WO2020178977A1 - Heat exchanger, heat exchanger unit, and refrigeration cycle device - Google Patents

Heat exchanger, heat exchanger unit, and refrigeration cycle device Download PDF

Info

Publication number
WO2020178977A1
WO2020178977A1 PCT/JP2019/008580 JP2019008580W WO2020178977A1 WO 2020178977 A1 WO2020178977 A1 WO 2020178977A1 JP 2019008580 W JP2019008580 W JP 2019008580W WO 2020178977 A1 WO2020178977 A1 WO 2020178977A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
flat tube
flat
flat tubes
refrigerant
Prior art date
Application number
PCT/JP2019/008580
Other languages
French (fr)
Japanese (ja)
Inventor
中村 伸
前田 剛志
暁 八柳
森田 敦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021503308A priority Critical patent/JP7118238B2/en
Priority to PCT/JP2019/008580 priority patent/WO2020178977A1/en
Publication of WO2020178977A1 publication Critical patent/WO2020178977A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/04Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing

Definitions

  • the present invention relates to a heat exchanger, a heat exchanger unit including a heat exchanger, and a refrigeration cycle device, and more particularly to the structure of fins attached to a flat tube.
  • heat exchangers that circulate a refrigerant inside and evaporate or condense the refrigerant to exchange heat with a fluid such as air have been widely used in various fields such as air conditioners and refrigerators. Although it is a heat exchanger that plays an active role in various applications such as cooling heat-generating equipment and heating to working fluids, improvement in heat exchange performance and compactness is always required in all fields, and it is necessary to achieve both of these at the same time. It goes without saying that it has an advantage for the device itself on which the vessel is mounted.
  • This fin-and-tube heat exchanger is manufactured by passing a plurality of tubes through a plurality of thin plate-shaped fins in a direction perpendicular to the fin surface, expanding these tubes, and attaching the fins to the tubes.
  • the fin-and-tube heat exchanger is characterized by flowing a refrigerant inside the pipe and performing heat exchange with air by using a fin with a large heat transfer area that closely adheres to the outer wall of the pipe as a heat transfer medium.
  • Various improvements have been made so far with the aim of improving.
  • finless heat exchangers which are heat exchangers that increase the heat transfer area by arranging a large number of tubes densely and do not use fins that connect a large number of tubes, are attracting attention.
  • This finless heat exchanger has various forms depending on the application, from those in which circular pipes are regularly arranged to those in which pipes having a rectangular, elliptical, or streamline cross section are irregularly arranged. Things have been devised.
  • the heat exchange performance may be significantly reduced due to the elimination of fins.
  • a fin-and-tube heat exchanger having a pipe diameter of about 7 mm, a pitch between fins of about 1 mm, and a wind velocity of air sent by a fan of about 1 m/s, such as an indoor heat exchanger of a home air conditioner.
  • Patent Document 1 in order to provide a heat exchanger for an air conditioner capable of improving heat exchange performance while ensuring compactness without causing an increase in pressure loss, fin and tube heat exchange is performed.
  • the minor axis A which is the minor axis dimension of the cross section of the tube of the vessel, is formed in the range of 0.31 to 1.40 mm, and the minor axis A and the pitch B of each flat tube are within a certain numerical range. It has been proposed to arrange each flat tube as described above.
  • the fin-and-tube heat exchanger as shown in Patent Document 1, when it is operated as an evaporator, the condensed water generated by condensing the moisture in the air is generated between the adjacent fins. It may stay across.
  • the pitch B of each flat tube of the finless heat exchanger is arranged at the same degree as the fin pitch of the conventional fin-and-tube type heat exchanger as shown in Patent Document 1, the finless heat exchanger also has the above-mentioned structure. The phenomenon of accumulated condensed water may occur. In such a finless heat exchanger, the heat transfer performance can be ensured because the pitch B of each flat tube is small, but dew condensation water is retained across adjacent flat tubes. As a result, the finless heat exchanger has a problem that the heat transfer performance and the ventilation performance are impaired when it is operated as an evaporator.
  • the present invention is for solving the above problems, and even in a finless heat exchanger in which the distance between the flat tubes is narrow, it is difficult for water to stay in the clearance between the flat tubes and the heat with improved drainage is provided.
  • An object is to obtain an exchanger, a heat exchanger unit, and a refrigeration cycle device.
  • a heat exchanger includes a first flat tube and a second flat tube whose tube axes are arranged in parallel, and the first flat tube is a first flat tube that faces the second flat tube. And the second flat tube has a second side surface facing the first flat tube, and the hydrophilic region that is at least a part of the first side surface has the second side surface. More hydrophilic than.
  • the heat exchanger unit according to the present invention includes the above heat exchanger.
  • the refrigeration cycle apparatus includes the heat exchanger unit described above.
  • the two opposite side surfaces of the first flat tube and the second flat tube are configured to have different hydrophilicity, when the condensed water straddles the two side surfaces. It moves from the side with low hydrophilicity to the side with high hydrophilicity.
  • By moving the dew condensation water it is possible to prevent the dew condensation water from accumulating between the two flat tubes, and the drainage performance is improved. As a result, deterioration of ventilation performance and heat transfer performance can be suppressed even in a heat exchanger in which the intervals between the flat tubes are narrow.
  • FIG. 5 is a diagram showing hydrophilicity of surfaces of a plurality of flat tubes of the heat exchanger according to the first embodiment. It is explanatory drawing in the case of water droplets adhering to the surface of the plurality of flat tubes of the heat exchanger of the first embodiment.
  • FIG. 5 is a schematic diagram of a heat exchanger that is a comparative example of the heat exchanger of the first embodiment.
  • FIG. 5 is a schematic diagram of a heat exchanger that is a comparative example of the heat exchanger of the first embodiment.
  • FIG. 5 is a schematic diagram showing the behavior of water in the outdoor heat exchanger according to the first embodiment.
  • FIG. 5 is a schematic diagram showing the behavior of water in the outdoor heat exchanger according to the first embodiment.
  • FIG. 5 is a schematic diagram showing the behavior of water in the outdoor heat exchanger according to the first embodiment.
  • FIG. 5 is an explanatory diagram in the case where water droplets adhere to the surfaces of a plurality of flat tubes of the heat exchanger of the first embodiment.
  • FIG. It is a figure which shows the hydrophilicity property of the surface of the plurality of flat tubes of the heat exchanger which concerns on Embodiment 4.
  • FIG. It is a figure which shows the hydrophilicity property of the surface of the plurality of flat tubes of the heat exchanger according to the fifth embodiment. It is explanatory drawing of the cross-sectional structure of the heat exchanger which concerns on Embodiment 6. It is explanatory drawing of the cross-sectional structure of the heat exchanger which is the modification of the heat exchanger which concerns on Embodiment 6.
  • FIG. 1 is a perspective view showing a heat exchanger unit 101 according to the first embodiment.
  • FIG. 2 is a front view showing the heat exchanger 100 according to the first embodiment.
  • FIG. 3 is an explanatory diagram of the refrigeration cycle device 1 to which the heat exchanger 100 according to the first embodiment is applied.
  • the heat exchanger unit 101 shown in FIG. 1 is an example, and corresponds to the outdoor unit 8 of the air conditioner here.
  • the heat exchanger 100 shown in FIG. 2 is mounted inside the heat exchanger unit 101 of FIG. 1, and schematically shows the structure as viewed from the front.
  • the heat exchanger 100 is mounted on the refrigeration cycle device 1 such as an air conditioner or a refrigerator, and can be used as the outdoor heat exchanger 5 or the indoor heat exchanger 7 in the refrigeration cycle device 1.
  • the compressor 3, the four-way valve 4, the outdoor heat exchanger 5, the expansion device 6, and the indoor heat exchanger 7 are connected by a refrigerant pipe 90 to form a refrigerant circuit. It was done.
  • the refrigeration cycle device 1 is an air conditioner
  • the refrigerant flows through the refrigerant pipe 90, and the four-way valve 4 switches the refrigerant flow to perform heating operation, freezing operation, or defrosting operation. It can be switched.
  • the outdoor heat exchanger 5 mounted on the outdoor unit 8 and the indoor heat exchanger 7 mounted on the indoor unit 9 are provided with the blower 2 in the vicinity.
  • the blower 2 sends outside air to the outdoor heat exchanger 5.
  • the outdoor heat exchanger 5 exchanges heat between the outside air and the refrigerant.
  • the blower 2 sends indoor air to the indoor heat exchanger 7.
  • the indoor heat exchanger 7 exchanges heat between the indoor air and the refrigerant to harmonize the temperature of the indoor air.
  • the heat exchanger 100 according to Embodiment 1 can be used as the outdoor heat exchanger 5 mounted on the outdoor unit 8 and the indoor heat exchanger 7 mounted on the indoor unit 9 in the refrigeration cycle apparatus 1, Functions as a condenser or evaporator.
  • the heat exchanger unit 101 shown in FIG. 1 is an example of an outdoor unit 8 on which the heat exchanger 100 is mounted.
  • the arrow shown in FIG. 1 indicates the flow direction of the air flow.
  • the heat exchanger unit 101 takes in outside air into the housing from the back side, performs heat exchange between the outside air and the refrigerant in the heat exchanger 100, and blows out the heat-exchanged air from the front side.
  • the heat exchanger 100 shown in FIG. 2 includes a plurality of flat tubes 20.
  • the plurality of flat tubes 20 are juxtaposed in the X direction, and one of the plurality of flat tubes 20 adjacent to each other is referred to as a first flat tube 20a, and the other is referred to as a second flat tube 20b.
  • the plurality of flat tubes 20 are arranged with their tube axes along the Z direction, and are arranged in parallel along the X direction.
  • the Z-direction reverse direction matches the gravity direction, but the heat exchanger 100 may be arranged with the Z-axis tilted in the gravity direction.
  • the plurality of flat tubes 20 are connected to the lower end header 80 at the lower end in the Z direction and are connected to the upper end header 81 at the upper end in the Z direction.
  • the lower end header 80 and the upper end header 81 are connected to the refrigerant pipe 90 of the refrigeration cycle apparatus 1, and the refrigerant flowing through the refrigerant circuit flows into one of the lower end header 80 and the upper end header 81 to connect the plurality of flat tubes 20. It passes through and flows out from the other side to the refrigerant pipe 90.
  • the plurality of flat tubes 20 are so-called finless heat exchangers in which fins connecting between the plurality of flat tubes 20 are not provided in addition to the lower end header 80 and the upper end header 81. Furthermore, the plurality of adjacent flat tubes 20 are not provided with a member that connects the first side surface 25a and the second side surface 25b that face each other.
  • FIG. 4 is an explanatory diagram of a cross-sectional structure of the heat exchanger 100 of FIG.
  • FIG. 4 shows a cross section perpendicular to the tube axes of the plurality of flat tubes 20, and is an explanatory view of the structure of the cross section corresponding to the AA cross section in FIG.
  • a part of the plurality of flat tubes 20 is shown.
  • the plurality of flat tubes 20 are formed in a flat shape having a cross section perpendicular to the tube axis having a long axis and a short axis.
  • the plurality of flat tubes 20 are arranged with their major axes oriented in the Y direction and their minor axes oriented in the X direction.
  • the Y direction is the long axis direction of the flat tube 20
  • the X direction is the short axis direction of the flat tube 20.
  • the flow direction of the air flow passing through the heat exchanger 100 substantially coincides with the Y direction.
  • the plurality of flat pipes 20 have a first end portion 21 which is an end portion located on the windward side in the flow direction of the air flow and a second end portion 22 which is an end portion located on the leeward side.
  • the plurality of flat tubes 20 include a first flat tube 20a and a second flat tube 20b arranged adjacent to the first flat tube 20a.
  • first flat tube 20a the side surface facing the X direction is referred to as the first side surface 25a
  • second side surface 25b the side surface facing the opposite direction in the X direction
  • second side surface 25b the side surface facing the opposite direction in the X direction
  • first flat tube 20a and the second flat tube 20b have a first side surface 25a that is a side surface along the major axis direction and a second side surface 25b that is located on the opposite side of the first side surface 25a.
  • the first flat tube 20a and the second flat tube 20b have a first side surface 25a that is a side surface facing the short axis direction and a second side surface 25b that is located on the opposite side of the first side surface 25a. ..
  • the first flat tube 20a and the second flat tube 20b are arranged adjacent to each other, and the first side surface 25a and the second side surface 25b are arranged to face each other.
  • the plurality of flat tubes 20 may be configured by only two types of the first flat tube 20a and the second flat tube 20b, or may include other flat tubes having different configurations.
  • the plurality of flat tubes 20 are each made of a metal material having thermal conductivity.
  • a material forming each of the plurality of flat tubes 20 for example, aluminum, an aluminum alloy, copper, or a copper alloy is used.
  • Each of the plurality of flat tubes 20 is manufactured by extruding a heated material from a hole in a die to form a plurality of refrigerant flow paths 24 shown in FIG.
  • each of the plurality of flat tubes 20 may be manufactured by a drawing process in which a material is drawn out from a hole of a die and a cross section shown in FIG. 4 is formed. The method of manufacturing each of the plurality of flat tubes 20 can be appropriately selected according to the cross-sectional shape.
  • FIG. 5 is a diagram showing the hydrophilicity of the surfaces of the plurality of flat tubes 20 of the heat exchanger 100 of the first embodiment.
  • FIG. 5 shows the same cross section as that of FIG. 4, and schematically represents regions having different hydrophilicity on the surfaces of the plurality of flat tubes 20 in different patterns.
  • the plurality of flat tubes 20 are configured by arranging a first flat tube 20a and a second flat tube 20b adjacent to each other.
  • the first flat tube 20a and the second flat tube 20b differ from each other in hydrophilicity on two side surfaces along the major axis direction.
  • the first side surface 25a has high hydrophilicity and the second side surface 25b has low hydrophilicity.
  • first flat tube 20a and the second flat tube 20b have the same hydrophilicity throughout the first side surface 25a and the second side surface 25b, respectively. It is not limited to this.
  • the first side surface 25a and the second side surface 25b may have regions having different hydrophilicities.
  • the first side surface 25a and the second side surface 25b are configured such that the surfaces facing each other differ in hydrophilicity at least in part.
  • FIG. 6 is an explanatory view when water droplets adhere to the surfaces of the plurality of flat tubes 20 of the heat exchanger 100 of the first embodiment.
  • FIG. 6 shows an example of a state of water droplets attached to the first side surface 25a or the second side surface 25b of the plurality of flat tubes 20.
  • the contact angle ⁇ is generally used as an index indicating the affinity between the surface of an object and water.
  • the contact angle ⁇ is an angle formed by a water drop dropped on the surface of the object and the surface.
  • the contact angle ⁇ becomes small, and when the hydrophilicity of the surface of the object is low, the contact angle ⁇ becomes large.
  • the hydrophilicity is high, the water droplets tend to spread thinly on the surfaces of the plurality of flat tubes 20, and when the hydrophilicity is low, the water droplets are rounded by the surface tension.
  • the hydrophilicity is low, it is also called high water repellency.
  • the contact angle ⁇ is used as an index showing the affinity between the surface of a solid and water.
  • the contact angle ⁇ is defined as the angle formed by the contact surface between the surface of the solid and the water droplet when the water droplet is dropped on the surface of the solid.
  • FIG. 7 is a schematic diagram of a heat exchanger 1100 which is a comparative example of the heat exchanger 100 of the first embodiment.
  • FIG. 7 shows a part of the heat exchanger 1100, and schematically shows a state where water droplets are attached to the first side surface 1025a and the second side surface 1025b of the plurality of flat tubes 1020.
  • the plurality of flat tubes 1020 are configured by arranging a first flat tube 1020a and a second flat tube 1020b adjacent to each other.
  • the plurality of flat tubes 1020 of the heat exchanger 1100 of the comparative example have the same hydrophilic property on the first side surface 1025a and the second side surface 1025b, and are in a state of high water repellency.
  • FIG. 8 is a schematic diagram of a heat exchanger 2100 which is a comparative example of the heat exchanger 100 of the first embodiment.
  • FIG. 8 shows a part of the heat exchanger 2100, and schematically shows a state in which water droplets are attached to the first side surface 2025a and the second side surface 2025b of the plurality of flat tubes 2020.
  • the plurality of flat tubes 2020 are configured by arranging a first flat tube 2020a and a second flat tube 2020b adjacent to each other.
  • the plurality of flat tubes 2020 of the heat exchanger 2100 of the comparative example have the same hydrophilic property as the first side surface 2025a and the second side surface 2025b, and are in a highly hydrophilic state.
  • the heat exchangers 1100 and 2100 according to the comparative example need to be operated with frost formation and defrosting when used under conditions where the outside air temperature is low.
  • water attached to the plurality of flat tubes 1020 and 2020 freezes. Therefore, when defrosting the heat exchangers 1100 and 2100, it is necessary to melt the frozen water, and the amount of heat that is input to the heat exchangers 1100 and 2100 during defrosting operation increases. It will increase.
  • the air conditioning apparatus during the defrosting operation generally stops the heating operation. Therefore, in the heat exchangers 1100 and 2100 according to the comparative example, the frequency of the defrosting operation increases, and thus the comfort of the room decreases and the operation efficiency of the refrigeration cycle apparatus 1 decreases when heating the room. ..
  • the contact angle of at least the first side surface 25a is ⁇ 1 and the contact angle of the second side surface 25b is ⁇ 2, the relationship of ⁇ 1 ⁇ 2 is satisfied. That is, it can be said that the first side surface 25a having a surface with a small contact angle ⁇ 1 is more hydrophilic than the second side surface 25b. Further, it can be said that the second side surface 25b having the surface with the large contact angle ⁇ 2 has higher water repellency than the first side surface 25a.
  • 9 to 11 are schematic diagrams showing the behavior of water in the outdoor heat exchanger 10 according to the first embodiment.
  • 9 to 11 are views as seen from the upstream side of the air flow passing through the heat exchanger 100.
  • the contact angle ⁇ 1 of the first side surface 25a and the contact angle ⁇ 2 of the second side surface 25b satisfy the relationship of ⁇ 1 ⁇ 2.
  • the water droplets 70a and 70b attached to the two surfaces forming the gap contact each other.
  • the water droplet 70b staying on the second side surface 25b having high water repellency easily moves to the side of the first side surface 25a having high hydrophilicity. Therefore, the amount of water adhering to the first side surface 25a increases, and the downward force applied to the water droplet 70 due to the gravity G also increases. If the water is completely transferred from the second side surface 25b to the first side surface 25a, the weight is further increased.
  • the water droplet 1070 adheres to both of the two side surfaces 1025a, 1025b forming the gap, so that the two side surfaces 1025a, 1025b It receives the interfacial tension ⁇ sw between the solid and water, the surface tension ⁇ s of the solid, and the surface tension ⁇ w of water.
  • the gravity G applied to the water droplet 1070 exceeds the resultant force of the forces received from the side surfaces 1025a and 1025b, the water falls.
  • the first flat tubes 20a, 1020a, 2020a and the second flat tubes 20b, 1020b, 2020b The intervals are narrow. Therefore, the downward force exerted on the water droplets 70, 1070, and 2070 by the gravity G is small. Therefore, when the water droplets 70, 1070, and 2070 receive a strong force from the first flat tubes 20a, 1020a, and 2020a and the second flat tubes 20b, 1020b, and 2020b, the water droplets 70, 1070, and 2070 have a plurality of flattened shapes. It becomes easy to stay between the pipes 20, 1020 and 2020. Therefore, in the heat exchanger 1100 of the comparative example shown in FIG. 7, the water droplet 1070 receives a force from both of the two side surfaces 1025a and 1025b forming the gap, and therefore tends to stay in the gap.
  • the upward force exerted on the water droplet 70 acts only from the first side surface 25a having high hydrophilicity. Therefore, the amount of water droplets 70 retained between the plurality of flat tubes 20 of the heat exchanger 100 is smaller than that of the heat exchanger 1100 of the comparative example shown in FIG. 7. Moreover, in the heat exchanger 100 according to Embodiment 1, the amount of the water droplet 70 on the second side surface 25b that moves to the first side surface 25a and adheres to the highly hydrophilic first side surface 25a. Will increase.
  • the downward force applied to the water droplet 70 becomes stronger, and the water droplet 2070 that is present in the gap between the plurality of flat tubes 2020 of the heat exchanger 2100 of the comparative example is more likely to move downward. Therefore, the amount of water droplets 70 retained between the plurality of flat tubes 20 of the heat exchanger 100 is smaller than that of the heat exchanger 2100 of the comparative example shown in FIG.
  • the heat exchanger 100 includes the first flat tubes 20a and the second flat tubes 20b that are arranged in parallel with the tube axis in the vertical direction.
  • the 1st flat tube 20a and the 2nd flat tube 20b are located in the 1st side surface 25a which is a side surface along the long axis direction in the cross section perpendicular
  • a second side surface 25b is arranged so as to face the second side surface 25b of the second flat tube 20b.
  • the hydrophilic region which is at least a part of the first side surface 25a, is more hydrophilic than the second side surface 25b.
  • the water droplets 70 such as dew condensation water in the gaps between the plurality of flat tubes 20 easily move from the second side surface 25b to the opposing first side surface 25a, so that the plurality of flat tubes 20 have the same shape.
  • the amount of water that accumulates between them is reduced. Therefore, the heat exchanger 100 according to the first embodiment has improved drainage performance, reduced ventilation resistance and heat resistance between air and the refrigerant, and thus eliminated heat exchangers 1100 and 2100 of the comparative example.
  • the frost operation time can be reduced.
  • the contact angle ⁇ 1 of the hydrophilic region of the first side surface 25a is smaller than the contact angle ⁇ 2 of the region of the second side surface 25b facing the hydrophilic region.
  • the contact angle ⁇ 1 of the hydrophilic area of the first side surface 25a is lower than 90°, and the contact angle ⁇ 2 of the area of the second side surface 25b facing the hydrophilic area is 90° or more.
  • one of the surfaces facing each other has low hydrophilicity, that is, high water repellency, so that the water droplet 70b on the second side surface 25b easily moves to the first side surface 25a having higher hydrophilicity.
  • FIG. 12 is an explanatory view when water droplets adhere to the surfaces of the plurality of flat tubes 20 of the heat exchanger 100 of the first embodiment.
  • the surfaces of the plurality of flat tubes 20 are inclined.
  • the falling angle When a water droplet on the surface of an object is gradually inclined from a horizontal state, the inclination angle ⁇ at which the water droplet starts to slide is called the falling angle. It can be said that the surface of an object having a small falling angle has weak adhesion to water droplets and water droplets are easily removed from the surface of the object. Therefore, on the surface of the object to which the same amount of water is attached, the smaller the falling angle, the higher the water detachability.
  • the second side surface 25b may be configured so that the fall angle is smaller than that of the hydrophilic region of the first side surface 25a.
  • the fall angle of the hydrophilic region of the first side surface 25a may be larger than the fall angle of the region of the second side surface 25b facing the hydrophilic region.
  • FIG. 13 is an explanatory diagram of a cross-sectional structure of a heat exchanger 100A which is a modified example of the heat exchanger 100 according to the first embodiment.
  • the cross-sectional shapes of the plurality of flat tubes 120 are bent at the central portion in a cross section perpendicular to the tube axis, and the two linearly extending portions are formed at a predetermined angle. It has a shape that is held and connected. That is, the plurality of flat tubes 120 do not have a shape that linearly extends in the major axis direction in a cross section perpendicular to the tube axis, but have a shape that is bent on the way from one end 21 to the other end 22. There is.
  • the long axis direction of the plurality of flat tubes 120 means a direction in which a straight line connecting the end portions 21 and 22 extends.
  • the plurality of flat tubes 120 is not limited to the shape shown in FIG. 13.
  • the shape may be such that a plurality of points are bent in the middle of the plurality of flat tubes 120, and the bending angle can be appropriately set.
  • Embodiment 2 The heat exchanger 200 according to the second embodiment differs from the heat exchanger 100 according to the first embodiment in the structure of the plurality of flat tubes 20.
  • the second embodiment will be described focusing on the changes from the first embodiment.
  • FIG. 14 is an explanatory diagram of a cross-sectional structure of the heat exchanger 200 according to the second embodiment.
  • FIG. 14 shows a cross section perpendicular to the tube axes of the plurality of flat tubes 20.
  • Each of the plurality of flat pipes 20 extends in the Y direction from the refrigerant flow section 50 provided with a plurality of refrigerant flow paths 24 through which the refrigerant flows, and the end portion 21 of the refrigerant flow section 50 in the long axis direction.
  • the fin portion 51 is provided.
  • the fin portion 51 is a plate-shaped portion that protrudes from the end portion 21 in the Y direction and is installed along the pipe axes of the plurality of flat pipes 20.
  • the fin portion 51 extends parallel to the long axis direction of the coolant circulation portion 50, that is, the Y direction, but the present invention is not limited to this configuration.
  • the fin portion 51 may extend from the end portion 21 at a predetermined angle with respect to the Y direction.
  • FIG. 15 is a diagram showing hydrophilicity of the surfaces of the plurality of flat tubes 20 of the heat exchanger 200 according to the second embodiment.
  • the 1st flat tube 20a and the 2nd flat tube 20b which comprise the some flat tube 20 are equipped with the 1st side surface 25a and the 2nd side surface 25b, respectively.
  • the first side surface 25a of the first flat tube 20a and the second side surface 25b of the second flat tube 20b do not have the same hydrophilicity in the entire area.
  • the entire surface of the coolant circulation portion 50 and the surface of the fin portion 51 are highly hydrophilic regions.
  • the second side surface 25b is configured such that the surface of the coolant circulation portion 50 is less hydrophilic than the first side surface 25a, and the fin portion 51 is a highly hydrophilic region like the first side surface 25a. It has become. With this configuration, it is possible to suppress the retention of water droplets in the gaps between the refrigerant flow portions 50 of the plurality of flat tubes 20 having a small gap.
  • the fin portions 51 may have a large influence on the ventilation resistance even if the fin portions 51 have high hydrophilicity or low hydrophilicity. Absent. However, as shown in FIG. 15, by making the fin portion 51 a highly hydrophilic region, water droplets move from the fin portion 51 located on the upwind side to the low hydrophilic refrigerant circulating portion 50 located on the leeward side. Hard to do. Therefore, it is possible to suppress water droplets from accumulating in the gap between the refrigerant circulation portions 50 having a small gap.
  • FIG. 16 is a diagram showing the hydrophilicity of the surfaces of the plurality of flat tubes 20 of the heat exchanger 200a, which is a modification of the heat exchanger 200 according to the second embodiment.
  • the fin portions 51 of the plurality of flat tubes 20 also have a high hydrophilicity on the first side surface 25a and a low hydrophilicity on the second side surface 25b, similarly to the refrigerant circulating portion 50. Is also good.
  • the plurality of flat tubes 20 of the heat exchanger 200 are the same as those in the first embodiment when the difference in thickness between the refrigerant flow section 50 and the fin section 51 is small or the same thickness. In addition, the retention of water drops can be suppressed.
  • Embodiment 3 The heat exchanger 300 according to the third embodiment differs from the heat exchanger 100 according to the first embodiment in the structure of the plurality of flat tubes 20.
  • the third embodiment will be described focusing on the changes from the first embodiment.
  • FIG. 17 is a diagram showing hydrophilicity of the surfaces of the plurality of flat tubes 20 of the heat exchanger 300 according to the third embodiment.
  • the plurality of flat tubes 20 of the heat exchanger 200b are configured by joining the refrigerant circulation portion 50 and the fin portion 51, which are manufactured as separate members.
  • the plate-shaped member 60 forming the fin portion 51 is formed by bending, for example, a metal plate material, and is joined to the end portion 21 of the refrigerant flow portion 50 by means of brazing or the like.
  • the hydrophilicity of the entire surface of the plate-shaped member 60 forming the fin portion 51 is lower than that of the surface of the refrigerant flow portion 50.
  • the plurality of flat tubes 20 have different hydrophilic surfaces facing each other only in a part of the first side surface 25a and the second side surface 25b.
  • the heat exchanger 300 when used as an evaporator, it is possible to suppress the retention of water droplets on the windward side where dew condensation is most likely to occur, which is advantageous over the heat exchangers 1100 and 2100 of the comparative example.
  • the region F is arranged on the leeward side, the water droplets moved to the leeward side due to the air flow are easily discharged in the region F, which is advantageous to the heat exchangers 1100 and 2100 of the comparative example. ..
  • the refrigerant flow section 50 is a region having low hydrophilicity as a whole, but is different between the first side surface 25a side and the second side surface 25b side as in the first embodiment. You may comprise so that it may become hydrophilic. However, like the plurality of flat tubes 20 of the heat exchanger 300 according to Embodiment 3, the entire surface of the refrigerant circulation portion 50 has a low hydrophilic surface, and the entire surface of the fin portion 51 has a high hydrophilic surface. By doing so, there is an advantage that the plate-shaped member 60 forming the coolant circulation portion 50 and the fin portion 51 can be easily manufactured.
  • the heat exchanger 400 according to the fourth embodiment is different from the heat exchanger 100 according to the first embodiment in the structure of the plurality of flat tubes 20.
  • the fourth embodiment will be described focusing on the changes from the first embodiment.
  • FIG. 18 is a diagram showing a hydrophilic property of the surfaces of the plurality of flat tubes 20 of the heat exchanger 400 according to the fourth embodiment.
  • the plurality of flat tubes 20 of the heat exchanger 400 are arranged in the Y direction from the refrigerant circulation part 50 in which the plurality of refrigerant flow paths 24 through which the refrigerant flows are provided, and the longitudinal end 21 of the refrigerant circulation part 50.
  • a fin portion 51 extending toward the end portion and a fin portion 52 extending from the end portion 22 in the Y direction opposite direction.
  • the fin portion 52 is a plate-shaped portion that projects from the end portion 22 in the Y direction in the opposite direction and is installed along the tube axes of the plurality of flat tubes 20.
  • the plurality of flat tubes 20 of the heat exchanger 400 are configured by joining the refrigerant circulation unit 50 and the plate member 460, which are manufactured as separate members.
  • the plate-shaped member 460 forming the fin portions 51 and 52 is formed by bending a metal plate material, for example, and is attached so as to cover one side surface of the refrigerant circulating portion 50, and a joining means such as brazing is used. It is joined to the refrigerant flow unit 50.
  • the plate-shaped member 460 forming the fin portions 51 and the fin portions 52 has lower hydrophilicity on the entire surface than that of the surface of the coolant circulation portion 50. On the other hand, the hydrophilicity of the entire surface of the coolant circulation portion 50 is higher than that of the surface of the plate member 460.
  • the surface of the plate member 460 has a contact angle ⁇ 1 ⁇ 90°
  • the surface of the refrigerant flow portion 50 has a contact angle ⁇ 2 ⁇ 90°.
  • the plate-shaped member 460 and the refrigerant flow section 50 have an advantage that they can be easily manufactured because their respective surfaces are configured to have the same hydrophilicity.
  • the first flat tube 20a and the second flat tube 20b have at least one refrigerant flow section 50 including a refrigerant flow path 24 through which a refrigerant passes, and an end portion 21 of the refrigerant flow section 50. , 22, and two fin portions 51 and 52 extending in the long axis direction. Therefore, since the fin portions 51 and the fin portions 52 extend from both ends of the refrigerant flow portion 50, the contact area with the air passing between the plurality of flat pipes 20 increases, and the heat exchange efficiency becomes high. ..
  • the plate-shaped member 460 forming the fin portions 51 and 52 forms the first side surface 25a of the first flat tube 20a, and constitutes a part of the second side surface 25b of the second flat tube 20b.
  • the first side surface 25a having high hydrophilicity and the second side surface 25b having low hydrophilicity are arranged to face each other, and the refrigerant flow section 50 having the narrowest interval is arranged. In the gap between them, the retention of water droplets can be suppressed as in the first embodiment.
  • the plurality of flat tubes 20 of the heat exchanger 400 are formed by joining the refrigerant circulating portion 50 and the separate plate-shaped member 460, but the refrigerant circulating portion 50 and the fin portions 51, 52 are integrated. It may be manufactured in In this case, the plurality of flat tubes 20 are manufactured by, for example, extrusion processing or drawing processing. However, when the refrigerant flow section 50 and the fin sections 51 and 52 are integrated in the plurality of flat tubes 20 of the heat exchanger 400, at least the first side surface 25a side and the second side surface 25b side of the refrigerant flow section 50 are included. It is necessary to form the hydrophilic properties of the surface differently.
  • Embodiment 5 The heat exchanger 500 according to the fifth embodiment differs from the heat exchanger 200 according to the second embodiment in that the arrangement of the plurality of flat tubes 20 is changed.
  • the fifth embodiment will be described focusing on the changes from the second embodiment.
  • FIG. 19 is a diagram showing a hydrophilic property of the surfaces of the plurality of flat tubes 520 of the heat exchanger 500 according to the fifth embodiment.
  • the fin portion 51 extends in the opposite direction in the Y direction from the end portion 21 of the refrigerant flow portion 50.
  • the fin portions 52 extend in the Y direction from the end portions 22 of the refrigerant circulating portion 50.
  • the first flat tubes 520a and the second flat tubes 520b do not have the refrigerant circulation parts 50 arranged in parallel in the X direction, and the refrigerant circulation parts 50 of the second flat tubes 520b are displaced in the Y direction.
  • the fin portion 51 of the first flat tube 520a and the refrigerant flowing portion 50 of the second flat tube 520b face each other, and the fin flowing portion 50 of the first flat tube 520a and the fin portion of the second flat tube 520b. 52 are arranged so as to face each other.
  • the first flat tube 520a and the second flat tube 520b are arranged such that one refrigerant circulating portion 50 and the other fin portions 51 and 52 face each other.
  • the plurality of flat tubes 520 of the heat exchanger 500 are configured such that the fin portions 51 and 52 have high hydrophilicity and the refrigerant flow portion 50 has low hydrophilicity. Accordingly, in the gap formed by the first flat tube 520a and the second flat tube 520b adjacent to each other, the surfaces facing each other have different hydrophilic properties, so that the heat exchanger 500 is similar to the first embodiment. The retention of water droplets can be suppressed.
  • the heat exchanger 600 according to the sixth embodiment differs from the heat exchanger 100 according to the first embodiment in the structure and arrangement of the plurality of flat tubes 20.
  • the sixth embodiment will be described focusing on the changes from the first embodiment.
  • FIG. 20 is an explanatory diagram of a sectional structure of the heat exchanger 600 according to the sixth embodiment.
  • FIG. 20 shows a cross section perpendicular to the tube axis of the plurality of flat tubes 20.
  • the plurality of flat tubes 620 are composed of a first flat tube 620a and a second flat tube 620b.
  • Each of the plurality of flat tubes 620 is provided with a plurality of refrigerant circulation portions 50, and is formed by connecting the end portion 21 of one refrigerant circulation portion 50 and the end portion 22 of the other refrigerant circulation portion 50 by the fin portion 53. ing.
  • fin portions 51 and 52 are extended from the end portions 21 and 22 that are not connected to the other refrigerant circulation portions 50.
  • the plurality of flat tubes 620 have the first side surface 25a and the second side surface 25b facing each other.
  • the first side surface 25a has a high hydrophilicity and the second side surface 25b has a low hydrophilicity at least in the gap between the refrigerant circulation portions 50 having a narrow interval.
  • FIG. 21 is an explanatory diagram of a cross-sectional structure of a heat exchanger 600a which is a modified example of the heat exchanger 600 according to the sixth embodiment. Similar to the heat exchanger 600, the plurality of flat tubes 620 of the heat exchanger 600a are configured by connecting the plurality of refrigerant circulation portions 50 by the fin portions 53. The heat exchanger 600a is positioned so that the refrigerant flow section 50 of the second flat tube 620b is displaced in the Y direction with respect to the refrigerant flow section 50 of the first flat tube 620a.
  • the fin portion 51 and the fin portion 53 of the first flat tube 620a and the refrigerant flowing portion 50 of the second flat tube 620b face each other, and the refrigerant flowing portion 50 of the first flat tube 620a and the second flat tube 620a.
  • the fin portion 52 of the 620b is arranged so as to face the fin portion 52.
  • the first flat tube 620a and the second flat tube 620b are arranged such that one refrigerant circulating portion 50 and the other fin portions 51, 52, 53 face each other.
  • the plurality of flat tubes 620 of the heat exchanger 600a are configured so that the surface hydrophilicity of the fin portions 51, 52, 53 is high and the hydrophilicity of the surface of the refrigerant flow portion 50 is low. With such a configuration, in the gap formed by the first flat tube 520a and the second flat tube 520b adjacent to each other, the opposing surfaces have different hydrophilic properties. Therefore, the heat exchanger 600a has a large heat exchange capacity and can suppress the retention of water droplets as in the first embodiment.
  • the plurality of flat pipes 620 are integrally formed with the refrigerant flow portion 50 and the fin portions 51, 52, 53, but even if they are configured by joining different members to each other. good.
  • the plurality of flat tubes 620 can be easily manufactured by joining the plate-like members forming the fin portions 51, 52, 53 and the refrigerant circulating portion 50 to each other. Has the advantage that
  • the present invention has been described above based on the embodiments, the present invention is not limited to the configurations of the above-described embodiments.
  • the plurality of flat tubes 620 have two refrigerant circulation parts 50, but may have more refrigerant circulation parts 50.
  • the heat exchangers 100, 200, 200a, 300, 400, 500, 600, 600a may further include flat tubes having different hydrophilic properties.
  • the index of hydrophilicity is described as low hydrophilicity when the contact angle between the water droplet and the surface is large, and high hydrophilicity when the contact angle is small.
  • the magnitude of the fall angle may be used instead of the magnitude of the contact angle.
  • the present invention may be configured by combining each embodiment.
  • the bent cross-sectional shapes of the plurality of flat tubes 120 of the heat exchanger 100A which is a modification of the heat exchanger 100 according to the first embodiment, may be applied to other embodiments.
  • the scope of the present invention also includes various modifications, applications, and ranges of use that are required by those skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The purpose of the present invention is to provide: a heat exchanger in which water is not easily stayed in the gaps between flat tubes and drainage performance is improved; a heat exchanger unit; and a refrigeration cycle device. The present invention is provided with a first flat tube and a second flat tube, the tube axes of which are arranged in parallel, wherein the first flat tube has a first side surface facing the second flat tube, and the second flat tube has a second side surface facing the first flat tube. The first side surface of the first flat tube is arranged facing the second side surface of the second flat tube, and a hydrophilic region which is at least a portion of the first side surface has higher hydrophilicity than the second side surface.

Description

熱交換器、熱交換器ユニット、及び冷凍サイクル装置Heat exchanger, heat exchanger unit, and refrigeration cycle device
 本発明は、熱交換器、熱交換器を備えた熱交換器ユニット、及び冷凍サイクル装置に関し、特に扁平管に取り付けられたフィンの構造に関する。 The present invention relates to a heat exchanger, a heat exchanger unit including a heat exchanger, and a refrigeration cycle device, and more particularly to the structure of fins attached to a flat tube.
 従来、内部に冷媒を循環させ、冷媒を蒸発又は凝縮させて空気等の流体と熱交換を行う熱交換器は、空気調和機及び冷蔵庫をはじめとして様々な分野において幅広く利用されている。発熱機器の冷却や作動流体への加熱など様々な用途で活躍する熱交換器であるが、どの分野においても熱交換性能及びコンパクト性の向上は常に求められており、これらの両立は、熱交換器が搭載される機器そのものにとって優位に働くことは言うまでもない。 Conventionally, heat exchangers that circulate a refrigerant inside and evaporate or condense the refrigerant to exchange heat with a fluid such as air have been widely used in various fields such as air conditioners and refrigerators. Although it is a heat exchanger that plays an active role in various applications such as cooling heat-generating equipment and heating to working fluids, improvement in heat exchange performance and compactness is always required in all fields, and it is necessary to achieve both of these at the same time. It goes without saying that it has an advantage for the device itself on which the vessel is mounted.
 現在、代表的な熱交換器の一つとして、フィンアンドチューブ熱交換器がある。このフィンアンドチューブ熱交換器は、複数の薄板状のフィンに、フィン表面に垂直な方向に複数の管を通し、これらの管を拡管させてフィンを管に取り付けて製造される。フィンアンドチューブ熱交換器は、管内部に冷媒を流し、管外壁に密着する伝熱面積の広いフィンを伝熱媒体として空気との熱交換を行うことを特徴としており、熱交換性能及びコンパクト性の向上を目指してこれまでに様々な模索がなされてきた。例えば、伝熱面積を増やすために、フィンを薄くしてフィン枚数を多くする、またはフィン表面にスリットを入れる、といったフィンについての改良、同じく伝熱面積を増やすために管内壁に凹凸を付ける、といった管についての改良がなされてきている。 Currently, there is a fin-and-tube heat exchanger as one of the typical heat exchangers. This fin-and-tube heat exchanger is manufactured by passing a plurality of tubes through a plurality of thin plate-shaped fins in a direction perpendicular to the fin surface, expanding these tubes, and attaching the fins to the tubes. The fin-and-tube heat exchanger is characterized by flowing a refrigerant inside the pipe and performing heat exchange with air by using a fin with a large heat transfer area that closely adheres to the outer wall of the pipe as a heat transfer medium. Various improvements have been made so far with the aim of improving. For example, in order to increase the heat transfer area, thin the fins to increase the number of fins, or improve the fins by forming slits on the fin surface. Similarly, in order to increase the heat transfer area, make the inner wall of the pipe uneven. Improvements have been made to such tubes.
 一方、更なる熱交換性能及びコンパクト性の向上を追求するためには、フィンアンドチューブ熱交換器という範疇内での部分的改良の積み重ねのみでは、大きな効果を期待することが難しい状況になっている。このような背景から、従来のフィンアンドチューブ熱交換器に代わる新しい形態の熱交換器の研究が数多くなされている。その中で、多数の管を密に並べることにより伝熱面積を増やし、多数の管同士を繋ぐフィンを用いずに構成される熱交換器であるフィンレス熱交換器が注目を浴びている。このフィンレス熱交換器の形態としては、円管を規則正しく並べたものから、矩形や楕円形あるいは流線形といった断面を持つ管を不規則に並べた複雑なものまで、用途に応じて様々な形態のものが考案されている。 On the other hand, in order to pursue further improvement of heat exchange performance and compactness, it is difficult to expect a great effect only by accumulating partial improvements within the category of fin-and-tube heat exchangers. There is. Against this background, many studies have been made on new forms of heat exchangers that replace conventional fin-and-tube heat exchangers. Among them, finless heat exchangers, which are heat exchangers that increase the heat transfer area by arranging a large number of tubes densely and do not use fins that connect a large number of tubes, are attracting attention. This finless heat exchanger has various forms depending on the application, from those in which circular pipes are regularly arranged to those in which pipes having a rectangular, elliptical, or streamline cross section are irregularly arranged. Things have been devised.
 フィンレス熱交換器は、熱交換性能では、フィンを無くした事による熱交換性能の低下が非常に大きくなってしまうおそれがある。例えば、家庭用空気調和機の室内熱交換器のように管の直径が7mm程度、フィン間のピッチが1mm程度、ファンにより送り込まれる空気の風速が1m/s程度のフィンアンドチューブ熱交換器を、熱交換器サイズとファン入力を変えずに、扁平管を用いたフィンレス熱交換器に変更しようとすると、扁平管の断面の短軸寸法である管短径を2~3mm程度まで小さくし、扁平管の配列ピッチを小さくしても伝熱面積が不足し、熱交換性能が大幅に低下してしまう。 ㆍIn the finless heat exchanger, in terms of heat exchange performance, the heat exchange performance may be significantly reduced due to the elimination of fins. For example, a fin-and-tube heat exchanger having a pipe diameter of about 7 mm, a pitch between fins of about 1 mm, and a wind velocity of air sent by a fan of about 1 m/s, such as an indoor heat exchanger of a home air conditioner. If you try to change to a finless heat exchanger that uses a flat tube without changing the heat exchanger size and fan input, reduce the minor axis dimension of the minor axis of the cross section of the flat tube to about 2 to 3 mm, Even if the arrangement pitch of the flat tubes is made small, the heat transfer area is insufficient, and the heat exchange performance is significantly reduced.
 そこで、特許文献1では、圧力損失の増大を招くことなく、コンパクト性を確保しつつ、熱交換性能の向上を図ることができる空気調和機用熱交換器を提供するため、フィンアンドチューブ熱交換器の管の断面の短軸寸法である管短径Aを0.31~1.40mmの範囲で形成し、管短径Aと各扁平管のピッチBとを、一定の数値範囲内となるように各扁平管を配置するものが提案されている。 Therefore, in Patent Document 1, in order to provide a heat exchanger for an air conditioner capable of improving heat exchange performance while ensuring compactness without causing an increase in pressure loss, fin and tube heat exchange is performed. The minor axis A, which is the minor axis dimension of the cross section of the tube of the vessel, is formed in the range of 0.31 to 1.40 mm, and the minor axis A and the pitch B of each flat tube are within a certain numerical range. It has been proposed to arrange each flat tube as described above.
特許第3264525号公報Japanese Patent No. 3264525
 しかし、特許文献1に示されているようなフィンアンドチューブ型の熱交換器は、蒸発器として作動させた際に、空気中の水分を凝縮させることで発生する結露水が、隣り合うフィン間を跨がって滞留することがある。フィンレス熱交換器の各扁平管のピッチBを特許文献1に示されているような従来のフィンアンドチューブ型の熱交換器のフィンピッチと同程度で配列した場合、フィンレス熱交換器においても上述した結露水が滞留する現象は発生し得る。このようなフィンレス熱交換器は、各扁平管のピッチBが小さいため伝熱性能を確保できるが、隣り合う扁平管の間に結露水が跨がって滞留する。これによりフィンレス熱交換器は、蒸発器として運転される時に伝熱性能及び通風性能を損なうという課題があった。 However, in the fin-and-tube heat exchanger as shown in Patent Document 1, when it is operated as an evaporator, the condensed water generated by condensing the moisture in the air is generated between the adjacent fins. It may stay across. When the pitch B of each flat tube of the finless heat exchanger is arranged at the same degree as the fin pitch of the conventional fin-and-tube type heat exchanger as shown in Patent Document 1, the finless heat exchanger also has the above-mentioned structure. The phenomenon of accumulated condensed water may occur. In such a finless heat exchanger, the heat transfer performance can be ensured because the pitch B of each flat tube is small, but dew condensation water is retained across adjacent flat tubes. As a result, the finless heat exchanger has a problem that the heat transfer performance and the ventilation performance are impaired when it is operated as an evaporator.
 本発明は、上記のような課題を解決するためのものであり、扁平管同士の間隔が狭いフィンレス熱交換器においても扁平管同士の隙間に水が滞留しにくく、排水性を向上させた熱交換器、熱交換器ユニット、及び冷凍サイクル装置を得ることを目的とする。 The present invention is for solving the above problems, and even in a finless heat exchanger in which the distance between the flat tubes is narrow, it is difficult for water to stay in the clearance between the flat tubes and the heat with improved drainage is provided. An object is to obtain an exchanger, a heat exchanger unit, and a refrigeration cycle device.
 本発明に係る熱交換器は、管軸を並列に配置された第1の扁平管及び第2の扁平管を備え、前記第1の扁平管は、前記第2の扁平管に対向する第1の側面を有し、前記第2の扁平管は、前記第1の扁平管に対向する第2の側面を有し、前記第1の側面の少なくとも一部分である親水領域は、前記第2の側面よりも親水性が高い。 A heat exchanger according to the present invention includes a first flat tube and a second flat tube whose tube axes are arranged in parallel, and the first flat tube is a first flat tube that faces the second flat tube. And the second flat tube has a second side surface facing the first flat tube, and the hydrophilic region that is at least a part of the first side surface has the second side surface. More hydrophilic than.
 本発明に係る熱交換器ユニットは、上記熱交換器を備える。 The heat exchanger unit according to the present invention includes the above heat exchanger.
 本発明に係る冷凍サイクル装置は、上記熱交換器ユニットを備える。 The refrigeration cycle apparatus according to the present invention includes the heat exchanger unit described above.
 本発明によれば、第1の扁平管と第2の扁平管との対向する2つの側面が親水性を異なるように構成されているため、結露水が2つの側面に跨がったときに親水性が低い方の側面から高い方の側面に移動する。結露水が移動することにより、2つの扁平管の間に結露水が滞留するのを抑えることができ、排水性が向上する。これにより、扁平管の間隔が狭い熱交換器においても、通風性能及び伝熱性能の低下を抑えることができる。 According to the present invention, since the two opposite side surfaces of the first flat tube and the second flat tube are configured to have different hydrophilicity, when the condensed water straddles the two side surfaces. It moves from the side with low hydrophilicity to the side with high hydrophilicity. By moving the dew condensation water, it is possible to prevent the dew condensation water from accumulating between the two flat tubes, and the drainage performance is improved. As a result, deterioration of ventilation performance and heat transfer performance can be suppressed even in a heat exchanger in which the intervals between the flat tubes are narrow.
実施の形態1に係る熱交換器ユニットを示す斜視図である。It is a perspective view which shows the heat exchanger unit which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器を示す正面図である。It is a front view which shows the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器が適用された冷凍サイクル装置1の説明図である。It is explanatory drawing of the refrigeration cycle apparatus 1 to which the heat exchanger which concerns on Embodiment 1 is applied. 図2の熱交換器の断面構造の説明図である。It is explanatory drawing of the cross-sectional structure of the heat exchanger of FIG. 実施の形態1の熱交換器の複数の扁平管の表面の親水性状を示す図である。FIG. 5 is a diagram showing hydrophilicity of surfaces of a plurality of flat tubes of the heat exchanger according to the first embodiment. 実施の形態1の熱交換器の複数の扁平管の表面に水滴が付着した場合の説明図である。It is explanatory drawing in the case of water droplets adhering to the surface of the plurality of flat tubes of the heat exchanger of the first embodiment. 実施の形態1の熱交換器の比較例である熱交換器の模式図である。FIG. 5 is a schematic diagram of a heat exchanger that is a comparative example of the heat exchanger of the first embodiment. 実施の形態1の熱交換器の比較例である熱交換器の模式図である。FIG. 5 is a schematic diagram of a heat exchanger that is a comparative example of the heat exchanger of the first embodiment. 実施の形態1の室外熱交換器の水の挙動を示す模式図である。FIG. 5 is a schematic diagram showing the behavior of water in the outdoor heat exchanger according to the first embodiment. 実施の形態1の室外熱交換器の水の挙動を示す模式図である。FIG. 5 is a schematic diagram showing the behavior of water in the outdoor heat exchanger according to the first embodiment. 実施の形態1の室外熱交換器の水の挙動を示す模式図である。FIG. 5 is a schematic diagram showing the behavior of water in the outdoor heat exchanger according to the first embodiment. 実施の形態1の熱交換器の複数の扁平管の表面に水滴が付着した場合の説明図である。FIG. 5 is an explanatory diagram in the case where water droplets adhere to the surfaces of a plurality of flat tubes of the heat exchanger of the first embodiment. 実施の形態1に係る熱交換器の変形例である熱交換器の断面構造の説明図である。It is explanatory drawing of the cross-section of the heat exchanger which is a modification of the heat exchanger which concerns on Embodiment 1. 実施の形態2に係る熱交換器の断面構造の説明図である。It is explanatory drawing of the cross-section of the heat exchanger which concerns on Embodiment 2. 実施の形態2に係る熱交換器の複数の扁平管の表面の親水性状を示す図である。It is a figure which shows the hydrophilicity property of the surface of the plurality of flat tubes of the heat exchanger which concerns on Embodiment 2. FIG. 実施の形態2に係る熱交換器の変形例である熱交換器の複数の扁平管の表面の親水性状を示す図である。It is a figure which shows the hydrophilicity property of the surface of the plurality of flat tubes of the heat exchanger which is the modification of the heat exchanger which concerns on Embodiment 2. FIG. 実施の形態3に係る熱交換器の複数の扁平管の表面の親水性状を示す図である。It is a figure which shows the hydrophilicity property of the surface of the plurality of flat tubes of the heat exchanger according to the third embodiment. 実施の形態4に係る熱交換器の複数の扁平管の表面の親水性状を示す図である。It is a figure which shows the hydrophilicity property of the surface of the plurality of flat tubes of the heat exchanger which concerns on Embodiment 4. FIG. 実施の形態5に係る熱交換器の複数の扁平管の表面の親水性状を示す図である。It is a figure which shows the hydrophilicity property of the surface of the plurality of flat tubes of the heat exchanger according to the fifth embodiment. 実施の形態6に係る熱交換器の断面構造の説明図である。It is explanatory drawing of the cross-sectional structure of the heat exchanger which concerns on Embodiment 6. 実施の形態6に係る熱交換器の変形例である熱交換器の断面構造の説明図である。It is explanatory drawing of the cross-sectional structure of the heat exchanger which is the modification of the heat exchanger which concerns on Embodiment 6.
 以下に、熱交換器、熱交換器ユニット、及び冷凍サイクル装置の実施の形態について説明する。なお、図面の形態は一例であり、本発明を限定するものではない。また、各図において同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 The embodiments of the heat exchanger, the heat exchanger unit, and the refrigeration cycle device will be described below. The drawings are merely examples, and the present invention is not limited thereto. In addition, those having the same reference numerals in the respective figures are the same or equivalent thereof, which are common to the entire text of the specification. Furthermore, in the following drawings, the size relationship of each component may be different from the actual one.
 実施の形態1.
 図1は、実施の形態1に係る熱交換器ユニット101を示す斜視図である。図2は、実施の形態1に係る熱交換器100を示す正面図である。図3は、実施の形態1に係る熱交換器100が適用された冷凍サイクル装置1の説明図である。図1に示された熱交換器ユニット101は、一例であり、ここでは空気調和装置の室外機8に相当する。また、図2に示された熱交換器100は、図1の熱交換器ユニット101の内部に搭載されるものであり、正面から見た構造を模式的に表している。熱交換器100は、空気調和装置又は冷蔵庫等の冷凍サイクル装置1に搭載されるものであり、冷凍サイクル装置1において室外熱交換器5又は室内熱交換器7として用いることができる。図3に示される様に、冷凍サイクル装置1は、圧縮機3、四方弁4、室外熱交換器5、膨張装置6、及び室内熱交換器7を冷媒配管90により接続し、冷媒回路を構成したものである。例えば、冷凍サイクル装置1が空気調和装置である場合には、冷媒配管90内には冷媒が流通し、四方弁4により冷媒の流れを切り換えることにより、暖房運転、冷凍運転、又は除霜運転に切り換えることができる。
Embodiment 1.
FIG. 1 is a perspective view showing a heat exchanger unit 101 according to the first embodiment. FIG. 2 is a front view showing the heat exchanger 100 according to the first embodiment. FIG. 3 is an explanatory diagram of the refrigeration cycle device 1 to which the heat exchanger 100 according to the first embodiment is applied. The heat exchanger unit 101 shown in FIG. 1 is an example, and corresponds to the outdoor unit 8 of the air conditioner here. The heat exchanger 100 shown in FIG. 2 is mounted inside the heat exchanger unit 101 of FIG. 1, and schematically shows the structure as viewed from the front. The heat exchanger 100 is mounted on the refrigeration cycle device 1 such as an air conditioner or a refrigerator, and can be used as the outdoor heat exchanger 5 or the indoor heat exchanger 7 in the refrigeration cycle device 1. As shown in FIG. 3, in the refrigeration cycle apparatus 1, the compressor 3, the four-way valve 4, the outdoor heat exchanger 5, the expansion device 6, and the indoor heat exchanger 7 are connected by a refrigerant pipe 90 to form a refrigerant circuit. It was done. For example, when the refrigeration cycle device 1 is an air conditioner, the refrigerant flows through the refrigerant pipe 90, and the four-way valve 4 switches the refrigerant flow to perform heating operation, freezing operation, or defrosting operation. It can be switched.
 室外機8に搭載された室外熱交換器5及び室内機9に搭載された室内熱交換器7は、近傍に送風機2を備える。室外機8において送風機2は室外熱交換器5に外気を送り込む。室外熱交換器5は外気と冷媒との間で熱交換を行う。また、室内機9において送風機2は、室内熱交換器7に室内の空気を送り込む。室内熱交換器7は室内の空気と冷媒との間で熱交換を行い、室内の空気の温度を調和する。また、実施の形態1に係る熱交換器100は、冷凍サイクル装置1において室外機8に搭載された室外熱交換器5及び室内機9に搭載された室内熱交換器7として用いることができ、凝縮器又は蒸発器として機能する。なお、熱交換器100が搭載された室外機8及び室内機9等の機器を、特に熱交換器ユニット101と呼ぶ。図1に示される熱交換器ユニット101は、熱交換器100が搭載された室外機8の一例である。図1に示される矢印は気流の流れ方向を示している。熱交換器ユニット101は、背面から外気を筐体内部に取り込み、熱交換器100で外気と冷媒との熱交換を行い、正面から熱交換された空気を吹き出す。 The outdoor heat exchanger 5 mounted on the outdoor unit 8 and the indoor heat exchanger 7 mounted on the indoor unit 9 are provided with the blower 2 in the vicinity. In the outdoor unit 8, the blower 2 sends outside air to the outdoor heat exchanger 5. The outdoor heat exchanger 5 exchanges heat between the outside air and the refrigerant. Further, in the indoor unit 9, the blower 2 sends indoor air to the indoor heat exchanger 7. The indoor heat exchanger 7 exchanges heat between the indoor air and the refrigerant to harmonize the temperature of the indoor air. Further, the heat exchanger 100 according to Embodiment 1 can be used as the outdoor heat exchanger 5 mounted on the outdoor unit 8 and the indoor heat exchanger 7 mounted on the indoor unit 9 in the refrigeration cycle apparatus 1, Functions as a condenser or evaporator. Devices such as the outdoor unit 8 and the indoor unit 9 on which the heat exchanger 100 is mounted are particularly referred to as a heat exchanger unit 101. The heat exchanger unit 101 shown in FIG. 1 is an example of an outdoor unit 8 on which the heat exchanger 100 is mounted. The arrow shown in FIG. 1 indicates the flow direction of the air flow. The heat exchanger unit 101 takes in outside air into the housing from the back side, performs heat exchange between the outside air and the refrigerant in the heat exchanger 100, and blows out the heat-exchanged air from the front side.
 図2に示される熱交換器100は、複数の扁平管20を備える。複数の扁平管20は、X方向に並列されており、複数の扁平管20のうち隣合った一方を第1の扁平管20aと称し、他方を第2の扁平管20bと称する。複数の扁平管20は、それぞれの管軸をZ方向に沿って配置されており、X方向に沿って並列して配置されている。実施の形態1においては、Z方向逆向きが重力方向に一致しているが、熱交換器100は、Z軸を重力方向に傾斜させて配置されていても良い。 The heat exchanger 100 shown in FIG. 2 includes a plurality of flat tubes 20. The plurality of flat tubes 20 are juxtaposed in the X direction, and one of the plurality of flat tubes 20 adjacent to each other is referred to as a first flat tube 20a, and the other is referred to as a second flat tube 20b. The plurality of flat tubes 20 are arranged with their tube axes along the Z direction, and are arranged in parallel along the X direction. In the first embodiment, the Z-direction reverse direction matches the gravity direction, but the heat exchanger 100 may be arranged with the Z-axis tilted in the gravity direction.
 複数の扁平管20は、Z方向の下側の端部において下端ヘッダ80と接続されており、Z方向の上側の端部において上端ヘッダ81と接続されている。下端ヘッダ80及び上端ヘッダ81は、冷凍サイクル装置1の冷媒配管90と接続されており、冷媒回路を流れる冷媒が、下端ヘッダ80及び上端ヘッダ81のうち一方に流入し、複数の扁平管20を通過し、他方から冷媒配管90に流出する。複数の扁平管20は、下端ヘッダ80及び上端ヘッダ81以外に複数の扁平管20のそれぞれの間を接続するフィンは設けられていないいわゆるフィンレス熱交換器である。さらに言うと、隣り合った複数の扁平管20は、対向する第1の側面25aと第2の側面25bとの間を接続する部材が設けられていない。 The plurality of flat tubes 20 are connected to the lower end header 80 at the lower end in the Z direction and are connected to the upper end header 81 at the upper end in the Z direction. The lower end header 80 and the upper end header 81 are connected to the refrigerant pipe 90 of the refrigeration cycle apparatus 1, and the refrigerant flowing through the refrigerant circuit flows into one of the lower end header 80 and the upper end header 81 to connect the plurality of flat tubes 20. It passes through and flows out from the other side to the refrigerant pipe 90. The plurality of flat tubes 20 are so-called finless heat exchangers in which fins connecting between the plurality of flat tubes 20 are not provided in addition to the lower end header 80 and the upper end header 81. Furthermore, the plurality of adjacent flat tubes 20 are not provided with a member that connects the first side surface 25a and the second side surface 25b that face each other.
 図4は、図2の熱交換器100の断面構造の説明図である。図4は、複数の扁平管20の管軸に垂直な断面を示しており、図2のA-A断面に対応する断面の構造の説明図である。なお、図4においては、複数の扁平管20のうち一部を表示している。複数の扁平管20は、管軸に垂直な断面形状が長軸と短軸とを有する扁平形状に形成されている。そして、複数の扁平管20は、それぞれ長軸をY方向に向け、短軸をX方向に向けて配置されている。つまり、Y方向が扁平管20の長軸方向であり、X方向が扁平管20の短軸方向である。熱交換器100を通過する気流の流れ方向はY方向に概ね一致している。また、複数の扁平管20は、気流の流れ方向における風上側に位置する端部である第1端部21と風下側に位置する端部である第2端部22を有する。 4 is an explanatory diagram of a cross-sectional structure of the heat exchanger 100 of FIG. FIG. 4 shows a cross section perpendicular to the tube axes of the plurality of flat tubes 20, and is an explanatory view of the structure of the cross section corresponding to the AA cross section in FIG. In addition, in FIG. 4, a part of the plurality of flat tubes 20 is shown. The plurality of flat tubes 20 are formed in a flat shape having a cross section perpendicular to the tube axis having a long axis and a short axis. The plurality of flat tubes 20 are arranged with their major axes oriented in the Y direction and their minor axes oriented in the X direction. That is, the Y direction is the long axis direction of the flat tube 20, and the X direction is the short axis direction of the flat tube 20. The flow direction of the air flow passing through the heat exchanger 100 substantially coincides with the Y direction. Further, the plurality of flat pipes 20 have a first end portion 21 which is an end portion located on the windward side in the flow direction of the air flow and a second end portion 22 which is an end portion located on the leeward side.
 複数の扁平管20は、第1の扁平管20aと、第1の扁平管20aに隣り合って配置されている第2の扁平管20bと、を有する。ここで、第1の扁平管20aにおいて、X方向を向いた側面を第1の側面25aと称し、X方向逆向きを向いた側面を第2の側面25bと称する。また、第2の扁平管20bにおいて、X方向を向いた側面を第1の側面25aと称し、X方向逆向きを向いた側面を第2の側面25bと称する。つまり、第1の扁平管20a及び第2の扁平管20bは、長軸方向に沿った側面である第1の側面25aと、第1の側面25aの反対側に位置する第2の側面25bとを有する。第1の扁平管20a及び第2の扁平管20bは、短軸方向を向いた側面である第1の側面25aと、第1の側面25aの反対側に位置する第2の側面25bとを有する。第1の扁平管20aと第2の扁平管20bとは、隣合って配置されており、第1の側面25aと第2の側面25bとを対向させて配置されている。なお、複数の扁平管20は、第1の扁平管20a及び第2の扁平管20bの2種類のみで構成されていても良いし、他の異なる構成の扁平管が含まれていても良い。 The plurality of flat tubes 20 include a first flat tube 20a and a second flat tube 20b arranged adjacent to the first flat tube 20a. Here, in the first flat tube 20a, the side surface facing the X direction is referred to as the first side surface 25a, and the side surface facing the opposite direction in the X direction is referred to as the second side surface 25b. Further, in the second flat tube 20b, the side surface facing the X direction is referred to as the first side surface 25a, and the side surface facing the opposite direction in the X direction is referred to as the second side surface 25b. That is, the first flat tube 20a and the second flat tube 20b have a first side surface 25a that is a side surface along the major axis direction and a second side surface 25b that is located on the opposite side of the first side surface 25a. Has. The first flat tube 20a and the second flat tube 20b have a first side surface 25a that is a side surface facing the short axis direction and a second side surface 25b that is located on the opposite side of the first side surface 25a. .. The first flat tube 20a and the second flat tube 20b are arranged adjacent to each other, and the first side surface 25a and the second side surface 25b are arranged to face each other. Note that the plurality of flat tubes 20 may be configured by only two types of the first flat tube 20a and the second flat tube 20b, or may include other flat tubes having different configurations.
 複数の扁平管20は、それぞれが熱伝導性を持つ金属材料で構成されている。複数の扁平管20のそれぞれを構成する材料としては、例えばアルミニウム、アルミニウム合金、銅、又は銅合金が用いられている。複数の扁平管20のそれぞれは、加熱した材料をダイスの穴から押し出し、図4に示される複数の冷媒流路24を形成して製造される。なお、複数の扁平管20のそれぞれは、ダイスの穴から材料を引き抜いて図4に示される断面が成形される引き抜き加工によって製造されてもよい。複数の扁平管20のそれぞれの製造方法は、断面形状に応じ適宜選択することができる。 The plurality of flat tubes 20 are each made of a metal material having thermal conductivity. As a material forming each of the plurality of flat tubes 20, for example, aluminum, an aluminum alloy, copper, or a copper alloy is used. Each of the plurality of flat tubes 20 is manufactured by extruding a heated material from a hole in a die to form a plurality of refrigerant flow paths 24 shown in FIG. Note that each of the plurality of flat tubes 20 may be manufactured by a drawing process in which a material is drawn out from a hole of a die and a cross section shown in FIG. 4 is formed. The method of manufacturing each of the plurality of flat tubes 20 can be appropriately selected according to the cross-sectional shape.
 図5は、実施の形態1の熱交換器100の複数の扁平管20の表面の親水性状を示す図である。図5は、図4と同じ断面を示しており、複数の扁平管20の表面の親水性の異なる領域をそれぞれ異なるパターンで模式的に表している。複数の扁平管20は、第1の扁平管20aと第2の扁平管20bとを隣り合わせて配置して構成されている。第1の扁平管20aと第2の扁平管20bとは、長軸方向に沿った2つの側面の親水性がそれぞれ異なる。図5において、第1の側面25aは親水性が高く、第2の側面25bは親水性が低くなっている。なお、実施の形態1において、第1の扁平管20aと第2の扁平管20bとは、第1の側面25a及び第2の側面25bのそれぞれの全体が同一の親水性となっているが、これだけに限定されるものではない。第1の側面25a及び第2の側面25bは、それぞれ親水性が異なる領域を有していても良い。ただし、第1の側面25a及び第2の側面25bは、少なくとも一部分において対向する面の親水性が異なるように構成される。 FIG. 5 is a diagram showing the hydrophilicity of the surfaces of the plurality of flat tubes 20 of the heat exchanger 100 of the first embodiment. FIG. 5 shows the same cross section as that of FIG. 4, and schematically represents regions having different hydrophilicity on the surfaces of the plurality of flat tubes 20 in different patterns. The plurality of flat tubes 20 are configured by arranging a first flat tube 20a and a second flat tube 20b adjacent to each other. The first flat tube 20a and the second flat tube 20b differ from each other in hydrophilicity on two side surfaces along the major axis direction. In FIG. 5, the first side surface 25a has high hydrophilicity and the second side surface 25b has low hydrophilicity. In the first embodiment, the first flat tube 20a and the second flat tube 20b have the same hydrophilicity throughout the first side surface 25a and the second side surface 25b, respectively. It is not limited to this. The first side surface 25a and the second side surface 25b may have regions having different hydrophilicities. However, the first side surface 25a and the second side surface 25b are configured such that the surfaces facing each other differ in hydrophilicity at least in part.
 図6は、実施の形態1の熱交換器100の複数の扁平管20の表面に水滴が付着した場合の説明図である。図6は、複数の扁平管20の第1の側面25a又は第2の側面25bに付着した水滴の状態の一例を示している。複数の扁平管20の表面に結露水などの水滴が付着した場合、表面の親水性の程度により、水滴の形状が変わる。物体の表面と水との親和性を示す指標としては、一般に接触角θが用いられる。接触角θは、物体の表面に滴下された水滴と表面との成す角度である。物体の表面の親水性が高い場合は接触角θが小さくなり、物体の表面の親水性が低い場合は、接触角θが大きくなる。親水性が高い場合は、複数の扁平管20の表面に水滴が薄く広がり易く、親水性が低い場合は、水滴が表面張力により丸くなる。親水性が低い場合を、撥水性が高い、ともいう。一般的に固体の表面と水との親和性を示す指標として、接触角θが用いられる。接触角θは固体の表面に水滴を滴下した際に、固体の表面と水滴との接触面が成す角度として定義される。 FIG. 6 is an explanatory view when water droplets adhere to the surfaces of the plurality of flat tubes 20 of the heat exchanger 100 of the first embodiment. FIG. 6 shows an example of a state of water droplets attached to the first side surface 25a or the second side surface 25b of the plurality of flat tubes 20. When water droplets such as condensed water adhere to the surfaces of the plurality of flat tubes 20, the shape of the water droplets changes depending on the degree of hydrophilicity of the surfaces. The contact angle θ is generally used as an index indicating the affinity between the surface of an object and water. The contact angle θ is an angle formed by a water drop dropped on the surface of the object and the surface. When the hydrophilicity of the surface of the object is high, the contact angle θ becomes small, and when the hydrophilicity of the surface of the object is low, the contact angle θ becomes large. When the hydrophilicity is high, the water droplets tend to spread thinly on the surfaces of the plurality of flat tubes 20, and when the hydrophilicity is low, the water droplets are rounded by the surface tension. When the hydrophilicity is low, it is also called high water repellency. Generally, the contact angle θ is used as an index showing the affinity between the surface of a solid and water. The contact angle θ is defined as the angle formed by the contact surface between the surface of the solid and the water droplet when the water droplet is dropped on the surface of the solid.
 水が部材の表面に滴下された場合、水は自らの表面張力γwで丸くなる。固体の表面に滴下した水と表面との間には、固体の表面張力をγs、固体の表面と水の表面との界面張力をγswとしたときに、γs=γw・cosθ+γswの関係が成り立つ。つまり、固体の表面張力γsは、水の表面張力γwの固体の表面方向成分及び固体の表面と水との界面張力γswの合力と釣り合い、このとき水の表面と固体表面との成す角度が接触角θとなる。 When water is dripped on the surface of the member, the water becomes round with its own surface tension γw. When the surface tension of the solid is γs and the interfacial tension between the surface of the solid and the surface of water is γsw, the relationship of γs=γw·cos θ+γsw is established between the water dropped on the surface of the solid and the surface. In other words, the surface tension γs of the solid is balanced with the surface direction component of the surface tension γw of water and the resultant force of the interfacial tension γsw between the surface of the solid and water, and at this time, the angle formed by the surface of water and the surface of the solid is in contact. The angle is θ.
 図7は、実施の形態1の熱交換器100の比較例である熱交換器1100の模式図である。図7は、熱交換器1100の一部を表示しており、複数の扁平管1020の第1の側面1025a及び第2の側面1025bに水滴が付着した状態を模式的に表している。複数の扁平管1020は、第1の扁平管1020aと第2の扁平管1020bとを隣り合わせて配置して構成されている。比較例である熱交換器1100の複数の扁平管1020は、第1の側面1025a及び第2の側面1025bとも親水性状が同じであり、撥水性が高い状態になっている。つまり、複数の扁平管1020の表面は、接触角θが大きく、特に接触角θ≧90°となっている。また、比較例の熱交換器1100において第1の側面1025aの接触角θ1と第2の側面1025bの接触角θ2との関係は、θ1=θ2となっている。 FIG. 7 is a schematic diagram of a heat exchanger 1100 which is a comparative example of the heat exchanger 100 of the first embodiment. FIG. 7 shows a part of the heat exchanger 1100, and schematically shows a state where water droplets are attached to the first side surface 1025a and the second side surface 1025b of the plurality of flat tubes 1020. The plurality of flat tubes 1020 are configured by arranging a first flat tube 1020a and a second flat tube 1020b adjacent to each other. The plurality of flat tubes 1020 of the heat exchanger 1100 of the comparative example have the same hydrophilic property on the first side surface 1025a and the second side surface 1025b, and are in a state of high water repellency. That is, the surfaces of the plurality of flat tubes 1020 have a large contact angle θ, and in particular, the contact angle θ ≧ 90 °. Further, in the heat exchanger 1100 of the comparative example, the relationship between the contact angle θ1 of the first side surface 1025a and the contact angle θ2 of the second side surface 1025b is θ1 = θ2.
 比較例の熱交換器1100のように親水性の低い、即ち撥水性の高い複数の扁平管1020の表面に水が付着する場合、第1の側面1025a又は第2の側面1025bの何れかに水滴として滞留しやすい。また、特に双方の側面1025a、1025bに付着した水滴同士が接触した場合、対向する2つの扁平管の側面1025a、1025bから水滴に同様な力が働くため、水滴がどちらかの側面1025a、1025bに偏ることがない。ここで、双方の側面1025a、1025bの表面から受ける力に打ち勝つ程度の十分な水の量が無い場合には、水が第1の側面1025aと第2の側面1025bとの間にブリッジした状態のまま流下することなく保持され、水が滞留しやすいという課題がある。複数の扁平管1020の間に水が滞留することにより、複数の扁平管20の間を通過する空気の流れに対する抵抗が増加する。そして、送風機2の負荷が増加したり、熱交換器1100を通過する空気の流量が低減する。また、複数の扁平管1020の間の隙間にある水滴は、隙間を流れる空気と複数の扁平管1020内を流れる冷媒との間の伝熱にとって熱抵抗となり、熱交換効率が低下する。 When water adheres to the surfaces of a plurality of flat tubes 1020 having low hydrophilicity, that is, high water repellency as in the heat exchanger 1100 of the comparative example, water droplets are applied to either the first side surface 1025a or the second side surface 1025b. Easy to stay as Further, particularly when water droplets attached to both side surfaces 1025a, 1025b come into contact with each other, a similar force acts on the water droplets from the side surfaces 1025a, 1025b of the two facing flat tubes, so that the water droplets may be applied to one of the side surfaces 1025a, 1025b. There is no bias. Here, when there is not enough water to overcome the force received from the surfaces of both side surfaces 1025a and 1025b, the water is bridged between the first side surface 1025a and the second side surface 1025b. There is a problem that the water is retained as it is without flowing down, and water easily accumulates. The retention of water between the plurality of flat tubes 1020 increases the resistance to the flow of air passing between the plurality of flat tubes 20. Then, the load of the blower 2 is increased, and the flow rate of air passing through the heat exchanger 1100 is reduced. Further, the water droplets in the gaps between the plurality of flat tubes 1020 become thermal resistance to heat transfer between the air flowing through the gaps and the refrigerant flowing in the plurality of flat tubes 1020, and the heat exchange efficiency is reduced.
 図8は、実施の形態1の熱交換器100の比較例である熱交換器2100の模式図である。図8は、熱交換器2100の一部を表示しており、複数の扁平管2020の第1の側面2025a及び第2の側面2025bに水滴が付着した状態を模式的に表している。複数の扁平管2020は、第1の扁平管2020aと第2の扁平管2020bとを隣り合わせて配置して構成されている。比較例である熱交換器2100の複数の扁平管2020は、第1の側面2025a及び第2の側面2025bとも親水性状が同じであり、親水性が高い状態になっている。つまり、複数の扁平管2020の表面は、接触角θが小さく、特に接触角θ<90°となっている。また、比較例の熱交換器1100において第1の側面2025aの接触角θ1と第2の側面2025bの接触角θ2との関係は、θ1=θ2となっている。 FIG. 8 is a schematic diagram of a heat exchanger 2100 which is a comparative example of the heat exchanger 100 of the first embodiment. FIG. 8 shows a part of the heat exchanger 2100, and schematically shows a state in which water droplets are attached to the first side surface 2025a and the second side surface 2025b of the plurality of flat tubes 2020. The plurality of flat tubes 2020 are configured by arranging a first flat tube 2020a and a second flat tube 2020b adjacent to each other. The plurality of flat tubes 2020 of the heat exchanger 2100 of the comparative example have the same hydrophilic property as the first side surface 2025a and the second side surface 2025b, and are in a highly hydrophilic state. That is, the surfaces of the plurality of flat tubes 2020 have a small contact angle θ, and in particular, the contact angle θ <90 °. Further, in the heat exchanger 1100 of the comparative example, the relationship between the contact angle θ1 of the first side surface 2025a and the contact angle θ2 of the second side surface 2025b is θ1 = θ2.
 親水性が高い状態の複数の扁平管2020の表面に水が付着する場合、水は表面に膜状になって滞留しやすい。第1の側面2025a又は第2の側面2025bに付着する水は、撥水性の高い側面1025a、1025bに滞留する水滴に比べ、薄く広がるため、複数の扁平管2020の隙間をブリッジすることはなく、熱交換器2100を通過する通風抵抗は増加しにくい。しかし、水は第1の側面2025a又は第2の側面2025bの表面を部分的に覆うように付着し、隙間を流れる空気と複数の扁平管2020内を流れる冷媒との間の伝熱にとって熱抵抗となり、熱交換効率が低下する。 When water adheres to the surfaces of a plurality of flat tubes 2020 that are highly hydrophilic, the water tends to stay in a film form on the surface. The water adhering to the first side surface 2025a or the second side surface 2025b spreads more thinly than the water droplets staying on the highly water- repellent side surfaces 1025a, 1025b, and therefore does not bridge the gaps between the plurality of flat tubes 2020, The ventilation resistance passing through the heat exchanger 2100 is unlikely to increase. However, the water adheres so as to partially cover the surface of the first side surface 2025a or the second side surface 2025b, and heat resistance to heat transfer between the air flowing through the gap and the refrigerant flowing inside the plurality of flat tubes 2020. And the heat exchange efficiency decreases.
 比較例に係る熱交換器1100、2100は、外気温が低い条件で使用する際に、着霜及び除霜を伴う運転を行う必要がある。熱交換器1100、2100に着霜する状態で運転する場合、複数の扁平管1020、2020に付着した水が氷結する。よって、熱交換器1100、2100を除霜する際には氷結した水を融解させる必要があり、除霜運転時に熱交換器1100、2100に投入する熱量が増加するため、除霜を行う時間が増加してしまう。除霜運転中の空気調和装置は、暖房運転を停止させるのが一般的である。従って、比較例に係る熱交換器1100、2100は、除霜運転の頻度が多くなるため、室内の快適性の低下、及び室内を暖房するにあたり冷凍サイクル装置1の運転効率の低下が課題となる。 The heat exchangers 1100 and 2100 according to the comparative example need to be operated with frost formation and defrosting when used under conditions where the outside air temperature is low. When the heat exchangers 1100 and 2100 are operated in a frosted state, water attached to the plurality of flat tubes 1020 and 2020 freezes. Therefore, when defrosting the heat exchangers 1100 and 2100, it is necessary to melt the frozen water, and the amount of heat that is input to the heat exchangers 1100 and 2100 during defrosting operation increases. It will increase. The air conditioning apparatus during the defrosting operation generally stops the heating operation. Therefore, in the heat exchangers 1100 and 2100 according to the comparative example, the frequency of the defrosting operation increases, and thus the comfort of the room decreases and the operation efficiency of the refrigeration cycle apparatus 1 decreases when heating the room. ..
 実施の形態1に係る熱交換器100においては、少なくとも第1の側面25aの接触角をθ1、第2の側面25bの接触角θ2としたときに、θ1<θ2の関係を満たしている。すなわち、小さい接触角θ1の面を持つ第1の側面25aの方が、第2の側面25bに比べ、親水性が高いと言える。また、大きい接触角θ2の面を持つ第2の側面25bの方が、第1の側面25aに比べ、撥水性が高いと言える。 In the heat exchanger 100 according to the first embodiment, when the contact angle of at least the first side surface 25a is θ1 and the contact angle of the second side surface 25b is θ2, the relationship of θ1<θ2 is satisfied. That is, it can be said that the first side surface 25a having a surface with a small contact angle θ1 is more hydrophilic than the second side surface 25b. Further, it can be said that the second side surface 25b having the surface with the large contact angle θ2 has higher water repellency than the first side surface 25a.
 図9~図11は、実施の形態1の室外熱交換器10の水の挙動を示す模式図である。図9~11は、熱交換器100を通過する気流の上流側から見た図を示している。実施の形態1の熱交換器100における、第1の側面25aの接触角θ1と第2の側面25bの接触角θ2とは、θ1<θ2の関係を満たしている。図9~11に示されるように、複数の扁平管20の隙間を形成する側面25a、25bのそれぞれの接触角θが異なる場合、隙間を形成する2つの面に付着した水滴70a、70bが接触すると、撥水性が高い第2の側面25bに滞留した水滴70bが親水性の高い第1の側面25a側へ移動し易い。そのため、第1の側面25aに付着する水量が増加し、重力Gにより水滴70に掛かる下向きの力も増加する。第2の側面25bから第1の側面25aに完全に水が移動した場合は、さらに重量が増加する。 9 to 11 are schematic diagrams showing the behavior of water in the outdoor heat exchanger 10 according to the first embodiment. 9 to 11 are views as seen from the upstream side of the air flow passing through the heat exchanger 100. In the heat exchanger 100 of the first embodiment, the contact angle θ1 of the first side surface 25a and the contact angle θ2 of the second side surface 25b satisfy the relationship of θ1 <θ2. As shown in FIGS. 9 to 11, when the contact angles θ of the side surfaces 25a and 25b forming the gap of the plurality of flat tubes 20 are different, the water droplets 70a and 70b attached to the two surfaces forming the gap contact each other. Then, the water droplet 70b staying on the second side surface 25b having high water repellency easily moves to the side of the first side surface 25a having high hydrophilicity. Therefore, the amount of water adhering to the first side surface 25a increases, and the downward force applied to the water droplet 70 due to the gravity G also increases. If the water is completely transferred from the second side surface 25b to the first side surface 25a, the weight is further increased.
 一方、図7に示される様に、比較例の熱交換器1100においては、水滴1070は、隙間を形成する2つの側面1025a、1025bの両方に付着しているため、2つの側面1025a、1025bから固体と水との界面張力γsw、固体の表面張力γs、及び水の表面張力γwを受ける。ここで、水滴1070に掛かる重力Gが、側面1025a、1025bから受ける力の合力を上回ると、水が落下する。しかし、実施の形態1に係る熱交換器100、及び比較例に係る熱交換器1100、2100においては、第1の扁平管20a、1020a、2020aと第2の扁平管20b、1020b、2020bとの間隔が狭い。そのため、重力Gにより水滴70、1070、2070に掛かる下向きの力は小さい。従って、第1の扁平管20a、1020a、2020aと第2の扁平管20b、1020b、2020bとから水滴70、1070、2070が受ける力が強い場合には、水滴70、1070、2070が複数の扁平管20、1020、2020の間に滞留し易くなる。よって、図7に示される比較例の熱交換器1100においては、水滴1070は、隙間を形成する2つの側面1025a、1025bの両方から力を受けるため、隙間に滞留し易い。 On the other hand, as shown in FIG. 7, in the heat exchanger 1100 of the comparative example, the water droplet 1070 adheres to both of the two side surfaces 1025a, 1025b forming the gap, so that the two side surfaces 1025a, 1025b It receives the interfacial tension γsw between the solid and water, the surface tension γs of the solid, and the surface tension γw of water. Here, when the gravity G applied to the water droplet 1070 exceeds the resultant force of the forces received from the side surfaces 1025a and 1025b, the water falls. However, in the heat exchanger 100 according to the first embodiment and the heat exchangers 1100 and 2100 according to the comparative example, the first flat tubes 20a, 1020a, 2020a and the second flat tubes 20b, 1020b, 2020b The intervals are narrow. Therefore, the downward force exerted on the water droplets 70, 1070, and 2070 by the gravity G is small. Therefore, when the water droplets 70, 1070, and 2070 receive a strong force from the first flat tubes 20a, 1020a, and 2020a and the second flat tubes 20b, 1020b, and 2020b, the water droplets 70, 1070, and 2070 have a plurality of flattened shapes. It becomes easy to stay between the pipes 20, 1020 and 2020. Therefore, in the heat exchanger 1100 of the comparative example shown in FIG. 7, the water droplet 1070 receives a force from both of the two side surfaces 1025a and 1025b forming the gap, and therefore tends to stay in the gap.
 実施の形態1に係る熱交換器100においては、図11に示される様に、水滴70に掛かる上向きの力は、親水性が高い第1の側面25aのみから働く。そのため、熱交換器100の複数の扁平管20の間に滞留する水滴70の量は、図7に示される比較例の熱交換器1100よりも減少する。また、実施の形態1に係る熱交換器100においては、第2の側面25bの水滴70bが、第1の側面25aに移動し、親水性の高い第1の側面25aに付着する水滴70の量が増える。そのため、水滴70に掛かる下向きの力が強くなり、比較例の熱交換器2100の複数の扁平管2020の隙間に存在する水滴2070よりも下方向に移動し易い。よって、熱交換器100の複数の扁平管20の間に滞留する水滴70の量は、図8に示される比較例の熱交換器2100よりも減少する。 In the heat exchanger 100 according to the first embodiment, as shown in FIG. 11, the upward force exerted on the water droplet 70 acts only from the first side surface 25a having high hydrophilicity. Therefore, the amount of water droplets 70 retained between the plurality of flat tubes 20 of the heat exchanger 100 is smaller than that of the heat exchanger 1100 of the comparative example shown in FIG. 7. Moreover, in the heat exchanger 100 according to Embodiment 1, the amount of the water droplet 70 on the second side surface 25b that moves to the first side surface 25a and adheres to the highly hydrophilic first side surface 25a. Will increase. Therefore, the downward force applied to the water droplet 70 becomes stronger, and the water droplet 2070 that is present in the gap between the plurality of flat tubes 2020 of the heat exchanger 2100 of the comparative example is more likely to move downward. Therefore, the amount of water droplets 70 retained between the plurality of flat tubes 20 of the heat exchanger 100 is smaller than that of the heat exchanger 2100 of the comparative example shown in FIG.
 以上に説明したように、実施の形態1に係る熱交換器100は、管軸を上下方向に向け並列された第1の扁平管20a及び第2の扁平管20bを備える。そして、第1の扁平管20a及び第2の扁平管20bは、管軸に垂直な断面における長軸方向に沿った側面である第1の側面25aと、第1の側面25aの反対側に位置する第2の側面25bと、を備える。第1の扁平管20aの第1の側面25aは、第2の扁平管20bの第2の側面25bに対向して配置されている。第1の側面25aの少なくとも一部分である親水領域は、第2の側面25bよりも親水性が高い。このように構成されることにより、複数の扁平管20の隙間にある結露水等の水滴70は、第2の側面25bから対向する第1の側面25aに移動し易く、複数の扁平管20の間に滞留する水量が低減される。よって、実施の形態1に係る熱交換器100は、比較例の熱交換器1100、2100に対し、排水性が向上し、通風抵抗及び空気と冷媒との間の熱抵抗が減少し、ひいては除霜運転時間を減少させることができる。具体的には、第1の側面25aの親水領域の接触角θ1は、第2の側面25bのうち親水領域に対向する領域の接触角θ2よりも小さくなっている。 As described above, the heat exchanger 100 according to the first embodiment includes the first flat tubes 20a and the second flat tubes 20b that are arranged in parallel with the tube axis in the vertical direction. And the 1st flat tube 20a and the 2nd flat tube 20b are located in the 1st side surface 25a which is a side surface along the long axis direction in the cross section perpendicular|vertical to a tube axis, and the opposite side of the 1st side surface 25a. And a second side surface 25b. The first side surface 25a of the first flat tube 20a is arranged so as to face the second side surface 25b of the second flat tube 20b. The hydrophilic region, which is at least a part of the first side surface 25a, is more hydrophilic than the second side surface 25b. With such a configuration, the water droplets 70 such as dew condensation water in the gaps between the plurality of flat tubes 20 easily move from the second side surface 25b to the opposing first side surface 25a, so that the plurality of flat tubes 20 have the same shape. The amount of water that accumulates between them is reduced. Therefore, the heat exchanger 100 according to the first embodiment has improved drainage performance, reduced ventilation resistance and heat resistance between air and the refrigerant, and thus eliminated heat exchangers 1100 and 2100 of the comparative example. The frost operation time can be reduced. Specifically, the contact angle θ1 of the hydrophilic region of the first side surface 25a is smaller than the contact angle θ2 of the region of the second side surface 25b facing the hydrophilic region.
 望ましくは、第1の側面25aの親水領域の接触角θ1は、90°よりも低く、第2の側面25bのうち親水領域に対向する領域の接触角θ2は、90°以上である。対向する面の一方の面が親水性が低い、即ち撥水性を高くすることにより、より親水性が高い第1の側面25aに第2の側面25bの水滴70bが移動し易いためである。 Desirably, the contact angle θ1 of the hydrophilic area of the first side surface 25a is lower than 90°, and the contact angle θ2 of the area of the second side surface 25b facing the hydrophilic area is 90° or more. This is because one of the surfaces facing each other has low hydrophilicity, that is, high water repellency, so that the water droplet 70b on the second side surface 25b easily moves to the first side surface 25a having higher hydrophilicity.
 図12は、実施の形態1の熱交換器100の複数の扁平管20の表面に水滴が付着した場合の説明図である。図12においては、複数の扁平管20の表面は、傾斜させた状態になっている。物体の表面の水滴を水平な状態から徐々に傾斜させるとき、水滴が滑落し始める時の傾斜角αを転落角という。転落角が小さい物体の表面は、水滴との付着性が弱く、物体の表面から水滴が除去されやすいと言える。従って、同じ水量が付着した物体の表面は、転落角が小さい方が水の離脱性が高い。よって、実施の形態1において、第2の側面25bは、第1の側面25aの親水領域よりも転落角が小さくなるように構成しても良い。言い換えると、第1の側面25aの親水領域の転落角は、第2の側面25bのうち親水領域に対向する領域の転落角よりも大きくなるように構成しても良い。これにより、水の離脱性が高い第2の側面25bから、比較的水の離脱性が低い第1の側面25aに水が集中し易くなる。第1の側面25aに水が集中すると、第1の側面25aに水が拡がり、かつ水の自重により複数の扁平管20に付着した水が流下し易くなる。これにより実施の形態1に係る熱交換器100は、複数の扁平管20の間に滞留する水量をさらに低減させることができる。 FIG. 12 is an explanatory view when water droplets adhere to the surfaces of the plurality of flat tubes 20 of the heat exchanger 100 of the first embodiment. In FIG. 12, the surfaces of the plurality of flat tubes 20 are inclined. When a water droplet on the surface of an object is gradually inclined from a horizontal state, the inclination angle α at which the water droplet starts to slide is called the falling angle. It can be said that the surface of an object having a small falling angle has weak adhesion to water droplets and water droplets are easily removed from the surface of the object. Therefore, on the surface of the object to which the same amount of water is attached, the smaller the falling angle, the higher the water detachability. Therefore, in the first embodiment, the second side surface 25b may be configured so that the fall angle is smaller than that of the hydrophilic region of the first side surface 25a. In other words, the fall angle of the hydrophilic region of the first side surface 25a may be larger than the fall angle of the region of the second side surface 25b facing the hydrophilic region. This makes it easier for water to concentrate from the second side surface 25b, which has high water releasability, to the first side surface 25a, which has relatively low water releasability. When water is concentrated on the first side surface 25a, the water spreads on the first side surface 25a, and the water adhering to the plurality of flat pipes 20 easily flows down due to the weight of the water itself. As a result, the heat exchanger 100 according to Embodiment 1 can further reduce the amount of water retained between the plurality of flat tubes 20.
 図13は、実施の形態1に係る熱交換器100の変形例である熱交換器100Aの断面構造の説明図である。図13に示されるように、複数の扁平管120の断面形状は、管軸に垂直な断面において中央部で折れ曲がった形状になっており、2つの直線状に伸びる2つの部分を所定の角度を持って繋げた形状になっている。つまり、複数の扁平管120は、管軸に垂直な断面において長軸方向に直線状に延びた形状ではなく、一方の端部21から他方の端部22へ向かう途中で折れ曲がった形状となっている。なお、複数の扁平管120において長軸方向とは、端部21と端部22とを結ぶ直線が延びる方向を意味する。複数の扁平管120は、図13に示された形態に限定されるものではない。例えば、複数の扁平管120の途中で複数箇所が折れ曲がっている形状でも良く、また折れ曲がりの角度も適宜設定することができる。 FIG. 13 is an explanatory diagram of a cross-sectional structure of a heat exchanger 100A which is a modified example of the heat exchanger 100 according to the first embodiment. As shown in FIG. 13, the cross-sectional shapes of the plurality of flat tubes 120 are bent at the central portion in a cross section perpendicular to the tube axis, and the two linearly extending portions are formed at a predetermined angle. It has a shape that is held and connected. That is, the plurality of flat tubes 120 do not have a shape that linearly extends in the major axis direction in a cross section perpendicular to the tube axis, but have a shape that is bent on the way from one end 21 to the other end 22. There is. The long axis direction of the plurality of flat tubes 120 means a direction in which a straight line connecting the end portions 21 and 22 extends. The plurality of flat tubes 120 is not limited to the shape shown in FIG. 13. For example, the shape may be such that a plurality of points are bent in the middle of the plurality of flat tubes 120, and the bending angle can be appropriately set.
 実施の形態2.
 実施の形態2に係る熱交換器200は、実施の形態1に係る熱交換器100に対し、複数の扁平管20の構造を変更したものである。実施の形態2においては、実施の形態1に対する変更点を中心に説明する。
Embodiment 2.
The heat exchanger 200 according to the second embodiment differs from the heat exchanger 100 according to the first embodiment in the structure of the plurality of flat tubes 20. The second embodiment will be described focusing on the changes from the first embodiment.
 図14は、実施の形態2に係る熱交換器200の断面構造の説明図である。図14は、複数の扁平管20の管軸に垂直な断面を示している。複数の扁平管20のそれぞれは、内部に冷媒が流通する複数の冷媒流路24が設けられた冷媒流通部50と、冷媒流通部50の長軸方向の端部21からY方向に向かって延設されたフィン部51と、を備える。フィン部51は、端部21からY方向に突出し複数の扁平管20の管軸に沿って設置された板状の部分である。なお、実施の形態2においてフィン部51は、冷媒流通部50の長軸方向、即ちY方向に平行に延びているが、この形態のみに限定されるものではない。例えば、フィン部51は、Y方向に対し所定の角度を持って端部21から延設されていても良い。 FIG. 14 is an explanatory diagram of a cross-sectional structure of the heat exchanger 200 according to the second embodiment. FIG. 14 shows a cross section perpendicular to the tube axes of the plurality of flat tubes 20. Each of the plurality of flat pipes 20 extends in the Y direction from the refrigerant flow section 50 provided with a plurality of refrigerant flow paths 24 through which the refrigerant flows, and the end portion 21 of the refrigerant flow section 50 in the long axis direction. The fin portion 51 is provided. The fin portion 51 is a plate-shaped portion that protrudes from the end portion 21 in the Y direction and is installed along the pipe axes of the plurality of flat pipes 20. In the second embodiment, the fin portion 51 extends parallel to the long axis direction of the coolant circulation portion 50, that is, the Y direction, but the present invention is not limited to this configuration. For example, the fin portion 51 may extend from the end portion 21 at a predetermined angle with respect to the Y direction.
 図15は、実施の形態2に係る熱交換器200の複数の扁平管20の表面の親水性状を示す図である。複数の扁平管20を構成する第1の扁平管20a及び第2の扁平管20bは、それぞれ第1の側面25a及び第2の側面25bを備える。第1の扁平管20aの第1の側面25aと第2の扁平管20bの第2の側面25bとは、それぞれ全域が同じ親水性状となっているのではない。第1の側面25aは、冷媒流通部50の表面及びフィン部51の表面の全域が親水性の高い領域となっている。第2の側面25bは、冷媒流通部50の表面が第1の側面25aよりも親水性が低くなるように構成されており、フィン部51が第1の側面25aと同様に親水性の高い領域となっている。このように構成されることにより、間隔が狭い複数の扁平管20の冷媒流通部50同士の隙間において、水滴の滞留を抑制することができる。 FIG. 15 is a diagram showing hydrophilicity of the surfaces of the plurality of flat tubes 20 of the heat exchanger 200 according to the second embodiment. The 1st flat tube 20a and the 2nd flat tube 20b which comprise the some flat tube 20 are equipped with the 1st side surface 25a and the 2nd side surface 25b, respectively. The first side surface 25a of the first flat tube 20a and the second side surface 25b of the second flat tube 20b do not have the same hydrophilicity in the entire area. In the first side surface 25a, the entire surface of the coolant circulation portion 50 and the surface of the fin portion 51 are highly hydrophilic regions. The second side surface 25b is configured such that the surface of the coolant circulation portion 50 is less hydrophilic than the first side surface 25a, and the fin portion 51 is a highly hydrophilic region like the first side surface 25a. It has become. With this configuration, it is possible to suppress the retention of water droplets in the gaps between the refrigerant flow portions 50 of the plurality of flat tubes 20 having a small gap.
 なお、熱交換器200において、フィン部51同士が対向している部分の隙間の間隔が比較的広いため、フィン部51は親水性が高くても低くても通風抵抗に大きな影響を与えることがない。ただし、図15に示される様に、フィン部51は親水性の高い領域とすることにより、風上側に位置するフィン部51から風下側に位置する親水性の低い冷媒流通部50に水滴が移動しにくくなる。そのため、間隔の狭い冷媒流通部50同士の隙間に水滴が滞留するのを抑制することができる。 In the heat exchanger 200, since the gap between the portions where the fin portions 51 face each other is relatively wide, the fin portions 51 may have a large influence on the ventilation resistance even if the fin portions 51 have high hydrophilicity or low hydrophilicity. Absent. However, as shown in FIG. 15, by making the fin portion 51 a highly hydrophilic region, water droplets move from the fin portion 51 located on the upwind side to the low hydrophilic refrigerant circulating portion 50 located on the leeward side. Hard to do. Therefore, it is possible to suppress water droplets from accumulating in the gap between the refrigerant circulation portions 50 having a small gap.
 図16は、実施の形態2に係る熱交換器200の変形例である熱交換器200aの複数の扁平管20の表面の親水性状を示す図である。図16に示される様に、複数の扁平管20のフィン部51も冷媒流通部50と同様に、第1の側面25aの親水性が高く、第2の側面25bの親水性が低くされていても良い。このように構成されることにより、熱交換器200の複数の扁平管20は、冷媒流通部50とフィン部51との厚みの差が少ない、又は同じ厚みとした場合に実施の形態1と同様に水滴の滞留を抑制することができる。 FIG. 16 is a diagram showing the hydrophilicity of the surfaces of the plurality of flat tubes 20 of the heat exchanger 200a, which is a modification of the heat exchanger 200 according to the second embodiment. As shown in FIG. 16, the fin portions 51 of the plurality of flat tubes 20 also have a high hydrophilicity on the first side surface 25a and a low hydrophilicity on the second side surface 25b, similarly to the refrigerant circulating portion 50. Is also good. With this configuration, the plurality of flat tubes 20 of the heat exchanger 200 are the same as those in the first embodiment when the difference in thickness between the refrigerant flow section 50 and the fin section 51 is small or the same thickness. In addition, the retention of water drops can be suppressed.
 実施の形態3.
 実施の形態3に係る熱交換器300は、実施の形態1に係る熱交換器100に対し、複数の扁平管20の構造を変更したものである。実施の形態3においては、実施の形態1に対する変更点を中心に説明する。
Embodiment 3.
The heat exchanger 300 according to the third embodiment differs from the heat exchanger 100 according to the first embodiment in the structure of the plurality of flat tubes 20. The third embodiment will be described focusing on the changes from the first embodiment.
 図17は、実施の形態3に係る熱交換器300の複数の扁平管20の表面の親水性状を示す図である。熱交換器200bの複数の扁平管20は、別部材として製造された冷媒流通部50とフィン部51とを接合して構成されている。フィン部51を形成する板状部材60は、例えば金属の板材を折り曲げて形成されており、冷媒流通部50の端部21にろう付け等の接合手段を持って接合されている。フィン部51を形成する板状部材60は、表面全体の親水性が冷媒流通部50の表面よりも低い。このように構成されることにより、複数の扁平管20の第2の側面25bのうち板状部材60と冷媒流通部50とが対向している領域Fのみが異なる親水性状の面と対向している。よって、領域Fと板状部材60とにより形成される隙間は、異なる親水性状の面が対向しており、実施の形態1の複数の扁平管20の隙間と同様に水滴の滞留を抑制することができる。 FIG. 17 is a diagram showing hydrophilicity of the surfaces of the plurality of flat tubes 20 of the heat exchanger 300 according to the third embodiment. The plurality of flat tubes 20 of the heat exchanger 200b are configured by joining the refrigerant circulation portion 50 and the fin portion 51, which are manufactured as separate members. The plate-shaped member 60 forming the fin portion 51 is formed by bending, for example, a metal plate material, and is joined to the end portion 21 of the refrigerant flow portion 50 by means of brazing or the like. The hydrophilicity of the entire surface of the plate-shaped member 60 forming the fin portion 51 is lower than that of the surface of the refrigerant flow portion 50. With this configuration, of the second side surfaces 25b of the plurality of flat tubes 20, only the region F in which the plate-shaped member 60 and the refrigerant flow portion 50 face each other faces the different hydrophilic surface. There is. Therefore, the gap formed by the region F and the plate-shaped member 60 has different hydrophilic surfaces facing each other, and the retention of water droplets is suppressed as in the gap of the plurality of flat tubes 20 of the first embodiment. Can be done.
 実施の形態3において、複数の扁平管20は、異なる親水性状の面が対向しているのが、第1の側面25a及び第2の側面25bの一部分のみである。しかし、熱交換器300が蒸発器として使用される場合、最も結露が生じ易い風上側において水滴の滞留を抑制することができるため、比較例の熱交換器1100、2100に対し有利である。また、領域Fを風下側に配置した場合であっても、空気の流れにより風下側に移動した水滴が領域Fで排出され易くなるため、比較例の熱交換器1100、2100に対し有利である。 In the third embodiment, the plurality of flat tubes 20 have different hydrophilic surfaces facing each other only in a part of the first side surface 25a and the second side surface 25b. However, when the heat exchanger 300 is used as an evaporator, it is possible to suppress the retention of water droplets on the windward side where dew condensation is most likely to occur, which is advantageous over the heat exchangers 1100 and 2100 of the comparative example. Further, even when the region F is arranged on the leeward side, the water droplets moved to the leeward side due to the air flow are easily discharged in the region F, which is advantageous to the heat exchangers 1100 and 2100 of the comparative example. ..
 なお、実施の形態3において、冷媒流通部50は、全体が親水性の低い領域となっているが、実施の形態1と同様に第1の側面25a側と第2の側面25b側とで異なる親水性状となるように構成しても良い。ただし、実施の形態3に係る熱交換器300の複数の扁平管20のように、冷媒流通部50の表面全体を親水性の低い表面とし、フィン部51の表面全体を親水性の高い表面とすることにより、冷媒流通部50及びフィン部51を形成する板状部材60のそれぞれの製造が容易になるという利点がある。 In the third embodiment, the refrigerant flow section 50 is a region having low hydrophilicity as a whole, but is different between the first side surface 25a side and the second side surface 25b side as in the first embodiment. You may comprise so that it may become hydrophilic. However, like the plurality of flat tubes 20 of the heat exchanger 300 according to Embodiment 3, the entire surface of the refrigerant circulation portion 50 has a low hydrophilic surface, and the entire surface of the fin portion 51 has a high hydrophilic surface. By doing so, there is an advantage that the plate-shaped member 60 forming the coolant circulation portion 50 and the fin portion 51 can be easily manufactured.
 実施の形態4.
 実施の形態4に係る熱交換器400は、実施の形態1に係る熱交換器100に対し、複数の扁平管20の構造を変更したものである。実施の形態4においては、実施の形態1に対する変更点を中心に説明する。
Fourth Embodiment
The heat exchanger 400 according to the fourth embodiment is different from the heat exchanger 100 according to the first embodiment in the structure of the plurality of flat tubes 20. The fourth embodiment will be described focusing on the changes from the first embodiment.
 図18は、実施の形態4に係る熱交換器400の複数の扁平管20の表面の親水性状を示す図である。熱交換器400の複数の扁平管20は、内部に冷媒が流通する複数の冷媒流路24が設けられた冷媒流通部50と、冷媒流通部50の長軸方向の端部21からY方向に向かって延設されたフィン部51及び端部22からY方向逆向きに延設されたフィン部52と、を備える。フィン部52は、端部22からY方向逆向きに突出し複数の扁平管20の管軸に沿って設置された板状の部分である。 FIG. 18 is a diagram showing a hydrophilic property of the surfaces of the plurality of flat tubes 20 of the heat exchanger 400 according to the fourth embodiment. The plurality of flat tubes 20 of the heat exchanger 400 are arranged in the Y direction from the refrigerant circulation part 50 in which the plurality of refrigerant flow paths 24 through which the refrigerant flows are provided, and the longitudinal end 21 of the refrigerant circulation part 50. A fin portion 51 extending toward the end portion and a fin portion 52 extending from the end portion 22 in the Y direction opposite direction. The fin portion 52 is a plate-shaped portion that projects from the end portion 22 in the Y direction in the opposite direction and is installed along the tube axes of the plurality of flat tubes 20.
 熱交換器400の複数の扁平管20は、別部材として製造された冷媒流通部50と板状部材460とを接合して構成されている。フィン部51及びフィン部52を形成する板状部材460は、例えば金属の板材を折り曲げて形成されており、冷媒流通部50の片側の側面を覆う様に取り付けられ、ろう付け等の接合手段を持って冷媒流通部50に接合されている。フィン部51及びフィン部52を形成する板状部材460は、表面全体の親水性が冷媒流通部50の表面よりも低い。一方、冷媒流通部50の表面全体の親水性は、板状部材460の表面よりも高くなっている。望ましくは、板状部材460の表面は、接触角θ1<90°で、冷媒流通部50の表面は接触角θ2≧90°で構成されると良い。板状部材460と冷媒流通部50とは、それぞれの表面の全体が同一の親水性状に構成されることにより、製造が容易になるという利点がある。 The plurality of flat tubes 20 of the heat exchanger 400 are configured by joining the refrigerant circulation unit 50 and the plate member 460, which are manufactured as separate members. The plate-shaped member 460 forming the fin portions 51 and 52 is formed by bending a metal plate material, for example, and is attached so as to cover one side surface of the refrigerant circulating portion 50, and a joining means such as brazing is used. It is joined to the refrigerant flow unit 50. The plate-shaped member 460 forming the fin portions 51 and the fin portions 52 has lower hydrophilicity on the entire surface than that of the surface of the coolant circulation portion 50. On the other hand, the hydrophilicity of the entire surface of the coolant circulation portion 50 is higher than that of the surface of the plate member 460. Desirably, the surface of the plate member 460 has a contact angle θ1<90°, and the surface of the refrigerant flow portion 50 has a contact angle θ2≧90°. The plate-shaped member 460 and the refrigerant flow section 50 have an advantage that they can be easily manufactured because their respective surfaces are configured to have the same hydrophilicity.
 熱交換器400は、第1の扁平管20aと第2の扁平管20bとは、内部に冷媒を通す冷媒流路24を備える少なくとも1つの冷媒流通部50と、冷媒流通部50の端部21、22から長軸方向に延設する2つのフィン部51、52と、を備える。従って、冷媒流通部50の両端からフィン部51及びフィン部52が延設されていることにより、複数の扁平管20の間を通過する空気との接触面積が多くなり、熱交換効率が高くなる。そして、フィン部51、52を形成する板状部材460が第1の扁平管20aの第1の側面25aを形成し、第2の扁平管20bの第2の側面25bの一部を構成する冷媒流通部50と対向している。このように構成されることにより、熱交換器400は、親水性が高い第1の側面25aと親水性の低い第2の側面25bとが対向して配置され、最も間隔の狭い冷媒流通部50同士の隙間において、実施の形態1と同様に水滴の滞留を抑制することができる。 In the heat exchanger 400, the first flat tube 20a and the second flat tube 20b have at least one refrigerant flow section 50 including a refrigerant flow path 24 through which a refrigerant passes, and an end portion 21 of the refrigerant flow section 50. , 22, and two fin portions 51 and 52 extending in the long axis direction. Therefore, since the fin portions 51 and the fin portions 52 extend from both ends of the refrigerant flow portion 50, the contact area with the air passing between the plurality of flat pipes 20 increases, and the heat exchange efficiency becomes high. .. The plate-shaped member 460 forming the fin portions 51 and 52 forms the first side surface 25a of the first flat tube 20a, and constitutes a part of the second side surface 25b of the second flat tube 20b. It faces the distribution unit 50. With this configuration, in the heat exchanger 400, the first side surface 25a having high hydrophilicity and the second side surface 25b having low hydrophilicity are arranged to face each other, and the refrigerant flow section 50 having the narrowest interval is arranged. In the gap between them, the retention of water droplets can be suppressed as in the first embodiment.
 なお、熱交換器400の複数の扁平管20は、冷媒流通部50と別体の板状部材460とを接合して形成されているが、冷媒流通部50とフィン部51、52とを一体に製造しても良い。この場合、複数の扁平管20は、例えば押し出し加工又は引き抜き加工により製造される。ただし、熱交換器400の複数の扁平管20において冷媒流通部50とフィン部51、52とを一体にした場合は、少なくとも冷媒流通部50の第1の側面25a側と第2の側面25b側とで表面の親水性状を異なる様に形成する必要がある。 The plurality of flat tubes 20 of the heat exchanger 400 are formed by joining the refrigerant circulating portion 50 and the separate plate-shaped member 460, but the refrigerant circulating portion 50 and the fin portions 51, 52 are integrated. It may be manufactured in In this case, the plurality of flat tubes 20 are manufactured by, for example, extrusion processing or drawing processing. However, when the refrigerant flow section 50 and the fin sections 51 and 52 are integrated in the plurality of flat tubes 20 of the heat exchanger 400, at least the first side surface 25a side and the second side surface 25b side of the refrigerant flow section 50 are included. It is necessary to form the hydrophilic properties of the surface differently.
 実施の形態5.
 実施の形態5に係る熱交換器500は、実施の形態2に係る熱交換器200に対し、複数の扁平管20の配列を変更したものである。実施の形態5においては、実施の形態2に対する変更点を中心に説明する。
Embodiment 5.
The heat exchanger 500 according to the fifth embodiment differs from the heat exchanger 200 according to the second embodiment in that the arrangement of the plurality of flat tubes 20 is changed. The fifth embodiment will be described focusing on the changes from the second embodiment.
 図19は、実施の形態5に係る熱交換器500の複数の扁平管520の表面の親水性状を示す図である。熱交換器500の複数の扁平管520を構成する第1の扁平管520aは、冷媒流通部50の端部21からフィン部51がY方向逆向きに延設されている。また、複数の扁平管520を構成する第2の扁平管520bは、冷媒流通部50の端部22からフィン部52がY方向に延設されている。第1の扁平管520aと第2の扁平管520bとは、冷媒流通部50がX方向に並列しておらず、第2の扁平管520bの冷媒流通部50は、Y方向にずれた位置に配置されている。つまり、第1の扁平管520aのフィン部51と第2の扁平管520bの冷媒流通部50とが対向し、第1の扁平管520aの冷媒流通部50と第2の扁平管520bのフィン部52とが対向するように配置されている。言い換えると、第1の扁平管520aと第2の扁平管520bとは、一方の冷媒流通部50と他方のフィン部51、52とを対向させて配置されている。 FIG. 19 is a diagram showing a hydrophilic property of the surfaces of the plurality of flat tubes 520 of the heat exchanger 500 according to the fifth embodiment. In the first flat pipe 520a constituting the plurality of flat pipes 520 of the heat exchanger 500, the fin portion 51 extends in the opposite direction in the Y direction from the end portion 21 of the refrigerant flow portion 50. Further, in the second flat tubes 520b that form the plurality of flat tubes 520, the fin portions 52 extend in the Y direction from the end portions 22 of the refrigerant circulating portion 50. The first flat tubes 520a and the second flat tubes 520b do not have the refrigerant circulation parts 50 arranged in parallel in the X direction, and the refrigerant circulation parts 50 of the second flat tubes 520b are displaced in the Y direction. Have been placed. That is, the fin portion 51 of the first flat tube 520a and the refrigerant flowing portion 50 of the second flat tube 520b face each other, and the fin flowing portion 50 of the first flat tube 520a and the fin portion of the second flat tube 520b. 52 are arranged so as to face each other. In other words, the first flat tube 520a and the second flat tube 520b are arranged such that one refrigerant circulating portion 50 and the other fin portions 51 and 52 face each other.
 熱交換器500の複数の扁平管520は、フィン部51、52の親水性が高く、冷媒流通部50の親水性が低く構成されている。これにより、隣合う第1の扁平管520aと第2の扁平管520bとにより形成される隙間において、対向する面が異なる親水性状を有するため、熱交換器500は、実施の形態1と同様に水滴の滞留を抑制することができる。 The plurality of flat tubes 520 of the heat exchanger 500 are configured such that the fin portions 51 and 52 have high hydrophilicity and the refrigerant flow portion 50 has low hydrophilicity. Accordingly, in the gap formed by the first flat tube 520a and the second flat tube 520b adjacent to each other, the surfaces facing each other have different hydrophilic properties, so that the heat exchanger 500 is similar to the first embodiment. The retention of water droplets can be suppressed.
 実施の形態6.
 実施の形態6に係る熱交換器600は、実施の形態1に係る熱交換器100に対し、複数の扁平管20の構造及び配列を変更したものである。実施の形態6においては、実施の形態1に対する変更点を中心に説明する。
Sixth Embodiment
The heat exchanger 600 according to the sixth embodiment differs from the heat exchanger 100 according to the first embodiment in the structure and arrangement of the plurality of flat tubes 20. The sixth embodiment will be described focusing on the changes from the first embodiment.
 図20は、実施の形態6に係る熱交換器600の断面構造の説明図である。図20は、複数の扁平管20の管軸に垂直な断面を示している。複数の扁平管620は、第1の扁平管620aと第2の扁平管620bとから構成されている。複数の扁平管620は、それぞれ冷媒流通部50を複数備え、一方の冷媒流通部50の端部21と他方の冷媒流通部50の端部22との間をフィン部53により接続して形成されている。また、複数の扁平管620は、他の冷媒流通部50と接続されていない端部21、22からフィン部51、52が延設されている。 FIG. 20 is an explanatory diagram of a sectional structure of the heat exchanger 600 according to the sixth embodiment. FIG. 20 shows a cross section perpendicular to the tube axis of the plurality of flat tubes 20. The plurality of flat tubes 620 are composed of a first flat tube 620a and a second flat tube 620b. Each of the plurality of flat tubes 620 is provided with a plurality of refrigerant circulation portions 50, and is formed by connecting the end portion 21 of one refrigerant circulation portion 50 and the end portion 22 of the other refrigerant circulation portion 50 by the fin portion 53. ing. Further, in the plurality of flat tubes 620, fin portions 51 and 52 are extended from the end portions 21 and 22 that are not connected to the other refrigerant circulation portions 50.
 他の実施の形態と同様に、複数の扁平管620は、第1の側面25aと第2の側面25bとが対向している。そして、少なくとも間隔の狭い冷媒流通部50同士の隙間において、第1の側面25aは親水性が高く、第2の側面25bは親水性が低くなるように構成されている。このように構成されることにより、熱交換器600は、大きな熱交換容量を有しつつ、実施の形態1と同様に水滴の滞留を抑制することができる。 As in the other embodiments, the plurality of flat tubes 620 have the first side surface 25a and the second side surface 25b facing each other. The first side surface 25a has a high hydrophilicity and the second side surface 25b has a low hydrophilicity at least in the gap between the refrigerant circulation portions 50 having a narrow interval. With this configuration, the heat exchanger 600 can suppress the retention of water droplets as in the first embodiment while having a large heat exchange capacity.
 図21は、実施の形態6に係る熱交換器600の変形例である熱交換器600aの断面構造の説明図である。熱交換器600aの複数の扁平管620は、熱交換器600と同様に、複数の冷媒流通部50がフィン部53により接続されて構成されている。そして、熱交換器600aは、第2の扁平管620bの冷媒流通部50が第1の扁平管620aの冷媒流通部50に対しY方向にずれて位置している。つまり、第1の扁平管620aのフィン部51及びフィン部53と第2の扁平管620bの冷媒流通部50とが対向し、第1の扁平管620aの冷媒流通部50と第2の扁平管620bのフィン部52とが対向するように配置されている。言い換えると、第1の扁平管620aと第2の扁平管620bとは、一方の冷媒流通部50と他方のフィン部51、52、53とを対向させて配置されている。 FIG. 21 is an explanatory diagram of a cross-sectional structure of a heat exchanger 600a which is a modified example of the heat exchanger 600 according to the sixth embodiment. Similar to the heat exchanger 600, the plurality of flat tubes 620 of the heat exchanger 600a are configured by connecting the plurality of refrigerant circulation portions 50 by the fin portions 53. The heat exchanger 600a is positioned so that the refrigerant flow section 50 of the second flat tube 620b is displaced in the Y direction with respect to the refrigerant flow section 50 of the first flat tube 620a. That is, the fin portion 51 and the fin portion 53 of the first flat tube 620a and the refrigerant flowing portion 50 of the second flat tube 620b face each other, and the refrigerant flowing portion 50 of the first flat tube 620a and the second flat tube 620a. The fin portion 52 of the 620b is arranged so as to face the fin portion 52. In other words, the first flat tube 620a and the second flat tube 620b are arranged such that one refrigerant circulating portion 50 and the other fin portions 51, 52, 53 face each other.
 熱交換器600aの複数の扁平管620は、フィン部51、52、53の表面の親水性が高く、冷媒流通部50の表面の親水性が低くなるように構成されている。このように構成されることにより、隣合う第1の扁平管520aと第2の扁平管520bとにより形成される隙間において、対向する面が異なる親水性状を有する。そのため、熱交換器600aは、大きな熱交換容量を有しつつ、実施の形態1と同様に水滴の滞留を抑制することができる。 The plurality of flat tubes 620 of the heat exchanger 600a are configured so that the surface hydrophilicity of the fin portions 51, 52, 53 is high and the hydrophilicity of the surface of the refrigerant flow portion 50 is low. With such a configuration, in the gap formed by the first flat tube 520a and the second flat tube 520b adjacent to each other, the opposing surfaces have different hydrophilic properties. Therefore, the heat exchanger 600a has a large heat exchange capacity and can suppress the retention of water droplets as in the first embodiment.
 また、実施の形態6においては、複数の扁平管620は、冷媒流通部50とフィン部51、52、53とが一体に成形されているが、別部材同士を接合させて構成されていても良い。例えば、実施の形態4に示したように、複数の扁平管620は、フィン部51、52、53を形成する板状部材と冷媒流通部50とを接合して構成することにより、製造が容易になるという利点がある。 Further, in the sixth embodiment, the plurality of flat pipes 620 are integrally formed with the refrigerant flow portion 50 and the fin portions 51, 52, 53, but even if they are configured by joining different members to each other. good. For example, as shown in the fourth embodiment, the plurality of flat tubes 620 can be easily manufactured by joining the plate-like members forming the fin portions 51, 52, 53 and the refrigerant circulating portion 50 to each other. Has the advantage that
 以上に本発明を実施の形態に基づいて説明したが、本発明は上述した実施の形態の構成のみに限定されるものではない。例えば、複数の扁平管620は、2つの冷媒流通部50を有するが、さらに多くの冷媒流通部50を有していても良い。また、熱交換器100、200、200a、300、400、500、600、600aは、さらに異なる親水性状を有する扁平管を有していても良い。また、以上の説明において、親水性の指標については、水滴と表面との接触角が大きい場合を親水性が低い、接触角が小さい場合を親水性が高い、と表現して説明しているが、接触角の大小の代わりに転落角の大小を用いても良い。つまり、転落角が小さい場合を親水性が低い(水の離脱性が高い)、転落角が大きい場合を親水性が高い(水の離脱性が低い)として、複数の扁平管の表面を構成しても良い。さらに、本発明は各実施の形態を組み合わせて構成されていても良い。例えば、実施の形態1に係る熱交換器100の変形例である熱交換器100Aの複数の扁平管120の折れ曲がった断面形状を、他の実施の形態に適用しても良い。要するに、いわゆる当業者が必要に応じてなす種々なる変更、応用、利用の範囲をも本発明の要旨(技術的範囲)に含むことを念のため申し添える。 Although the present invention has been described above based on the embodiments, the present invention is not limited to the configurations of the above-described embodiments. For example, the plurality of flat tubes 620 have two refrigerant circulation parts 50, but may have more refrigerant circulation parts 50. Further, the heat exchangers 100, 200, 200a, 300, 400, 500, 600, 600a may further include flat tubes having different hydrophilic properties. Further, in the above description, the index of hydrophilicity is described as low hydrophilicity when the contact angle between the water droplet and the surface is large, and high hydrophilicity when the contact angle is small. The magnitude of the fall angle may be used instead of the magnitude of the contact angle. That is, when the falling angle is small, the hydrophilicity is low (water releasability is high), and when the falling angle is large, the hydrophilicity is high (water releasability is low). You may. Further, the present invention may be configured by combining each embodiment. For example, the bent cross-sectional shapes of the plurality of flat tubes 120 of the heat exchanger 100A, which is a modification of the heat exchanger 100 according to the first embodiment, may be applied to other embodiments. In short, it should be added that the scope of the present invention (technical scope) also includes various modifications, applications, and ranges of use that are required by those skilled in the art.
 1 冷凍サイクル装置、2 送風機、3 圧縮機、4 四方弁、5 室外熱交換器、6 膨張装置、7 室内熱交換器、8 室外機、9 室内機、10 室外熱交換器、20 扁平管、20a 第1の扁平管、20b 第2の扁平管、21 (第1)端部、22 (第2)端部、24 冷媒流路、25a (第1の)側面、25b (第2の)側面、50 冷媒流通部、51 フィン部、52 フィン部、53 フィン部、60 板状部材、70 水滴、70a 水滴、70b 水滴、80 下端ヘッダ、81 上端ヘッダ、90 冷媒配管、100 熱交換器、101 熱交換器ユニット、200 熱交換器、200a 熱交換器、200b 熱交換器、300 熱交換器、400 熱交換器、460 板状部材、500 熱交換器、520 扁平管、520a 第1の扁平管、520b 第2の扁平管、600 熱交換器、600a 熱交換器、620 扁平管、620a 第1の扁平管、620b 第2の扁平管、1020 扁平管、1020a 第1の扁平管、1020b 第2の扁平管、1025a (第1の)側面、1025b (第2の)側面、1070 水滴、1100 熱交換器、2020 扁平管、2020a 第1の扁平管、2020b 第2の扁平管、2025a 第1の側面、2025b 第2の側面、2070 水滴、2100 熱交換器、A 管短径、B ピッチ、F 領域、G 重力、γs 表面張力、γsw 界面張力、γw 表面張力、θ 接触角、θ1 接触角、θ2 接触角。 1 refrigeration cycle device, 2 blower, 3 compressor, 4 four-way valve, 5 outdoor heat exchanger, 6 expansion device, 7 indoor heat exchanger, 8 outdoor unit, 9 indoor unit, 10 outdoor heat exchanger, 20 flat tube, 20a first flat tube, 20b second flat tube, 21 (first) end, 22 (second) end, 24 refrigerant flow passage, 25a (first) side surface, 25b (second) side surface , 50 refrigerant flow section, 51 fin section, 52 fin section, 53 fin section, 60 plate-shaped member, 70 water droplets, 70a water droplets, 70b water droplets, 80 lower end header, 81 upper end header, 90 refrigerant piping, 100 heat exchanger, 101 Heat exchanger unit, 200 heat exchanger, 200a heat exchanger, 200b heat exchanger, 300 heat exchanger, 400 heat exchanger, 460 plate-shaped member, 500 heat exchanger, 520 flat tube, 520a first flat tube , 520b 2nd flat tube, 600 heat exchanger, 600a heat exchanger, 620 flat tube, 620a 1st flat tube, 620b 2nd flat tube, 1020 flat tube, 1020a 1st flat tube, 1020b 2nd 1025a (first) side surface, 1025b (second) side surface, 1070 water droplets, 1100 heat exchanger, 2020 flat tube, 2020a first flat tube, 2020b second flat tube, 2025a first Side surface, 2025b second side surface, 2070 water droplet, 2100 heat exchanger, A tube minor diameter, B pitch, F region, G gravity, γs surface tension, γsw interfacial tension, γw surface tension, θ contact angle, θ1 contact angle, θ2 contact angle.

Claims (14)

  1.  管軸を並列された第1の扁平管及び第2の扁平管を備え、
     前記第1の扁平管は、前記第2の扁平管に対向する第1の側面を有し、
     前記第2の扁平管は、前記第1の扁平管に対向する第2の側面を有し、
     前記第1の側面の少なくとも一部分である親水領域は、
     前記第2の側面よりも親水性が高い、熱交換器。
    A first flat tube and a second flat tube whose tube axes are arranged in parallel,
    The first flat tube has a first side surface facing the second flat tube,
    The second flat tube has a second side surface facing the first flat tube,
    The hydrophilic region, which is at least a part of the first side surface,
    A heat exchanger that is more hydrophilic than the second side surface.
  2.  前記第1の側面の前記親水領域の接触角は、
     前記第2の側面のうち前記親水領域に対向する領域の前記接触角よりも小さい、請求項1に記載の熱交換器。
    The contact angle of the hydrophilic region on the first side surface is
    The heat exchanger according to claim 1, which is smaller than the contact angle of a region of the second side surface facing the hydrophilic region.
  3.  前記第1の側面の前記親水領域の前記接触角は、
     90°未満であり、
     前記第2の側面のうち前記親水領域に対向する領域の前記接触角は、
     90°以上である、請求項2に記載の熱交換器。
    The contact angle of the hydrophilic region of the first side surface is
    Less than 90°,
    The contact angle of a region of the second side surface facing the hydrophilic region is
    The heat exchanger according to claim 2, wherein the temperature is 90 ° or more.
  4.  前記第1の側面の前記親水領域の転落角は、
     前記第2の側面のうち前記親水領域に対向する領域の転落角よりも大きい、請求項1~3の何れか1項に記載の熱交換器。
    The falling angle of the hydrophilic region on the first side surface is
    The heat exchanger according to any one of claims 1 to 3, which has a larger fall angle than a region of the second side surface facing the hydrophilic region.
  5.  前記第1の扁平管と前記第2の扁平管とは、
     内部に冷媒を通す冷媒流路を備える少なくとも1つの冷媒流通部と、
     前記冷媒流通部の端部から前記管軸に垂直な断面における長軸方向に延設する少なくとも1つのフィン部と、を備える、請求項1~4の何れか1項に記載の熱交換器。
    The first flat tube and the second flat tube
    At least one refrigerant flow unit having a refrigerant flow path for passing refrigerant inside,
    The heat exchanger according to any one of claims 1 to 4, further comprising: at least one fin portion extending in a long axis direction in a cross section perpendicular to the tube axis from an end portion of the refrigerant circulation portion.
  6.  前記第1の扁平管と前記第2の扁平管とは、
     一方の前記冷媒流通部と他方の前記フィン部とを対向させて配置される、請求項5に記載の熱交換器。
    The first flat tube and the second flat tube,
    The heat exchanger according to claim 5, wherein one of the refrigerant circulation portions and the other of the fin portions are arranged to face each other.
  7.  前記第1の扁平管と前記第2の扁平管とは、
     互いの前記冷媒流通部及び前記フィン部を対向させて配置される、請求項5に記載の熱交換器。
    The first flat tube and the second flat tube,
    The heat exchanger according to claim 5, wherein the refrigerant circulation portion and the fin portion are arranged to face each other.
  8.  前記第1の扁平管と前記第2の扁平管とは、
     前記フィン部と前記冷媒流通部とを接合させて形成され、
     前記フィン部は、
     前記冷媒流通部の前記長軸方向に沿った2つの側面のうち一方の側面に接合されて形成されている、請求項6又は7に記載の熱交換器。
    The first flat tube and the second flat tube
    It is formed by joining the fin portion and the refrigerant flow portion.
    The fin portion is
    The heat exchanger according to claim 6 or 7, which is formed by being joined to one side surface of the two side surfaces along the long axis direction of the refrigerant circulating portion.
  9.  前記フィン部の表面は、
     前記冷媒流通部の表面と親水性が異なる、請求項8に記載の熱交換器。
    The surface of the fin portion is
    The heat exchanger according to claim 8, wherein hydrophilicity is different from that of the surface of the refrigerant circulation portion.
  10.  前記フィン部は、
     複数のフィン部を有し、
     前記冷媒流通部の前記長軸方向の両方の端部から前記長軸方向に延設される、請求項5~9の何れか1項に記載の熱交換器。
    The fin portion is
    Has a plurality of fins,
    The heat exchanger according to any one of claims 5 to 9, which is extended from both ends of the refrigerant circulation portion in the long axis direction in the long axis direction.
  11.  前記冷媒流通部は、
     複数の冷媒流通部を有し、
     前記複数の冷媒流通部のうち隣合う2つの前記冷媒流通部の端部は、
     前記フィン部により接続されている、請求項5~10の何れか1項に記載の熱交換器。
    The refrigerant circulation unit,
    Having a plurality of refrigerant circulation parts,
    The ends of the two adjacent refrigerant circulation portions of the plurality of refrigerant circulation portions are
    The heat exchanger according to any one of claims 5 to 10, wherein the heat exchangers are connected by the fin portions.
  12.  前記第1の扁平管と前記第2の扁平管とは、
     前記第1の側面と前記第2の側面との間を接続する部材が設けられていない、請求項1~11の何れか1項に記載の熱交換器。
    The first flat tube and the second flat tube
    The heat exchanger according to any one of claims 1 to 11, wherein a member that connects the first side surface and the second side surface is not provided.
  13.  請求項1~12の何れか1項に記載の熱交換器を備える、熱交換器ユニット。 A heat exchanger unit comprising the heat exchanger according to any one of claims 1 to 12.
  14.  請求項13に記載の熱交換器ユニットを備える、冷凍サイクル装置。 A refrigeration cycle apparatus including the heat exchanger unit according to claim 13.
PCT/JP2019/008580 2019-03-05 2019-03-05 Heat exchanger, heat exchanger unit, and refrigeration cycle device WO2020178977A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021503308A JP7118238B2 (en) 2019-03-05 2019-03-05 Heat exchanger, heat exchanger unit, and refrigeration cycle device
PCT/JP2019/008580 WO2020178977A1 (en) 2019-03-05 2019-03-05 Heat exchanger, heat exchanger unit, and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008580 WO2020178977A1 (en) 2019-03-05 2019-03-05 Heat exchanger, heat exchanger unit, and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020178977A1 true WO2020178977A1 (en) 2020-09-10

Family

ID=72338475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008580 WO2020178977A1 (en) 2019-03-05 2019-03-05 Heat exchanger, heat exchanger unit, and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7118238B2 (en)
WO (1) WO2020178977A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023105703A1 (en) * 2021-12-09 2023-06-15 三菱電機株式会社 Dehumidifying device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4081332B2 (en) * 2002-09-13 2008-04-23 日本ペイント株式会社 Wire coating method and insulated wire

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074588A (en) * 1998-08-31 2000-03-14 Toshiba Corp Fin tube type heat exchanger for air conditioner
US20070023172A1 (en) * 2004-03-18 2007-02-01 Frank Obrist Heat exchanger for a motor vehicle air conditioning system
WO2013105133A1 (en) * 2012-01-11 2013-07-18 三菱電機株式会社 Plate fin-and-tube heat exchanger, and refrigeration and air-conditioning system with same
JP2014043985A (en) * 2012-08-27 2014-03-13 Sharp Corp Parallel flow type heat exchanger and air conditioner mounted with the same
JP2014077600A (en) * 2012-10-11 2014-05-01 Mitsubishi Electric Corp Heat exchanger and method for making the same, and air conditioner with heat exchanger
JP2014206313A (en) * 2013-04-11 2014-10-30 三菱電機株式会社 Heat exchanger and air conditioner
WO2017017789A1 (en) * 2015-07-28 2017-02-02 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074588A (en) * 1998-08-31 2000-03-14 Toshiba Corp Fin tube type heat exchanger for air conditioner
US20070023172A1 (en) * 2004-03-18 2007-02-01 Frank Obrist Heat exchanger for a motor vehicle air conditioning system
WO2013105133A1 (en) * 2012-01-11 2013-07-18 三菱電機株式会社 Plate fin-and-tube heat exchanger, and refrigeration and air-conditioning system with same
JP2014043985A (en) * 2012-08-27 2014-03-13 Sharp Corp Parallel flow type heat exchanger and air conditioner mounted with the same
JP2014077600A (en) * 2012-10-11 2014-05-01 Mitsubishi Electric Corp Heat exchanger and method for making the same, and air conditioner with heat exchanger
JP2014206313A (en) * 2013-04-11 2014-10-30 三菱電機株式会社 Heat exchanger and air conditioner
WO2017017789A1 (en) * 2015-07-28 2017-02-02 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023105703A1 (en) * 2021-12-09 2023-06-15 三菱電機株式会社 Dehumidifying device

Also Published As

Publication number Publication date
JPWO2020178977A1 (en) 2021-09-30
JP7118238B2 (en) 2022-08-15

Similar Documents

Publication Publication Date Title
JP5661202B2 (en) Plate fin tube type heat exchanger and refrigeration air conditioning system including the same
AU2012256999B2 (en) Heat exchanger
JP6847229B2 (en) Heat exchanger and refrigeration cycle equipment
US10941985B2 (en) Heat exchanger
EP3663691A1 (en) Heat exchanger and refrigeration cycle device
WO2020178977A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
WO2017017789A1 (en) Heat exchanger and refrigeration cycle apparatus
JP6980117B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
EP3699538B1 (en) Heat exchanger and refrigeration cycle device
WO2020012549A1 (en) Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system
WO2018185824A1 (en) Heat exchanger and refrigeration cycle device
US11573056B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
CN110603419A (en) Heat exchanger and refrigeration cycle device
JP5404571B2 (en) Heat exchanger and equipment
EP3862711B1 (en) Heat exchanger and refrigeration cycle device
US20240118040A1 (en) Heat exchanger
WO2020012548A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
JP2022148601A (en) Heat exchanger and refrigeration cycle device
WO2019239554A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
JP2013204914A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503308

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917654

Country of ref document: EP

Kind code of ref document: A1