙주 세포; 아스페르길러스 속(Aspergillus species) 등의 진균, 피치아 파스토리스(Pichia pastoris), 사카로마이세스 세르비시아(Saccharomyces cerevisiae), 쉬조사카로마세스(Schizosaccharomyces) 또는 뉴로스포라 크라사(Neurospora crassa)와 같은 진핵 숙주 세포; 하등 진핵 세포; 곤충 유래 세포와 같은 고등 진핵 세포; 식물 세포; 또는 COS7 세포(monkey kidney cell), NSO 세포, SP2/0, 차이니즈 햄스터 난소(Chinese hamster ovary; CHO) 세포, W138, 어린 햄스터 신장(baby hamster kidney; BHK) 세포, MDCK, 골수종 세포주, HuT 78 세포 또는 293 세포와 같은 포유 동물로부터 유래한 세포일 수 있으나, 이에 한정되지 않으며, 당업계에서 통상적으로 사용되는 숙주 세포가 제한 없이 사용될 수 있다.
본 발명의 또 다른 하나의 양태는 상기 융합단백질 발현용 벡터를 숙주 세포에 도입하는 단계를 포함하는, 상기 융합단백질을 제조하는 방법을 제공한다.
본 발명에 따른 융합단백질을 제조하는 방법에서, 각 용어는 특별히 언급하지 않는 한 상기 융합단백질, 핵산 분자, 융합단백질 발현용 벡터 및 숙주세포에서 설명한 바와 같다.
구체적으로, 본 발명의 융합단백질을 제조하는 방법은,
(a) 본 발명의 벡터를 숙주 세포에 도입하는 단계;
(b) 상기 숙주 세포를 배양하는 단계; 및
(c) 상기 숙주 세포에서 융합단백질을 수득하는 단계를 포함할 수 있다.
본 발명의 벡터를 숙주 세포에 도입하는 상기 (a) 단계는, 상기 융합단백질 발현용 벡터를 포함하는 형질전환체를 제조하는 단계일 수 있으며, 상기 형질전환체를 제조하는 단계는 숙주 세포를 형질전환 시키는 것일 수 있다.
상기 용어, "형질전환체"는 DNA를 숙주로 도입하여 DNA가 염색체의 인자로서 또는 염색체 통합 완성에 의해 복제 가능하게 되는 것으로 외부의 DNA를 세포 내로 도입하여 인위적으로 유전적인 변화가 일어난 생물을 의미한다.
전술한 숙주 세포를 형질전환시키는 것은 임의의 형질전환 방법을 사용하여 수행될 수 있으며, 당업계의 통상적인 방법에 따라 용이하게 수행할 수 있다. 예를 들어, CaCl2 침전법, CaCl2 방법에 DMSO(dimethyl sulfoxide)를 사용함으로써 효율을 높인 하나한(Hanahan) 방법, 전기천공법(electroporation), 인산칼슘 침전법, 원형질 융합법, 실리콘 카바이드 섬유를 이용한 교반법, 아그로박테리아 매개된 형질전환법, PEG를 이용한 형질전환법, 덱스트란 설페이트, 리포펙타민 및 건조/억제 매개된 형질전환 방법 등을 포함할 수 있으나, 이에 한정되지 않으며, 당업계에서 통상적으로 사용되는 형질전환 또는 형질감염 방법이 제한 없이 사용될 수 있다.
본 발명의 숙주 세포를 배양하는 상기 (b) 단계는, 당업계에 알려진 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양과정은 당업자라면 선택되는 균주에 따라 용이하게 조정하여 사용할 수 있다. 세포의 성장방식에 따라 현탁배양 또는 부착배양; 배양방법에 따라 회분식, 유가식 또는 연속배양식의 방법을 사용할 수 있다.
동물 세포 배양에 있어, 상기 배지는 다양한 탄소원, 질소원 및 미량원소 성분을 포함할 수 있다. 탄소원의 예로는, 포도당, 자당, 유당, 과당, 말토오스, 전분 또는 셀룰로오스와 같은 탄수화물; 대두유, 해바라기유, 피마자유 또는 코코넛유와 같은 지방; 팔미트산, 스테아린산 또는 리놀레산과 같은 지방산; 글라이세롤 또는 에탄올과 같은 알코올; 또는 아세트산과 같은 유기산을 포함할 수 있으며, 이들 탄소원은 단독 또는 조합되어 사용될 수 있다. 질소원의 예로는, 예컨대 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액 또는 대두밀과 같은 유기 질소원; 또는 요소, 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 또는 질산암모늄과 같은 무기 질소원을 포함할 수 있으며, 이들 질소원은 단독 또는 조합되어 사용될 수 있다. 미량성분의 예로는, 인산이수소칼륨 또는 인산수소이칼륨 등의 인원; 황산마그네슘 또는 황산철과 같은 금속염을 포함할 수 있다. 외에, 아미노산, 비타민, 또는 적절한 전구체 등이 포함될 수 있다.
또한, 배양물의 pH를 조정하기 위하여 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 또는 황산과 같은 화합물을 배양물에 적절한 방식으로 첨가할 수 있고, 기포 생성을 억제하기 위하여 배양 중에 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 할 수 있으며, 배양물의 호기상태를 유지하기 위하여 배양물 내로 산소 또는 산소-함유 기체(예컨대, 공기)를 주입할 수 있다.
또한, 배양물의 온도를 20℃ 내지 45℃, 구체적으로 25℃ 내지 40℃로 유지하여 배양할 수 있다.
본 발명의 숙주 세포에서 융합단백질을 발현시키는 상기 (c) 단계는, 상기 (b) 단계를 통해 수득한 배양액에서 본 발명의 융합단백질을 회수, 정제 및 농축하는 단계일 수 있다.
상기 융합단백질은 정제하지 않은 상태로 사용될 수 있고, 또는 추가로 회수, 정제 및 농축하여 사용될 수 있다. 구체적으로, 당업계에서 통상적으로 이용되는 방법(예컨대, 투석, 염 침전, 크로마토그래피 등)을 사용할 수 있으며, 이를 통해 회수, 정제 및 농축을 동시에 수행할 수 있다. 더욱 구체적으로, 크로마토그래피(예컨대, 이온교환 크로마토그래피, 크기배제 크로마토그래피, 또는 친화성 크로마토그래피)를 이용하여 회수, 정제 및 농축될 수 있으며, 이에 사용되는 컬럼의 종류와 순서는 융합단백질의 특성, 배양방법 등에 따라 적절히 선택할 수 있다.
본 발명에 따른 융합단백질 플랫폼은 IgM Fc 영역을 통해 10 내지 12개의 타겟 결합 부위를 형성할 수 있다. 또한, 링커 영역을 통해 기존 IgM 항체에서 발생하는 입체 장애 문제를 해결할 수 있다.
따라서, 상기 플랫폼은 하나의 융합단백질에 생물학적 활성분자를 10개 내지 12개로 포함시킬 수 있으며, 이를 통해 생물학적 활성분자의 결합활성(avidity)과 이에 따른 치료 효과 및 질병 진단을 극대화할 수 있다. 또한, 목적에 따라 다양한 생물학적 활성분자를 선택하고, 여러 종류의 생물학적 활성분자를 조합하여 사용하는 것도 가능하므로, 상기 플랫폼을 통해 제조된 융합단백질은 타겟을 인식하고 조절하는 효과가 현저히 향상될 수 있다.
도 1은 본 발명에 따른 융합단백질의 모식도이다. A는 생물학적 활성분자, 링커, IgM Fc 영역 및 J 사슬을 포함하며, 상기 IgM Fc 영역이 오합체(pentamer)를 형성하는 융합단백질에 관한 것이고, B는 생물학적 활성분자, IgM Fc 영역 및 J 사슬을 포함하되 링커는 포함하지 않으며, 상기 IgM Fc 영역이 오합체(pentamer)를 형성하는 융합단백질에 관한 것이고, C는 생물학적 활성분자, 링커 및 IgM Fc 영역을 포함하되 J 사슬은 포함하지 않으며, 상기 IgM Fc 영역이 육합체(hexamer)를 형성하는 융합단백질에 관한 것이고, D는 생물학적 활성분자 및 IgM Fc 영역을 포함하되 링커 및 J 사슬은 포함하지 않으며, 상기 IgM Fc 영역이 육합체(hexamer)를 형성하는 융합단백질에 관한 것이다.
도 2a는 생물학적 활성분자로서 HLA(CMVpHLA)를 포함하는 융합단백질의 reducing SDS-PAGE 분석 결과를 보여주는 이미지이다. 'Ladder'는 단백질 사이즈 마커; '1'은 [(CMVpHLA)2-(IgD 힌지 영역)2-(IgM Fc 영역)]5-(J사슬)의 구조를 갖는 융합단백질; '2'는 [(CMVpHLA)2-(링커)0-(IgM Fc 영역)]5-(J사슬)의 구조를 갖는 융합단백질; '3'은 [(CMVpHLA)2-((GGGGS)3)2-(IgM Fc 영역)]5-(J사슬)의 구조를 갖는 융합단백질; '4'는 [(CMVpHLA)2-(IgA 힌지 영역)2-(IgM Fc 영역)]5-(J사슬)의 구조를 갖는 융합단백질; '5'는 [(CMVpHLA)2-(IgD 힌지 영역)2-(IgM Fc 영역)]6-(J사슬)0의 구조를 갖는 융합단백질; '6'은 대조군인 CMVpHLA 단백질을 가리킨다.
도 2b는 생물학적 활성분자로서 항체 단편(IgG Fab; A2014)을 포함하는 융합단백질의 reducing SDS-PAGE 분석 결과를 보여주는 이미지이다. 'Ladder'는 단백질 사이즈 마커; '1'은 [(A2014)2-(IgD 힌지 영역)2-(IgM Fc 영역)]5-(J사슬)의 구조를 갖는 융합단백질; '2'는 [(A2014)2-(링커)0-(IgM Fc 영역)]5-(J사슬)의 구조를 갖는 융합단백질; '3'은 [(A2014)2-((GGGGS)3)2-(IgM Fc 영역)]5-(J사슬)의 구조를 갖는 융합단백질; '4'는 [(A2014)2-(IgA 힌지 영역)2-(IgM Fc 영역)]5-(J사슬)의 구조를 갖는 융합단백질; '5'는 [(A2014)2-(IgD 힌지 영역)2-(IgM Fc 영역)]6-(J사슬)0의 구조를 갖는 융합단백질; '6'은 대조군인 (A2014)-(IgG Fc) 융합단백질을 가리킨다.
도 2c는 생물학적 활성분자로서 EPO 유사체(NESP)를 포함하는 융합단백질의 reducing SDS-PAGE 분석 결과를 보여주는 이미지이다. 'Ladder'는 단백질 사이즈 마커; '1'은 [(NESP)2-(IgD 힌지 영역)2-(IgM Fc 영역)]5-(J사슬)의 구조를 갖는 융합단백질; '2'는 [(NESP)2-(링커)0-(IgM Fc 영역)]5-(J사슬)의 구조를 갖는 융합단백질; '3'은 대조군인 NESP를 가리킨다.
도 3a은 생물학적 활성분자로서 HLA(CMVpHLA)를 포함하는, 융합단백질의 타겟 결합능을 분석한 ELISA 결과 그래프이다.
도 3b는 생물학적 활성분자로서 항체 단편(IgG Fab; A2014)을 포함하는, 융합단백질의 타겟 결합능을 분석한 ELISA 결과 그래프이다.
도 3c는 생물학적 활성분자로서 EPO 유사체(NESP)를 포함하는, 융합단백질의 타겟 결합능을 분석한 ELISA 결과 그래프이다.
도 4는 본 발명에 따른 융합단백질에 의한 IFN-γ 분비량을 분석한 ELISPOT 분석 결과 그래프로서, 상기 융합단백질이 CD8+ T 세포의 활성화를 유도할 수 있음을 보여준다.
도 5a는 본 발명에 따른 융합단백질에 의한 CD8+ T 세포 증식 정도를 분석한 FACS 결과 그래프로서, 상기 융합단백질이 CD8+ T 세포의 증식을 유도할 수 있음을 보여준다. A는 [(CMVpHLA)2-(링커)0-(IgM Fc 영역)]5-(J사슬)에 관한 것이고, B는 [(CMVpHLA)2-(IgD 힌지 영역)2-(IgM Fc 영역)]5-(J사슬)에 관한 것이다.
도 5b는 본 발명에 따른 융합단백질에 의한 CD8+ T 세포 증식 정도를 분석한 FACS 결과 그래프로서, 상기 융합단백질이 CD8+ T 세포의 증식을 유도할 수 있음을 보여준다. A는 [(CMVpHLA)2-(IgD 힌지 영역)2-(IgM Fc 영역)]5-(J사슬)에 관한 것이고, B는 [(CMVpHLA)2-((GGGGS)3)2-(IgM Fc 영역)]5-(J사슬)에 관한 것이고, C는 [(CMVpHLA)2-(IgA 힌지 영역)2-(IgM Fc 영역)]5-(J사슬)에 관한 것이고, D는 [(CMVpHLA)2-(IgD 힌지 영역)2-(IgM Fc 영역)]6-(J사슬)0에 관한 것이고, E는 대조군인 CMVpHLA에 관한 것이다.
도 6은 본 발명에 따른 융합단백질에 의한 세포 독성을 분석한 FACS 결과 그래프로서, 상기 융합단백질이 CD8+ T 세포를 활성화하여 암세포 사멸을 유도할 수 있음을 보여준다.
도 7은 본 발명에 따른 융합단백질의 HLA-G 발현 세포와의 결합 활성을 분석한 어세이 결과 그래프로서, 상기 융합단백질이 세포 내 HLA-G 수용체와 결합할 수 있음을 보여준다.
도 8은 본 발명에 따른 융합단백질에 의한 재조합 HLA-G 단백질과 재조합 ILT-2 단백질과의 결합 정도를 분석한 ELISA 어세이 결과 그래프로서, 상기 융합단백질은 HLA-G 및 ILT-2 단백질의 결합을 차단할 수 있음을 보여준다.
도 9는 본 발명에 따른 융합단백질에 의한 재조합 HLA-G 단백질과 세포 내 발현된 ILT-2 단백질과의 결합 정도를 분석한 FACS 결과 그래프로서, 상기 융합단백질은 HLA-G 단백질과 세포 내 발현된 ILT-2 수용체 단백질의 결합을 차단할 수 있음을 보여준다.
도 10은 본 발명에 따른 융합단백질에 의한 EPO 발현 세포의 증식능을 분석한 어세이 결과 그래프로서, 상기 융합단백질은 세포 내 발현된 EPO 수용체와 결합하며, 이를 발현하는 세포의 증식을 촉진할 수 있음을 보여준다.
이하 본 발명을 실시예에 의해 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
실시예 1. 융합단백질의 제조
본 실시예 1에서는 IgM Fc 영역, 생물학적 활성분자, J 사슬 및/또는 링커를 포함하는 융합단백질을 제조하였다
실시예 1-1. IgM Fc 영역, J 사슬 및 링커의 재조합 플라스미드 제조
본 실시예 1-1에서는 IgM Fc 영역, J 사슬 및/또는 링커의 재조합 플라스미드를 제조하였다. 상기 IgM Fc 영역으로는 야생형 IgM의 cμ2 도메인, cμ3 도메인 및 cμ4 도메인을 사용하였다.
구체적으로, 상기 cμ2 도메인, cμ3 도메인 및 cμ4 도메인을 포함하는 IgM Fc 영역(서열번호 1 또는 2) 및 오합체 형성에 필요한 J 사슬(서열번호 3 또는 4)을 발현하기 위한 재조합 플라스미드를 구축하였다. 또한 기존 IgM 항체가 가지는 입체 장애 문제를 해결하기 위하여, 인간 IgD 힌지 영역(서열번호 5 또는 6), 인간 IgA 힌지 영역(서열번호 7 또는 8) 및 (GGGGS)3 링커(서열번호 9 또는 10)를 상기 IgM Fc 영역에 연결한 융합단백질 재조합 플라스미드를 구축하였다.
유전자 클로닝을 위하여, 상기 물질들 각각을 코돈 최적화(codon optimization)한 후, 코스모진텍(Seoul, Korea)에 의뢰하여 코돈 최적화된 뉴클레오타이드 분자들을 합성하였다.
상기 최적화된 뉴클레오타이드와 프라이머를 이용해 pcDNA 3.1(제조사: Thermo Scientific) 벡터의 MCS(multiple cloning site)에 overlap PCR을 진행할 수 있게 PCR을 진행하여 insert DNA를 준비하였다. 얻어진 각각의 insert DNA와 pcDNA 3.1 벡터를 overlap PCR 후 DpnI 제한효소를 처리하여 template를 제거하고 각 물질이 삽입된 벡터를 각각 제작하였다.
상기 벡터를 Stella® competent cell(제조사: Clontech)에 삽입한 뒤 벡터 내에 있는 항생제 내성 유전자에 맞는 암피실린 항생제를 첨가한 아가(agar) 플레이트에 도말하여 콜로니를 선별하였고, Applied biosystems 3730xl DNA analyzer(제조사: Thermo Scientific)를 사용하여 DNA 시퀀싱(sequencing)을 통해 염기서열을 확인하였다.
실시예 1-2. 생물학적 활성분자를 포함하는 융합단백질의 제조
본 실시예 1-2에서는 생물학적 활성분자의 재조합 플라스미드를 제조하였고, 이를 상기 실시예 1-1에서 제조한 IgM Fc 영역, J 사슬 및/또는 링커의 재조합 플라스미드와 연결하여, 이들을 포함하는 융합단백질을 발현 및 정제하였다.
생물학적 활성분자로는 HLA-A, IgG 항체단편(IgG Fab) 또는 EPO 유사체를 사용하였다.
실시예 1-2-1. HLA-A 포함 융합단백질의 제조
생물학적 활성분자로서 HLA-A를 포함하고, IgM Fc 영역, J 사슬 및/또는 링커를 포함하는 융합단백질을 제조하였다.
구체적으로, 상기 HLA-A 단백질의 안정성을 증가시키기 위하여, CMV(cytomegalovirus) 유래 펩타이드를 추가로 결합(로딩)하였으며, 추가적으로 β2m (Beta-2 microglobulin)을 상기 CMV 유래 펩타이드에 이어서 결합하였다. 이를 통해, 안정성이 향상된 HLA-A 단백질(이하, 'CMVpHLA'로 명명함)을 구축하였고, 이의 구체적인 서열은 서열번호 11 또는 12에 기재하였다. 그리고 추후 단백질 정제를 용이하게 하기 위하여, C-말단에 FLAG 태그를 부착하였으며, 상세 수행방법은 실시예 1-1에 따른 클로닝 방법을 이용하였다.
상기 구축한 CMVpHLA 재조합 플라스미드에서 FLAG 태그를 제외한 HLA-A 단백질 서열을 IgM Fc 영역 서열에 연결하였으며, 이렇게 구축된 최종 재조합 플라스미드 벡터를 Expi293 (Thermo Scientific) 동물 세포에 도입하여, 융합단백질을 빠른 시간 내에 확보하기 위한 임시발현(transient expression) 시스템을 확립하였다.
구체적으로, 형질전환 하루 전, 플라스크에 3.0 × 106 세포/mL 농도의 세포를 분주한 후 24시간 배양하였다. 형질도입 당일 Expi293® expression 배지를 첨가하여 3.0 × 106 세포/mL 농도로 희석하였다. 이후, 각각의 재조합 플라스미드 벡터 1 ㎍/mL를 Opti-MEM® 배지와 혼합하였고, ExpiFectamine® 시약과 Opti-MEM® 배지를 부피에 맞춰 혼합한 후 상온에서 5분간 두었다. 이후, 15분간 DNA와 ExpiFectamine® 시약을 반응시키고 플라스크에 첨가하였으며, 16 내지 22시간 후에 enhancer1과 2를 처리하고, 4 내지 5일차에 세포의 생존율(viability)이 75% 이상일 때를 확인하고 융합단백질을 회수하였다.
이후, IgM 친화성 크로마토그래피를 이용하여 발현된 융합단백질을 정제하였다. 구체적으로, 상기 실시예 5의 임시발현 시스템으로부터 얻은 배양액을 0.2 ㎛의 기공 크기를 갖는 PES 여과 막에 여과하여 불순물을 제거하였다. 상기 회수된 여과액을 IgM 친화성 매트릭스 POROS™ CaptureSelect™ IgM Affinity Matrix®(Thermo Scientific)에 적재하여 융합단백질을 정제하였다. 아래와 같은 조건으로 IgM 친화성 크로마토그래피를 수행하였다.
<크로마토그래피 조건>
- 수지: POROS™ CaptureSelect™ IgM Affinity Matrix®
- 유속: 480 cm/h
- 평형: PBS (Phosphate-buffered saline) 완충액
- 적재: 최대 6 g 단백질/L 수지 부피
- 재생 및 멸균: 0.01 M NaOH 용액
- 용출: 0.1 M glycine-HCl, pH 2.7 완충액
- 보관: 20% EtOH
이후, 용출액의 부피의 1/10만큼 1.0 M Tris-HCl, pH 8.5 완충액으로 중화하였다. 회수한 융합단백질을 한외여과방식을 이용하여 농축한 후 PBS로 투석하여 -20℃에 보관하였다.
한편, IgM Fc 영역을 포함하지 않는 CMVpHLA 대조군 단백질의 정제 및 농축은 다음과 같은 방법으로 수행하였다. 상기 임시발현 시스템으로부터 얻은 배양액을 0.2 ㎛의 기공 크기를 갖는 PES 여과 막에 여과하여 불순물을 제거하였다. 상기 회수된 여과액을 DYKDDDDK (FLAG-tag) 친화성 매트릭스 Pierce Anti-DYKDDDDK Affinity Resin® (Thermo Scientific)에 적재하여 정제하였다.
아래와 같은 조건으로 FLAG-tag 친화성 크로마토그래피를 수행하였다.
<크로마토그래피 조건>
- 수지: Pierce Anti-DYKDDDDK Affinity Resin®
- 유속: 300 cm/h
- 평형: PBS (Phosphate-buffered saline) 완충액
- 적재: 최대 3 g 단백질/L 수지 부피
- 재생 및 멸균: 0.1 M glycine-HCl, pH 2.7 완충액
- 용출: 0.1 M glycine-HCl, pH 2.7 완충액
- 보관: 20% EtOH
FLAG-tag 친화성 크로마토그래피를 진행한 후, 용출액의 부피의 1/10만큼 1.0 M Tris-HCl, pH 8.5 완충액으로 중화하였다. 이후, 회수한 융합단백질을 한외여과방식을 이용해 농축한 후 PBS로 투석하여 -20℃에 보관하였다.
전술한 방법으로 제조한 융합단백질은 다음과 같은 구조식으로 표시하였다: [(생물학적 활성분자)-(링커)-(IgM Fc 영역)]-(J 사슬). 이때, 하나의 융합단백질에 포함되는 생물학적 활성분자, 링커, IgM Fc 영역 및/또는 J 사슬의 갯수는 아래 첨자로 표시하였으며, 1개의 경우에는 표시하지 않았다.
융합단백질 비고
[(CMVpHLA)2-(IgD 힌지 영역)2-(IgM Fc 영역)]5-(J사슬) 링커는 IgD 힌지 영역이며, IgM Fc 영역은 오합체를 형성함
[(CMVpHLA)2-(IgA 힌지 영역)2-(IgM Fc 영역)]5-(J사슬) 링커는 IgA 힌지 영역이며, IgM Fc 영역은 오합체를 형성함
[(CMVpHLA)2-((GGGGS)3)2-(IgM Fc 영역)]5-(J사슬) 링커는 (GGGGS)3이며, IgM Fc 영역은 오합체를 형성함
[(CMVpHLA)2-(링커)0-(IgM Fc 영역)]5-(J사슬) 링커를 포함하지 않으며, IgM Fc 영역은 오합체를 형성함
[(CMVpHLA)2-(IgD 힌지 영역)2-(IgM Fc 영역)]6-(J사슬)0 링커는 IgD 힌지 영역이며, IgM Fc 영역은 육합체를 형성함
CMVpHLA 링커, IgM Fc 영역 및 J 사슬을 포함하지 않음
CMVpHLAKb 링커, IgM Fc 영역 및 J 사슬을 포함하지 않으며 α3 영역이 mouse Kf로 치환됨
이를 상기 표 1에 나열하였다. 예를 들어, "[(CMVpHLA)2-(IgD 힌지 영역)2-(IgM Fc 영역)]5-(J사슬)"은 생물학적 활성분자로서 CMVpHLA 2개가 IgD 힌지 영역 2개를 통해 IgM Fc 영역 단량체에 각각 결합되어 있고, 상기 IgM Fc 영역 단량체는 5개가 결합된 오합체로서, 상기 오합체를 형성하기 위하여 J 사슬 1개를 포함하는 융합단백질을 의미한다. 이러한 융합단백질의 오합체 구조는 도 1의 A에 도시되어 있는 형태를 참조할 수 있다.
또한, "[(CMVpHLA)2-(링커)0-(IgM Fc 영역)]5-(J사슬)"은 생물학적 활성분자로서 CMVpHLA 2개 각각이 링커를 통하지 않고 IgM Fc 영역 단량체에 직접 결합되어 있고, 상기 IgM Fc 영역 단량체는 5개가 결합된 오합체로서, 상기 오합체를 형성하기 위하여 J 사슬 1개를 포함하는 융합단백질을 의미한다. 이러한 융합단백질의 오합체 구조는 도 1의 B에 도시되어 있는 형태를 참조할 수 있다.
또한, "[(CMVpHLA)2-(IgD 힌지 영역)2-(IgM Fc 영역)]6-(J사슬)0"은 생물학적 활성분자로서 CMVpHLA 2개가 IgD 힌지 영역 2개를 통해 IgM Fc 영역 단량체에 각각 결합되어 있고, 상기 IgM Fc 영역 단량체는 6개가 결합된 육합체로서, 상기 육합체를 형성하기 위하여 J 사슬은 포함하지 않는 융합단백질을 의미한다. 이러한 융합단백질의 육합체 구조는 도 1의 C에 도시되어 있는 형태를 참조할 수 있다.
실시예 1-2-2. IgG 항체단편 포함 융합단백질의 제조
생물학적 활성분자로서 IgG 항체단편을 포함하고, IgM Fc 영역, J 사슬 및/또는 링커를 포함하는 융합단백질을 제조하였다.
구체적으로, HLA-G 단백질에 결합하는 항체 일부(IgG Fab; 이하, 'A2014'로 명명함)를 사용하였다. 상기 A2014는 IgG Fab의 모이어티 중에서 경쇄(서열번호 15 또는 16), 및 중쇄의 일부인 VH 및 CH1 (서열번호 17 또는 18)을 상기 실시예 1-1에 따른 클로닝 방법을 이용하여 구축하였다.
또한, IgM Fc 영역이 아니라 IgG Fc 영역을 포함하는 융합단백질을 대조군으로서 제조하였다. 상기 IgG Fc 영역(서열번호 19 또는 20)으로는 IgG의 CH2 및 CH3 도메인을 사용하였다.
상기 구축한 A2014 재조합 플라스미드 서열을 IgM Fc 영역 또는 IgG Fc 영역 서열에 연결하였으며, 이렇게 구축된 최종 재조합 플라스미드 벡터를 상기 실시예 1-2-1에서 시행한 방법으로 세포에 도입하였고, 융합단백질을 발현시켰다.
이후, 배양액을 상기 1-2-1과 동일한 방법으로 정제 및 농축한 후 PBS로 투석하여 -20℃에 보관하였다.
한편, IgG Fc 영역을 포함하는 융합단백질의 정제 및 농축은 다음과 같은 방법으로 수행하였다. 상기 임시발현 시스템으로부터 얻은 배양액을 상기 1-2-1의 방법에 따라, IgG 친화성 매트릭스 MabSelect SuRe® (Cytiva)에 적재하여 정제하였다.
아래와 같은 조건으로 IgG 친화성 크로마토그래피를 수행하였다.
<크로마토그래피 조건>
- 수지: MabSelect SuRe®
- 유속: 300 cm/h
- 평형: PBS (Phosphate-buffered saline) 완충액
- 적재: 최대 35 g 단백질/L 수지 부피
- 재생 및 멸균: 0.01 M NaOH 용액
- 용출: 0.1 M glycine-HCl, pH 2.7 완충액
- 보관: 20% EtOH
IgG 친화성 크로마토그래피를 진행한 후, 용출액의 부피의 1/10만큼 1.0 M Tris-HCl, pH 8.5 완충액으로 중화하였다. 이후, 회수한 융합단백질을 한외여과방식을 이용해 농축한 후 PBS로 투석하여 -20℃에 보관하였다.
융합단백질 비고
[(A2014)2-(IgD 힌지 영역)2-(IgM Fc 영역)]5-(J사슬) 링커는 IgD 힌지 영역이며, IgM Fc 영역은 오합체를 형성함
[(A2014)2-(IgA 힌지 영역)2-(IgM Fc 영역)]5-(J사슬) 링커는 IgA 힌지 영역이며, IgM Fc 영역은 오합체를 형성함
[(A2014)2-((GGGGS)3)2-(IgM Fc 영역)]5-(J사슬) 링커는 (GGGGS)3이며, IgM Fc 영역은 오합체를 형성함
[(A2014)2-(링커)0-(IgM Fc 영역)]5-(J사슬) 링커를 포함하지 않으며, IgM Fc 영역은 오합체를 형성함
[(A2014)2-(IgD 힌지 영역)2-(IgM Fc 영역)]6-(J사슬)0 링커는 IgD 힌지 영역이며, IgM Fc 영역은 육합체를 형성함
(A2014)-(IgG Fc 영역) 링커, IgM Fc 영역 및 J 사슬을 포함하지 않으며, IgG Fc 영역을 포함함
전술한 방법으로 제조한 융합단백질은 상기 표 2에 나열하였다.
예를 들어, "[(A2014)2-(IgD 힌지 영역)2-(IgM Fc 영역)]5-(J사슬)"은 생물학적 활성분자로서 A2014 2개가 IgD 힌지 영역 2개를 통해 IgM Fc 영역 단량체에 각각 결합되어 있고, 상기 IgM Fc 영역 단량체는 5개가 결합된 오합체로서, 상기 오합체를 형성하기 위하여 J 사슬 1개를 포함하는 융합단백질을 의미한다. 이러한 융합단백질의 오합체 구조는 도 1의 A에 도시되어 있는 형태를 참조할 수 있다.
또한, "[(A2014)2-(링커)0-(IgM Fc 영역)]5-(J사슬)"은 생물학적 활성분자로서 A2014 2개 각각이 링커를 통하지 않고 IgM Fc 영역 단량체에 직접 결합되어 있고, 상기 IgM Fc 영역 단량체는 5개가 결합된 오합체로서, 상기 오합체를 형성하기 위하여 J 사슬 1개를 포함하는 융합단백질을 의미한다. 이러한 융합단백질의 오합체 구조는 도 1의 B에 도시되어 있는 형태를 참조할 수 있다.
또한, "[(A2014)2-(IgD 힌지 영역)2-(IgM Fc 영역)]6-(J사슬)0"은 생물학적 활성분자로서 A2014 2개가 IgD 힌지 영역 2개를 통해 IgM Fc 영역 단량체에 각각 결합되어 있고, 상기 IgM Fc 영역 단량체는 6개가 결합된 육합체로서, 상기 육합체를 형성하기 위하여 J 사슬은 포함하지 않는 융합단백질을 의미한다. 이러한 융합단백질의 육합체 구조는 도 1의 C에 도시되어 있는 형태를 참조할 수 있다.
실시예 1-2-3. EPO 유사체 포함 융합단백질의 제조
생물학적 활성분자로서 EPO 유사체를 포함하고, IgM Fc 영역, J 사슬 및/또는 링커를 포함하는 융합단백질을 제조하였다.
구체적으로, EPO 유사체로서 NESP (Novel erythropoiesis stimulating protein) 단백질을 사용하였다. 상기 NESP(서열번호 21 또는 22)를 IgM Fc 영역 서열에 연결하였으며, 상기 실시예 1에 따른 클로닝 방법을 이용하여 플라스미드 벡터를 구축하였다. 상기 구축된 재조합 플라스미드 벡터를 상기 실시예 1-2-1에서 시행한 방법으로 세포에 도입하였고, 융합단백질을 발현시켰으며, 정제 및 농축한 후 PBS로 투석하여 -20℃에 보관하였다.
융합단백질 비고
[(NESP)2-(IgD 힌지 영역)2-(IgM Fc 영역)]5-(J사슬) 링커는 IgD 힌지 영역이며, IgM Fc 영역은 오합체를 형성함
[(NESP)2-(링커)0-(IgM Fc 영역)]5-(J사슬) 링커를 포함하지 않으며, IgM Fc 영역은 오합체를 형성함
NESP 링커, IgM Fc 영역 및 J 사슬을 포함하지 않음
전술한 방법으로 제조한 융합단백질은 상기 표 3에 나열하였다.
예를 들어, "[(NESP)2-(IgD 힌지 영역)2-(IgM Fc 영역)]5-(J사슬)"은 생물학적 활성분자로서 NESP 2개가 IgD 힌지 영역 2개를 통해 IgM Fc 영역 단량체에 각각 결합되어 있고, 상기 IgM Fc 영역 단량체는 5개가 결합된 오합체로서, 상기 오합체를 형성하기 위하여 J 사슬 1개를 포함하는 융합단백질을 의미한다. 이러한 융합단백질의 오합체 구조는 도 1의 A에 도시되어 있는 형태를 참조할 수 있다.
또한, "[(NESP)2-(링커)0-(IgM Fc 영역)]5-(J사슬)"은 생물학적 활성분자로서 NESP 2개 각각이 링커를 통하지 않고 IgM Fc 영역 단량체에 직접 결합되어 있고, 상기 IgM Fc 영역 단량체는 5개가 결합된 오합체로서, 상기 오합체를 형성하기 위하여 J 사슬 1개를 포함하는 융합단백질을 의미한다. 이러한 융합단백질의 오합체 구조는 도 1의 B에 도시되어 있는 형태를 참조할 수 있다.
실시예 1-3. 제조된 융합단백질의 구조 확인
상기 실시예 1-1 및 1-2에서 제조한 융합단백질이 목적하는 구조를 갖는지 여부를 확인하였다. 한편, 생물학적 활성분자, 링커, IgM Fc 영역 단량체 및 J 사슬을 포함하며, 상기 IgM Fc 영역이 오합체를 형성하는 융합단백질의 모식도는 도 1의 A에 나타내었다. 또한, 생물학적 활성분자, IgM Fc 영역 단량체 및 J 사슬을 포함하되 링커는 포함하지 않으며, 상기 IgM Fc 영역이 오합체를 형성하는 융합단백질의 모식도는 도 1의 B에 나타내었다. 또한, 생물학적 활성분자, 링커 및 IgM Fc 영역 단량체를 포함하되 J 사슬은 포함하지 않으며, 상기 IgM Fc 영역이 육합체를 형성하는 융합단백질의 모식도는 도 1의 C에 나타내었다. 또한, 생물학적 활성분자 및 IgM Fc 영역 단량체를 포함하되 링커 및 J 사슬은 포함하지 않으며, 상기 IgM Fc 영역이 육합체를 형성하는 융합단백질의 모식도는 도 1의 D에 나타내었다.
구체적으로, 융합단백질의 구조는 Reducing SDS-PAGE를 이용하여 확인하였다. 각 융합단백질 2 ㎍에 5x reducing-PAGE 샘플 버퍼를 섞은 후, 100℃에서 5분간 가열하였으며, 이후 실온에 20분 방치하였다. 폴리아마이드 젤(12~20%, Invitrogen)을 젤 키트에 삽입 후 샘플을 로딩하여 200V에서 30분 동안 전기영동 한 후, 젤을 키트에서 분리하여 염색 용액(Coomassie Brilliant Blue staining solution)을 가하고 1시간 동안 방치하였다. 방치된 젤을 버퍼(destaining buffer; 70% 3차 증류수, 20% 메탄올, 10% 아세트산)로 옮기고 overnight 후 결과를 확인하였다.
그 결과, 도 2a, 도 2b 및 도 2c에 나타낸 바와 같이, IgM Fc 영역, 생물학적 활성분자, J 사슬 및/또는 링커를 포함하는 각 융합단백질은 이를 구성하는 해당 물질의 사이즈를 모두 포함하는 것을 확인하였다.
상기 결과를 통해, 상기 실시예 1에서 제조한 융합단백질은 원하는 구조를 가지며 제대로 발현됨을 알 수 있었다.
실시예 2. 융합단백질의 타겟 결합능
본 실시예 2에서는 상기 실시예 1에서 제조한 융합단백질의 타겟에 대한 결합능을 분석하였다. 이때, 타겟으로는 각 융합단백질이 포함하고 있는 생물학적 활성분자(HLA-A, IgG 항체단편 또는 EPO 유사체)에 따라 각기 다르게 설정하였다.
실시예 2-1. HLA-A 포함 융합단백질
생물학적 활성분자로서 HLA(CMVpHLA)를 포함하는 융합단백질의 타겟으로서, anti-CMVpHLA 항체에 대한 결합능을 확인하였다.
구체적으로, ELISA 어세이 및 SPR (Surface Plasmon Resonance)을 통해 분석하였다.
ELISA 어세이는 다음과 같이 수행하였다. 96웰 플레이트에 anti-CMVpHLA 항체(아주대학교)를 10 ng/웰로 4℃에서 16시간동안 코팅하였다. 이어서, 플레이트를 0.05% PBS-트윈으로 세척하고, 3% 탈지분유로 블로킹하였다. 블로킹 후, 각 융합단백질 또는 대조군 단백질을 포함하는 희석액을 웰에 첨가하고, 37℃에서 2시간 동안 인큐베이션하였다. 이어서, 플레이트를 세척하고, HRP가 연결된 anti-IgM(F5μ) 항체 (MERCK) 혹은 HRP가 연결된 anti-FLAG 항체 (Abcam)를 1:5000으로 희석하고 37℃에서 1시간 동안 인큐베이션하였다. 이후, 플레이트를 0.05% PBS-트윈으로 9회 세척하고 TMB 용액(Sigma)으로 발색한 후 1N 황산(대정화금)으로 반응을 종결하여 VARIOSKAN LUX (Thermo Scientific)으로 분석하였다.
SPR 분석법은 다음과 같이 수행하였다. SPR 분석기기는 Cytiva사의 Biacore T200을 사용하였다. Anti-CMVpHLA mouse Fc 항체(아주대학교)를 CM5 chip (Cytiva)에 표지하기 위해 recombinant protein G (Abcam)를 EDC/NHS 반응을 이용하여 붙여주고 1M 에탄올아민(Ethanolamine)으로 블로킹하였다. 이어서, CMVpHLA mouse Fc 항체를 흘려주어 방향성 있게 칩에 코팅해주었다. 이어서, 각 융합단백질 또는 대조군 단백질을 포함하는 희석액을 흘려주었으며, 10mM glycine-HCl, pH 1.5로 해리 반응을 시켰다.
그 결과, 도 3a에 나타낸 바와 같이, IgM Fc 영역을 포함하지 않는 CMVpHLA 대조군 단백질은 타겟(anti-CMVpHLA 항체)에 대한 결합 활성이 현저히 낮음을 확인하였다. 반면, IgM Fc 영역을 포함하는 융합단백질은 타겟(anti-CMVpHLA 항체)에 결합 활성이 매우 높으며, EC50 값은 상기 CMVpHLA 대조군 단백질에 비하여 수십배 향상되었음을 확인하였다.
융합단백질 ka (1/Ms) kd (1/s) KD (M) Rmax Avidity score
[(CMVpHLA)2-(IgD 힌지 영역)2-(IgM Fc 영역)]5-(J사슬) 5.56×106 3.78×10-5 6.81×10-12 33.72 8.92×105
[(CMVpHLA)2-(링커)0-(IgM Fc 영역)]5-(J사슬) 5.44×106 5.56×10-5 1.02×10-11 33.6 6.05×105
[(CMVpHLA)2-((GGGGS)3)2-(IgM Fc 영역)]5-(J사슬) 4.74×106 2.94×10-5 6.22×10-12 32.06 1.09×106
[(CMVpHLA)2-(IgA 힌지 영역)2-(IgM Fc 영역)]5-(J사슬) 5.43×106 3.18×10-5 5.86×10-12 30.2 9.50×105
[(CMVpHLA)2-(IgD 힌지 영역)2-(IgM Fc 영역)]6-(J사슬)0 8.44×106 1.97×10-4 2.33×10-11 29.88 1.52×105
CMVpHLA 2.52×106 0.004645 1.84×10-9 10.33 2.22×103
(표 4에서, ka는 두 물질이 붙는 속도(association rate constant), kd는 두 물질이 해리되는 속도(dissociation rate constant), KD는 결합력, Rmax는 두 물질이 붙었을 때 SPR에서의 각도가 달라지는 최대 RU 값, Avidity score는 Rmax/kd 값으로서 SPR에서 avidity가 높은 정도를 나타내는 값을 의미함.)
또한, 상기 표 4에 나타낸 바와 같이, IgM Fc 영역을 포함하지 않는 CMVpHLA 대조군 단백질은 타겟(CMVpHLA mouse Fc 항체)에 대한 KD 값 및 avidity score (Rmax/Kd)가 현저히 낮음을 확인하였다. 반면, IgM Fc 영역을 포함하는 융합단백질은 타겟(CMVpHLA mouse Fc 항체)에 대한 KD 값 및 avidity score (Rmax/Kd)가 현저히 높으며, 상기 CMVpHLA 대조군 단백질과 비교 시 100배 내지 1000배 향상된 결합능을 나타냄을 확인하였다.
상기 결과를 통해, IgM Fc 영역은 생물학적 활성분자의 타겟에 대한 결합능을 향상시킬 수 있으므로, 본 발명에 따른 IgM Fc 영역 및 생물학적 활성분자를 포함하는 융합단백질은 세포 내에서 목적하는 생물학적 활성을 높은 수준으로 나타낼 수 있음을 알 수 있었다.
실시예 2-2. IgG 항체단편 포함 융합단백질
생물학적 활성분자로서 항체 단편(IgG Fab; A2014)을 포함하는 융합단백질의 타겟으로서, HLA-G 단백질 항원에 대한 결합능을 확인하였다.
구체적으로, 상기 실시예 2-1에 따른 ELISA 어세이 및 SPR을 통해 분석하였다.
그 결과, 도 3b에 나타낸 바와 같이, IgG Fc 영역을 포함하는 (A2014)-(IgGFc) 대조군 단백질은 HLA-G 항원에 대한 결합 활성이 현저히 낮음을 확인하였다. 반면, IgM Fc 영역을 포함하는 융합단백질은 HLA-G 항원에 대한 결합 활성이 매우 높으며, EC50 값은 상기 (A2014)-(IgGFc) 대조군 단백질에 비하여 약 1000배 이상 향상되었음을 확인하였다.
융합단백질 ka (1/Ms) kd (1/s) KD (M) Rmax Avidity score
[(A2014)2-(IgD 힌지 영역)2-(IgM Fc 영역)]5-(J사슬) 9.58×10-6 4.25×10-5 4.44×10-12 93.38 2.20×10-6
[(A2014)2-(링커)0-(IgM Fc 영역)]5-(J사슬) 2.63×10-7 1.12×10-4 4.25×10-12 59.87 5.36×10-5
[(A2014)2-((GGGGS)3)2-(IgM Fc 영역)]5-(J사슬) 1.96×10-7 9.66×10-5 4.94×10-12 56.68 5.87×10-5
[(A2014)2-(IgA 힌지 영역)2-(IgM Fc 영역)]5-(J사슬) 1.39×10-7 5.05×10-5 3.63×10-12 73.38 1.45×10-6
[(A2014)2-(IgD 힌지 영역)2-(IgM Fc 영역)]6-(J사슬)0 1.48×10-7 3.51×10-5 2.32×10-12 86.71 2.47×10-6
(A2014)-(IgG Fc) 1.18×10-7 3.05×10-4 2.59×10-11 17.44 5.71×10-4
(표 5에서, ka는 두 물질이 붙는 속도(association rate constant), kd는 두 물질이 해리되는 속도(dissociation rate constant), KD는 결합력, Rmax는 두 물질이 붙었을 때 SPR에서의 각도가 달라지는 최대 RU 값, Avidity score는 Rmax/kd 값으로서 SPR에서 avidity가 높은 정도를 나타내는 값을 의미함.)
또한, 상기 표 5에 나타낸 바와 같이, IgG Fc 영역을 포함하는 (A2014)-(IgGFc) 대조군 단백질은 HLA-G 항원에 대한 KD 값 및 avidity score (Rmax/Kd)가 현저히 낮음을 확인하였다. 반면, IgM Fc 영역을 포함하는 융합단백질은 HLA-G 항원에 대한 KD 값 및 avidity score (Rmax/Kd)가 현저히 높으며, 상기 (A2014)-(IgGFc) 대조군 단백질과 비교 시 10배 내지 500배 향상된 결합능을 나타냄을 확인하였다.
상기 결과를 통해, IgM Fc 영역은 생물학적 활성분자의 타겟에 대한 결합능을 향상시킬 수 있으므로, 본 발명에 따른 IgM Fc 영역 및 생물학적 활성분자를 포함하는 융합단백질은 세포 내에서 목적하는 생물학적 활성을 높은 수준으로 나타낼 수 있음을 알 수 있었다.
실시예 2-3. EPO 유사체 포함 융합단백질
생물학적 활성분자로서 EPO 유사체(NESP)를 포함하는 융합단백질의 타겟으로서 EPO 수용체에 대한 결합능을 확인하였다.
구체적으로, 상기 실시예 2-1에 따른 ELISA 어세이 및 SPR을 통해 분석하였다.
그 결과, 도 3c에 나타낸 바와 같이, IgM Fc 영역 및 NESP를 포함하는 융합단백질은 EPO 수용체에 결합 활성이 매우 높음을 확인하였다.
융합단백질 ka (1/Ms) kd (1/s) KD (M) Rmax Avidity score
[(NESP)2-(IgD 힌지 영역)2-(IgM Fc 영역)]5-(J사슬) 1.383×10-6 1.240×10-5 8.968×10-12 402.0 3.24×107
[(NESP)2-(링커)0-(IgM Fc 영역)]5-(J사슬) 1.612×10-6 4.051×10-5 2.513×10-11 354.8 8.76×106
NESP 1.241×10-6 1.456×10-3 1.173×10-9 111.2 7.64×104
(표 6에서, ka는 두 물질이 붙는 속도(association rate constant), kd는 두 물질이 해리되는 속도(dissociation rate constant), KD는 결합력, Rmax는 두 물질이 붙었을 때 SPR에서의 각도가 달라지는 최대 RU 값, Avidity score는 Rmax/kd 값으로서 SPR에서 avidity가 높은 정도를 나타내는 값을 의미함.)
또한, 상기 표 6에 나타낸 바와 같이, IgM Fc 영역을 포함하지 않는 NESP 대조군 단백질은 EPO 수용체에 대한 KD 값 및 avidity score (Rmax/Kd)가 현저히 낮음을 확인하였다. 반면, IgM Fc 영역 및 NESP를 포함하는 융합단백질은 EPO 수용체에 대한 KD 값 및 avidity score (Rmax/Kd)가 현저히 높으며, 상기 NESP 대조군 단백질과 비교 시 100배 내지 400배 향상된 결합능을 나타냄을 확인하였다.
상기 결과를 통해, IgM Fc 영역은 생물학적 활성분자의 타겟에 대한 결합능을 향상시킬 수 있으므로, 본 발명에 따른 IgM Fc 영역 및 생물학적 활성분자를 포함하는 융합단백질은 세포 내에서 목적하는 생물학적 활성을 높은 수준으로 나타낼 수 있음을 알 수 있었다.
특히, 상기 실시예 2-1 내지 2-3의 결과를 종합한 결과, 전술한 효과는 생물학적 활성분자가 IgM Fc 영역에 결합하는 경우라면 생물학적 활성분자의 종류 또는 MoA (Mode of Action)에 상관없이 나타남을 알 수 있었다.
실시예 3. 융합단백질의 생물학적 활성
실시예 3-1. CD8+ T 세포의 활성화, 증식 유도능 및 세포독성 분석
상기 실시예 1에서 제조한 융합단백질의 생물학적 활성을 확인하기 위하여, CD8+ T 세포에 대한 활성화 및 증식 유도능을 분석하였다.
먼저, CD8+ T 세포에 대한 활성화는 IFN-γ ELISPOT 분석을 통해 확인하였다. PBMC는 Immunospot으로부터 구매하여 사용하였고, CD8+ T세포는 CD8+ T세포 분리 키트(Miltenyi Biotec)를 이용하여 수득하였으며, ELISPOT 분석은 ELISPOT 키트(Immunospot)를 이용하여 진행하였다. 이후, IFN-γ 항체로 코팅된 플레이트를 PBS로 세척한 후 RPMI-1640(10% FBS)를 넣어 상기 항체를 안정화하였으며, RPMI-1640을 제거한 후 각 융합단백질 또는 대조군 단백질을 포함하는 희석액을 플레이트에 각각 넣어주었다. 이후, PBMC(6 × 105 세포/웰) 및 CD8+ T 세포(2 × 105 세포/웰)를 각 융합단백질이 들어있는 웰에 각각 넣어주고 37℃ 5% CO2 인큐베이터에서 48시간 동안 반응하였다. 반응한 플레이트를 PBS로 세척하여 세포 및 물질을 제거한 후, Biotinylated IFN-γ 항체로 2시간 상온에서 반응하였다. PBS로 세척 후 Strep-AP를 넣고 1시간 상온에서 반응한 후, PBS로 세척하여 기질과 10분간 반응하여 발색을 유도하였다. 이후, ELISPOT reader (AID)로 분석하여 GraphPad Prism Version 5.0 (GraphPad software) 분석프로그램을 이용하여 통계처리를 진행하였다.
한편, CD8+ T 세포에 대한 증식 유도능은 FACS를 통해 확인하였다. Immunospot으로부터 구매한 PBMC 1 × 106 세포/mL을 RPMI-1640(10% FBS)로 현탁하였고, 이를 12웰에 1 × 106 세포/웰의 밀도로 시딩하였다. 이후, 각 융합단백질 또는 대조군 단백질을 웰 당 2 nM의 농도로 처리하고, IL-2(Peprotech)를 20 U/mL씩 첨가하여 배양하였다. 3일 내지 4일 후, IL-2 20 U/mL, IL-7(Peprotech) 25 ng/mL, IL-15(Peprotech) 25 ng/mL을 첨가하고 배양 7일 내지 8일째에 상기 3종의 사이토카인을 혼합하였고, 최초 시작한 부피만큼의 배양배지를 추가하였다. 10 내지 11일 혹은 19 내지 20일에 각각의 세포를 수득하여 FACS 완충액(5% FBS in PBS)로 세척하였다. 이후, 세포 현탁액에 아이소타입 항체(Biolegend)를 처리하여 Fc 블로킹을 진행한 후 FACS 완충액으로 세척하였다. 이후, PerCP cy5.5 anti-human CD8 항체(BD bioscience)를 처리한 후 세척하였고, HLA-A*02:01 CMV pp65 tetramer (MBL)를 처리한 후 세척하였다. 과정을 완료한 후 유세포분석기(BD bioscience, FACSLyric™)를 이용하여 CMV 특이적 CD8+ T 세포의 증식정도를 확인하였다.
또한, CD8+ T 세포의 세포독성 분석은 FACS를 통해 확인하였다. Immunospot으로부터 구매한 PBMC 6 × 105 cell/mL을 RPMI-1640(10% FBS)로 현탁하였고, 이를 6웰에 1.8 × 106 세포/웰의 밀도로 시딩하였다. 시딩 후, 각 융합단백질 또는 대조군 단백질을 웰당 100 nM의 농도로 처리하고, IL-2(Peprotech)를 20 U/mL, Anti-human CD28 antibody (Ebioscience)를 2 μg/mL씩 첨가하여 배양하였다. 3일 내지 4일 후, IL-2 20 U/mL, IL-7(Peprotech) 25 ng/mL, IL-15(Peprotech) 25 ng/mL, Anti-human CD28 antibody 2 μg/mL을 첨가하고 배양 7일 내지 8일째에 상기 3종의 사이토카인과 1종의 항체를 혼합하였고, 최초 시작한 부피만큼의 배양배지를 추가함과 동시에 각 융합단백질 또는 대조군 단백질을 첨가하였다. 그런 후 3일 내지 4일 후마다 상기 3종의 사이토카인과 1종의 항체를 혼합하여 첨가하였으며, 19일 내지 20일에 각각의 세포를 FACS 완충액으로 세척한 후, CD8+ T세포를 CD8+ T세포 분리 키트(Miltenyi Biotec)를 이용하여 수득하였다. 그런 후, 타겟 세포인 T2 세포(ATCC)에 CMVpp65 peptide 50 μg/mL과 3 μg/mL의 B2M (Sino)을 37℃ 5% CO2 인큐베이터에서 1시간 동안 반응하였다. FACS 완충액으로 세척 후 1 × 106 세포/4μM DiO (Invitrogen)을 처리 후 37℃ 5% CO2 인큐베이터에서 반응 후 세척하였다. 그런 후, DiO가 표지된 T2 세포와 상기 CD8+ T세포를 비율별로 섞어주고 각 융합단백질 또는 대조군 단백질을 넣어준 후 4 시간 반응하였다. 그리고 7AAD (Invitrogen)를 처리하고 10분 반응 후, 유세포분석기로 T2 세포의 사멸정도를 분석하였다.
그 결과, 도 4에 나타낸 바와 같이, IgM Fc 영역을 포함하지 않는 CMVpHLA 대조군 단백질에 비하여, IgM Fc 영역 및 CMVpHLA을 포함하는 융합단백질은 생성된 IFN-γ의 양이 약 2배 이상 증가함을 확인하였으며, 이는 IgM Fc로 인해 결합능이 높은 것을 다시 한번 확인할 수 있었다. 또한, IgM Fc 영역 및 링커를 모두 포함하는 융합단백질이 IgM Fc 영역은 포함하되 링커를 포함하지 않는 융합단백질에 비해 생성된 IFN-γ양이 높은 것을 보아 링커가 연결된 경우에 더 우수한 생물학적 활성을 보이는 것을 알 수 있었다.
또한, 도 5a에 나타낸 바와 같이, IgM Fc 영역은 포함하되 링커를 포함하지 않는 융합단백질에 비하여, IgM Fc 영역 및 링커를 모두 포함하는 융합단백질은 CD8+ T 세포의 증식을 유도하는 효과가 3배 이상 우수함을 확인하였다.
또한, 도 5b에 나타낸 바와 같이 IgM Fc 영역을 포함하지 않는 CMVpHLA 대조군 단백질에 비하여, IgM Fc 영역 및 링커와 CMVpHLA을 포함하는 융합단백질은 CD8+ T 세포의 증식을 유도하는 효과가 30배 이상 우수함을 확인하였다. 나아가, 도 6에 나타낸 바와 같이, IgM Fc 영역을 포함하지 않는 CMVpHLA 대조군 단백질에 비하여, IgM Fc 영역 및 CMVpHLA을 포함하는 융합단백질은 암세포에 대한 독성이 더 높음을 확인하였다.
상기 결과를 통해, IgM Fc 영역을 포함하는 융합단백질은 이를 포함하지 않는 단백질에 비하여, 높은 수준으로 CD8+ T 세포의 활성화, 증식 및 암세포의 사멸을 유도할 수 있고, 특히 상기 IgM Fc 영역 및 생물학적 활성분자가 링커로 연결된 경우에는 더 우수한 생물학적 활성을 나타낼 수 있음을 알 수 있었다.
실시예 3-2. HLA-G 발현 세포에 대한 결합 활성
상기 실시예 1에서 제조한 융합단백질의 생물학적 활성을 확인하기 위하여, HLA-G를 발현하는 JEG-3 세포에 대한 결합 활성도를 분석하였다.
구체적으로, 자연적으로 HLA-G를 발현하는 JEG-3 세포(ATCC, 3.5 × 105 세포/100 ㎕)에 각 융합단백질 또는 대조군 단백질을 포함하는 희석액을 각각 넣어주고 4℃에서 1시간 반응하였다. 이후, FACS 완충액(5% FBS in PBS)으로 세척한 후 anti-IgM-PE (ebioscience) 혹은 anti-IgG Fc-FITC (Biolegend)를 처리하고 4℃에서 30분동안 반응하였다. 마지막으로 FACS 완충액으로 세척 후, 유세포분석기(BD bioscience, FACSLyric™)를 이용하여 JEG-3 세포에 결합하는 융합단백질 및 대조군의 정도를 확인하였다.
그 결과, 도 7에 나타낸 바와 같이, IgG Fc 영역을 포함하는 (A2014)-(IgGFc) 대조군 단백질은 HLA-G 발현 세포에 대한 결합 활성이 현저히 낮음을 확인하였다. 반면, IgM Fc 영역을 포함하는 융합단백질은 상기 세포에 대한 결합 활성이 매우 높으며, 최대 MFI (median fluorescence intensity) 값은 상기 (A2014)-(IgGFc) 대조군 단백질에 비하여 약 2.5배 이상 향상됨을 확인하였다.
상기 결과를 통해, IgM Fc 영역을 포함하는 융합단백질은 이를 포함하지 않는 단백질에 비하여, 세포 내 수용체와 결합하는 활성이 더 높음을 알 수 있었다. 따라서, 본 발명에 따른 IgM Fc 영역 및 생물학적 활성분자를 포함하는 융합단백질은 세포 내에서 목적하는 생물학적 활성을 높은 수준으로 나타낼 수 있음을 알 수 있었다.
실시예 3-3. ILT-2 단백질의 결합 차단 활성
상기 실시예 1에서 제조한 융합단백질의 생물학적 활성을 확인하기 위하여, HLA-G 단백질과 ILT-2 (LILRB1) 단백질의 결합 차단 활성을 분석하였다. 상기 ILT-2 단백질은 면역세포에서 발현되는 수용체 단백질로서, HLA-G 단백질이 결합하는 경우 세포독성 T 세포, NK 세포 및 B 세포의 활성이 억제되어 정상적인 면역반응이 야기되지 않는다.
먼저, 재조합 HLA-G 단백질과 재조합 ILT-2 단백질과의 결합 차단 활성은 ELISA 어세이로 분석하였다. 96웰 플레이트에 ILT-2 항원(R&D systems)을 150 ng/웰로 넣은 후 4℃에서 16시간동안 코팅하였다. 이어서, 플레이트를 0.05% PBS-트윈으로 세척하고, 3% 탈지분유로 블로킹하였다. 블로킹 후 각 융합단백질 또는 대조군 단백질을 포함하는 희석액을 웰에 첨가하고, 각 웰에 HLA-G-6x his tag (아이엠바이오로직스)을 일정한 농도로 처리하고 37℃에서 2시간 동안 인큐베이션하였다. 이어서, 플레이트를 세척하고, HRP가 연결된 anti-6x his 항체 (abcam)를 1:10,000으로 희석하고 37℃에서 1시간 동안 인큐베이션하였다. 이후, 플레이트를 0.05% PBS-트윈으로 9회 세척하고 TMB 용액(Sigma)으로 발색한 후 1N 황산(대정화금)으로 반응을 종결하여 VARIOSKAN LUX (Thermo Scientific)으로 분석하였다.
한편, 세포에서 자연적으로 발현된 HLA-G 단백질과 ILT-2 단백질과의 결합 차단 활성은 JEG-3 세포를 이용하여 분석하였다. ATCC로부터 구매한 JEG-3 세포(3 × 105 세포/튜브)를 10% FBS가 포함된 MEM로 풀어주었다. 이후, 각 융합단백질 또는 대조군 단백질을 포함하는 희석액을 튜브에 첨가하고, 4℃에서 30분 동안 반응하였다. FACS 완충액(5% FBS in PBS)로 세척한 후 ILT-2 Fc chimera (R&D systems)를 1.5 ㎍씩 처리하여 4℃에서 30분 동안 반응하였다. FACS 완충액으로 세척하고, PE-anti-human IgG Fc (Biolegnd)를 처리한 후 4℃에서 20분 동안 반응하였다. 마지막으로 FACS 완충액으로 세척한 후, 유세포분석기(BD bioscience, FACSLyric™)를 이용하여 ILT-2 단백질과 세포 내 발현된 HLA-G 단백질과의 결합 차단 정도를 확인하였다.
그 결과, 도 8에 나타낸 바와 같이, IgG Fc 영역을 포함하는 (A2014)-(IgGFc) 대조군 단백질은 재조합 HLA-G 단백질 및 ILT-2 단백질의 결합 차단 활성이 현저히 낮음을 확인하였다. 반면, IgM Fc 영역을 포함하는 융합단백질은 상기 단백질들의 결합 차단 활성이 매우 높으며, IC50 값은 상기 (A2014)-(IgGFc) 대조군 단백질에 비하여 약 5 내지 7배 이상 향상됨을 확인하였다.
또한, 도 9에 나타낸 바와 같이, IgM Fc 영역을 포함하는 융합단백질은 세포에서 발현된 HLA-G 단백질에 대한 결합 차단 활성이 매우 높음을 확인하였다. 이는, 체내에서 암세포 표면에 발현된 HLA-G가 면역세포의 저해수용체인 ILT-2에 결합하는 것을 효과적으로 저해할 수 있으며, 이에 따라 암세포의 사멸이 증가할 수 있음을 시사하는 것이다.
상기 결과를 통해, IgM Fc 영역을 포함하는 융합단백질은 이를 포함하지 않는 단백질에 비하여, 세포 내 발현된 수용체 단백질과 항원의 결합을 차단하는 활성이 더 높음을 알 수 있었다. 따라서, 본 발명에 따른 IgM Fc 영역 및 생물학적 활성분자를 포함하는 융합단백질은 세포 내에서 목적하는 생물학적 활성을 높은 수준으로 나타낼 수 있음을 알 수 있었다.
실시예 3-4. 세포 내 EPO 수용체와의 결합 활성
상기 실시예 1에서 제조한 융합단백질의 생물학적 활성을 확인하기 위하여, EPO 수용체를 발현하는 세포에 대한 결합 활성도를 분석하였다.
구체적으로, Indigobioscience로부터 구매한 EPOR reporter assay를 이용하여 결합활성 능력을 확인하였다. 96웰 세포 배양 플레이트 (Corning)에 세포를 150 uL/웰의 밀도로 시딩한 후, 4 내지 6시간 동안 37℃의 5% CO2 배양기에서 배양하였다. 이후, 각 융합단백질 또는 대조군 단백질을 포함하는 희석액을 웰에 첨가하였고, 37℃의 5% CO2 배양기에서 하루 동안 배양하였다. 이후, 제조사의 프로토콜에 따라, 100 uL의 반응용액을 넣어주고 상온에서 5분 발색 후 VARIOSKAN LUX (Thermo Scientific)으로 분석하였다.
그 결과, 도 10에 나타낸 바와 같이, IgM Fc 영역을 포함하지 않는 NESP 대조군 단백질에 비하여, IgM Fc 영역 및 링커를 포함하는 융합단백질은 EPOR이 과발현된 세포의 증식을 더 높은 수준으로 유도함을 확인하였다. 즉, IgM Fc 영역을 포함하는 융합단백질은 세포 내 EPO 수용체와의 우수한 결합 활성을 나타내며, EPO 수용체 자극에 의한 신호전달 경로가 활성화되어 결국 세포의 증식능이 향상되는 효과를 나타냄을 확인하였다.
상기 결과를 통해, IgM Fc 영역을 포함하는 융합단백질은 이를 포함하지 않는 단백질에 비하여, 세포 내 수용체와의 결합능 및 이에 따른 생물학적 활성 유도능이 더 높음을 알 수 있었다. 따라서, 본 발명에 따른 IgM Fc 영역 및 생물학적 활성분자를 포함하는 융합단백질은 세포 내에서 목적하는 생물학적 활성을 높은 수준으로 나타낼 수 있음을 알 수 있었다.
특히, 상기 실시예 3-1 내지 3-4의 결과를 종합한 결과, 전술한 IgM Fc 영역에 의한 융합단백질의 생물학적 활성 유도 효과는 생물학적 활성분자가 IgM Fc 영역에 결합하는 경우라면 생물학적 활성분자의 종류 또는 MoA에 상관없이 나타남을 알 수 있었다.
이상의 설명으로부터, 본 발명이 속하는 기술 분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 이에 한정되지 않는 것으로 이해해야 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (16)

  1. 하기 구조식으로 표시되는, 융합단백질:
    [(X)a-(Y)b-(IgM Fc 영역)]m-(Z)n
    이때, 상기 구조식에 있어서,
    상기 X는 생물학적 활성분자이고,
    상기 Y는 링커이고,
    상기 IgM Fc 영역은 단량체이고,
    상기 Z는 J 사슬이고,
    상기 a는 1 또는 2이고, 상기 b는 0, 1 또는 2이고, 상기 m은 5 또는 6이고, 상기 n은 0 또는 1임.
  2. 제1항에 있어서,
    상기 IgM Fc 영역은 Cμ2 도메인, Cμ3 도메인 및 Cμ4 도메인으로 이루어진 그룹으로부터 선택되는 하나 이상을 포함하는 것인, 융합단백질.
  3. 제1항에 있어서,
    상기 링커는 IgD 힌지 영역, IgA 힌지 영역, IgG 힌지 영역 및 GS 링커로 이루어진 그룹에서 선택되는 하나 이상인, 융합단백질.
  4. 제3항에 있어서,
    상기 힌지 영역은 힌지 영역의 일부 또는 전체, CH1 도메인의 일부 또는 전체, CH2 도메인의 일부 또는 전체, 또는 이들의 조합을 포함하는 것인, 융합단백질.
  5. 제3항에 있어서,
    상기 GS 링커는 (GS)c, (SG)c, (GGGS)c, (GGGGS)c, GCGS(GGGS)c 및GCGGS(GGGGS)c로 이루어진 그룹에서 선택되는 하나 이상이며, 이때 상기 c는 2 내지 6의 정수인, 융합 단백질.
  6. 제1항에 있어서,
    상기 생물학적 활성분자는 항체, 항체의 항원-결합 단편, 항체-약물 접합체, 항체-유사 분자, 항체-유사 분자의 항원-결합 단편, 용해성 단백질, 막-결합 단백질, 리간드, 수용체, 바이러스-유사 입자, 단백질 톡신, 케모카인, 사이토카인 및 효소로 이루어진 그룹에서 선택되는 하나 이상인, 융합단백질.
  7. 제6항에 있어서,
    상기 항체의 항원-결합 단편은 Fab, F(ab')2, F(ab)2, Fab', Fab2, Fab3, Fv, scFv, Bis-scFv, 미니바디, 트리아바디, 다이아바디, 탠덤다이아바디, 나노바디 및 테트라바디로 이루어진 그룹에서 선택되는 하나 이상인, 융합단백질.
  8. 제6항에 있어서,
    상기 막-결합 단백질은 HLA인, 융합단백질.
  9. 제6항에 있어서,
    상기 리간드는 EPO 또는 EPO 유사체인, 융합단백질.
  10. 제1항에 있어서,
    상기 J 사슬은 단백질 분자가 추가로 결합된 것인, 융합단백질.
  11. 제10항에 있어서,
    상기 단백질 분자는 항체, 항체의 항원-결합 단편, 항체-약물 접합체, 항체-유사 분자, 항체-유사 분자의 항원-결합 단편, 용해성 단백질, 막-결합 단백질, 리간드, 수용체, 바이러스-유사 입자, 단백질 톡신 및 효소로 이루어진 그룹에서 선택되는 하나 이상인, 융합단백질.
  12. 제10항에 있어서,
    상기 단백질 분자는 공동자극 수용체(co-stimulatory receptor), 사이토카인 및 세포관여자(cell engager)로 이루어진 그룹에서 선택되는 하나 이상인, 융합단백질.
  13. 제1항의 융합단백질을 코딩하는 핵산 분자.
  14. 제13항의 핵산 분자를 포함하는, 융합단백질 발현용 벡터.
  15. 제14항의 융합단백질 발현용 벡터가 도입된 숙주 세포.
  16. 제15항의 융합단백질 발현용 벡터를 숙주 세포에 도입하는 단계를 포함하는, 제1항의 융합단백질을 제조하는 방법.
PCT/KR2021/014289 2020-10-16 2021-10-14 IgM 영역을 이용한 융합단백질 플랫폼 WO2022080912A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0133957 2020-10-16
KR20200133957 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022080912A1 true WO2022080912A1 (ko) 2022-04-21

Family

ID=81209101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014289 WO2022080912A1 (ko) 2020-10-16 2021-10-14 IgM 영역을 이용한 융합단백질 플랫폼

Country Status (3)

Country Link
KR (1) KR102450007B1 (ko)
TW (1) TW202315885A (ko)
WO (1) WO2022080912A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022216974A1 (en) * 2021-04-07 2022-10-13 Repertoire Immune Medicines, Inc. Peptide-mhc-immunoglobulin multimers and methods of use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102631955B1 (ko) * 2022-04-15 2024-02-01 주식회사 아이엠바이오로직스 반감기가 향상된 융합단백질 플랫폼

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080094781A (ko) * 2007-05-30 2008-10-24 주식회사 제넥신 면역글로불린 융합 단백질
KR20080109739A (ko) * 2006-01-27 2008-12-17 노바젠 홀딩 코포레이션 증강된 에리스로포이에틴 활성과 연장된 체내 반감기를 갖는 재조합 인간 epo-fc 융합 단백질들
KR20150113934A (ko) * 2014-03-31 2015-10-08 한미약품 주식회사 면역글로불린 Fc 단편 결합을 이용한 단백질 및 펩타이드의 용해도를 개선시키는 방법
WO2019169314A1 (en) * 2018-03-01 2019-09-06 Igm Biosciences, Inc. IgM Fc AND J-CHAIN MUTATIONS THAT AFFECT IgM SERUM HALF-LIFE

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9382319B2 (en) * 2011-09-26 2016-07-05 Jn Biosciences Llc Hybrid constant regions
CA2849765C (en) * 2011-09-26 2021-10-19 Jn Biosciences Llc Hybrid constant regions
CA3115547A1 (en) * 2018-11-14 2020-05-22 Jn Biosciences Llc Multimeric hybrid fc proteins for replacement of ivig

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080109739A (ko) * 2006-01-27 2008-12-17 노바젠 홀딩 코포레이션 증강된 에리스로포이에틴 활성과 연장된 체내 반감기를 갖는 재조합 인간 epo-fc 융합 단백질들
KR20080094781A (ko) * 2007-05-30 2008-10-24 주식회사 제넥신 면역글로불린 융합 단백질
KR20150113934A (ko) * 2014-03-31 2015-10-08 한미약품 주식회사 면역글로불린 Fc 단편 결합을 이용한 단백질 및 펩타이드의 용해도를 개선시키는 방법
WO2019169314A1 (en) * 2018-03-01 2019-09-06 Igm Biosciences, Inc. IgM Fc AND J-CHAIN MUTATIONS THAT AFFECT IgM SERUM HALF-LIFE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BETTONI SERENA, SHAUGHNESSY JUTAMAS, MAZIARZ KAROLINA, ERMERT DAVID, GULATI SUNITA, ZHENG BO, MÖRGELIN MATTHIAS, JACOBSSON SUSANNE: "C4BP-IgM protein as a therapeutic approach to treat Neisseria gonorrhoeae infections", JCI INSIGHT, vol. 4, no. 23, 5 December 2019 (2019-12-05), XP055921989, DOI: 10.1172/jci.insight.131886 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022216974A1 (en) * 2021-04-07 2022-10-13 Repertoire Immune Medicines, Inc. Peptide-mhc-immunoglobulin multimers and methods of use thereof

Also Published As

Publication number Publication date
KR20220050803A (ko) 2022-04-25
KR102450007B1 (ko) 2022-10-04
TW202315885A (zh) 2023-04-16

Similar Documents

Publication Publication Date Title
WO2022080912A1 (ko) IgM 영역을 이용한 융합단백질 플랫폼
WO2020060122A1 (ko) Il-2 단백질 및 cd80 단백질을 포함하는 융합단백질 및 이의 용도
KR102392598B1 (ko) 삼관능성 항원-결합 분자
WO2018124766A2 (ko) 키메라 항원 수용체 및 이를 발현하는 자연 살해 세포
WO2019112347A2 (ko) 악성 b 세포를 특이적으로 인지하는 항체 또는 그의 항원 결합 단편, 이를 포함하는 키메라 항원 수용체 및 이의 용도
WO2019155408A1 (en) Anti-pd-1/anti-her2 natural antibody structural heterodimeric bispecific antibody and method of preparing same
WO2020153605A1 (ko) 메소텔린 특이적인 키메라 항원 수용체 및 이를 발현하는 t 세포
WO2017023138A1 (ko) 키메라 항원 수용체 및 키메라 항원 수용체가 발현된 t 세포
WO2014025198A2 (ko) Lfa3 변이체 및 상기 변이체 또는 lfa3 cd2 결합영역과 이에 표적 특이적 폴리펩타이드가 연결된 융합단백질 및 그 용도
WO2023219414A1 (ko) 인터루킨21 변이체, 이를 포함하는 융합단백질 및 이의 용도
WO2023277361A1 (ko) 메소텔린 특이적 항체 및 이의 용도
WO2022025638A1 (ko) 면역시냅스를 안정화시키는 키메라 항원 수용체(car) t 세포
WO2019125070A1 (ko) 악성 b 세포를 특이적으로 인지하는 항체 또는 그의 항원 결합 단편, 이를 포함하는 키메라 항원 수용체 및 이의 용도
WO2021153979A1 (ko) 항-taa 항체, 항-pd-l1 항체 및 il-2를 포함하는 융합단백질 및 이의 용도
WO2022005174A1 (ko) 항-lag-3 항체 및 il-2를 포함하는 융합단백질 및 이의 용도
WO2024049161A1 (ko) 신규한 항-pd-l1 키메릭 항원 수용체 및 이를 발현하는 면역세포
WO2021101273A2 (ko) 조절 t 세포 배양용 조성물 및 이의 용도
WO2022250440A1 (ko) Erbb3 특이적인 키메라 항원 수용체 및 이를 발현하는 면역세포 치료제
WO2023200311A1 (ko) 반감기가 향상된 융합단백질 플랫폼
WO2022231298A1 (ko) 신규한 항-cd5 키메릭 항원 수용체 및 이를 발현하는 면역세포
WO2022255793A1 (ko) 배양보조세포를 포함하는 자연살해세포 증식용 조성물
WO2021162394A1 (ko) B세포 성숙화 항원을 표적으로 하는 키메라 항원 수용체 및 이의 용도
WO2021157830A1 (ko) Cmv pp65 펩타이드/hla-a*02 복합체에 특이적인 tcr-유사 항체 및 이의 용도
WO2019078591A1 (ko) 세포막 유동성을 이용한 다중체 단백질 디스플레이 시스템
WO2021107635A1 (ko) Il-2 단백질 및 cd80 단백질을 포함하는 융합단백질 및 nk 세포를 포함하는 항암 치료용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880559

Country of ref document: EP

Kind code of ref document: A1