WO2021038776A1 - エンジンの冷却装置 - Google Patents

エンジンの冷却装置 Download PDF

Info

Publication number
WO2021038776A1
WO2021038776A1 PCT/JP2019/033823 JP2019033823W WO2021038776A1 WO 2021038776 A1 WO2021038776 A1 WO 2021038776A1 JP 2019033823 W JP2019033823 W JP 2019033823W WO 2021038776 A1 WO2021038776 A1 WO 2021038776A1
Authority
WO
WIPO (PCT)
Prior art keywords
water temperature
unit
target
temperature deviation
opening degree
Prior art date
Application number
PCT/JP2019/033823
Other languages
English (en)
French (fr)
Inventor
秀幸 菅原
Original Assignee
株式会社ミクニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミクニ filed Critical 株式会社ミクニ
Priority to JP2021541887A priority Critical patent/JP7259054B2/ja
Priority to CN201980099679.5A priority patent/CN114270022B/zh
Priority to DE112019007670.1T priority patent/DE112019007670T5/de
Priority to PCT/JP2019/033823 priority patent/WO2021038776A1/ja
Publication of WO2021038776A1 publication Critical patent/WO2021038776A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/36Heat exchanger mixed fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/50Temperature using two or more temperature sensors

Definitions

  • the present invention relates to an engine cooling device.
  • a thermostat is provided in the cooling water channel connecting the engine and the radiator, and the thermostat utilizes the thermal expansion of wax to be fully opened and fully closed in a temperature range of, for example, about 80 to 90 ° C. It is set to a characteristic that gradually opens and closes between.
  • the flow state of the cooling water between the engine and the radiator is adjusted according to the opening and closing of the thermostat, and the engine is maintained in a predetermined temperature range.
  • the cooling water temperature flowing through the engine greatly deviates from the target water temperature in the following situations.
  • the opening degree of the flow path switching valve is controlled based on the water temperature deviation. For example, when the water temperature> the target water temperature, the temperature is lowered by controlling the opening side of the flow path switching valve, while when the water temperature ⁇ the target water temperature, the flow path is controlled. The switching valve is closed. At this time, the cooling water circulates in the water jacket of the engine without being cooled by the radiator, and as shown by A in FIG. 4, the water temperature T gradually rises due to the heat received from the engine. Further, at this time, the cooling water stays in the radiator and is cooled by the running wind, and the temperature gradually decreases.
  • the flow path switching valve is controlled to open.
  • the opening side control at this time is also performed gently as shown by C in FIG.
  • the water temperature T changes from rising to falling and drops sharply as shown by D in FIG.
  • the flow path switching valve is closed again in response to the reduction of the water temperature deviation due to this temperature decrease, but the closing side control at this time is also performed gently as shown by the broken line Ea in FIG. 4, so that the cooling water temperature decreases.
  • the water temperature T deviates significantly from the target water temperature tgtT to the low temperature side.
  • Such an inappropriate decrease in the cooling water temperature occurs every time the flow path switching valve is switched, causing a problem that the fuel consumption and the exhaust gas characteristics are deteriorated due to an increase in the oil viscosity of the engine and poor vaporization of the fuel.
  • the present invention has been made to solve such a problem, and an object of the present invention is to avoid a sudden drop in the cooling water temperature when the flow path switching valve is controlled from the closed valve to the open side. It is an object of the present invention to provide an engine cooling device capable of keeping the engine in a good temperature range.
  • the engine cooling device of the present invention includes a flow rate adjusting unit that adjusts the flow rate of cooling water circulating between the engine and the radiator, and a water temperature that detects the temperature of the cooling water flowing through the engine. Deviation that calculates the water temperature deviation based on the detection unit, the water temperature detection unit that calculates the target water temperature of the cooling water based on the operating state of the engine, the water temperature detected by the water temperature detection unit, and the target water temperature calculated by the water temperature detection unit.
  • the target opening calculation unit that calculates the target opening of the flow rate adjustment unit to achieve the target water temperature based on the water temperature deviation calculated by the calculation unit and the deviation calculation unit, and the target calculated by the target opening calculation unit.
  • the control speed of the flow rate adjustment unit is calculated based on the opening / closing direction determination unit that determines the opening / closing direction of the flow rate adjustment unit based on the change state of the opening degree and the water temperature deviation calculated by the deviation calculation unit, and is determined by the opening / closing direction determination unit.
  • the control speed calculation unit which calculates a higher control speed as compared with the case where the determined opening / closing direction is the open side, and the target opening degree calculated by the target opening degree calculation unit. It is characterized in that it is provided with a valve control unit that controls the opening degree of the flow rate adjusting unit based on the control speed calculated by the control speed calculation unit.
  • a first storage unit for storing the relationship between the preset water temperature deviation and the target opening degree is further provided, and the target opening degree calculation unit has the water temperature based on the relationship stored in the first storage unit.
  • the target opening degree may be calculated from the deviation.
  • the water temperature deviation is set as the basic water temperature deviation, and a water temperature deviation correction unit for calculating the corrected water temperature deviation based on at least the proportional term and the integration term of the basic water temperature deviation is further provided, and the first storage unit is the corrected water temperature.
  • the relationship between the deviation and the target opening degree is memorized, the target opening degree calculation unit calculates the target opening degree based on the corrected water temperature deviation, and the opening / closing direction determination unit calculates the target opening degree based on the corrected water temperature deviation.
  • the opening / closing direction is determined based on, the control speed calculation unit calculates the control speed based on the basic water temperature deviation, and the valve control unit calculates the opening degree of the flow rate adjustment unit based on the target opening degree calculated based on the corrected water temperature deviation. May be controlled.
  • a second storage unit that stores a relationship between a preset water temperature deviation and a control speed on the open side of the flow rate adjusting unit, and an unrestricted value that is a control speed equal to or higher than the response speed of the flow rate adjusting unit.
  • the control speed calculation unit calculates the control speed from the water temperature deviation based on the relationship stored in the second storage unit and determines the control speed.
  • the control speed may be an unrestricted value stored in the second storage unit regardless of the water temperature deviation.
  • the engine cooling device of the present invention it is possible to avoid a sudden drop in the cooling water temperature when the flow path switching valve is controlled from the closed valve to the open side, and the engine can be kept in a good temperature range.
  • the engine 1 of the present embodiment is mounted on a passenger car as a power source for traveling, and is cooled by a water-cooled cooling device 2.
  • the cooling water discharged from the water pump 4 flows through the water jacket 3 formed in the engine 1, and then the outflow path 5 connected from the water jacket 3 to one side of the engine 1. It is supposed to flow out inside.
  • One ends of the main water channel 6, the sub water channel 7, and the bypass water channel 8 are connected to the outflow channel 5, and the other end of the bypass water channel 8 is connected to the suction side of the water pump 4.
  • a radiator 9 is interposed in the main water channel 6, and the other end of the main water channel 6 is connected to the suction side of the water pump 4.
  • the sub water channel 7 is bifurcated and is interposed with an EGR valve 10 for circulating exhaust gas to the intake side and a throttle device 11 for adjusting the intake air amount, and the other end of each sub water channel 7 is connected to the radiator 9 of the main water channel 6. Is also connected to the location on the water pump 4 side.
  • the cooling water guided from the outflow channel 5 to the main channel 6 is cooled by the running wind when flowing through the radiator 9, the temperature is lowered, and the cooling water is returned to the water pump 4.
  • the cooling water guided from the outflow passage 5 to the sub water passage 7 flows through the EGR valve 10 and the throttle device 11, and by cooling these devices 9 and 10, the temperature rises and is returned to the water pump 4. Further, the cooling water guided from the outflow channel 5 to the bypass channel 8 is returned to the water pump 4 at the same temperature.
  • a flow path switching valve 12 is arranged in the outflow passage 5, and the flow path of the cooling water is continuously adjusted by the flow path switching valve 12. Specifically, the inlet port of the flow path switching valve 12 communicates with the inside of the outflow passage 5, and the outlet port of the flow path switching valve 12 communicates with the main water channel 6 and the sub water channel 7, respectively.
  • the flow path switching valve 12 is configured as a rotary type in which the built-in rotor is rotated by driving the motor 13. The opening ratio on the main channel 6 side and the sub channel 7 side is continuously adjusted according to the angle ⁇ of the rotor, whereby the flow rate of the cooling water guided from the outflow channel 5 to the main channel 6 and the sub channel 7 changes. ..
  • the opening area on the main water channel 6 side in other words, the opening A of the radiator 9 is mainly used, and the opening ratio is adjusted by the flow path switching valve 12.
  • the flow path switching valve 12 Functions as the flow rate adjusting unit of the present invention.
  • the operating state of the cooling device 2 is controlled by the ECU 15 (electronic control device), and the ECU 15 includes an input / output interface 15a, a storage device 15b (ROM, RAM, etc.) incorporating a large number of control programs, a central processing unit 15c (CPU), and the like. It is composed of a timer counter 15d and the like.
  • a position sensor 16 that detects the rotor angle of the flow path switching valve 12
  • a first water temperature sensor 17 that detects the temperature of the cooling water flowing out from the engine 1 into the outflow path 5 as the engine temperature T
  • Various sensors such as a second water temperature sensor 18 that detects the temperature of the cooling water after passing through the radiator 9 are connected.
  • the engine temperature T corresponds to the temperature of the cooling water flowing through the engine 1 of the present invention
  • the first water temperature sensor 17 for detecting the engine temperature T functions as the water temperature detecting unit of the present invention.
  • the target water temperature calculation unit 21 of the ECU 15 calculates the target water temperature tgtT of the cooling water based on the operating state of the engine 1, and inputs it to the deviation calculation unit 22 together with the engine temperature T detected by the first water temperature sensor 17.
  • the deviation calculation unit 22 calculates the basic water temperature deviation ⁇ Tbase as the difference between the target water temperature tgtT and the engine temperature T, and inputs it to the PI control unit 23. Based on the basic water temperature deviation ⁇ Tbase, the P term setting unit 23a of the PI control unit 23 is set with a proportional term, the I term setting unit 23b is set with an integral term, and these feedback terms are added by the addition unit 23c for PI control. The corrected water temperature deviation ⁇ T based on is calculated.
  • the PI control unit 23 functions as the water temperature deviation correction unit of the present invention.
  • PD control or PID control may be used instead of PI control, or the PI control unit 23 may be omitted and the basic water temperature deviation ⁇ Tbase may be treated as the corrected water temperature deviation ⁇ T.
  • the corrected water temperature deviation ⁇ T is input to the target opening degree calculation unit 24, and the target radiator opening degree tgtA is calculated based on the corrected water temperature deviation ⁇ T.
  • the storage device 15b of the ECU 15 stores a control map that defines the relationship between the corrected water temperature deviation ⁇ T and the target radiator opening degree tgtA in advance. Table 1 below shows an example of the control map, and is set to the characteristic of increasing the target radiator opening degree tgtA as the corrected water temperature deviation ⁇ T increases as a whole.
  • the storage device 15b that stores the control map in Table 1 functions as the first storage unit of the present invention.
  • the target radiator opening tgtA is input to the opening / closing direction determination unit 25, and the opening / closing direction determination unit 25 changes the target radiator opening tgtA based on the deviation of the target radiator opening tgtA calculated in the current and previous control cycles. In other words, the opening / closing direction of the flow path switching valve 12 is determined.
  • the deviation between the current value and the previous value of the target radiator opening tgtA corresponds to the changed state of the target opening of the present invention.
  • the determination result of the opening / closing direction determination unit 25 is input to the switching unit 26a of the control speed calculation unit 26 together with the basic water temperature deviation ⁇ Tbase calculated by the deviation calculation unit 22.
  • the switching unit 26a is switched to the open side speed calculation unit 26b when the determination result of the opening / closing direction determination unit 25 is on the open side, and is switched to the closed side speed calculation unit 26c when the determination result is on the closed side.
  • the basic water temperature deviation ⁇ Tbase is input to the speed calculation units 26b and 26c on the switched side, and the control speed ⁇ spd of the flow path switching valve 12 is calculated based on the basic water temperature deviation ⁇ Tbase.
  • the storage device 15b of the ECU 15 stores a control map in which the relationship between the basic water temperature deviation ⁇ Tbase and the control speed ⁇ spd is stored in advance corresponding to the speed calculation units 26b and 26c, respectively.
  • Table 2 below shows an example of a control map applied to the open side speed calculation unit 26b
  • Table 3 below shows an example of a control map applied to the closed side speed calculation unit 26c.
  • the storage device 15b that stores the control maps of Table 2 and Table 2 functions as the second storage unit of the present invention.
  • the target radiator opening tgtA obtained from the corrected water temperature deviation ⁇ T is applied to the determination process of the opening / closing direction of the flow path switching valve 12 and the control of the radiator opening A described later, whereas the control speed ⁇ spd is calculated.
  • the application of the basic water temperature deviation ⁇ Tbase to the treatment is based on the following findings.
  • the actual radiator opening degree A, and thus the rotor angle ⁇ of the flow path switching valve 12 is feedback-controlled based on the target radiator opening degree tgtA. Therefore, by applying the target radiator opening tgtA based on the corrected water temperature deviation ⁇ T reflecting the PI control, it is possible to accurately control the radiator opening A and the flow is controlled based on the rotor angle ⁇ .
  • the opening / closing direction of the path switching valve 12 can also be accurately determined.
  • control speed ⁇ spd needs to be controlled according to the deviation state of the engine temperature T from the target water temperature tgtT at that time as described above. Therefore, it is desirable to set based on the basic water temperature deviation ⁇ Tbase, which is the deviation between the actual target water temperature tgtT and the engine temperature T, rather than the corrected water temperature deviation ⁇ T including the delay element due to I control.
  • the flow path switching valve 12 can be driven at a speed of ⁇ spd.
  • the control speed ⁇ spd calculated by the open side or closed side speed calculation units 26b and 26c of the control speed calculation unit 26 is input to the valve control unit 27 together with the target radiator opening degree tgtA calculated by the target opening degree calculation unit 24. ..
  • the storage device 15b of the ECU 15 stores a control map that defines the relationship between the radiator opening degree A and the rotor angle ⁇ of the flow path switching valve 12, and valve control is performed with reference to this map.
  • the unit 27 calculates the target rotor angle tgt ⁇ from the target radiator opening degree tgtA.
  • the detection information is read from each sensor in step 1, the basic water temperature deviation ⁇ Tbase is calculated in the following step 2, and the corrected water temperature deviation ⁇ T is calculated in step 3.
  • the process of step 2 is executed by the deviation calculation unit 22, and the process of step 3 is executed by the PI control unit 23.
  • the target radiator opening tgtA is calculated based on the control map in Table 1, and in step 5, the changing direction of the target radiator opening tgtA is determined.
  • the process of step 4 is executed by the target opening degree calculation unit 24, and the process of step 5 is executed by the opening / closing direction determination unit 25.
  • step 6 When the change direction determined in step 5 is the open side, the process proceeds from step 6 to step 7, and the control speed ⁇ spd on the open side is calculated based on the control map in Table 2. Further, when the change direction is the closed side, the process proceeds from step 6 to step 8, and the control speed ⁇ spd on the closed side is calculated based on the control map in Table 3. After that, in step 9, the flow path switching valve 12 is feedback-controlled based on the target radiator opening degree tgtA and the control speed ⁇ spd.
  • step 6 is executed by the switching unit 26a of the control speed calculation unit 26
  • the process of step 7 is executed by the open side speed calculation unit 26b
  • the process of step 8 is executed by the closed side speed calculation unit 26c
  • step 10 Is executed by the valve control unit 27.
  • the figure shows a case where the target water temperature tgtT is kept constant for easy understanding.
  • the target radiator opening tgtA 0 based on Table 1. % Is calculated, and the main water channel 6 side is fully closed by the flow path switching valve 12. Therefore, the cooling water circulates in the water jacket 3 of the engine 1 through the bypass water channel 8 or the sub water channel 7 without being cooled by the radiator 9, and as shown by A in FIG. 4, the engine temperature is generated by the heat received from the engine 1. T gradually rises. Further, at this time, the cooling water stays in the radiator 9 and is cooled by the running wind, and the temperature gradually decreases.
  • the flow path switching valve 12 is controlled to open based on the target radiator opening tgtA calculated from Table 1.
  • the control speed ⁇ spd of the flow path switching valve 12 at this time is set based on Table 2, and the flow path switching valve 12 is controlled on the open side relatively gently as shown by C in FIG.
  • the engine temperature T changes from rising to falling and drops sharply as shown by D in FIG.
  • the flow path switching valve 12 is controlled on the closed side based on the target radiator opening degree tgtA calculated from Table 1 in response to the reduction of the corrected water temperature deviation ⁇ T due to this temperature decrease.
  • the control speed ⁇ spd of the flow path switching valve 12 at this time is set based on Table 3, and the flow path switching valve 12 is quickly controlled to close as shown by the solid line Eb in FIG. Therefore, the decrease in the engine temperature T is quickly suppressed, and as shown by the solid line Fb in FIG. 4, the engine temperature T starts to increase without deviating so much from the target water temperature tgtT to the low temperature side.
  • cooling control that prioritizes the prevention of supercooling of the engine 1 is required from the viewpoints of both the characteristics inherent in the engine 1 and the requirements regarding fuel consumption and exhaust gas characteristics. Then, such a requirement can be achieved by cooling control in which the control speed ⁇ spd at the time of closing the valve is increased as compared with the time when the flow path switching valve 12 is opened as in the present embodiment, and as a result, the above-mentioned effects can be achieved. It is.
  • the target opening degree calculation unit 24 calculates the target radiator opening degree tgtA from the corrected water temperature deviation ⁇ T based on the control map of Table 1 stored in the storage device 15b. Therefore, not only the PI control based on the corrected water temperature deviation ⁇ T but also the rotor angle ⁇ of the flow path switching valve 12 is feedback-controlled by reflecting the characteristics of the control map.
  • the control map in Table 1 has a characteristic that the target radiator opening tgtA rapidly increases with respect to the increase in the corrected water temperature deviation ⁇ T, so that the increase in the engine temperature T can be reliably suppressed. Since the content of the feedback control can be arbitrarily changed based on the setting of the map characteristics in this way, the engine 1 can be kept in a better temperature range.
  • the aspect of the present invention is not limited to this embodiment.
  • it is embodied as a cooling device 2 for an engine 1 mounted on a passenger car, but the present invention is not limited to this.
  • it may be embodied in a cooling device for an engine mounted on a motorcycle or an ATV (All Terrain Vehicle).
  • the configuration of the water channel of the cooling device 2 shown in FIG. 1 is not limited to this, and can be arbitrarily changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

エンジン(1)とラジエータ(9)との間で循環する冷却水の流量を調整する流量調整部(12)と、冷却水の温度を検出する水温検出部(17)と、冷却水の目標水温を算出する水温検出部(21)と、水温と目標水温とに基づき水温偏差を算出する偏差算出部(22)と、水温偏差に基づき目標水温を達成するための流量調整部(12)の目標開度を算出する目標開度算出部(24)と、目標開度の変化状態に基づき流量調整部(12)の開閉方向を判定する開閉方向判定部(25)と、水温偏差に基づき流量調整部(12)の制御速度を算出し、流量調整部(12)の開閉方向が閉側の場合には開側の場合よりも高い制御速度を算出する制御速度算出部(26)と、目標開度及び制御速度に基づき流量調整部(12)の開度を制御するバルブ制御部(27)とを備えた。

Description

エンジンの冷却装置
 本発明は、エンジンの冷却装置に関する。
 従来のこの種の冷却装置は、エンジンとラジエータとを接続する冷却水路にサーモスタットが設けられ、サーモスタットはワックスの熱膨張を利用して、例えば80~90℃程度の温度領域において全開と全閉との間で徐々に開閉する特性に設定されている。このようなサーモスタットの開閉に応じてエンジンとラジエータとの間の冷却水の流通状態が調整され、エンジンが所定の温度域に保たれる。
 一方、近年の排ガス規制や燃費向上等の要求に対応するには、より緻密な水温制御が要求されることを鑑みて、例えば特許文献1に記載されているような電子制御式のエンジンの冷却装置が実用化されている。この冷却装置は、エンジンとラジエータとの間で流通する冷却水の流量を流路切換弁により調整可能としており、例えばエンジンの運転状態に基づき設定した目標水温と水温センサにより検出された水温との偏差に基づき、流路切換弁の開度を制御することでエンジンの冷却水を目標水温に保っている。このような電子制御式の冷却装置では、水温偏差に対する流路切換弁の開閉速度を任意に設定可能であることから、例えば従来からのサーモスタットの特性を模擬し、水温偏差に対して流路切換弁を比較的緩やかに開閉させる特性が付与される場合がある。
特開2014-169661号公報
 しかしながら、特許文献1の冷却装置では、以下に述べる状況においてエンジンを流通する冷却水温が目標水温を大きく逸脱してしまう。
 上記のように流路切換弁の開度は水温偏差に基づき制御され、例えば水温>目標水温のときには流路切換弁の開側制御により温度低下が図られる一方、水温≦目標水温のときには流路切換弁が閉じられる。このとき冷却水はラジエータで冷却されることなくエンジンのウォータージャケットを循環し、図4にAで示すように、エンジンからの受熱により水温Tが次第に上昇する。また、このときラジエータでは冷却水が滞留し、走行風により冷却されて次第に温度低下する。
 冷却水の温度上昇により、図4にBで示すように水温T>目標水温tgtTになると、流路切換弁が開側制御される。水温偏差に対して流路切換弁が緩やかに開閉される特性の場合、このときの開側制御も図4にCで示すように緩やかに行われる。しかしながら、ラジエータ内で冷却された低温の冷却水がウォータージャケットに流入することから、図4にDで示すように水温Tは上昇から下降に転じて急激に低下する。この温度低下に伴う水温偏差の縮小に呼応して再び流路切換弁が閉じられるが、このときの閉側制御も図4に破線Eaで示すように緩やかに行われることから、冷却水温の低下を抑制しきれず、図4に破線Faで示すように水温Tが目標水温tgtTから低温側に大きく逸脱してしまう。
 このような不適切な冷却水温の低下は流路切換弁の切換毎に発生し、エンジンのオイル粘度の増加や燃料の気化不良により燃費及び排ガス特性が悪化するという問題を引き起こしていた。
 本発明はこのような問題点を解決するためになされたもので、その目的とするところは、流路切換弁が閉弁から開側制御されたときの冷却水温の急激な低下を未然に回避でき、エンジンを良好な温度域に保つことができるエンジンの冷却装置を提供することにある。
 上記の目的を達成するため、本発明のエンジンの冷却装置は、エンジンとラジエータとの間で循環する冷却水の流量を調整する流量調整部と、エンジンを流通する冷却水の温度を検出する水温検出部と、エンジンの運転状態に基づき冷却水の目標水温を算出する水温検出部と、水温検出部により検出された水温と水温検出部により算出された目標水温とに基づき水温偏差を算出する偏差算出部と、偏差算出部により算出された水温偏差に基づき、目標水温を達成するための流量調整部の目標開度を算出する目標開度算出部と、目標開度算出部により算出された目標開度の変化状態に基づき、流量調整部の開閉方向を判定する開閉方向判定部と、偏差算出部により算出された水温偏差に基づき流量調整部の制御速度を算出し、開閉方向判定部により判定された開閉方向が閉側の場合には、判定された開閉方向が開側の場合に比較して高い制御速度を算出する制御速度算出部と、目標開度算出部により算出された目標開度及び制御速度算出部により算出された制御速度に基づき、流量調整部の開度を制御するバルブ制御部とを備えたことを特徴とする。
 その他の態様として、予め設定された水温偏差と目標開度との関係を記憶する第1の記憶部をさらに備え、目標開度算出部が、第1の記憶部に記憶された関係に基づき水温偏差から目標開度を算出するようにしてもよい。
 その他の態様として、水温偏差を基本水温偏差とし、基本水温偏差の少なくとも比例項及び積分項に基づき補正後水温偏差を算出する水温偏差補正部をさらに備え、第1の記憶部が、補正後水温偏差と目標開度との関係を記憶し、目標開度算出部が、補正後水温偏差に基づき目標開度を算出し、開閉方向判定部が、補正後水温偏差に基づき算出された目標開度に基づき開閉方向を判定し、制御速度算出部が、基本水温偏差に基づき制御速度を算出し、バルブ制御部が、補正後水温偏差に基づき算出された目標開度に基づき流量調整部の開度を制御するようにしてもよい。
 その他の態様として、予め設定された水温偏差と流量調整部の開側の制御速度との関係、及び流量調整部の応答速度以上の制御速度である非制限値を記憶する第2の記憶部をさらに備え、制御速度算出部が、開閉方向判定部により判定された開閉方向が開側の場合には、第2の記憶部に記憶された関係に基づき水温偏差から制御速度を算出し、判定された開閉方向が閉側の場合には、水温偏差に関わらず第2の記憶部に記憶された非制限値を制御速度とするようにしてもよい。
 本発明のエンジンの冷却装置によれば、流路切換弁が閉弁から開側制御されたときの冷却水温の急激な低下を未然に回避でき、エンジンを良好な温度域に保つことができる。
実施形態のエンジンの冷却装置を示す全体構成図である。 ECUの構成を示す制御ブロック図である。 ECUが実行する水温制御ルーチンを示すフローチャートである。 実施形態と特許文献1の技術との冷却水温の制御状況を比較したタイムチャートである。
 以下、本発明を具体化したエンジンの冷却装置の一実施形態を説明する。
 本実施形態のエンジン1は走行用動力源として乗用車に搭載されるものであり、水冷式の冷却装置2により冷却される。図1に示すように、エンジン1内に形成されたウォータージャケット3にはウォーターポンプ4から吐出された冷却水が流通し、その後、ウォータージャケット3からエンジン1の一側に接続された流出路5内に流出するようになっている。流出路5にはメイン水路6、サブ水路7及びバイパス水路8の一端がそれぞれ接続され、バイパス水路8の他端はウォーターポンプ4の吸込側に接続されている。
 メイン水路6にはラジエータ9が介装され、メイン水路6の他端はウォーターポンプ4の吸込側に接続されている。サブ水路7は二股状に分岐して、排ガスを吸気側に環流するEGR弁10及び吸気量を調整するスロットル装置11が介装され、各サブ水路7の他端はメイン水路6のラジエータ9よりもウォーターポンプ4側の箇所に接続されている。
 従って、流出路5からメイン水路6に案内された冷却水は、ラジエータ9を流通する際に走行風により冷却され、温度低下してウォーターポンプ4に戻される。流出路5からサブ水路7に案内された冷却水はEGR弁10及びスロットル装置11を流通し、これらの装置9,10を冷却することで温度上昇してウォーターポンプ4に戻される。また、流出路5からバイパス水路8に案内された冷却水は、そのままの温度でウォーターポンプ4に戻される。
 流出路5内には流路切換弁12が配設され、この流路切換弁12により冷却水の流路が連続的に調整される。詳しくは、流路切換弁12の入口ポートは流出路5内と連通し、流路切換弁12の出口ポートはメイン水路6及びサブ水路7とそれぞれ連通している。流路切換弁12は、内蔵されたロータをモータ13の駆動により回動させるロータリ式として構成されている。ロータの角度θに応じてメイン水路6側及びサブ水路7側の開口比率が連続的に調整され、これにより流出路5からメイン水路6及びサブ水路7に案内される冷却水の流量が変化する。
 以下の説明では、メイン水路6側の開口面積、換言するとラジエータ9の開度Aを主体として、流路切換弁12による開口比率の調整状態を表すものとする。例えば、メイン水路6側が全閉にされている状態をラジエータ開度A=0%と表現し、このときラジエータ9への冷却水の流通は中止される。また、メイン水路6側が全開にされている状態をラジエータ開度A=100%と表現し、このときラジエータ9を流通する冷却水の流量が最大となる。
 このように冷却水の流路が連続的に調整されると、結果としてエンジン1とラジエータ9との間を流通する冷却水の流量が調整されるため、本実施形態では、流路切換弁12が本発明の流量調整部として機能する。
 冷却装置2の作動状態はECU15(電子制御装置)により制御され、ECU15は、入出力インターフェイス15a、多数の制御プログラムを内蔵した記憶装置15b(ROM,RAM等)、中央処理装置15c(CPU)、及びタイマカウンタ15d等により構成されている。ECU15の入力側には、流路切換弁12のロータ角度を検出するポジションセンサ16、エンジン1から流出路5内に流出した冷却水の温度をエンジン温度Tとして検出する第1水温センサ17、及びラジエータ9を通過後の冷却水の温度を検出する第2水温センサ18等の各種センサ類が接続されている。
 またECU15の出力側には、上記した流路切換弁12を駆動するモータ13等の各種デバイス類が接続されている。本実施形態では、エンジン温度Tが本発明のエンジン1を流通する冷却水の温度に相当し、このエンジン温度Tを検出する第1水温センサ17が本発明の水温検出部として機能する。
 次いで、図2の制御ブロック図に基づきECU15の構成を説明する。
 ECU15の目標水温算出部21では、エンジン1の運転状態に基づき冷却水の目標水温tgtTが算出され、第1水温センサ17により検出されたエンジン温度Tと共に偏差算出部22に入力される。
 偏差算出部22では、目標水温tgtTとエンジン温度Tとの差として基本水温偏差ΔTbaseが算出され、PI制御部23に入力される。基本水温偏差ΔTbaseに基づき、PI制御部23のP項設定部23aは比例項が設定され、I項設定部23bでは積分項が設定され、これらのフィードバック項が加算部23cで加算されてPI制御に基づく補正後水温偏差ΔTが算出される。
 本実施形態では、PI制御部23が本発明の水温偏差補正部として機能する。なお、PI制御に代えてPD制御或いはPID制御としてもよいし、PI制御部23を省略して基本水温偏差ΔTbaseを補正後水温偏差ΔTとして取り扱ってもよい。
 補正後水温偏差ΔTは目標開度算出部24に入力され、補正後水温偏差ΔTに基づき目標ラジエータ開度tgtAが算出される。この算出処理のために、ECU15の記憶装置15bには、予め補正後水温偏差ΔTと目標ラジエータ開度tgtAとの関係を規定した制御マップが記憶されている。下表1は制御マップの一例を示しており、全体として補正後水温偏差ΔTの増加と共に目標ラジエータ開度tgtAを増加させる特性に設定されている。例えば、補正後水温偏差ΔT=0℃のときには目標ラジエータ開度tgtA=0%が算出され、補正後水温偏差ΔT=10℃のときには目標ラジエータ開度tgtA=100%が算出される。
 本実施形態では、表1の制御マップを記憶する記憶装置15bが本発明の第1の記憶部として機能する。
Figure JPOXMLDOC01-appb-T000001
 目標ラジエータ開度tgtAは開閉方向判定部25に入力され、開閉方向判定部25では、今回及び前回の制御周期で算出された目標ラジエータ開度tgtAの偏差に基づき、目標ラジエータ開度tgtAの変化方向、換言すると流路切換弁12の開閉方向が判定される。本実施形態では、目標ラジエータ開度tgtAの今回値と前回値との偏差が本発明の目標開度の変化状態に相当する。
 一方、開閉方向判定部25の判定結果は、偏差算出部22で算出された基本水温偏差ΔTbaseと共に制御速度算出部26の切換部26aに入力される。切換部26aは、開閉方向判定部25の判定結果が開側のときに開側速度算出部26bに切り換えられ、判定結果が閉側のときには閉側速度算出部26cに切り換えられる。切り換えられた側の速度算出部26b,26cに基本水温偏差ΔTbaseが入力され、基本水温偏差ΔTbaseに基づき流路切換弁12の制御速度θspdが算出される。
 この算出処理のために、ECU15の記憶装置15bには、予め基本水温偏差ΔTbaseと制御速度θspdとの関係を規定した制御マップが各速度算出部26b,26cに対応してそれぞれ記憶されている。下表2は開側速度算出部26bに適用される制御マップの一例を示し、下表3は閉側速度算出部26cに適用される制御マップの一例を示す。
 本実施形態では、表2及び表2の制御マップを記憶する記憶装置15bが本発明の第2の記憶部として機能する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、流路切換弁12が開側に制御されるときには、基本水温偏差ΔTbaseが大であるほど高い制御速度θspdが算出される。このマップ特性は、エンジン温度Tが目標水温tgtTから乖離しているほど、迅速な流路切換弁12のロータ角度制御が必要であるとの知見に基づく。但し、この表2で設定される開側への制御速度θspdは相対的に低く、流路切換弁12は、最大の制御速度θspd=8(%/sec)にも十分に追従可能な応答速度を有する仕様として製作されている。
 流路切換弁12の開閉方向の判定処理、及び後述するラジエータ開度Aの制御に、補正後水温偏差ΔTから求めた目標ラジエータ開度tgtAを適用しているのに対し、制御速度θspdの算出処理に基本水温偏差ΔTbaseを適用しているのは、以下の知見に基づく。後述するように、実際のラジエータ開度Aひいては流路切換弁12のロータ角度θは、目標ラジエータ開度tgtAに基づきフィードバック制御される。このため、PI制御が反映された補正後水温偏差ΔTに基づく目標ラジエータ開度tgtAを適用することにより、的確なラジエータ開度Aの制御が可能になると共に、ロータ角度θに基づき制御される流路切換弁12の開閉方向に関しても的確に判定可能となる。
 これに対して制御速度θspdは、上記のようにその時点の目標水温tgtTからのエンジン温度Tの乖離状態に応じて制御する必要がある。このため、I制御による遅れ要素を含んだ補正後水温偏差ΔTよりも、実際の目標水温tgtTとエンジン温度Tとの偏差である基本水温偏差ΔTbaseに基づき設定することが望ましく、これにより適切な制御速度θspdで流路切換弁12を駆動することができる。
 一方、表3に示すように、流路切換弁12が閉側に制御されるときには、開側制御の場合の制御速度θspdよりも格段に高い制御速度θspd=200(%/sec)が、基本水温偏差ΔTbaseの大小に関わらず一律に算出される。この制御速度θspdは、本発明の非制限値に相当する流路切換弁12が有する応答速度以上の値であり、必然的に流路切換弁12は最大速度で駆動される。以上のように開側に比較して閉側で相対的に高い制御速度θspdに基づき流路切換弁12を駆動するのは、特許文献1の技術が抱える問題点を解決するためであるが、この点については後にタイムチャートに基づき詳述する。
 制御速度算出部26の開側または閉側速度算出部26b,26cで算出された制御速度θspdは、目標開度算出部24で算出された目標ラジエータ開度tgtAと共にバルブ制御部27に入力される。図示はしないが、ECU15の記憶装置15bには、ラジエータ開度Aと流路切換弁12のロータ角度θとの関係を規定した制御マップが記憶されており、このマップを参照して、バルブ制御部27は目標ラジエータ開度tgtAから目標ロータ角度tgtθを算出する。そして、目標ロータ角度tgtθとポジションセンサ16により検出された実際のロータ角度θとの偏差に基づき、流路切換弁12の開閉速度を制御速度θspdに保ちながらフィードバック制御を実行する。
 次に、以上のECU15の制御内容を図3のフローチャートに基づき説明する。
 まずステップ1で各センサから検出情報を読み込み、続くステップ2で基本水温偏差ΔTbaseを算出し、ステップ3で補正後水温偏差ΔTを算出する。ステップ2の処理は偏差算出部22により実行され、ステップ3の処理はPI制御部23により実行される。その後ステップ4で表1の制御マップに基づき目標ラジエータ開度tgtAを算出し、ステップ5で目標ラジエータ開度tgtAの変化方向を判定する。ステップ4の処理は目標開度算出部24により実行され、ステップ5の処理は開閉方向判定部25により実行される。
 ステップ5で判定した変化方向が開側のときにはステップ6からステップ7に移行し、表2の制御マップに基づき開側の制御速度θspdを算出する。また、変化方向が閉側のときにはステップ6からステップ8に移行し、表3の制御マップに基づき閉側の制御速度θspdを算出する。その後、ステップ9で目標ラジエータ開度tgtA及び制御速度θspdに基づき流路切換弁12をフィードバック制御する。ステップ6の処理は制御速度算出部26の切換部26aにより実行され、ステップ7の処理は開側速度算出部26bにより実行され、ステップ8の処理は閉側速度算出部26cにより実行され、ステップ10の処理はバルブ制御部27により実行される。
 次に、以上のECU15の処理に基づく冷却水温の制御状況を図4のタイムチャートに基づき説明する。
 同図では、理解を容易にするために、目標水温tgtTが一定に保たれている場合を示しており、例えばエンジン温度T≦目標水温tgtTのときには、表1に基づき目標ラジエータ開度tgtA=0%が算出され、流路切換弁12によりメイン水路6側が全閉にされる。このため冷却水はラジエータ9で冷却されることなく、バイパス水路8或いはサブ水路7を経てエンジン1のウォータージャケット3を循環し、図4にAで示すように、エンジン1からの受熱によりエンジン温度Tが次第に上昇する。また、このときラジエータ9では冷却水が滞留し、走行風により冷却されて次第に温度低下する。
 冷却水の温度上昇により、図4にBで示すようにエンジン温度T>目標水温tgtTになると、表1から算出される目標ラジエータ開度tgtAに基づき流路切換弁12が開側制御される。このときの流路切換弁12の制御速度θspdは表2に基づき設定され、図4にCで示すように比較的緩やかに流路切換弁12が開側制御される。しかしながら、ラジエータ9内で冷却された低温の冷却水がウォータージャケット3に流入することから、図4にDで示すようにエンジン温度Tは上昇から下降に転じて急激に低下する。
 この温度低下に伴う補正後水温偏差ΔTの縮小に呼応して、表1から算出される目標ラジエータ開度tgtAに基づき流路切換弁12が閉側制御される。このときの流路切換弁12の制御速度θspdは表3に基づき設定され、図4に実線Ebで示すように迅速に流路切換弁12が閉側制御される。従って、エンジン温度Tの低下が速やかに抑制され、図4に実線Fbで示すようにエンジン温度Tは目標水温tgtTから低温側にそれほど逸脱することなく上昇に転じる。目標水温tgtTを大きく逸脱したエンジン温度Tの低下は、オイル粘度の増加や燃料の気化不良を引き起こすが、このような事態を未然に防止してエンジン1を良好な温度域に保つことができるため、その燃費及び排ガス特性を向上することができる。
 本実施形態のエンジン1の冷却制御の意義は、以下のように捉えることもできる。電子制御式の冷却装置が実用化された当初はサーモスタットの特性を模擬して、流路切換弁を比較的緩やかに開閉させる特性が付与される場合が多かった。また当時はエンジンの過熱防止が重要視されていたため、この観点からは、エンジン温度Tの急激な上昇を抑制すべく、流路切換弁の閉弁時よりも寧ろ開弁時の制御速度を高めることを優先すべきと考えられていた。しかしながら、何れの制御特性でも、図4に基づき述べたような冷却水温の急激な低下を回避できない。
 このような不具合は、上記した流路切換弁12の開側制御によりラジエータ9内の低温の冷却水がウォータージャケット3に流入する現象に起因するが、これとは別に、エンジン1からの受熱による水温上昇よりも、ラジエータ9での冷却による水温低下の方が急激に生起されるという、エンジン1が本来有する特性も影響している。一方で近年の燃費や排ガス特性に関する要求を満足するには、エンジン1の過熱防止よりも、オイル粘度の増加や燃料の気化不良の要因になるエンジン1の過冷却を防止することが重要である。
 以上のようにエンジン1が本来有する特性及び燃費や排ガス特性に関する要求の双方の観点から、エンジン1の過冷却の防止を優先した冷却制御が求められていることが判る。そして、このような要求は本実施形態のように流路切換弁12の開弁時に比較して閉弁時の制御速度θspdを高めた冷却制御により達成でき、結果として上記した作用効果を達成できるのである。
 一方、目標開度算出部24では、記憶装置15bに記憶された表1の制御マップに基づき補正後水温偏差ΔTから目標ラジエータ開度tgtAが算出される。従って、補正後水温偏差ΔTに基づくPI制御だけでなく、制御マップの特性を反映して流路切換弁12のロータ角度θがフィードバック制御される。例えば表1の制御マップは、補正後水温偏差ΔTの増加に対して目標ラジエータ開度tgtAが急増する特性のため、エンジン温度Tの上昇を確実に抑制できる。このようにマップ特性の設定に基づきフィードバック制御の内容を任意に変更できるため、エンジン1を一層良好な温度域に保つことができる。
 以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では、乗用車に搭載されるエンジン1の冷却装置2として具体化したが、本発明はこれに限るものではない。例えば自動二輪車やATV(All Terrain Vehicle)に搭載されるエンジン用の冷却装置に具体化してもよい。また、図1に示す冷却装置2の水路の構成に関しても、これに限るものではなく任意に変更可能である。
 1   エンジン
 9   ラジエータ
 12  流路切換弁(流量調整部)
 15b 記憶装置(第1の記憶部、第2の記憶部)
 17  第1水温センサ(水温検出部)
 21  目標水温算出部
 22  偏差算出部
 23  PI制御部(水温偏差補正部)
 24  目標開度算出部
 25  開閉方向判定部
 26  制御速度算出部
 27  バルブ制御部

Claims (4)

  1.  エンジンとラジエータとの間で循環する冷却水の流量を調整する流量調整部と、
     前記エンジンを流通する冷却水の温度を検出する水温検出部と、
     前記エンジンの運転状態に基づき冷却水の目標水温を算出する水温検出部と、
     前記水温検出部により検出された水温と前記水温検出部により算出された目標水温とに基づき水温偏差を算出する偏差算出部と、
     前記偏差算出部により算出された水温偏差に基づき、前記目標水温を達成するための前記流量調整部の目標開度を算出する目標開度算出部と、
     前記目標開度算出部により算出された目標開度の変化状態に基づき、前記流量調整部の開閉方向を判定する開閉方向判定部と、
     前記偏差算出部により算出された水温偏差に基づき前記流量調整部の制御速度を算出し、前記開閉方向判定部により判定された開閉方向が閉側の場合には、判定された開閉方向が開側の場合に比較して高い制御速度を算出する制御速度算出部と、
     前記目標開度算出部により算出された目標開度及び前記制御速度算出部により算出された制御速度に基づき、前記流量調整部の開度を制御するバルブ制御部と
    を備えたことを特徴とするエンジンの冷却装置。
  2.  予め設定された水温偏差と目標開度との関係を記憶する第1の記憶部をさらに備え、
     前記目標開度算出部は、前記第1の記憶部に記憶された関係に基づき前記水温偏差から前記目標開度を算出する
    ことを特徴とする請求項1に記載のエンジンの冷却装置。
  3.  前記水温偏差を基本水温偏差とし、前記基本水温偏差の少なくとも比例項及び積分項に基づき補正後水温偏差を算出する水温偏差補正部をさらに備え、
     前記第1の記憶部は、前記補正後水温偏差と前記目標開度との関係を記憶し、
     前記目標開度算出部は、前記補正後水温偏差に基づき前記目標開度を算出し、
     前記開閉方向判定部は、前記補正後水温偏差に基づき算出された前記目標開度に基づき開閉方向を判定し、
     前記制御速度算出部は、前記基本水温偏差に基づき前記制御速度を算出し、
     前記バルブ制御部は、前記補正後水温偏差に基づき算出された目標開度に基づき前記流量調整部の開度を制御する
    ことを特徴とする請求項2に記載のエンジンの冷却装置。
  4.  予め設定された水温偏差と前記流量調整部の開側の制御速度との関係、及び前記流量調整部の応答速度以上の制御速度である非制限値を記憶する第2の記憶部をさらに備え、
     前記制御速度算出部は、前記開閉方向判定部により判定された開閉方向が開側の場合には、前記第2の記憶部に記憶された関係に基づき前記水温偏差から前記制御速度を算出し、判定された開閉方向が閉側の場合には、前記水温偏差に関わらず前記第2の記憶部に記憶された非制限値を制御速度とする
    ことを特徴とする請求項1乃至3の何れか1項に記載のエンジンの冷却装置。
PCT/JP2019/033823 2019-08-29 2019-08-29 エンジンの冷却装置 WO2021038776A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021541887A JP7259054B2 (ja) 2019-08-29 2019-08-29 エンジンの冷却装置
CN201980099679.5A CN114270022B (zh) 2019-08-29 2019-08-29 发动机的冷却装置
DE112019007670.1T DE112019007670T5 (de) 2019-08-29 2019-08-29 Motorkühlvorrichtung
PCT/JP2019/033823 WO2021038776A1 (ja) 2019-08-29 2019-08-29 エンジンの冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/033823 WO2021038776A1 (ja) 2019-08-29 2019-08-29 エンジンの冷却装置

Publications (1)

Publication Number Publication Date
WO2021038776A1 true WO2021038776A1 (ja) 2021-03-04

Family

ID=74684721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033823 WO2021038776A1 (ja) 2019-08-29 2019-08-29 エンジンの冷却装置

Country Status (4)

Country Link
JP (1) JP7259054B2 (ja)
CN (1) CN114270022B (ja)
DE (1) DE112019007670T5 (ja)
WO (1) WO2021038776A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113266457A (zh) * 2021-04-29 2021-08-17 广西玉柴机器股份有限公司 一种发动机过热保护的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169623A (ja) * 1984-02-14 1985-09-03 Mazda Motor Corp 水冷式エンジンの冷却装置
JP2003003846A (ja) * 2001-06-21 2003-01-08 Aisan Ind Co Ltd エンジン冷却装置
JP2016003578A (ja) * 2014-06-13 2016-01-12 トヨタ自動車株式会社 エンジン冷却装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616599A (en) * 1984-02-09 1986-10-14 Mazda Motor Corporation Cooling arrangement for water-cooled internal combustion engine
JP2012031800A (ja) * 2010-07-30 2012-02-16 Honda Motor Co Ltd エンジンの冷却装置
JP5925456B2 (ja) * 2011-09-22 2016-05-25 株式会社ミクニ 冷却水制御バルブ装置
JP6154159B2 (ja) 2013-03-04 2017-06-28 株式会社ミクニ 流量制御装置、流量制御方法
KR102518247B1 (ko) * 2016-07-18 2023-04-07 현대자동차주식회사 유량제어밸브의 제어방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169623A (ja) * 1984-02-14 1985-09-03 Mazda Motor Corp 水冷式エンジンの冷却装置
JP2003003846A (ja) * 2001-06-21 2003-01-08 Aisan Ind Co Ltd エンジン冷却装置
JP2016003578A (ja) * 2014-06-13 2016-01-12 トヨタ自動車株式会社 エンジン冷却装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113266457A (zh) * 2021-04-29 2021-08-17 广西玉柴机器股份有限公司 一种发动机过热保护的方法及装置

Also Published As

Publication number Publication date
CN114270022A (zh) 2022-04-01
DE112019007670T5 (de) 2022-05-12
CN114270022B (zh) 2023-11-21
JPWO2021038776A1 (ja) 2021-03-04
JP7259054B2 (ja) 2023-04-17

Similar Documents

Publication Publication Date Title
US10371041B2 (en) Cooling device for internal combustion engine of vehicle and control method thereof
CN103174503B (zh) 用于引擎的冷却剂循环系统
US10605150B2 (en) Cooling device for internal combustion engine of vehicle and control method thereof
US10107176B2 (en) Cooling device of internal combustion engine for vehicle and control method thereof
JP6806016B2 (ja) エンジン冷却装置
WO2017217462A1 (ja) 車両用内燃機関の冷却装置及び冷却装置の制御方法
US10221753B2 (en) Vehicle
US10385758B2 (en) Cooling system for internal combustion engine, and control method thereof
JP2003003846A (ja) エンジン冷却装置
JP2017067016A (ja) 冷却制御装置
KR101755489B1 (ko) 엔진 순환 냉각수의 제어방법 및 제어시스템
JP2016211518A (ja) 内燃機関の制御装置
US10480392B2 (en) Engine cooling system having coolant temperature sensor
US10808598B2 (en) Cooling device and cooling method for internal combustion engine
WO2021038776A1 (ja) エンジンの冷却装置
JP4146372B2 (ja) 車両動力源の冷却系制御方法
US20190085752A1 (en) Method and system for coolant flow control for a prime mover in a vehicle propulsion system
JP2003172141A (ja) エンジン冷却装置
US6837192B2 (en) Engine cooling system
JP2003035144A (ja) 内燃機関の冷却装置
JP2007024013A (ja) 内燃機関の冷却装置
JP7444740B2 (ja) エンジンの冷却装置
JP6582831B2 (ja) 冷却制御装置
JP2001248439A (ja) 液冷式内燃機関の冷却装置
JP4279420B2 (ja) エンジン駆動冷媒圧送循環式熱移動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021541887

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19942894

Country of ref document: EP

Kind code of ref document: A1