WO2021132476A1 - R-t-b系焼結磁石の製造方法およびr-t-b系焼結磁石 - Google Patents
R-t-b系焼結磁石の製造方法およびr-t-b系焼結磁石 Download PDFInfo
- Publication number
- WO2021132476A1 WO2021132476A1 PCT/JP2020/048486 JP2020048486W WO2021132476A1 WO 2021132476 A1 WO2021132476 A1 WO 2021132476A1 JP 2020048486 W JP2020048486 W JP 2020048486W WO 2021132476 A1 WO2021132476 A1 WO 2021132476A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- based sintered
- rtb
- sintered magnet
- rare earth
- ppm
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 239000000843 powder Substances 0.000 claims abstract description 143
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 72
- 239000002245 particle Substances 0.000 claims abstract description 72
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 63
- 239000001301 oxygen Substances 0.000 claims abstract description 63
- 239000000956 alloy Substances 0.000 claims abstract description 61
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 61
- 239000011261 inert gas Substances 0.000 claims abstract description 48
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 76
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 76
- 238000010298 pulverizing process Methods 0.000 claims description 56
- 150000002910 rare earth metals Chemical class 0.000 claims description 50
- 229910052757 nitrogen Inorganic materials 0.000 claims description 43
- 229910052799 carbon Inorganic materials 0.000 claims description 31
- 238000009792 diffusion process Methods 0.000 claims description 31
- 239000013078 crystal Substances 0.000 claims description 30
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 23
- 229910052771 Terbium Inorganic materials 0.000 claims description 18
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 17
- 238000005245 sintering Methods 0.000 claims description 12
- 229910052779 Neodymium Inorganic materials 0.000 claims description 11
- 239000012298 atmosphere Substances 0.000 claims description 11
- 230000007423 decrease Effects 0.000 claims description 11
- 229910052684 Cerium Inorganic materials 0.000 claims description 10
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 10
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 10
- 229910052723 transition metal Inorganic materials 0.000 claims description 9
- 150000003624 transition metals Chemical class 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 7
- 229910052689 Holmium Inorganic materials 0.000 claims description 3
- 238000010304 firing Methods 0.000 claims 1
- 238000000227 grinding Methods 0.000 abstract description 4
- 238000000465 moulding Methods 0.000 description 19
- 239000000203 mixture Substances 0.000 description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 16
- 230000006866 deterioration Effects 0.000 description 15
- 239000002612 dispersion medium Substances 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 239000007789 gas Substances 0.000 description 13
- 239000002002 slurry Substances 0.000 description 13
- 238000005121 nitriding Methods 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 11
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 9
- 238000010791 quenching Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000000171 quenching effect Effects 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 239000003921 oil Substances 0.000 description 7
- 235000019198 oils Nutrition 0.000 description 7
- 238000003825 pressing Methods 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000005266 casting Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000002480 mineral oil Substances 0.000 description 6
- 235000010446 mineral oil Nutrition 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000011362 coarse particle Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000001887 electron backscatter diffraction Methods 0.000 description 3
- 238000004508 fractional distillation Methods 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical group [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000011802 pulverized particle Substances 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910000722 Didymium Inorganic materials 0.000 description 1
- 241000224487 Didymium Species 0.000 description 1
- -1 La may be contained Inorganic materials 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000009750 centrifugal casting Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0266—Moulding; Pressing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0293—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/044—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Definitions
- the present application relates to a method for manufacturing an RTB-based sintered magnet and an RTB-based sintered magnet.
- RTB-based sintered magnet (R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, and T is at least one of the transition metals and always contains Fe. , B is boron) is the main phase of a compound having an R 2 Fe 14 B type crystal structure, the grain boundary phase located at the grain boundary portion of this main phase, and a compound produced by the influence of trace additive elements and impurities. are composed of a phase, high residual magnetic flux density B r (hereinafter, sometimes simply referred to as "B r") and high coercivity H cJ (hereinafter, sometimes simply referred to as "H cJ”) It is known as the most high-performance magnet among permanent magnets because it has excellent magnetic properties. Therefore, it is used in a wide variety of applications such as various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV), motors for industrial equipment, and home appliances.
- VCM voice coil motors
- Such an RTB-based sintered magnet is manufactured through, for example, a step of preparing an alloy powder, a step of press-molding the alloy powder to produce a powder molded body, and a step of sintering the powder molded body.
- the alloy powder is produced, for example, by the following method.
- an alloy is produced from molten metal of various raw material metals by a method such as an ingot method or a strip casting method.
- the obtained alloy is subjected to a pulverization step to obtain an alloy powder having a predetermined particle size distribution.
- This pulverization step usually includes a coarse pulverization step and a fine pulverization step.
- the former is carried out by using, for example, a hydrogen embrittlement phenomenon, and the latter is carried out by using, for example, an airflow type crusher (jet mill). Will be.
- the alloy powder obtained by such a crushing step is separated by solid air using, for example, a cyclone type collecting device to collect (collect) the alloy powder for RTB-based sintered magnets.
- Patent Document 1 discloses a method of performing jet mill pulverization using a humidified inert gas stream having a dew point of ⁇ 20 ° C. to 0 ° C. as a method for improving pulverization efficiency. A similar method is also described in Patent Document 2.
- oxygen R-T-B based sintered magnet content as a main phase an R 2 T 14 B phase as a 3500ppm or less at a weight ratio of the grinding
- high-purity nitrogen gas is used as the inert gas to prevent oxidation of the powder particles in the process.
- the method for producing an RTB-based sintered magnet of the present disclosure is, in a non-limiting and exemplary embodiment, an RTB-based sintered magnet (R is a rare earth element, Nd, Pr and Ce.
- R is a rare earth element, Nd, Pr and Ce.
- a method for producing (which always contains at least one selected from the group consisting of, and T is at least one of the transition metals and always contains Fe), and has an average particle size of 10 ⁇ m or more and 500 ⁇ m or less.
- the step of preparing the coarsely crushed powder of the alloy for a sintered magnet and the crushing of the coarsely crushed powder by supplying the coarsely crushed powder to a jet mill device whose crushing chamber is filled with an inert gas have an average particle size of 2.
- the inert gas is humidified and includes the step of obtaining a fine powder of 0.0 ⁇ m or more and 4.5 ⁇ m or less and the step of preparing a sintered body of the fine powder.
- the oxygen content of the magnet is 1000 ppm or more and 3500 ppm or less in terms of mass ratio.
- the R content of the RTB-based sintered magnet is 31% by mass or less.
- the inert gas is nitrogen gas.
- a diffusion step of diffusing the heavy rare earth element RH (RH is at least one of Tb, Dy, and Ho) from the surface of the sintered body to the inside is further included.
- the steps for producing the sintered body of the fine powder include a step of producing a powder molded body from the fine powder by a wet press in a magnetic field or a press in a magnetic field in an inert gas atmosphere, and the powder molded body. Including the step of sintering.
- the average particle size of the fine powder in the step of obtaining the fine powder is 2.0 ⁇ m or more and 3.5 ⁇ m or less.
- the RTB-based sintered magnets of the present disclosure are, in a non-limiting and exemplary embodiment, RTB-based sintered magnets (R is a rare earth element, Nd, Pr and Ce. Always contains at least one selected from the group consisting of, T is at least one of the transition metals and always contains Fe), R 2 T 14 B, which is the main phase of the RTB-based sintered magnet.
- R is a rare earth element, Nd, Pr and Ce. Always contains at least one selected from the group consisting of, T is at least one of the transition metals and always contains Fe
- R 2 T 14 B which is the main phase of the RTB-based sintered magnet.
- the average crystal grain size of the phase is 3 ⁇ m or more and 7 ⁇ m or less, contains oxygen, carbon, and nitrogen, the oxygen content is 1000 ppm or more and 3500 ppm or less by mass ratio, and the carbon content is 80 ppm or more and 1500 ppm by mass ratio.
- Equation 1 [O]>[C]> [N] Equation 2: [O] ⁇ 1.5 ⁇ [N] Equation 3: [C] ⁇ 1.5 ⁇ [N]
- R-T-B based sintered magnet of the present disclosure in the exemplary embodiment is not limited to, a main phase consisting of R 2 T 14 B compound, the grain boundary phase located in the grain boundary of the main phase It is an RTB-based sintered magnet containing and (R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, and T is at least one of transition metals.
- the average crystal grain size of the R 2 T 14 B phase as a main phase of the R-T-B based sintered magnet is at 3 ⁇ m or more 7 ⁇ m or less, wherein the R-T-B-based
- the sintered magnet contains oxygen, carbon, and nitrogen, the oxygen content is 1000 ppm or more and 3500 ppm or less by mass ratio, the nitrogen content is 50 ppm or more and 600 pm or less by mass ratio, and the grain boundary phase is
- the rare earth oxide phase has a rare earth oxide phase, and the rare earth oxide phase contains a rare earth oxynitride phase having a NaCl type crystal structure, and the content (atomic%) of O in the rare earth oxynitride phase is ⁇ O ⁇ .
- the content (atomic%) of N in the rare earth oxynitride phase is ⁇ N ⁇ , the relationship of ⁇ O ⁇ > 1.8 ⁇ ⁇ N ⁇ is satisfied.
- the RTB-based sintered magnet has ⁇ C ⁇ > ⁇ N ⁇ ⁇ 0.
- the content (atomic%) of C in the rare earth oxynitride phase is ⁇ C ⁇ . Satisfy the relationship of 5.
- the ratio of the area of the rare earth oxynitride phase to the area of the rare earth oxide phase is 50% or more in any cross section of the RTB-based sintered magnet.
- the RTB-based sintered magnet includes a portion in which at least one of the Tb concentration and the Dy concentration gradually decreases from the magnet surface toward the inside of the magnet.
- the particle surface of the fine powder obtained by jet mill pulverization can be appropriately modified with a humidified inert gas.
- a humidified inert gas As a result, it is possible to finally realize an RTB-based sintered magnet having excellent magnetic properties while suppressing deterioration of pulverization efficiency during jet mill pulverization even if the pulverization particle size of the fine powder is reduced. It will be possible.
- FIG. 1 is a diagram schematically showing a configuration example of the RTB-based sintered magnet alloy crushing system 1000 according to the present embodiment.
- the present inventors have made an RTB-based sintered magnet having a reduced oxygen content, and if the powder particles are made smaller in the crushing step, the crushing efficiency is deteriorated and the crushing is performed. It was found that the powder particles deteriorated (nitrided) due to the inert gas (particularly when dry nitrogen gas was used as the inert gas) in the process, and the desired effect of improving the magnetic characteristics could not be obtained by making the crushed particles smaller. It was. As a result of further studies, the present inventors have found that the deterioration of powder particles due to the inert gas can be reduced by using the humidified inert gas.
- an actively humidified inert gas stream is used in an attempt to reduce the size of the pulverized particles.
- the oxygen content of the fine powder of Patent Document 1 is relatively high at 4500 ppm and 4900 ppm by mass ratio, and Patent Document 2 does not describe the oxygen content.
- the present inventors unexpectedly obtain the final result.
- the step of increasing the oxygen content of the RTB-based sintered magnet in the steps after crushing is mainly the step of molding and sintering fine powder to produce a sintered body.
- the increase in oxygen content of the -TB-based sintered magnet is small (for example, 50 ppm or more and 300 ppm or less in terms of mass ratio).
- the oxygen content of the RTB-based sintered magnet can be adjusted by the pulverization step. That is, in the present disclosure, powder particles are pulverized by humidifying so that the oxygen content of the obtained RTB-based sintered magnet in the pulverization step is within a specific range (1000 ppm or more and 3500 ppm or less, preferably 1000 ppm or more and 3200 ppm or less).
- the average particle size is 2.0 ⁇ m or more and 4.5 ⁇ m or less, preferably the average particle size is 2.0 ⁇ m or more and 3.5 ⁇ m or less), so that the pulverizability can be improved and the magnetism due to oxidation or sintering in the pulverization step can be improved.
- the average crystal grain size of the main phase of the R-T-B based sintered magnet R 2 T 14 B phase is at 3 ⁇ m or more 7 ⁇ m or less, and containing oxygen, carbon, nitrogen,
- the oxygen content is 1000 ppm or more and 3500 ppm or less by mass ratio
- the carbon content is 80 ppm or more and 1500 ppm or less by mass ratio
- the nitrogen content is 50 ppm or more and 600 pm or less by mass ratio
- the oxygen content is by mass ratio.
- Equation 1 [O]>[C]> [N]
- Equation 2 [O] ⁇ 1.5 ⁇ [N]
- Equation 3 [C] ⁇ 1.5 ⁇ [N]
- R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, and T is at least one of the transition metals and always contains Fe.
- the method for manufacturing this RTB-based sintered magnet is as follows. (1) A step of preparing a coarsely pulverized powder of an alloy for RTB-based sintered magnets having an average particle size of 10 ⁇ m or more and 500 ⁇ m or less. (2) The coarsely pulverized powder is supplied to a jet mill device in which the pulverization chamber is filled with an inert gas to pulverize the coarsely pulverized powder to obtain a fine powder having an average particle size of 2.0 ⁇ m or more and 4.5 ⁇ m or less. Process and (3) A step of producing the fine powder sintered body and The inert gas is humidified. The average particle size (d50) can be measured by airflow dispersion laser diffraction.
- the RTB-based sintered magnet of the present disclosure has an oxygen content of 1000 ppm or more and 3500 ppm or less in terms of mass ratio.
- the oxygen content is set to 1000 ppm or more and 3500 ppm or less, in the step of obtaining the fine powder of (2) above, the humidification of the inert gas is too weak, and the deterioration (oxidation) of the powder particles due to the inert gas progresses. It is possible to suppress the deterioration of the magnetic characteristics due to the deterioration of the magnetic characteristics due to the above and the oxidation of the powder particles due to the humidification.
- the oxygen content of the RTB-based sintered magnet is preferably 1000 ppm or more and 3200 ppm or less, more preferably 1000 ppm or more and 2400 ppm or less, and further preferably 1300 ppm or more and 2400 ppm or less.
- the compressibility in molding is improved as shown in Examples described later. be able to. By improving the compressibility, molding can be performed at a lower molding pressure. This makes it possible to suppress the occurrence of cracks in the molded product.
- the continuous moldability can be improved by reducing the load on the mold and the frequency of mold repair can be reduced, so that the production efficiency can be improved.
- the oxygen content of the RTB-based sintered magnet is 2000 ppm or more.
- the moldability can be further improved. Therefore, the oxygen content of the R-T-B based sintered magnet Considering the formability and magnetic properties (B r and H cJ) is preferably 2000ppm or 2400ppm or less.
- composition of the preferred RTB-based sintered magnet is shown below.
- R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce.
- R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce.
- a combination of rare earth elements represented by Nd-Dy, Nd-Tb, Nd-Dy-Tb, Nd-Pr-Dy, Nd-Pr-Tb, and Nd-Pr-Dy-Tb is used.
- Dy and Tb are particularly effective in improving HcJ.
- other rare earth elements such as La may be contained, and mischmetal or didymium may be used.
- R does not have to be a pure element, and may contain impurities unavoidable in production within the range industrially available.
- the content is, for example, 27% by mass or more and 35% by mass or less.
- the R content of the RTB-based sintered magnet is 31% by mass or less (27% by mass or more and 31% by mass or less, preferably 29% by mass or more and 31% by mass or less).
- the R content of the RTB-based sintered magnet By setting the R content of the RTB-based sintered magnet to 31% by mass or less and the oxygen content to be 1000 ppm or more and 3500 ppm or less in terms of mass ratio, the R oxidized by humidification during humidification and pulverization Occurrence is reduced. Therefore, higher magnetic characteristics can be obtained.
- T contains iron (including the case where T is substantially composed of iron), and 50% or less of the mass ratio may be replaced with cobalt (Co) (T is substantially composed of iron and cobalt). Including the case). Co is effective for improving temperature characteristics and corrosion resistance, and the alloy powder may contain 10% by mass or less of Co.
- the content of T may occupy the balance of R and B or R and B and M described later.
- the content of B may be a known content, and for example, 0.9% by mass to 1.2% by mass is a preferable range. Is less than 0.9 wt% may high H cJ can not be obtained in some cases to lower the B r exceeds 1.2 mass%.
- a part of B can be replaced with C (carbon). More preferably, it is 1.0% by mass or less, and further preferably 0.96% by mass or less.
- M element can be added to improve H cJ.
- the M element is one or more selected from the group consisting of Al, Si, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, In, Sn, Hf, Ta and W. ..
- the amount of M element added is preferably 5.0% by mass or less. This is because Br may decrease if it exceeds 5.0% by mass. Inevitable impurities can also be tolerated.
- the content of N (nitrogen) in the RTB-based sintered magnet is preferably 50 ppm or more and 600 ppm or less in terms of mass ratio.
- the nitrogen content is more preferably 50 ppm or more and 400 ppm or less, and most preferably 100 ppm or more and 300 ppm or less. This is because it is possible to suppress a decrease in magnetic properties due to nitriding while further improving grindability.
- the C (carbon) content in the RTB-based sintered magnet) is preferably 80 ppm or more and 1500 ppm or less, and more preferably 80 ppm or more and 1000 ppm or less in terms of mass ratio. Further, the lower limit of the C content can be 500 ppm, or 800 ppm or more. Further, in the RTB-based sintered magnet of the present disclosure, when the oxygen content is [O], the carbon content is [C], and the nitrogen content is [N] in terms of mass ratio, the following It is preferable that the formulas 1 to 3 of the above are satisfied. Equation 1: [O]>[C]> [N], Equation 2: [O] ⁇ 1.5 ⁇ [N], Equation 3: [C] ⁇ 1.5 ⁇ [N]
- the amount of oxygen increases by performing humidification pulverization as described above, but nitriding due to pulverization is particularly suppressed.
- the contents of oxygen, carbon, and nitrogen in the obtained RTB-based sintered magnet can be as shown in Equation 1 ([O]> [C]> [N]).
- the nitrogen content is smaller than the oxygen and carbon contents, and formulas 2 ([O] ⁇ 1.5 ⁇ [N]) and formula 3 ([C]). ⁇ 1.5 ⁇ [N]).
- [O] ⁇ 3 ⁇ [N] is more preferable, [O] ⁇ 5 ⁇ [N] is more preferable, and [O] ⁇ 10 ⁇ [N] is the most preferable.
- [C] ⁇ 2 ⁇ [N] is more preferable, and [C] ⁇ 5 ⁇ [N] is most preferable.
- the average crystal grain size of the R 2 T 14 B phase as a main phase of the R-T-B based sintered magnet of the present disclosure is 3.5 ⁇ m or more 7.0 ⁇ m or less.
- the average crystal grain size can be determined by averaging the number of crystal grains (5,000 or more) having a circle-equivalent diameter evaluated by EBSD (Electron Backscatter Diffraction).
- the step of preparing the coarsely pulverized powder of the alloy for RTB-based sintered magnet having an average particle size of 10 ⁇ m or more and 500 ⁇ m or less includes the step of preparing the alloy for RTB-based sintered magnet and, for example, this alloy. It includes a step of coarsely crushing by a hydrogen crushing method or the like.
- An alloy ingot can be obtained by an ingot casting method in which a metal or alloy prepared in advance so as to have the above-mentioned composition is melted and placed in a mold. Further, it is represented by a strip casting method or a centrifugal casting method in which a molten metal is brought into contact with a single roll, a double roll, a rotating disk, a rotating cylindrical mold, or the like and rapidly cooled to produce a solidified alloy thinner than the alloy produced by the ingot method. Alloy flakes can be produced by the quenching method.
- a material produced by either an ingot method or a quenching method can be used, but it is preferably produced by a quenching method such as a strip cast method.
- the thickness of the quenching alloy produced by the quenching method is usually in the range of 0.03 mm to 1 mm and has a flake shape.
- the molten alloy begins to solidify from the contact surface of the cooling roll (roll contact surface), and crystals grow in columns from the roll contact surface in the thickness direction. Since the quenching alloy is cooled in a short time as compared with the alloy (ingot alloy) produced by the conventional ingot casting method (mold casting method), the structure is made finer and the crystal grain size is smaller. Also, the area of grain boundaries is large.
- the quenching method is excellent in the dispersibility of the R-rich phase. Therefore, it is easily broken at the grain boundaries by the hydrogen pulverization method.
- the size of the hydrogen pulverized powder (coarse pulverized powder) can be reduced to, for example, 1.0 mm or less.
- the coarsely pulverized powder thus obtained is pulverized by a jet mill in a humidified atmosphere (step (2)).
- FIG. 1 is a diagram schematically showing a configuration example of the crushing system 1000 according to the present embodiment.
- the RTB-based sintered magnet alloy crushing system 1000 includes a jet mill device 100, a cyclone collecting device 200, and a bag filter device 300.
- the jet mill device 100 receives a supply of a material to be crushed from a raw material tank (not shown) via a raw material input pipe 34.
- the object to be pulverized is a coarsely pulverized powder of an alloy for RTB-based sintered magnets having an average particle size of 10 ⁇ m or more and 500 ⁇ m or less.
- the average particle size (d50) in the present disclosure can be measured by an airflow dispersion type laser diffraction method (based on JIS Z 8825: 2013 revised edition). That is, in the present specification, the average particle size means a particle size (median diameter) at which the integrated particle size distribution (volume basis) from the small particle size side is 50%.
- the average particle size (d50) in the embodiment of the present disclosure is d50 measured under the conditions of dispersion pressure: 4 bar, measurement range: R2, and calculation mode: HRLD, using a particle size distribution measuring device "HELOS & RODOS" manufactured by Symboltec. Indicates that.
- a plurality of valves are provided in the raw material input pipe 34, and the internal pressure of the jet mill device 100 is appropriately maintained by opening and closing the valves.
- the object to be crushed introduced inside the jet mill device 100 is a collision plate installed to efficiently promote mutual collision and pulverization between the objects to be crushed by high-speed injection of an inert gas from the nozzle tube 36. It is finely crushed by the collision of.
- a humidifying tube for including water in the inert gas is connected to the nozzle tube 36.
- the powder of the RTB-based sintered magnet alloy is active and easily oxidized. Therefore, the gas used in the jet mill device 100 generally has a dew point in order to avoid the risk of heat generation and ignition and reduce the oxygen content as an impurity to improve the performance of the magnet.
- a dry (high-purity), inert gas such as nitrogen, argon, or helium at -60 ° C or lower is used.
- pulverization is performed in a humidified state in which water is intentionally introduced into such an inert gas. Details of this point will be described later.
- the powder particles (fine powder) pulverized inside the jet mill device 100 are guided by the updraft from the upper discharge port 40 to the inlet pipe 20 of the cyclone collection device 200.
- Coarse particles with insufficient crushing are sorted by a classification rotor installed to classify coarse particles having a medium diameter (d50) or more, remain inside the jet mill device 100, and are further subjected to a crushing process by collision. It will be.
- a classification rotor may be used, or centrifugation by a swirling flow may be used.
- the object to be pulverized (coarse pulverized powder) charged into the jet mill device 100 is pulverized into fine powder having an average particle size (medium diameter: d50) of 2.0 ⁇ m or more and 4.5 ⁇ m or less. It will move to the cyclone collection device 200.
- the cyclone collector 200 is used to separate the powder from the airflow that carries the powder. Specifically, the coarsely pulverized powder of the RTB-based sintered magnet alloy is pulverized by the jet mill in the previous stage, and the fine powder produced by the pulverization passes through the inlet pipe 20 together with the gas used for the pulverization. Is supplied to the cyclone collecting device 200. A mixture of an inert gas (crushed gas) and crushed fine powder forms a high-speed air flow and is sent to the cyclone collecting device 200. The cyclone collecting device 200 is used to separate these pulverized gases and fine powders. The fine powder separated from the crushed residue is collected by the powder collector 50 via the discharge port 40.
- the crushed gas is supplied to the bag filter device 300 via the outlet pipe 30.
- the bag filter device 300 very small fine particles are collected, and clean gas is discharged to the outside from the exhaust port 32.
- the air scattering of fine powder due to the breakage of the filter gives environmental and safety aspects. A large impact. Fine particles may be further separated from the gas after being separated by the cyclone collecting device 200 by using a bag filter in combination.
- the characteristic point of the present disclosure is that humidification and pulverization are performed so that the oxygen content of the RTB-based sintered magnet is in the range of 1000 ppm or more and 3500 ppm or less in terms of mass ratio.
- both deterioration (nitriding) of powder particles due to crushing and oxidation due to humidification can be suppressed, and high magnetic properties can be obtained.
- the increase in oxygen content of the RTB-based sintered magnet is usually small (for example, 50 ppm or more and 300 ppm) due to the steps after pulverization (mainly the step of producing the fine powder sintered body). Less than). Therefore, it is possible to adjust the oxygen content of the RTB-based sintered magnet by the pulverization step.
- the humidified inert gas in the step (2) can be obtained, for example, by giving the inert gas 0.5 g or more and 6.0 g or less of water per 1 kg of the coarsely pulverized powder. If it is less than 0.5 g, deterioration (nitriding) of the powder particles due to pulverization cannot be suppressed, and the magnetic properties may deteriorate. On the other hand, if it exceeds 6.0 g, the humidification is too strong, so that the powder particles may be oxidized and the magnetic properties may be deteriorated.
- the dew point in the crushing chamber and the amount of coarsely pulverized powder supplied to the jet mill device also depend on the crushing time and the size of the jet mill device, but in a preferred embodiment, the inert gas has a dew point at the time of crushing. It is humidified so that the temperature is -55 ° C or higher and -30 ° C or lower. In a further preferred embodiment, the rate at which the coarsely milled powder is supplied to the jet mill device is 35 kg / hour or more and 180 kg / hour or less.
- inert gases examples include nitrogen, argon and helium. Of these, nitrogen is most preferable because a high-purity gas can be obtained at low cost. Therefore, in a preferred embodiment, the inert gas is nitrogen gas.
- the inert gas is nitrogen gas.
- the average particle size of the obtained fine powder becomes 4.5 ⁇ m or less, magnetism is achieved by nitriding. It was found that the properties began to decline. In particular, it was found that when the average particle size is 3.5 ⁇ m or less, the magnetic characteristics may be significantly deteriorated due to nitriding.
- the inert gas in the pulverization chamber is mainly nitrogen
- the active surface of the particles revealed by pulverization is nitrided by humidifying the particles so that they contain a specific adjusted amount of water. It is thought that this is because it can be thinly oxidized first.
- the increase in oxygen content of the RTB-based sintered magnet by the steps after the fine pulverization is 50 ppm or more and 300 ppm or less in terms of mass ratio.
- the average particle size of the fine powder in the step of obtaining the fine powder is 2.0 ⁇ m or more and 4.5 ⁇ m or less. If it is less than 2.0 ⁇ m, the pulverization particle size of the fine powder may be too small to suppress the deterioration of pulverization efficiency during jet mill pulverization, and if it exceeds 4.5 ⁇ m, high magnetic properties may not be obtained. is there.
- the pulverized particle size of the fine powder is more preferably 2.0 ⁇ m or more and 3.5 m or less. By reducing the average particle size, it becomes possible to improve the magnet characteristics.
- the step of producing a fine powder sintered body includes a step of producing a powder molded body from the fine powder by pressing in a magnetic field and a step of sintering the powder molded body.
- the magnetic field press it is preferable to form the powder compact by pressing in an inert gas atmosphere or wet pressing from the viewpoint of suppressing oxidation.
- the surface of the particles constituting the powder molded product is coated with a dispersant such as an oil agent, and contact with oxygen and water vapor in the atmosphere is suppressed. Therefore, it is possible to prevent or suppress the particles from being oxidized by the atmosphere before and after the pressing process or during the pressing process.
- the dispersion medium is a liquid from which a slurry can be obtained by dispersing alloy powder in the dispersion medium.
- Mineral oil or synthetic oil can be mentioned as a preferable dispersion medium used in the present disclosure.
- the type of mineral oil or synthetic oil is not specified, but when the kinematic viscosity at room temperature exceeds 10 cSt, the bonding force between the alloy powders increases due to the increase in viscosity, and the orientation of the alloy powders during wet molding in a magnetic field. May have an adverse effect on. Therefore, the kinematic viscosity of mineral oil or synthetic oil at room temperature is preferably 10 cSt or less.
- the fractional distillation point of mineral oil or synthetic oil is preferably 400 ° C. or lower.
- vegetable oil refers to oil extracted from plants, and the type of plant is not limited to a specific plant.
- a slurry can be obtained by mixing the obtained alloy powder and a dispersion medium.
- the mixing ratio of the alloy powder and the dispersion medium is not particularly limited, but the concentration of the alloy powder in the slurry is preferably 70% or more (that is, 70% by mass or more) in terms of mass ratio. This is because the alloy powder can be efficiently supplied to the inside of the cavity at a flow rate of 20 to 600 cm 3 / sec, and excellent magnetic properties can be obtained.
- the concentration of the alloy powder in the slurry is preferably 90% or less in terms of mass ratio.
- the method of mixing the alloy powder and the dispersion medium is not particularly limited. The alloy powder and the dispersion medium may be prepared separately, weighed in a predetermined amount, and mixed to produce the mixture.
- the coarsely pulverized powder is dry-pulverized with a jet mill or the like to obtain an alloy powder
- a container containing a dispersion medium is placed in the alloy powder discharge port of a pulverizer such as a jet mill, and the alloy powder is pulverized. May be directly recovered in the dispersion medium in the container to obtain a slurry.
- the inside of the container also has an atmosphere composed of nitrogen gas and / or argon gas, and the obtained alloy powder is directly recovered in the dispersion medium without being exposed to the atmosphere to form a slurry.
- a slurry composed of the alloy powder and the dispersion medium by wet pulverization using a vibration mill, a ball mill, an attritor or the like while holding the coarsely pulverized powder in the dispersion medium.
- a molded product having a predetermined size and shape can be obtained.
- This molded product is sintered to obtain a sintered body.
- the molded body is sintered to obtain a rare earth sintered magnet body (sintered body).
- Sintering of the molded product is preferably performed under a pressure of 0.13 Pa (10 -3 Torr) or less, more preferably 0.07 Pa (5.0 ⁇ 10 -4 Torr) or less, at a temperature of 1000 ° C. to 1150 ° C. Do it in the range.
- the residual gas in the atmosphere can be replaced by an inert gas such as helium or argon. It is preferable to heat-treat the obtained sintered body.
- the magnetic properties can be improved by heat treatment. Known conditions can be adopted as the heat treatment conditions such as the heat treatment temperature and the heat treatment time.
- the rare earth sintered magnet body thus obtained is subjected to a grinding / polishing step, a surface treatment step, and a magnetizing step as necessary to complete a final rare earth sintered magnet.
- the method for producing an RTB-based sintered magnet of the present disclosure is to introduce a heavy rare earth element RH (RH is at least one of Tb, Dy, and Ho) from the surface of the sintered body to the inside. It further includes a diffusion step of diffusion. By diffusing the heavy rare earth element RH from the surface of the sintered body to the inside, the coercive force can be efficiently increased. As shown in Examples described later, when the diffusion step is performed on the sintered body subjected to the humidification crushing of the present disclosure, the HcJ is higher than that in the case where the diffusion step is performed on the sintered body not subjected to the humidification crushing. It turned out to be obtained.
- the method of the diffusion step is not particularly limited. A known method can be adopted.
- the RTB-based sintered magnet in which these are diffused includes a portion in which at least one of the Tb concentration and the Dy concentration gradually decreases from the magnet surface toward the inside of the magnet. That is, the fact that the RTB-based sintered magnet includes a portion where at least one of the Tb concentration and the Dy concentration gradually decreases from the surface of the magnet to the inside of the magnet means that at least one of Tb and D diffuses from the surface of the magnet to the inside of the magnet. It means that it is in a state of being sintered.
- the concentration of Tb and Dy when the size of the measurement site is, for example, submicron, the measurement site may vary depending located either main phase crystal grains (R 2 T 14 B compound particles) and grain boundary. Further, when the measurement site is located at the grain boundary, the concentration of Tb or Dy may change locally or microscopically depending on the type and distribution of the compound containing Tb or Dy that can be formed at the grain boundary. .. However, when Tb and Dy are diffused from the magnet surface to the inside of the magnet, the average concentration values of these elements at positions having the same depth from the magnet surface gradually decrease from the magnet surface toward the inside of the magnet. It is clear that we will go.
- At least one of the average concentrations of Tb and Dy measured as a function using the depth as a parameter is the depth in a region from the magnet surface of the RTB-based sintered magnet to a depth of 200 ⁇ m. If it decreases with increasing, the RTB-based sintered magnet is defined to include a portion where at least one of the Tb concentration and the Dy concentration gradually decreases.
- the R content of the RTB-based sintered magnet finally obtained after performing the diffusion step of diffusing the heavy rare earth element RH from the surface of the sintered body to the inside is 32% by mass or less (27% by mass or more). 32% by mass or less) is preferable.
- the R content of the RTB-based sintered magnet is 32% by mass or less, and the oxygen content is 1000 ppm or more and 3500 ppm or less (preferably 1000 ppm or more and 3200 ppm or less, more preferably 1000 ppm or more and 2400 ppm or less, and further. Higher magnetic properties can be obtained by preferably setting the value to 2000 ppm or more and 2400 ppm or less).
- the content of N (nitrogen) in the RTB-based sintered magnet finally obtained after the diffusion step is preferably 50 ppm or more and 600 ppm or less, more preferably 50 ppm or more and 400 ppm or less in terms of mass ratio, and most preferably. Preferably, it is 100 ppm or more and 300 ppm or less.
- the C (carbon) content in the RTB-based sintered magnet is preferably 80 ppm or more and 1500 ppm or less, and more preferably 80 ppm or more and 1000 ppm or less in terms of mass ratio.
- the acid oxygen content of the RTB-based sintered magnet finally obtained after the diffusion step is [O]
- the carbon content is [C]
- the nitrogen content is [N].
- Equation 1 [O]>[C]> [N]
- Equation 3 [C] ⁇ 1.5 ⁇ [N]
- the present inventors have found that the grain boundary phase in the RTB-based sintered magnet is It was found that the rare earth oxide phase had a rare earth oxide phase, and the rare earth oxide phase had a rare earth oxynitride phase. Then, when the rare earth oxynitride phase has a specific crystal structure and the contents (atomic%) of oxygen ⁇ O ⁇ and nitrogen ⁇ N ⁇ satisfy a specific relationship, high magnetic properties can be obtained. I found that I could do it.
- the effect is particularly remarkable when the diffusion step of diffusing the heavy rare earth element RH from the surface of the sintered body to the inside is performed (the effect of improving HcJ by diffusion is high).
- a structure can be preferably obtained by the humidified pulverization of the present disclosure, but is not necessarily limited to this.
- the RTB-based sintered magnet described below can be obtained by adjusting the amount of oxygen or nitrogen introduced during jet mill pulverization.
- R-T-B based sintered magnet of the present disclosure includes a main phase consisting of R 2 T 14 B compound, the R-T-B based sintered including a grain boundary phase located in the grain boundary of the main phase It is a magnet (R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, and T is at least one of transition metals and always contains Fe).
- the average crystal grain size of the R 2 T 14 B phase, which is the main phase of the TB-based sintered magnet is 3 ⁇ m or more and 7 ⁇ m or less, and the RTB-based sintered magnet contains oxygen, carbon, and nitrogen.
- the content of oxygen is 1000 ppm or more and 3500 ppm or less by mass ratio
- the content of nitrogen is 50 ppm or more and 600 pm or less by mass ratio
- the grain boundary phase has a rare earth oxide phase and the rare earth oxidation.
- the physical phase includes a rare earth oxynitride phase having a NaCl-type crystal structure
- the content of O in the rare earth oxynitride phase (atomic%) is ⁇ O ⁇
- the content of N in the rare earth oxynitride phase (Atomic%) When ⁇ N ⁇ is used as the atomic%), the relationship of ⁇ O ⁇ > 1.8 ⁇ ⁇ N ⁇ is satisfied.
- the RTB-based sintered magnet has a C content (atomic%) in the rare earth oxynitride phase of ⁇ C ⁇ > ⁇ N ⁇ ⁇ 0.5, where ⁇ C ⁇ is used. Further satisfy the relationship.
- the ratio of the area of the rare earth oxynitride phase to the area of the rare earth oxide phase is preferably 50% or more.
- the average crystal grain size of the R 2 T 14 B phase which is the main phase of the RTB system sintered magnet, is 3 ⁇ m or more and 7 ⁇ m or less (preferably 3 ⁇ m or more and 5 ⁇ m or less).
- the sinter magnet contains oxygen, carbon, and nitrogen, and the oxygen content is 1000 ppm or more and 3500 ppm or less (preferably 1000 ppm or more and 2500 ppm or less) by mass ratio, and the nitrogen content is 50 ppm or more and 600 pm or less by mass ratio. .. As a result, high magnetic properties can be obtained.
- the grain boundary phase in the RTB-based sintered magnet has a rare earth oxide phase, and the rare earth oxide phase contains a rare earth oxynitride phase having a NaCl-type crystal structure.
- the present inventors have found that the rare earth oxynitride phase having a NaCl-type crystal structure is easily bound to carbon (C). Therefore, it was found that by having a rare earth oxynitride phase having a NaCl-type crystal structure, the amount of C in the main phase can be reduced, and as a result, high magnetic properties can be obtained.
- the rare earth oxynitride phase having a NaCl-type crystal structure does not easily form an oxide with a heavy rare earth element (for example, Tb or Dy). Therefore, when the RTB-based sintered magnet contains Tb or Dy, the Rare earth oxynitride phase having a NaCl-type crystal structure is provided at the grain boundary so that the main phase contains Tb or Dy. And high magnetic properties can be obtained. As shown in Examples described later, the effect is particularly remarkable when the diffusion step of diffusing the heavy rare earth element RH from the surface of the sintered body to the inside is performed.
- a heavy rare earth element for example, Tb or Dy
- the rare earth oxynitride phase has an O content (atomic%) in the rare earth oxynitride phase as ⁇ O ⁇ and an N content (atom%) in the rare earth oxynitride phase as ⁇ N ⁇ .
- O content atomic% in the rare earth oxynitride phase
- N content atom% in the rare earth oxynitride phase
- the O and N contents of the rare earth oxynitride phase having a NaCl-type crystal structure at the grain boundary are ⁇ O ⁇ > 1.8 ⁇ .
- the formation of nitrides with heavy rare earth elements can be suppressed, and Tb and Dy can be contained in the main phase, so that high magnetic properties can be obtained.
- the effect is particularly remarkable when the diffusion step of diffusing the heavy rare earth element RH from the surface of the sintered body to the inside is performed.
- the content (atomic%) of C in the rare earth oxynitride phase is ⁇ C ⁇
- the relationship of ⁇ C ⁇ > ⁇ N ⁇ ⁇ 0.5 is satisfied, and the C of the main phase is satisfied.
- the amount can be reduced and higher magnetic properties can be obtained.
- the ratio of the area of the rare earth oxynitride phase to the area of the rare earth oxide phase is preferably 50% or more.
- the ratio of the area of the rare earth oxynitride phase to the area of the rare earth oxide phase is 70% or more, more preferably 90% or more.
- the grain boundary phase in the RTB-based sintered magnet has a rare earth oxide phase and the rare earth oxide phase contains a rare earth oxynitride phase having a NaCl type crystal structure
- the grain boundary phase in the RTB-based sintered magnet has a rare earth oxide phase and the rare earth oxide phase contains a rare earth oxynitride phase having a NaCl type crystal structure
- the rare earth oxynitride phase has an O content (atomic%) in the rare earth oxynitride phase as ⁇ O ⁇ and an N content (atom%) ⁇ N ⁇ in the rare earth oxynitride phase.
- ⁇ O ⁇ > 1.8 ⁇ ⁇ N ⁇ is satisfied, for example, by EDX (energy dispersive X-ray analysis) or WDX (wavelength dispersive X-ray analysis). Alternatively, it can be confirmed by performing surface analysis.
- the ratio of the area of the rare earth oxynitride phase to the area of the rare earth oxide phase is 50% or more is determined, for example, by mapping EDX or WDX in a certain field of view and using commercially available software to determine the rare earth oxide. It can be confirmed by color-coding the phases, further color-coding the rare earth oxynitride phase in the phase, and counting the number of pixels of the color of each phase.
- Example 1 Approximately the sample No. of Table 1 Alloys for RTB-based sintered magnets were prepared by a strip casting method (excluding O, C, and N) so as to have the compositions of RTB-based sintered magnets shown in 1 to 13. Each of the obtained alloys was coarsely pulverized by a hydrogen pulverization method to obtain a coarsely pulverized powder. The average particle size of the coarsely ground powder was measured. The average particle size was in the range of 200 ⁇ m to 400 ⁇ m. In the present disclosure, the average particle size means a particle size (median diameter) at which the integrated particle size distribution (volume basis) from the small particle size side is 50%. The average particle size (d50) was measured with a particle size distribution measuring device "HELOS &RODOS" manufactured by Symbolec under the conditions of dispersion pressure: 4 bar, measurement range: R2, and calculation mode: HRLD.
- HELOS &RODOS particle size distribution measuring device manufactured by Symbolec under the conditions of dispersion pressure:
- the coarsely pulverized powder was put into the jet mill device 100 of FIG. 1 and the coarsely pulverized powder was pulverized to obtain a fine powder.
- the crushing conditions are shown in Table 2. No. in Table 2 No. 2 is obtained by giving 1.5 g of water per 1 kg of the coarsely pulverized powder to an inert gas and pulverizing by humidification, and the amount of the coarsely pulverized powder supplied to the jet mill device is 64.0 kg / h. No. 1 and No. 3 to 13 are also described in the same manner (No. 1 is crushed without humidification). In this example, nitrogen gas was used as the inert gas. Table 2 shows the average particle size of the obtained fine powder.
- the fine powder was immersed in a mineral oil having a fractional distillation point of 250 ° C. and a kinematic viscosity of 2 cSt at room temperature in a nitrogen atmosphere to prepare a slurry.
- the slurry concentration was 85% by mass.
- the obtained slurry was molded (wet molded) in a magnetic field to obtain a molded product.
- a so-called right-angled magnetic field forming apparatus transverse magnetic field forming apparatus in which the magnetic field application direction and the pressurizing direction are orthogonal to each other was used.
- the obtained molded product was sintered in vacuum at 1040 ° C.
- the sintered body is subjected to a heat treatment of holding at 800 ° C. for 2 hours and then cooling to room temperature, then holding at 500 ° C. for 2 hours and then cooling to room temperature to obtain a sintered body (RTB-based sintered magnet). ) was obtained.
- the components of the obtained sintered magnet were determined. The contents of Nd, Pr, B, Co, Al, Cu, Ga and Zr were measured by ICP emission spectroscopy.
- O oxygen amount
- N nitrogen amount
- C carbon amount
- No. Nos. 1 to 5 have substantially the same composition except for C, O, and N, and the average particle size of the fine powder obtained by jet mill pulverization is also substantially the same.
- Table 3 none of the examples of the present invention (Nos. 2 to 4) were humidified and pulverized. Higher magnetic characteristics than No. 1 are obtained. Conventionally, it has been considered that the magnetic properties decrease as the amount of oxygen increases if the composition and particle size are almost the same. However, No. 1 and No. As shown in 2 to 4, if the oxygen content of the RTB -based sintered magnet of the present disclosure is within the range, the magnetic characteristics are improved (H cJ is improved).
- the oxygen content of the RTB-based sintered magnet of the present disclosure is out of the range, No. As shown in 5, the magnetic characteristics are deteriorated. Further, as shown in Table 2, when pulverizing to an average particle size of about 3.3 ⁇ m, the supply rate of the example of the present invention can be increased as compared with the non-humidified comparative example (No. 1). That is, the crushability is good. Further, from the results in Tables 2 and 3, it can be seen that the oxygen content of the RTB-based sintered magnet is preferably 1700 ppm or more in order to obtain higher grindability. Further, as shown in Table 3, all of the examples of the present invention have obtained high magnetic properties of Br ⁇ 1.33T and H cJ ⁇ 1200 kA / m.
- Example 1 No. 1 to 3 sintered bodies were prepared.
- the sintered body was subjected to a diffusion step of diffusing the heavy rare earth element RH from the surface of the sintered body to the inside.
- the raw materials of each element were weighed so as to have a composition of Pr80Tb10Ga7Cu3 in terms of mass ratio, and the raw materials were dissolved to obtain a ribbon or flake-shaped alloy by a single roll ultra-quenching method (melt spinning method). ..
- the obtained alloy was pulverized in an argon atmosphere and then passed through a sieve having a mesh size of 425 ⁇ m to prepare a diffusion alloy powder.
- the sintered bodies 1 to 3 were cut and ground to obtain a cube having a size of 7.2 mm ⁇ 7.2 mm ⁇ 7.2 mm.
- No. The diffusion alloy was sprayed on the entire surface of the sintered bodies 1 to 3 in an amount of 2.5% by mass based on 100% by mass of the RTB-based sintered magnet. Then, it is heat-treated at a temperature of 900 ° C. for 10 hours in vacuum argon controlled to 50 Pa, then cooled to room temperature, and further heat-treated at 500 ° C. for 3 hours in vacuum argon controlled to 50 Pa to diffuse. Later RTB-based sintered magnets (No. 20-23) were produced.
- the examples of the present invention (No. 21 and No. 22) in which the diffusion step was performed on the sintered body subjected to the humidified pulverization of the present disclosure diffused into the sintered body not subjected to the humidified pulverization.
- a higher ⁇ H cJ was obtained as compared with the comparative example (No. 20) in which the step was performed.
- the oxygen content of the R-T-B based sintered magnet is preferably at least 2000ppm by mass ratio, the magnetic properties shown in Table 3 (B r and H cJ) also considering the R-T-B based sintered magnet oxygen
- the content is preferably 2000 ppm or more and 2400 ppm or less in terms of mass ratio.
- Example 3 In the same manner as in Example 1, alloys for RTB-based sintered magnets were prepared so as to have the composition of RTB-based sintered magnets shown in Sample Nos. 23 to 26 in Table 6. The obtained RTB-based sintered magnet alloy was coarsely pulverized in the same manner as in Example 1 to obtain a coarse pulverized powder. The obtained crude pulverized powder was pulverized in the same manner as in Example 1 to obtain a fine powder. The crushing conditions are shown in Table 7. The obtained fine pulverization was subjected to molding, sintering, and heat treatment in the same manner as in Example 1 to obtain an RTB-based sintered magnet. The components of the obtained sintered magnet were determined in the same manner as in Example 1.
- Table 8 shows the measurement results of the magnetic characteristics of the obtained RTB-based sintered magnet.
- "23 ° C. B r H cJ” in Table 8 is the value of B r and H cJ at room temperature (23 ° C.)
- "140 ° C. H cJ” is the value of H cJ at 140 ° C..
- B r the value of H cJ is by machining the R-T-B based sintered magnet after the heat treatment, processing the sample to 7 mm ⁇ 7 mm ⁇ 7 mm, was measured by BH tracer. Further, the temperature coefficient ( ⁇ : 23 to 140 ° C.) was determined as follows. The H cj at 140 ° C.
- the inventive examples and more 1.391T more B r, and 1190KA / m or more H cj and -0.578 following ⁇ is obtained, is substantially the same composition, No .. 23, 24 and No. Comparing 25 and 26, respectively, the temperature coefficient of the example of the present invention is improved.
- Example 4 In the same manner as in Example 1, an alloy for RTB-based sintered magnets was prepared so as to have the composition of RTB-based sintered magnets shown in Sample Nos. 27 and 28 in Table 9.
- the obtained RTB-based sintered magnet alloy was coarsely pulverized in the same manner as in Example 1 to obtain a coarse pulverized powder.
- the obtained crude pulverized powder was pulverized in the same manner as in Example 1 to obtain a fine powder.
- the crushing conditions are shown in Table 10.
- the obtained fine pulverization was subjected to molding, sintering, and heat treatment in the same manner as in Example 1 to obtain an RTB-based sintered magnet.
- the components of the obtained sintered magnet were determined in the same manner as in Example 1. The results are shown in Table 9.
- sample No. 27 and 28 have almost the same composition except for O, C, and N.
- the contents of O, C, and N are mass ppm.
- Table 11 shows the measurement results of the magnetic characteristics of the obtained RTB-based sintered magnet. As shown in Table 11, No. 1 having almost the same composition. Compared with 27 and 28, the example of the present invention (No. 28) has higher magnetic properties.
- the crystal structure of the oxide phase was identified by performing electron diffraction. As a result, No. It was found that both 27 and 28 had a NaCl-type oxide phase in their crystal structure.
- point analysis and mapping were performed by EDX and WDX. Fe and Nd were analyzed by EDX, Pr, C, N and O by WDX.
- Table 12 shows the average of the oxide phases that were subjected to point analysis at 3 points each.
- Table 12 (A) shows ⁇ N ⁇ when the content of O in the rare earth oxynitride phase (atomic%) is ⁇ O ⁇ and the content of N in the rare earth oxynitride phase is ⁇ N ⁇ .
- the ratio of the rare earth oxynitride phase of the present disclosure was calculated based on the mapping result.
- the mapping intensity of each element was converted into a concentration so as to match the point analysis result using the software "NMap” manufactured by JEOL Ltd.
- a scatter plot analysis was performed using the software "Phase Map Maker” manufactured by JEOL Ltd. Specifically, the region of ⁇ O ⁇ ⁇ 10 atomic% is color-coded as the region of the oxide phase, and then the regions satisfying the formulas (A) and (B) are color-coded to obtain the rare earth oxynitride of the present disclosure. The physical phase and other oxide phases were separated. Then, by counting the number of pixels of each color of the obtained image, the cross-sectional area of the rare earth oxynitride phase of the present disclosure in the rare earth oxide phase was calculated.
- the ratio of the area of the rare earth oxynitride phase of the present disclosure to the area of the rare earth oxide phase is 70%, and (A) and (B). Are satisfied.
- the ratio of the area of the rare earth oxynitride phase of the present disclosure was 14%, which did not satisfy (A) and (B).
- Example 5 Furthermore, the sample No. A diffusion step of diffusing the heavy rare earth element RH from the surface of the sintered body to the inside was performed on the sintered bodies of 27 and 28. Specifically, the raw materials of each element were weighed so as to have the composition of Nd31Pr50Tb9Ga5Cu5 in terms of mass ratio, the raw materials were dissolved, and a diffusion alloy powder was prepared by an atomizing method. No. in Table 1 The sintered bodies of 27 and 28 were cut and ground to obtain a rectangular parallelepiped of 7.2 mm ⁇ 7.2 mm ⁇ 4.7 mm (the direction of 4.7 mm is the direction of applying the magnetic field during molding). Next, No.
- the method for manufacturing the RTB-based sintered magnet of the present disclosure includes various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV), motors for industrial equipment, and home appliances. It can be used as a permanent magnet used in a wide variety of applications.
- VCM voice coil motors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
本開示のR-T-B系焼結磁石の製造方法は、平均粒度が10μm以上500μm以下のR-T-B系焼結磁石用合金の粗粉砕粉を準備する工程と、粉砕室が不活性ガスで満たされたジェットミル装置に前記粗粉砕粉を供給して前記粗粉砕粉の粉砕を行い、平均粒度が2.0μm以上4.5μm以下の微粉末を得る工程と、前記微粉末の焼結体を作製する工程と、を含み、前記不活性ガスは加湿されており、前記R-T-B系焼結磁石の酸素の含有量が質量比で1000ppm以上3500ppm以下である。
Description
本願は、R-T-B系焼結磁石の製造方法およびR-T-B系焼結磁石に関する。
R-T-B系焼結磁石(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含む、Bはホウ素である)は、R2Fe14B型結晶構造を有する化合物の主相と、この主相の粒界部分に位置する粒界相および微量添加元素や不純物の影響により生成する化合物相とから構成されており、高い残留磁束密度Br(以下、単に「Br」と記載する場合がある)と高い保磁力HcJ(以下、単に「HcJ」と記載する場合がある)を示し優れた磁気特性を有することから永久磁石の中で最も高性能な磁石として知られている。このため、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車(EV、HV、PHV)用モータ、産業機器用モータなどの各種モータや家電製品など多種多様な用途に用いられている。
このようなR-T-B系焼結磁石は、例えば、合金粉末を準備する工程、合金粉末をプレス成形して粉末成形体を作製する工程、粉末成形体を焼結する工程を経て製造される。合金粉末は、例えば、以下の方法で作製される。
まず、インゴット法またはストリップキャスト法などの方法によって各種原料金属の溶湯から合金を製造する。得られた合金を粉砕工程に供し、所定の粒径分布を有する合金粉末を得る。この粉砕工程には、通常、粗粉砕工程と微粉砕工程とが含まれており、前者は、例えば水素脆化現象を利用して、後者は例えば気流式粉砕機(ジェットミル)を用いて行われる。
このような粉砕工程によって得られた合金粉末は、例えばサイクロン式捕集装置により固気分離を行ってR-T-B系焼結磁石用合金粉末を回収(捕集)する。
R-T-B系焼結磁石にはさらなる高性能化と、低コスト化が、要求されている。高性能化の手法としては、例えば、組織の微細化、含有酸素量の低減などが挙げられ、低コスト化の手法としては、例えば、粉砕効率の向上などが挙げられる。特許文献1には、粉砕効率向上の方法として露点-20℃~0℃の加湿された不活性ガス気流を用いてジェットミル粉砕を行う方法が開示されている。同様の手法は特許文献2にも記載されている。
含有酸素量を低減させた、例えば酸素の含有量が質量比で3500ppm以下となるようなR2T14B相を主相とするR-T-B系焼結磁石を作製する場合は、粉砕工程における粉末粒子の酸化を防止するため、例えば、高純度の窒素ガスが不活性ガスとして使用される。
本発明者らの検討によると、高純度の窒素ガスなどの不活性ガスを用いてジェットミル粉砕を実行した場合、低酸素にすると想定していた高性能化が達成できない場合があることがわかった。また、粉末を微細化して高性能化を図ろうとすると、微細化するには粉砕効率が犠牲になる。粉砕効率に関しては、特許文献1、2の開示の手法もあるが、特許文献1、2の開示の構成は、反応性を抑えるために、4500ppmを超えるような高酸素含有量にする技術であり、低酸素化による高性能化において適用することができない。本開示の実施形態は、このような問題を解決することが可能なR-T-B系焼結磁石の製造方法およびR-T-B系焼結磁石を提供する。
本開示のR-T-B系焼結磁石の製造方法は、非限定的で例示的な実施形態において、R-T-B系焼結磁石(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含む)の製造方法であって、平均粒度が10μm以上500μm以下のR-T-B系焼結磁石用合金の粗粉砕粉を準備する工程と、粉砕室が不活性ガスで満たされたジェットミル装置に前記粗粉砕粉を供給して前記粗粉砕粉の粉砕を行い、平均粒度が2.0μm以上4.5μm以下の微粉末を得る工程と、前記微粉末の焼結体を作製する工程と、を含み、前記不活性ガスは加湿されており、前記R-T-B系焼結磁石の酸素の含有量が質量比で1000ppm以上3500ppm以下である。
ある実施形態において、前記R-T-B系焼結磁石のR含有量は31質量%以下である。
ある実施形態において、前記不活性ガスは、窒素ガスである。
ある実施形態において、重希土類元素RH(RHは、Tb、Dy、Hoの少なくとも1つ)を前記焼結体の表面から内部に拡散させる拡散工程を更に含む。
ある実施形態において、前記微粉末の焼結体を作製する工程は、磁場中湿式プレスまたは不活性ガス雰囲気中による磁場中プレスによって前記微粉末から粉末成形体を作製する工程と、前記粉末成形体を焼結する工程とを含む。
ある実施形態において、前記微粉末を得る工程における前記微粉末の前記平均粒度は2.0μm以上3.5μm以下である。
本開示のR-T-B系焼結磁石は、非限定的で例示的な実施形態において、R-T-B系焼結磁石であって(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含む)、前記R-T-B系焼結磁石の主相であるR2T14B相の平均結晶粒径は、3μm以上7μm以下であり、酸素、炭素、窒素を含有し、酸素の含有量は質量比で1000ppm以上3500ppm以下であり、炭素の含有量は質量比で80ppm以上1500ppm以下であり、窒素の含有量は質量比で50ppm以上600pm以下であり、質量比で酸素の含有量を[O]、炭素の含有量を[C]、窒素の含有量を[N]とするとき、以下の式1~3を満足する。
式1:[O]>[C]>[N] 式2:[O]≧1.5×[N] 式3:[C]≧1.5×[N]
式1:[O]>[C]>[N] 式2:[O]≧1.5×[N] 式3:[C]≧1.5×[N]
本開示のR-T-B系焼結磁石は、非限定的で例示的な実施形態において、R2T14B化合物からなる主相と、前記主相の粒界部分に位置する粒界相とを含むR-T-B系焼結磁石であって(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含む)、前記R-T-B系焼結磁石の主相であるR2T14B相の平均結晶粒径は、3μm以上7μm以下であり、前記R-T-B系焼結磁石は、酸素、炭素、窒素を含有し、酸素の含有量は質量比で1000ppm以上3500ppm以下であり、窒素の含有量は質量比で50ppm以上600pm以下であり、前記粒界相は、希土類酸化物相を有し、前記希土類酸化物相は、NaCl型結晶構造を有する希土類酸窒化物相を含み、前記希土類酸窒化物相におけるOの含有量(原子%)を{O}、前記希土類酸窒化物相におけるNの含有量(原子%)を{N}とするとき、{O}>1.8×{N}の関係を満たす。
ある実施形態において、前記R-T-B系焼結磁石は、前記希土類酸窒化物相におけるCの含有量(原子%)を{C}とするとき、{C}>{N}×0.5の関係を満たす。
ある実施形態において、R-T-B系焼結磁石の任意の断面において、前記希土類酸化物相の面積に占める前記希土類酸窒化物相の面積の割合が50%以上である。
ある実施形態において、R-T-B系焼結磁石は、磁石表面から磁石内部に向かってTb濃度およびDy濃度の少なくとも一方が漸減する部分を含む。
本開示の実施形態によれば、ジェットミル粉砕によって得られる微粉末の粒子表面を加湿された不活性ガスによって適切に改質することができる。これにより、微粉末の粉砕粒度を低下させてもジェットミル粉砕時の粉砕効率の悪化を抑止しつつ、最終的に優れた磁気特性を有するR-T-B系焼結磁石を実現することが可能になる。
本発明者らは検討の結果、含有酸素量を低減させたR-T-B系焼結磁石を製造する場合において、粉砕工程にて粉末粒子を小さくすると、粉砕効率の悪化に加えて、粉砕工程において不活性ガス(特に不活性ガスとして乾燥した窒素ガスを用いた場合)により粉末粒子が劣化(窒化)し、粉砕粒子を小さくしたことによる所望の磁気特性向上効果が得られなくなることがわかった。本発明者らはさらに検討の結果、加湿された不活性ガスを用いることで不活性ガスによる粉末粒子の劣化を低減できることを見出した。これは、粉末粒子表面に酸化膜が形成されることで粉末粒子内部への不活性ガス(特に窒素ガス)の導入を防ぐことができ、これにより不活性ガスによる粉末粒子の劣化(窒化)を抑制できるからだと考えられる。従来、粉砕工程にて粉末粒子を小さくすると、粉砕効率が悪化することや、これらの悪化を加湿された不活性ガス気流を用いることで改善できることが知られていた(例えば特許文献1や特許文献2)。しかし、当然ながら、加湿された不活性ガス気流を用いて粉砕すると粉末粒子が酸化されて磁気特性が低下する。そのため、磁気特性を向上させるために含有酸素量を低減させたR-T-B系焼結磁石を製造する場合に、粉砕粒子を小さくしようとして、積極的に加湿された不活性ガス気流を用いて粉砕することはなかった(例えば、特許文献1の微粉末の酸素含有量は質量比で4500ppmおよび4900ppmと比較的高い、特許文献2は酸素含有量の記載なし)。しかし、本発明者らは上述した不活性ガスによる粉末粒子の劣化を加湿された不活性ガスを用いることで低減させる知見を踏まえて検討を重ねた結果、意外なことに、最終的に得られるR-T-B系焼結磁石において、含有酸素量を低減させた特定の範囲となるように粉末粒子を加湿粉砕すると、粉末粒子の劣化(窒化)の抑制と加湿の酸化による磁気特性低下の抑制を両立できることが分かった。なお、通常、粉砕以降の工程でR-T-B系焼結磁石の酸素量が増加する工程は主に、微粉末を成形、焼結して焼結体を作製する工程であるが、R-T-B系焼結磁石の酸素含有量の増加は少ない(例えば、質量比で50ppm以上300ppm以下)。よって、R-T-B系焼結磁石の含有酸素量は粉砕工程によって調整することが可能である。すなわち本開示は、粉砕工程において、得られるR-T-B系焼結磁石の含有酸素量を特定範囲(1000ppm以上3500ppm以下、好ましくは1000ppm以上3200ppm以下)になるように加湿粉砕して粉末粒子を小さくする(平均粒径が2.0μm以上4.5μm以下、好ましくは平均粒径が2.0μm以上3.5μm以下)ことにより、粉砕性を改善できるとともに、粉砕工程における酸化や窒化による磁気特性の低下を低減させることで、高い磁気特性を有するR-T-B系焼結磁石が得られることを見出したものである。また、このようにして、R-T-B系焼結磁石の主相であるR2T14B相の平均結晶粒径は、3μm以上7μm以下であり、酸素、炭素、窒素を含有し、酸素の含有量は質量比で1000ppm以上3500ppm以下であり、炭素の含有量は質量比で80ppm以上1500ppm以下であり、窒素の含有量は質量比で50ppm以上600pm以下であり、質量比で酸素の含有量を[O]、炭素の含有量を[C]、窒素の含有量を[N]とするとき、以下の式1~3を満足する、R-T-B系焼結磁石が好適に得られる。
式1:[O]>[C]>[N] 式2:[O]≧1.5×[N] 式3:[C]≧1.5×[N]
式1:[O]>[C]>[N] 式2:[O]≧1.5×[N] 式3:[C]≧1.5×[N]
<R-T-B系焼結磁石の製造方法>
以下、本開示によるR-T-B系焼結磁石の製造方法の実施形態を説明する。
以下、本開示によるR-T-B系焼結磁石の製造方法の実施形態を説明する。
本開示はR-T-B系焼結磁石の製造方法である。ここで、Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含む。
このR-T-B系焼結磁石の製造方法は、
(1)平均粒度が10μm以上500μm以下のR-T-B系焼結磁石用合金の粗粉砕粉を準備する工程と、
(2)粉砕室が不活性ガスで満たされたジェットミル装置に前記粗粉砕粉を供給して前記粗粉砕粉の粉砕を行い、平均粒度が2.0μm以上4.5μm以下の微粉末を得る工程と、
(3)前記微粉末の焼結体を作製する工程と、
を含み、前記不活性ガスは、加湿されている。平均粒度(d50)は、気流分散式レーザー回折法によって測定され得る。
(1)平均粒度が10μm以上500μm以下のR-T-B系焼結磁石用合金の粗粉砕粉を準備する工程と、
(2)粉砕室が不活性ガスで満たされたジェットミル装置に前記粗粉砕粉を供給して前記粗粉砕粉の粉砕を行い、平均粒度が2.0μm以上4.5μm以下の微粉末を得る工程と、
(3)前記微粉末の焼結体を作製する工程と、
を含み、前記不活性ガスは、加湿されている。平均粒度(d50)は、気流分散式レーザー回折法によって測定され得る。
<R-T-B系焼結磁石>
本開示のR-T-B系焼結磁石は、酸素の含有量が質量割合で1000ppm以上3500ppm以下である。酸素の含有量を1000ppm以上3500ppm以下とすることにより、上記(2)の微粉末を得る工程において、不活性ガスの加湿が弱すぎることで不活性ガスによる粉末粒子の劣化(窒化)が進むことによる磁気特性の低下や加湿による粉末粒子の酸化が進むことによる磁気特性の低下を抑制できる。より高い磁気特性を得るためには、R-T-B系焼結磁石の酸素含有量は1000ppm以上3200ppm以下が好ましく、1000ppm以上2400ppm以下がさらに好ましく、1300ppm以上2400ppm以下がさらに好ましい。また、加湿による粉砕を経て、R-T-B焼結磁石を本開示の酸素の含有量(1000ppm以上3500ppm以上)とすることにより、後述する実施例に示すように成形における圧縮性を向上させることができる。圧縮性が向上することで、より低い成形圧力で成形を行うことができる。これにより、成形体の亀裂発生を抑制することが可能となる。さらに、金型への負荷の低減による連続成形性の向上や金型補修頻度の低減が可能となるため生産効率を向上させることができる。好ましくは、R-T-B系焼結磁石の酸素の含有量は2000ppm以上である。より成形性を向上させることができる。そのため、成形性と磁気特性(BrおよびHcJ)を考慮するとR-T-B系焼結磁石の酸素含有量は2000ppm以上2400ppm以下が好ましい。
本開示のR-T-B系焼結磁石は、酸素の含有量が質量割合で1000ppm以上3500ppm以下である。酸素の含有量を1000ppm以上3500ppm以下とすることにより、上記(2)の微粉末を得る工程において、不活性ガスの加湿が弱すぎることで不活性ガスによる粉末粒子の劣化(窒化)が進むことによる磁気特性の低下や加湿による粉末粒子の酸化が進むことによる磁気特性の低下を抑制できる。より高い磁気特性を得るためには、R-T-B系焼結磁石の酸素含有量は1000ppm以上3200ppm以下が好ましく、1000ppm以上2400ppm以下がさらに好ましく、1300ppm以上2400ppm以下がさらに好ましい。また、加湿による粉砕を経て、R-T-B焼結磁石を本開示の酸素の含有量(1000ppm以上3500ppm以上)とすることにより、後述する実施例に示すように成形における圧縮性を向上させることができる。圧縮性が向上することで、より低い成形圧力で成形を行うことができる。これにより、成形体の亀裂発生を抑制することが可能となる。さらに、金型への負荷の低減による連続成形性の向上や金型補修頻度の低減が可能となるため生産効率を向上させることができる。好ましくは、R-T-B系焼結磁石の酸素の含有量は2000ppm以上である。より成形性を向上させることができる。そのため、成形性と磁気特性(BrおよびHcJ)を考慮するとR-T-B系焼結磁石の酸素含有量は2000ppm以上2400ppm以下が好ましい。
以下に好ましいR-T-B系焼結磁石の組成を示す。
Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含む。好ましくは、Nd-Dy、Nd-Tb、Nd-Dy-Tb、Nd-Pr-Dy、Nd-Pr-Tb、Nd-Pr-Dy-Tbで示される希土類元素の組合せを用いる。
Rのうち、DyおよびTbは、特にHcJの向上に効果を発揮する。上記元素以外にはLaなど他の希土類元素を含有してもよく、ミッシュメタルやジジムを用いることもできる。また、Rは純元素でなくてもよく、工業上入手可能な範囲で、製造上不可避な不純物を含有するものでもよい。含有量は、例えば、27量%以上35質量%以下である。好ましくは、R-T-B系焼結磁石のR含有量は31質量%以下(27質量%以上31質量%以下、好ましくは、29質量%以上31質量%以下)である。R-T-B系焼結磁石のR含有量を31質量%以下でかつ、酸素の含有量が質量比で1000ppm以上3500ppm以下とすることにより、加湿粉砕時において、加湿により酸化されたRの発生が低減される。そのため、より高い磁気特性を得ることができる。
Tは、鉄を含み(Tが実質的に鉄から成る場合も含む)、質量比でその50%以下をコバルト(Co)で置換してもよい(Tが実質的に鉄とコバルトとから成る場合を含む)。Coは温度特性の向上、耐食性の向上に有効であり、合金粉末は10質量%以下のCoを含んでよい。Tの含有量は、RとBあるいはRとBと後述するMとの残部を占めてよい。
Bの含有量についても公知の含有量で差し支えなく、例えば、0.9質量%~1.2質量%が好ましい範囲である。0.9質量%未満では高いHcJが得られない場合があり、1.2質量%を超えるとBrが低下する場合がある。なお、Bの一部はC(炭素)で置換することができる。より好ましくは、1.0質量%以下、さらに好ましくは0.96質量%以下である。
上記元素に加え、HcJ向上のためにM元素を添加することができる。M元素は、Al、Si、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、In、Sn、Hf、TaおよびWからなる群から選択される一種以上である。M元素の添加量は5.0質量%以下が好ましい。5.0質量%を超えるとBrが低下する場合があるためである。また、不可避的不純物も許容することができる。
R-T-B系焼結磁石におけるN(窒素)の含有量は、質量比で50ppm以上600ppm以下が好ましい。N(窒素)の含有量が質量比で50ppm以上600ppm以下となるように加湿粉砕を行ことにより粉砕性を改善しつつ、窒化による磁気特性の低下を抑制することができる。窒素の含有量は50ppm以上400ppm以下がさらに好ましく、最も好ましくは、100ppm以上300ppm以下である。より粉砕性を改善しつつ、窒化による磁気特性の低下を抑制できるからである。また、R-T-B系焼結磁石におけるC(炭素)の含有量)は、質量比で80ppm以上1500ppm以下が好ましく、80ppm以上1000ppm以下がさらに好ましい。さらに、Cの含有量の下限は500ppmとすることも可能であり、800ppm以上とすることも可能である。また、本開示のR-T-B系焼結磁石は、質量比で酸素の含有量を[O]、炭素の含有量を[C]、窒素の含有量を[N]とするとき、以下の式1~3を満足することが好ましい。
式1:[O]>[C]>[N]、式2:[O]≧1.5×[N]、式3:[C]≧1.5×[N]
式1:[O]>[C]>[N]、式2:[O]≧1.5×[N]、式3:[C]≧1.5×[N]
前記式1~3を満足することで、より確実に粉砕性を改善できるとともに、粉末粒子の劣化や加湿の酸化による磁気特性低下の抑制を両立するR-T-B系焼結磁石が得られる。本開示のR-T-B系焼結磁石は、上述したように加湿粉砕を行うことにより酸素量が増加するが、特に粉砕による窒化が抑えられる。その結果、得られたR-T-B系焼結磁石における酸素、炭素、窒素の含有量は、式1([O]>[C]>[N])のようにすることができる。さらに、十分に窒化が抑えられることにより、窒素の含有量が酸素や炭素の含有量に比べて少なくなり、式2([O]≧1.5×[N])および式3([C]≧1.5×[N])にすることができる。また、式2は[O]≧3×[N]がさらに好ましく、[O]≧5×[N]がさらにこのましく、[O]≧10×[N]がもっとも好ましい。また、式3は、[C]≧2×[N]がさらに好ましく、[C]≧5×[N]がもっとも好ましい。
また、本開示のR-T-B系焼結磁石の主相であるR2T14B相の平均結晶粒径は、3.5μm以上7.0μm以下である。なお、前記平均結晶粒径はEBSD(後方散乱電子回折(Electron BackScatter Diffractiom))で評価される結晶粒(5000個以上)の円相当径の個数平均により求めることができる。
<(1)平均粒度が10μm以上500μm以下のR-T-B系焼結磁石用合金の粗粉砕粉を準備する工程の例>
平均粒度が10μm以上500μm以下のR-T-B系焼結磁石用合金の粗粉砕粉を準備する工程は、R-T-B系焼結磁石用合金を準備する工程と、この合金を例えば水素粉砕法などによって粗く粉砕する工程とを含む。
平均粒度が10μm以上500μm以下のR-T-B系焼結磁石用合金の粗粉砕粉を準備する工程は、R-T-B系焼結磁石用合金を準備する工程と、この合金を例えば水素粉砕法などによって粗く粉砕する工程とを含む。
R-T-B系焼結磁石用合金の製造方法を例示する。上述した組成となるように事前に調整した金属または合金を溶解し、鋳型に入れるインゴット鋳造法により合金インゴットを得ることができる。また、溶湯を単ロール、双ロール、回転ディスクまたは回転円筒鋳型等に接触させて急冷し、インゴット法で作られた合金よりも薄い凝固合金を作製するストリップキャスト法または遠心鋳造法に代表される急冷法により合金フレークを製造することができる。
本開示の実施形態においては、インゴット法と急冷法のどちらの方法により製造された材料も使用可能であるが、ストリップキャスト法などの急冷法により製造されることが好ましい。急冷法によって作製した急冷合金の厚さは、通常0.03mm~1mmの範囲にあり、フレーク形状である。合金溶湯は冷却ロールの接触した面(ロール接触面)から凝固し始め、ロール接触面から厚さ方向に結晶が柱状に成長してゆく。急冷合金は、従来のインゴット鋳造法(金型鋳造法)によって作製された合金(インゴット合金)と比較して、短時間で冷却されているため、組織が微細化され、結晶粒径が小さい。また粒界の面積が広い。Rリッチ相は粒界内に大きく広がるため、急冷法はRリッチ相の分散性に優れる。このため水素粉砕法により粒界で破断し易い。急冷合金を水素粉砕することで、水素粉砕粉(粗粉砕粉)のサイズを例えば1.0mm以下とすることができる。このようにして得た粗粉砕粉を加湿雰囲気のジェットミルで粉砕する(工程(2))。
<(2)粉砕室が不活性ガスで満たされたジェットミル装置に粗粉砕粉を供給して粗粉砕粉の粉砕を行い、平均粒度が2.0μm以上4.5μm以下の微粉末を得る工程の例>
<粉砕システム>
まず、図1を参照しながら、本開示によるR-T-B系焼結磁石の製造方法に用いられ得る粉砕システムを説明する。図1は、本実施形態における粉砕システム1000の構成例を模式的に示す図である。この例において、R-T-B系焼結磁石合金粉砕システム1000は、ジェットミル装置100と、サイクロン捕集装置200と、バッグフィルタ装置300とを備えている。
<粉砕システム>
まず、図1を参照しながら、本開示によるR-T-B系焼結磁石の製造方法に用いられ得る粉砕システムを説明する。図1は、本実施形態における粉砕システム1000の構成例を模式的に示す図である。この例において、R-T-B系焼結磁石合金粉砕システム1000は、ジェットミル装置100と、サイクロン捕集装置200と、バッグフィルタ装置300とを備えている。
ジェットミル装置100は、不図示の原料タンクから原料投入パイプ34を介して被粉砕物の供給を受ける。被粉砕物は、平均粒度が10μm以上500μm以下のR-T-B系焼結磁石用合金の粗粉砕粉である。なお、本開示における平均粒度(d50)は、気流分散式レーザー回折法(JIS Z 8825:2013年改訂版に準拠する)により測定することができる。すなわち、本明細書において、平均粒度は、小粒径側からの積算粒度分布(体積基準)が50%となる粒径(メジアン径)を意味する。
なお本開示の実施形態における平均粒度(d50)は、Sympatec社製の粒度分布測定装置「HELOS&RODOS」において、分散圧:4bar、測定レンジ:R2、計算モード:HRLD、の条件にて測定されたd50のことを示す。
原料投入パイプ34には複数のバルブが設けられ、バルブの開閉によってジェットミル装置100の内部圧力が適切に維持される。ジェットミル装置100の内部に導入された被粉砕物は、ノズル管36からの不活性ガスの高速噴射によって被粉砕物同士の相互衝突や粉砕を効率的に進行させるために設置された衝突板との衝突によって細かく粉砕される。ノズル管36には、水分を不活性ガスに含めるための加湿用管が接続されている。
R-T-B系焼結磁石用合金の粉末は活性であり、酸化しやすい。このため、ジェットミル装置100で使用される気体としては、発熱・発火の危険性の回避、不純物としての酸素含有量を低減させて磁石の高性能化を図るため、一般的には、露点が-60℃以下の乾燥した(高純度な)、窒素、アルゴン、ヘリウムなどの不活性ガスが用いられている。しかし、本開示の実施形態では、このような不活性ガスに意図的に水分を導入した加湿状態で粉砕を行う。この点の詳細については、後述する。
ジェットミル装置100の内部で微粉砕された粉末粒子(微粉末)は上昇気流に乗って上部の排出口40からサイクロン捕集装置200の入口管20に導かれる。粉砕が不十分な粗い粒子は、中位径(d50)以上の粗粒子の分級するために設置された分級ロータにより分別され、ジェットミル装置100の内部に残り、更に衝突による粉砕処理工程を受けることになる。この粗粒子の分級については分級ロータを用いても良いし、旋回流による遠心分離を用いても良い。こうして、ジェットミル装置100に投入された被粉砕物(粗粉砕粉)は、平均粒度(中位径:d50)が2.0μm以上4.5μm以下の粒度分布を持つ微粉末に粉砕されてからサイクロン捕集装置200に移動することになる。
サイクロン捕集装置200は、粉末を運ぶ気流から粉末を分離するために使用される。具体的には、R-T-B系焼結磁石用合金の粗粉砕粉が前段のジェットミルで粉砕され、粉砕によって生成された微粉末が、粉砕に利用された気体とともに入口管20を通って、サイクロン捕集装置200に供給される。不活性ガス(粉砕ガス)と粉砕された微粉末との混合物が高速な気流をなして、サイクロン捕集装置200に送られてくる。サイクロン捕集装置200は、これらの粉砕ガスと微粉末とを分離するために利用される。粉砕カスから分離された微粉末は、排出口40を介して粉末捕集器50で回収される。粉砕ガスは出口管30を介してバッグフィルタ装置300に供給される。バッグフィルタ装置300では非常に小さな微粒子が回収され、清浄な気体が排気口32から外部に放出される。なお、このような固気分離のために、サイクロン捕集装置200を用いず、バッグフィルタを用いることも可能であるが、フィルタの破損による微粉末の大気飛散などが環境面、安全面に与える影響が大きい。サイクロン捕集装置200によって分離された後の気体から、更にバッグフィルタを併用して微粒子を分離してもよい。
本開示の特徴的な点は、R-T-B系焼結磁石の酸素含有量が質量比で1000ppm以上3500ppm以下の範囲になるように加湿粉砕を行う点にある。これにより粉砕による粉末粒子の劣化(窒化)と加湿による酸化の両方を抑制して高い磁気特性を得ることができる。上述したように、通常、粉砕以降の工程(主に前記微粉末の焼結体を作製する工程)によるR-T-B系焼結磁石の酸素含有量の増加は少ない(例えば、50ppm以上300ppm以下)。よって、粉砕工程によってR-T-B系焼結磁石の含有酸素量を調整することが可能である。
具体的には、工程(2)における加湿された不活性ガスは、例えば、粗粉砕粉の1kgあたり0.5g以上6.0g以下の水分を不活性ガスに与えることによって得られる。0.5g未満であると、粉砕による粉末粒子の劣化(窒化)を抑制できず磁気特性が低下する可能性がある。一方、6.0gを超えると、加湿が強すぎるために粉末粒子の酸化が進み磁気特性が低下する可能性がある。
粉砕室内の露点や粗粉砕粉をジェットミル装置に供給する量は、粉砕時間やジェットミル装置の大きさにも依存するが、ある好ましい実施形態において、前記不活性ガスは、粉砕時における露点が-55℃以上-30℃以下になるように加湿されている。さらにある好ましい実施形態において、粗粉砕粉をジェットミル装置に供給するレートは、35kg/時間以上180kg/時間以下である。
不活性ガスの例は、窒素、アルゴン、ヘリウムである。なかでも、窒素は純度の高いガスが低コストで入手できるため、最も好ましい。したがって、好ましい実施形態において、不活性ガスは窒素ガスである。しかしながら、本発明者らは検討の結果、従来からの方法で窒素からなる不活性ガスを用いてジェットミル粉砕を行う場合、得られる微粉末の平均粒度が4.5μm以下になると、窒化により磁気特性の低下し始めることがわかった。特に、平均粒度が3.5μm以下になると窒化による磁気特性の低下が著しくなる場合があることが分かった。しかし、本開示の実施形態によれば、適切に調整した加湿雰囲気で粉砕を行うため、窒素ガスを不活性ガスに用いても、窒化の抑制および酸化の抑制を両立することができる。これは、粉砕室内の不活性ガスが窒素主体であっても、特定の調整された量の水分を含有するように加湿させることで、微粉砕によって現れた粒子の活性な表面を窒化されるよりも先に薄く酸化させることができるからだと考えられる。なお、微粉砕以降の工程(主に前記微粉末の焼結体を作製する工程)によるR-T-B系焼結磁石の酸素含有量の増加は質量比で50ppm以上300ppm以下であることが好ましく、さらに好ましくは、50ppm以上200ppm以下である。これらを達成するには、後述するように磁場中湿式プレスまたは不活性ガス雰囲気中による磁場中プレスを行い、得られた成形体を焼結する。微粉末を得る工程における微粉末の平均粒度は、2.0μm以上4.5μm以下である。2.0μm未満であると、微粉末の粉砕粒度が小さすぎてジェットミル粉砕時の粉砕効率の悪化を抑止できない可能性があり、4.5μmを超えると高い磁気特性を得られない可能性がある。微粉末の粉砕粒度は2.0μm以上3.5m以下であることがより好ましい。平均粒度を小さくすることにより、磁石特性を向上させることが可能になる。
<(3)微粉末の焼結体を作製する工程の例>
好ましい実施形態において、微粉末の焼結体を作製する工程は、磁場中プレスによって前記微粉末から粉末成形体を作製する工程と、この粉末成形体を焼結する工程とを含む。磁場中プレスでは酸化抑制の観点から不活性ガス雰囲気中によるプレスまたは湿式プレスによって粉末成形体を形成する方が好ましい。特に湿式プレスは粉末成形体を構成する粒子の表面が油剤などの分散剤によって被覆され、大気中の酸素や水蒸気との接触が抑制される。このため、プレス工程の前後あるいはプレス工程中に粒子が大気によって酸化されることを防止または抑制することができる。
好ましい実施形態において、微粉末の焼結体を作製する工程は、磁場中プレスによって前記微粉末から粉末成形体を作製する工程と、この粉末成形体を焼結する工程とを含む。磁場中プレスでは酸化抑制の観点から不活性ガス雰囲気中によるプレスまたは湿式プレスによって粉末成形体を形成する方が好ましい。特に湿式プレスは粉末成形体を構成する粒子の表面が油剤などの分散剤によって被覆され、大気中の酸素や水蒸気との接触が抑制される。このため、プレス工程の前後あるいはプレス工程中に粒子が大気によって酸化されることを防止または抑制することができる。
磁場中湿式プレスを行う場合、微粉末に分散媒を混ぜたスラリーを用意し、湿式プレス装置の金型におけるキャビティに供給して磁場中でプレス成形する。
・分散媒
分散媒は、その内部に合金粉末を分散させることによりスラリーを得ることができる液体である。
分散媒は、その内部に合金粉末を分散させることによりスラリーを得ることができる液体である。
本開示に用いる好ましい分散媒として鉱物油または合成油を挙げることができる。鉱物油または合成油はその種類が特定されるものではないが、常温での動粘度が10cStを超えると粘性の増大によって合金粉末相互の結合力が強まり磁場中湿式成形時の合金粉末の配向性に悪影響を与える場合がある。このため、鉱物油または合成油の常温での動粘度は10cSt以下が好ましい。また鉱物油または合成油の分留点が400℃を超えると成形体を得た後の脱油が困難となり、焼結体内の残留炭素量が多くなって磁気特性が低下する場合がある。したがって、鉱物油または合成油の分留点は400℃以下が好ましい。また、分散媒として植物油を用いてもよい。植物油は植物より抽出される油を指し、植物の種類も特定の植物に限定されるものではない。
・スラリーの作製
得られた合金粉末と分散媒とを混合することでスラリーを得ることができる。
得られた合金粉末と分散媒とを混合することでスラリーを得ることができる。
合金粉末と分散媒との混合率は特に限定されないが、スラリー中の合金粉末の濃度は、質量比で、好ましくは70%以上(すなわち、70質量%以上)である。20~600cm3/秒の流量において、キャビティ内部に効率的に合金粉末を供給できると共に、優れた磁気特性が得られるからである。スラリー中の合金粉末の濃度は、質量比で、好ましくは90%以下である。合金粉末と分散媒との混合方法は特に限定されない。合金粉末と分散媒とを別々に用意し、両者を所定量秤量して混ぜ合わせることによって製造してよい。また、粗粉砕粉をジェットミル等で乾式粉砕して合金粉末を得る際にジェットミル等の粉砕装置の合金粉末排出口に分散媒を入れた容器を配置し、粉砕して得られた合金粉末を容器内の分散媒中に直接回収しスラリーを得てもよい。この場合、容器内も窒素ガスおよび/またはアルゴンガスからなる雰囲気とし、得られた合金粉末を大気に触れさせることなく直接分散媒中に回収して、スラリーとすることが好ましい。さらには、粗粉砕粉を分散媒中に保持した状態で振動ミル、ボールミルまたはアトライター等を用いて湿式粉砕し、合金粉末と分散媒とから成るスラリーを得ることも可能である。
こうして得たスラリーを公知の湿式プレス装置で成形することにより、所定の大きさおよび形状を有する成形体を得ることができる。この成形体を焼結して焼結体を得る。
・焼結工程
次に、成形体を焼結して希土類焼結磁石体(焼結体)を得る。
次に、成形体を焼結して希土類焼結磁石体(焼結体)を得る。
成形体の焼結は、好ましくは、0.13Pa(10-3Torr)以下、より好ましくは0.07Pa(5.0×10-4Torr)以下の圧力下で、温度1000℃~1150℃の範囲で行なう。焼結による酸化を防止するために、雰囲気の残留ガスは、ヘリウム、アルゴンなどの不活性ガスにより置換され得る。得られた、焼結体に対しては、熱処理を行うことが好ましい。熱処理により、磁気特性を向上させることができる。熱処理温度、熱処理時間などの熱処理条件は、公知の条件を採用することができる。こうして得た希土類焼結磁石体に対しては、必要に応じて、研削・研磨工程、表面処理工程、および着磁工程が施され、最終的な希土類焼結磁石が完成する。
ある好ましい実施形態では、本開示のR-T-B系焼結磁石の製造方法は、重希土類元素RH(RHは、Tb、Dy、Hoの少なくとも1つ)を焼結体の表面から内部に拡散する拡散工程を更に含む。重希土類元素RHを焼結体の表面から内部に拡散すると、保磁力を効率的に高めることができる。後述する実施例に示すように、本開示の加湿粉砕を行った焼結体に対して拡散工程を行うと、加湿粉砕を行わない焼結体に拡散工程を行う場合とくらべて高いHcJが得られることがわかった。拡散工程の方法は特に問わない。公知の方法を採用することができる。重希土類元素RHとしては、TbやDyが好ましい。これらを拡散したR-T-B系焼結磁は、磁石表面から磁石内部に向かってTb濃度およびDy濃度の少なくとも一方が漸減する部分を含む。すなわち、磁石表面から磁石内部にTb濃度およびDy濃度の少なくとも一方が漸減する部分をR-T-B系焼結磁石が含むということは、TbおよびDyの少なくとも一方が磁石表面から磁石内部に拡散された状態にあることを意味している。この状態は、例えば、R-T-B系焼結磁石の任意の断面における磁石表面から磁石中央付近までをエネルギー分散型X線分光方法(EDX)により線分析(ライン分析)することにより確認することができる。
TbおよびDyの濃度は、測定部位のサイズが例えばサブミクロン程度である場合、測定部位が主相結晶粒(R2T14B化合物粒子)および粒界のいずれに位置するかによって異なり得る。また、測定部位が粒界に位置している場合、粒界に形成され得るTbまたはDyを含む化合物の種類および分布に応じて、TbまたはDyの濃度は局所的または微視的に変化し得る。しかし、TbおよびDyが磁石表面から磁石内部に拡散された場合、これらの元素の、磁石表面からの深さが等しい位置における濃度平均値は、磁石表面から磁石内部に向かって徐々に低下していくことは明らかである。本開示では、少なくともR-T-B系焼結磁石の磁石表面から200μmの深さまでの領域において、深さをパラメータとする関数として測定されるTbおよびDyの濃度平均値の少なくとも一方が深さの増加とともに低下していれば、このR-T-B系焼結磁石は、Tb濃度およびDy濃度の少なくとも一方が漸減する部分を含むと定義する。
重希土類元素RHを焼結体の表面から内部に拡散する拡散工程を行った後の最終的に得られるR-T-B系焼結磁石のR含有量は32質量%以下(27質量%以上32質量%以下)が好ましい。R-T-B系焼結磁石のR含有量を32質量%以下でかつ、酸素の含有量が質量比で1000ppm以上3500ppm以下(好ましくは1000ppm以上3200ppm以下、さらに好ましくは1000ppm以上2400ppm以下、さらに好ましくは2000ppm以上2400ppm以下)とすることにより、より高い磁気特性を得ることができる。
拡散工程を行った後の最終的に得られるR-T-B系焼結磁石におけるN(窒素)の含有量は、質量比で50ppm以上600ppm以下が好ましく、50ppm以上400ppm以下がさらに好ましく、最も好ましくは、100ppm以上300ppm以下である。また、R-T-B系焼結磁石におけるC(炭素)の含有量は、質量比で80ppm以上1500ppm以下が好ましく、80ppm以上1000ppm以下がさらに好ましい。また、拡散工程を行った後の最終的に得られるR-T-B系焼結磁石における酸酸素の含有量を[O]、炭素の含有量を[C]、窒素の含有量を[N]とするとき、以下の式1~3を満足することが好ましい。
式1:[O]>[C]>[N]、式2:[O]≧1.5×[N]、式3:[C]≧1.5×[N]
式1:[O]>[C]>[N]、式2:[O]≧1.5×[N]、式3:[C]≧1.5×[N]
さらに、本発明者らは上述した本開示の加湿粉砕により得られたR-T-B系焼結磁石の組織を詳細に調べた結果、R-T-B系焼結磁石における粒界相は希土類酸化物相を有し、前記希土類酸化物相は、希土類酸窒化物相を有することがわかった。そして、前記希土類酸窒化物相が特定の結晶構造を有し、かつ、酸素{O}と窒素{N}の含有量(原子%)が特定の関係を満たすことにより、高い磁気特性を得ることが出来ることがわかった。また、特に重希土類元素RHを焼結体の表面から内部に拡散する拡散工程を行う場合に効果が顕著である(拡散によるHcJ向上効果が高い)ことがわかった。なお、このような組織は、本開示の加湿粉砕によって好適に得ることができるが、必ずしもこれに限定されない。例えば、ジェットミル粉砕中における酸素や窒素の導入量を調整することにより以下に説明するR-T-B系焼結磁石を得ることが出来る。
本開示のR-T-B系焼結磁石は、R2T14B化合物からなる主相と、前記主相の粒界部分に位置する粒界相とを含むR-T-B系焼結磁石であって(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含む)、前記R-T-B系焼結磁石の主相であるR2T14B相の平均結晶粒径は、3μm以上7μm以下であり、前記R-T-B系焼結磁石は、酸素、炭素、窒素を含有し、酸素の含有量は質量比で1000ppm以上3500ppm以下であり、窒素の含有量は質量比で50ppm以上600pm以下であり、前記粒界相は、希土類酸化物相を有し、前記希土類酸化物相は、NaCl型結晶構造を有する希土類酸窒化物相を含み、前記希土類酸窒化物相におけるOの含有量(原子%)を{O}、前記希土類酸窒化物相におけるNの含有量(原子%)を{N}とするとき、{O}>1.8×{N}の関係を満たす。好ましくは、前記R-T-B系焼結磁石は、前記希土類酸窒化物相におけるCの含有量(原子%)を{C}とするとき、{C}>{N}×0.5の関係をさらに満たす。
前記希土類酸化物相の面積に占める前記希土類酸窒化物相の面積の割合は好ましくは50%以上である。
R-T-B系焼結磁石の主相であるR2T14B相の平均結晶粒径は、3μm以上7μm以下(好ましくは3μm以上5μm以下)であり、前記R-T-B系焼結磁石は、酸素、炭素、窒素を含有し、酸素の含有量は質量比で1000ppm以上3500ppm以下(好ましくは1000ppm以上2500ppm以下)であり、窒素の含有量は質量比で50ppm以上600pm以下である。これにより高い磁気特性を得ることができる。そして、前記R-T-B系焼結磁石における粒界相は希土類酸化物相を有し、前記希土類酸化物相は、NaCl型結晶構造を有する希土類酸窒化物相を含む。本発明者らは検討の結果、NaCl型結晶構造を有する希土類酸窒化物相は炭素(C)と結びつきやすいことがわかった。そのため、NaCl型結晶構造を有する希土類酸窒化物相を有することにより、主相のC量を低下させることができ、これにより高い磁気特性が得られることがわかった。また、NaCl型結晶構造を有する希土類酸窒化物相は重希土類元素(例えばTbやDy)と酸化物を作りにくいことがわかった。そのため、R-T-B系焼結磁石にTbやDyを含有する場合、粒界にNaCl型結晶構造を有する希土類酸窒化物相を有することで、より主相にTbやDyを含有させることができ、高い磁気特性を得ることができる。後述する実施例に示すように、特に重希土類元素RHを焼結体の表面から内部に拡散する拡散工程を行う場合に効果が顕著である。さらに、前記希土類酸窒化物相は、前記希土類酸窒化物相におけるOの含有量(原子%)を{O}、前記希土類酸窒化物相におけるNの含有量(原子%)を{N}とするとき、{O}>1.8×{N}の関係を満たす。このような関係を満たすことにより、R-T-B系焼結磁石における窒化が抑制されて高い磁気特性を得ることができる。また、NaCl型の希土類酸窒化物は重希土類元素と窒化物を作る。そのため、R-T-B系焼結磁石にTbやDyを含有する場合、粒界におけるNaCl型結晶構造を有する希土類酸窒化物相のOおよびNの含有量が{O}>1.8×{N}の関係を満たすことにより、重希土類元素との窒化物生成を抑制し、より主相にTbやDyを含有させることができるため高い磁気特性を得ることができる。後述する実施例に示すように、特に重希土類元素RHを焼結体の表面から内部に拡散する拡散工程を行う場合に効果が顕著である。
また、好ましくは、前記希土類酸窒化物相におけるCの含有量(原子%)を{C}とするとき、{C}>{N}×0.5の関係や満たすことにより、主相のC量を低下させることができ、より高い磁気特性を得ることが出来る。
また、前記希土類酸化物相の面積に占める前記希土類酸窒化物相の面積の割合は50%以上が好ましい。希土類酸化物相に占める希土類酸窒化物相が面積比率で50%以上であることにより、より磁気特性を向上させることができる。好ましくは、前記希土類酸化物相の面積に占める前記希土類酸窒化物相の面積の割合は70%以上であり、さらに好ましくは90%以上である。
「R-T-B系焼結磁石における粒界相は希土類酸化物相を有し、前記希土類酸化物相は、NaCl型結晶構造を有する希土類酸窒化物相を含む」かどうかは、例えば、X線や中性子、電子線などの回折測定によってNaCl型結晶構造特有の回折ピークやパターンを観測することで確認できる。
「前記希土類酸窒化物相は、前記希土類酸窒化物相におけるOの含有量(原子%)を{O}、前記希土類酸窒化物相におけるNの含有量(原子%){N}とするとき、{O}>1.8×{N}の関係を満たす」かどうかは、例えば、EDX(エネルギー分散型X線分析)やWDX(波長分散型X線分析)によって酸化物相の点、線あるいは面分析をおこなうことで確認できる。
「前記希土類酸化物相の面積に占める前記希土類酸窒化物相の面積の割合は50%以上」かどうかは、例えば、ある視野でEDXやWDXのマッピングをおこない、市販のソフトウェアで前記希土類酸化物相を色分けした上で、さらにその中で前記希土類酸窒化物相を色分けし、各々の相の色のピクセル数をカウントすることで確認できる。
本開示を実施例によりさらに詳細に説明するが、本開示はそれらに限定されるものではない。
・実施例1
およそ表1の試料No.1~13に示すR-T-B系焼結磁石の組成となるように(O、C、Nは除く)ストリップキャスト法によりR-T-B系焼結磁石用合金を作製した。得られた各合金を水素粉砕法により粗粉砕し粗粉砕粉を得た。粗粉砕粉の平均粒度を測定した。平均粒度は200μm~400μmの範囲であった。本開示において平均粒度は、小粒径側からの積算粒度分布(体積基準)が50%となる粒径(メジアン径)を意味する。平均粒度(d50)は、Sympatec社製の粒度分布測定装置「HELOS&RODOS」において、分散圧:4bar、測定レンジ:R2、計算モード:HRLD、の条件にて測定した。
およそ表1の試料No.1~13に示すR-T-B系焼結磁石の組成となるように(O、C、Nは除く)ストリップキャスト法によりR-T-B系焼結磁石用合金を作製した。得られた各合金を水素粉砕法により粗粉砕し粗粉砕粉を得た。粗粉砕粉の平均粒度を測定した。平均粒度は200μm~400μmの範囲であった。本開示において平均粒度は、小粒径側からの積算粒度分布(体積基準)が50%となる粒径(メジアン径)を意味する。平均粒度(d50)は、Sympatec社製の粒度分布測定装置「HELOS&RODOS」において、分散圧:4bar、測定レンジ:R2、計算モード:HRLD、の条件にて測定した。
前記粗粉砕粉を図1のジェットミル装置100に投入して前記粗粉砕粉を粉砕して微粉末を得た。粉砕条件を表2に示す。表2のNo.2は、粗粉砕粉の1kgあたり1.5gの水分を不活性ガスに与えて加湿粉砕したものであり、粗粉砕粉をジェットミル装置に供給する量は、64.0kg/hである。No.1およびNo.3~13も同様に記載している(No.1は加湿せず粉砕している)。なお、本実施例では、不活性ガスとして窒素ガスを用いた。得られた微粉末の平均粒度を表2に示す。前記微粉末を窒素雰囲気中で分留点が250℃、室温での動粘度が2cStの鉱物油に浸漬してスラリーを準備した。スラリー濃度は、85質量%であった。得られたスラリーを磁界中で成形(湿式成形)し、成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。得られた成形体を、真空中1040℃(焼結による緻密化が十分に起こる温度を選定)で4時間焼結し、焼結体を得た。焼結体の密度は7.5Mg/m3以上であった。さらに焼結体に対し、800℃で2時間保持した後室温まで冷却し、次いで500℃で2時間保持した後室温まで冷却する熱処理を施して焼結体(R-T-B系焼結磁石)を得た。得られた焼結磁石の成分を求めた。Nd、Pr、B、Co、Al、Cu、Ga、Zrの含有量をICP発光分光分析法により測定した。さらに、O(酸素量)はガス融解-赤外線吸収法、N(窒素量)はガス融解-熱伝導法、C(炭素量)は燃焼-赤外線吸収法、によるガス分析装置を使用して測定した。なお、O、C、Nの含有量は質量ppmである。結果を表1に示す。焼結磁石に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、B-Hトレーサによって各試料のBrおよびHcJを測定した。測定結果を表3に示す。表1に示す通り、本発明例は、いずれも本開示の式1~3を満足している。また、各サンプルについて平均結晶粒径を、EBSDを用いて測定(粒子を5700~5800個程度それぞれ評価した結晶粒の円相当径の平均値)した所、4.1~4.3μmの間であった。
表1および表2に示すようにNo.1~5は、C、O、N以外はほぼ同じ組成であり、ジェットミル粉砕による微粉末の平均粒度もほぼ同じである。表3に示すように、本発明例(No.2~4)はいずれも加湿粉砕していないNo.1とくらべて高い磁気特性が得られている。従来、ほぼ同じ組成、粒度であれば、酸素量が増加すると磁気特性が低下すると考えられてきた。しかし、No.1とNo.2~4に示すように、本開示のR-T-B系焼結磁石の酸素含有量の範囲であれば、逆に磁気特性が向上(HcJが向上)している。また、加湿粉砕しても本開示のR-T-B系焼結磁石の酸素の含有量の範囲からはずれるとNo.5に示すように磁気特性が低下している。また、表2に示すように平均粒径3.3μm程度に合わせて粉砕する場合、本発明例の方が加湿していない比較例(No.1)とくらべて供給レートを上げることができる、すなわち粉砕性が良い。また、表2および表3の結果から、より高い粉砕性を得るためにはR-T-B系焼結磁石の酸素含有量は1700ppm以上が好ましいことがわかる。また、表3に示すように、本発明例はいずれもBr≧1.33TかつHcJ≧1200kA/mの高い磁気特性が得られている。
・実施例2
実施例1のNo.1~3の焼結体を準備した。前記焼結体に対して、重希土類元素RHを焼結体の表面から内部に拡散する拡散工程をおこなった。具体的には、質量比でPr80Tb10Ga7Cu3の組成となるように各元素の原料を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られた合金を、アルゴン雰囲気中で粉砕した後、目開き425μmの篩を通過させて拡散合金粉末を準備した。表1のNo.1~3の焼結体を切断、研削加工し、7.2mm×7.2mm×7.2mmの立方体とした。次に、No.1~3の焼結体の全面にR-T-B系焼結磁石の100質量%に対して前記拡散合金を2.5質量%散布した。その後、50Paに制御した減圧アルゴン中で、温度で900℃、10時間の熱処理を行った後室温まで冷却を行い、さらに、50Paに制御した減圧アルゴン中で、500℃3時間の熱処理を行い拡散後のR-T-B系焼結磁石(No.20~23)を作製した。
実施例1のNo.1~3の焼結体を準備した。前記焼結体に対して、重希土類元素RHを焼結体の表面から内部に拡散する拡散工程をおこなった。具体的には、質量比でPr80Tb10Ga7Cu3の組成となるように各元素の原料を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られた合金を、アルゴン雰囲気中で粉砕した後、目開き425μmの篩を通過させて拡散合金粉末を準備した。表1のNo.1~3の焼結体を切断、研削加工し、7.2mm×7.2mm×7.2mmの立方体とした。次に、No.1~3の焼結体の全面にR-T-B系焼結磁石の100質量%に対して前記拡散合金を2.5質量%散布した。その後、50Paに制御した減圧アルゴン中で、温度で900℃、10時間の熱処理を行った後室温まで冷却を行い、さらに、50Paに制御した減圧アルゴン中で、500℃3時間の熱処理を行い拡散後のR-T-B系焼結磁石(No.20~23)を作製した。
得られた拡散工程後のR-T-B系焼結磁石の磁気特性を実施例1と同様にして測定した。結果を表4に示す。また、拡散によるHcJの向上値を表4の△HcJに示す。表4のNo.6は、拡散後のHcJの値(1826kA/m)から拡散前の磁石No.1のHcJの値(1139kA/m)を差し引いた値である。他も同様に記載している。なお、R-T-B系焼結磁石の断面における磁石表面から磁石中央付近までをエネルギー分散型X線分光方法(EDX)により線分析(ライン分析)した所、磁石表面から磁石内部に向かってTb濃度が漸減する部分を含んでいることを確認した。
表4に示すように、本開示の加湿粉砕を行った焼結体に対して拡散工程を行った本発明例(No.21およびNo.22)は、加湿粉砕を行わない焼結体に拡散工程を行った比較例(No.20)とくらべてより高い△HcJが得られている。
表1のNo.1~4およびNo.6、7の条件で準備した微粉末について成形性を確認した。結果を表5に示す。表5に示す成形圧とは、成形体の密度が4.1g/cm3に達した(ρg=4.1g/cm3)時の成形圧力である。そのため、成形圧が低いほど圧縮性が良く、成形性が良いことを示している。
表5に示すように、本発明例はいずれも比較例と比べて成形圧が低く、圧縮性がよく、0.20kgf/cm2以下の成形圧で成形が可能であった。特に、No.4~7は、成形圧が比較例の半分以下と大幅に圧縮性が向上し、0.15kgf/cm2以下の成形圧で成形が可能であった。そのため、R-T-B系焼結磁石の酸素含有量は質量比で2000ppm以上が好ましく、表3の磁気特性(BrおよびHcJ)も考慮するとR-T-B系焼結磁石の酸素含有量は質量比で2000ppm以上2400ppm以下が好ましい。
・実施例3
実施例1と同様にして、表6の試料No.23~26に示すR-T-B系焼結磁石の組成となるようにR-T-B系焼結磁石用合金を作製した。得られたR-T-B系焼結磁石用合金を実施例1と同様にして粗粉砕し、粗粉砕紛を得た。得られた粗粉砕紛を実施例1と同様にして粉砕し、微粉末を得た。粉砕条件を表7に示す。得られた微粉砕を実施例1と同様にして、成形、焼結、熱処理を行い、R-T-B系焼結磁石を得た。得られた焼結磁石の成分を実施例1と同様にして求めた。なお、O、C、Nの含有量は、質量ppmである。結果を表6に示す。表6に示すように、試料No.23と24は、O、C、N以外ほぼ同じ組成である。同様に試料No.25と26もO、C、N以外はほぼ同じ組成である。
実施例1と同様にして、表6の試料No.23~26に示すR-T-B系焼結磁石の組成となるようにR-T-B系焼結磁石用合金を作製した。得られたR-T-B系焼結磁石用合金を実施例1と同様にして粗粉砕し、粗粉砕紛を得た。得られた粗粉砕紛を実施例1と同様にして粉砕し、微粉末を得た。粉砕条件を表7に示す。得られた微粉砕を実施例1と同様にして、成形、焼結、熱処理を行い、R-T-B系焼結磁石を得た。得られた焼結磁石の成分を実施例1と同様にして求めた。なお、O、C、Nの含有量は、質量ppmである。結果を表6に示す。表6に示すように、試料No.23と24は、O、C、N以外ほぼ同じ組成である。同様に試料No.25と26もO、C、N以外はほぼ同じ組成である。
得られたR-T-B系焼結磁石の磁気特性測定結果を表8に示す。表8における「23℃ Br HcJ」は、室温(23℃)におけるBrおよびHcJの値であり、「140℃ HcJ」は140℃におけるHcJの値である。これらBr、HcJの値は、熱処理後のR-T-B系焼結磁石に機械加工を施し、サンプルを7mm×7mm×7mmに加工し、BHトレーサにより測定した。さらに、温度係数(β:23~140℃)を以下のようにして求めた。140℃でのHcjをHcj140と、23℃でのHcjをHcj23とするとき、温度係数=(Hcj140-Hcj23)/Hcj23/(140℃-23℃)×100%
温度係数の絶対値が小さいほど温度係数が改善されていることを示している。
温度係数の絶対値が小さいほど温度係数が改善されていることを示している。
表8に示すように、本発明例は以上の1.391T以上のBrと、1190KA/m以上のHcjと-0.578以下のβが得られており、ほぼ同じ組成である、No.23、24やNo.25、26をそれぞれくらべると、いずれも本発明例は温度係数が改善されている。
・実施例4
実施例1と同様にして、表9の試料No.27および28に示すR-T-B系焼結磁石の組成となるようにR-T-B系焼結磁石用合金を作製した。得られたR-T-B系焼結磁石用合金を実施例1と同様にして粗粉砕し、粗粉砕紛を得た。得られた粗粉砕紛を実施例1と同様にして粉砕し、微粉末を得た。粉砕条件を表10に示す。得られた微粉砕を実施例1と同様にして、成形、焼結、熱処理を行い、R-T-B系焼結磁石を得た。得られた焼結磁石の成分を実施例1と同様にして求めた。結果を表9に示す。
実施例1と同様にして、表9の試料No.27および28に示すR-T-B系焼結磁石の組成となるようにR-T-B系焼結磁石用合金を作製した。得られたR-T-B系焼結磁石用合金を実施例1と同様にして粗粉砕し、粗粉砕紛を得た。得られた粗粉砕紛を実施例1と同様にして粉砕し、微粉末を得た。粉砕条件を表10に示す。得られた微粉砕を実施例1と同様にして、成形、焼結、熱処理を行い、R-T-B系焼結磁石を得た。得られた焼結磁石の成分を実施例1と同様にして求めた。結果を表9に示す。
表9に示すように、試料No.27および28は、O、C、N以外ほぼ同じ組成である。なお、O、C、Nの含有量は質量ppmである。また、得られたR-T-B系焼結磁石の磁気特性測定結果を表11に示す。表11に示すように、ほぼ同じ組成である、No.27および28をくらべると、本発明例(No.28)の方が高い磁気特性を有している。
No.27および28のR-T-B系焼結磁石の粒界相を観察した。
具体的には、まず、電子線回折をおこなうことで酸化物相の結晶構造を同定した。その結果、No.27および28はいずれも結晶構造がNaCl型の酸化物相を有していることがわかった。次に、EDXおよびWDXによる点分析およびマッピングをおこなった。FeおよびNdについてはEDX、Pr、C、NおよびOについてはWDXによる分析をおこなった。酸化物相について各3点ずつ点分析をおこない、平均したものを表12に示す。表12の(A)は、希土類酸窒化物相におけるOの含有量(原子%)を{O}、希土類酸窒化物相におけるNの含有量(原子%)を{N}とするとき、{O}>1.8×{N}の関係を満たす場合は「〇 丸」と、満たさない場合は「×」と記載している。同様に(B)は、{C}>{N}×0.5を満たす場合は「〇」と、満たさない場合は「×」とそれぞれ記載している。
また、マッピング結果をもとに本開示の希土類酸窒化物相が占める割合を算出した。まず、日本電子(株)製のソフトウェア「NMap」を用いて点分析結果に合うように各元素のマッピング強度を濃度に換算した。次に、日本電子(株)製のソフトウェア「Phase Map Maker」を用いて散布図解析をおこなった。具体的には、{O}≧10原子%の領域を酸化物相の領域として色分けし、さらにその後、式(A)、(B)を満たす領域を色分けすることで、本開示の希土類酸窒化物相とその他の酸化物相を分離した。そして、得られた画像の各色のピクセル数をカウントすることで、希土類酸化物相に占める本開示の希土類酸窒化物相の断面積を計算した。
表12に示すように本発明例(No.28)は希土類酸化物相の面積に占める本開示の希土類酸窒化物相の面積の割合が70%であり、かつ、(A)、(B)を満足している。これに対し、比較例は、本開示の希土類酸窒化物相の面積の割合が14%であり、(A)、(B)を満足していなかった。
・実施例5
さらに、試料No.27および28の焼結体に対して、重希土類元素RHを焼結体の表面から内部に拡散する拡散工程をおこなった。具体的には、質量比でNd31Pr50Tb9Ga5Cu5の組成となるように各元素の原料を秤量しそれらの原料を溶解して、アトマイズ法により拡散合金粉末を準備した。表1のNo.27および28の焼結体を切断、研削加工し、7.2mm×7.2mm×4.7mm(4.7mmの方向が成形時の磁界印加方向)の直方体とした。次に、No.27および28の焼結体の片面(7.2mm×7.2mmの面)にR-T-B系焼結磁石の100質量%に対して前記拡散合金を2質量%散布した。その後、50Paに制御した減圧アルゴン中で、温度で920℃、10時間の熱処理を行った後室温まで冷却を行い、さらに、50Paに制御した減圧アルゴン中で、450℃で3時間の熱処理を行い拡散後のR-T-B系焼結磁石(No.29および30)を作製した。なお、実施例2と同様にして、拡散後のR-T-B系焼結磁石は、磁石表面から磁石内部に向かってTb濃度が漸減する部分を含んでいることを確認した。
さらに、試料No.27および28の焼結体に対して、重希土類元素RHを焼結体の表面から内部に拡散する拡散工程をおこなった。具体的には、質量比でNd31Pr50Tb9Ga5Cu5の組成となるように各元素の原料を秤量しそれらの原料を溶解して、アトマイズ法により拡散合金粉末を準備した。表1のNo.27および28の焼結体を切断、研削加工し、7.2mm×7.2mm×4.7mm(4.7mmの方向が成形時の磁界印加方向)の直方体とした。次に、No.27および28の焼結体の片面(7.2mm×7.2mmの面)にR-T-B系焼結磁石の100質量%に対して前記拡散合金を2質量%散布した。その後、50Paに制御した減圧アルゴン中で、温度で920℃、10時間の熱処理を行った後室温まで冷却を行い、さらに、50Paに制御した減圧アルゴン中で、450℃で3時間の熱処理を行い拡散後のR-T-B系焼結磁石(No.29および30)を作製した。なお、実施例2と同様にして、拡散後のR-T-B系焼結磁石は、磁石表面から磁石内部に向かってTb濃度が漸減する部分を含んでいることを確認した。
得られた拡散工程後のR-T-B系焼結磁石(No.29および30)の磁気特性を実施例1と同様にして測定した。結果を表13に示す。また、拡散によるHcJの向上値を表13の△HcJに示す。
表13に示すように、拡散工程を行った本発明例(No.30)は、比較例(No.29)とくらべてより高い△HcJが得られている。また、実施例4と同様にして、拡散後のR-T-B系焼結磁石の粒界相に本開示の希土類酸窒化物相を含有しているかどうか観察した所、表12(拡散前のR-T-B系焼結磁石)とほぼ同等の組成およびNaCl型の希土類酸窒化物相の面積の割合であることを確認した。
本開示のR-T-B系焼結磁石の製造方法は、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車(EV、HV、PHV)用モータ、産業機器用モータなどの各種モータや家電製品など多種多様な用途で使用される永久磁石として利用可能である。
100・・・ジェットミル装置、200・・・サイクロン捕集装置、300・・・バッグフィルタ装置
Claims (11)
- R-T-B系焼結磁石(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含む)の製造方法であって、
平均粒度が10μm以上500μm以下のR-T-B系焼結磁石用合金の粗粉砕粉を準備する工程と、
粉砕室が不活性ガスで満たされたジェットミル装置に前記粗粉砕粉を供給して前記粗粉砕粉の粉砕を行い、平均粒度が2.0μm以上4.5μm以下の微粉末を得る工程と、
前記微粉末の焼結体を作製する工程と、を含み、
前記不活性ガスは加湿されており、前記R-T-B系焼結磁石の酸素の含有量が質量比で1000ppm以上3500ppm以下である、R-T-B系焼結磁石の製造方法。 - 前記R-T-B系焼結磁石のR含有量は31質量%以下である、請求項1に記載のR-T-B系焼結磁石の製造方法。
- 前記不活性ガスは、窒素ガスである、請求項1または2に記載のR-T-B系焼結磁石の製造方法。
- 重希土類元素RH(RHは、Tb、Dy、Hoの少なくとも1つ)を前記焼結体の表面から内部に拡散させる拡散工程を更に含む、請求項1から3のいずれかに記載のR-T-B系焼結磁石の製造方法。
- 前記微粉末の焼結体を作製する工程は、
磁場中湿式プレスまたは不活性ガス雰囲気中による磁場中プレスによって前記微粉末から粉末成形体を作製する工程と、
前記粉末成形体を焼結する工程と、
を含む、請求項1から4のいずれかに記載のR-T-B系焼結磁石の製造方法。 - 前記微粉末を得る工程における前記微粉末の前記平均粒度は2.0μm以上3.5μm以下である、請求項1から5のいずれかに記載のR-T-B系焼結磁石の製造方法。
- R-T-B系焼結磁石であって(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含む)、
前記R-T-B系焼結磁石の主相であるR2T14B相の平均結晶粒径は、3μm以上7μm以下であり、
酸素、炭素、窒素を含有し、
酸素の含有量は質量比で1000ppm以上3500ppm以下であり、
炭素の含有量は質量比で80ppm以上1500ppm以下であり、
窒素の含有量は質量比で50ppm以上600pm以下であり、
質量比で酸素の含有量を[O]、炭素の含有量を[C]、窒素の含有量を[N]とするとき、以下の式1~3を満足する、R-T-B系焼結磁石。
式1:[O]>[C]>[N]
式2:[O]≧1.5×[N]
式3:[C]≧1.5×[N] - R2T14B化合物からなる主相と、前記主相の粒界部分に位置する粒界相とを含むR-T-B系焼結磁石であって(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含む)、
前記R-T-B系焼結磁石の主相であるR2T14B相の平均結晶粒径は、3μm以上7μm以下であり、前記R-T-B系焼結磁石は、酸素、炭素、窒素を含有し、
酸素の含有量は質量比で1000ppm以上3500ppm以下であり、
窒素の含有量は質量比で50ppm以上600pm以下であり、
前記粒界相は、希土類酸化物相を有し、
前記希土類酸化物相は、NaCl型結晶構造を有する希土類酸窒化物相を含み、
前記希土類酸窒化物相におけるOの含有量(原子%)を{O}、
前記希土類酸窒化物相におけるNの含有量(原子%)を{N}とするとき、
{O}>1.8×{N}の関係を満たす、
R-T-B系焼結磁石。 - 前記希土類酸窒化物相におけるCの含有量(原子%)を{C}とするとき、
{C}>{N}×0.5の関係を満たす、
請求項8に記載のR-T-B系焼結磁石。 - 前記希土類酸化物相の面積に占める前記希土類酸窒化物相の面積の割合が50%以上である、請求項8または9に記載のR-T-B系焼結磁石。
- 磁石表面から磁石内部に向かってTb濃度およびDy濃度の少なくとも一方が漸減する部分を含む、請求項8から10のいずれか一項に記載のR-T-B系焼結磁石。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20905090.5A EP4082691A4 (en) | 2019-12-26 | 2020-12-24 | METHOD FOR MANUFACTURING A SINTERED MAGNET BASED ON R-T-B, AND ASSOCIATED SINTERED MAGNET BASED ON R-T-B |
JP2021532090A JP6947344B1 (ja) | 2019-12-26 | 2020-12-24 | R−t−b系焼結磁石の製造方法およびr−t−b系焼結磁石 |
CN202080089947.8A CN114867572A (zh) | 2019-12-26 | 2020-12-24 | R-t-b系烧结磁体的制造方法和r-t-b系烧结磁体 |
US17/788,325 US20230040720A1 (en) | 2019-12-26 | 2020-12-24 | Method for manufacturing r-t-b based sintered magnet, and r-t-b based sintered magnet |
JP2021137689A JP2022023024A (ja) | 2019-12-26 | 2021-08-26 | R-t-b系焼結磁石の製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-235578 | 2019-12-26 | ||
JP2019235578 | 2019-12-26 | ||
JP2020-159614 | 2020-09-24 | ||
JP2020159614 | 2020-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021132476A1 true WO2021132476A1 (ja) | 2021-07-01 |
Family
ID=76575347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/048486 WO2021132476A1 (ja) | 2019-12-26 | 2020-12-24 | R-t-b系焼結磁石の製造方法およびr-t-b系焼結磁石 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230040720A1 (ja) |
EP (1) | EP4082691A4 (ja) |
JP (2) | JP6947344B1 (ja) |
CN (1) | CN114867572A (ja) |
WO (1) | WO2021132476A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023280259A1 (zh) * | 2021-07-08 | 2023-01-12 | 烟台正海磁性材料股份有限公司 | 一种耐腐蚀、高性能钕铁硼烧结磁体及其制备方法和用途 |
WO2023181770A1 (ja) * | 2022-03-22 | 2023-09-28 | 株式会社プロテリアル | R-t-b系焼結磁石 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04287304A (ja) * | 1991-03-15 | 1992-10-12 | Tdk Corp | 永久磁石の製造方法 |
JPH06140220A (ja) | 1992-10-22 | 1994-05-20 | Sumitomo Special Metals Co Ltd | 希土類磁石用原料粉末の製造方法 |
JPH08148317A (ja) | 1994-11-24 | 1996-06-07 | Shin Etsu Chem Co Ltd | 希土類磁石の製造方法 |
JPH1022154A (ja) * | 1996-06-28 | 1998-01-23 | Shin Etsu Chem Co Ltd | 希土類磁石の製造方法 |
JP2011060975A (ja) * | 2009-09-09 | 2011-03-24 | Nissan Motor Co Ltd | 磁石成形体およびその製造方法 |
JP2012158792A (ja) * | 2011-01-31 | 2012-08-23 | Hitachi Metals Ltd | 希土類系磁石用原料合金の水素粉砕粉の回収方法及び回収装置 |
JP2018142641A (ja) * | 2017-02-28 | 2018-09-13 | 日立金属株式会社 | R−t−b系焼結磁石の製造方法 |
JP2019169506A (ja) * | 2018-03-22 | 2019-10-03 | 日立金属株式会社 | R−t−b系焼結磁石及びその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5858123A (en) * | 1995-07-12 | 1999-01-12 | Hitachi Metals, Ltd. | Rare earth permanent magnet and method for producing the same |
JP2002175931A (ja) * | 2000-09-28 | 2002-06-21 | Sumitomo Special Metals Co Ltd | 希土類磁石およびその製造方法 |
JP2006100847A (ja) * | 2005-11-14 | 2006-04-13 | Tdk Corp | R−t−b系希土類永久磁石 |
JP6094612B2 (ja) * | 2014-02-28 | 2017-03-15 | 日立金属株式会社 | R−t−b系焼結磁石の製造方法 |
US10984930B2 (en) * | 2017-09-28 | 2021-04-20 | Hitachi Metals, Ltd. | Method for producing sintered R—T—B based magnet and diffusion source |
JP7155813B2 (ja) * | 2018-03-22 | 2022-10-19 | 日立金属株式会社 | R-t-b系焼結磁石の製造方法 |
-
2020
- 2020-12-24 US US17/788,325 patent/US20230040720A1/en active Pending
- 2020-12-24 JP JP2021532090A patent/JP6947344B1/ja active Active
- 2020-12-24 EP EP20905090.5A patent/EP4082691A4/en active Pending
- 2020-12-24 WO PCT/JP2020/048486 patent/WO2021132476A1/ja unknown
- 2020-12-24 CN CN202080089947.8A patent/CN114867572A/zh active Pending
-
2021
- 2021-08-26 JP JP2021137689A patent/JP2022023024A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04287304A (ja) * | 1991-03-15 | 1992-10-12 | Tdk Corp | 永久磁石の製造方法 |
JPH06140220A (ja) | 1992-10-22 | 1994-05-20 | Sumitomo Special Metals Co Ltd | 希土類磁石用原料粉末の製造方法 |
JPH08148317A (ja) | 1994-11-24 | 1996-06-07 | Shin Etsu Chem Co Ltd | 希土類磁石の製造方法 |
JPH1022154A (ja) * | 1996-06-28 | 1998-01-23 | Shin Etsu Chem Co Ltd | 希土類磁石の製造方法 |
JP2011060975A (ja) * | 2009-09-09 | 2011-03-24 | Nissan Motor Co Ltd | 磁石成形体およびその製造方法 |
JP2012158792A (ja) * | 2011-01-31 | 2012-08-23 | Hitachi Metals Ltd | 希土類系磁石用原料合金の水素粉砕粉の回収方法及び回収装置 |
JP2018142641A (ja) * | 2017-02-28 | 2018-09-13 | 日立金属株式会社 | R−t−b系焼結磁石の製造方法 |
JP2019169506A (ja) * | 2018-03-22 | 2019-10-03 | 日立金属株式会社 | R−t−b系焼結磁石及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4082691A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023280259A1 (zh) * | 2021-07-08 | 2023-01-12 | 烟台正海磁性材料股份有限公司 | 一种耐腐蚀、高性能钕铁硼烧结磁体及其制备方法和用途 |
WO2023181770A1 (ja) * | 2022-03-22 | 2023-09-28 | 株式会社プロテリアル | R-t-b系焼結磁石 |
Also Published As
Publication number | Publication date |
---|---|
US20230040720A1 (en) | 2023-02-09 |
EP4082691A1 (en) | 2022-11-02 |
EP4082691A4 (en) | 2024-01-03 |
JPWO2021132476A1 (ja) | 2021-12-23 |
CN114867572A (zh) | 2022-08-05 |
JP6947344B1 (ja) | 2021-10-13 |
JP2022023024A (ja) | 2022-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109478452B (zh) | R-t-b系烧结磁体 | |
WO2014157448A1 (ja) | R-t-b系焼結磁石 | |
WO2015022946A1 (ja) | R-t-b系焼結磁石およびr-t-b系焼結磁石の製造方法 | |
WO2017159576A1 (ja) | R-t-b系焼結磁石の製造方法 | |
CN107710351A (zh) | R‑t‑b系烧结磁体及其制造方法 | |
JP6947344B1 (ja) | R−t−b系焼結磁石の製造方法およびr−t−b系焼結磁石 | |
WO2019151244A1 (ja) | 永久磁石 | |
JP2015193925A (ja) | R−t−b系合金粉末およびr−t−b系焼結磁石 | |
JP2018174311A (ja) | R−t−b系焼結磁石の製造方法 | |
JP7537536B2 (ja) | R-t-b系焼結磁石 | |
WO2022209466A1 (ja) | R-t-b系焼結磁石の製造方法 | |
CN115691926A (zh) | 一种具有非晶晶界相的高强度r-t-b稀土永磁体及其制备方法 | |
JP7550783B2 (ja) | R-Fe-B系焼結磁石 | |
JP7243609B2 (ja) | 希土類焼結磁石 | |
JP2023005027A (ja) | R-t-b系焼結磁石の製造方法 | |
JP2021155795A (ja) | R−t−b系焼結磁石の製造方法 | |
WO2024225313A1 (ja) | R-t-b系焼結磁石 | |
JP7424388B2 (ja) | R-Fe-B系焼結磁石 | |
JP2022098408A (ja) | R-t-b系焼結磁石の製造方法 | |
US20240363272A1 (en) | R-t-b based sintered magnet | |
JP2023045933A (ja) | R-t-b系焼結磁石の製造方法 | |
US20240112854A1 (en) | Method for recycling rare earth element-containing powder, and method for producing rare earth sintered magnet | |
JP4506973B2 (ja) | 希土類焼結磁石の製造方法、焼結磁石用原料合金粉の粉砕方法 | |
WO2023080169A1 (ja) | R-t-b系永久磁石 | |
WO2023080171A1 (ja) | R-t-b系永久磁石 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021532090 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20905090 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020905090 Country of ref document: EP Effective date: 20220726 |