WO2021251234A1 - 電極及びリチウムイオン二次電池 - Google Patents
電極及びリチウムイオン二次電池 Download PDFInfo
- Publication number
- WO2021251234A1 WO2021251234A1 PCT/JP2021/020975 JP2021020975W WO2021251234A1 WO 2021251234 A1 WO2021251234 A1 WO 2021251234A1 JP 2021020975 W JP2021020975 W JP 2021020975W WO 2021251234 A1 WO2021251234 A1 WO 2021251234A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- lithium
- mass
- secondary battery
- ion secondary
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/137—Electrodes based on electro-active polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
- H01M4/602—Polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
- H01M4/602—Polymers
- H01M4/604—Polymers containing aliphatic main chain polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0048—Molten electrolytes used at high temperature
- H01M2300/0051—Carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electrode containing sulfur-modified polyacrylonitrile and lithium titanium oxide as an electrode active material, and a lithium ion secondary battery provided with the electrode.
- Lithium-ion secondary batteries have higher cell voltage and higher energy density than conventional nickel-metal hydride secondary batteries. Therefore, in addition to mobile devices such as smartphones, application to electronic devices such as hybrid vehicles, electric vehicles, stationary storage batteries, and notebook computers is being promoted. However, there are problems such as high capacity, high output, long life, improvement of safety, and cost reduction, and electrode materials, electrolytic solutions, and separators are being actively developed.
- a lithium nickel cobalt manganese composite oxide, a spinel type lithium manganese nickel composite oxide, a lithium phosphorus oxide having an olivine structure, a lithium cobalt oxide, a lithium nickel cobalt composite oxide, and lithium are provided on the positive electrode.
- a lithium ion secondary battery using at least one selected from the group consisting of a manganese composite oxide and using a lithium titanium oxide for the negative electrode has been proposed.
- lithium iron phosphate is used for the positive electrode, and a carbon-coated LTO electrode (polyacrylonitrile is formed on the surface and inside of the lithium titanium oxide particles by emulsification polymerization of the acrylonitrile monomer) on the negative electrode, and further.
- a lithium ion secondary battery using a carbonized lithium titanium oxide particle is disclosed.
- Patent Document 3 discloses a lithium ion secondary electrode using sulfur-modified polyacrylonitrile for the positive electrode and a metallic lithium foil for the negative electrode.
- Patent No. 3769291 Special Table 2019-521488 International Publication No. 2010/0444437
- the conventional lithium-ion secondary battery has a problem that the electric capacity that can be charged and discharged decreases when high-speed charging and discharging are performed. Therefore, an object of the present invention is to provide an electrode having a high electric capacity obtained during high-speed charging / discharging and having excellent high-temperature stability. Another object of the present invention is to provide a lithium ion secondary battery having the electrode as a positive electrode or a negative electrode.
- the active material layer contains sulfur-modified polyacrylonitrile and lithium-titanium oxide in a specific ratio in which the average secondary particle size satisfies a specific relationship.
- the present invention is an electrode in which an active material layer containing sulfur-modified polyacrylonitrile and lithium titanium oxide is formed on a current collector, and the average secondary particle size of the sulfur-modified polyacrylonitrile is lithium titanium oxidation. It is larger than the average secondary particle size of the substance, the content of sulfur-modified polyacrylonitrile in the active material layer is 5% by mass to 85% by mass, and the content of lithium titanium oxide in the active material layer is 5% by mass.
- the electrode is ⁇ 85% by mass.
- the average secondary particle size of the sulfur-modified polyacrylonitrile is preferably 0.1 ⁇ m to 50 ⁇ m.
- the average secondary particle size of the lithium titanium oxide is preferably 0.05 ⁇ m to 30 ⁇ m.
- the present invention is a lithium ion secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte containing a lithium salt, wherein the positive electrode or the negative electrode is the above electrode.
- the non-aqueous electrolyte containing a lithium salt is a liquid non-aqueous electrolyte, a polymer gel-like non-aqueous electrolyte, a polymer non-aqueous electrolyte, a complex hydride-based solid electrolyte or an inorganic solid. It is preferably an electrolyte.
- the non-aqueous electrolyte containing a lithium salt is a liquid non-aqueous electrolyte, and the liquid non-aqueous electrolyte contains a cyclic carbonate compound.
- the liquid non-aqueous electrolyte further contains a chain carbonate compound.
- the non-aqueous electrolyte containing a lithium salt is an inorganic solid electrolyte, and the inorganic solid electrolyte is a sulfide-based solid electrolyte or an oxide-based solid electrolyte.
- the present invention it is possible to provide a lithium ion secondary battery having a high electric capacity obtained at high speed charging / discharging and excellent in high temperature stability.
- the electrode and the lithium ion secondary battery of the present invention will be described in detail based on a preferred embodiment.
- the electrode of the present invention is characterized in that an active material layer containing sulfur-modified polyacrylonitrile and lithium titanium oxide is formed on a current collector.
- Sulfur-modified polyacrylonitrile Sulfur-modified polyacrylonitrile (hereinafter, may be referred to as "SPAN") is produced by mixing a polyacrylonitrile compound and sulfur and heat-treating them at 250 ° C. to 600 ° C. in a non-oxidizing atmosphere to modify them. can do.
- the non-oxidizing atmosphere represents an atmosphere in which the oxygen concentration is less than 5% by volume, preferably less than 2% by volume, and more preferably substantially free of oxygen, for example, an inert gas atmosphere such as nitrogen, helium, or argon. , Sulfur gas atmosphere, etc.
- the SPAN may be produced after adding another active material or a conductive auxiliary agent when mixing the polyacrylonitrile compound and sulfur.
- the polyacrylonitrile compound may be a homopolymer of acrylonitrile or a copolymer of acrylonitrile and another monomer.
- the content of acrylonitrile in the polyacrylonitrile compound is low, the capacity of the battery cannot be increased by the active material, and the battery performance is deteriorated. Therefore, the content of acrylonitrile in the copolymer of acrylonitrile and other monomers is at least 90% by mass. It is preferable to have a polyacrylonitrile homopolymer, and a polyacrylonitrile homopolymer is further preferable.
- examples of other monomers include acrylic acid, vinyl acetate, N-vinylformamide, and N, N'-methylenebis (acrylamide).
- the SPAN has a desired particle size by a method such as pulverization or granulation.
- the pulverization may be performed by dry pulverization performed in a gas or wet pulverization performed in a liquid such as water.
- the industrial crushing method include ball mills, roller mills, turbo mills, jet mills, cyclone mills, hammer mills, pin mills, rotary mills, vibration mills, planetary mills, attritors, bead mills and the like.
- the crushed SPAN is preferably further classified.
- the classification method is not particularly limited, but is a dry classification method such as gravity classification, inertial classification, and centrifugal classification; a wet classification method such as sedimentation classification, mechanical classification, and hydraulic classification; a sieve net such as a vibration sieve or an in-plane motion sieve. It is possible to adopt a classification method such as a sieving classification method using the above. Above all, the sieving classification method is preferable. By carrying out the pulverization and classification steps, a SPAN having a particle size suitable for the electrode of the present invention can be efficiently produced.
- the average secondary particle diameter (D50) of SPAN is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less.
- the average secondary particle size (D50) of the SPAN is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, still more preferably 1 ⁇ m or more.
- the average secondary particle size of SPAN is a 50% particle size measured by a laser diffracted light scattering method.
- the particle size is a volume-based diameter, and the secondary particle size of SPAN is measured.
- SPAN is dispersed in a dispersion medium such as water or alcohol for measurement.
- the shape of SPAN may be fibrous.
- the preferable average fiber diameter is 0.05 ⁇ m or more and 10 ⁇ m or less. It is preferable that the fiber diameter is small, but it is difficult to obtain an industrial product of polyacrylonitrile having an average fiber diameter of less than 0.05 ⁇ m as the polyacrylonitrile which is a raw material of SPAN. Further, when the average fiber diameter is larger than 10 ⁇ m, a large charge / discharge capacity may not be obtained.
- the average fiber diameter of the fibrous SPAN is preferably 0.1 ⁇ m to 5 ⁇ m, more preferably 0.15 ⁇ m to 2 ⁇ m, from the viewpoint of obtaining a larger charge / discharge capacity and making it easily available.
- the average aspect ratio of the fibrous SPAN is preferably 3 or more, and more preferably 5 or more.
- the fiber length is large because a large charge / discharge capacity can be obtained.
- the surface of the active material layer containing SPAN may not be smooth.
- the average fiber length of the fibrous SPAN is preferably 300 ⁇ m or less, more preferably 150 ⁇ m or less. From the same viewpoint, the average aspect ratio of the fibrous SPAN is preferably 5000 or less, more preferably 1000 or less.
- the fiber length and fiber diameter of the fibrous SPAN can be obtained from an image (SEM image) of a scanning electron microscope.
- the fiber length represents the length of the fiber
- the fiber diameter represents the diameter of the circle when the cross section orthogonal to the longitudinal direction of the fiber is circular, and when the cross section is not circular, the minor axis and the major axis of the cross section are used. Represents the average.
- the measurement point of the fiber diameter in one fibrous SPAN can be arbitrarily performed.
- the average aspect ratio of the fibrous SPAN is a value obtained by calculating the average fiber length / average fiber diameter, and the average fiber length and the average fiber diameter are the fiber diameter and the fiber length measured from the SEM images of 10 or more fibrous SPANs. Represents the value obtained by arithmetically averaging.
- the sulfur content in SPAN is preferably 30% by mass to 45% by mass, more preferably 35% by mass to 43% by mass, because a large charge / discharge capacity and excellent cycle characteristics can be obtained.
- the sulfur content of SPAN represents a numerical value calculated from the result of elemental analysis using a CHN analyzer capable of analyzing sulfur and oxygen, for example, a vario MICRO cube manufactured by Elementer.
- the content of SPAN is in the range of 5% by mass to 85% by mass, preferably in the range of 10% by mass to 80% by mass.
- the rate characteristics of the lithium ion secondary battery are significantly deteriorated.
- the content of SPAN is less than 5% by mass, the discharge capacity of the lithium ion secondary battery during high-speed charging decreases.
- Li a Ti b O c M d (1)
- M represents one or a mixture of two or more selected from the group consisting of Zr, B, Sn, S, Be, Ge and Zn, and a, b, c and d are 0. 5 ⁇ a ⁇ 5, 1 ⁇ b ⁇ 5, 2 ⁇ c ⁇ 12, 0 ⁇ d ⁇ 0.1
- lithium-titanium oxide suitable for the electrode of the present invention examples include spinel-structured lithium-titanium oxide and Ramsderite-structured lithium-titanium oxide.
- the spinel-structured lithium-titanium oxide examples include Li 4 + e Ti 5 O 12 .
- lithium delite structure lithium titanium oxide examples include Li 2 + e Ti 3 O 7 , Li 1 + f Ti 2 O 4 , Li 1.1 + f Ti 1.8 O 4 , Li 1.07 + f Ti 1.86 O 4. ..
- e and f represent -1 ⁇ e ⁇ 1 and 0 ⁇ f ⁇ 1, respectively.
- the spinel-structured lithium-titanium oxide is preferable because the volume change during charging is small.
- lithium titanium oxide those containing primary particles, secondary particles which are aggregates of primary particles, or both primary particles and secondary particles can be used.
- the average primary particle size (D50) of the lithium titanium oxide is preferably 0.01 ⁇ m or more and 10 ⁇ m or less, and preferably 0.05 ⁇ m or more and 1 ⁇ m or less. Lithium-titanium oxides with an average primary particle size of less than 0.01 ⁇ m are difficult to produce. On the other hand, when the average primary particle diameter of the lithium titanium oxide exceeds 10 ⁇ m, the unevenness of the electrode surface becomes large and the surface area becomes small, the affinity of the electrode with the non-aqueous electrolyte decreases, and the discharge cycle life becomes short. In some cases.
- the average primary particle size of lithium-titanium oxide represents the arithmetic mean value of the major axis of 10 or more lithium-titanium oxides measured by SEM images.
- the average secondary particle size (D50) of the lithium titanium oxide is preferably 0.05 ⁇ m or more and 30 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 10 ⁇ m or less. If the average secondary particle size of the lithium titanium oxide is less than 0.05 ⁇ m, it is difficult to handle, a large amount of binder is required, and the aggregation of the primary particles becomes remarkable, and the affinity between the electrode and the non-aqueous electrolyte becomes high. It may decrease, the resistance at the electrode interface may increase, and the output characteristics and charge / discharge cycle characteristics of the lithium ion secondary battery may decrease.
- the average secondary particle size of the lithium titanium oxide exceeds 30 ⁇ m, the diffusion resistance increases, which may adversely affect the output characteristics and charge / discharge cycle characteristics.
- the active material layer in the electrode of the present invention it is necessary to select SPAN and lithium titanium oxide so that the average secondary particle size of SPAN is larger than the average secondary particle size of lithium titanium oxide. be. If the average secondary particle size of SPAN is equal to or less than the average secondary particle size of lithium titanium oxide, it becomes difficult to charge and discharge at high speed.
- the average secondary particle size of lithium-titanium oxide should be adjusted by, for example, pulverizing using a pulverizer such as a ball mill or jet mill, granulating, or classifying by sieving. Can be done.
- the average secondary particle diameter (D50) of the lithium titanium oxide is a 50% particle diameter measured by the laser diffracted light scattering method, and in the laser diffracted light scattering method, the particle diameter is a volume-based diameter.
- the lithium titanium oxide is dispersed in a dispersion medium such as water or alcohol for measurement.
- the specific surface area of the lithium titanium oxide is preferably in the range of 1m 2 / g ⁇ 200m 2 / g, a range of 3m 2 / g ⁇ 50m 2 / g is more preferable. If the specific surface area of the lithium titanium oxide is less than 1 m 2 / g, the uptake of lithium ions in the active material layer may be insufficient. On the other hand, if the specific surface area of the lithium titanium oxide exceeds 200 m 2 / g, the distribution of the non-aqueous electrolyte may be biased, which may adversely affect the output characteristics and cycle characteristics of the lithium ion secondary battery.
- the electrode resistance can be reduced, so that the lithium titanium oxide is coated with the carbon material. May be good.
- a method for producing a lithium titanium oxide coated with a carbon material for example, a dispersion medium such as lithium titanium oxide, a carbon material precursor and water is mixed, and the dispersion medium is fired at 500 ° C. or higher in an inert atmosphere. The method can be mentioned.
- the content of lithium titanium oxide is in the range of 5% by mass to 85% by mass, preferably in the range of 10% by mass to 80% by mass.
- the rate characteristics of the lithium ion secondary battery are significantly deteriorated.
- the content of the lithium titanium oxide exceeds 85% by mass, the discharge capacity of the lithium ion secondary battery during high-speed charging decreases.
- the lithium ion secondary battery in which the non-aqueous electrolyte containing a lithium salt is a liquid non-aqueous electrolyte or a polymer gel-like non-aqueous electrolyte is a liquid battery.
- the active material layer in the electrode of a liquid battery is an electrode mixture in which a volatile component such as a solvent is volatilized from a coating film obtained by applying an electrode mixture paste containing an active material, a binder and a conductive auxiliary agent on a current collector. Represents a layer.
- a lithium ion secondary battery in which the non-aqueous electrolyte containing a lithium salt is a polymer non-aqueous electrolyte, a complex hydride-based solid electrolyte, or an inorganic solid electrolyte is a solid-state battery.
- the active material layer in the electrodes of a solid state battery may contain these non-aqueous electrolytes.
- the solid-state battery includes an all-solid-state battery and a semi-solid-state battery.
- the total amount of SPAN and lithium-titanium oxide contained in the active material layer in the electrode of the liquid battery is preferably 55% by mass or more with respect to the active material layer from the viewpoint of fully exhibiting the battery performance, and is 70. More preferably, it is by mass or more.
- the total amount of SPAN and lithium-titanium oxide contained in the active material layer in the electrode of the solid-state battery is preferably 40% by mass or more with respect to the active material layer from the viewpoint of fully exhibiting the battery performance, and is 70. More preferably, it is by mass or more.
- the electrode of the present invention can be manufactured according to a known method. For example, a compound containing an active material containing SPAN and lithium titanium oxide, a binder and a conductive auxiliary agent is slurried with an organic solvent or water to produce an electrode mixture paste, and the electrode mixture paste is placed on a current collector. By applying to and drying the electrode, an electrode having an active material layer formed on the current collector can be manufactured.
- the binder is not particularly limited, but a known binder can be used.
- Specific examples of the binder include, for example, styrene-butadiene rubber, butadiene rubber, acrylic nitrile-butadiene rubber, ethylene-propylene-diene rubber, styrene-isoprene rubber, fluororubber, polyethylene, polypropylene, polyacrylamide, polyamide, polyamideimide, and the like.
- Polyethylene polyacrylonitrile, polyurethane, polyvinylidene fluoride, polytetrafluoroethylene, styrene-acrylic acid ester copolymer, ethylene-vinyl alcohol copolymer, polymethylmethacrylate, polyacrylate, polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, polyvinyl Examples thereof include ether, polyvinyl chloride, acrylic acid, polyacrylic acid, methyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose, cellulose nanofibers, starch and the like. Only one kind of binder may be used, or two or more kinds of binders may be used in combination.
- the content of the binder is preferably 0.5 part by mass to 30 parts by mass with respect to 100 parts by mass of the active material containing SPAN and lithium titanium oxide, and from the viewpoint of improving the stability of the working electrode. It is more preferably 1 part by mass to 20 parts by mass.
- a known conductive auxiliary agent for the electrode can be used.
- conductive auxiliaries include natural graphite, artificial graphite, coal tar pitch, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, roller black, and disc black.
- Carbon nanotubes carbon material such as Vapor Green Carbon Fiber (VGCF), flaky graphite, graphene, fullerene, needle coke; metal powders such as aluminum powder, nickel powder, titanium powder; zinc oxide, oxidation.
- Conductive metal oxides such as titanium; sulfides such as La 2 S 3 , Sm 2 S 3 , Ce 2 S 3 and Ti S 2 can be mentioned.
- the average primary particle size of the conductive auxiliary agent is preferably 0.0001 ⁇ m to 100 ⁇ m, and more preferably 0.001 ⁇ m to 50 ⁇ m.
- the content of the conductive auxiliary agent is usually 0.1 part by mass to 50 parts by mass and 0.5 part by mass to 30 parts by mass with respect to 100 parts by mass of the active material containing SPAN and lithium titanium oxide. It is preferable, and it is more preferable that it is 1 part by mass to 20 parts by mass.
- organic solvent examples include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, acetonitrile, propionitrile, tetrahydrofuran and 2-methyl.
- the amount of the organic solvent or water used can be adjusted according to the coating method selected when applying the electrode mixture paste, for example, in the case of coating by the doctor blade method, the active material, the binder and the conductive auxiliary agent.
- the total amount is preferably 10 parts by mass to 300 parts by mass, and more preferably 20 parts by mass to 200 parts by mass with respect to 100 parts by mass.
- the electrode mixture paste for example, other components such as a viscosity regulator, a reinforcing material, an antioxidant, a pH adjuster, and a dispersant are contained in the electrode mixture paste as long as the effect of the present invention is not impaired. You may. As these other components, known ones can be used in known compounding ratios.
- electrode mixture paste when SPAN and lithium titanium oxide as active materials, binders and conductive aids are dispersed or dissolved in an organic solvent or water, all of them are collectively added to the organic solvent or water for dispersion treatment. It may be added separately, or it may be distributed processing. It is preferable to sequentially add the binder, the conductive auxiliary agent, and the active material to the organic solvent or water in this order to perform the dispersion treatment because these can be uniformly dispersed in the solvent.
- the electrode mixture paste contains other components, the other components can be added all at once for dispersion treatment, but it is preferable to perform dispersion treatment for each addition of one of the other components.
- the method of dispersion treatment is not particularly limited, but industrial methods include, for example, ordinary ball mills, sand mills, bead mills, cyclone mills, zero mills, pigment dispersers, grinders, ultrasonic dispersers, homogenizers, dispersers, and rotation / rotation.
- a revolution mixer, a planetary mixer, a fill mix, a jet pacer, etc. can be used.
- Examples of the current collector include conductive materials such as titanium, titanium alloy, aluminum, aluminum alloy, copper, nickel, stainless steel, nickel-plated steel, carbon, and conductive resin.
- Examples of the shape of the current collector include a foil shape, a plate shape, a net shape, a three-dimensional mesh shape, a foam shape, a non-woven fabric shape, and the like, and the current collector may be either porous or non-porous. Further, these conductive materials may be surface-treated in order to improve adhesion and electrical characteristics. Among these conductive materials, aluminum is preferable from the viewpoint of conductivity and price, and aluminum foil is particularly preferable.
- the thickness of the current collector is not particularly limited, but in the case of a foil, it is usually 5 ⁇ m to 30 ⁇ m.
- the method of applying the electrode mixture paste onto the current collector is not particularly limited, but for example, the die coater method, the comma coater method, the curtain coater method, the spray coater method, the gravure coater method, the flexo coater method, the knife coater method, and the like.
- a doctor blade method, a reverse roll method, a brush coating method, a dip method, etc. can be used.
- the die coater method, the knife coater method, the doctor blade method and the comma coater method are preferable in that a good surface condition of the coating film can be obtained according to the viscosity and the drying property of the electrode mixture paste.
- the electrode mixture paste may be applied to the current collector on one side or both sides of the current collector. When it is applied to both sides of the current collector, it may be applied sequentially on one side at a time, or it may be applied on both sides at the same time. Further, it may be applied continuously to the surface of the current collector, intermittently, or in stripes.
- the thickness, length and width of the coating film can be appropriately determined according to the size of the battery and the like.
- the method for drying the coating film of the electrode mixture paste applied on the current collector is not particularly limited, and a known method can be used.
- the drying method include drying with warm air, hot air, and low humidity air, vacuum drying, and drying by irradiating far infrared rays, infrared rays, electron beams, or the like, which is left in a heating furnace or the like. These drying methods may be carried out in combination.
- the temperature for heating is generally about 50 ° C to 180 ° C, but conditions such as temperature are appropriately set according to the amount of the electrode mixture paste applied, the boiling point of the solvent used, the type of binder, and the like. be able to.
- volatile components such as a solvent are volatilized from the coating film of the electrode mixture paste, and an electrode mixture layer is formed on the current collector.
- SPAN is originally a material that does not contain lithium, but since it has an irreversible capacity, lithium may be doped in advance.
- a method of lithium-doping SPAN for example, a method of assembling a semi-battery using metallic lithium at the counter electrode and inserting lithium by an electrolytic doping method of electrochemically doping lithium, or a method of attaching a metallic lithium foil to an electrode. After that, it is left in the electrolytic solution, and lithium is inserted by the pasting doping method, which is doped by utilizing the diffusion of lithium to the electrode.
- the active material layer containing SPAN and the lithium metal are mechanically collided with each other. , Mechanical doping method in which lithium is inserted, chemical doping method in which an electrode is immersed in a lithium naphthalenide solution and lithium is inserted, and the like, but the present invention is not limited to these methods.
- the lithium ion secondary battery of the present invention comprises a positive electrode, a negative electrode, and a non-aqueous electrolyte containing a lithium salt, and is characterized in that the above-mentioned electrode is used for the positive electrode or the negative electrode.
- the opposite electrode to the electrode of the present invention is metallic lithium, or the electrode containing lithium-containing composite oxide, silicon, silicon oxide, graphite, carbon or the like as an active material. Can be mentioned.
- the counter electrode can be formed of metallic lithium and / or a lithium alloy.
- the counter electrode may include a current collector composed of a conductive material of metallic lithium and / or a lithium alloy.
- an active material layer containing a lithium metal may be formed.
- the active material layer can be formed by, for example, pasting of foil-shaped metallic lithium, electrodeposition of metallic lithium, vapor deposition, or the like.
- the lithium-containing composite oxide is selected from the group consisting of a lithium transition metal composite oxide, a lithium transition metal silicate compound, and a lithium transition metal sulfate compound.
- the transition metal contained in these compounds is not particularly limited, but aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and copper have good charge / discharge stability of the lithium ion secondary battery.
- Zinc, magnesium, gallium, zirconium, niobium, boron, calcium, molybdenum, and tungsten are preferable, and aluminum, vanadium, titanium, chromium, manganese, iron, cobalt, nickel, and copper are preferable because the effects of the present invention become remarkable.
- Aluminum, manganese, iron, cobalt, and nickel are preferred because the effects of the present invention are even more pronounced.
- lithium transition metal composite oxide examples include LiCoO 2 , LiNiO 2 , LiMnO 2 , a compound represented by the following general formula (2), and a compound represented by the following general formula (3).
- M1 is preferably at least one selected from the group consisting of aluminum, titanium, vanadium, chromium, manganese, iron, copper, zinc, magnesium, gallium, zirconium, niobium, boron, calcium, molybdenum, and tungsten.
- the lithium transition metal composite oxide has good charge / discharge stability, and therefore, for example, LiCoO 2 , LiMn 2 O 4 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn. 0.3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , and LiNi 0.8 Co 0.15 Al 0.05 O 2 are preferable.
- lithium transition metal phosphoric acid compound examples include compounds represented by the following general formula (4).
- Li k M2 m (PO 4 ) n F p (4) In the equation, k is 0 ⁇ k ⁇ 3, m is 0.5 ⁇ m ⁇ 2, n is 1 ⁇ n ⁇ 3, and p is 0 ⁇ p ⁇ 1.
- M2 is at least one selected from the group consisting of iron, cobalt, nickel, manganese, copper, titanium, tungsten, molybdenum, chromium, vanadium, and vanadium monoxide (II), and has good charge / discharge stability.
- At least one selected from the group consisting of iron, cobalt, nickel, manganese, copper, vanadium, and vanadium (II) monoxide is more preferable.
- a part of M2 may be replaced with one or more other metals such as aluminum, zinc, magnesium, zirconium, gallium and niobium.
- lithium transition metal phosphate compound for example, LiFePO 4, LiMn X Fe 1 -X PO 4, LiCuPO 4, LiNiPO 4, LiCoPO 4, LiMnPO 4, LiVOPO 4, Li 2 FePO 4, Li 2 NiPO 4 , Li 2 CoPO 4 , Li 2 MnPO 4 , Li 2 NiPO 4 F, Li 2 CoPO 4 F, Li 2 MnPO 4 F, Li 2 FePO 4 F, Li 3 V 2 (PO 4 ) 3 , LiMn 7 / 8 Fe 1/8 PO 4 , LiMn 2/3 Fe 1/3 PO 4 , LiFe 0.9 Mn 0.1 PO 4 , LiFe 0.2 Mn 0.8 PO 4 , LiFe 0.15 Mn 0.75 Mg 0.1 PO 4 , LiFe 0.19 Mn 0.75 Zr 0.03 PO 4 etc. can be mentioned.
- lithium transition metal phosphate compound from that good charge and discharge stability, preferably LiFePO 4, LiCuPO 4, LiNiPO 4 , LiCoPO 4, LiMnPO 4, LiVOPO 4, LiFePO 4, LiNiPO 4, LiCoPO 4, LiMnPO 4 is more preferable.
- the active material of the counter electrode is preferably set to a desired particle size by a method such as pulverization or granulation, and is further preferably classified.
- a method such as pulverization or granulation
- Examples of the method for crushing and classifying include the same methods described in the method for crushing and classifying SPAN.
- the average secondary particle size (D50) of the counter electrode active material is preferably 0.1 ⁇ m to 50 ⁇ m, more preferably 0.5 ⁇ m to 50 ⁇ m, and even more preferably 1 ⁇ m to 30 ⁇ m. If the average secondary particle size of the counter electrode active material exceeds 50 ⁇ m, a uniform and smooth active material layer may not be formed. On the other hand, if the average secondary particle size of the counter electrode active material is smaller than 0.1 ⁇ m, side reactions are likely to occur due to deterioration of handleability and increase in specific surface area, which may adversely affect charge / discharge stability.
- the counter electrode can be manufactured according to a known method.
- An electrode mixture paste obtained by slurrying a compound containing a counter electrode active material, a binder and a conductive auxiliary agent with an organic solvent or water is produced, and the electrode mixture paste is applied to a current collector and dried. It is possible to produce a counter electrode in which an active material layer is formed on a current collector.
- the binder used for the counter electrode can be the same as that described above, but because of its good charge / discharge stability, polyvinylidene fluoride, polyimide, polyacrylonitrile, polytetrafluoroethylene, polyacrylic acid, and sodium carboxymethyl cellulose can be used. Is preferable.
- the content of the binder is preferably 0.5 part by mass to 30 parts by mass, and more preferably 1 part by mass to 20 parts by mass with respect to 100 parts by mass of the active material of the counter electrode.
- Examples of the conductive auxiliary agent used for the counter electrode are the same as those described above.
- the content of the conductive auxiliary agent is preferably 0.1 part by mass to 50 parts by mass, more preferably 0.5 part by mass to 30 parts by mass, and 1 part by mass with respect to 100 parts by mass of the active material of the counter electrode. Up to 20 parts by mass is more preferable.
- the same solvent as the solvent for preparing the electrode mixture paste described above can be used as the solvent for preparing the electrode mixture paste of the counter electrode.
- the amount of the solvent used can be adjusted according to the coating method selected when applying the electrode mixture paste. For example, in the case of coating by the doctor blade method, the total of the active material of the counter electrode, the binder and the conductive auxiliary agent. The amount is preferably 10 parts by mass to 300 parts by mass, and more preferably 20 parts by mass to 200 parts by mass with respect to 100 parts by mass.
- the counter electrode mixture paste contains, for example, other components such as a viscosity regulator, a reinforcing material, an antioxidant, a pH adjuster, and a dispersant, as long as the effects of the present invention are not impaired. You may let it.
- these other components known ones can be used in known compounding ratios.
- the active material of the counter electrode, the binder and the conductive auxiliary agent are dispersed or dissolved in an organic solvent or water, all of them may be added to the solvent all at once for dispersion treatment or separately. In addition to this, distributed processing may be performed. It is preferable to sequentially add the binder, the conductive auxiliary agent, and the active material of the counter electrode to the organic solvent or water in this order to perform the dispersion treatment because these can be uniformly dispersed in the solvent.
- the electrode mixture paste of the counter electrode contains other components, the other components can be added all at once for dispersion treatment, but it is preferable to perform dispersion treatment for each addition of one of the other components.
- Examples of the dispersion treatment method and the current collector in the production of the counter electrode mixture paste include the same as those described in the above-mentioned production of the electrode mixture paste.
- the method of applying the electrode mixture paste of the counter electrode on the current collector and the method of drying the electrode mixture paste of the counter electrode are the method of applying the above electrode mixture paste on the current collector and the electrode mixture paste. It can be used in the same way as described for drying.
- the lithium ion secondary battery of the present invention can be manufactured by using a known method for manufacturing a lithium ion secondary battery except that an electrode containing SPAN and lithium titanium oxide is used as a working electrode.
- it can be manufactured by sandwiching the working electrode and the counter electrode with a separator, holding the product in a battery cell, introducing a non-aqueous electrolytic solution into the battery cell, and then sealing and sealing the battery cell.
- each material of the lithium ion secondary battery will be described.
- the non-aqueous electrolyte that can be used in the lithium ion secondary battery of the present invention is a liquid non-aqueous electrolyte obtained by dissolving a lithium salt in an organic solvent, or a polymer compound is dissolved in an organic solvent as a solvent or a dispersion medium.
- Molecular non-aqueous electrolyte in this specification, an electrolyte obtained by dispersing a lithium salt using a polymer as a dispersion medium without using a solvent is defined as a polymer electrolyte), a complex hydride-based solid electrolyte, and an inorganic solid electrolyte. And so on.
- the lithium salt used for the non-aqueous electrolyte is not particularly limited, and a known lithium salt that can be used as a lithium salt for a lithium ion secondary battery can be used.
- Specific examples of lithium salts include, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2.
- Lithium salts used for liquid electrolytes and polymer gel electrolytes include LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , Use one or more selected from the group consisting of LiN (SO 2 F) 2 , LiPO 2 F 2 , LiC (CF 3 SO 2 ) 3 and LiCF 3 SO 3 derivatives and LiC (CF 3 SO 2 ) 3 derivatives. Is preferable.
- lithium salt used for the polymer electrolyte examples include LiPF 6 , LiBF 4 , LiClO 4 , LiN (CF 3 SO 2 ) 2 , and LiN ( 1 selected from the group consisting of C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , LiC (CF 3 SO 2 ) 3 , LiB (CF 3 SO 3 ) 4 , LiB (C 2 O 4 ) 2. It is preferable to use seeds or more.
- the concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.5 mol / L to 7 mol / L, more preferably 0.8 mol / L to 1.8 mol / L.
- a liquid non-aqueous electrolyte When a liquid non-aqueous electrolyte is used as the non-aqueous electrolyte, it preferably contains at least one compound selected from cyclic carbonate compounds.
- the cyclic carbonate compound include saturation of ethylene carbonate, 1,2-propylene carbonate, 1,3-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 1,1,-dimethylethylene carbonate and the like.
- unsaturated cyclic carbonate compounds such as cyclic carbonate compounds, vinylene carbonates, vinylethylene carbonates, propyridene carbonates, ethyleneethylidene carbonates and ethyleneisopropyridene carbonates.
- a part of hydrogen atom may be replaced with a fluorine atom.
- the cyclic carbonate compound When the cyclic carbonate compound is contained as the non-aqueous electrolyte, it is preferable to further contain the chain carbonate compound because the viscosity is lowered and the ionic conductivity is improved.
- the chain carbonate compound include saturated chain carbonate compounds such as dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate, and dipropyl carbonate, dipropargyl carbonate, propargyl methyl carbonate, ethylpropargyl carbonate, and bis (1-methylpropargyl) carbonate.
- An unsaturated chain carbonate compound such as bis (1-dimethylpropargyl) carbonate.
- a part of hydrogen atom may be replaced with a fluorine atom.
- the liquid non-aqueous electrolyte is a mixture of propylene carbonate, a mixed solvent of ethylene carbonate and dimethyl carbonate, a mixed solvent of ethylene carbonate and ethylmethyl carbonate, and a mixed solvent of ethylene carbonate and diethyl carbonate from the viewpoint of the performance and storage stability of the lithium ion secondary battery.
- a mixed solvent, a mixed solvent of propylene carbonate and dimethyl carbonate, a mixed solvent of propylene carbonate and diethyl carbonate, a mixed solvent of propylene carbonate, ethylene carbonate and ethylmethyl carbonate are preferable, and a mixed solvent of propylene carbonate, an ethylene carbonate and ethylmethylcarbonate, and ethylene are preferable.
- a mixed solvent of carbonate and diethyl carbonate, a mixed solvent of propylene carbonate and diethyl carbonate, and a mixed solvent of propylene carbonate, ethylene carbonate and ethylmethyl carbonate are more
- the mixing ratio of the cyclic carbonate compound to the chain carbonate compound is 10 parts by volume to 1000 parts by volume with respect to 100 parts by volume of the cyclic carbonate compound. Is preferable. If the amount of the chain carbonate compound is less than 10 parts by volume, the performance of the lithium ion secondary battery may be deteriorated. On the other hand, if the amount of the chain carbonate compound exceeds 1000 parts by volume, the charge / discharge stability of the lithium ion secondary battery at a high temperature may decrease.
- the liquid non-aqueous electrolyte may contain an organic solvent usually used for the non-aqueous electrolyte of a lithium ion secondary battery.
- organic solvent include saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds, amide compounds, chain ether compounds, cyclic ether compounds, saturated chain ester compounds and the like. Only one kind of these organic solvents may be added, or two or more kinds may be added and used.
- saturated cyclic ester compound examples include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -hexanolactone, and ⁇ -octanolactone.
- sulfoxide compound examples include dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, diphenyl sulfoxide, thiophene and the like.
- sulfone compound examples include dimethyl sulfone, diethyl sulfone, dipropyl sulfone, diphenyl sulfone, sulfolane (also referred to as tetramethylene sulfone), 3-methyl sulfolane, 3,4-dimethyl sulfolane, 3,4-diphenylmethyl sulfolane, and the like.
- amide compound examples include N-methylpyrrolidone, dimethylformamide, dimethylacetamide and the like.
- chain ether compound and the cyclic ether compound examples include dimethoxyethane, ethoxymethoxy ethane, diethoxy ethane, tetrahydrofuran, dioxolan, dioxane, 1,2-bis (methoxycarbonyloxy) ethane, and 1,2-bis (ethoxycarbonyl).
- Oxy) ethane, 1,2-bis (ethoxycarbonyloxy) propane, ethylene glycol bis (trifluoroethyl) ether, propylene glycol bis (trifluoroethyl) ether, ethylene glycol bis (trifluoromethyl) ether, diethylene glycol bis (tri) Fluoroethyl) ether and the like can be mentioned, and among these, dioxolane is preferable.
- the saturated chain ester compound is preferably a monoester compound or a diester compound having a total number of carbon atoms in the molecule of 2 to 8, and specific compounds include, for example, methyl formate, ethyl formate, methyl acetate, and acetate.
- organic solvents for example, acetonitrile, propionitrile, nitromethane, derivatives thereof, and various ionic liquids can also be used.
- Polymer gel-like non-aqueous electrolyte examples include polyethylene oxide, polypropylene oxide, polyvinyl chloride, polyacrylonitrile, polymethylmethacrylate, polyethylene, polyvinylidene fluoride, polyhexafluoropropylene, and polystyrene sulfonic acid.
- the organic solvent that dissolves and gels the polymer, the compounding ratio of the lithium salt and the polymer gel, and the method for producing the polymer gel are not particularly limited, and the organic solvent known in the art, the known lithium salt, and the known ones are known. The manufacturing method of can be adopted.
- Polymer non-aqueous electrolyte examples include polyethylene oxide, polypropylene oxide, and polystyrene sulfonic acid. Be done.
- the compounding ratio of the lithium salt and the polymer of the polymer non-aqueous electrolyte and the method for producing the polymer non-aqueous electrolyte are not particularly limited, and a compounding ratio known in the present art and a known production method can be adopted.
- Examples of the complex hydride-based solid electrolyte include Li (CB 9 H 10 ), Li (CB 11 H 12 ), Li 2 (B 12 H 12 ), Li (BH 4 ), 3 (LiBH 4 ) -LiI, Li ( NH 2 ), Li (AlH 4 ), Li 3 (AlH 6 ), 3 (LiBH 4 ) -Li (NH 2 ), Li (BH 4 ) -Li (NH 2 ), 0.7Li (CB 9 H 10 ) -0.3Li (CB 11 H 12 ), Li (BH 4 ) -3KI, Li (BH 4 ) -P 2 I 4 , Li (BH 4 ) -P 2 S 5 , Li 2 (NH 2 ), Li ( BH 4 ) -GdCl 3 , Li (BH 4 ) -NaI, Li (BH 4 ) -3Li (NH 2 ) and the like can be mentioned.
- Inorganic solid electrolyte examples include a sulfide-based solid electrolyte, an oxide-based solid electrolyte, and a phosphoric acid-based solid electrolyte.
- the sulfide-based solid electrolyte Li 2 S-P 2 S 5 based compound, Li 2 S-SiS 2 based compound, Li 2 S-GeS 2 compound, Li 2 S-B 2 S 3 type compound, Li 2 S-P 2 S 3 type compound, LiI-Si 2 S-P 2 S 5, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5, Li 10 GeP 2 S 12 or the like Can be mentioned.
- the expression "system compound” is used as a general term for solid electrolytes mainly containing raw materials such as "Li 2 S" and "P 2 S 5" described before "system compound”.
- the Li 2 SP 2 S 5 system compound contains a solid electrolyte mainly containing Li 2 S and P 2 S 5, and may further contain other raw materials. Further, in the Li 2 S-P 2 S 5 based compound, the mixing ratio between Li 2 S and P 2 S 5 is also included different solid electrolyte.
- Li 2 The S-P 2 S 5 -based compounds, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -LiBr, Li 2 S- P 2 S 5 -Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-P 2 S 5 -Z m S n (Z is Ge, Zn or Ga, where m and n are positive numbers) and the like.
- the Li 2 S-SiS 2 based compound Li 2 S-SiS 2, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2- B 2 S 3 -Li I, Li 2 S-SiS 2- P 2 S 5 -Li I, Li 2 S-SiS 2 -Li 3 PO 4 , Li 2 S-SiS 2 -Li 2 SO 4 , Li 2 S -SiS 2- Li x MO y (M is P, Si, Ge, B, Al, Ga or In, and x and y are positive numbers) and the like.
- Li 2 S-GeS 2 system compound examples include Li 2 S-GeS 2 , Li 2 S-GeS 2- P 2 S 5, and the like.
- oxide-based solid electrolyte examples include perovskite-type oxides, Nasicon-type oxides, Lisicon-type oxides, garnet-type oxides, and oxides such as ⁇ -alumina.
- perovskite-type oxide examples include Li-La-Ti-based perovskite-type oxides represented by Li a La 1-a TiO 3 and the like, and Li b La 1-b TaO 3 and the like.
- examples thereof include Li-La-Ta-based perovskite-type oxides, Li -La-Nb-based perovskite-type oxides represented by Li c La 1-c NbO 3 , and the like (0 ⁇ a ⁇ 1, 0 ⁇ b). ⁇ 1, 0 ⁇ c ⁇ 1).
- the pear-con type oxide for example, Li e X f Y g P h O j (X is B) whose main crystal is a crystal represented by Li d + l Al d Ti 2-d (PO 4 ) 3 or the like. , Al, Ga, In, C, Si, Ge, Sn, Sb or Se, Y is Ti, Zr, Ge, In, Ga, Sn or Al, 0 ⁇ d ⁇ 1, e, f, Examples of g, h and j are oxides represented by positive numbers). Specific examples of the pearcon-type oxide include LiTi 2 (PO 4 ) 3 .
- Examples of the lysicon-type oxide include oxides represented by Li 4 XO 4- Li 3 YO 4 (X is Si, Ge or Ti, and Y is P, As or V). Be done.
- Examples of the garnet-type oxide include Li-La-Zr-based oxides represented by Li 7 La 3 Zr 2 O 12 and the like and derivatives thereof.
- the form of the non-aqueous electrolyte is not particularly limited, but it is preferable to use a liquid non-aqueous electrolyte because the manufacturing process is simple.
- the non-aqueous electrolyte may further contain known electrolyte additives such as an electrode film forming agent, an antioxidant, a flame retardant, and an overcharge inhibitor in order to improve battery life and safety.
- electrolyte additives such as an electrode film forming agent, an antioxidant, a flame retardant, and an overcharge inhibitor in order to improve battery life and safety.
- the concentration is preferably 0.01% by mass to 10% by mass, more preferably 0.1% by mass to 5% by mass, based on the non-aqueous electrolyte. If it is less than 0.01% by mass, the addition effect may not be exhibited, and if it exceeds 10% by mass, the characteristics of the lithium ion secondary battery may be adversely affected.
- ⁇ Separator> In the lithium ion secondary battery of the present invention, when a liquid non-aqueous electrolyte is used as the non-aqueous electrolyte, it is preferable to interpose a separator between the working electrode and the counter electrode.
- a separator a polymer film, a non-woven fabric, and a glass filter usually used for a lithium ion secondary battery can be selected and used without particular limitation.
- polymer film examples include, for example, polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyether sulfone, polycarbonate, polyamide, polyimide, polyethylene oxide.
- Examples thereof include a film made of a coalescence or a mixture, and these polymer films may be coated with a ceramic material such as alumina or silica, magnesium oxide, an aramid resin, or polyvinylidene chloride. These polymer films may be used alone or may be laminated and used as a multi-layer film. Further, various additives may be used for these polymer films, and the type and content thereof are not particularly limited. Among these polymer films, a film selected from polyethylene, polypropylene, polyvinylidene fluoride, and polysulfone is preferably used.
- phase separation method in which a solution of a polymer compound and a solvent is microphase-separated to form a film, and the solvent is extracted and removed to make the polymer porous.
- a “stretching method” in which crystals are formed by extruding and then heat-treated to arrange the crystals in one direction, and further, gaps are formed between the crystals by stretching to achieve porosity, which is appropriately selected depending on the polymer film to be used. ..
- a polymer gel electrolyte a polyelectrolyte (or a polyelectrolyte obtained by dispersing a lithium salt without using a solvent), a complex hydride-based solid electrolyte, or an inorganic solid electrolyte is used as the non-aqueous electrolyte, It does not have to include a separator.
- the shape of the lithium ion of the present invention is not particularly limited, and can be a battery of various shapes such as a coin type battery, a cylindrical type battery, a square type battery, a laminated type battery, etc., and a metal container or a metal container as an external packaging member or A laminated film can be used.
- the thickness of the outer packaging member is usually 0.5 mm or less, preferably 0.3 mm or less.
- Examples of the shape of the external packaging member include a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
- the metal container examples include those made of stainless steel, aluminum, an aluminum alloy, or the like.
- the aluminum alloy is preferably an alloy containing elements such as magnesium, zinc and silicon.
- the laminated film a multilayer film having a metal layer between resin films can be used.
- the metal layer is preferably an aluminum foil or an aluminum alloy foil in order to reduce the weight.
- the resin film for example, a polymer material such as polypropylene, polyethylene, nylon, or polyethylene terephthalate can be used.
- the laminated film can be sealed by heat fusion to form an exterior member.
- FIG. 1 shows an example of a coin-type battery of a lithium-ion secondary battery of the present invention
- FIGS. 2 and 3 show an example of a cylindrical battery
- FIGS. 4 to 6 show an example of a laminated battery. be.
- 1 is a positive electrode capable of emitting lithium ions
- 1a is a positive electrode current collector
- 2 is a negative electrode capable of storing and releasing lithium ions released from the positive electrode
- 2a is a negative electrode collection.
- the electric body, 3 is a non-aqueous electrolyte
- 4 is a positive electrode case made of stainless steel
- 5 is a negative electrode case made of stainless steel
- 6 is a gasket made of polypropylene
- 7 is a separator made of polyethylene.
- 11 is a negative electrode
- 12 is a negative electrode current collector
- 13 is a positive electrode
- 14 is a positive electrode current collector
- 15 is a non-aqueous electrolyte
- 16 is a separator.
- 17 is a positive electrode terminal
- 18 is a negative electrode terminal
- 19 is a negative electrode plate
- 20 is a negative electrode lead
- 21 is a positive electrode plate
- 22 is a positive electrode lead
- 23 is a case
- 24 is an insulating plate
- 25 is a gasket
- 26 is a safety valve
- 27 is a PTC. It is an element.
- FIG. 4 is an exploded perspective view schematically showing the electrode group 29 of the laminated lithium ion secondary battery 28.
- a laminated lithium ion secondary battery will be used, but the present invention is not limited thereto.
- the electrode group 29 has, for example, a structure in which a sheet-shaped negative electrode 11, a sheet-shaped positive electrode 13, and a sheet-shaped separator 16 for partitioning the negative electrode 11 and the positive electrode 13 are alternately laminated.
- Reference numeral 17 is a positive electrode terminal and 18 is a negative electrode terminal.
- FIG. 5 is an exploded perspective view schematically showing the laminated lithium ion secondary battery 28, and FIG. 6 is an external plan view schematically showing the laminated lithium ion secondary battery 28.
- 17 is a positive electrode terminal
- 18 is a negative electrode terminal
- 29 is an electrode group
- 30 is a case-side laminated film
- 31 is a lid-side laminated film.
- the mixture was heated at a heating rate of 5 ° C./min while introducing argon gas into the alumina tanman tube at a flow rate of 100 cc / min, and the heating was stopped when the temperature reached 360 ° C., but the temperature rose to 400 ° C. did.
- the reaction product was taken out from the alumina tanman tube.
- the obtained reaction product was heated to remove elemental sulfur and then pulverized to obtain SPAN.
- the average secondary particle size of the obtained SPAN was 9 ⁇ m, and the sulfur content was 38% by mass.
- the slurry was degassed for 30 minutes under reflux with nitrogen, then heated to 70 ° C. and heated for 12 hours.
- the obtained slurry was vacuum dried and then allowed to stand at room temperature (25 ° C.).
- the temperature was raised from 25 ° C. to 240 ° C. at a rate of 5 ° C./min under air, and the temperature was maintained at 240 ° C. for 1 hour. Further, the temperature was raised to 700 ° C. at a rate of 5 ° C./min under nitrogen reflux to prepare a carbon-coated LTO in which the surface of the lithium titanium oxide was coated with carbon.
- the average particle size of the obtained carbon-coated LTO was 8 ⁇ m.
- Example 1 Production of electrode A As an electrode active material, SPAN 45.0 parts by mass and lithium titanium oxide (Li 4 Ti 5 O 12 ) produced in Production Example 1 (manufactured by Ishihara Sangyo Co., Ltd., average secondary particles) Diameter 7 ⁇ m) 45.0 mass, acetylene black (manufactured by Denka Co., Ltd.) 5.0 parts by mass as a conductive auxiliary agent, styrene-butadiene rubber (40 mass% aqueous dispersion, manufactured by Nippon Zeon Co., Ltd.) as a binder 3.
- the obtained electrode mixture paste is applied to one side of a current collector made of carbon-coated aluminum foil (thickness 22 ⁇ m) by the doctor blade method, allowed to stand at 80 ° C. for 1 hour, dried, and then press-molded. Then, an active material layer was formed on the current collector. Then, the aluminum foil on which the active material layer was formed was cut into a predetermined size (circular shape) and further vacuum dried at 130 ° C. for 2 hours immediately before use to prepare an electrode A.
- Example 2 Production of electrode B 72 parts by mass of SPAN and lithium titanium oxide (Li 4 Ti 5 O 12 ) produced in Production Example 1 for the electrode active material in Example 1 (manufactured by Ishihara Sangyo Co., Ltd., average 2)
- the electrode B was produced by the same procedure as in Example 1 except that the particle diameter was changed to 18 parts by mass (7 ⁇ m).
- Example 3 Production of electrode C 18 parts by mass of SPAN and lithium titanium oxide (Li 4 Ti 5 O 12 ) produced in Production Example 1 for the electrode active material in Example 1 (manufactured by Ishihara Sangyo Co., Ltd., average 2).
- the electrode C was produced by the same procedure as in Example 1 except that the particle diameter was changed to 72 parts by mass (7 ⁇ m).
- Electrode D 45 parts by mass of SPAN and lithium titanium oxide (Li 4 Ti 5 O 12 ) produced in Production Example 1 for the electrode active material in Example 1 (manufactured by Ishihara Sangyo Co., Ltd., average 2)
- the electrode D was produced by the same procedure as in Example 1 except that the particle diameter was changed to 45 parts by mass (15 ⁇ m).
- Electrode E was produced by the same procedure as in Example 1 except that the electrode active material in Example 1 was changed to only 90 parts by mass of SPAN produced in Production Example 1. ..
- Example 3 Production of Electrode F
- the electrode active material in Example 1 is changed to only 90 parts by mass of lithium titanium oxide (Li 4 Ti 5 O 12 ) (manufactured by Ishihara Sangyo Co., Ltd., average secondary particle diameter 7 ⁇ m). Except for the above, the electrode F was produced by the same procedure as in Example 1.
- Electrode G is produced by the same procedure as in Example 1 except that the electrode active material in Example 1 is changed to only 90 parts by mass of the carbon-coated LTO produced in Production Example 2. did.
- Electrode H 88 parts by mass of SPAN and lithium titanium oxide (Li 4 Ti 5 O 12 ) produced in Production Example 1 for the electrode active material in Example 1 (manufactured by Ishihara Sangyo Co., Ltd., average 2).
- the electrode H was produced by the same procedure as in Example 1 except that the particle size was changed to 2 parts by mass (second particle diameter 7 ⁇ m).
- the electrode I was produced by the same procedure as in Example 1 except that the particle diameter was changed to 88 parts by mass (7 ⁇ m).
- Example 4 Manufacture of lithium ion secondary battery A
- An electrode A is used as a working electrode
- a lithium metal having a thickness of 500 ⁇ m cut into a circle is used as a counter electrode
- a glass filter is used as a separator between the working electrode and the counter electrode. It was held in the case by sandwiching it with.
- a non-aqueous electrolytic solution a non-aqueous electrolytic solution adjusted to have a concentration of LiPF 6 of 1.0 ml / L is sealed in a mixed solvent consisting of 30% by volume of ethylene carbonate and 70% by volume of ethylmethyl carbonate.
- the case was sealed and sealed using a caulking machine to prepare a coin-shaped lithium ion secondary battery A having a diameter of 20 mm and a thickness of 3.2 mm.
- the capacity of the battery was 3 mAh.
- a schematic diagram of this coin-shaped lithium ion secondary battery is shown in FIG.
- Example 5 Production of lithium ion secondary battery B A lithium ion secondary battery B was produced in the same procedure as in Example 4 except that the electrode A as a working electrode was changed to the electrode B. The capacity of the battery was 3 mAh.
- Example 6 Production of lithium ion secondary battery C A lithium ion secondary battery C was produced in the same procedure as in Example 4 except that the electrode A as a working electrode was changed to the electrode C. The capacity of the battery was 3 mAh.
- Lithium ion secondary battery I was produced in the same procedure as in Example 4 except that the electrode A as the working electrode was changed to the electrode I.
- the capacity of the battery was 3 mAh.
- Rate characteristics Put the lithium-ion secondary battery in a constant temperature bath at 25 ° C, set the charge termination voltage to 3.0V, the discharge termination voltage to 1.0V, and under the conditions of a charging rate of 0.1C and a discharge rate of 0.1C.
- the charge / discharge test was carried out five times in a row, and then the charge test was carried out three times in a row under the conditions of a charge rate of 0.1 C and a discharge rate of 5.0 C, and further, a charge rate of 0.1 C and a discharge rate of 0.
- the charge / discharge test was carried out three times in a row under the condition of 1C, and the charge / discharge test was carried out a total of 11 times to measure the discharge capacity.
- the ratio of the 5th discharge capacity and the 8th discharge capacity to the 8th discharge capacity / the 5th discharge capacity was calculated as the rate characteristic (%).
- the unit of discharge capacity is mAh / g.
- SPAN lithium titanium oxide
- Li 4 Ti 5 O 12 lithium titanium oxide
- Example 14 Manufacture of the all-solid-state secondary battery L
- the electrode active material in Example 7 was lithium titanium oxide (Li 4 Ti 5 O 12 ) (manufactured by Ishihara Sangyo Co., Ltd., average secondary particle diameter 7 ⁇ m) 50.
- the all-solid-state secondary battery L was manufactured by the same procedure as in Example 7 except that it was changed to only 0 parts by mass.
- Rate characteristics An all-solid secondary battery is placed in a constant temperature bath at 60 ° C., the end-of-charge voltage is 2.38 V, the end-of-discharge voltage is 0.38 V, and the charge rate is 0.05 C and the discharge rate is 0.05 C.
- the charge / discharge test was carried out 5 times in a row, and the charge / discharge test was carried out 3 times in a row under the conditions of a charge rate of 0.05 C and a discharge rate of 1.0 C. It was measured.
- the ratio of the 8th discharge capacity / the 5th discharge capacity was calculated as the rate characteristic (%).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Dispersion Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
<硫黄変性ポリアクリロニトリル>
硫黄変性ポリアクリロニトリル(以下、「SPAN」と称することがある。)は、ポリアクリロニトリル化合物と、硫黄とを混合し、非酸化雰囲気中、250℃~600℃で加熱処理して変性させることによって製造することができる。非酸化雰囲気とは、酸素濃度が5体積%未満、好ましくは2体積%未満、更に好ましくは、酸素を実質的に含有しない雰囲気を表し、例えば、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気や、硫黄ガス雰囲気等が挙げられる。
また、SPANは、ポリアクリロニトリル化合物と硫黄とを混合する際に、他の活物質や導電助剤を添加してから製造してもよい。
粉砕、分級工程を実施することで、本発明の電極に適した粒子径を有するSPANを効率的に製造することができる。
なお、本明細書において、SPANの硫黄含有量は、硫黄及び酸素が分析可能なCHN分析装置、例えば、エレメンター社製vario MICRO cubeを用いた元素分析の結果から算出した数値を表す。
リチウムチタン酸化物は、下記一般式(1)で表される化合物が挙げられる。
LiaTibOcMd (1)
(式中、Mは、Zr、B、Sn、S、Be、Ge及びZnからなる群から選択される一種又は2種以上の混合物を表し、a、b、c及びdは、それぞれ、0.5≦a≦5、1≦b≦5、2≦c≦12、0≦d<0.1を表す。)
本発明の電極において、スピネル構造リチウムチタン酸化物が、充電時の体積変化が少ないので好ましい。
ただし、本発明の電極における活物質層においては、SPANの平均二次粒子径が、リチウムチタン酸化物の平均二次粒子径よりも大きくなるように、SPAN及びリチウムチタン酸化物を選択する必要がある。SPANの平均二次粒子径が、リチウムチタン酸化物の平均二次粒子径以下であると、高速での充放電が困難となる。
本発明の電極は、公知の方法に準じて製造することができる。例えば、SPAN及びリチウムチタン酸化物を含む活物質、バインダー及び導電助剤を含む配合物を、有機溶媒又は水でスラリー化して電極合剤ペーストを製造し、該電極合剤ペーストを集電体上に塗布して乾燥することにより、集電体上に活物質層が形成された電極を製造することができる。
本発明のリチウムイオン二次電池において、本発明の電極に対する対極としては、金属リチウム、または、活物質として、リチウムを含有する複合酸化物、ケイ素、ケイ素酸化物、黒鉛、カーボン等を含有する電極が挙げられる。
LigNihCoiM1jO2 (2)
Li(1+x)Mn(2-x-y)M1yO4 (3)
式中、g、h、i及びjは、0.9≦g≦1.2、0.3<h<1、0≦i≦0.5、0≦j≦0.5、h+i+j=1を満たし、xは、0≦x<0.5を満たし、yは、0≦y<0.5を満たす。M1はアルミニウム、チタン、バナジウム、クロム、マンガン、鉄、銅、亜鉛、マグネシウム、ガリウム、ジルコニウム、ニオブ、ホウ素、カルシウム、モリブデン、及びタングステンからなる群から選ばれる少なくとも1種であるのが好ましい。
LikM2m(PO4)nFp (4)
式中、kは0<k≦3であり、mは0.5≦m≦2であり、nは1≦n≦3であり、pは0≦p≦1である。M2は鉄、コバルト、ニッケル、マンガン、銅、チタン、タングステン、モリブデン、クロム、バナジウム、及び一酸化バナジウム(II)からなる群から選ばれる少なくとも1種であり、充放電安定性が良好であることから、鉄、コバルト、ニッケル、マンガン、銅、バナジウム、及び一酸化バナジウム(II)からなる群から選ばれる少なくとも1種がより好ましい。また、M2の一部がアルミニウム、亜鉛、マグネシウム、ジルコニウム、ガリウム、ニオブ等の他の1種以上の金属で置換されていてもよい。
本発明のリチウムイオン二次電池は、作用極としてSPAN及びリチウムチタン酸化物を含有する電極を用いること以外は公知のリチウムイオン二次電池の製造方法を用いて製造することができる。例えば、該作用極と対極との間をセパレータで挟み電池セル内に保持し、電池セル内に非水電解液を導入後、密閉・封止することで製造することができる。以下、リチウムイオン二次電池の各材料について説明する。
本発明のリチウムイオン二次電池で用いることができる非水電解質は、リチウム塩を有機溶媒に溶解して得られる液体状非水電解質、溶媒又は分散媒として、有機溶媒に高分子化合物を溶解してゲル化した高分子ゲルを用い、リチウム塩を溶解又は分散して得られる高分子ゲル状非水電解質、分散媒として高分子を用い、溶媒を用いずにリチウム塩を分散させて得られる高分子非水電解質(本明細書では、溶媒を用いず、高分子を分散媒としてリチウム塩を分散して得られる電解質を高分子電解質と定義する)、錯体水素化物系固体電解質、無機系固体電解質等を挙げることができる。
非水電解質に用いられるリチウム塩としては、特に限定されるものではなく、リチウムイオン二次電池のリチウム塩として使用できる、公知のリチウム塩を使用することができる。リチウム塩の具体的な例としては、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiCF3CO2、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiN(SO2F)2、LiC(CF3SO2)3、LiB(CF3SO3)4、LiB(C2O4)2、LiBF2(C2O4)、LiSbF6、LiSiF5、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlF4、LiAlCl4、LiPO2F2、これらの誘導体等が挙げられる。
非水電解質として液体状非水電解質を用いる場合、環状カーボネート化合物から選ばれる少なくとも1種の化合物を含むことが好ましい。
環状カーボネート化合物としては、例えば、エチレンカーボネート、1,2-プロピレンカーボネート、1,3-プロピレンカーボネート、1,2-ブチレンカーボネート、1,3-ブチレンカーボネート、1,1,-ジメチルエチレンカーボネート等の飽和環状カーボネート化合物、ビニレンカーボネート、ビニルエチレンカーボネート、プロピリデンカーボネート、エチレンエチリデンカーボネート、エチレンイソプロピリデンカーボンート等の不飽和環状カーボネート化合物が挙げられる。これらの環状カーボネート化合物は、水素原子の一部がフッ素原子に置換されていてもよい。
高分子ゲルとして利用可能な高分子としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、ポリビニルクロライド、ポリアクリロニトリル、ポリメチルメタクリレート、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリスチレンスルホン酸等が挙げられる。高分子を溶解してゲル化する有機溶媒、リチウム塩と高分子ゲルの配合比率、高分子ゲルの製造方法としては、特に制限なく、本技術分野で公知の有機溶媒、公知のリチウム塩、公知の製造方法を採用することができる。
分散媒として高分子を用い、溶媒を用いずにリチウム塩を分散させて得られる高分子非水電解質として用いることができる高分子としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、ポリスチレンスルホン酸等が挙げられる。
高分子非水電解質のリチウム塩と高分子の配合比率、高分子非水電解質の製造方法については特に制限なく、本技術分野で公知の配合比率、公知の製造方法を採用することができる。
錯体水素化物系固体電解質としては、Li(CB9H10)、Li(CB11H12)、Li2(B12H12)、Li(BH4)、3(LiBH4)-LiI、Li(NH2)、Li(AlH4)、Li3(AlH6)、3(LiBH4)-Li(NH2)、Li(BH4)-Li(NH2)、0.7Li(CB9H10)-0.3Li(CB11H12)、Li(BH4)-3KI、Li(BH4)-P2I4、Li(BH4)-P2S5、Li2(NH2)、Li(BH4)-GdCl3、Li(BH4)-NaI、Li(BH4)-3Li(NH2)等が挙げられる。
無機系固体電解質としては、硫化物系固体電解質、酸化物系固体電解質、リン酸系固体電解質等が挙げられる。
本発明のリチウムイオン二次電池において、非水電解質として液体状非水電解質を用いる場合、作用極と対極との間にセパレータを介在させることが好ましい。セパレータは、リチウムイオン二次電池に通常用いられる高分子フィルム、不織布及びガラスフィルターを特に限定なく選択して使用することができる。高分子フィルムの具体的な例としては、例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエチレンオキシドやポリプロピレンオキシド等のポリエーテル類、カルボキシメチルセルロースやヒドロキシプロピルセルロース等の種々のセルロース類、ポリ(メタ)アクリル酸及びその種々のエステル類等を主体とする高分子化合物やその誘導体、これらの共重合体や混合物からなるフィルム等が挙げられ、これらの高分子フィルムは、アルミナやシリカなどのセラミック材料、酸化マグネシウム、アラミド樹脂、ポリフッ化ビニリデンでコートされていてもよい。これらの高分子フィルムは、単独で用いてもよいし、これらのフィルムを重ね合わせて複層フィルムとして用いてもよい。更に、これらの高分子フィルムには、種々の添加剤を用いてもよく、その種類や含有量は特に制限されない。これらの高分子フィルムの中でも、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリスルホンから選択されてなるフィルムが好ましく用いられる。
本発明のリチウムイオンの形状は、特に制限がなく、コイン型電池、円筒型電池、角型電池、ラミネート型電池等、種々の形状の電池とすることができ、外部包装部材として金属製容器又はラミネートフィルムを用いることができる。外部包装部材の厚さは、通常0.5mm以下であり、好ましくは0.3mm以下である。外部包装部材の形状としては、扁平型(薄型)、角型、円筒型、コイン型、ボタン型等が挙げられる。
硫黄(シグマアルドリッチ製、粒子径200μm、粉末)200質量部と、ポリアクリロニトリル粉末(シグマアルドリッチ製、開口径30μmの篩を用いて分級)100質量部とを混合した混合物を、アルミナタンマン管に入れた後、アルミナタンマン管の開口部を、熱電対、ガス導入管及びガス排出管が取り付けられたゴム栓で蓋をした。アルミナタンマン管内にアルゴンガスを100cc/分の流量で導入しながら、混合物を5℃/分の昇温速度で加熱し、360℃に到達した時点で加熱を止めたが、温度は400℃まで上昇した。自然放冷で室温まで冷却した後、アルミナタンマン管から反応生成物を取り出した。得られた反応生成物を加熱により単体硫黄を除去した後に粉砕して、SPANを得た。得られたSPANの平均二次粒子径は9μmであり、硫黄含有量は38質量%であった。
250mlの丸底フラスコに、リチウムチタン酸化物(Li4Ti5O12)(石原産業株式会社製、平均粒子径:7μm)、純水100mlを加え、1時間攪拌させ、さらに超音波を6分間照射した。得られたスラリーを氷浴中で冷却後、アクリロニトリル3g、2,2’-アゾビス(イソブチロニトリル)25mgを加え、超音波を6分間照射した。次に、窒素還流下、スラリーを30分間脱気後、70℃に昇温して12時間加熱した。得られたスラリーを真空乾燥させた後、常温(25℃)静置した。
空気下、25℃から5℃/分の速度で240℃まで昇温し、240℃で1時間保持した。さらに窒素還流下、5℃/分の速度で700℃まで昇温し、リチウムチタン酸化物の表面が炭素で被覆された炭素被覆LTOを作製した。得られた炭素被覆LTOの平均粒子径は、8μmであった。
電極活物質として、製造例1で製造したSPAN 45.0質量部及びリチウムチタン酸化物(Li4Ti5O12)(石原産業株式会社製、平均二次粒子径7μm)45.0質量、導電助剤として、アセチレンブラック(デンカ株式会社製)5.0質量部、バインダーとして、スチレン-ブタジエンゴム(40質量%水分散液、日本ゼオン株式会社製)3.0質量部(固形分)、及びカルボキシメチルセルロースナトリウム(ダイセルファインケム株式会社製)2.0質量部を、溶媒である水110質量部に添加し、これらを自転・公転ミキサーを用いて、公転1600rpm、自転640rpmの条件で30分間混合して、電極合剤ペーストを調製した。
実施例1における電極活物質を、製造例1で製造したSPAN 72質量部及びリチウムチタン酸化物(Li4Ti5O12)(石原産業株式会社製、平均二次粒子径7μm)18質量部に変更したこと以外は、実施例1と同様の手順にて電極Bを作製した。
実施例1における電極活物質を、製造例1で製造したSPAN 18質量部及びリチウムチタン酸化物(Li4Ti5O12)(石原産業株式会社製、平均二次粒子径7μm)72質量部に変更したこと以外は、実施例1と同様の手順にて電極Cを作製した。
実施例1における電極活物質を、製造例1で製造したSPAN 45質量部及びリチウムチタン酸化物(Li4Ti5O12)(石原産業株式会社製、平均二次粒子径15μm)45質量部に変更したこと以外は、実施例1と同様の手順にて電極Dを作製した。
実施例1における電極活物質を、製造例1で製造したSPAN 90質量部のみに変更したこと以外は、実施例1と同様の手順にて電極Eを作製した。
実施例1における電極活物質を、リチウムチタン酸化物(Li4Ti5O12)(石原産業株式会社製、平均二次粒子径7μm)90質量部のみに変更したこと以外は、実施例1と同様の手順にて電極Fを作製した。
実施例1における電極活物質を、製造例2で製造した炭素被覆LTO 90質量部のみに変更したこと以外は、実施例1と同様の手順で電極Gを作製した。
実施例1における電極活物質を、製造例1で製造したSPAN 88質量部及びリチウムチタン酸化物(Li4Ti5O12)(石原産業株式会社製、平均二次粒子径7μm)2質量部に変更したこと以外は、実施例1と同様の手順で電極Hを作製した。
実施例1における電極活物質を、製造例1で製造したSPAN 2質量部及びリチウムチタン酸化物(Li4Ti5O12)(石原産業株式会社製、平均二次粒子径7μm)88質量部に変更したこと以外は、実施例1と同様の手順で電極Iを作製した。
作用極として、電極Aを用い、対極として、円形上にカットした厚み500μmのリチウム金属を用い、セパレータとして、作用極及び対極の間をガラスフィルターで挟みケース内に保持した。非水電解液として、エチレンカーボネート30体積%及びエチルメチルカーボネート70体積%からなる混合溶媒に、LiPF6が1.0ml/Lの濃度になるように調整した非水電解液をケース内に封入し、かしめ機を用いてケースを密閉、封止して、φ20mm、厚み3.2mmのコイン型のリチウムイオン二次電池Aを作製した。電池の容量は、3mAhであった。このコイン型のリチウムイオン二次電池の模式図を図1に示す。
作用極としての電極Aを、電極Bに変更したこと以外は、実施例4と同様の手順でリチウムイオン二次電池Bを作製した。電池の容量は、3mAhであった。
作用極としての電極Aを、電極Cに変更したこと以外は、実施例4と同様の手順でリチウムイオン二次電池Cを作製した。電池の容量は、3mAhであった。
作用極としての電極Aを、電極Dに変更したこと以外は、実施例4と同様の手順でリチウムイオン二次電池Dを作製した。電池の容量は、3mAhであった。
作用極としての電極Aを、電極Eに変更したこと以外は、実施例4と同様の手順でリチウムイオン二次電池Eを作製した。電池の容量は、3mAhであった。
作用極としての電極Aを、電極Fに変更したこと以外は、実施例4と同様の手順でリチウムイオン二次電池Fを作製した。電池の容量は、3mAhであった。
作用極としての電極Aを、電極Gに変更したこと以外は、実施例4と同様の手順でリチウムイオン二次電池Gを作製した。電池の容量は、3mAhであった。
作用極としての電極Aを、電極Hに変更したこと以外は、実施例4と同様の手順でリチウムイオン二次電池Hを作製した。電池の容量は、3mAhであった。
作用極としての電極Aを、電極Iに変更したこと以外は、実施例4と同様の手順でリチウムイオン二次電池Iを作製した。電池の容量は、3mAhであった。
リチウムイオン二次電池を25℃の恒温槽に入れ、充電終止電圧を3.0V、放電終止電圧を1.0Vとし、充電レート0.1C、放電レート0.1Cの条件で充放電試験を5回連続で実施し、続いて、充電レート0.1C、放電レート5.0Cの条件で充電試験を3回連続で実施し、さらに、充電レート0.1C、放電レート0.1Cの条件で充放電試験を3回連続で実施し、計11回の充放電試験を行い、放電容量を測定した。5回目の放電容量及び8回目の放電容量と、8回目の放電容量/5回目の放電容量の比をレート特性(%)として算出した。これらの結果についてそれぞれ表1に示す。放電容量の単位はmAh/gである。
作製したリチウムイオン二次電池を25℃の恒温槽に入れ、充電終止電圧を3.0V、放電終止電圧を1.0Vとし、充電レート0.1C、放電レート0.1Cの条件で、充放電試験を5回連続で実施し、続いて、充電レート0.1Cの充電のみを行った。充電された非水電解質二次電池を、80℃で10日間保存し、その後、充電レート0.1C、放電レート0.1Cの条件で、充放電試験を3回行い、計8回の充放電試験を行い、放電容量を測定した。5回目の放電容量、8回目の放電容量、及び8回目の放電容量/5回目の放電容量の比を、カレンダー寿命(%)として算出した。これらの結果を表2にそれぞれ示す。放電容量の単位はmAh/gである。
電極活物質として、製造例1で製造したSPAN 25.0質量部及びリチウムチタン酸化物(Li4Ti5O12)(石原産業株式会社製、平均二次粒子径7μm)25.0質量部、導電助剤として、アセチレンブラック(デンカ株式会社製)5.0質量部、及び固体電解質として75Li2S・25P2S5(Li2S:P2S5のモル比=75:25)45.0質量部を混合し、プレス処理により成形し、直径10mmの円形の作用極合剤層を作製した。次に、SUS箔/作用極合剤層/固体電解質層(75Li2S・25P2S5)/In-Li合金/SUS箔の順で積層し、荷重20kNでプレス成型して全固体電池評価セル(宝泉株式会社製、型式KP-SolidCell)内に密閉することで、全固体二次電池Jを製造した。
実施例7における電極活物質を、製造例1で製造したSPAN 50.0質量部のみに変更したこと以外は、実施例7と同様の手順で全固体二次電池Kを製造した。
実施例7における電極活物質を、リチウムチタン酸化物(Li4Ti5O12)(石原産業株式会社製、平均二次粒子径7μm)50.0質量部のみに変更したこと以外は、実施例7と同様の手順で全固体二次電池Lを製造した。
全固体二次電池を60℃の恒温槽に入れ、充電終止電圧を2.38V、放電終止電圧を0.38Vとし、充電レート0.05C、放電レート0.05Cの条件で充放電試験を5回連続で実施し、さらに充電レート0.05C、放電レート1.0Cの条件で充放電試験を3回連続で実施し、計8回の充放電試験を行い、放電容量を測定した。8回目の放電容量/5回目の放電容量の比をレート特性(%)として算出した。これらの結果について表3に示す。
1a 正極集電体
2 負極
2a 負極集電体
3 非水電解質
4 正極ケース
5 負極ケース
6 ガスケット
7 セパレータ
10 コイン型リチウムイオン二次電池
10’円筒型リチウムイオン二次電池
11 負極
12 負極集電体
13 正極
14 正極集電体
15 非水電解質
16 セパレータ
17 正極端子
18 負極端子
19 負極板
20 負極リード
21 正極板
22 正極リード
23 ケース
24 絶縁板
25 ガスケット
26 安全弁
27 PTC素子
28 ラミネート型リチウムイオン二次電池
29 電極群
30 ケース側ラミネートフィルム
31 ふた側ラミネートフィルム
Claims (8)
- 集電体上に硫黄変性ポリアクリロニトリル及びリチウムチタン酸化物を含有する活物質層が形成された電極であって、
前記硫黄変性ポリアクリロニトリルの平均二次粒子径が、前記リチウムチタン酸化物の平均二次粒子径よりも大きく、かつ、前記活物質層における前記硫黄変性ポリアクリロニトリルの含有量が、5質量%~85質量%であり、前記活物質層における前記リチウムチタン酸化物の含有量が、5質量%~85質量%である電極。 - 前記硫黄変性ポリアクリロニトリルの平均二次粒子径が、0.1μm~50μmである、請求項1に記載の電極。
- 前記リチウムチタン酸化物の平均二次粒子径が、0.05μm~30μmである、請求項1又は2に記載の電極。
- 正極と、
負極と、
リチウム塩を含有する非水電解質と
を具備するリチウムイオン二次電池であって、
前記正極又は前記負極が、請求項1~3の何れか一項に記載の電極であるリチウムイオン二次電池。 - 前記リチウム塩を含有する非水電解質が、液体状非水電解質、高分子ゲル状非水電解質、高分子非水電解質、錯体水素化物系固体電解質又は無機系固体電解質である、請求項4に記載のリチウムイオン二次電池。
- 前記リチウム塩を含有する非水電解質が、液体状非水電解質であり、前記液体状非水電解質が、環状カーボネート化合物を含有する、請求項4に記載のリチウムイオン二次電池。
- 前記液体状非水電解質が、鎖状カーボネート化合物を更に含有する、請求項6に記載のリチウムイオン二次電池。
- 前記リチウム塩を含有する非水電解質が、無機系固体電解質であり、前記無機系固体電解質が、硫化物系固体電解質又は酸化物系固体電解質である、請求項4に記載のリチウムイオン二次電池。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237000443A KR20230024335A (ko) | 2020-06-12 | 2021-06-02 | 전극 및 리튬 이온 이차 전지 |
EP21822348.5A EP4167313A1 (en) | 2020-06-12 | 2021-06-02 | Electrode and lithium ion secondary battery |
JP2022530503A JPWO2021251234A1 (ja) | 2020-06-12 | 2021-06-02 | |
US18/009,471 US20230238511A1 (en) | 2020-06-12 | 2021-06-02 | Electrode and lithium ion secondary battery |
CN202180041749.9A CN115702509A (zh) | 2020-06-12 | 2021-06-02 | 电极和锂离子二次电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-102128 | 2020-06-12 | ||
JP2020102128 | 2020-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021251234A1 true WO2021251234A1 (ja) | 2021-12-16 |
Family
ID=78846097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/020975 WO2021251234A1 (ja) | 2020-06-12 | 2021-06-02 | 電極及びリチウムイオン二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230238511A1 (ja) |
EP (1) | EP4167313A1 (ja) |
JP (1) | JPWO2021251234A1 (ja) |
KR (1) | KR20230024335A (ja) |
CN (1) | CN115702509A (ja) |
WO (1) | WO2021251234A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3769291B2 (ja) | 2004-03-31 | 2006-04-19 | 株式会社東芝 | 非水電解質電池 |
WO2010044437A1 (ja) | 2008-10-17 | 2010-04-22 | 独立行政法人産業技術総合研究所 | 硫黄変性ポリアクリロニトリル、その製造方法、及びその用途 |
WO2012114651A1 (ja) * | 2011-02-25 | 2012-08-30 | 株式会社豊田自動織機 | 硫黄変性ポリアクリロニトリルおよびその評価方法ならびに硫黄変性ポリアクリロニトリルを用いた正極、非水電解質二次電池、および車両 |
WO2013076958A1 (ja) * | 2011-11-24 | 2013-05-30 | 株式会社豊田自動織機 | 非水電解質二次電池用正極材料、非水電解質二次電池、および非水電解質二次電池用正極材料の製造方法 |
JP2018174136A (ja) * | 2017-03-31 | 2018-11-08 | 株式会社Adeka | 非水電解質二次電池用電極 |
JP2019521488A (ja) | 2016-06-30 | 2019-07-25 | ハイドロ−ケベック | 炭素被覆活性粒子およびその調製のためのプロセス |
WO2019167875A1 (ja) * | 2018-03-01 | 2019-09-06 | 株式会社Adeka | 有機硫黄系電極活物質 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6981621B2 (ja) * | 2017-08-08 | 2021-12-15 | 第一工業製薬株式会社 | リチウムイオン電池用電極材料、リチウムイオンキャパシタ用電極材料、電極、電池、キャパシタ、電気機器、リチウムイオン電池用電極材料の製造方法、およびリチウムイオンキャパシタ用電極材料の製造方法 |
WO2019181703A1 (ja) * | 2018-03-23 | 2019-09-26 | 株式会社Adeka | 内部短絡による熱暴走の抑制方法 |
CN112005417A (zh) * | 2018-05-23 | 2020-11-27 | 株式会社艾迪科 | 锂离子二次电池 |
-
2021
- 2021-06-02 US US18/009,471 patent/US20230238511A1/en active Pending
- 2021-06-02 WO PCT/JP2021/020975 patent/WO2021251234A1/ja unknown
- 2021-06-02 EP EP21822348.5A patent/EP4167313A1/en active Pending
- 2021-06-02 KR KR1020237000443A patent/KR20230024335A/ko unknown
- 2021-06-02 JP JP2022530503A patent/JPWO2021251234A1/ja active Pending
- 2021-06-02 CN CN202180041749.9A patent/CN115702509A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3769291B2 (ja) | 2004-03-31 | 2006-04-19 | 株式会社東芝 | 非水電解質電池 |
WO2010044437A1 (ja) | 2008-10-17 | 2010-04-22 | 独立行政法人産業技術総合研究所 | 硫黄変性ポリアクリロニトリル、その製造方法、及びその用途 |
WO2012114651A1 (ja) * | 2011-02-25 | 2012-08-30 | 株式会社豊田自動織機 | 硫黄変性ポリアクリロニトリルおよびその評価方法ならびに硫黄変性ポリアクリロニトリルを用いた正極、非水電解質二次電池、および車両 |
WO2013076958A1 (ja) * | 2011-11-24 | 2013-05-30 | 株式会社豊田自動織機 | 非水電解質二次電池用正極材料、非水電解質二次電池、および非水電解質二次電池用正極材料の製造方法 |
JP2019521488A (ja) | 2016-06-30 | 2019-07-25 | ハイドロ−ケベック | 炭素被覆活性粒子およびその調製のためのプロセス |
JP2018174136A (ja) * | 2017-03-31 | 2018-11-08 | 株式会社Adeka | 非水電解質二次電池用電極 |
WO2019167875A1 (ja) * | 2018-03-01 | 2019-09-06 | 株式会社Adeka | 有機硫黄系電極活物質 |
Also Published As
Publication number | Publication date |
---|---|
EP4167313A1 (en) | 2023-04-19 |
KR20230024335A (ko) | 2023-02-20 |
CN115702509A (zh) | 2023-02-14 |
JPWO2021251234A1 (ja) | 2021-12-16 |
US20230238511A1 (en) | 2023-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4595987B2 (ja) | 正極活物質 | |
US20180269483A1 (en) | Prelithiated silicon particles for lithium ion batteries | |
KR101045416B1 (ko) | 리튬티탄산화물 분말, 그 제조방법, 이를 포함하는 전극,및 이차전지 | |
WO2019181703A1 (ja) | 内部短絡による熱暴走の抑制方法 | |
JP2009026514A (ja) | 非水電解質二次電池 | |
JP7304339B2 (ja) | リチウムイオン二次電池、及びその作動方法 | |
WO2020170833A1 (ja) | 電解質用組成物、非水電解質及び非水電解質二次電池 | |
JP7497903B2 (ja) | 二次電池用正極活物質およびこれを含むリチウム二次電池 | |
WO2022004696A1 (ja) | 硫黄変性ポリアクリロニトリル、それを含む電極活物質、該電極活物質を含む二次電池用電極、該電極の製造方法及び該電極を用いた非水電解質二次電池 | |
WO2020171125A1 (ja) | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池 | |
JPWO2020017378A1 (ja) | 非水電解質二次電池 | |
JP5565391B2 (ja) | 電極活物質、当該電極活物質の製造方法、及び当該電極活物質を含むリチウム二次電池 | |
WO2021251234A1 (ja) | 電極及びリチウムイオン二次電池 | |
JP2021118031A (ja) | 非水電解質二次電池 | |
JP2021197309A (ja) | リチウムイオン二次電池 | |
US20220376257A1 (en) | Sulfur-modified polyacrylonitrile | |
JP2021106074A (ja) | 負極活物質 | |
WO2023085245A1 (ja) | 組成物、電極、電池及び電極活物質材料 | |
WO2024161939A1 (ja) | 二次電池 | |
WO2023095755A1 (ja) | 多孔金属を含む集電体及び有機硫黄系活物質を含む非水電解質二次電池用電極、当該電極を含む非水電解質二次電池並びに当該電極の製造のための有機硫黄系活物質 | |
WO2022004697A1 (ja) | 硫黄変性ポリアクリロニトリル、それを含む電極活物質、該電極活物質を含む二次電池用電極、該電極の製造方法及び該電極を用いた非水電解質二次電池 | |
US20220340693A1 (en) | Production method of sulfur-modified polyacrylonitrile | |
JP2023181101A (ja) | 正極合材 | |
JP2023039468A (ja) | 負極活物質 | |
JP2021051854A (ja) | 非水電解質二次電池の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21822348 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022530503 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20237000443 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2021822348 Country of ref document: EP Effective date: 20230112 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |