WO2020196311A1 - 高強度鋼板及びその製造方法 - Google Patents

高強度鋼板及びその製造方法 Download PDF

Info

Publication number
WO2020196311A1
WO2020196311A1 PCT/JP2020/012425 JP2020012425W WO2020196311A1 WO 2020196311 A1 WO2020196311 A1 WO 2020196311A1 JP 2020012425 W JP2020012425 W JP 2020012425W WO 2020196311 A1 WO2020196311 A1 WO 2020196311A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
hot
less
strength
rolled steel
Prior art date
Application number
PCT/JP2020/012425
Other languages
English (en)
French (fr)
Inventor
東 昌史
栄作 桜田
玄紀 虻川
研一郎 大塚
武 豊田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202080017780.4A priority Critical patent/CN113544299B/zh
Priority to EP20776903.5A priority patent/EP3943624A4/en
Priority to JP2021509334A priority patent/JP7136335B2/ja
Priority to KR1020217027225A priority patent/KR102658163B1/ko
Priority to MX2021010227A priority patent/MX2021010227A/es
Priority to US17/430,651 priority patent/US20220186333A1/en
Publication of WO2020196311A1 publication Critical patent/WO2020196311A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/081Iron or steel solutions containing H2SO4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a high-strength steel sheet and a method for producing the same.
  • the present application claims priority based on Japanese Patent Application No. 2019-055469 filed in Japan on March 22, 2019, the contents of which are incorporated herein by reference.
  • high-strength steel sheets are being applied to steel sheets used for automobile parts (steel sheets for automobiles) in order to reduce the weight of the vehicle body while ensuring collision resistance, and are used for undercarriage parts.
  • steel sheets applied to undercarriage parts of automobiles are required to have excellent fatigue resistance in addition to high tensile strength, high yield strength (high YP), and high ductility.
  • Patent Documents 1 and 2 disclose a steel sheet whose strength has been increased by annealing the hot-rolled steel sheet and performing skin pass rolling before and after the annealing. Further, Patent Documents 1 and 2 disclose that these steel sheets have excellent fatigue resistance. However, the high-strength steel sheet disclosed in Patent Document 1 does not have a tensile strength of 980 MPa or more. Further, although the high-strength steel sheet disclosed in Patent Document 2 can secure a tensile strength of 980 MPa or more, improvement in ductility (particularly elongation) has been required for further expansion of application to undercarriage parts.
  • An object of the present invention is to provide a high-strength steel plate having high yield strength, high ductility, and excellent fatigue resistance characteristics suitable for undercarriage parts of automobiles and having a tensile strength of 980 MPa or more, and a method for producing the same. And.
  • the microstructure is a structure containing 95% or more of tempered martensite and bainite in total, and the microstructure has a Ti-containing circle equivalent diameter of 5.0 nm or less. It contains 5.0 ⁇ 10 9 pieces / mm 3 or more of precipitates per unit volume, and has an average hardness Hvs at a depth of 20 ⁇ m from the surface and an average hardness Hvc at a position 0.20 to 0.50 mm from the surface.
  • the ratio of Hvs / Hvc By setting the ratio of Hvs / Hvc to 0.85 or more, it has high strength, high ductility (high elongation), and excellent fatigue resistance, tensile strength of 980 MPa or more, and tensile strength and ductility ( It has been found that a steel plate having a product (TS ⁇ El) with (elongation) of 12000 MPa ⁇ % or more can be produced. Further, in order to obtain such a steel plate, in order to melt Ti and Nb contained in a large amount, the slab to be subjected to hot spreading is heated to 1230 ° C. or higher, and the winding temperature after hot spreading is 300 ° C. or higher. The temperature is set to 600 ° C.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • the high-strength steel plate according to one aspect of the present invention has a chemical composition of% by mass, C: 0.020 to 0.090%, Si: 0.01 to 2.00%, Mn: 1.00.
  • the balance is composed of Fe and impurities, satisfying 0.100 ⁇ Ti + Nb + V ⁇ 0.450, and the microstructure contains tempered martensite and bainite in a total of 95% or more by volume, and the balance.
  • the microstructure is composed of ferrite and pearlite, and the microstructure contains precipitates having a circle equivalent diameter of 5.0 nm or less and containing Ti at 5.0 ⁇ 10 9 pieces / mm 3 or more per unit volume, and is deep from the surface.
  • Hvs / Hvc which is the ratio of the average hardness Hvs at the position of 20 ⁇ m to the average hardness Hvc at the position 0.20 to 0.50 mm from the surface, is 0.85 or more, and the tensile strength is 980 MPa or more.
  • the product of the tensile strength and the elongation is 12000 MPa ⁇ % or more.
  • the high-strength steel plate according to (1) above has a chemical composition of mass%, Ni: 0.01 to 2.00%, Cu: 0.01 to 2.00%, Cr: 0. 01 to 2.00%, Mo: 0.01 to 2.00%, Nb: 0.005 to 0.100%, V: 0.005 to 0.100%, W: 0.005 to 0.100% , B: 0.0005 to 0.0100%, REM: 0.0003 to 0.0300%, Ca: 0.0003 to 0.0300%, Mg: 0.0003 to 0.0300%. It may contain one kind or two or more kinds.
  • the high-strength steel sheet according to (1) or (2) above may be provided with a hot-dip galvanized layer on the surface.
  • the hot-dip galvanized layer may be an alloyed hot-dip galvanized layer.
  • the method for producing a high-strength steel sheet according to another aspect of the present invention is the method for producing a high-strength steel sheet according to the above (1) or (2), wherein the chemical composition is mass% and C.
  • the method for producing a high-strength steel sheet according to (5) above may further include a hot-dip galvanizing step of hot-dip galvanizing the hot-rolled steel sheet after the reheating step.
  • the method for producing a high-strength steel sheet according to (6) above may further include an alloying step of heating the hot-rolled steel sheet after the hot-dip galvanizing step to 460 to 600 ° C.
  • the high-strength steel sheet of the present invention includes a high-strength hot-dip galvanized steel sheet having a galvanized layer on its surface, and a plated steel sheet such as a high-strength alloyed hot-dip galvanized steel sheet.
  • the high-strength steel plate according to an embodiment of the present invention (hereinafter, the steel plate according to the present embodiment) has a predetermined chemical composition, and the microstructure contains tempered martensite and bainite in a total of 95% or more. the balance being ferrite and pearlite, the microstructure, the circle equivalent diameter is less precipitate 5.0nm containing Ti, containing 5.0 ⁇ 10 9 per unit volume / mm 3 or more, a depth from the surface Hvs / Hvc, which is the ratio of the average hardness Hvs at the position of 20 ⁇ m to the average hardness Hvc at the position of 0.20 to 0.50 mm from the surface, is 0.85 or more.
  • the steel sheet according to the present embodiment has a tensile strength of 980 MPa or more, and the product of the tensile strength and the elongation is 12000 MPa ⁇ % or more.
  • the steel sheet according to the present embodiment has high strength and high ductility, and can obtain high yield strength of YP / TS ⁇ 0.90 and excellent fatigue resistance of fatigue limit / TS ⁇ 0.40 or more.
  • a hole expansion rate of 40% or more can be secured.
  • ⁇ Microstructure contains tempered martensite and bainite in total of 95% or more by volume, and the balance consists of ferrite and pearlite>
  • the main phases of the microstructure are tempered martensite and bainite having a total volume fraction of 95% or more.
  • the steel sheet according to the present embodiment uses Ti-containing precipitates having a circle-equivalent diameter of 5.0 nm or less by utilizing hot spreading, subsequent dislocation introduction by light reduction, and heat treatment. The density is controlled to be 5.0 ⁇ 10 9 pieces / mm 3 or more.
  • the main phase of the microstructure before heat treatment needs to be martensite or bainite containing many dislocations that become precipitation sites of precipitates during heat treatment.
  • martensite or bainite containing many dislocations By heat-treating martensite or bainite containing many dislocations, tempered martensite and / or bainite containing fine precipitates becomes the main phase.
  • dislocations in martensite and bainite existing before heat treatment and dislocations introduced during processing are recovered and rearranged by heat treatment, so that heat treatment also improves ductility.
  • bainite since bainite has a higher elongation than martensite, it is preferable to set the volume fraction of bainite to 50% or more when particularly excellent ductility is required.
  • the microstructure contains tempered martensite and / or bainite by volume fraction in total of 95% or more and the balance is 5% or less in volume fraction.
  • the tempered martensite means martensite containing a precipitate containing cementite and / or Ti.
  • the steel sheet is cut out parallel to the rolling direction, polished and etched with a nital reagent so that the plate thickness direction becomes the observation surface, and then using SEM, the steel plate is used at a magnification of 1000 to 30,000 times from the surface in the plate thickness direction.
  • Ferrite, bainite, pearlite, and martensite can be identified by observing the position of 1/4 of the plate thickness. That is, ferrite is an equiaxed grain that does not contain iron-based carbides, pearlite is a layered structure of ferrite and cementite, and bainite is a lath-shaped structure with cementite and residue between laths. It is possible to judge from the organizational form such as that the tissue contains austenite.
  • the area ratio of each tissue identified from the SEM observation image is obtained, and this is used as the volume fraction.
  • Each volume fraction is obtained by observing 5 or more visual fields (for example, 5 to 10 visual fields) at the above magnification and averaging the fractions of each tissue obtained in each visual field.
  • tempered martensite containing carbides in the lath and as-quenched martensite (fresh martensite) containing no carbides in the lath, but these are observed by SEM or TEM and the presence or absence of carbides. It can be identified by confirming.
  • tempered martensite often refers to those containing iron-based carbides such as cementite, but in the present embodiment, martensite containing fine precipitates containing Ti is also defined as tempered martensite.
  • the microstructure contains Ti-containing precipitates having a circle-equivalent diameter of 5.0 nm or less, 5.0 ⁇ 10 9 pieces / mm 3 or more per unit volume>
  • the present inventors have diligently investigated the relationship between the size of the precipitate and the number density, which makes it possible to secure a tensile strength of 980 MPa or more.
  • the size (diameter equivalent to a circle) of the precipitates contained in the conventional hot-rolled steel sheets and the steel sheets of Patent Documents 1 and 2 could not be controlled to 5.0 nm or less, and the number density was also small.
  • the cause of this is that the content of Ti or the like forming the precipitate is small, or even if Ti or the like is contained, it exists as a coarse precipitate at the slab stage, and the slab is present.
  • the number density of precipitates having a circle-equivalent diameter of 5.0 nm or less is 5.0 ⁇ due to the fact that they do not dissolve even during heating and that TiC precipitated by long-term heat treatment such as winding after hot spreading becomes coarse. It found that to become less than 10 9 / mm 3.
  • the steel sheet according to the present embodiment contains tempered martensite containing Ti-containing precipitates having a diameter equivalent to a circle of 5.0 nm or less in a number density of 5.0 ⁇ 10 9 pieces / mm 3 or more as a main phase.
  • a tensile strength of 980 MPa or more can be secured, and the fatigue resistance is also excellent.
  • the reasons for limiting the size and number density of the precipitates will be described.
  • the number density per unit volume of the precipitate having a circle-equivalent diameter of 5.0 nm or less containing Ti is set to 5.0 ⁇ 10 9 pieces / mm 3 or more in order to secure a tensile strength of 980 MPa or more. If the number density is 5.0 ⁇ 10 9 pieces / mm 3 or less, it is difficult to secure a tensile strength of 980 MPa or more. Therefore, the number density of precipitates having a circle-equivalent diameter of 5.0 nm or less containing Ti needs to be 5.0 ⁇ 10 9 pieces / mm 3 or more.
  • the Ti-containing precipitate was defined as a Ti-containing precipitate in which a large amount of the Ti-containing precipitate was easily dissolved in the heating stage of the slab before hot spreading, and the equivalent circle diameter was 5.0 nm or less. This is because it precipitates as a precipitate. 5.0 nm here is the equivalent diameter of a circle.
  • the type of the precipitate is not limited, such as carbide, nitride, and carbonitride, but it is particularly preferable because the carbide precipitates as a fine precipitate of 5.0 nm or less and contributes to the improvement of strength.
  • Ti precipitates are mainly contained in tempered martensite and bainite, which are the main phases.
  • Nb has an effect similar to that of Ti, the amount of carbide of Nb that can be dissolved in the heating stage of the slab is small, and even if Nb is contained alone, a tensile strength of 980 MPa or more cannot be secured.
  • V although it is possible to a large amount of dissolved with heating stage of the slab, the size of the precipitates is relatively large, the 5.0nm following deposit also contain V alone 5.0 ⁇ 10 9 pieces It is difficult to secure / mm 3 or more. For this reason, it is necessary to prepare a precipitate containing Ti.
  • a composite precipitate having a structure in which a part of Ti is replaced with Nb, V and / or Mo ( (Ti, Nb, V) C, etc.) may be used.
  • the reason why the size of the precipitate controlled together with the number density described above is 5.0 nm or less in the equivalent circle diameter is to secure the tensile strength of 980 MPa or more.
  • the number density cannot be 5.0 ⁇ 10 9 pieces / mm 3 or more, and a tensile strength of 980 MPa or more cannot be secured.
  • the circle-equivalent diameter is a value converted to the diameter of a circle whose area is equivalent, assuming that the shape of the observed precipitate is a circle.
  • the Ti precipitate may have a plate-like or needle-like shape in addition to the spherical shape.
  • the area of the observed precipitate is measured, the precipitate is assumed to be a circle, and the area is equivalent.
  • the value converted to the diameter of the circle is the equivalent circle diameter.
  • the steel sheet according to the present embodiment secures the strength of the steel sheet by utilizing precipitation strengthening. Therefore, it is possible to suppress softening in the heat-affected zone, which has been a problem in welding such as arc welding, and the fatigue strength of the welded portion is also excellent.
  • the steel sheet according to the present embodiment has increased strength by a precipitate having a diameter equivalent to a circle of 5.0 nm or less containing Ti.
  • the number density of the precipitates containing Ti the number density of the precipitates contained per unit volume of the steel plate for each circle equivalent diameter at a pitch of 1.0 nm is used by using the electrolytic extraction residual method (for example, the circle equivalent diameter 0 nm).
  • the electrolytic extraction residual method for example, the circle equivalent diameter 0 nm.
  • the number density of the precipitates is preferably collected from a thickness of 0.20 mm to 3/8 in the depth direction from the surface where a typical structure of the steel sheet is obtained, for example, from the vicinity of 1/4 of the thickness from the surface. ..
  • the center of the plate thickness is not preferable as a measurement position because coarse carbides may be present due to the influence of central segregation and the local chemical composition differs due to the influence of segregation. Positions less than 0.20 mm in the depth direction from the surface are affected by high-density dislocations introduced under light pressure and decarburization during heating, and the number density of carbides may differ from that inside. Not preferable as a measurement position.
  • the composition of carbides may be analyzed with a transmission electron microscope (TEM) and EDS to confirm that the fine precipitates are those containing Ti.
  • TEM transmission electron microscope
  • the steel sheet is polished from the surface to a position of 1/4 of the plate thickness, about 1 g of the steel sheet is dissolved according to the electrolytic extraction residual method, and then the obtained solution containing Ti precipitate is filtered with a filter paper.
  • TEM observation is performed. At the time of observation, the magnification is 50,000 to 100,000 times and the field of view is 20 to 30, and the chemical composition of the obtained precipitate is specified by EDS. Then, the photograph obtained by TEM observation is image-analyzed, and the circle-equivalent diameter and the number density of each precipitate are calculated.
  • the lower limit of the size of the precipitates to be measured is not particularly set, and the effect can be obtained by setting the number of precipitates having a circle equivalent diameter of 5.0 nm or less to 5.0 ⁇ 10 9 pieces / mm 3 or more per unit volume.
  • ⁇ Hvs / Hvc which is the ratio of the average hardness Hvs at a depth of 20 ⁇ m from the surface to the average hardness Hvc at a position of 0.20 to 0.50 mm from the surface, is 0.85 or more>
  • the average hardness Hvs at a depth of 20 ⁇ m from the surface and a position of 0.20 to 0.50 mm from the surface in the plate thickness direction, a position of 0.20 mm from the surface to 0.
  • the ratio of Hvs / Hvc to the average hardness Hvc in the range up to the position of 50 mm needs to be 0.85 or more.
  • Hvs / Hvc which is the ratio of the average hardness (Hvs) at a position of 20 ⁇ m in the plate thickness direction from the surface to the average hardness (Hvc) at a position of 0.20 to 0.50 mm in the plate thickness direction from the surface, is defined as 0.
  • the reason why the value is 85 or more is to increase Hvs / Hvc and greatly improve the fatigue resistance characteristics. In general, fatigue fracture occurs from the surface, so it is effective to harden the surface layer in order to suppress the occurrence of fatigue cracks.
  • the hot-rolled steel sheet is exposed to an oxidizing atmosphere during slab heating and hot-rolling, decarburization and the like occur, and the surface hardness tends to decrease.
  • the hardness at the position of 20 ⁇ m from the surface in the depth direction is defined as the hardness of the surface layer because the fatigue resistance can be improved by increasing the hardness at this position.
  • it is difficult to measure the hardness at a position less than 20 ⁇ m from the surface because it is affected by the surface.
  • the increase in hardness at the position inside the steel sheet than at the position 20 ⁇ m from the surface is fatigue resistant. This is because the correlation with the characteristics is small.
  • the average hardness (Hvc) at a position of 0.20 to 0.50 mm from the surface shall be the average hardness in this range.
  • the center of the plate thickness may be affected by segregation such as Mn, and the hardness may not be stable. For this reason, it is desirable to avoid measuring the hardness at the center of the plate thickness, that is, at the segregated portion.
  • Hvs / Hvc is set to 0.85 or more is that a hardness ratio (Hvs / Hvc) of 0.85 or more has a remarkable effect of improving fatigue resistance characteristics. Since this effect becomes more remarkable at 0.87 or more, it is preferably 0.87 or more. More preferably, it is 0.90 or more.
  • the average hardness Hvs at a depth of 20 ⁇ m from the surface and the average hardness Hvc at a position of 0.20 to 0.50 mm from the surface are determined by the following methods.
  • the average hardness Hvs at a depth of 20 ⁇ m from the surface is 20 ⁇ m from the surface after cutting out a sample so that the cross section parallel to the rolling direction is the measurement surface from the width direction 1/4 position of the steel sheet and performing embedding polishing.
  • the Vickers hardness of No. 1 is measured at 10 points under a load of 10 gf in accordance with JIS Z 2244: 2009, and the average value is defined as Hvs.
  • Hvc For Hvc, a sample is cut out from the 1/4 position in the width direction of the steel sheet so that the cross section parallel to the rolling direction is the measurement surface, embedded polishing is performed, and then the position is 0.20 to 0.50 mm from the surface under a load of 10 gf. A total of 7 points of Vickers hardness were measured at a pitch of about 0.05 mm in the plate thickness direction (for example, 0.20 mm, 0.25 mm, 0.30 mm, 0.35 mm, 0.40 mm, 0.45 mm and 0.50 mm from the surface). (Measured at the position of), and the average value is defined as Hvc.
  • the steel sheet according to the present embodiment has a tensile strength of 980 MPa or more and a product of tensile strength and elongation of 12000 MPa ⁇ % or more. It is not necessary to limit the upper limit of the tensile strength, but the tensile strength may be less than 1180 MPa in order to secure the elongation above a certain level.
  • the tensile strength may be 1179 MPa or less, or 1170 MPa or less.
  • the thickness of the steel plate according to the present embodiment is not particularly limited, but is, for example, 1.0 to 4.0 mm in consideration of manufacturing stability and the like. It is preferably 1.5 to 3.0 mm.
  • The% of the content is mass%.
  • C 0.020 to 0.090%
  • C is an element effective for increasing the strength of the steel sheet. Further, C is an element that forms a carbide containing Ti.
  • C content is set to 0.020% or more.
  • the C content exceeds 0.090%, not only the effect is saturated, but also the carbide becomes difficult to dissolve during slab heating. Therefore, the C content is 0.090% or less. It is preferably 0.080% or less.
  • Si 0.01-2.00% Si is an element that contributes to increasing the strength of steel sheets by strengthening solid solution. From this, the Si content is set to 0.01% or more. On the other hand, when the Si content exceeds 2.00%, not only the effect is saturated, but also strong scale is generated on the hot-rolled steel sheet, and the appearance and pickling property are deteriorated. Therefore, the Si content is set to 2.00% or less.
  • Mn 1.00 to 3.00%
  • Mn is an element effective for increasing the volume fraction of martensite and bainite in the microstructure of the steel sheet and increasing the strength of the steel sheet.
  • the Mn content is set to 1.00% or more. If the Mn content is less than 1.00%, the volume fractions of martensite and bainite decrease, and sufficient strengthening cannot be performed. On the other hand, if the Mn content exceeds 3.00%, the effect is saturated and the economic efficiency is lowered. Therefore, the Mn content is set to 3.00% or less.
  • the Mn content is preferably 2.65% or less, more preferably 2.30% or less.
  • Al 0.005 to 1.000%
  • Al is an element effective for tissue control and deoxidation by hot spreading.
  • the Al content is set to 0.005% or more. If the Al content is less than 0.005%, a sufficient deoxidizing effect cannot be obtained, and a large amount of inclusions (oxides) are formed in the steel sheet. On the other hand, if the Al content exceeds 1.000%, the slab becomes embrittled, which is not preferable. Therefore, the Al content is set to 1.000% or less.
  • Ti 0.010 to 0.200% Nb: 0 to 0.100% V: 0 to 0.100% 0.100 ⁇ Ti + Nb + V ⁇ 0.450
  • Ti, Nb, V are Ti content, Nb content, V content in mass%)
  • Ti, Nb, and V are elements that combine with C and N to form precipitates (carbides, nitrides, carbonitrides, etc.) and contribute to the improvement of steel plate strength through precipitation strengthening by these precipitates. ..
  • the Ti content should be 0.010% or more.
  • the total content of Ti, Nb, and V (Ti + Nb + V) is 0.100% or more.
  • the total content of Ti, Nb, and V is preferably 0.105% or more, and more preferably 0.110% or more.
  • the total content of Ti, Nb, and V (Ti + Nb + V) is more than 0.450%, these precipitates are excessively precipitated on the slab or the hot-rolled plate, causing embrittlement, resulting in poor manufacturability. Therefore, the total content of Ti, Nb, and V is set to 0.450% or less.
  • the upper limit of the Ti content is 0.200%
  • the upper limit of the Nb content is 0.100%
  • the upper limit of the V content is 0.100%.
  • any combination of Ti, Nb, and V for securing 5.0 ⁇ 10 9 pieces / mm 3 or more of fine carbides having a diameter equivalent to a circle of 5.0 nm or less containing Ti may be used, but hot-rolled slab heating In order to dissolve the carbides of the time, the content of Ti, which is easy to contain in a larger amount and is inexpensive, is at least 0.010% or more.
  • P 0.100% or less
  • P is an element that segregates in the central portion of the thickness of the steel sheet and is also an element that embrittles the welded portion.
  • the P content is set to 0.100% or less. It is preferably 0.050% or less. It is preferable that the P content is low, and the effect is exhibited without setting the lower limit (may be 0%), but reducing the P content to less than 0.001% is economically disadvantageous. , The lower limit of the P content may be 0.001%.
  • S 0.0100% or less
  • S is an element that causes slab embrittlement when it exists as a sulfide. Further, S is an element that deteriorates the moldability of the steel sheet. Therefore, the S content is limited. If the S content exceeds 0.0100%, the deterioration of the characteristics becomes remarkable, so the S content is set to 0.0100% or less.
  • the lower limit is not particularly set and the effect is exhibited (0% may be used), but reducing the S content to less than 0.0001% is economically disadvantageous, so the lower limit of the S content is set. It may be 0.0001%.
  • N 0.0100% or less
  • N is an element that forms a coarse nitride and deteriorates bendability and hole expansion property. If the N content exceeds 0.0100%, the bendability and hole widening property are significantly deteriorated, so the N content is set to 0.0100% or less. Further, N becomes coarse TiN by combining with Ti, and when a large amount of N is contained, the number density of precipitates having a circle equivalent diameter of 5.0 nm or less containing Ti is 5.0 ⁇ 10 9 pieces / mm 3 Below. From this, it is preferable that the N content is low.
  • the lower limit of the N content does not need to be set in particular (may be 0%), but if the N content is reduced to less than 0.0001%, the manufacturing cost increases significantly, so 0.0001% is N. It is a substantial lower limit of the content. From the viewpoint of manufacturing cost, the N content may be 0.0005% or more.
  • the chemical composition of the steel sheet according to the present embodiment may contain the above elements and the balance may be Fe and impurities. However, for the purpose of improving various characteristics, the following components can be further contained. Since the following elements do not necessarily have to be contained, the lower limit of the content is 0%.
  • Ni, Cu, Cr, and Mo are elements that contribute to increasing the strength of steel sheets through structure control by hot spreading.
  • the content is preferably 0.01% or more.
  • the content of Ni, Cu, Cr, and Mo is 2.00% or less.
  • W 0 to 0.100%
  • W is an element that contributes to the improvement of the strength of the steel sheet through precipitation strengthening.
  • the W content is preferably 0.005% or more.
  • the W content exceeds 0.100%, not only the effect is saturated but also the hot workability is lowered. Therefore, even when it is contained, the W content is set to 0.100% or less.
  • B 0 to 0.0100%
  • B is an element effective for controlling the transformation due to hot spreading and improving the strength of the steel sheet through the strengthening of the structure.
  • the B content is preferably 0.0005% or more.
  • the B content exceeds 0.0100%, not only the effect is saturated, but also iron-based boride is precipitated, and the effect of improving the hardenability by the solid solution B is lost. Therefore, even when it is contained, the B content is set to 0.0100% or less. It is preferably 0.0080% or less, more preferably 0.0050% or less.
  • REM 0-0.0300% Ca: 0-0.0300% Mg: 0 to 0.0300% REM, Ca, and Mg are elements that affect the strength of the steel sheet and contribute to the improvement of the material. If the total of one or more of REM, Ca, and Mg is less than 0.0003%, a sufficient effect cannot be obtained. Therefore, when the effect is obtained, the total content of REM, Ca, and Mg is set to 0. It is preferably 0003% or more. On the other hand, if REM, Ca, and Mg each exceed 0.0300%, castability and hot workability deteriorate. Therefore, even when it is contained, the content of each is set to 0.0300% or less.
  • REM is an abbreviation for Rare Earth Metal, refers to an element belonging to the lanthanoid series, and REM content is the total content of these elements.
  • REM is often added as mischmetal, and in addition to Ce, it may contain elements of the lanthanoid series in a complex manner. Even if the steel sheet according to the present embodiment contains elements of the lanthanoid series other than La and Ce as impurities, the effect is exhibited. Moreover, even if a metal is added, the effect is exhibited.
  • the steel sheet according to the present embodiment contains basic elements, optionally contains arbitrary elements, and the balance is composed of Fe and impurities.
  • Impurities refer to components that are unintentionally contained in the steel sheet manufacturing process from raw materials or other manufacturing processes.
  • O may be contained in a trace amount in addition to P, S, and N. O forms an oxide and may be present as an inclusion.
  • the steel sheet according to the present embodiment may further have a hot-dip galvanized layer on its surface.
  • the hot-dip galvanizing may be an alloyed hot-dip galvanizing that has been alloyed. Since galvanizing contributes to the improvement of corrosion resistance, it is desirable to use galvanized hot-dip galvanized steel sheets or alloyed hot-dip galvanized steel sheets when applied to applications where corrosion resistance is expected. Since there is a concern that the undercarriage parts of an automobile may be perforated due to corrosion, it may not be possible to thin the undercarriage parts below a certain thickness even if the strength is increased. One of the purposes of increasing the strength of a steel sheet is to reduce the weight by making it thinner.
  • the application site is limited if the corrosion resistance is low.
  • plating such as hot dip galvanizing, which has high corrosion resistance, to the steel sheet. Since the steel sheet component according to the present embodiment is controlled as described above, hot-dip galvanizing is possible.
  • the plating layer may be electrogalvanized, or may be plated containing Al and / or Mg in addition to Zn.
  • the steel sheet according to the present embodiment has the above-mentioned characteristics regardless of the manufacturing method.
  • the following method is preferable because it can be stably produced.
  • the steel sheet according to the present embodiment can be manufactured by a manufacturing method including the following steps (I) to (VI).
  • Rolling step (III) The hot-rolled steel sheet is rolled up at 300 ° C. or higher and 600 ° C. or lower and cooled to room temperature.
  • the hot-rolled steel sheet after the light rolling step is 450 to Reheating step of reheating to a temperature range of Ac 1 ° C. and holding for 10 to 1500 seconds
  • preferable conditions of each step will be described.
  • the slab having the above-mentioned chemical composition to be subjected to the hot rolling step is heated to 1230 ° C. or higher.
  • the reason for setting the heating temperature to 1230 ° C. or higher is that elements such as Ti, Nb, and V contained in the slab that contribute to precipitation strengthening (in many cases, they are present as large precipitates of more than 5.0 nm in the slab).
  • equivalent circle diameter containing Ti in a subsequent heat treatment step is to deposit as the following deposit 5.0 nm 5.0 ⁇ 10 9 cells / mm 3 or more.
  • the heating temperature is less than 1230 ° C., Ti, Nb and V are not sufficiently dissolved.
  • the upper limit of the heating temperature is not particularly limited, but if it exceeds 1400 ° C., not only the effect is saturated, but also the scale formed on the slab surface is melted, and the melted oxide melts the refractory in the heating furnace, which is preferable. Absent. From this, the heating temperature is preferably 1400 ° C. or lower.
  • Hot rolling is performed on the heated slab.
  • finish rolling completion temperature is 930 ° C. or higher. Since the steel sheet according to the present embodiment contains a large amount of Ti, Nb, and V, a precipitate containing Ti is formed when the temperature of the slab or the hot-rolled steel sheet roughly rolled before the finish rolling is lowered. Since the Ti-containing carbides precipitated at this stage have a large size, it is necessary to carry out finish rolling and winding while suppressing the Ti-containing precipitates before finish rolling. If the finish rolling temperature is less than 930 ° C., the formation of Ti-containing precipitates becomes remarkable, so the finish rolling temperature is set to 930 ° C. or higher. The upper limit of the finish rolling temperature does not need to be particularly limited.
  • the steel sheet after the hot-rolling process (hot-rolled steel sheet) is cooled and then rolled up.
  • the winding temperature of the hot-rolled steel sheet is 300 ° C. or higher and 600 ° C. or lower, and after winding, the hot-rolled steel sheet is cooled to room temperature in the state of a coil. Any method can be used for cooling to the winding temperature as long as it can be cooled, but a method of cooling using water from a nozzle is common, and productivity is also excellent.
  • the cooling rate for water cooling is, for example, 20 ° C./sec or more.
  • the winding temperature exceeds 600 ° C.
  • ferrite is formed, and the volume fraction of tempered martensite and bainite cannot be 95% or more, resulting in an inferior balance between strength and moldability.
  • the winding temperature exceeds 600 ° C.
  • precipitates having a circle-equivalent diameter of more than 5.0 nm are formed in martensite or bainite, and precipitates having a circle-equivalent diameter of 5.0 nm or less are precipitated in a subsequent heat treatment step.
  • the number density of the precipitates decreases, and the number density of the precipitates falls below 5.0 ⁇ 10 9 pieces / mm 3 .
  • the structure becomes the main phase of martensite, and although it is easy to increase the strength, the ductility is lowered. Therefore, in order to achieve both high ductility and high strength, it is necessary to set the winding temperature to 300 ° C. or higher.
  • the martensite after the winding process is either as-quenched martensite (fresh martensite) containing almost no iron-based carbides, or iron-based carbides are precipitated in the martensite when cooled to room temperature after winding. It may be any of auto-tempered martensite.
  • the cooling conditions for cooling the wound coil to room temperature are not particularly limited, but for example, the coil may be left to cool to room temperature.
  • 1A and 1B show Ti-containing precipitation in an example in which the winding temperature is 500 ° C. and a reduction rate under light reduction is 7% and an example in which the winding temperature is 650 ° C. and the reduction rate under light reduction is 7%. It is a figure which shows the number density for each particle diameter (circle equivalent diameter) of thing. Further, as shown in FIGS. 2A to 2D, the characteristics change depending on the winding temperature. As shown in FIG.
  • this is the number density of precipitates having a particle diameter (equivalent to a circle) of 5.0 nm or less (the number on the left side of the broken line in the figure) by winding at an appropriate temperature. It is considered that this is because the density)) is increasing.
  • the hot-rolled steel sheet after the winding process is pickled.
  • pickling it is possible to improve the plating property in the subsequent manufacturing process and improve the chemical conversion treatment property in the automobile manufacturing process.
  • the scale peels off and is pushed in, which may cause a defect. Therefore, the hot-rolled steel sheet is first pickled before light reduction.
  • the pickling conditions are not particularly limited, but pickling is generally performed with hydrochloric acid or sulfuric acid containing an inhibitor.
  • ⁇ Light reduction process> reduction is applied to the hot-rolled steel sheet after the pickling step at a reduction rate of more than 5% and 30% or less.
  • a precipitation site for depositing precipitates in the heat treatment in the subsequent process is introduced.
  • the precipitation site it becomes possible to precipitate Ti-containing fine carbides having a diameter equivalent to a circle of 5.0 nm or less by 5.0 ⁇ 10 9 pieces / mm 3 or more by heat treatment.
  • the TS, Hvs / Hvc, and fatigue limit can be increased by setting the reduction rate to more than 5%.
  • the reduction rate is set to 30% or less.
  • the reduction rate is preferably less than 20%, more preferably less than 15%.
  • the reduction may be performed by reducing the pressure by more than 5% and 30% or less in one pass, or by dividing into a plurality of times and the cumulative reduction rate. May be adjusted to be more than 5% and less than 30%.
  • high strength and high ductility can be obtained by setting the reduction rate under light reduction to more than 5%.
  • the light rolling step is the most important step in the method for manufacturing a steel sheet according to the present embodiment, and has a role different from that of so-called cold rolling. That is, cold rolling is often performed for controlling the thickness of a steel sheet, controlling the texture by using recrystallization, and controlling the particle size.
  • the light rolling step in the present embodiment is described as described above. It is carried out to promote the precipitation of fine carbides by introducing dislocations.
  • the hot-rolled steel sheet after the light reduction step is reheated to a temperature range of 450 to Ac 1 ° C., and heat treatment is performed to keep the hot-rolled steel sheet in this temperature range for 10 to 1500 seconds.
  • carbides containing Ti and having a circle-equivalent diameter of 5.0 nm or less can be precipitated at 5.0 ⁇ 10 9 pieces / mm 3 or more.
  • the heat treatment temperature is less than 450 ° C., the diffusion of atoms is insufficient and a sufficient amount of precipitate cannot be obtained.
  • the heat treatment temperature is preferably 500 ° C.
  • the heat treatment temperature exceeds Ac 1 ° C.
  • the precipitate becomes coarse and ferrite is formed when the austenite formed during the heat treatment is cooled, so that the total volume ratio of tempered martensite and bainite is 95% or more.
  • the transformation to austenite breaks the matching relationship between the Ti precipitate and the matrix (here, bainite and martensite transformed during the cooling process of austenite), and the amount of precipitation strengthening decreases. ..
  • the heat treatment temperature is set to Ac 1 ° C.
  • Ac1 (Ac1 transformation point) (° C.) can be specified by measuring the expansion curve during heating. Specifically, the Ac1 transformation point can be specified by measuring the transformation curve during heating at 5 ° C./sec. Further, as shown in FIGS. 4A to 4D, high strength and high ductility can be obtained by setting the reheating temperature (heat treatment temperature) to 450 to Ac1 ° C. If the heat treatment time in the reheating step is less than 10 seconds, the diffusion of atoms is insufficient, and 5.0 ⁇ 10 9 pieces / mm 3 or more of Ti-containing carbides having a circle equivalent diameter of 5.0 nm or less are precipitated. I can't.
  • the heat treatment in the temperature range of 450 to Ac 1 ° C. also includes heating and slow cooling in this temperature range. That is, the heat treatment time means the time during which the steel sheet is in the temperature range of 450 to Ac1 ° C. after reheating, and if the steel sheet stays in this temperature range for a predetermined time, the temperature may change in the middle. As shown in FIGS. 5A to 5D, high strength and high ductility can be obtained by setting the reheating time (heat treatment time) in the range of 10 to 1500 seconds. Cooling after the holding step is not particularly limited.
  • a steel sheet according to this embodiment can be obtained by a manufacturing method including the above steps.
  • the steel sheet according to the present embodiment is a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet for the purpose of improving corrosion resistance, it is preferable to further include the following steps.
  • Hot-dip galvanized steel sheet after the reheating process Since galvanization contributes to the improvement of corrosion resistance, it is desirable to carry out galvanization when applied to applications where corrosion resistance is expected.
  • the zinc plating is preferably hot dip galvanization.
  • the conditions for hot-dip galvanizing are not particularly limited, and known conditions may be used.
  • the hot-dip galvanized steel sheet (hot-dip galvanized steel sheet) after hot-dip galvanizing is heated to 460 to 600 ° C. to alloy the plating, so that the hot-dip galvanized layer is an alloyed hot-dip galvanized layer.
  • alloyed hot-dip galvanized steel sheet can be provided with effects such as improvement of spot weldability and improvement of slidability during draw forming in addition to improvement of corrosion resistance, alloying may be carried out depending on the application. Even if Al plating, plating containing Mg, and electroplating are performed in addition to galvanization, the steel sheet according to the present embodiment having a tensile strength of 980 MPa or more and excellent fatigue resistance can be produced.
  • the hot-rolled steel sheet after light reduction (or the hot-rolled steel sheet after pickling if light reduction is not performed) is reheated to the temperatures shown in Tables 2-1 and 2-2 for heat treatment.
  • a hot-rolled steel sheet having steel numbers A1 to f1 was produced.
  • the hot-rolled steel sheet after the heat treatment was plated as necessary, and in some cases, further alloying treatment was performed.
  • HR indicates unplated hot-rolled steel sheet
  • GI indicates hot-dip galvanized steel sheet
  • GA indicates alloyed hot-dip galvanized steel sheet.
  • the microstructure is obtained by cutting the obtained hot-rolled steel sheet parallel to the rolling direction, polishing and etching with a nital reagent, and then using SEM to increase the thickness from the surface to the plate thickness direction at a magnification of 1000 to 30,000 times. By observing the position of 1/4, ferrite, bainite, pearlite, fresh martensite, and tempered martensite are identified, and the area ratio of tempered martensite, bainite, and other structures is obtained, which is referred to as the volume ratio. did.
  • the number density of precipitates containing Ti was determined by using the electrolytic extraction residual method for a sample collected from a position 1/4 of the surface, and the number density of the precipitates contained per unit volume of the steel sheet for each circle equivalent diameter of 1 nm. Was measured. At that time, the composition of the carbide was analyzed by a transmission electron microscope (TEM) and EDS, and it was confirmed that the fine precipitate was a precipitate containing Ti.
  • TEM transmission electron microscope
  • Hvs / Hvc> The average hardness Hvs at a depth of 20 ⁇ m from the surface is 20 ⁇ m from the surface after cutting out a sample so that the cross section parallel to the rolling direction is the measurement surface from the width direction 1/4 position of the steel sheet and performing embedding polishing.
  • the Vickers hardness at the position was measured at 10 points with a load of 10 gf in accordance with JIS Z 2244: 2009, and the average value was taken as Hvs.
  • Hvc a sample is cut out from the 1/4 position in the width direction of the steel sheet so that the cross section parallel to the rolling direction becomes the measurement surface, and after embedding polishing is performed, the load is adjusted to 10 gf in accordance with JIS Z 2244: 2009. A total of 7 points of Vickers hardness were measured at a pitch of about 0.05 mm in the plate thickness direction from a position of 0.20 to 0.50 mm from the surface, and the average value was taken as Hvc. Hvs / Hvc was obtained from these Hvs and Hvc.
  • Tensile properties (YP, TS, El) were determined by a tensile test performed in accordance with JIS Z 2241: 2011 using JIS No. 5 test pieces cut out in the direction perpendicular to the rolling direction.
  • TS ⁇ El product of strength and elongation
  • the hole expansion rate was determined by the hole expansion test method performed in accordance with JIS Z 2256: 2010. Specifically, a test piece is cut out from a 1/4 width position in the width direction of the steel sheet, punched using a punch having a diameter of 10 mm and a die having an inner diameter of 10.6 mm, and then punched using a 60 ° conical punch. Set the burr on the opposite side of the punch, expand the hole, stop the test when the crack generated in the punched part penetrates the plate thickness, and measure the hole diameter after the hole expansion test. So, I asked for the hole expansion rate. If the hole expansion rate is 40% or more, it is judged that the hole expansion property is excellent. When the hole expansion ratio is 40% or more, it is suitable for undercarriage parts having a burring portion and an extension flange portion.
  • the equivalent circle diameter including Ti The number density of precipitates having a diameter of 5.0 nm or less was 5.0 ⁇ 10 9 pieces / mm 3 or more. Further, in these examples, the tensile strength of 980 MPa or more, the high yield ratio of 0.90 or more, the TS ⁇ El of 12000 MPa ⁇ % or more, and the excellent fatigue resistance characteristics were satisfied.
  • a comparative example in which any one or more of the chemical composition, the slab heating temperature, the finishing temperature, the winding temperature, the light reduction condition, and the heat treatment condition is outside the present invention includes the microstructure of the steel sheet, Hvs / Hvc, and Ti.
  • the number density or tensile strength of the precipitates having a circle equivalent diameter of 5.0 nm or less was low.
  • a high-strength steel sheet having a tensile strength of 980 MPa or more, which has high yield strength, high ductility and excellent fatigue resistance.
  • This steel sheet has great industrial value because it contributes to weight reduction of automobile parts. Further, this steel sheet has high strength (high tensile strength), high proof stress, high ductility, and excellent fatigue resistance, and is therefore suitable for undercarriage parts of automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

この高強度鋼板は、所定の化学組成を有し、ミクロ組織が、体積率で、焼き戻しマルテンサイト及びベイナイトを合計で95%以上含有し、残部がフェライト及びパーライトからなり、前記ミクロ組織が、円相当径が5.0nm以下でありかつTiを含有する析出物を単位体積当たり5.0×10個/mm以上含有し、表面から深さ20μmの位置における平均硬度Hvsと、前記表面から0.20~0.50mmの位置における平均硬度Hvcとの比であるHvs/Hvcが、0.85以上であり、引張強度が980MPa以上であり、前記引張強度と伸びとの積が、12000MPa×%以上である。

Description

高強度鋼板及びその製造方法
 本発明は、高強度鋼板及びその製造方法に関する。
 本願は、2019年03月22日に、日本に出願された特願2019-055469号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球環境保護のため、自動車の燃費向上が求められている。自動車の燃費向上に関し、自動車部品に用いられる鋼板(自動車用鋼板)に対しては、耐衝突性能を確保しつつ車体を軽量化するため、高強度鋼板の適用が進んでおり、足回り部品向けにも高強度鋼板の開発が進んでいる。自動車の足回り部品に適用される鋼板には、高引張強度、高耐力(高YP)、高延性に加えて、耐疲労特性に優れることも求められる。
 例えば特許文献1、2には、熱延後の鋼板に焼鈍とその前後にスキンパス圧延とを実施することによって、高強度化を図った鋼板が開示されている。また、特許文献1、2には、これらの鋼板が耐疲労特性に優れることが開示されている。
 しかしながら、特許文献1に開示された高強度鋼板では、980MPa以上の引張強度が得られてない。また、特許文献2に開示された高強度鋼板は、980MPa以上の引張強度は確保可能なものの、足回り部品への更なる適用拡大のため、延性(特に伸び)の向上が求められていた。
 上述のように、従来、980MPa以上の高引張強度を有し、かつ高耐力、高延性を有し、耐疲労特性にも優れる鋼板については提案されていなかった。
国際公開第2018/026013号 国際公開第2010/137317号
 本発明は上記の課題に鑑みてなされた。本発明は、自動車の足回り部品に好適な、高耐力、高延性、かつ優れた耐疲労特性を有し、引張強度が980MPa以上である高強度鋼板とその製造方法とを提供することを目的とする。
 本発明者らは、上記課題を解決する手法について鋭意検討した。その結果、所定の化学組成を有する鋼板において、ミクロ組織を、焼き戻しマルテンサイト及びベイナイトを合計で95%以上含有する組織とし、ミクロ組織が、Tiを含有する円相当径が5.0nm以下の析出物を、単位体積当たり5.0×10個/mm以上含有し、表面から深さ20μmの位置における平均硬度Hvsと、表面から0.20~0.50mmの位置における平均硬度Hvcとの比であるHvs/Hvcが0.85以上となるようにすることで、高耐力、高延性(高伸び)、かつ優れた耐疲労特性を有する、引張強度が980MPa以上かつ引張強度と延性(伸び)との積(TS×El)が12000MPa×%以上である鋼板を製造可能なことを見出した。
 また、このような鋼板を得るためには、多量に含有させたTiやNbを溶解するために、熱延に供するスラブを1230℃以上に加熱し、熱延後の捲き取り温度を300℃以上600℃以下にしてマルテンサイトとベイナイトとの混合組織とするとともに、熱延後の捲き取り時の析出物の析出を抑制し、捲き取り後の熱延鋼板に軽圧下を実施することで転位を導入して、転位をTiやNb析出物の核生成サイトとして、450~Ac1℃の温度域で短時間熱処理することで、微細なTiを含む析出物を、所定量以上析出させることが有効であることを見出した。
 本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。
(1)本発明の一態様に係る高強度鋼板は、化学組成が、質量%で、C:0.020~0.090%、Si:0.01~2.00%、Mn:1.00~3.00%、Ti:0.010~0.200%、Al:0.005~1.000%、P:0.100%以下、S:0.0100%以下、N:0.0100%以下、Ni:0~2.00%、Cu:0~2.00%、Cr:0~2.00%、Mo:0~2.00%、Nb:0~0.100%、V:0~0.100%、W:0~0.100%、B:0~0.0100%、REM:0~0.0300%、Ca:0~0.0300%、Mg:0~0.0300%、を含有し、残部がFe及び不純物からなり、0.100≦Ti+Nb+V≦0.450を満足し、ミクロ組織が、体積率で、焼き戻しマルテンサイト及びベイナイトを合計で95%以上含有し、残部がフェライト及びパーライトからなり、前記ミクロ組織が、円相当径が5.0nm以下でありかつTiを含有する析出物を単位体積当たり5.0×10個/mm以上含有し、表面から深さ20μmの位置における平均硬度Hvsと、前記表面から0.20~0.50mmの位置における平均硬度Hvcとの比であるHvs/Hvcが、0.85以上であり、引張強度が980MPa以上であり、前記引張強度と伸びとの積が、12000MPa×%以上である。
(2)上記(1)に記載の高強度鋼板は、前記化学組成が、質量%で、Ni:0.01~2.00%、Cu:0.01~2.00%、Cr:0.01~2.00%、Mo:0.01~2.00%、Nb:0.005~0.100%、V:0.005~0.100%、W:0.005~0.100%、B:0.0005~0.0100%、REM:0.0003~0.0300%、Ca:0.0003~0.0300%、Mg:0.0003~0.0300%からなる群から選択される1種又は2種以上を含有してもよい。
(3)上記(1)または(2)に記載の高強度鋼板は、前記表面に溶融亜鉛めっき層を備えてもよい。
(4)(3)に記載の高強度鋼板は、前記溶融亜鉛めっき層が合金化溶融亜鉛めっき層であってもよい。
(5)本発明の別の態様に係る高強度鋼板の製造方法は、上記(1)又(2)に記載の高強度鋼板を製造する方法であって、化学組成が、質量%で、C:0.020~0.090%、Si:0.01~2.00%、Mn:1.00~3.00%、Ti:0.010~0.200%、Al:0.005~1.000%、P:0.100%以下、S:0.0100%以下、N:0.0100%以下、Ni:0~2.00%、Cu:0~2.00%、Cr:0~2.00%、Mo:0~2.00%、Nb:0~0.100%、V:0~0.100%、W:0~0.100%、B:0~0.0100%、REM:0~0.0300%、Ca:0~0.0300%、Mg:0~0.0300%を含有し、残部がFe及び不純物からなるスラブを1230℃以上に加熱する加熱工程と;前記スラブに対して、仕上げ圧延温度が930℃以上となるように熱間圧延を行って熱延鋼板を得る熱延工程と;前記熱延鋼板を、300℃以上、600℃以下で捲き取った後、室温まで冷却する捲き取り工程と;前記捲き取り工程後の前記熱延鋼板に対して酸洗を行う酸洗工程と;前記酸洗工程後の前記熱延鋼板に、5%超、30%以下の圧下率で圧下を行う軽圧下工程と;前記軽圧下工程後の前記熱延鋼板を、450~Ac1℃の温度域に再加熱し、10~1500秒保持する再加熱工程と;を備える。
(6)上記(5)に記載の高強度鋼板の製造方法は、さらに、前記再加熱工程後の前記熱延鋼板に、溶融亜鉛めっきを施す溶融亜鉛めっき工程を備えてもよい。
(7)上記(6)に記載の高強度鋼板の製造方法は、さらに、前記溶融亜鉛めっき工程後の前記熱延鋼板を、460~600℃に加熱する合金化工程を備えてもよい。
 本発明の上記態様によれば、高耐力、高延性及び優れた耐疲労特性を有する、引張強度が980MPa以上の高強度鋼板を提供できる。この鋼板は、自動車部品の軽量化に寄与することから工業的に大きな価値がある。また、この鋼板は、高強度(高引張強度)、高耐力、高延性であり、かつ耐疲労特性に優れるので、自動車の足回り部品に好適である。
 本発明の高強度鋼板は、表面に亜鉛めっき層を備える高強度溶融亜鉛めっき鋼板、並びに、高強度合金化溶融亜鉛めっき鋼板等のめっき鋼板を含む。
本発明鋼の、Tiを含む析出物の粒子径ごとの個数密度を示す図である。 比較鋼の、Tiを含む析出物の粒子径ごとの個数密度を示す図である。 熱延後の捲き取り温度とYP(耐力)との関係を示す図である。 熱延後の捲き取り温度とTS(引張強度)との関係を示す図である。 熱延後の捲き取り温度とTS×El(伸び)との関係を示す図である。 熱延後の捲き取り温度とλ(穴広げ率)との関係を示す図である。 軽圧下での圧下率とYP(耐力)との関係を示す図である。 軽圧下での圧下率とTS(引張強度)との関係を示す図である。 軽圧下での圧下率とTS×El(伸び)との関係を示す図である。 軽圧下での圧下率とλ(穴広げ率)との関係を示す図である。 再加熱工程での熱処理温度とYP(耐力)との関係を示す図である。 再加熱工程での熱処理温度とTS(引張強度)との関係を示す図である。 再加熱工程での熱処理温度とTS×El(伸び)との関係を示す図である。 再加熱工程での熱処理温度とλ(穴広げ率)との関係を示す図である。 再加熱工程での熱処理時間とYP(耐力)との関係を示す図である。 再加熱工程での熱処理時間とTS(引張強度)との関係を示す図である。 再加熱工程での熱処理時間とTS×El(伸び)との関係を示す図である。 再加熱工程での熱処理時間とλ(穴広げ率)との関係を示す図である。
 本発明の一実施形態に係る高強度鋼板(以下、本実施形態に係る鋼板)は、所定の化学組成を有し、ミクロ組織が、焼き戻しマルテンサイト及びベイナイトを合計で95%以上含有し、残部がフェライト及びパーライトからなり、前記ミクロ組織が、Tiを含有する円相当径が5.0nm以下の析出物を、単位体積当たり5.0×10個/mm以上含有し、表面から深さ20μmの位置における平均硬度Hvsと表面から0.20~0.50mmの位置における平均硬度Hvcとの比であるHvs/Hvcが、0.85以上である。また、本実施形態に係る鋼板は、引張強度が980MPa以上であり、引張強度と伸びとの積が12000MPa×%以上である。
 本実施形態に係る鋼板では、高強度、高延性であり、YP/TS≧0.90という高耐力、疲労限/TS≧0.40以上という優れた耐疲労特性が得られる。また、穴広げ率も40%以上を確保できる。
 以下、本実施形態に係る鋼板について詳細に説明する。
<ミクロ組織が、体積率で、焼き戻しマルテンサイト及びベイナイトを合計で95%以上含有し、残部がフェライト及びパーライトからなる>
 まず、ミクロ組織の限定理由に関して述べる。
 本実施形態に係る鋼板では、ミクロ組織の主相は、体積率で合計95%以上の焼き戻しマルテンサイト及びベイナイトである。
 本実施形態に係る鋼板は、後述するように、熱延、これに引き続く軽圧下による転位導入および熱処理を利用して、Tiを含有する円相当径が5.0nm以下の析出物を、その個数密度が5.0×10個/mm以上となるように制御している。そのため、熱処理前のミクロ組織の主相を、熱処理時に析出物の析出サイトとなる転位を多く含むマルテンサイトまたはベイナイトとする必要がある。転位を多く含むマルテンサイトまたはベイナイトに熱処理を行うことで、微細な析出物を含む焼き戻しマルテンサイト及び/またはベイナイトが主相となる。加えて、熱処理前に存在するマルテンサイトやベイナイト中の転位や加工時に導入された転位は、熱処理により回復、再配列することから、熱処理により延性の向上ももたらされる。特に、ベイナイトはマルテンサイトに比較し伸びが高いことから、特に優れた延性を必要とする場合、ベイナイト体積率を50%以上とすることが好ましい。
 また、フェライトやパーライトは高温で形成されることから、これらの組織が形成されるとその内部に析出するTiを含む析出物も粗大化しやすい。この場合、Tiを含有する円相当径が5.0nm以下の析出物を5.0×10個/mm以上確保することが出来ない。このことからも、ミクロ組織は、体積率で、焼き戻しマルテンサイト及び/またはベイナイトを体積率で合計95%以上含み、残部を5%以下とする必要がある。本実施形態において、焼き戻しマルテンサイトとは、セメンタイト及び/またはTiを含む析出物を含む、マルテンサイトを意味する。
 ミクロ組織は、鋼板を圧延方向に平行に切り出し、板厚方向が観察面となるように研磨およびナイタール試薬でエッチングした後、SEMを用いて、1000~30000倍の倍率で板厚方向に表面から板厚の1/4の位置を観察することで、フェライト、ベイナイト、パーライト、マルテンサイトの同定が可能である。即ち、フェライトは鉄系炭化物を含まない等軸形状をした粒であること、パーライトはフェライトおよびセメンタイトの層状組織であること、ベイナイトとはラス状の形態をした組織でありラス間にセメンタイトや残留オーステナイトを含む組織であること、などの組織形態から判断が可能である。SEM観察画像から同定した各組織の面積率を求め、これを体積率とする。それぞれの体積分率は、上記の倍率で5視野以上(例えば5~10視野)観察し、それぞれの視野で得られた各組織の分率を平均して求める。
 マルテンサイトにはラス内に炭化物を含む焼き戻しマルテンサイトと、炭化物を含まない焼き入れままのマルテンサイト(フレッシュマルテンサイト)の両方が存在するが、これらはSEMやTEMで観察し、炭化物の有無を確認することで同定可能である。一般的に、焼き戻しマルテンサイトはセメンタイト等の鉄系炭化物を含むものを指す場合が多いが、本実施形態ではTiを含む微細析出物を含むマルテンサイトも焼き戻しマルテンサイトと定義する。
<ミクロ組織が、Tiを含有する円相当径が5.0nm以下の析出物を、単位体積当たり5.0×10個/mm以上含有する>
 次に、本発明者らが析出物のサイズや個数密度に着目した理由に関して説明する。本発明者らは、980MPa以上の引張強度の確保を可能とする析出物のサイズと個数密度との関係を鋭意調査した。その結果、従来の熱延鋼板や特許文献1、2の鋼板に含まれる析出物はサイズ(円相当径)が5.0nm以下に制御できておらず、個数密度も小さいことが分かった。本発明者らがさらに検討した結果、この原因は、析出物を形成するTi等の含有量が少ない、あるいは、Ti等を含有させたとしてもスラブの段階で粗大な析出物として存在し、スラブ加熱時にも溶解しないこと、熱延後の捲き取りのような長時間の熱処理で析出したTiCが粗大化することによって、円相当径が5.0nm以下の析出物の個数密度が5.0×10個/mm未満になってしまうことにあることを見出した。
 本実施形態に係る鋼板は、Tiを含む円相当径5.0nm以下の析出物を個数密度で5.0×10個/mm以上含有する焼き戻しマルテンサイトを主相とすることで、980MPa以上の引張強度が確保可能であり、耐疲労特性にも優れる。
 析出物のサイズ及び個数密度の限定理由に関して説明する。
 Tiを含む円相当径が5.0nm以下の析出物の単位体積あたりの個数密度を5.0×10個/mm以上とするのは、980MPa以上の引張強度を確保するためである。個数密度が5.0×10個/mm未満では、980MPa以上の引張強度の確保が難しい。そのため、Tiを含む円相当径が5.0nm以下の析出物の個数密度は、5.0×10個/mm以上にする必要がある。
 析出物を、Tiを含む析出物としたのは、Tiを含む析出物が、熱延前のスラブの加熱段階にて多量に溶解させ易く、かつ、円相当径が5.0nm以下の微細な析出物として析出するためである。ここで言う5.0nmとは円相当径である。析出物としては、炭化物、窒化物、炭窒化物など種類は限定されないが、特に、炭化物が、5.0nm以下の微細な析出物として析出し、強度向上に寄与するので好ましい。Tiの析出物は、主に主相である焼き戻しマルテンサイト及びベイナイトに含まれる。
 NbもTiと類似の効果を有するものの、Nbの炭化物はスラブの加熱段階で溶解可能な量が少なく、また、Nbを単独で含有させても980MPa以上の引張強度を確保できない。また、Vはスラブの加熱段階で多量の溶解が可能であるものの、析出物のサイズが比較的大きく、Vを単独で含有させても5.0nm以下の析出物を5.0×10個/mm以上確保することは難しい。このことから、Tiを含む析出物とする必要がある。ただし、5.0nm以下の析出物を5.0×10個/mm以上確保できるのであれば、Tiの一部を、Nb、V及び/またはMoで置換した構造を有する複合析出物((Ti,Nb,V)C等)であってもよい。
 上述の個数密度とともに制御する析出物のサイズを円相当径で5.0nm以下とする理由は、980MPa以上の引張強度を確保するためである。円相当径が5.0nm超の析出物では、個数密度を5.0×10個/mm以上とすることが出来ず、980MPa以上の引張強度を確保できない。
 円相当径とは、観察された析出物の形状を円と仮定し、その面積が等価となる円の直径へと換算した値である。具体的には、Tiの析出物は球状以外に、板状や針状の形状をすることがあるが、観察した析出物の面積を測定し、析出物を円と仮定し、その面積が等価となる円の直径へと換算した値が円相当径である。
 本実施形態に係る鋼板は、析出強化を活用して鋼板の強度を確保している。そのため、アーク溶接などの溶接時の課題であった熱影響部での軟化を抑制でき、溶接部の疲労強度にも優れる。また、本実施形態に係る鋼板は、Tiを含有する円相当径5.0nm以下の析出物によって強度を高めている。このような場合、降伏応力(YP)と引張強度(TS)との比である降伏比(=YP/TS)が0.90以上と極めて高い。降伏比が高い本実施形態に係る鋼板を用いることで、縁石乗り上げや衝突の際に変形し難い自動車用足回り部品を提供できる。
 Tiを含む析出物の個数密度は、電解抽出残差法を用い、鋼板の単位体積当たりに含まれる析出物の、1.0nmピッチでの円相当径毎の個数密度を(例えば円相当径0nm超、1.0nm以下の個数密度、1.0nm超、2.0nm以下の個数密度、2.0nm超、3.0nm以下の個数密度...という具合に)測定する。析出物の個数密度は、鋼板の代表的な組織が得られる表面から深さ方向に0.20mm~3/8厚み位置、例えば表面から板厚の1/4の位置付近から採取することが望ましい。板厚中心は、中心偏析の影響により、粗大な炭化物が存在する場合があるとともに、偏析影響により局所的な化学組成が異なることから、測定位置として好ましくない。表面から深さ方向に0.20mm未満の位置は、軽圧下により導入された高密度な転位の影響や加熱時の脱炭影響を受け、炭化物の個数密度が内部と異なる場合があることから、測定位置として好ましくない。
 測定に際しては、透過型電子顕微鏡(TEM)およびEDSにて炭化物の組成分析を行い、微細な析出物がTiを含む析出物であることを確認すればよい。具体的には、鋼板を表面から板厚の1/4の位置まで研磨し、電解抽出残差法に従って、鋼板を1g程度溶解した後、得られたTi析出物を含む溶液をろ紙で濾し、得られた析出物をCレプリカに付着させた後、TEM観察を実施する。観察に際しては、倍率は、50000~100000倍で20~30視野とし、得られた析出物の化学組成をEDSにて特定する。その後、TEM観察により得られた写真を画像解析し、各々の析出物の円相当径と個数密度とを算出する。
 測定対象とする析出物のサイズの下限は特に定めることなく、円相当径5.0nm以下の析出物を、単位体積当たり5.0×10個/mm以上とすることで効果は得られるが、本実施形態に係る熱延鋼板では、0.4nm未満の析出物は少ないと考えられるので、0.4nm以上の円相当径の析出物を実質的な対象としてもよい。
<表面から深さ20μmの位置における平均硬度Hvsと、表面から0.20~0.50mmの位置における平均硬度Hvcとの比であるHvs/Hvcが、0.85以上>
 本実施形態に係る鋼板では、表面から深さ20μmの位置における平均硬度Hvsと、表面から0.20~0.50mmの位置(板厚方向に、表面から0.20mmの位置~表面から0.50mmの位置までの範囲)における平均硬度Hvcとの比であるHvs/Hvcを、0.85以上とする必要がある。
 表面から板厚方向に20μmの位置の平均硬度(Hvs)と、表面から板厚方向に0.20~0.50mmの位置における平均硬度(Hvc)との比であるHvs/Hvcを、0.85以上とするのは、Hvs/Hvcを高めて、耐疲労特性を大きく向上させるためである。
 一般的に、疲労破壊は表面から発生するので、疲労亀裂の発生を抑制するためには表層を硬質化することが有効である。一方、熱延鋼板は、スラブ加熱や熱延中に酸化性の雰囲気にさらされることから、脱炭などが発生し、表層硬度が低下しやすい。表層硬度が低下すると、耐疲労特性が劣化する。
 本発明者らが鋭意検討を行った結果、軽圧下とその後の熱処理とを組み合わせることで表層を優先的に硬化することが可能であり、結果として耐疲労特性を向上できることを見出した。
 表層の硬度として、表面から深さ方向(板厚方向)に20μmの位置の硬度を定義したのは、本位置の硬度を上昇させることで耐疲労特性の向上が可能なためである。また、表面から20μm未満の位置での硬度測定は、表面の影響を受けることから正確な測定が難しく、一方で、表面から20μmの位置よりも鋼板内部側の位置での硬度上昇は、耐疲労特性との相関が小さいためである。
 表面から0.20~0.50mmの位置の平均硬度(Hvc)は、この範囲の平均硬度とする。板厚中心は、Mnなどの偏析の影響を受け、硬度が安定しない場合がある。このことから、板厚中心、即ち、偏析部での硬度測定は避けることが望ましい。
 Hvs/Hvcを、0.85以上としたのは、硬度比(Hvs/Hvc)が0.85以上となることで、顕著な耐疲労特性向上効果があるためである。この効果は、0.87以上でより顕著になるので、0.87以上とすることが好ましい。より好ましくは0.90以上である。
 表面から深さ20μmの位置における平均硬度Hvsと、表面から0.20~0.50mm位置における平均硬度Hvcとは以下の方法で求める。
 表面から深さ20μmの位置における平均硬度Hvsは、鋼板の幅方向1/4位置から圧延方向に平行な断面が測定面となるようにサンプルを切り出し、埋め込み研磨を実施した後、表面から20μm位置のビッカース硬度をJIS Z 2244:2009に準拠して荷重10gfにて10点測定し、その平均値をHvsとする。Hvcは、鋼板の幅方向1/4位置から圧延方向に平行な断面が測定面となるようにサンプルを切り出し、埋め込み研磨を実施した後、荷重10gfにて表面から0.20~0.50mm位置から板厚方向に約0.05mmピッチでビッカース硬度を合計7点測定し(例えば表面から0.20mm、0.25mm、0.30mm、0.35mm、0.40mm、0.45mm及び0.50mmの位置で測定し)、その平均値をHvcと定義する。
<引張強度が980MPa以上>
<引張強度と伸びとの積が12000MPa×%以上>
 足回り部品への適用による自動車の燃費向上の観点で、本実施形態に係る鋼板は、引張強度が980MPa以上、引張強度と伸びとの積が12000MPa×%以上とする。
 引張強度の上限を限定する必要はないが、一定以上の伸びを確保するため、引張強度を1180MPa未満としてもよい。引張強度は、1179MPa以下、または、1170MPa以下としてもよい。
 本実施形態に係る鋼板の板厚は、特に限定されないが、製造の安定性等を考慮した場合、例えば1.0~4.0mmである。好ましくは、1.5~3.0mmである。
 次に、本実施形態に係る鋼板の化学組成の限定理由を説明する。含有量の%は質量%である。
 C:0.020~0.090%
 Cは、鋼板の強度を高めるために有効な元素である。また、Cは、Tiを含む炭化物を形成する元素である。C含有量が0.020%未満であると、炭化物の個数密度を5.0×10個/mm以上確保することが出来ない。そのため、C含有量を0.020%以上とする。
 一方、C含有量が0.090%を超えると、その効果が飽和するばかりでなく、スラブ加熱時に炭化物が溶け難くなる。そのため、C含有量は0.090%以下である。好ましくは0.080%以下である。
 Si:0.01~2.00%
 Siは、固溶強化により鋼板の高強度化に寄与する元素である。このことから、Si含有量を0.01%以上とする。
 一方、Si含有量が2.00%超では、効果が飽和するだけでなく、熱延鋼板に強固なスケールが発生し、外観や酸洗性が劣化する。そのため、Si含有量を2.00%以下とする。
 Mn:1.00~3.00%
 Mnは、鋼板のミクロ組織におけるマルテンサイト、ベイナイトの体積率を高めて鋼板の強度を高めるために有効な元素である。マルテンサイト及びベイナイトの体積率を合計95%以上にするために、Mn含有量を1.00%以上とする。Mn含有量が1.00%未満では、マルテンサイト、ベイナイトの体積率が低下し、十分な強化が出来ない。
 一方、Mn含有量が3.00%超では、その効果が飽和するとともに、経済性が低下する。そのため、Mn含有量を3.00%以下とする。Mn含有量は、好ましくは2.65%以下、より好ましくは2.30%以下である。
 Al:0.005~1.000%
 Alは、熱延での組織制御及び脱酸に有効な元素である。これらの効果を得るため、Al含有量を0.005%以上とする。Al含有量が0.005%未満では十分な脱酸効果を得ることが出来ず、鋼板中に多量の介在物(酸化物)が形成される。
 一方、Al含有量が1.000%を超えると、スラブが脆化するので好ましくない。そのため、Al含有量を1.000%以下とする。
 Ti:0.010~0.200%
 Nb:0~0.100%
 V:0~0.100%
 0.100≦Ti+Nb+V≦0.450(Ti、Nb、Vは質量%でのTi含有量、Nb含有量、V含有量)
 Ti、Nb、Vは、CやNと結合して析出物(炭化物、窒化物、炭窒化物等)を形成し、こられの析出物による析出強化を通じて鋼板強度の向上に寄与する元素である。後述する製造方法を通じて、Tiを含有する円相当径5.0nm以下の微細析出物を5.0×10個/mm以上得るため、Ti含有量を0.010%以上とした上で、Ti、Nb、Vの合計含有量(Ti+Nb+V)を0.100%以上とする。Ti、Nb、Vの合計含有量は、望ましくは、0.105%以上であり、より望ましくは、0.110%以上である。
 一方、Ti、Nb、Vの合計含有量(Ti+Nb+V)が0.450%超であると、スラブや熱延板にこれら析出物が過剰に析出し脆化を招くことから製造性に劣る。そのため、Ti、Nb、Vの合計含有量は0.450%以下とする。
 また、Tiの含有量の上限を0.200%、Nbの含有量の上限を0.100%、Vの含有量の上限を0.100%としたのは、これらの上限を超えると、スラブ加熱温度の下限を1230℃以上としたとしても鋳造段階で析出した粗大析出物を溶解し難いためである。加えて、Ti、Nb、Vの過度な含有はスラブや鋼板を脆化させる。そのため、Tiであれば0.200%を上限とし、Nbであれば0.100%を上限とし、Vであれば0.100%を上限とすることが望ましい。
 Tiを含有する円相当径5.0nm以下の微細炭化物を5.0×10個/mm以上確保するためのTi、Nb、Vの組み合わせはどのようなものでも良いが、熱延スラブ加熱時の炭化物を溶解させるためには、より多量に含有させ易く、かつ、安価であるTiの含有量を少なくとも0.010%以上とする。
P:0.100%以下
 Pは、鋼板の板厚中央部に偏析する元素であり、また、溶接部を脆化させる元素でもある。P含有量が0.100%超となると特性の劣化が顕著となるので、P含有量を0.100%以下とする。好ましくは0.050%以下である。P含有量は低い方が好ましく、下限は特に定めることなく効果が発揮される(0%でもよい)が、P含有量を0.001%未満に低減することは、経済的に不利であるので、P含有量の下限を0.001%としてもよい。
 S:0.0100%以下
 Sは、硫化物として存在することで、スラブ脆化をもたらす元素である。またSは、鋼板の成形性を劣化させる元素である。そのため、S含有量を制限する。S含有量が0.0100%を超えると特性の劣化が顕著になるので、S含有量を0.0100%以下とする。一方、下限は特に定めることなく効果が発揮される(0%でもよい)が、S含有量を0.0001%未満に低減することは、経済的に不利であるので、S含有量の下限を0.0001%としてもよい。
N:0.0100%以下
 Nは、粗大な窒化物を形成し、曲げ性や穴広げ性を劣化させる元素である。N含有量が0.0100%を超えると、曲げ性や穴広げ性が顕著に劣化するので、N含有量を0.0100%以下とする。また、NはTiと結合することで粗大なTiNとなり、Nを多量に含む場合、Tiを含む円相当径が5.0nm以下の析出物の個数密度が5.0×10個/mmを下回る。このことから、N含有量は少ない方が好ましい。
 一方、N含有量の下限は、特に定める必要はない(0%でもよい)が、N含有量を0.0001%未満に低減すると、製造コストが大幅に増加するので、0.0001%がN含有量の実質的な下限である。製造コストの観点から、N含有量を0.0005%以上としてもよい。
 以上が本実施形態に係る鋼板の基本的な化学成分であり、本実施形態に係る鋼板の化学組成は、上記の元素を含有し、残部がFe及び不純物からなっていてもよい。しかしながら、各種特性の向上を目的として、さらに下記のような成分を含有することができる。以下の元素は、必ずしも含有する必要はないので、含有量の下限は0%である。
Ni:0~2.00%
Cu:0~2.00%
Cr:0~2.00%
Mo:0~2.00%
 Ni、Cu、Cr、Moは、熱延での組織制御を通じて鋼板の高強度化に寄与する元素である。この効果を得る場合、Ni、Cu、Cr、Moの1種又は2種以上を、それぞれ、0.01%以上含有させることで顕著になる。そのため、効果を得る場合、含有量をそれぞれ0.01%以上とすることが好ましい。
 一方、各元素の含有量が、それぞれ2.00%を超えると、溶接性、熱間加工性などが劣化する。そのため、含有させる場合でも、Ni、Cu、Cr、Moの含有量は2.00%以下とする。
W:0~0.100%
Wは、析出強化を通じて鋼板の強度の向上に寄与する元素である。この効果を得る場合W含有量を0.005%以上とすることが好ましい。
 一方、W含有量が0.100%を超えると、効果が飽和するばかりでなく、熱間加工性が低下する。そのため、含有させる場合でも、W含有量を0.100%以下とする。
B:0~0.0100%
 Bは、熱延での変態を制御し、組織強化を通じて鋼板の強度を向上させるために有効な元素である。この効果を得る場合、B含有量を0.0005%以上とすることが好ましい。
 一方、B含有量が0.0100%超となると、効果が飽和するばかりでなく、鉄系の硼化物が析出して、固溶Bによる焼き入れ性向上の効果が失われる。そのため、含有させる場合でも、B含有量を0.0100%以下とする。好ましくは0.0080%以下、より好ましくは、0.0050%以下である。
 REM:0~0.0300%
 Ca:0~0.0300%
 Mg:0~0.0300%
 REM、Ca、Mgは、鋼板の強度に影響を与え、材質の改善に寄与する元素である。REM、Ca、Mgの1種又は2種以上の合計が0.0003%未満であると、充分な効果が得られないので、効果を得る場合、REM、Ca、Mgの合計含有量を0.0003%以上とすることが好ましい。
 一方、REM、Ca、Mgがそれぞれ0.0300%を超えると、鋳造性や熱間での加工性が劣化する。そのため、含有させる場合でも、それぞれの含有量を0.0300%以下とする。
 本実施形態において、REMとは、Rare Earth Metalの略であり、ランタノイド系列に属する元素を指し、REM含有量とは、これらの元素の合計含有量である。REMは、ミッシュメタルにて添加することが多く、また、Ceの他に、ランタノイド系列の元素を複合で含有する場合がある。本実施形態に係る鋼板が、不純物として、Laや、Ce以外のランタノイド系列の元素を含んでいても、効果は発現する。また、金属を添加しても、効果は発現する。
 上述の通り、本実施形態に係る鋼板は、基本元素を含み、必要に応じて任意元素を含み、残部はFeおよび不純物からなる。不純物とは、鋼板の製造過程において、原料から、またはその他の製造工程から、意図せず含まれる成分をいう。例えば不純物としては、P、S、N以外にOを微量含有することがある。Oは、酸化物を形成し、介在物として存在する場合がある。
 本実施形態に係る鋼板では、表面にさらに溶融亜鉛めっき層を備えてもよい。また、溶融亜鉛めっきは、合金化処理が施された合金化溶融亜鉛めっきであってもよい。
 亜鉛めっきは耐食性向上に寄与することから、耐食性が期待される用途への適用の場合には亜鉛めっきを実施した溶融亜鉛めっき鋼板、または合金化溶融亜鉛めっき鋼板とすることが望ましい。
 自動車の足回り部品は、腐食による穴あきの懸念があることから、高強度化してもある一定板厚以下に薄手化できない場合がある。鋼板の高強度化の目的の一つは、薄手化による軽量化であることから、高強度鋼板を開発しても、耐食性が低いと適用部位が限られる。これら課題を解決する手法として、耐食性の高い溶融亜鉛めっき等のめっきを鋼板に施すことが考えられる。本実施形態に係る鋼板は、鋼板成分を上述のように制御しているので、溶融亜鉛めっきが可能である。
 めっき層は電気亜鉛めっきであってもよく、Znに加えてAl及び/またはMgを含むめっきであってもよい。
 次に、本実施形態に係る鋼板の好ましい製造方法について説明する。本実施形態に係る鋼板は、製造方法によらず上記の特徴を有していればその効果は得られる。しかしながら、以下の方法によれば安定して製造できるので好ましい。
 具体的には、本実施形態に係る鋼板は、以下の工程(I)~(VI)を含む製造方法によって製造可能である。
(I)所定の化学組成を有するスラブを1230℃以上に加熱する加熱工程
(II)前記スラブに対して仕上げ圧延温度が930℃以上となるように熱間圧延を行って熱延鋼板を得る熱延工程
(III)前記熱延鋼板を300℃以上、600℃以下で捲き取り、室温まで冷却する捲き取り工程
(IV)前記捲き取り工程後の前記熱延鋼板に対して酸洗を行う酸洗工程
(V)前記酸洗工程後の前記熱延鋼板に、5%超、30%以下の圧下率の圧下を行う軽圧下工程
(VI)前記軽圧下工程後の前記熱延鋼板を、450~Ac1℃の温度域に再加熱し、10~1500秒保持する再加熱工程
 以下、各工程の好ましい条件について説明する。
<加熱工程>
 加熱工程では、熱延工程に供する上述した化学組成を有するスラブを、1230℃以上に加熱する。加熱温度を1230℃以上にする理由は、スラブ中に含まれるTi、Nb、Vといった析出強化に寄与する元素(スラブ中では5.0nm超の大きな析出物として存在している場合が多い)を溶解させ、後の熱処理工程にてTiを含有する円相当径が5.0nm以下の析出物として5.0×10個/mm以上析出させるためである。所定の個数密度の析出物を確保するためには、多量のTi、Nb、Vが必要となることから、従来発明(特許文献1、2)以上の高温でスラブ加熱する必要がある。加熱温度が1230℃未満では、十分にTi、Nb、Vが溶解しない。加熱温度の上限は特に限定しないが、1400℃を超えると効果が飽和するばかりでなく、スラブ表面に形成するスケールが溶融し、溶けた酸化物が加熱炉内の耐火物を溶損することから好ましくない。このことから加熱温度は1400℃以下であることが好ましい。
<熱延工程>
 加熱されたスラブに対し、熱間圧延を行う。熱間圧延では、必要に応じて粗圧延を行った後、仕上げ圧延を行う。仕上げ圧延温度(仕上げ圧延完了温度)は930℃以上にする。
 本実施形態に係る鋼板は、Ti、Nb、Vを多く含むことから、仕上げ圧延前にスラブや粗圧延した熱延鋼板の温度が低下するとTiを含む析出物が形成される。この段階で析出するTiを含む炭化物はサイズが大きくなるので、仕上げ圧延前でのTiを含む析出物を抑制しつつ、仕上げ圧延および捲き取りを実施する必要がある。仕上げ圧延温度が930℃未満では、Tiを含有する析出物の形成が顕著になることから、仕上げ圧延温度を930℃以上とする。仕上げ圧延温度の上限は特に限定する必要はない。
<捲き取り工程>
 熱延工程後の鋼板(熱延鋼板)に対し、冷却後、捲き取りを行う。熱延鋼板の捲き取り温度は300℃以上、600℃以下とし、捲き取り後、コイルの状態で室温まで冷却する。
 捲き取り温度までの冷却は冷却できればどのような方法であっても良いが、ノズルから水を用いて冷却する方法が一般的であり、生産性にも優れる。水冷する場合の冷却速度は、例えば、20℃/秒以上である。
 捲き取り温度が600℃超ではフェライトが形成され、焼き戻しマルテンサイトおよびベイナイトの体積率を95%以上とすることが出来ず、強度と成形性とのバランスに劣る。また、捲き取り温度が600℃超の場合、マルテンサイトやベイナイト中に円相当径が5.0nm超の析出物が形成され、後の熱処理工程で析出する円相当径5.0nm以下の析出物の個数密度が減少し、析出物の個数密度が5.0×10個/mmを下回ってしまう。一方、捲き取り温度が300℃未満の場合、組織がマルテンサイト主相となり、高強度化はし易いものの、延性が低下する。そのため、高延性と高強度とを両立させるためには、捲き取り温度を300℃以上とする必要がある。
 捲き取り工程後のマルテンサイトは、鉄系炭化物をほとんど含まない焼き入れままのマルテンサイト(フレッシュマルテンサイト)、あるいは、捲き取り後に室温まで冷却される際にマルテンサイト中に鉄系炭化物が析出したオートテンパードマルテンサイトのいずれであっても良い。
 捲き取ったコイルを室温まで冷却する際の冷却条件は特に限定する必要はないが、例えばコイルを放置することで室温まで冷却すればよい。あるいは、冷却期間の短縮を目的に水冷を実施しても、目的の熱延コイルを得ることは出来る。
 図1A、図1Bは、捲き取り温度が500℃、軽圧下の圧下率が7%の例と、捲き取り温度が650℃、軽圧下の圧下率が7%の例とにおける、Tiを含む析出物の粒子径(円相当径)ごとの個数密度を示す図である。
 また、図2A~図2Dに示されるように、巻取り温度によって特性が変化する。
 これは、図1Aに示されるように、適切な温度で捲き取ることで、Tiを含有する粒子径(円相当径)が5.0nm以下の析出物の個数密度(図中破線より左の個数密度))が大きくなっているからであると考えられる。
<酸洗工程>
 捲き取り工程後の熱延鋼板に対して酸洗を行う。酸洗を実施することで、後の製造工程でのめっき性を改善したり、自動車製造工程での化成処理性を高めることができる。また、スケールのついた熱延鋼板を軽圧下するとスケールが剥離し、それが押し込まれることで疵になる場合もある。そのため軽圧下を行う前には、まず、熱延鋼板の酸洗を実施する。酸洗条件は特に限定されないが、インヒビター入りの塩酸、硫酸などで酸洗するのが一般的である。
<軽圧下工程>
 軽圧下工程では、酸洗工程後の熱延鋼板に、5%超、30%以下の圧下率で圧下を加える。
 熱延鋼板に圧下を加えることで、後工程の熱処理での析出物が析出するための析出サイトを導入する。析出サイトの導入により、熱処理によってTiを含有する円相当径が5.0nm以下の微細炭化物を5.0×10個/mm以上析出させることが可能となる。また、図4A~図4Dに示されるように、圧下率を5%超とすることで、TS、Hvs/Hvc、疲労限を高めることができる。そのため、5%超の圧下率の圧下を加える。
 一方、圧下率が30%を超えると、効果が飽和するばかりでなく、導入された転位の回復が不十分となり、大幅な伸びの劣化を招く。また、後工程である再加熱工程において、加熱温度及び加熱時間によっては、再結晶が生じてしまいTi析出物と母相(ここでは再結晶したフェライト)との整合性が失われ、析出強化量が低減する。この場合、980MPa以上の引張強度を確保することが難しい。そのため、圧下率を30%以下とする。圧下率は、好ましくは20%未満であり、より好ましくは15%未満である。
 析出物の核生成サイトになる転位を導入できるのであれば、圧下は、1パスで5%超、30%以下の圧下を実施しても良いし、複数回に分けて行って、累積圧下率が5%超、30%以下となるように行っても良い。
 図3A~図3Dに示されるように、軽圧下の圧下率を5%超とすることで、高強度と高延性とが得られる。
 軽圧下工程は本実施形態に係る鋼板の製造方法において、最も重要な工程であり、いわゆる冷間圧延とは異なる役割を有する工程である。即ち、冷間圧延とは鋼板の板厚制御、再結晶を利用した集合組織制御や粒径制御のために施される場合が多いが、本実施形態における軽圧下工程は、上述のように、転位の導入による微細炭化物析出促進のために実施される。
<再加熱工程>
 軽圧下工程後の熱延鋼板を、450~Ac1℃の温度域に再加熱して、10~1500秒間この温度域に留まるように保持する熱処理を行う。軽圧下工程後の熱延鋼板を再加熱して熱処理することでTiを含有する円相当径が5.0nm以下の炭化物を5.0×10個/mm以上析出させることができる。熱処理温度(再加熱温度)が450℃未満では、原子の拡散が不十分であり、十分な量の析出物を得ることが出来ない。短時間での熱処理を考えると、望ましくは、熱処理温度は500℃以上である。熱処理温度がAc1℃超では、析出物が粗大化するとともに、熱処理時に形成したオーステナイトが冷却時に、フェライトが生じてしまい、焼き戻しマルテンサイトとベイナイトの体積率の合計を95%以上とすることが出来ないおそれがあるとともに、オーステナイトへの変態によりTi析出物と母相(ここでは、オーステナイトが冷却過程で変態したベイナイトやマルテンサイト)の整合関係が崩れてしまい、析出強化量が低下してしまう。この結果、析出物の個数密度を上記範囲としたとしても、980MPa以上の引張強度を確保することが難しい。そのため、熱処理温度はAc1℃以下、望ましくは700℃以下にする。Ac1(Ac1変態点)(℃)は、加熱時の膨張曲線を測定することで特定できる。具体的には、5℃/秒で加熱時の変態曲線を測定することでAc1変態点を特定できる。
 また、図4A~図4Dに示されるように、再加熱温度(熱処理温度)を450~Ac1℃とすることで、高強度と高延性とが得られる。
 再加熱工程での熱処理時間が10秒未満では、原子の拡散が不十分であり、Tiを含有する円相当径5.0nm以下の炭化物を5.0×10個/mm以上析出させることが出来ない。熱処理時間が1500秒超では析出物が粗大化し、Tiを含有する円相当径5.0nm以下の析出物が5.0×10個/mm未満となる。このことから、熱処理時間は10~1500秒の間にする必要がある。450~Ac1℃の温度域での熱処理は、この温度域での加熱や徐冷も含む。すなわち、熱処理時間は、再加熱後、鋼板が450~Ac1℃の温度域にある時間を意味し、この温度域に所定の時間留まっていれば、途中で温度変化があってもよい。
 図5A~図5Dに示されるように、再加熱時間(熱処理時間)を10~1500秒の範囲にすることで、高強度と高延性とが得られる。
 保持工程の後の冷却は特に限定されない。
 上記工程を含む製造方法によって本実施形態に係る鋼板が得られる。しかしながら本実施形態に係る鋼板を、耐食性の向上を目的として溶融亜鉛めっき鋼板または合金化溶融亜鉛めっきとする場合には、以下の工程をさらに含むことが好ましい。
<めっき工程>
 再加熱工程後の熱延鋼板に溶融亜鉛めっきを施す。亜鉛めっきは耐食性向上に寄与することから、耐食性が期待される用途への適用の場合には亜鉛めっきを実施することが望ましい。亜鉛めっきは溶融亜鉛めっきであることが好ましい。溶融亜鉛めっきの条件は特に限定されず、公知の条件で行えばよい。
 溶融亜鉛めっき後の熱延鋼板(溶融亜鉛めっき鋼板)を、460~600℃に加熱してめっきを合金化することで、溶融亜鉛めっき層が合金化溶融亜鉛めっき層である合金化溶融亜鉛めっき鋼板を製造できる(合金化工程)。合金化溶融亜鉛めっき鋼板は、耐食性の向上に加えて、スポット溶接性の向上や絞り成形時の摺動性向上などの効果を付与できることから、用途に応じて合金化を実施しても良い。
 亜鉛めっき以外に、Alめっき、Mgを含むめっき、電気めっきを実施したとしても、980MPa以上の引張強度を有する耐疲労特性に優れた本実施形態に係る鋼板を製造できる。
 表1の鋼種A~P及びa~fに示す化学組成を有する鋼を溶製し、連続鋳造により厚みが240~300mmのスラブを製造した。
 得られたスラブを表2-1、表2-2に示す条件で、加熱し、仕上げ圧延を行い、2.3mmの熱延鋼板とし、捲き取り温度まで水冷した後、コイルに捲き取って室温まで空冷した。
 コイルを捲き戻した後、酸洗を行い、酸洗後の熱延鋼板に対し、表2-1、表2-2に示す圧下率で軽圧下を行った。ただし、表2-1、表2-2中、圧下率が0%の例については軽圧下を行わなかった。
 軽圧下を行った後の熱延鋼板(軽圧下を行わなかった場合には酸洗後の熱延鋼板)に対し、表2-1、表2-2に示す温度に再加熱して熱処理を行って鋼番号A1~f1の熱延鋼板を製造した。
 熱処理後の熱延鋼板に対し、必要に応じてめっきを行い、一部の例についてはさらに合金化処理を行った。表2-1、表2-2中、HRはめっきを行っていない熱延鋼板、GIは溶融亜鉛めっき鋼板、GAは合金化溶融亜鉛めっき鋼板を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 得られた熱延鋼板に対し、ミクロ組織観察、Tiを含有する円相当径が5.0nm以下の析出物の個数密度の測定、Hvs/Hvcの測定、引張特性の評価、穴広げ性の評価、耐疲労特性の評価を行った。
<ミクロ組織観察>
 ミクロ組織は、得られた熱延鋼板を圧延方向に平行に切り出した後、研磨およびナイタール試薬でエッチングした後、SEMを用いて、1000~30000倍の倍率で板厚方向に表面から板厚の1/4の位置を観察することで、フェライト、ベイナイト、パーライト、フレッシュマルテンサイト、焼き戻しマルテンサイトを同定し、焼き戻しマルテンサイト、ベイナイト及びその他の組織の面積率を求め、これを体積率とした。
<円相当径5.0nm以下のTiを含む析出物の個数密度の測定>
 Tiを含む析出物の個数密度は、表面から1/4の位置から採取したサンプルに対し電解抽出残差法を用い、鋼板の単位体積当たりに含まれる析出物の円相当径1nm毎の個数密度を測定した。その際、透過型電子顕微鏡(TEM)およびEDSにて炭化物の組成分析を行い、微細な析出物がTiを含む析出物であることを確認した。
<Hvs/Hvcの測定>
 表面から深さ20μmの位置における平均硬度Hvsは、鋼板の幅方向1/4位置から圧延方向に平行な断面が測定面となるようにサンプルを切り出し、埋め込み研磨を実施した後、表面から20μmの位置のビッカース硬度をJIS Z 2244:2009に準拠して荷重10gfにて10点測定し、その平均値をHvsとした。また、Hvcは、鋼板の幅方向1/4位置から圧延方向に平行な断面が測定面となるようにサンプルを切り出し、埋め込み研磨を実施した後、JIS Z 2244:2009に準拠して荷重10gfにて表面から0.20~0.50mm位置から板厚方向に約0.05mmピッチでビッカース硬度を合計7点測定し、その平均値をHvcとした。このHvs及びHvcからHvs/Hvcを求めた。
<引張特性の評価>
 引張特性(YP、TS、El)は、圧延方向に対し垂直方向に切り出したJIS5号試験片を用いて、JIS Z 2241:2011に準拠して行う引張試験によって求めた。引張強度が980MPa、強度と伸びとの積(TS×El)が12000MPa×%以上であれば強度、延性に優れると判断した。また、YP/TSが0.90以上であれば高耐力であると判断した。
<穴広げ性の評価>
 穴広げ率は、JIS Z 2256:2010に準拠して行う穴広げ試験方法にて求めた。具体的には、鋼板の幅方向1/4幅位置から試験片を切り出し、直径10mmのパンチ、内径10.6mmのダイスを用いて打ち抜きを行った後、60°円錐パンチを用いて、打ち抜き部のバリをパンチと逆側になるようにセットし、穴広げを実施し、打ち抜き部に発生した亀裂が板厚を貫通した時点で試験を中止し、穴広げ試験後の穴径を測定することで、穴広げ率を求めた。穴広げ率が、40%以上であれば穴広げ性に優れると判断した。穴広げ率が40%以上であれば、バーリング部や伸びフランジ部が存在する足回り部品に好適である。
<耐疲労特性の評価>
 耐疲労特性は、JIS Z 2275:1978に記載の両振りの平面曲げ疲労試験(応力比、R=-1)により、測定して評価した。具体的には、負荷応力と繰り返し数の関係を求めた後、10回の繰り返し応力を付与しても破断しない応力を疲労限(FS)と定義し、これをTSで除した値にて耐疲労特性を整理した。この値が0.40を超えるものを耐疲労特性に優れると判断した。
 表3-1~表3-3に結果を示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1~表3-3から分かるように、本発明の化学組成を有し、本発明の熱延条件、圧下率及び熱処理条件を満足した例(本発明鋼)では、Tiを含む円相当径が5.0nm以下の析出物の個数密度が5.0×10個/mm以上であった。また、これらの例では、980MPa以上の引張強度、0.90以上の高い降伏比、12000MPa×%以上のTS×El及び優れた耐疲労特性を満足していた。
 一方、化学組成、スラブ加熱温度、仕上げ温度、捲き取り温度、軽圧下条件、熱処理条件のいずれか一以上が本発明外である比較例については、鋼板のミクロ組織、Hvs/Hvc、Tiを含む円相当径5.0nm以下の析出物の個数密度または引張強度が低かった。その結果、980MPa以上の引張強度、YP/TS≧0.90という高耐力、TS×El≧12000MPa×%という高延性、疲労限/TS≧0.40以上という優れた耐疲労特性を同時に得ることはできなかった。
 本発明によれば、高耐力、高延性及び優れた耐疲労特性を有する、引張強度が980MPa以上の高強度鋼板を提供できる。この鋼板は、自動車部品の軽量化に寄与することから工業的に大きな価値がある。また、この鋼板は、高強度(高引張強度)、高耐力、高延性であり、かつ耐疲労特性に優れるので、自動車の足回り部品に好適である。

Claims (7)

  1.  化学組成が、質量%で、
     C:0.020~0.090%、
     Si:0.01~2.00%、
     Mn:1.00~3.00%、
     Ti:0.010~0.200%、
     Al:0.005~1.000%、
     P:0.100%以下、
     S:0.0100%以下、
     N:0.0100%以下、
     Ni:0~2.00%、
     Cu:0~2.00%、
     Cr:0~2.00%、
     Mo:0~2.00%、
     Nb:0~0.100%、
     V:0~0.100%、
     W:0~0.100%、
     B:0~0.0100%、
     REM:0~0.0300%、
     Ca:0~0.0300%、
     Mg:0~0.0300%、
     を含有し、残部がFe及び不純物からなり、
    0.100≦Ti+Nb+V≦0.450を満足し、
     ミクロ組織が、体積率で、焼き戻しマルテンサイト及びベイナイトを合計で95%以上含有し、残部がフェライト及びパーライトからなり、
     前記ミクロ組織が、円相当径が5.0nm以下でありかつTiを含有する析出物を単位体積当たり5.0×10個/mm以上含有し、
     表面から深さ20μmの位置における平均硬度Hvsと、前記表面から0.20~0.50mmの位置における平均硬度Hvcとの比であるHvs/Hvcが、0.85以上であり、
     引張強度が980MPa以上であり、
     前記引張強度と伸びとの積が、12000MPa×%以上である
     ことを特徴とする高強度鋼板。
  2.  前記化学組成が、質量%で、
    Ni:0.01~2.00%、
    Cu:0.01~2.00%、
    Cr:0.01~2.00%、
    Mo:0.01~2.00%、
    Nb:0.005~0.100%、
    V:0.005~0.100%、
    W:0.005~0.100%、
    B:0.0005~0.0100%、
    REM:0.0003~0.0300%、
    Ca:0.0003~0.0300%、
    Mg:0.0003~0.0300%、
    からなる群から選択される1種又は2種以上を含有する
    ことを特徴とする請求項1に記載の高強度鋼板。
  3.  前記表面に溶融亜鉛めっき層を備えることを特徴とする請求項1または2に記載の高強度鋼板。
  4.  前記溶融亜鉛めっき層が合金化溶融亜鉛めっき層であることを特徴とする請求項3に記載の高強度鋼板。
  5.  請求項1又は2に記載の高強度鋼板を製造する方法であって、
     化学組成が、質量%で、C:0.020~0.090%、Si:0.01~2.00%、Mn:1.00~3.00%、Ti:0.010~0.200%、Al:0.005~1.000%、P:0.100%以下、S:0.0100%以下、N:0.0100%以下、Ni:0~2.00%、Cu:0~2.00%、Cr:0~2.00%、Mo:0~2.00%、Nb:0~0.100%、V:0~0.100%、W:0~0.100%、B:0~0.0100%、REM:0~0.0300%、Ca:0~0.0300%、Mg:0~0.0300%を含有し、残部がFe及び不純物からなるスラブを1230℃以上に加熱する加熱工程と;
     前記スラブに対して、仕上げ圧延温度が930℃以上となるように熱間圧延を行って熱延鋼板を得る熱延工程と;
     前記熱延鋼板を、300℃以上、600℃以下で捲き取った後、室温まで冷却する捲き取り工程と;
     前記捲き取り工程後の前記熱延鋼板に対して酸洗を行う酸洗工程と;
     前記酸洗工程後の前記熱延鋼板に、5%超、30%以下の圧下率で圧下を行う軽圧下工程と;
     前記軽圧下工程後の前記熱延鋼板を、450~Ac1℃の温度域に再加熱し、10~1500秒保持する再加熱工程と;を備える
    ことを特徴とする高強度鋼板の製造方法。
  6.  さらに、前記再加熱工程後の前記熱延鋼板に、溶融亜鉛めっきを施す溶融亜鉛めっき工程を備える
    ことを特徴とする請求項5に記載の高強度鋼板の製造方法。
  7.  さらに、前記溶融亜鉛めっき工程後の前記熱延鋼板を、460~600℃に加熱する合金化工程を備える
    ことを特徴とする請求項6に記載の高強度鋼板の製造方法。
PCT/JP2020/012425 2019-03-22 2020-03-19 高強度鋼板及びその製造方法 WO2020196311A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080017780.4A CN113544299B (zh) 2019-03-22 2020-03-19 高强度钢板及其制造方法
EP20776903.5A EP3943624A4 (en) 2019-03-22 2020-03-19 HIGH STRENGTH STEEL PLATE AND METHOD OF PRODUCTION THEREOF
JP2021509334A JP7136335B2 (ja) 2019-03-22 2020-03-19 高強度鋼板及びその製造方法
KR1020217027225A KR102658163B1 (ko) 2019-03-22 2020-03-19 고강도 강판 및 그 제조 방법
MX2021010227A MX2021010227A (es) 2019-03-22 2020-03-19 Lamina de acero de alta resistencia y metodo para fabricar la misma.
US17/430,651 US20220186333A1 (en) 2019-03-22 2020-03-19 High-strength steel sheet and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019055469 2019-03-22
JP2019-055469 2019-03-22

Publications (1)

Publication Number Publication Date
WO2020196311A1 true WO2020196311A1 (ja) 2020-10-01

Family

ID=72611935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012425 WO2020196311A1 (ja) 2019-03-22 2020-03-19 高強度鋼板及びその製造方法

Country Status (7)

Country Link
US (1) US20220186333A1 (ja)
EP (1) EP3943624A4 (ja)
JP (1) JP7136335B2 (ja)
KR (1) KR102658163B1 (ja)
CN (1) CN113544299B (ja)
MX (1) MX2021010227A (ja)
WO (1) WO2020196311A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI788080B (zh) * 2021-11-01 2022-12-21 中國鋼鐵股份有限公司 熱成形硬化鋁基鍍覆鋼板及其製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4083241A4 (en) * 2019-12-23 2023-08-16 Nippon Steel Corporation HOT ROLLED STEEL SHEET

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220642A (ja) * 2000-02-03 2001-08-14 Sumitomo Metal Ind Ltd 軟質で熱処理歪みの小さい高炭素鋼帯とその製造方法
WO2010137317A1 (ja) 2009-05-27 2010-12-02 新日本製鐵株式会社 疲労特性と伸び及び衝突特性に優れた高強度鋼板、溶融めっき鋼板、合金化溶融めっき鋼板およびそれらの製造方法
JP2015147958A (ja) * 2014-02-05 2015-08-20 Jfeスチール株式会社 比例限の高い高強度冷延薄鋼板およびその製造方法
WO2018026013A1 (ja) 2016-08-05 2018-02-08 新日鐵住金株式会社 鋼板及びめっき鋼板
WO2018092817A1 (ja) * 2016-11-16 2018-05-24 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP2019055469A (ja) 2017-09-22 2019-04-11 ファナック株式会社 キャリブレーションを行うロボット制御装置、計測システム及びキャリブレーション方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4966485B2 (ja) * 2004-08-25 2012-07-04 住友金属工業株式会社 高張力溶融亜鉛めっき鋼板とその製造方法
JP5206244B2 (ja) * 2008-09-02 2013-06-12 新日鐵住金株式会社 冷延鋼板
JP5440672B2 (ja) * 2011-09-16 2014-03-12 Jfeスチール株式会社 加工性に優れた高強度鋼板およびその製造方法
TWI468534B (zh) * 2012-02-08 2015-01-11 Nippon Steel & Sumitomo Metal Corp 高強度冷軋鋼板及其製造方法
JP5867436B2 (ja) * 2013-03-28 2016-02-24 Jfeスチール株式会社 高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP5862651B2 (ja) * 2013-12-18 2016-02-16 Jfeスチール株式会社 耐衝撃性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
EP3054025B1 (en) * 2013-12-18 2018-02-21 JFE Steel Corporation High-strength galvanized steel sheet and method for manufacturing the same
CA2944863A1 (en) * 2014-04-23 2015-10-29 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet for tailored rolled blank, tailored rolled blank, and methods for producing these
JP6390572B2 (ja) * 2015-09-29 2018-09-19 Jfeスチール株式会社 冷延鋼板、めっき鋼板およびこれらの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220642A (ja) * 2000-02-03 2001-08-14 Sumitomo Metal Ind Ltd 軟質で熱処理歪みの小さい高炭素鋼帯とその製造方法
WO2010137317A1 (ja) 2009-05-27 2010-12-02 新日本製鐵株式会社 疲労特性と伸び及び衝突特性に優れた高強度鋼板、溶融めっき鋼板、合金化溶融めっき鋼板およびそれらの製造方法
JP2015147958A (ja) * 2014-02-05 2015-08-20 Jfeスチール株式会社 比例限の高い高強度冷延薄鋼板およびその製造方法
WO2018026013A1 (ja) 2016-08-05 2018-02-08 新日鐵住金株式会社 鋼板及びめっき鋼板
WO2018092817A1 (ja) * 2016-11-16 2018-05-24 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP2019055469A (ja) 2017-09-22 2019-04-11 ファナック株式会社 キャリブレーションを行うロボット制御装置、計測システム及びキャリブレーション方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI788080B (zh) * 2021-11-01 2022-12-21 中國鋼鐵股份有限公司 熱成形硬化鋁基鍍覆鋼板及其製造方法

Also Published As

Publication number Publication date
KR102658163B1 (ko) 2024-04-19
JPWO2020196311A1 (ja) 2020-10-01
US20220186333A1 (en) 2022-06-16
CN113544299B (zh) 2023-08-15
MX2021010227A (es) 2021-09-21
EP3943624A4 (en) 2023-08-02
JP7136335B2 (ja) 2022-09-13
EP3943624A1 (en) 2022-01-26
CN113544299A (zh) 2021-10-22
KR20210119500A (ko) 2021-10-05

Similar Documents

Publication Publication Date Title
JP5327410B1 (ja) 耐衝撃特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法、並びに、高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP5352793B2 (ja) 耐遅れ破壊特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
US11939640B2 (en) Method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, and method for producing heat-treated sheet
KR102544884B1 (ko) 고강도 용융 아연 도금 강판 및 그의 제조 방법
WO2013018722A1 (ja) 成形性に優れた高強度鋼板、高強度亜鉛めっき鋼板及びそれらの製造方法
WO2013105633A1 (ja) ホットスタンプ成形体、及びホットスタンプ成形体の製造方法
WO2008133062A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
EP2527484B1 (en) Method for manufacturing a high-strength galvanized steel sheet having excellent formability and spot weldability
CN106661689A (zh) 热轧钢板
JP6460239B2 (ja) 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP4288146B2 (ja) 溶接熱影響部の耐軟化性に優れたバーリング性高強度鋼板の製造方法
JP6460238B2 (ja) 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
KR102658163B1 (ko) 고강도 강판 및 그 제조 방법
JP7280537B2 (ja) 熱延鋼板
KR102658165B1 (ko) 고강도 강판 및 그 제조 방법
JP6947334B1 (ja) 高強度鋼板およびその製造方法
WO2023135983A1 (ja) 高強度鋼板およびその製造方法
CN114945690B (zh) 钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776903

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509334

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217027225

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020776903

Country of ref document: EP