WO2020012549A1 - Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system - Google Patents
Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system Download PDFInfo
- Publication number
- WO2020012549A1 WO2020012549A1 PCT/JP2018/025982 JP2018025982W WO2020012549A1 WO 2020012549 A1 WO2020012549 A1 WO 2020012549A1 JP 2018025982 W JP2018025982 W JP 2018025982W WO 2020012549 A1 WO2020012549 A1 WO 2020012549A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- heat
- heat exchange
- heat transfer
- transfer tube
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/14—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F17/00—Removing ice or water from heat-exchange apparatus
Definitions
- the present invention relates to a heat exchanger having a plurality of heat transfer tubes, a heat exchange device, a heat exchanger unit, and a refrigeration cycle device.
- Patent Document 1 describes a finless heat exchanger for an air conditioner including a plurality of flat tubes.
- the plurality of flat tubes are arranged such that the major axis direction of each flat tube is substantially parallel to the flow of air.
- the plurality of flat tubes are arranged in a line in a direction intersecting with the direction of air flow at equal intervals.
- heat transfer tubes are arranged at a higher density than a heat exchanger having heat transfer fins. Often. When the heat transfer tubes are arranged at a high density, when the finless heat exchanger operates as an evaporator, the air passage is likely to be blocked by frost. Therefore, the finless heat exchanger has a problem that the performance of the heat exchanger may be rapidly reduced due to blockage of the air passage.
- the present invention has been made in order to solve the above-described problems, and has been made to provide a heat exchanger, a heat exchange device, a heat exchanger unit, and a refrigeration cycle device that can prevent a sharp decrease in heat exchanger performance.
- the purpose is to provide.
- a heat exchanger includes a first heat transfer tube, a windward fin extending from the windward end of the first heat transfer tube to the windward side, and a leeward side from the leeward end of the first heat transfer tube.
- An extended leeward fin each having a plurality of first heat exchange portions arranged in parallel with each other, and having a cross section that intersects with a direction in which the first heat transfer tube extends, a length of the leeward fin.
- L1 and the length L2 of the leeward fin satisfy the relationship of L1> L2.
- a heat exchange device includes a first heat exchanger and a second heat exchanger disposed downstream of the first heat exchanger, wherein the first heat exchanger is configured according to the present invention.
- the second heat exchanger includes a plurality of second heat exchange units each having a second heat transfer tube and arranged in parallel with each other.
- a heat exchanger unit according to the present invention includes the heat exchanger according to the present invention, and a blower that blows air to the heat exchanger.
- a refrigeration cycle device according to the present invention includes the heat exchanger unit according to the present invention.
- the present invention since the length L1 of the windward fin can be increased, the temperature difference between the temperature of the leading edge of the windward fin and the temperature of the air flowing into the heat exchanger can be reduced. Thereby, since the amount of frost formed on the first heat exchange unit can be reduced, the thickness of frost adhering to the surface of the first heat exchange unit can be reduced. Therefore, according to the present invention, it is possible to prevent the heat exchanger performance of the heat exchanger from suddenly lowering due to blockage of the air passage due to frost.
- FIG. 2 is a perspective view illustrating a configuration of a heat exchanger 20 according to Embodiment 1 of the present invention.
- FIG. 2 is a cross-sectional view illustrating a configuration of a heat exchanger 20 according to Embodiment 1 of the present invention.
- FIG. 2 is an exploded perspective view showing a configuration in which a part of the heat exchanger 20 according to Embodiment 1 of the present invention is exploded.
- 5 is a graph illustrating a relationship between a position in a flow direction of air and a temperature of the heat exchanger 20 according to Embodiment 1 of the present invention.
- FIG. 9 is a perspective view illustrating a configuration of a heat exchange device 50 according to Embodiment 2 of the present invention.
- FIG. 1 is a cross-sectional view illustrating a configuration of a heat exchanger 20 according to Embodiment 1 of the present invention.
- FIG. 2 is an exploded perspective view showing a configuration in which a part of the heat exchanger 20 according to
- FIG. 7 is a cross-sectional view illustrating a configuration of a heat exchange device 50 according to Embodiment 2 of the present invention.
- FIG. 9 is a perspective view illustrating a configuration of a heat exchange device 50 according to Embodiment 3 of the present invention. It is a sectional view showing the composition of heat exchange device 50 concerning Embodiment 3 of the present invention. It is a circuit diagram showing a configuration of a refrigeration cycle apparatus 100 according to Embodiment 4 of the present invention.
- FIG. 1 is a perspective view showing a configuration of the heat exchanger 20 according to the present embodiment.
- FIG. 2 is a cross-sectional view illustrating a configuration of the heat exchanger 20 according to the present embodiment.
- FIG. 2 shows a configuration in which a vertical intermediate portion of the heat exchanger 20 is cut along a horizontal plane.
- FIG. 3 is an exploded perspective view showing a configuration in which a part of the heat exchanger 20 according to the present embodiment is disassembled.
- FIGS. 1 to 3 and FIGS. 5 to 8 described later the following coordinate systems are defined.
- the z axis is set in parallel with the direction of gravity, and the upper side is set as the + z direction.
- the x axis is set in a direction perpendicular to the z axis and along the flow of air, and the windward side is defined as a + x direction.
- the y axis is set in a direction orthogonal to both the z axis and the x axis.
- An xy plane parallel to both the x axis and the y axis is a horizontal plane.
- the heat exchanger 20 includes a plurality of heat exchange units 35 arranged in parallel with each other, a header 21 arranged at one end of the plurality of heat exchange units 35, and a plurality of heat exchange units. And a header 22 disposed on the other end side of the heat exchange section 35.
- the plurality of heat exchange units 35 are sandwiched between the header 21 and the header 22 from above and below.
- Each of the plurality of heat exchange units 35 includes one heat transfer tube 30, one leeward fin 31 provided on the leeward side of the heat transfer tube 30, and one leeward fin provided on the leeward side of the heat transfer tube 30.
- 32. 1 and 3 show ten heat exchange units 35, and FIG. 2 shows nine heat exchange units 35.
- the heat exchanger 20 is an air heat exchanger that exchanges heat between the internal fluid flowing through the heat transfer tube 30 and air.
- the direction of air flow is indicated by white arrows.
- the direction of air flow is generally in the ⁇ x direction.
- a refrigerant is used as an internal fluid flowing through the heat transfer tube 30.
- the heat transfer tube 30, the windward fin 31, and the leeward fin 32 may be integrally formed using the same material, or may be formed as separate members.
- Each of the heat transfer tube 30, the windward fin 31, and the leeward fin 32 is desirably formed using a metal material having high thermal conductivity such as aluminum, copper, or brass.
- the heat exchanger 20 is configured such that each of the plurality of heat transfer tubes 30 extends in the vertical direction along the z-axis direction, that is, the direction of gravity. is set up.
- the plurality of heat transfer tubes 30 are arranged in the y-axis direction so as to be substantially perpendicular to both the gravity direction and the air flow direction.
- the direction in which each of the plurality of heat transfer tubes 30 extends may be referred to as the direction in which the heat transfer tubes 30 extend.
- the direction in which the plurality of heat transfer tubes 30 are arranged in parallel may be referred to as the direction in which the plurality of heat transfer tubes 30 are arranged in parallel.
- the parallel direction of the plurality of heat transfer tubes 30 usually matches the longitudinal direction of the header 21 and the longitudinal direction of the header 22. Since the plurality of heat transfer tubes 30 are arranged as described above, each of the plurality of heat exchange portions 35 extends in the up-down direction along the z-axis direction. Further, the plurality of heat exchange units 35 are arranged in parallel in the y-axis direction.
- a flat tube having a flat cross section in one direction is used as the heat transfer tube 30.
- the major axis direction of the flat tube in a cross section perpendicular to the extending direction of the flat tube may be simply referred to as the major axis direction of the flat tube.
- the long diameter direction of the flat tube may be referred to as the long diameter direction of the heat transfer tube 30.
- the heat transfer tubes 30 are provided such that the major diameter direction of the heat transfer tubes 30 is parallel to the air flow direction.
- a plurality of fluid passages 40 through which the internal fluid flows are formed inside the heat transfer tube 30.
- the plurality of fluid passages 40 of each heat transfer tube 30 are arranged in parallel along the longitudinal direction of the heat transfer tube 30.
- the heat transfer tube 30 has a windward end portion 30a located on the leeward side and a leeward end portion 30b located on the leeward side as longitudinal ends of the heat transfer tube 30.
- the windward fins 31 extend from the windward end 30a to the windward side along the major axis direction of the heat transfer tubes 30 in a cross section perpendicular to the direction in which the heat transfer tubes 30 extend.
- the windward fins 31 also extend in the direction in which the heat transfer tubes 30 extend.
- the windward fins 31 have, for example, a rectangular flat plate shape having long sides along the direction in which the heat transfer tubes 30 extend.
- the plate thickness of the windward fin 31 is smaller than the minor diameter of the flat tube.
- a circular tube is used as the heat transfer tube 30, the thickness of the windward fin 31 is smaller than the outer diameter of the circular tube.
- the fluid passage 40 is not formed in the windward fin 31.
- the leeward fins 32 extend leeward along the major axis direction of the heat transfer tube 30 from the leeward end 30b in a cross section perpendicular to the direction in which the heat transfer tube 30 extends.
- the leeward fins 32 also extend along the direction in which the heat transfer tubes 30 extend.
- the leeward fin 32 has, for example, a rectangular flat plate shape having a long side along the extending direction of the heat transfer tube 30.
- the plate thickness of the leeward fin 32 is smaller than the minor diameter of the flat tube.
- a circular tube is used as the heat transfer tube 30
- No fluid passage 40 is formed in the leeward fin 32.
- the heat exchange unit 35 has the windward fins 31 and the leeward fins 32, the heat transfer area between the heat exchange unit 35 and the air can be increased, so that the heat exchanger performance of the heat exchanger 20 is improved. be able to.
- the leeward fin 32 can be omitted.
- the header 22 has a plurality of insertion holes 23 into which the plurality of heat transfer tubes 30 are inserted.
- the plurality of insertion holes 23 are formed at substantially equal intervals at a formation pitch Ph1 along the longitudinal direction of the header 22.
- the formation pitch Ph1 is a distance between the center portions of the two insertion holes 23 adjacent to each other in a direction perpendicular to both the extending direction of the heat transfer tube 30 and the major diameter direction of the heat transfer tube 30.
- the header 21 also has a plurality of insertion holes into which the plurality of heat transfer tubes 30 are inserted.
- the plurality of insertion holes of the header 21 are formed at substantially equal intervals along the longitudinal direction of the header 21 at a formation pitch Ph1.
- each of the plurality of heat transfer tubes 30 are inserted into insertion holes of the header 21 and are joined to the header 21. Thereby, each of the plurality of heat exchange units 35 is connected to the header 21.
- the lower end of each of the plurality of heat transfer tubes 30 is inserted into the insertion hole 23 of the header 22 and is joined to the header 22. Thereby, each of the plurality of heat exchange units 35 is connected to the header 22.
- a gap 33 is formed between two adjacent heat exchange sections 35 among the plurality of heat exchange sections 35 to be an air passage through which air flows.
- No heat transfer fin is provided between two adjacent heat exchange units 35 to connect the two heat exchange units 35. That is, the heat exchanger 20 is a so-called finless heat exchanger. Since no heat transfer fin is provided between two adjacent heat exchange units 35, the plurality of heat exchange units 35 are mechanically connected to each other only via the header 21 and the header 22. Further, the plurality of heat exchange units 35 are thermally connected to each other substantially only through the header 21 and the header 22.
- the plurality of heat exchange units 35 are arranged at substantially equal intervals at an arrangement pitch Pf1 along the parallel direction of the heat transfer tubes 30.
- the heat transfer tubes 30, the windward fins 31, and the leeward fins 32 are also arranged at substantially the same interval at the same arrangement pitch as the arrangement pitch Pf1.
- the arrangement pitch Pf1 is equal to the distance between the center portions in the thickness direction of the two windward fins 31 adjacent to each other in the direction perpendicular to both the extending direction of the heat transfer tube 30 and the major diameter direction of the heat transfer tube 30.
- the arrangement pitch Pf1 of the heat exchange portions 35 can be easily adjusted by adjusting the formation pitch Ph1 of the insertion holes 23.
- the length L1 of the windward fin 31 and the length L2 of the leeward fin 32 satisfy the relationship of L1> L2. That is, the length L1 of the leeward fin 31 is longer than the length L2 of the leeward fin 32.
- the length L1 of the windward fin 31 is, for example, equal to or longer than the major diameter Lp of the heat transfer tube 30 (L1 ⁇ Lp).
- the length L2 of the leeward fin 32 is shorter than the major diameter Lp of the heat transfer tube 30 (L2 ⁇ Lp).
- the heat exchanger 20 is used as an outdoor heat exchanger of a refrigeration cycle apparatus and a heating operation is performed will be described as an example.
- heat exchange between the low-pressure refrigerant flowing through the heat transfer tube 30 and the outdoor air blown by the blower is performed via the heat transfer tube 30, the windward fin 31, and the leeward fin 32.
- the surface temperature of the heat exchange unit 35 such as the heat transfer tube 30, the windward fin 31, and the leeward fin 32 is lower than the dew point temperature of the inflowing outdoor air
- dew condensation occurs on the surface of the heat exchange unit 35. If the dew water generated by the dew condensation stays on the surface of the heat exchange unit 35, it causes an increase in the pressure loss of air. When the pressure loss of the air increases, the air flow rate of the air decreases, so that the heat exchanger performance of the heat exchanger 20 decreases. Therefore, it is desirable that the dew water generated on the surface of the heat exchange unit 35 be quickly drained to the outside of the heat exchanger 20.
- frost adheres to the surface of the heat exchange unit 35.
- the attachment of the frost starts from the front edge on the windward side of the heat exchange unit 35 and gradually progresses to the leeward side of the heat exchange unit 35.
- frost formation progresses and the amount of frost increases, the air passage of the heat exchanger 20 is blocked by the frost, and the pressure loss of air increases. For this reason, in the refrigeration cycle apparatus, a defrosting operation is performed to melt the frost attached to the heat exchanger 20. It is desirable that the molten water in which the frost has been melted by the defrosting operation is quickly drained to the outside of the heat exchanger 20 in order to prevent a decrease in the heat exchanger performance.
- the heat exchanger 20 of the present embodiment is installed such that the heat transfer tube 30, the windward fin 31, and the leeward fin 32 of the heat exchange unit 35 extend in parallel with the direction of gravity. Further, in the present embodiment, no heat transfer fin is provided between two adjacent heat exchange portions 35. For this reason, the dew condensation water or the molten water on the surface of the heat exchange unit 35 flows down the heat exchange unit 35 by its own weight and flows down, and is drained without being hindered by the heat transfer fins. Therefore, according to the present embodiment, the drainage performance of the heat exchanger 20 can be improved as compared with a conventional heat exchanger such as a cross-fin tube type, so that the heat exchanger performance of the heat exchanger 20 can be improved. Can be prevented from decreasing.
- FIG. 4 is a graph showing the relationship between the position in the air flow direction of the heat exchanger 20 according to the present embodiment and the temperature.
- the horizontal axis represents a one-dimensional position in the air flow direction, and the vertical axis represents temperature.
- the position on the horizontal axis corresponds to the position of the heat exchange unit 35 shown below the horizontal axis.
- the white arrow below the horizontal axis indicates the direction of air flow.
- the position P1 corresponds to a position on the windward side of the heat exchange unit 35. That is, the temperature T1 at the position P1 corresponds to the representative temperature of the air before flowing into the heat exchanger 20.
- the position P2 corresponds to the position of the windward end of the windward fin 31.
- the temperature T2 at the position P2 corresponds to the leading edge temperature of the windward fin 31.
- the position P3 corresponds to the position of the windward end 30a of the heat transfer tube 30. That is, the temperature T3 at the position P3 corresponds to the temperature of the windward end 30a of the heat transfer tube 30.
- the leading edge temperature T2 of the windward fin 31 is higher than the temperature T3 of the windward end 30a of the heat transfer tube 30 (T2> T3). Therefore, the temperature difference ⁇ T1 between the representative temperature T1 of air and the leading edge temperature T2 of the windward fin 31 is larger than the temperature difference ⁇ T2 between the representative temperature T1 of air and the temperature T3 of the windward end 30a of the heat transfer tube 30. ( ⁇ T1 ⁇ T2). For this reason, in the heat exchange unit 35 provided with the windward fins 31, the temperature difference ⁇ T1 becomes smaller, and frost formation is less likely to occur than in the heat exchange unit 35 provided with no windward fins 31.
- the leading edge temperature T2 of the windward fin 31 approaches the representative temperature T1 of the air due to a decrease in the fin efficiency. That is, when the temperature of the inflowing air is constant, the temperature difference ⁇ T1 can be reduced by increasing the length of the windward fins 31, so that the amount of frost can be reduced. Therefore, by increasing the length of the windward fins 31, the thickness of the frost adhering to the surface of the heat exchange unit 35 per heat exchange amount can be reduced.
- the length of the windward fin 31 is desirably set such that the temperature difference ⁇ T1 is equal to or less than half of the temperature difference ⁇ T2 ( ⁇ T1 ⁇ ⁇ T2 / 2).
- the heat exchanger 20 includes the plurality of heat exchange units 35 arranged in parallel with each other.
- Each of the plurality of heat exchange sections 35 extends from the heat transfer tube 30, the windward fin 31 extending from the windward end 30 a of the heat transfer tube 30 to the windward side, and the leeward end from the leeward end 30 b of the heat transfer tube 30.
- Leeward fins 32 are an example of a first heat exchange unit.
- the heat transfer tube 30 is an example of a first heat transfer tube. In a cross section that intersects with the direction in which the heat transfer tubes 30 extend, the length L1 of the windward fin 31 and the length L2 of the leeward fin 32 satisfy the relationship of L1> L2.
- the temperature difference ⁇ T1 between the temperature T2 of the leading edge of the windward fin 31 and the temperature T1 of the air flowing into the heat exchanger 20 is determined. Can be smaller.
- the amount of frost on the heat exchange unit 35 can be reduced, the thickness of frost adhering to the surface of the heat exchange unit 35 can be reduced. Therefore, according to the present embodiment, it is possible to prevent the heat exchanger performance of the heat exchanger 20 from suddenly decreasing due to blockage of the air passage due to frost formation.
- the thickness of the heat exchanger 20 in the direction along the flow of air can be reduced. Therefore, according to the present embodiment, it is possible to prevent a sharp decrease in the heat exchanger performance of the heat exchanger 20 while suppressing an increase in the thickness dimension of the heat exchanger 20 in a direction along the flow of air. .
- heat transfer fins connecting the two heat exchange units 35 are provided between two adjacent heat exchange units 35 of the plurality of heat exchange units 35. Not provided. According to this configuration, the condensed water or the molten water on the surface of the heat exchange unit 35 can be drained without being hindered by the heat transfer fins. Therefore, according to the present embodiment, since the drainage of the heat exchanger 20 can be improved, it is possible to prevent the heat exchanger performance of the heat exchanger 20 from deteriorating.
- the heat exchanger 20 further includes a header 21 and a header 22 arranged at least on one end side of the plurality of heat exchange units 35.
- a plurality of insertion holes 23 into which one ends of the heat transfer tubes 30 included in the plurality of heat exchange portions 35 are inserted are formed at a predetermined formation pitch Ph1.
- the arrangement pitch Pf1 of the plurality of heat exchange units 35 is determined by the formation pitch Ph1. According to this configuration, when the heat exchanger 20 is manufactured, the arrangement pitch Pf1 of the heat exchange portions 35 can be easily adjusted by adjusting the formation pitch Ph1 of the insertion hole 23. Therefore, the degree of freedom of the arrangement pitch Pf1 of the heat exchange unit 35 can be increased.
- Japanese Patent No. 4623083 describes a configuration in which a fin pitch is determined using a fin collar in a cross fin tube type heat exchanger.
- the fin collar is formed at a height corresponding to the fin pitch by bending or stretching the fin material. Therefore, if the fin material is thin, the formed fin collar may be broken. Therefore, when the fin pitch is determined using the fin collar, the fin pitch is limited by the thickness of the fin material.
- the arrangement pitch Pf1 of the heat exchange portions 35 is determined by the formation pitch Ph1 of the insertion hole 23. Therefore, regardless of the thickness of the fin material, the arrangement pitch Pf1 of the heat exchange units 35, that is, the arrangement pitch of the windward fins 31 and the leeward fins 32 can be adjusted to a desired value.
- a flat tube is used as the heat transfer tube 30.
- the length L1 of the windward fins 31 is equal to or longer than the major diameter Lp of the heat transfer tubes 30. According to this configuration, since the temperature difference ⁇ T1 can be further reduced, the amount of frost on the heat exchanger 20 can be further reduced.
- FIG. 5 is a perspective view illustrating a configuration of the heat exchange device 50 according to the present embodiment.
- FIG. 6 is a cross-sectional view illustrating a configuration of the heat exchange device 50 according to the present embodiment.
- FIG. 6 shows a configuration in which a vertical intermediate portion of the heat exchange device 50 is cut along a horizontal plane. Note that components having the same functions and functions as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
- the heat exchanger 20 of the first embodiment has a single-row configuration
- the heat exchanger 50 of the present embodiment has two rows of heat exchangers along the flow of air.
- the heat exchange device 50 may include three or more rows of heat exchangers along the flow of air.
- the heat exchange device 50 has the heat exchanger 20 of the first embodiment as a first-row heat exchanger arranged on the windward side.
- the heat exchanger 20 includes a plurality of heat exchange units 35 arranged in parallel with each other, a header 21 arranged at one end of the plurality of heat exchange units 35, and a plurality of heat exchange units 35. And a header 22 disposed at the other end of the head.
- the plurality of heat exchange units 35 are sandwiched between the header 21 and the header 22 from above and below.
- Each of the plurality of heat exchange sections 35 extends from the heat transfer tube 30, the windward fin 31 extending from the windward end 30 a of the heat transfer tube 30 to the windward side, and the leeward end from the leeward end 30 b of the heat transfer tube 30.
- Leeward fins 32 In a cross section that intersects with the direction in which the heat transfer tubes 30 extend, the length L1 of the windward fin 31 and the length L2 of the leeward fin 32 satisfy the relationship of L1> L2.
- the plurality of heat exchange units 35 are arranged at an arrangement pitch Pf1.
- the arrangement pitch Pf1 is determined by the formation pitch Ph1 of the insertion holes formed in the header 21 and the header 22.
- the heat exchanger 50 has the heat exchanger 60 as a second row of heat exchangers located downstream of the heat exchanger 20.
- the heat exchanger 60 includes a plurality of heat exchange units 75 arranged in parallel with each other, a header 61 arranged at one end of the plurality of heat exchange units 75, and an end arranged at the other end of the plurality of heat exchange units 75. And a header 62.
- the plurality of heat exchange parts 75 are sandwiched between the header 61 and the header 62 from above and below.
- Each of the plurality of heat exchange portions 75 extends to the leeward side from the heat transfer tube 70, the leeward fin 71 extending from the leeward end 70 a of the heat transfer tube 70 to the leeward side, and the leeward end 70 b of the heat transfer tube 70.
- Leeward fins 72 As the heat transfer tube 70, a flat tube or a circular tube is used.
- the heat transfer tube 70, the leeward fin 71, and the leeward fin 72 may be integrally formed, or may be formed as separate members.
- the direction in which the heat transfer tube 70 extends is parallel to the direction in which the heat transfer tube 30 extends.
- the length L3 of the windward fin 71 and the length L4 of the leeward fin 72 are all equal to the length L1 of the windward fin 31 of the heat exchanger 20. (L3 ⁇ L1 and L4 ⁇ L1).
- the plurality of heat exchange units 75 are arranged at the arrangement pitch Pf2.
- the arrangement pitch Pf2 is determined by the formation pitch of the insertion holes formed in the header 61 and the header 62.
- Pf1 Pf2
- the plurality of heat exchange units 35 and the plurality of heat exchange units 75 are arranged to be shifted from each other by about a half pitch.
- the header 21 and the header 61 for each column are separated from each other, but the header 21 and the header 61 may be integrated. Further, in the present embodiment, the header 22 and the header 62 for each column are separated from each other, but the header 22 and the header 62 may be integrated.
- frost adheres to the surfaces of the heat exchange unit 35 and the heat exchange unit 75. Adhesion of frost starts from the front edge of the leeward side of the heat exchange unit 35 in the first row of the heat exchangers 20 arranged on the leeward side, and gradually becomes the leeward side of the heat exchange unit 35 and the second and subsequent rows.
- the length L1 of the windward fin 31 of the heat exchange unit 35 in the first row of heat exchangers 20 can be increased, the leading edge temperature of the windward fin 31 and the heat exchanger 20 The temperature difference from the inflowing air temperature can be reduced.
- the amount of frost formed on the heat exchange unit 35 can be reduced, but also the amount of frost formed on the heat exchange unit 75 can be reduced. Therefore, the thickness of the frost adhering to the surfaces of the heat exchange unit 35 and the heat exchange unit 75 can be reduced.
- the heat exchange device 50 includes the heat exchanger 20 and the heat exchanger 60 disposed downstream of the heat exchanger 20.
- the heat exchanger 20 is the heat exchanger 20 according to the first embodiment.
- the heat exchanger 60 includes a plurality of heat exchange sections 75 each having a heat transfer tube 70 and arranged in parallel with each other.
- the heat exchanger 20 is an example of a first heat exchanger.
- the heat exchanger 60 is an example of a second heat exchanger.
- the heat exchange section 75 is an example of a second heat exchange section.
- the heat transfer tube 70 is an example of a second heat transfer tube.
- the length L1 of the windward fins 31 can be increased, so that the heat exchanger 20 and the heat exchanger 60 The amount of frost can be reduced. Therefore, according to the present embodiment, it is possible to prevent a rapid decrease in the heat exchanger performance of heat exchanger 50 due to blockage of the air passage.
- the length L2 of the leeward fins 32 of the heat exchanger 20 can be reduced, the heat exchanger 20 and the heat exchange device 50 in the direction along the flow of air can be reduced.
- the thickness dimension can be reduced. Therefore, according to the present embodiment, it is possible to prevent a rapid decrease in the heat exchanger performance of the heat exchange device 50 while suppressing an increase in the thickness of the heat exchange device 50 in the direction along the flow of air. .
- heat transfer fins connecting the two heat exchange units 35 are provided between two adjacent heat exchange units 35 of the plurality of heat exchange units 35. Not provided. No heat transfer fins connecting the two heat exchange units 75 are provided between two adjacent heat exchange units 75 among the plurality of heat exchange units 75. That is, each of the heat exchanger 20 and the heat exchanger 60 is a so-called finless heat exchanger. According to this configuration, the condensed water or the molten water on the surfaces of the heat exchange unit 35 and the heat exchange unit 75 can be drained without being hindered by the heat transfer fins. Therefore, according to the present embodiment, since the drainage performance of the heat exchange device 50 can be improved, the deterioration of the heat exchanger performance of the heat exchange device 50 can be prevented.
- the heat exchange device 50 includes a header 21 and a header 22 arranged on at least one end of the plurality of heat exchange units 35, and a header arranged on at least one end of the plurality of heat exchange units 75. 61 and a header 62.
- a plurality of insertion holes 23 into which one ends of the heat transfer tubes 30 included in the plurality of heat exchange portions 35 are inserted are formed at a predetermined pitch.
- a plurality of insertion holes into which one ends of the heat transfer tubes 70 included in the plurality of heat exchange portions 75 are inserted are formed at a predetermined pitch.
- the arrangement pitch Pf1 of the plurality of heat exchange units 35 is determined by the formation pitch of the insertion holes 23 formed in the header 21 and the header 22.
- the arrangement pitch Pf2 of the plurality of heat exchange units 75 is determined by the formation pitch of the insertion holes formed in the header 61 and the header 62. According to this configuration, when manufacturing the heat exchanger 20 and the heat exchanger 60 of the heat exchange device 50, the arrangement pitch Pf1 of the heat exchange unit 35 and the arrangement pitch Pf2 of the heat exchange unit 75 can be easily adjusted. Therefore, the degree of freedom of the arrangement pitch Pf1 of the heat exchange units 35 and the arrangement pitch Pf2 of the heat exchange units 75 can be increased.
- FIG. 7 is a perspective view showing a configuration of the heat exchange device 50 according to the present embodiment.
- FIG. 8 is a cross-sectional view illustrating a configuration of the heat exchange device 50 according to the present embodiment.
- FIG. 8 illustrates a configuration in which a vertical intermediate portion of the heat exchange device 50 is cut along a horizontal plane. Note that components having the same functions and functions as those of the first or second embodiment are denoted by the same reference numerals, and description thereof is omitted.
- the arrangement pitch Pf1 of the heat exchange units 35 in the first row heat exchanger 20 and the arrangement pitch Pf2 of the heat exchange units 75 in the second row heat exchanger 60 are different from each other. It differs from the heat exchange device 50 of the second embodiment in different points.
- the arrangement pitch Pf1 of the heat exchange units 35 in the first-row heat exchanger 20 is wider than the arrangement pitch Pf2 of the heat exchange units 75 in the second-row heat exchanger 60.
- the arrangement pitch Pf1 of the heat exchange portions 35 is determined by the formation pitch of the insertion holes formed in the header 21 and the header 22.
- the arrangement pitch Pf2 of the heat exchange portions 75 is determined by the formation pitch of the insertion holes formed in the header 61 and the header 62.
- the plurality of heat exchange sections 35 and the plurality of heat exchange sections 75 are arranged so as not to overlap each other as much as possible when viewed along the flow of air.
- the arrangement pitch Pf1 of the plurality of heat exchange units 35 and the arrangement pitch Pf2 of the plurality of heat exchange units 75 satisfy the relationship of Pf1> Pf2. I have.
- the arrangement pitch Pf1 of the heat exchangers 20 in the first row is wider than the arrangement pitch Pf2 of the heat exchangers 60 in the second row, so the heat exchange amount in the heat exchanger 20 in the first row Can be relatively reduced. Thereby, frost can be more uniformly adhered to the surface of the heat exchange unit 35 of the heat exchanger 20 and the surface of the heat exchange unit 75 of the heat exchanger 60.
- the thickness of the frost adhering to the heat exchanger 20 and the heat exchanger 60 can be prevented from locally increasing. Therefore, according to the present embodiment, it is possible to prevent the air passage from being blocked due to frost, and to prevent a rapid decrease in the performance of the heat exchanger.
- FIG. 9 is a circuit diagram showing a configuration of a refrigeration cycle apparatus 100 according to the present embodiment.
- an air conditioner is exemplified as refrigeration cycle device 100.
- the refrigeration cycle apparatus 100 has a refrigeration cycle circuit 10 for circulating a refrigerant.
- the refrigeration cycle circuit 10 has a configuration in which a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an expansion valve 14, and an indoor heat exchanger 15 are connected in a ring through a refrigerant pipe.
- the refrigeration cycle apparatus 100 includes a blower 16 that blows air to the outdoor heat exchanger 13 and a blower 17 that blows air to the indoor heat exchanger 15.
- the compressor 11 is driven to execute a refrigeration cycle in which the refrigerant circulates through the refrigeration cycle circuit 10 while changing phases.
- the outdoor heat exchanger 13 heat exchange between the air blown by the blower 16 and the refrigerant as the internal fluid is performed.
- the indoor heat exchanger 15 heat exchange between the air blown by the blower 17 and the refrigerant as the internal fluid is performed.
- a refrigerant to be charged into the refrigeration cycle circuit 10 a refrigerant such as R410A, R32, or HFO-1234yf can be used.
- refrigerating machine oil used for the compressor 11 various types of refrigerating machine oils such as mineral oils, alkylbenzene oils, ester oils, ether oils, and fluorine oils can be used regardless of whether or not they are compatible with the refrigerant. it can.
- the refrigeration cycle device 100 has an outdoor unit 110 and an indoor unit 120.
- the outdoor unit 110 houses a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an expansion valve 14, and a blower 16.
- the indoor unit 120 houses the indoor heat exchanger 15 and the blower 17. Both the outdoor unit 110 and the indoor unit 120 are heat exchanger units that house at least a heat exchanger.
- the indoor heat exchanger 15 uses the heat exchanger 20 of the first embodiment or the heat exchange device 50 of the second or third embodiment.
- the indoor heat exchanger 15 is installed in the indoor unit 120 such that each of the plurality of heat transfer tubes 30 extends in the vertical direction.
- the indoor heat exchanger 15 includes a plurality of heat transfer tubes 30 and a plurality of heat transfer tubes 70 extending in the vertical direction. Thus, it is installed in the indoor unit 120.
- the heat exchanger 20 of Embodiment 1 or the heat exchange device 50 of Embodiment 2 or 3 can be used for the outdoor heat exchanger 13.
- the operation of the refrigeration cycle apparatus 100 will be described by taking cooling operation as an example.
- the high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 via the four-way valve 12.
- the outdoor heat exchanger 13 functions as a condenser. That is, in the outdoor heat exchanger 13, heat exchange between the refrigerant flowing inside and the outdoor air blown by the blower 16 is performed, and the heat of condensation of the refrigerant is radiated to the outdoor air. As a result, the gas refrigerant flowing into the outdoor heat exchanger 13 is condensed and becomes a high-pressure liquid refrigerant.
- the liquid refrigerant flowing out of the outdoor heat exchanger 13 is decompressed by the expansion valve 14 and becomes a low-pressure two-phase refrigerant.
- the two-phase refrigerant flowing out of the expansion valve 14 flows into the indoor heat exchanger 15.
- the indoor heat exchanger 15 functions as an evaporator. That is, in the indoor heat exchanger 15, heat exchange is performed between the refrigerant flowing inside and the indoor air blown by the blower 17, and the heat of evaporation of the refrigerant is absorbed from the indoor air. As a result, the two-phase refrigerant flowing into the indoor heat exchanger 15 evaporates and becomes a low-pressure gas refrigerant.
- the gas refrigerant flowing out of the indoor heat exchanger 15 is sucked into the compressor 11 via the four-way valve 12.
- the gas refrigerant sucked into the compressor 11 is compressed into a high-pressure gas refrigerant.
- the above refrigeration cycle is continuously and repeatedly executed. Although the description is omitted, the flow direction of the refrigerant is switched by the four-way valve 12 during the heating operation, the outdoor heat exchanger 13 functions as an evaporator, and the indoor heat exchanger 15 functions as a condenser.
- the heat exchanger unit according to the present embodiment includes the heat exchanger 20 according to the first embodiment, and the blower that blows air to the heat exchanger 20.
- the heat exchanger unit is, for example, the indoor unit 120 or the outdoor unit 110.
- the blower is, for example, the blower 17 or the blower 16. According to this configuration, it is possible to realize a heat exchanger unit including the heat exchanger 20 that can prevent a rapid decrease in heat exchanger performance due to blockage of the air passage.
- heat exchanger 20 is arranged such that heat transfer tube 30 extends in the up-down direction.
- the heat transfer tube 30 is an example of a first heat transfer tube. According to this configuration, the dew or melt water generated on the surface of the heat exchange unit 35 of the heat exchanger 20 flows down the heat exchange unit 35 by its own weight. Therefore, the drainage of the heat exchanger 20 can be improved in the heat exchanger unit.
- the heat exchanger unit according to the present embodiment includes the heat exchange device 50 according to Embodiment 2 or 3, and a blower that blows air to the heat exchange device 50.
- the heat exchanger unit is, for example, the indoor unit 120 or the outdoor unit 110.
- the blower is, for example, the blower 17 or the blower 16. According to this configuration, it is possible to realize a heat exchanger unit including the heat exchange device 50 that can prevent a rapid decrease in heat exchanger performance due to blockage of the air passage.
- heat exchange device 50 is arranged such that heat transfer tubes 30 and heat transfer tubes 70 extend in the up-down direction.
- the heat transfer tube 30 is an example of a first heat transfer tube.
- the heat transfer tube 70 is an example of a second heat transfer tube. According to this configuration, it is possible to improve the drainage of the heat exchange device 50 in the heat exchanger unit.
- the refrigeration cycle apparatus 100 includes the heat exchanger unit according to the present embodiment. According to this configuration, it is possible to realize the refrigeration cycle apparatus 100 including the heat exchanger 20 or the heat exchange device 50 that can prevent a rapid decrease in the heat exchanger performance due to the blockage of the air passage.
- the longitudinal flow type heat exchanger 20 in which the extending direction of the heat transfer tube 30 is parallel to the direction of gravity has been described as an example, but the present invention is not limited to this.
- the present invention can also be applied to a horizontal flow heat exchanger in which the extension direction of the heat transfer tube 30 is horizontal, or to a heat exchanger in which the extension direction of the heat transfer tube 30 is inclined with respect to both the gravity direction and the horizontal direction. .
- the refrigerant is exemplified as the internal fluid flowing through the heat transfer tube 30 of the heat exchanger 20, but the present invention is not limited to this.
- the internal fluid flowing through the heat transfer tube 30 of the heat exchanger 20 another fluid including a liquid such as water or brine may be used.
- the finless heat exchanger 20 in which no heat transfer fin is provided between two adjacent heat exchange units 35 has been described as an example.
- the present invention is not limited to this. Not limited.
- the present invention can also be applied to a heat exchanger in which a heat transfer fin is provided between two adjacent heat exchange units 35.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
A heat exchanger comprising: a first heat transfer conduit; and a plurality of first heat exchange parts arranged parallel to each other and each having an upstream airflow upstream fin extending from the upstream airflow-side end section of the first heat transfer conduit to the upstream airflow-side and a downstream airflow-side fin extending from the downstream airflow-side end section of the first heat transfer conduit to the downstream airflow-side. In a cross-section intersecting the extension direction of the first heat transfer conduit, the length L1 of the upstream airflow-side fin and the length L2 of the downstream airflow-side fin fulfil the relationship L1 > L2.
Description
本発明は、複数の伝熱管を有する熱交換器、熱交換装置、熱交換器ユニット及び冷凍サイクル装置に関するものである。
The present invention relates to a heat exchanger having a plurality of heat transfer tubes, a heat exchange device, a heat exchanger unit, and a refrigeration cycle device.
特許文献1には、複数の扁平管を備えた空気調和機用フィンレス熱交換器が記載されている。この空気調和機用フィンレス熱交換器において、複数の扁平管は、当該各扁平管の長径方向が空気の流れに対してほぼ平行となるように配置されている。また、複数の扁平管は、空気の流れの方向と交差する方向に一列に等間隔に並置されている。
Patent Document 1 describes a finless heat exchanger for an air conditioner including a plurality of flat tubes. In this air conditioner finless heat exchanger, the plurality of flat tubes are arranged such that the major axis direction of each flat tube is substantially parallel to the flow of air. The plurality of flat tubes are arranged in a line in a direction intersecting with the direction of air flow at equal intervals.
特許文献1に記載されているようなフィンレス熱交換器では、空気との伝熱面積を確保するために、伝熱フィンを備えた熱交換器と比較して伝熱管が高密度で配置されることが多い。伝熱管が高密度で配置されていると、フィンレス熱交換器が蒸発器として動作する際、着霜による風路の閉塞が生じやすくなる。したがって、フィンレス熱交換器には、風路の閉塞により熱交換器性能が急激に低下してしまう場合があるという課題があった。
In a finless heat exchanger as described in Patent Document 1, in order to secure a heat transfer area with air, heat transfer tubes are arranged at a higher density than a heat exchanger having heat transfer fins. Often. When the heat transfer tubes are arranged at a high density, when the finless heat exchanger operates as an evaporator, the air passage is likely to be blocked by frost. Therefore, the finless heat exchanger has a problem that the performance of the heat exchanger may be rapidly reduced due to blockage of the air passage.
本発明は、上述のような課題を解決するためになされたものであり、熱交換器性能の急激な低下を防ぐことができる熱交換器、熱交換装置、熱交換器ユニット及び冷凍サイクル装置を提供することを目的とする。
The present invention has been made in order to solve the above-described problems, and has been made to provide a heat exchanger, a heat exchange device, a heat exchanger unit, and a refrigeration cycle device that can prevent a sharp decrease in heat exchanger performance. The purpose is to provide.
本発明に係る熱交換器は、第1伝熱管と、前記第1伝熱管の風上側端部から風上側に延びた風上側フィンと、前記第1伝熱管の風下側端部から風下側に延びた風下側フィンと、をそれぞれ有し、互いに並列して配置された複数の第1熱交換部を備え、前記第1伝熱管の延伸方向と交差する断面において、前記風上側フィンの長さL1と前記風下側フィンの長さL2とがL1>L2の関係を満たすものである。
本発明に係る熱交換装置は、第1熱交換器と、前記第1熱交換器の風下側に配置された第2熱交換器と、を備え、前記第1熱交換器は、本発明に係る熱交換器であり、前記第2熱交換器は、第2伝熱管をそれぞれ有し互いに並列して配置された複数の第2熱交換部を備えているものである。
本発明に係る熱交換器ユニットは、本発明に係る熱交換器と、前記熱交換器に空気を送風する送風機と、を備えるものである。
本発明に係る冷凍サイクル装置は、本発明に係る熱交換器ユニットを備えるものである。 A heat exchanger according to the present invention includes a first heat transfer tube, a windward fin extending from the windward end of the first heat transfer tube to the windward side, and a leeward side from the leeward end of the first heat transfer tube. An extended leeward fin, each having a plurality of first heat exchange portions arranged in parallel with each other, and having a cross section that intersects with a direction in which the first heat transfer tube extends, a length of the leeward fin. L1 and the length L2 of the leeward fin satisfy the relationship of L1> L2.
A heat exchange device according to the present invention includes a first heat exchanger and a second heat exchanger disposed downstream of the first heat exchanger, wherein the first heat exchanger is configured according to the present invention. In the heat exchanger, the second heat exchanger includes a plurality of second heat exchange units each having a second heat transfer tube and arranged in parallel with each other.
A heat exchanger unit according to the present invention includes the heat exchanger according to the present invention, and a blower that blows air to the heat exchanger.
A refrigeration cycle device according to the present invention includes the heat exchanger unit according to the present invention.
本発明に係る熱交換装置は、第1熱交換器と、前記第1熱交換器の風下側に配置された第2熱交換器と、を備え、前記第1熱交換器は、本発明に係る熱交換器であり、前記第2熱交換器は、第2伝熱管をそれぞれ有し互いに並列して配置された複数の第2熱交換部を備えているものである。
本発明に係る熱交換器ユニットは、本発明に係る熱交換器と、前記熱交換器に空気を送風する送風機と、を備えるものである。
本発明に係る冷凍サイクル装置は、本発明に係る熱交換器ユニットを備えるものである。 A heat exchanger according to the present invention includes a first heat transfer tube, a windward fin extending from the windward end of the first heat transfer tube to the windward side, and a leeward side from the leeward end of the first heat transfer tube. An extended leeward fin, each having a plurality of first heat exchange portions arranged in parallel with each other, and having a cross section that intersects with a direction in which the first heat transfer tube extends, a length of the leeward fin. L1 and the length L2 of the leeward fin satisfy the relationship of L1> L2.
A heat exchange device according to the present invention includes a first heat exchanger and a second heat exchanger disposed downstream of the first heat exchanger, wherein the first heat exchanger is configured according to the present invention. In the heat exchanger, the second heat exchanger includes a plurality of second heat exchange units each having a second heat transfer tube and arranged in parallel with each other.
A heat exchanger unit according to the present invention includes the heat exchanger according to the present invention, and a blower that blows air to the heat exchanger.
A refrigeration cycle device according to the present invention includes the heat exchanger unit according to the present invention.
本発明によれば、風上側フィンの長さL1を長くすることができるため、風上側フィンの前縁の温度と熱交換器に流入する空気の温度との温度差を小さくすることができる。これにより、第1熱交換部の着霜量を減らすことができるため、第1熱交換部の表面に付着する霜の厚さを薄くすることができる。したがって、本発明によれば、着霜による風路の閉塞によって熱交換器の熱交換器性能が急激に低下するのを防ぐことができる。
According to the present invention, since the length L1 of the windward fin can be increased, the temperature difference between the temperature of the leading edge of the windward fin and the temperature of the air flowing into the heat exchanger can be reduced. Thereby, since the amount of frost formed on the first heat exchange unit can be reduced, the thickness of frost adhering to the surface of the first heat exchange unit can be reduced. Therefore, according to the present invention, it is possible to prevent the heat exchanger performance of the heat exchanger from suddenly lowering due to blockage of the air passage due to frost.
実施の形態1.
本発明の実施の形態1に係る熱交換器について説明する。図1は、本実施の形態に係る熱交換器20の構成を示す斜視図である。図2は、本実施の形態に係る熱交換器20の構成を示す断面図である。図2では、熱交換器20の上下方向の中間部を水平面で切断した構成を示している。図3は、本実施の形態に係る熱交換器20の一部を分解した構成を示す分解斜視図である。図1~図3及び後述する図5~図8では、以下のような座標系を定義する。すなわち、重力方向と平行にz軸をとり、上方を+z方向とする。また、z軸と直交しかつ空気の流れに沿う方向にx軸をとり、風上側を+x方向とする。さらに、z軸及びx軸のいずれとも直交する方向にy軸をとる。x軸及びy軸のいずれとも平行なx-y平面は、水平面である。 Embodiment 1 FIG.
A heat exchanger according to Embodiment 1 of the present invention will be described. FIG. 1 is a perspective view showing a configuration of theheat exchanger 20 according to the present embodiment. FIG. 2 is a cross-sectional view illustrating a configuration of the heat exchanger 20 according to the present embodiment. FIG. 2 shows a configuration in which a vertical intermediate portion of the heat exchanger 20 is cut along a horizontal plane. FIG. 3 is an exploded perspective view showing a configuration in which a part of the heat exchanger 20 according to the present embodiment is disassembled. In FIGS. 1 to 3 and FIGS. 5 to 8 described later, the following coordinate systems are defined. That is, the z axis is set in parallel with the direction of gravity, and the upper side is set as the + z direction. The x axis is set in a direction perpendicular to the z axis and along the flow of air, and the windward side is defined as a + x direction. Further, the y axis is set in a direction orthogonal to both the z axis and the x axis. An xy plane parallel to both the x axis and the y axis is a horizontal plane.
本発明の実施の形態1に係る熱交換器について説明する。図1は、本実施の形態に係る熱交換器20の構成を示す斜視図である。図2は、本実施の形態に係る熱交換器20の構成を示す断面図である。図2では、熱交換器20の上下方向の中間部を水平面で切断した構成を示している。図3は、本実施の形態に係る熱交換器20の一部を分解した構成を示す分解斜視図である。図1~図3及び後述する図5~図8では、以下のような座標系を定義する。すなわち、重力方向と平行にz軸をとり、上方を+z方向とする。また、z軸と直交しかつ空気の流れに沿う方向にx軸をとり、風上側を+x方向とする。さらに、z軸及びx軸のいずれとも直交する方向にy軸をとる。x軸及びy軸のいずれとも平行なx-y平面は、水平面である。 Embodiment 1 FIG.
A heat exchanger according to Embodiment 1 of the present invention will be described. FIG. 1 is a perspective view showing a configuration of the
図1~図3に示すように、熱交換器20は、互いに並列して配置された複数の熱交換部35と、複数の熱交換部35の一端側に配置されたヘッダ21と、複数の熱交換部35の他端側に配置されたヘッダ22と、を有している。複数の熱交換部35は、ヘッダ21とヘッダ22とによって上下から挟まれている。複数の熱交換部35のそれぞれは、1つの伝熱管30と、伝熱管30の風上側に設けられた1つの風上側フィン31と、伝熱管30の風下側に設けられた1つの風下側フィン32と、を有している。図1及び図3では10個の熱交換部35が示されており、図2では9個の熱交換部35が示されている。熱交換器20は、伝熱管30を流れる内部流体と、空気と、の熱交換を行う空気熱交換器である。図1~図3では、空気の流れ方向を白抜き矢印で示している。空気の流れ方向は、概ね-x方向である。熱交換器20が冷凍サイクル装置の一部を構成する場合、伝熱管30を流れる内部流体としては冷媒が用いられる。
As shown in FIGS. 1 to 3, the heat exchanger 20 includes a plurality of heat exchange units 35 arranged in parallel with each other, a header 21 arranged at one end of the plurality of heat exchange units 35, and a plurality of heat exchange units. And a header 22 disposed on the other end side of the heat exchange section 35. The plurality of heat exchange units 35 are sandwiched between the header 21 and the header 22 from above and below. Each of the plurality of heat exchange units 35 includes one heat transfer tube 30, one leeward fin 31 provided on the leeward side of the heat transfer tube 30, and one leeward fin provided on the leeward side of the heat transfer tube 30. 32. 1 and 3 show ten heat exchange units 35, and FIG. 2 shows nine heat exchange units 35. The heat exchanger 20 is an air heat exchanger that exchanges heat between the internal fluid flowing through the heat transfer tube 30 and air. In FIGS. 1 to 3, the direction of air flow is indicated by white arrows. The direction of air flow is generally in the −x direction. When the heat exchanger 20 forms a part of a refrigeration cycle device, a refrigerant is used as an internal fluid flowing through the heat transfer tube 30.
複数の熱交換部35のそれぞれにおいて、伝熱管30、風上側フィン31及び風下側フィン32は、同一材料を用いて一体成形されていてもよいし、別部材として形成されていてもよい。伝熱管30、風上側フィン31及び風下側フィン32はいずれも、アルミニウム、銅又は真鍮などの高い熱伝導性を有する金属材料を用いて形成されるのが望ましい。
In each of the plurality of heat exchange units 35, the heat transfer tube 30, the windward fin 31, and the leeward fin 32 may be integrally formed using the same material, or may be formed as separate members. Each of the heat transfer tube 30, the windward fin 31, and the leeward fin 32 is desirably formed using a metal material having high thermal conductivity such as aluminum, copper, or brass.
本実施の形態では縦流れ式の熱交換器20を例示しているため、熱交換器20は、複数の伝熱管30のそれぞれがz軸方向すなわち重力方向に沿って上下方向に延伸するように設置されている。複数の伝熱管30は、重力方向及び空気の流れ方向のいずれとも概ね垂直となるようにy軸方向に並列している。以下、複数の伝熱管30のそれぞれが延伸する方向のことを、伝熱管30の延伸方向という場合がある。また、複数の伝熱管30が並列している方向のことを、複数の伝熱管30の並列方向という場合がある。複数の伝熱管30の並列方向は、通常、ヘッダ21の長手方向及びヘッダ22の長手方向と一致する。複数の伝熱管30が上記のように配置されていることにより、複数の熱交換部35のそれぞれは、z軸方向に沿って上下方向に延伸している。また、複数の熱交換部35は、y軸方向に並列している。
In the present embodiment, since the vertical flow type heat exchanger 20 is illustrated, the heat exchanger 20 is configured such that each of the plurality of heat transfer tubes 30 extends in the vertical direction along the z-axis direction, that is, the direction of gravity. is set up. The plurality of heat transfer tubes 30 are arranged in the y-axis direction so as to be substantially perpendicular to both the gravity direction and the air flow direction. Hereinafter, the direction in which each of the plurality of heat transfer tubes 30 extends may be referred to as the direction in which the heat transfer tubes 30 extend. The direction in which the plurality of heat transfer tubes 30 are arranged in parallel may be referred to as the direction in which the plurality of heat transfer tubes 30 are arranged in parallel. The parallel direction of the plurality of heat transfer tubes 30 usually matches the longitudinal direction of the header 21 and the longitudinal direction of the header 22. Since the plurality of heat transfer tubes 30 are arranged as described above, each of the plurality of heat exchange portions 35 extends in the up-down direction along the z-axis direction. Further, the plurality of heat exchange units 35 are arranged in parallel in the y-axis direction.
本実施の形態では、伝熱管30として、一方向に扁平な断面形状を有する扁平管が用いられている。以下、扁平管の延伸方向と垂直な断面における扁平管の長径方向のことを、単に扁平管の長径方向という場合がある。伝熱管30として扁平管が用いられる場合には、扁平管の長径方向のことを伝熱管30の長径方向という場合がある。伝熱管30は、伝熱管30の長径方向が空気の流れ方向に平行となるように設けられている。伝熱管30の内部には、内部流体を流通させる複数の流体通路40が形成されている。各伝熱管30の複数の流体通路40は、伝熱管30の長径方向に沿って並列している。
In the present embodiment, a flat tube having a flat cross section in one direction is used as the heat transfer tube 30. Hereinafter, the major axis direction of the flat tube in a cross section perpendicular to the extending direction of the flat tube may be simply referred to as the major axis direction of the flat tube. When a flat tube is used as the heat transfer tube 30, the long diameter direction of the flat tube may be referred to as the long diameter direction of the heat transfer tube 30. The heat transfer tubes 30 are provided such that the major diameter direction of the heat transfer tubes 30 is parallel to the air flow direction. A plurality of fluid passages 40 through which the internal fluid flows are formed inside the heat transfer tube 30. The plurality of fluid passages 40 of each heat transfer tube 30 are arranged in parallel along the longitudinal direction of the heat transfer tube 30.
伝熱管30は、当該伝熱管30の長径方向の端部として、風上側に位置する風上側端部30aと、風下側に位置する風下側端部30bと、を有している。風上側フィン31は、伝熱管30の延伸方向と垂直な断面において、風上側端部30aから伝熱管30の長径方向に沿って風上側に延びている。また、風上側フィン31は、伝熱管30の延伸方向に沿っても延びている。風上側フィン31は、例えば、伝熱管30の延伸方向に沿った長辺を有する長方形平板状の形状を有している。伝熱管30として扁平管が用いられている場合、風上側フィン31の板厚寸法は、当該扁平管の短径寸法よりも小さくなっている。伝熱管30として円管が用いられている場合、風上側フィン31の板厚寸法は、当該円管の外径寸法よりも小さくなっている。風上側フィン31には、流体通路40が形成されていない。
熱 The heat transfer tube 30 has a windward end portion 30a located on the leeward side and a leeward end portion 30b located on the leeward side as longitudinal ends of the heat transfer tube 30. The windward fins 31 extend from the windward end 30a to the windward side along the major axis direction of the heat transfer tubes 30 in a cross section perpendicular to the direction in which the heat transfer tubes 30 extend. The windward fins 31 also extend in the direction in which the heat transfer tubes 30 extend. The windward fins 31 have, for example, a rectangular flat plate shape having long sides along the direction in which the heat transfer tubes 30 extend. When a flat tube is used as the heat transfer tube 30, the plate thickness of the windward fin 31 is smaller than the minor diameter of the flat tube. When a circular tube is used as the heat transfer tube 30, the thickness of the windward fin 31 is smaller than the outer diameter of the circular tube. The fluid passage 40 is not formed in the windward fin 31.
風下側フィン32は、伝熱管30の延伸方向と垂直な断面において、風下側端部30bから伝熱管30の長径方向に沿って風下側に延びている。また、風下側フィン32は、伝熱管30の延伸方向に沿っても延びている。風下側フィン32は、例えば、伝熱管30の延伸方向に沿った長辺を有する長方形平板状の形状を有している。伝熱管30として扁平管が用いられている場合、風下側フィン32の板厚寸法は、当該扁平管の短径寸法よりも小さくなっている。伝熱管30として円管が用いられている場合、風下側フィン32の板厚寸法は、当該円管の外径寸法よりも小さくなっている。風下側フィン32には、流体通路40が形成されていない。
(4) The leeward fins 32 extend leeward along the major axis direction of the heat transfer tube 30 from the leeward end 30b in a cross section perpendicular to the direction in which the heat transfer tube 30 extends. The leeward fins 32 also extend along the direction in which the heat transfer tubes 30 extend. The leeward fin 32 has, for example, a rectangular flat plate shape having a long side along the extending direction of the heat transfer tube 30. When a flat tube is used as the heat transfer tube 30, the plate thickness of the leeward fin 32 is smaller than the minor diameter of the flat tube. When a circular tube is used as the heat transfer tube 30, the plate thickness of the leeward fin 32 is smaller than the outer diameter of the circular tube. No fluid passage 40 is formed in the leeward fin 32.
熱交換部35が風上側フィン31及び風下側フィン32を有することにより、熱交換部35と空気との伝熱面積を増加させることができるため、熱交換器20の熱交換器性能を向上させることができる。なお、本実施の形態において、風下側フィン32は省略することも可能である。
Since the heat exchange unit 35 has the windward fins 31 and the leeward fins 32, the heat transfer area between the heat exchange unit 35 and the air can be increased, so that the heat exchanger performance of the heat exchanger 20 is improved. be able to. In this embodiment, the leeward fin 32 can be omitted.
図3に示すように、ヘッダ22には、複数の伝熱管30が差し込まれる複数の差込み穴23が形成されている。複数の差込み穴23は、ヘッダ22の長手方向に沿って形成ピッチPh1で概ね等間隔に形成されている。ここで、形成ピッチPh1とは、互いに隣り合う2つの差込み穴23の中心部同士の、伝熱管30の延伸方向及び伝熱管30の長径方向のいずれとも垂直な方向での距離のことである。図示していないが、ヘッダ21にも、複数の伝熱管30が差し込まれる複数の差込み穴が形成されている。ヘッダ21の複数の差込み穴は、ヘッダ21の長手方向に沿って形成ピッチPh1で概ね等間隔に形成されている。
ヘ ッ ダ As shown in FIG. 3, the header 22 has a plurality of insertion holes 23 into which the plurality of heat transfer tubes 30 are inserted. The plurality of insertion holes 23 are formed at substantially equal intervals at a formation pitch Ph1 along the longitudinal direction of the header 22. Here, the formation pitch Ph1 is a distance between the center portions of the two insertion holes 23 adjacent to each other in a direction perpendicular to both the extending direction of the heat transfer tube 30 and the major diameter direction of the heat transfer tube 30. Although not shown, the header 21 also has a plurality of insertion holes into which the plurality of heat transfer tubes 30 are inserted. The plurality of insertion holes of the header 21 are formed at substantially equal intervals along the longitudinal direction of the header 21 at a formation pitch Ph1.
複数の伝熱管30のそれぞれの上端は、ヘッダ21の差込み穴に差し込まれるとともにヘッダ21に接合されている。これにより、複数の熱交換部35のそれぞれは、ヘッダ21に接続されている。複数の伝熱管30のそれぞれの下端は、ヘッダ22の差込み穴23に差し込まれるとともにヘッダ22に接合されている。これにより、複数の熱交換部35のそれぞれは、ヘッダ22に接続されている。
The upper ends of the plurality of heat transfer tubes 30 are inserted into insertion holes of the header 21 and are joined to the header 21. Thereby, each of the plurality of heat exchange units 35 is connected to the header 21. The lower end of each of the plurality of heat transfer tubes 30 is inserted into the insertion hole 23 of the header 22 and is joined to the header 22. Thereby, each of the plurality of heat exchange units 35 is connected to the header 22.
複数の熱交換部35のうち互いに隣り合う2つの熱交換部35の間には、空気が流通する風路となる間隙33が形成されている。互いに隣り合う2つの熱交換部35の間には、当該2つの熱交換部35を接続する伝熱フィンが設けられていない。すなわち、熱交換器20は、いわゆるフィンレス型の熱交換器である。互いに隣り合う2つの熱交換部35の間に伝熱フィンが設けられていないことから、複数の熱交換部35は、ヘッダ21及びヘッダ22を介してのみ、互いに機械的に接続されている。また、複数の熱交換部35は、実質的に、ヘッダ21及びヘッダ22を介してのみ、互いに熱的に接続されている。
間隙 A gap 33 is formed between two adjacent heat exchange sections 35 among the plurality of heat exchange sections 35 to be an air passage through which air flows. No heat transfer fin is provided between two adjacent heat exchange units 35 to connect the two heat exchange units 35. That is, the heat exchanger 20 is a so-called finless heat exchanger. Since no heat transfer fin is provided between two adjacent heat exchange units 35, the plurality of heat exchange units 35 are mechanically connected to each other only via the header 21 and the header 22. Further, the plurality of heat exchange units 35 are thermally connected to each other substantially only through the header 21 and the header 22.
複数の熱交換部35は、伝熱管30の並列方向に沿って配置ピッチPf1で概ね等間隔に配置されている。これにより、伝熱管30、風上側フィン31及び風下側フィン32のそれぞれも、配置ピッチPf1と同一の配置ピッチで概ね等間隔で配置されている。配置ピッチPf1は、互いに隣り合う2つの風上側フィン31の厚み方向中心部同士の、伝熱管30の延伸方向及び伝熱管30の長径方向のいずれとも垂直な方向での距離と等しい。熱交換部35の配置ピッチPf1は、差込み穴23の形成ピッチPh1によって決められており、差込み穴23の形成ピッチPh1と等しくなっている(Pf1=Ph1)。熱交換器20を製造する際には、差込み穴23の形成ピッチPh1を調整することにより、熱交換部35の配置ピッチPf1を容易に調整することができる。
The plurality of heat exchange units 35 are arranged at substantially equal intervals at an arrangement pitch Pf1 along the parallel direction of the heat transfer tubes 30. Thus, the heat transfer tubes 30, the windward fins 31, and the leeward fins 32 are also arranged at substantially the same interval at the same arrangement pitch as the arrangement pitch Pf1. The arrangement pitch Pf1 is equal to the distance between the center portions in the thickness direction of the two windward fins 31 adjacent to each other in the direction perpendicular to both the extending direction of the heat transfer tube 30 and the major diameter direction of the heat transfer tube 30. The arrangement pitch Pf1 of the heat exchange portions 35 is determined by the formation pitch Ph1 of the insertion hole 23, and is equal to the formation pitch Ph1 of the insertion hole 23 (Pf1 = Ph1). When manufacturing the heat exchanger 20, the arrangement pitch Pf1 of the heat exchange portions 35 can be easily adjusted by adjusting the formation pitch Ph1 of the insertion holes 23.
伝熱管30の延伸方向と垂直な断面において、風上側フィン31の長さL1と風下側フィン32の長さL2とは、L1>L2の関係を満たしている。すなわち、風上側フィン31の長さL1は、風下側フィン32の長さL2よりも長くなっている。同断面において、風上側フィン31の長さL1は、例えば、伝熱管30の長径Lpと同一又はそれより長くなっている(L1≧Lp)。また、同断面において、風下側フィン32の長さL2は、伝熱管30の長径Lpよりも短くなっている(L2<Lp)。
断面 In the cross section perpendicular to the extending direction of the heat transfer tube 30, the length L1 of the windward fin 31 and the length L2 of the leeward fin 32 satisfy the relationship of L1> L2. That is, the length L1 of the leeward fin 31 is longer than the length L2 of the leeward fin 32. In the cross section, the length L1 of the windward fin 31 is, for example, equal to or longer than the major diameter Lp of the heat transfer tube 30 (L1 ≧ Lp). In the cross section, the length L2 of the leeward fin 32 is shorter than the major diameter Lp of the heat transfer tube 30 (L2 <Lp).
次に、本実施の形態に係る熱交換器20の動作について説明する。ここでは、熱交換器20が冷凍サイクル装置の室外熱交換器として用いられ、暖房運転が行われる場合を例に挙げて説明する。この場合、熱交換器20では、伝熱管30を流れる低圧冷媒と送風機によって送風される室外空気との熱交換が、伝熱管30、風上側フィン31及び風下側フィン32を介して行われる。
Next, the operation of the heat exchanger 20 according to the present embodiment will be described. Here, the case where the heat exchanger 20 is used as an outdoor heat exchanger of a refrigeration cycle apparatus and a heating operation is performed will be described as an example. In this case, in the heat exchanger 20, heat exchange between the low-pressure refrigerant flowing through the heat transfer tube 30 and the outdoor air blown by the blower is performed via the heat transfer tube 30, the windward fin 31, and the leeward fin 32.
伝熱管30、風上側フィン31及び風下側フィン32等の熱交換部35の表面温度が、流入する室外空気の露点温度よりも低い場合、熱交換部35の表面で結露が生じる。結露によって生じた結露水が熱交換部35の表面に滞留した場合、空気の圧力損失が増大する原因となる。空気の圧力損失が増大すると、空気の風量が減少するため熱交換器20の熱交換器性能が低下してしまう。したがって、熱交換部35の表面に生じた結露水は、熱交換器20の外部に速やかに排水されるのが望ましい。
(4) If the surface temperature of the heat exchange unit 35 such as the heat transfer tube 30, the windward fin 31, and the leeward fin 32 is lower than the dew point temperature of the inflowing outdoor air, dew condensation occurs on the surface of the heat exchange unit 35. If the dew water generated by the dew condensation stays on the surface of the heat exchange unit 35, it causes an increase in the pressure loss of air. When the pressure loss of the air increases, the air flow rate of the air decreases, so that the heat exchanger performance of the heat exchanger 20 decreases. Therefore, it is desirable that the dew water generated on the surface of the heat exchange unit 35 be quickly drained to the outside of the heat exchanger 20.
また、熱交換部35の表面温度が0℃以下である場合、熱交換部35の表面には霜が付着する。霜の付着は、熱交換部35の風上側の前縁部から開始され、次第に熱交換部35の風下側に進行していく。着霜が進行して着霜量が増加すると、霜によって熱交換器20の風路が閉塞し、空気の圧力損失が増大する。このため、冷凍サイクル装置では、熱交換器20に付着した霜を溶かすために除霜運転が行われる。除霜運転によって霜が溶けた融解水は、熱交換器性能の低下を防ぐため、熱交換器20の外部に速やかに排水されるのが望ましい。
If the surface temperature of the heat exchange unit 35 is 0 ° C. or less, frost adheres to the surface of the heat exchange unit 35. The attachment of the frost starts from the front edge on the windward side of the heat exchange unit 35 and gradually progresses to the leeward side of the heat exchange unit 35. When frost formation progresses and the amount of frost increases, the air passage of the heat exchanger 20 is blocked by the frost, and the pressure loss of air increases. For this reason, in the refrigeration cycle apparatus, a defrosting operation is performed to melt the frost attached to the heat exchanger 20. It is desirable that the molten water in which the frost has been melted by the defrosting operation is quickly drained to the outside of the heat exchanger 20 in order to prevent a decrease in the heat exchanger performance.
本実施の形態の熱交換器20は、熱交換部35の伝熱管30、風上側フィン31及び風下側フィン32が重力方向と平行に延伸するように設置されている。また、本実施の形態では、互いに隣り合う2つの熱交換部35の間に伝熱フィンが設けられていない。このため、熱交換部35の表面の結露水又は融解水は、自重により熱交換部35を伝って下方に流れ落ち、伝熱フィンに妨げられることなく排水される。したがって、本実施の形態によれば、クロスフィンチューブ型などの従来の熱交換器と比較して、熱交換器20の排水性を向上させることができるため、熱交換器20の熱交換器性能の低下を防ぐことができる。
熱 The heat exchanger 20 of the present embodiment is installed such that the heat transfer tube 30, the windward fin 31, and the leeward fin 32 of the heat exchange unit 35 extend in parallel with the direction of gravity. Further, in the present embodiment, no heat transfer fin is provided between two adjacent heat exchange portions 35. For this reason, the dew condensation water or the molten water on the surface of the heat exchange unit 35 flows down the heat exchange unit 35 by its own weight and flows down, and is drained without being hindered by the heat transfer fins. Therefore, according to the present embodiment, the drainage performance of the heat exchanger 20 can be improved as compared with a conventional heat exchanger such as a cross-fin tube type, so that the heat exchanger performance of the heat exchanger 20 can be improved. Can be prevented from decreasing.
図4は、本実施の形態に係る熱交換器20の空気の流れ方向での位置と温度との関係を示すグラフである。横軸は空気の流れ方向での一次元的な位置を表しており、縦軸は温度を表している。横軸上の位置は、横軸の下方に示す熱交換部35の位置に対応している。横軸の下方に示す白抜き矢印は、空気の流れ方向を表している。位置P1は、熱交換部35よりも風上側の位置に対応している。すなわち、位置P1の温度T1は、熱交換器20に流入する前の空気の代表温度に相当する。位置P2は、風上側フィン31の風上側端部の位置に対応している。すなわち、位置P2の温度T2は、風上側フィン31の前縁温度に相当する。位置P3は、伝熱管30の風上側端部30aの位置に対応している。すなわち、位置P3の温度T3は、伝熱管30の風上側端部30aの温度に相当する。
FIG. 4 is a graph showing the relationship between the position in the air flow direction of the heat exchanger 20 according to the present embodiment and the temperature. The horizontal axis represents a one-dimensional position in the air flow direction, and the vertical axis represents temperature. The position on the horizontal axis corresponds to the position of the heat exchange unit 35 shown below the horizontal axis. The white arrow below the horizontal axis indicates the direction of air flow. The position P1 corresponds to a position on the windward side of the heat exchange unit 35. That is, the temperature T1 at the position P1 corresponds to the representative temperature of the air before flowing into the heat exchanger 20. The position P2 corresponds to the position of the windward end of the windward fin 31. That is, the temperature T2 at the position P2 corresponds to the leading edge temperature of the windward fin 31. The position P3 corresponds to the position of the windward end 30a of the heat transfer tube 30. That is, the temperature T3 at the position P3 corresponds to the temperature of the windward end 30a of the heat transfer tube 30.
図4に示すように、風上側フィン31の前縁温度T2は、伝熱管30の風上側端部30aの温度T3よりも高くなっている(T2>T3)。このため、空気の代表温度T1と風上側フィン31の前縁温度T2との温度差ΔT1は、空気の代表温度T1と伝熱管30の風上側端部30aの温度T3との温度差ΔT2よりも小さくなる(ΔT1<ΔT2)。このため、風上側フィン31が設けられた熱交換部35では、温度差ΔT1が小さくなるため、風上側フィン31が設けられていない熱交換部35よりも着霜が生じにくくなる。また、風上側フィン31の長さが長くなるほど、フィン効率の低下により風上側フィン31の前縁温度T2が空気の代表温度T1に近づいていく。すなわち、流入する空気の温度が一定である場合、風上側フィン31の長さを長くすることにより、温度差ΔT1を小さくすることができるため、着霜量を減少させることができる。よって、風上側フィン31の長さを長くすることにより、熱交換部35の表面に付着する霜の、熱交換量当たりの厚さを薄くすることができる。本実施の形態では、風上側フィン31の長さを長くすることができるため、着霜による風路の閉塞を防ぐことができ、熱交換器性能の急激な低下を防ぐことができる。風上側フィン31の長さは、温度差ΔT1が温度差ΔT2の半分以下(ΔT1≦ΔT2/2)となるように設定されることが望ましい。
(4) As shown in FIG. 4, the leading edge temperature T2 of the windward fin 31 is higher than the temperature T3 of the windward end 30a of the heat transfer tube 30 (T2> T3). Therefore, the temperature difference ΔT1 between the representative temperature T1 of air and the leading edge temperature T2 of the windward fin 31 is larger than the temperature difference ΔT2 between the representative temperature T1 of air and the temperature T3 of the windward end 30a of the heat transfer tube 30. (ΔT1 <ΔT2). For this reason, in the heat exchange unit 35 provided with the windward fins 31, the temperature difference ΔT1 becomes smaller, and frost formation is less likely to occur than in the heat exchange unit 35 provided with no windward fins 31. Further, as the length of the windward fin 31 increases, the leading edge temperature T2 of the windward fin 31 approaches the representative temperature T1 of the air due to a decrease in the fin efficiency. That is, when the temperature of the inflowing air is constant, the temperature difference ΔT1 can be reduced by increasing the length of the windward fins 31, so that the amount of frost can be reduced. Therefore, by increasing the length of the windward fins 31, the thickness of the frost adhering to the surface of the heat exchange unit 35 per heat exchange amount can be reduced. In the present embodiment, since the length of the windward fins 31 can be lengthened, it is possible to prevent the wind path from being blocked due to frost formation, and to prevent a sharp decrease in heat exchanger performance. The length of the windward fin 31 is desirably set such that the temperature difference ΔT1 is equal to or less than half of the temperature difference ΔT2 (ΔT1 ≦ ΔT2 / 2).
以上説明したように、本実施の形態に係る熱交換器20は、互いに並列して配置された複数の熱交換部35を備えている。複数の熱交換部35のそれぞれは、伝熱管30と、伝熱管30の風上側端部30aから風上側に延びた風上側フィン31と、伝熱管30の風下側端部30bから風下側に延びた風下側フィン32と、を有している。ここで、熱交換部35は、第1熱交換部の一例である。伝熱管30は、第1伝熱管の一例である。伝熱管30の延伸方向と交差する断面において、風上側フィン31の長さL1と風下側フィン32の長さL2とは、L1>L2の関係を満たしている。
As described above, the heat exchanger 20 according to the present embodiment includes the plurality of heat exchange units 35 arranged in parallel with each other. Each of the plurality of heat exchange sections 35 extends from the heat transfer tube 30, the windward fin 31 extending from the windward end 30 a of the heat transfer tube 30 to the windward side, and the leeward end from the leeward end 30 b of the heat transfer tube 30. Leeward fins 32. Here, the heat exchange unit 35 is an example of a first heat exchange unit. The heat transfer tube 30 is an example of a first heat transfer tube. In a cross section that intersects with the direction in which the heat transfer tubes 30 extend, the length L1 of the windward fin 31 and the length L2 of the leeward fin 32 satisfy the relationship of L1> L2.
この構成によれば、風上側フィン31の長さL1を長くすることができるため、風上側フィン31の前縁の温度T2と熱交換器20に流入する空気の温度T1との温度差ΔT1を小さくすることができる。これにより、熱交換部35の着霜量を減らすことができるため、熱交換部35の表面に付着する霜の厚さを薄くすることができる。したがって、本実施の形態によれば、着霜による風路の閉塞によって熱交換器20の熱交換器性能が急激に低下するのを防ぐことができる。
According to this configuration, since the length L1 of the windward fin 31 can be increased, the temperature difference ΔT1 between the temperature T2 of the leading edge of the windward fin 31 and the temperature T1 of the air flowing into the heat exchanger 20 is determined. Can be smaller. Thereby, since the amount of frost on the heat exchange unit 35 can be reduced, the thickness of frost adhering to the surface of the heat exchange unit 35 can be reduced. Therefore, according to the present embodiment, it is possible to prevent the heat exchanger performance of the heat exchanger 20 from suddenly decreasing due to blockage of the air passage due to frost formation.
一方で、本実施の形態によれば、風下側フィン32の長さL2を短くすることができるため、空気の流れに沿う方向での熱交換器20の厚さ寸法を小さくすることができる。したがって、本実施の形態によれば、空気の流れに沿う方向での熱交換器20の厚さ寸法の拡大を抑えつつ、熱交換器20の熱交換器性能の急激な低下を防ぐことができる。
On the other hand, according to the present embodiment, since the length L2 of the leeward fin 32 can be reduced, the thickness of the heat exchanger 20 in the direction along the flow of air can be reduced. Therefore, according to the present embodiment, it is possible to prevent a sharp decrease in the heat exchanger performance of the heat exchanger 20 while suppressing an increase in the thickness dimension of the heat exchanger 20 in a direction along the flow of air. .
また、本実施の形態に係る熱交換器20では、複数の熱交換部35のうち互いに隣り合う2つの熱交換部35の間には、当該2つの熱交換部35を接続する伝熱フィンが設けられていない。この構成によれば、熱交換部35の表面の結露水又は融解水を伝熱フィンに妨げられることなく排水することができる。したがって、本実施の形態によれば、熱交換器20の排水性を向上させることができるため、熱交換器20の熱交換器性能の低下を防ぐことができる。
Further, in the heat exchanger 20 according to the present embodiment, between two adjacent heat exchange units 35 of the plurality of heat exchange units 35, heat transfer fins connecting the two heat exchange units 35 are provided. Not provided. According to this configuration, the condensed water or the molten water on the surface of the heat exchange unit 35 can be drained without being hindered by the heat transfer fins. Therefore, according to the present embodiment, since the drainage of the heat exchanger 20 can be improved, it is possible to prevent the heat exchanger performance of the heat exchanger 20 from deteriorating.
また、本実施の形態に係る熱交換器20は、複数の熱交換部35の少なくとも一端側に配置されたヘッダ21及びヘッダ22をさらに備えている。ヘッダ21及びヘッダ22には、複数の熱交換部35がそれぞれ有する伝熱管30の一端が差し込まれる複数の差込み穴23が所定の形成ピッチPh1で形成されている。複数の熱交換部35の配置ピッチPf1は、形成ピッチPh1によって決められている。この構成によれば、熱交換器20を製造する際に、差込み穴23の形成ピッチPh1を調整することにより、熱交換部35の配置ピッチPf1を容易に調整できる。したがって、熱交換部35の配置ピッチPf1の自由度を高めることができる。
The heat exchanger 20 according to the present embodiment further includes a header 21 and a header 22 arranged at least on one end side of the plurality of heat exchange units 35. In the header 21 and the header 22, a plurality of insertion holes 23 into which one ends of the heat transfer tubes 30 included in the plurality of heat exchange portions 35 are inserted are formed at a predetermined formation pitch Ph1. The arrangement pitch Pf1 of the plurality of heat exchange units 35 is determined by the formation pitch Ph1. According to this configuration, when the heat exchanger 20 is manufactured, the arrangement pitch Pf1 of the heat exchange portions 35 can be easily adjusted by adjusting the formation pitch Ph1 of the insertion hole 23. Therefore, the degree of freedom of the arrangement pitch Pf1 of the heat exchange unit 35 can be increased.
特許第4623083号公報には、クロスフィンチューブ型の熱交換器において、フィンカラーを用いてフィンピッチが決められる構成が記載されている。フィンカラーは、フィン材を曲げたり伸ばしたりすることにより、フィンピッチに相当する高さに形成される。このため、フィン材の板厚が薄いと、形成されたフィンカラーが割れてしまう場合がある。このため、フィンカラーを用いてフィンピッチが決められる場合、フィンピッチはフィン材の板厚によって制限される。
Japanese Patent No. 4623083 describes a configuration in which a fin pitch is determined using a fin collar in a cross fin tube type heat exchanger. The fin collar is formed at a height corresponding to the fin pitch by bending or stretching the fin material. Therefore, if the fin material is thin, the formed fin collar may be broken. Therefore, when the fin pitch is determined using the fin collar, the fin pitch is limited by the thickness of the fin material.
これに対し、本実施の形態では、熱交換部35の配置ピッチPf1が差込み穴23の形成ピッチPh1によって決定される。このため、フィン材の板厚に関わらず、熱交換部35の配置ピッチPf1すなわち風上側フィン31及び風下側フィン32の配置ピッチを、所望の値に調節することができる。
On the other hand, in the present embodiment, the arrangement pitch Pf1 of the heat exchange portions 35 is determined by the formation pitch Ph1 of the insertion hole 23. Therefore, regardless of the thickness of the fin material, the arrangement pitch Pf1 of the heat exchange units 35, that is, the arrangement pitch of the windward fins 31 and the leeward fins 32 can be adjusted to a desired value.
また、本実施の形態に係る熱交換器20では、伝熱管30として扁平管が用いられている。伝熱管30の延伸方向と交差する断面において、風上側フィン31の長さL1は、伝熱管30の長径Lpと同一又はそれより長くなっている。この構成によれば、温度差ΔT1をより小さくすることができるため、熱交換器20の着霜量をさらに減少させることができる。
で は Furthermore, in the heat exchanger 20 according to the present embodiment, a flat tube is used as the heat transfer tube 30. In a cross section that intersects with the direction in which the heat transfer tubes 30 extend, the length L1 of the windward fins 31 is equal to or longer than the major diameter Lp of the heat transfer tubes 30. According to this configuration, since the temperature difference ΔT1 can be further reduced, the amount of frost on the heat exchanger 20 can be further reduced.
実施の形態2.
本発明の実施の形態2に係る熱交換装置について説明する。図5は、本実施の形態に係る熱交換装置50の構成を示す斜視図である。図6は、本実施の形態に係る熱交換装置50の構成を示す断面図である。図6では、熱交換装置50の上下方向の中間部を水平面で切断した構成を示している。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。上記実施の形態1の熱交換器20は単列構成であるのに対し、本実施の形態の熱交換装置50は、空気の流れに沿って2列の熱交換器を備えている。熱交換装置50は、空気の流れに沿って3列以上の熱交換器を備えていてもよい。 Embodiment 2 FIG.
A heat exchange device according to Embodiment 2 of the present invention will be described. FIG. 5 is a perspective view illustrating a configuration of theheat exchange device 50 according to the present embodiment. FIG. 6 is a cross-sectional view illustrating a configuration of the heat exchange device 50 according to the present embodiment. FIG. 6 shows a configuration in which a vertical intermediate portion of the heat exchange device 50 is cut along a horizontal plane. Note that components having the same functions and functions as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. While the heat exchanger 20 of the first embodiment has a single-row configuration, the heat exchanger 50 of the present embodiment has two rows of heat exchangers along the flow of air. The heat exchange device 50 may include three or more rows of heat exchangers along the flow of air.
本発明の実施の形態2に係る熱交換装置について説明する。図5は、本実施の形態に係る熱交換装置50の構成を示す斜視図である。図6は、本実施の形態に係る熱交換装置50の構成を示す断面図である。図6では、熱交換装置50の上下方向の中間部を水平面で切断した構成を示している。なお、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。上記実施の形態1の熱交換器20は単列構成であるのに対し、本実施の形態の熱交換装置50は、空気の流れに沿って2列の熱交換器を備えている。熱交換装置50は、空気の流れに沿って3列以上の熱交換器を備えていてもよい。 Embodiment 2 FIG.
A heat exchange device according to Embodiment 2 of the present invention will be described. FIG. 5 is a perspective view illustrating a configuration of the
図5及び図6に示すように、熱交換装置50は、最も風上側に配置される1列目の熱交換器として、上記実施の形態1の熱交換器20を有している。既に述べたように、熱交換器20は、互いに並列して配置された複数の熱交換部35と、複数の熱交換部35の一端側に配置されたヘッダ21と、複数の熱交換部35の他端側に配置されたヘッダ22と、を備えている。複数の熱交換部35は、ヘッダ21とヘッダ22とによって上下から挟まれている。複数の熱交換部35のそれぞれは、伝熱管30と、伝熱管30の風上側端部30aから風上側に延びた風上側フィン31と、伝熱管30の風下側端部30bから風下側に延びた風下側フィン32と、を有している。伝熱管30の延伸方向と交差する断面において、風上側フィン31の長さL1と風下側フィン32の長さL2とは、L1>L2の関係を満たしている。複数の熱交換部35は、配置ピッチPf1で配置されている。配置ピッチPf1は、ヘッダ21及びヘッダ22に形成された差込み穴の形成ピッチPh1によって決められている。
As shown in FIGS. 5 and 6, the heat exchange device 50 has the heat exchanger 20 of the first embodiment as a first-row heat exchanger arranged on the windward side. As described above, the heat exchanger 20 includes a plurality of heat exchange units 35 arranged in parallel with each other, a header 21 arranged at one end of the plurality of heat exchange units 35, and a plurality of heat exchange units 35. And a header 22 disposed at the other end of the head. The plurality of heat exchange units 35 are sandwiched between the header 21 and the header 22 from above and below. Each of the plurality of heat exchange sections 35 extends from the heat transfer tube 30, the windward fin 31 extending from the windward end 30 a of the heat transfer tube 30 to the windward side, and the leeward end from the leeward end 30 b of the heat transfer tube 30. Leeward fins 32. In a cross section that intersects with the direction in which the heat transfer tubes 30 extend, the length L1 of the windward fin 31 and the length L2 of the leeward fin 32 satisfy the relationship of L1> L2. The plurality of heat exchange units 35 are arranged at an arrangement pitch Pf1. The arrangement pitch Pf1 is determined by the formation pitch Ph1 of the insertion holes formed in the header 21 and the header 22.
また、熱交換装置50は、熱交換器20よりも風下側に配置される2列目の熱交換器として、熱交換器60を有している。熱交換器60は、互いに並列して配置された複数の熱交換部75と、複数の熱交換部75の一端側に配置されたヘッダ61と、複数の熱交換部75の他端側に配置されたヘッダ62と、を備えている。複数の熱交換部75は、ヘッダ61とヘッダ62とによって上下から挟まれている。複数の熱交換部75のそれぞれは、伝熱管70と、伝熱管70の風上側端部70aから風上側に延びた風上側フィン71と、伝熱管70の風下側端部70bから風下側に延びた風下側フィン72と、を有している。伝熱管70としては、扁平管又は円管が用いられる。伝熱管70、風上側フィン71及び風下側フィン72は、一体成形されていてもよいし、別部材として形成されていてもよい。伝熱管70の延伸方向は、伝熱管30の延伸方向と平行である。
{Circle around (2)} The heat exchanger 50 has the heat exchanger 60 as a second row of heat exchangers located downstream of the heat exchanger 20. The heat exchanger 60 includes a plurality of heat exchange units 75 arranged in parallel with each other, a header 61 arranged at one end of the plurality of heat exchange units 75, and an end arranged at the other end of the plurality of heat exchange units 75. And a header 62. The plurality of heat exchange parts 75 are sandwiched between the header 61 and the header 62 from above and below. Each of the plurality of heat exchange portions 75 extends to the leeward side from the heat transfer tube 70, the leeward fin 71 extending from the leeward end 70 a of the heat transfer tube 70 to the leeward side, and the leeward end 70 b of the heat transfer tube 70. Leeward fins 72. As the heat transfer tube 70, a flat tube or a circular tube is used. The heat transfer tube 70, the leeward fin 71, and the leeward fin 72 may be integrally formed, or may be formed as separate members. The direction in which the heat transfer tube 70 extends is parallel to the direction in which the heat transfer tube 30 extends.
伝熱管30及び伝熱管70の延伸方向と交差する断面において、風上側フィン71の長さL3及び風下側フィン72の長さL4はいずれも、熱交換器20の風上側フィン31の長さL1よりも短くなっている(L3<L1及びL4<L1)。風上側フィン71の長さL3及び風下側フィン72の長さL4は、例えば、熱交換器20の風下側フィン32の長さL2と等しい(L3=L4=L2)。複数の熱交換部75は、配置ピッチPf2で配置されている。配置ピッチPf2は、ヘッダ61及びヘッダ62に形成された差込み穴の形成ピッチによって決められている。
In the cross section that intersects with the direction in which the heat transfer tubes 30 and the heat transfer tubes 70 extend, the length L3 of the windward fin 71 and the length L4 of the leeward fin 72 are all equal to the length L1 of the windward fin 31 of the heat exchanger 20. (L3 <L1 and L4 <L1). The length L3 of the leeward fin 71 and the length L4 of the leeward fin 72 are, for example, equal to the length L2 of the leeward fin 32 of the heat exchanger 20 (L3 = L4 = L2). The plurality of heat exchange units 75 are arranged at the arrangement pitch Pf2. The arrangement pitch Pf2 is determined by the formation pitch of the insertion holes formed in the header 61 and the header 62.
熱交換部35の配置ピッチPf1と、熱交換部75の配置ピッチPf2とは等しい(Pf1=Pf2)。空気の流れに沿って見ると、複数の熱交換部35と複数の熱交換部75とは、互いに半ピッチ分程度ずれて配置されている。
配置 The arrangement pitch Pf1 of the heat exchange unit 35 is equal to the arrangement pitch Pf2 of the heat exchange unit 75 (Pf1 = Pf2). When viewed along the flow of air, the plurality of heat exchange units 35 and the plurality of heat exchange units 75 are arranged to be shifted from each other by about a half pitch.
本実施の形態では、列毎のヘッダ21及びヘッダ61が別体として分離されているが、ヘッダ21及びヘッダ61は一体であってもよい。また、本実施の形態では、列毎のヘッダ22及びヘッダ62が別体として分離されているが、ヘッダ22及びヘッダ62は一体であってもよい。
In the present embodiment, the header 21 and the header 61 for each column are separated from each other, but the header 21 and the header 61 may be integrated. Further, in the present embodiment, the header 22 and the header 62 for each column are separated from each other, but the header 22 and the header 62 may be integrated.
熱交換部35及び熱交換部75の表面温度が0℃以下である場合、熱交換部35及び熱交換部75の表面には霜が付着する。霜の付着は、最も風上側に配置される1列目の熱交換器20における熱交換部35の風上側の前縁部から開始され、次第に熱交換部35の風下側、及び2列目以降の熱交換器60の熱交換部75に順次進行していく。本実施の形態では、1列目の熱交換器20における熱交換部35の風上側フィン31の長さL1を長くすることができるため、風上側フィン31の前縁温度と熱交換器20に流入する空気温度との温度差を小さくすることができる。これにより、熱交換部35の着霜量を減らすことができるだけでなく、熱交換部75の着霜量も減らすことができる。したがって、熱交換部35及び熱交換部75の表面に付着する霜の厚さを薄くすることができる。
(4) When the surface temperature of the heat exchange unit 35 and the heat exchange unit 75 is 0 ° C. or less, frost adheres to the surfaces of the heat exchange unit 35 and the heat exchange unit 75. Adhesion of frost starts from the front edge of the leeward side of the heat exchange unit 35 in the first row of the heat exchangers 20 arranged on the leeward side, and gradually becomes the leeward side of the heat exchange unit 35 and the second and subsequent rows. To the heat exchange section 75 of the heat exchanger 60 of FIG. In the present embodiment, since the length L1 of the windward fin 31 of the heat exchange unit 35 in the first row of heat exchangers 20 can be increased, the leading edge temperature of the windward fin 31 and the heat exchanger 20 The temperature difference from the inflowing air temperature can be reduced. Thus, not only the amount of frost formed on the heat exchange unit 35 can be reduced, but also the amount of frost formed on the heat exchange unit 75 can be reduced. Therefore, the thickness of the frost adhering to the surfaces of the heat exchange unit 35 and the heat exchange unit 75 can be reduced.
以上説明したように、本実施の形態に係る熱交換装置50は、熱交換器20と、熱交換器20の風下側に配置された熱交換器60と、を備えている。熱交換器20は、実施の形態1に係る熱交換器20である。熱交換器60は、伝熱管70をそれぞれ有し互いに並列して配置された複数の熱交換部75を備えている。ここで、熱交換器20は、第1熱交換器の一例である。熱交換器60は、第2熱交換器の一例である。熱交換部75は、第2熱交換部の一例である。伝熱管70は、第2伝熱管の一例である。
As described above, the heat exchange device 50 according to the present embodiment includes the heat exchanger 20 and the heat exchanger 60 disposed downstream of the heat exchanger 20. The heat exchanger 20 is the heat exchanger 20 according to the first embodiment. The heat exchanger 60 includes a plurality of heat exchange sections 75 each having a heat transfer tube 70 and arranged in parallel with each other. Here, the heat exchanger 20 is an example of a first heat exchanger. The heat exchanger 60 is an example of a second heat exchanger. The heat exchange section 75 is an example of a second heat exchange section. The heat transfer tube 70 is an example of a second heat transfer tube.
この構成によれば、熱交換装置50のうち風上側に配置される熱交換器20において、風上側フィン31の長さL1を長くすることができるため、熱交換器20及び熱交換器60の着霜量を減らすことができる。したがって、本実施の形態によれば、風路の閉塞による熱交換装置50の熱交換器性能の急激な低下を防ぐことができる。一方で、本実施の形態によれば、熱交換器20の風下側フィン32の長さL2を短くすることができるため、空気の流れに沿う方向での熱交換器20及び熱交換装置50の厚さ寸法を小さくすることができる。したがって、本実施の形態によれば、空気の流れに沿う方向での熱交換装置50の厚さ寸法の拡大を抑えつつ、熱交換装置50の熱交換器性能の急激な低下を防ぐことができる。
According to this configuration, in the heat exchanger 20 arranged on the windward side of the heat exchange device 50, the length L1 of the windward fins 31 can be increased, so that the heat exchanger 20 and the heat exchanger 60 The amount of frost can be reduced. Therefore, according to the present embodiment, it is possible to prevent a rapid decrease in the heat exchanger performance of heat exchanger 50 due to blockage of the air passage. On the other hand, according to the present embodiment, since the length L2 of the leeward fins 32 of the heat exchanger 20 can be reduced, the heat exchanger 20 and the heat exchange device 50 in the direction along the flow of air can be reduced. The thickness dimension can be reduced. Therefore, according to the present embodiment, it is possible to prevent a rapid decrease in the heat exchanger performance of the heat exchange device 50 while suppressing an increase in the thickness of the heat exchange device 50 in the direction along the flow of air. .
また、本実施の形態に係る熱交換装置50では、複数の熱交換部35のうち互いに隣り合う2つの熱交換部35の間には、当該2つの熱交換部35を接続する伝熱フィンが設けられていない。複数の熱交換部75のうち互いに隣り合う2つの熱交換部75の間には、当該2つの熱交換部75を接続する伝熱フィンが設けられていない。すなわち、熱交換器20及び熱交換器60はいずれも、いわゆるフィンレス型の熱交換器である。この構成によれば、熱交換部35及び熱交換部75のそれぞれ表面の結露水又は融解水を伝熱フィンに妨げられることなく排水することができる。したがって、本実施の形態によれば、熱交換装置50の排水性を向上させることができるため、熱交換装置50の熱交換器性能の低下を防ぐことができる。
Further, in the heat exchange device 50 according to the present embodiment, between two adjacent heat exchange units 35 of the plurality of heat exchange units 35, heat transfer fins connecting the two heat exchange units 35 are provided. Not provided. No heat transfer fins connecting the two heat exchange units 75 are provided between two adjacent heat exchange units 75 among the plurality of heat exchange units 75. That is, each of the heat exchanger 20 and the heat exchanger 60 is a so-called finless heat exchanger. According to this configuration, the condensed water or the molten water on the surfaces of the heat exchange unit 35 and the heat exchange unit 75 can be drained without being hindered by the heat transfer fins. Therefore, according to the present embodiment, since the drainage performance of the heat exchange device 50 can be improved, the deterioration of the heat exchanger performance of the heat exchange device 50 can be prevented.
また、本実施の形態に係る熱交換装置50は、複数の熱交換部35の少なくとも一端側に配置されたヘッダ21及びヘッダ22と、複数の熱交換部75の少なくとも一端側に配置されたヘッダ61及びヘッダ62と、をさらに備えている。ヘッダ21及びヘッダ22には、複数の熱交換部35がそれぞれ有する伝熱管30の一端が差し込まれる複数の差込み穴23が所定の形成ピッチで形成されている。ヘッダ61及びヘッダ62には、複数の熱交換部75がそれぞれ有する伝熱管70の一端が差し込まれる複数の差込み穴が所定の形成ピッチで形成されている。複数の熱交換部35の配置ピッチPf1は、ヘッダ21及びヘッダ22に形成された差込み穴23の形成ピッチによって決められている。複数の熱交換部75の配置ピッチPf2は、ヘッダ61及びヘッダ62に形成された差込み穴の形成ピッチによって決められている。この構成によれば、熱交換装置50の熱交換器20及び熱交換器60を製造する際に、熱交換部35の配置ピッチPf1及び熱交換部75の配置ピッチPf2を容易に調整できる。したがって、熱交換部35の配置ピッチPf1及び熱交換部75の配置ピッチPf2の自由度を高めることができる。
Further, the heat exchange device 50 according to the present embodiment includes a header 21 and a header 22 arranged on at least one end of the plurality of heat exchange units 35, and a header arranged on at least one end of the plurality of heat exchange units 75. 61 and a header 62. In the header 21 and the header 22, a plurality of insertion holes 23 into which one ends of the heat transfer tubes 30 included in the plurality of heat exchange portions 35 are inserted are formed at a predetermined pitch. In the header 61 and the header 62, a plurality of insertion holes into which one ends of the heat transfer tubes 70 included in the plurality of heat exchange portions 75 are inserted are formed at a predetermined pitch. The arrangement pitch Pf1 of the plurality of heat exchange units 35 is determined by the formation pitch of the insertion holes 23 formed in the header 21 and the header 22. The arrangement pitch Pf2 of the plurality of heat exchange units 75 is determined by the formation pitch of the insertion holes formed in the header 61 and the header 62. According to this configuration, when manufacturing the heat exchanger 20 and the heat exchanger 60 of the heat exchange device 50, the arrangement pitch Pf1 of the heat exchange unit 35 and the arrangement pitch Pf2 of the heat exchange unit 75 can be easily adjusted. Therefore, the degree of freedom of the arrangement pitch Pf1 of the heat exchange units 35 and the arrangement pitch Pf2 of the heat exchange units 75 can be increased.
実施の形態3.
本発明の実施の形態3に係る熱交換装置について説明する。図7は、本実施の形態に係る熱交換装置50の構成を示す斜視図である。図8は、本実施の形態に係る熱交換装置50の構成を示す断面図である。図8では、熱交換装置50の上下方向の中間部を水平面で切断した構成を示している。なお、実施の形態1又は2と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。本実施の形態の熱交換装置50は、1列目の熱交換器20における熱交換部35の配置ピッチPf1と、2列目の熱交換器60における熱交換部75の配置ピッチPf2とが互いに異なる点で、実施の形態2の熱交換装置50と異なっている。 Embodiment 3 FIG.
A heat exchange device according to Embodiment 3 of the present invention will be described. FIG. 7 is a perspective view showing a configuration of theheat exchange device 50 according to the present embodiment. FIG. 8 is a cross-sectional view illustrating a configuration of the heat exchange device 50 according to the present embodiment. FIG. 8 illustrates a configuration in which a vertical intermediate portion of the heat exchange device 50 is cut along a horizontal plane. Note that components having the same functions and functions as those of the first or second embodiment are denoted by the same reference numerals, and description thereof is omitted. In the heat exchange device 50 of the present embodiment, the arrangement pitch Pf1 of the heat exchange units 35 in the first row heat exchanger 20 and the arrangement pitch Pf2 of the heat exchange units 75 in the second row heat exchanger 60 are different from each other. It differs from the heat exchange device 50 of the second embodiment in different points.
本発明の実施の形態3に係る熱交換装置について説明する。図7は、本実施の形態に係る熱交換装置50の構成を示す斜視図である。図8は、本実施の形態に係る熱交換装置50の構成を示す断面図である。図8では、熱交換装置50の上下方向の中間部を水平面で切断した構成を示している。なお、実施の形態1又は2と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。本実施の形態の熱交換装置50は、1列目の熱交換器20における熱交換部35の配置ピッチPf1と、2列目の熱交換器60における熱交換部75の配置ピッチPf2とが互いに異なる点で、実施の形態2の熱交換装置50と異なっている。 Embodiment 3 FIG.
A heat exchange device according to Embodiment 3 of the present invention will be described. FIG. 7 is a perspective view showing a configuration of the
図7及び図8に示すように、1列目の熱交換器20における熱交換部35の配置ピッチPf1は、2列目の熱交換器60における熱交換部75の配置ピッチPf2よりも広くなっている(Pf1>Pf2)。熱交換部35の配置ピッチPf1は、ヘッダ21及びヘッダ22に形成された差込み穴の形成ピッチによって決められている。熱交換部75の配置ピッチPf2は、ヘッダ61及びヘッダ62に形成された差込み穴の形成ピッチによって決められている。複数の熱交換部35と複数の熱交換部75とは、空気の流れに沿って見たときにできるだけ互いに重ならないように配置されている。
As shown in FIGS. 7 and 8, the arrangement pitch Pf1 of the heat exchange units 35 in the first-row heat exchanger 20 is wider than the arrangement pitch Pf2 of the heat exchange units 75 in the second-row heat exchanger 60. (Pf1> Pf2). The arrangement pitch Pf1 of the heat exchange portions 35 is determined by the formation pitch of the insertion holes formed in the header 21 and the header 22. The arrangement pitch Pf2 of the heat exchange portions 75 is determined by the formation pitch of the insertion holes formed in the header 61 and the header 62. The plurality of heat exchange sections 35 and the plurality of heat exchange sections 75 are arranged so as not to overlap each other as much as possible when viewed along the flow of air.
以上説明したように、本実施の形態に係る熱交換装置50において、複数の熱交換部35の配置ピッチPf1と複数の熱交換部75の配置ピッチPf2とは、Pf1>Pf2の関係を満たしている。この構成によれば、1列目の熱交換器20の配置ピッチPf1が2列目の熱交換器60の配置ピッチPf2よりも広くなるため、1列目の熱交換器20での熱交換量を相対的に少なくすることができる。これにより、熱交換器20の熱交換部35の表面と熱交換器60の熱交換部75の表面とにおいて、霜をより均等に付着させることができる。このため、熱交換器20及び熱交換器60に付着する霜の厚さが局所的に厚くなってしまうのを抑えることができる。したがって、本実施の形態によれば、着霜による風路の閉塞を防ぐことができ、熱交換器性能の急激な低下を防ぐことができる。
As described above, in the heat exchange device 50 according to the present embodiment, the arrangement pitch Pf1 of the plurality of heat exchange units 35 and the arrangement pitch Pf2 of the plurality of heat exchange units 75 satisfy the relationship of Pf1> Pf2. I have. According to this configuration, the arrangement pitch Pf1 of the heat exchangers 20 in the first row is wider than the arrangement pitch Pf2 of the heat exchangers 60 in the second row, so the heat exchange amount in the heat exchanger 20 in the first row Can be relatively reduced. Thereby, frost can be more uniformly adhered to the surface of the heat exchange unit 35 of the heat exchanger 20 and the surface of the heat exchange unit 75 of the heat exchanger 60. For this reason, the thickness of the frost adhering to the heat exchanger 20 and the heat exchanger 60 can be prevented from locally increasing. Therefore, according to the present embodiment, it is possible to prevent the air passage from being blocked due to frost, and to prevent a rapid decrease in the performance of the heat exchanger.
実施の形態4.
本発明の実施の形態4に係る熱交換器ユニット及び冷凍サイクル装置について説明する。図9は、本実施の形態に係る冷凍サイクル装置100の構成を示す回路図である。本実施の形態では、冷凍サイクル装置100として、空気調和機を例示している。図9に示すように、冷凍サイクル装置100は、冷媒を循環させる冷凍サイクル回路10を有している。冷凍サイクル回路10は、圧縮機11、四方弁12、室外熱交換器13、膨張弁14及び室内熱交換器15が冷媒配管を介して環状に接続された構成を有している。また、冷凍サイクル装置100は、室外熱交換器13に空気を送風する送風機16と、室内熱交換器15に空気を送風する送風機17と、を有している。冷凍サイクル装置100では、圧縮機11が駆動されることにより、冷媒が相変化しながら冷凍サイクル回路10を循環する冷凍サイクルが実行される。室外熱交換器13では、送風機16により送風される空気と、内部流体である冷媒との熱交換が行われる。室内熱交換器15では、送風機17により送風される空気と、内部流体である冷媒との熱交換が行われる。 Embodiment 4 FIG.
A heat exchanger unit and a refrigeration cycle device according to Embodiment 4 of the present invention will be described. FIG. 9 is a circuit diagram showing a configuration of arefrigeration cycle apparatus 100 according to the present embodiment. In the present embodiment, an air conditioner is exemplified as refrigeration cycle device 100. As shown in FIG. 9, the refrigeration cycle apparatus 100 has a refrigeration cycle circuit 10 for circulating a refrigerant. The refrigeration cycle circuit 10 has a configuration in which a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an expansion valve 14, and an indoor heat exchanger 15 are connected in a ring through a refrigerant pipe. In addition, the refrigeration cycle apparatus 100 includes a blower 16 that blows air to the outdoor heat exchanger 13 and a blower 17 that blows air to the indoor heat exchanger 15. In the refrigeration cycle apparatus 100, the compressor 11 is driven to execute a refrigeration cycle in which the refrigerant circulates through the refrigeration cycle circuit 10 while changing phases. In the outdoor heat exchanger 13, heat exchange between the air blown by the blower 16 and the refrigerant as the internal fluid is performed. In the indoor heat exchanger 15, heat exchange between the air blown by the blower 17 and the refrigerant as the internal fluid is performed.
本発明の実施の形態4に係る熱交換器ユニット及び冷凍サイクル装置について説明する。図9は、本実施の形態に係る冷凍サイクル装置100の構成を示す回路図である。本実施の形態では、冷凍サイクル装置100として、空気調和機を例示している。図9に示すように、冷凍サイクル装置100は、冷媒を循環させる冷凍サイクル回路10を有している。冷凍サイクル回路10は、圧縮機11、四方弁12、室外熱交換器13、膨張弁14及び室内熱交換器15が冷媒配管を介して環状に接続された構成を有している。また、冷凍サイクル装置100は、室外熱交換器13に空気を送風する送風機16と、室内熱交換器15に空気を送風する送風機17と、を有している。冷凍サイクル装置100では、圧縮機11が駆動されることにより、冷媒が相変化しながら冷凍サイクル回路10を循環する冷凍サイクルが実行される。室外熱交換器13では、送風機16により送風される空気と、内部流体である冷媒との熱交換が行われる。室内熱交換器15では、送風機17により送風される空気と、内部流体である冷媒との熱交換が行われる。 Embodiment 4 FIG.
A heat exchanger unit and a refrigeration cycle device according to Embodiment 4 of the present invention will be described. FIG. 9 is a circuit diagram showing a configuration of a
冷凍サイクル回路10に充填される冷媒としては、R410A、R32又はHFO-1234yf等の冷媒を用いることができる。圧縮機11に使用される冷凍機油としては、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系又はフッ素油系など、冷媒との相溶性の有無に関わらず種々の冷凍機油を用いることができる。
冷媒 As a refrigerant to be charged into the refrigeration cycle circuit 10, a refrigerant such as R410A, R32, or HFO-1234yf can be used. As the refrigerating machine oil used for the compressor 11, various types of refrigerating machine oils such as mineral oils, alkylbenzene oils, ester oils, ether oils, and fluorine oils can be used regardless of whether or not they are compatible with the refrigerant. it can.
冷凍サイクル装置100は、室外機110及び室内機120を有している。室外機110には、圧縮機11、四方弁12、室外熱交換器13、膨張弁14及び送風機16が収容されている。室内機120には、室内熱交換器15及び送風機17が収容されている。室外機110及び室内機120はいずれも、少なくとも熱交換器を収容する熱交換器ユニットである。
The refrigeration cycle device 100 has an outdoor unit 110 and an indoor unit 120. The outdoor unit 110 houses a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an expansion valve 14, and a blower 16. The indoor unit 120 houses the indoor heat exchanger 15 and the blower 17. Both the outdoor unit 110 and the indoor unit 120 are heat exchanger units that house at least a heat exchanger.
室内熱交換器15には、実施の形態1の熱交換器20又は実施の形態2若しくは3の熱交換装置50が用いられている。室内熱交換器15に実施の形態1の熱交換器20が用いられる場合、室内熱交換器15は、複数の伝熱管30のそれぞれが上下方向に延伸するように、室内機120に設置される。また、室内熱交換器15に実施の形態2又は3の熱交換装置50が用いられる場合、室内熱交換器15は、複数の伝熱管30及び複数の伝熱管70のそれぞれが上下方向に延伸するように、室内機120に設置される。室外熱交換器13にも同様に、実施の形態1の熱交換器20又は実施の形態2若しくは3の熱交換装置50を用いることができる。
The indoor heat exchanger 15 uses the heat exchanger 20 of the first embodiment or the heat exchange device 50 of the second or third embodiment. When the heat exchanger 20 of Embodiment 1 is used for the indoor heat exchanger 15, the indoor heat exchanger 15 is installed in the indoor unit 120 such that each of the plurality of heat transfer tubes 30 extends in the vertical direction. . When the heat exchange device 50 according to Embodiment 2 or 3 is used for the indoor heat exchanger 15, the indoor heat exchanger 15 includes a plurality of heat transfer tubes 30 and a plurality of heat transfer tubes 70 extending in the vertical direction. Thus, it is installed in the indoor unit 120. Similarly, the heat exchanger 20 of Embodiment 1 or the heat exchange device 50 of Embodiment 2 or 3 can be used for the outdoor heat exchanger 13.
冷凍サイクル装置100の動作について、冷房運転を例に挙げて説明する。圧縮機11から吐出された高圧のガス冷媒は、四方弁12を経由し、室外熱交換器13に流入する。冷房運転時には、室外熱交換器13は凝縮器として機能する。すなわち、室外熱交換器13では、内部を流通する冷媒と、送風機16により送風される室外空気との熱交換が行われ、冷媒の凝縮熱が室外空気に放熱される。これにより、室外熱交換器13に流入したガス冷媒は、凝縮して高圧の液冷媒となる。
動作 The operation of the refrigeration cycle apparatus 100 will be described by taking cooling operation as an example. The high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 via the four-way valve 12. During the cooling operation, the outdoor heat exchanger 13 functions as a condenser. That is, in the outdoor heat exchanger 13, heat exchange between the refrigerant flowing inside and the outdoor air blown by the blower 16 is performed, and the heat of condensation of the refrigerant is radiated to the outdoor air. As a result, the gas refrigerant flowing into the outdoor heat exchanger 13 is condensed and becomes a high-pressure liquid refrigerant.
室外熱交換器13から流出した液冷媒は、膨張弁14で減圧されて低圧の二相冷媒となる。膨張弁14から流出した二相冷媒は、室内熱交換器15に流入する。冷房運転時には、室内熱交換器15は蒸発器として機能する。すなわち、室内熱交換器15では、内部を流通する冷媒と、送風機17により送風される室内空気との熱交換が行われ、冷媒の蒸発熱が室内空気から吸熱される。これにより、室内熱交換器15に流入した二相冷媒は、蒸発して低圧のガス冷媒となる。室内熱交換器15から流出したガス冷媒は、四方弁12を経由して圧縮機11に吸入される。圧縮機11に吸入されたガス冷媒は、圧縮されて高圧のガス冷媒となる。冷房運転時には、以上の冷凍サイクルが連続的に繰り返し実行される。説明を省略するが、暖房運転時には、四方弁12によって冷媒の流れ方向が切り替えられ、室外熱交換器13が蒸発器として機能し、室内熱交換器15が凝縮器として機能する。
液 The liquid refrigerant flowing out of the outdoor heat exchanger 13 is decompressed by the expansion valve 14 and becomes a low-pressure two-phase refrigerant. The two-phase refrigerant flowing out of the expansion valve 14 flows into the indoor heat exchanger 15. During the cooling operation, the indoor heat exchanger 15 functions as an evaporator. That is, in the indoor heat exchanger 15, heat exchange is performed between the refrigerant flowing inside and the indoor air blown by the blower 17, and the heat of evaporation of the refrigerant is absorbed from the indoor air. As a result, the two-phase refrigerant flowing into the indoor heat exchanger 15 evaporates and becomes a low-pressure gas refrigerant. The gas refrigerant flowing out of the indoor heat exchanger 15 is sucked into the compressor 11 via the four-way valve 12. The gas refrigerant sucked into the compressor 11 is compressed into a high-pressure gas refrigerant. During the cooling operation, the above refrigeration cycle is continuously and repeatedly executed. Although the description is omitted, the flow direction of the refrigerant is switched by the four-way valve 12 during the heating operation, the outdoor heat exchanger 13 functions as an evaporator, and the indoor heat exchanger 15 functions as a condenser.
以上説明したように、本実施の形態に係る熱交換器ユニットは、実施の形態1の熱交換器20と、熱交換器20に空気を送風する送風機と、を備えている。熱交換器ユニットは、例えば、室内機120又は室外機110である。送風機は、例えば、送風機17又は送風機16である。この構成によれば、風路の閉塞による熱交換器性能の急激な低下を防止できる熱交換器20を備えた熱交換器ユニットを実現することができる。
As described above, the heat exchanger unit according to the present embodiment includes the heat exchanger 20 according to the first embodiment, and the blower that blows air to the heat exchanger 20. The heat exchanger unit is, for example, the indoor unit 120 or the outdoor unit 110. The blower is, for example, the blower 17 or the blower 16. According to this configuration, it is possible to realize a heat exchanger unit including the heat exchanger 20 that can prevent a rapid decrease in heat exchanger performance due to blockage of the air passage.
また、本実施の形態に係る熱交換器ユニットにおいて、熱交換器20は、伝熱管30が上下方向に延伸するように配置されている。伝熱管30は、第1伝熱管の一例である。この構成によれば、熱交換器20の熱交換部35の表面に生じた結露水又は融解水は、自重により熱交換部35を伝って下方に流れ落ちる。したがって、熱交換器ユニットにおいて熱交換器20の排水性を向上させることができる。
In the heat exchanger unit according to the present embodiment, heat exchanger 20 is arranged such that heat transfer tube 30 extends in the up-down direction. The heat transfer tube 30 is an example of a first heat transfer tube. According to this configuration, the dew or melt water generated on the surface of the heat exchange unit 35 of the heat exchanger 20 flows down the heat exchange unit 35 by its own weight. Therefore, the drainage of the heat exchanger 20 can be improved in the heat exchanger unit.
また、本実施の形態に係る熱交換器ユニットは、実施の形態2又は3の熱交換装置50と、熱交換装置50に空気を送風する送風機と、を備えている。熱交換器ユニットは、例えば、室内機120又は室外機110である。送風機は、例えば、送風機17又は送風機16である。この構成によれば、風路の閉塞による熱交換器性能の急激な低下を防止できる熱交換装置50を備えた熱交換器ユニットを実現することができる。
The heat exchanger unit according to the present embodiment includes the heat exchange device 50 according to Embodiment 2 or 3, and a blower that blows air to the heat exchange device 50. The heat exchanger unit is, for example, the indoor unit 120 or the outdoor unit 110. The blower is, for example, the blower 17 or the blower 16. According to this configuration, it is possible to realize a heat exchanger unit including the heat exchange device 50 that can prevent a rapid decrease in heat exchanger performance due to blockage of the air passage.
また、本実施の形態に係る熱交換器ユニットにおいて、熱交換装置50は、伝熱管30及び伝熱管70が上下方向に延伸するように配置されている。伝熱管30は、第1伝熱管の一例である。伝熱管70は、第2伝熱管の一例である。この構成によれば、熱交換器ユニットにおいて熱交換装置50の排水性を向上させることができる。
In addition, in the heat exchanger unit according to the present embodiment, heat exchange device 50 is arranged such that heat transfer tubes 30 and heat transfer tubes 70 extend in the up-down direction. The heat transfer tube 30 is an example of a first heat transfer tube. The heat transfer tube 70 is an example of a second heat transfer tube. According to this configuration, it is possible to improve the drainage of the heat exchange device 50 in the heat exchanger unit.
また、本実施の形態に係る冷凍サイクル装置100は、本実施の形態に係る熱交換器ユニットを備えている。この構成によれば、風路の閉塞による熱交換器性能の急激な低下を防止できる熱交換器20又は熱交換装置50を備えた冷凍サイクル装置100を実現することができる。
冷凍 The refrigeration cycle apparatus 100 according to the present embodiment includes the heat exchanger unit according to the present embodiment. According to this configuration, it is possible to realize the refrigeration cycle apparatus 100 including the heat exchanger 20 or the heat exchange device 50 that can prevent a rapid decrease in the heat exchanger performance due to the blockage of the air passage.
上記実施の形態1~4では、伝熱管30の延伸方向が重力方向に平行となる縦流れ式の熱交換器20を例に挙げたが、本発明はこれに限られない。本発明は、伝熱管30の延伸方向が水平方向となる横流れ式の熱交換器、又は伝熱管30の延伸方向が重力方向及び水平方向のいずれに対しても傾いた熱交換器にも適用できる。
In the first to fourth embodiments, the longitudinal flow type heat exchanger 20 in which the extending direction of the heat transfer tube 30 is parallel to the direction of gravity has been described as an example, but the present invention is not limited to this. The present invention can also be applied to a horizontal flow heat exchanger in which the extension direction of the heat transfer tube 30 is horizontal, or to a heat exchanger in which the extension direction of the heat transfer tube 30 is inclined with respect to both the gravity direction and the horizontal direction. .
また、上記実施の形態1~4では、熱交換器20の伝熱管30を流通する内部流体として冷媒を例に挙げたが、本発明はこれに限られない。熱交換器20の伝熱管30を流通する内部流体としては、水又はブラインなどの液体を含む他の流体を用いることもできる。
In the first to fourth embodiments, the refrigerant is exemplified as the internal fluid flowing through the heat transfer tube 30 of the heat exchanger 20, but the present invention is not limited to this. As the internal fluid flowing through the heat transfer tube 30 of the heat exchanger 20, another fluid including a liquid such as water or brine may be used.
また、上記実施の形態1~4では、互いに隣り合う2つの熱交換部35の間に伝熱フィンが設けられていないフィンレス型の熱交換器20を例に挙げたが、本発明はこれに限られない。本発明は、互いに隣り合う2つの熱交換部35の間に伝熱フィンが設けられた熱交換器にも適用できる。
Further, in the first to fourth embodiments, the finless heat exchanger 20 in which no heat transfer fin is provided between two adjacent heat exchange units 35 has been described as an example. However, the present invention is not limited to this. Not limited. The present invention can also be applied to a heat exchanger in which a heat transfer fin is provided between two adjacent heat exchange units 35.
上記の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。
各 The above embodiments and modifications can be implemented in combination with each other.
10 冷凍サイクル回路、11 圧縮機、12 四方弁、13 室外熱交換器、14 膨張弁、15 室内熱交換器、16、17 送風機、20 熱交換器、21、22 ヘッダ、23 差込み穴、30 伝熱管、30a 風上側端部、30b 風下側端部、31 風上側フィン、32 風下側フィン、33 間隙、35 熱交換部、40 流体通路、50 熱交換装置、60 熱交換器、61、62 ヘッダ、70 伝熱管、70a 風上側端部、70b 風下側端部、71 風上側フィン、72 風下側フィン、75 熱交換部、100 冷凍サイクル装置、110 室外機、120 室内機。
10 refrigeration cycle circuit, 11 compressor, 12 four-way valve, 13 outdoor heat exchanger, 14 expansion valve, 15 indoor heat exchanger, 16, 17 blower, 20 heat exchanger, 21, 22 header, 23 insertion hole, 30 transmission Heat pipe, 30a windward end, 30b windward end, 31 windward fin, 32 windward fin, 33 gap, 35 heat exchanger, 40 fluid path, 50 heat exchanger, 60 heat exchanger, 61, 62 header , 70 heat transfer tube, 70a leeward end, 70b leeward end, 71 leeward fin, 72 leeward fin, 75 heat exchange unit, 100 refrigeration cycle device, 110 outdoor unit, 120 indoor unit.
Claims (11)
- 第1伝熱管と、前記第1伝熱管の風上側端部から風上側に延びた風上側フィンと、前記第1伝熱管の風下側端部から風下側に延びた風下側フィンと、をそれぞれ有し、互いに並列して配置された複数の第1熱交換部を備え、
前記第1伝熱管の延伸方向と交差する断面において、前記風上側フィンの長さL1と前記風下側フィンの長さL2とがL1>L2の関係を満たす熱交換器。 A first heat transfer tube, a leeward fin extending from the leeward end of the first heat transfer tube to the leeward side, and a leeward fin extending from the leeward end of the first heat transfer tube to the leeward side, respectively. Comprising a plurality of first heat exchange units arranged in parallel with each other,
A heat exchanger wherein a length L1 of the leeward fin and a length L2 of the leeward fin satisfy a relationship of L1> L2 in a cross section intersecting with the extending direction of the first heat transfer tube. - 前記複数の第1熱交換部のうち互いに隣り合う2つの第1熱交換部の間には、前記2つの第1熱交換部を接続する伝熱フィンが設けられていない請求項1に記載の熱交換器。 2. The heat transfer fin according to claim 1, wherein no heat transfer fin that connects the two first heat exchange units is provided between two adjacent first heat exchange units among the plurality of first heat exchange units. 3. Heat exchanger.
- 前記複数の第1熱交換部の少なくとも一端側に配置されたヘッダをさらに備え、
前記ヘッダには、前記複数の第1熱交換部のそれぞれが有する前記第1伝熱管の一端が差し込まれる複数の差込み穴が所定の形成ピッチで形成されており、
前記複数の第1熱交換部の配置ピッチは、前記形成ピッチによって決められている請求項1又は請求項2に記載の熱交換器。 Further comprising a header disposed on at least one end side of the plurality of first heat exchange units,
In the header, a plurality of insertion holes into which one ends of the first heat transfer tubes of each of the plurality of first heat exchange units are inserted are formed at a predetermined forming pitch,
The heat exchanger according to claim 1, wherein an arrangement pitch of the plurality of first heat exchange units is determined by the formation pitch. - 前記第1伝熱管として扁平管が用いられており、
前記第1伝熱管の延伸方向と交差する断面において、前記風上側フィンの長さL1は、前記第1伝熱管の長径と同一又はそれより長い請求項1~請求項3のいずれか一項に記載の熱交換器。 A flat tube is used as the first heat transfer tube,
The length L1 of the windward fin in a cross section intersecting with the extending direction of the first heat transfer tube is equal to or longer than the major diameter of the first heat transfer tube. The heat exchanger as described. - 第1熱交換器と、前記第1熱交換器の風下側に配置された第2熱交換器と、を備え、
前記第1熱交換器は、請求項1~請求項4のいずれか一項に記載の熱交換器であり、
前記第2熱交換器は、第2伝熱管をそれぞれ有し互いに並列して配置された複数の第2熱交換部を備えている熱交換装置。 A first heat exchanger, and a second heat exchanger disposed downstream of the first heat exchanger;
The first heat exchanger is the heat exchanger according to any one of claims 1 to 4,
The heat exchange device, wherein the second heat exchanger includes a plurality of second heat exchange units each having a second heat transfer tube and arranged in parallel with each other. - 前記複数の第1熱交換部の配置ピッチPf1と前記複数の第2熱交換部の配置ピッチPf2とがPf1>Pf2の関係を満たす請求項5に記載の熱交換装置。 The heat exchange device according to claim 5, wherein the arrangement pitch Pf1 of the plurality of first heat exchange units and the arrangement pitch Pf2 of the plurality of second heat exchange units satisfy a relationship of Pf1> Pf2.
- 請求項1~請求項4のいずれか一項に記載の熱交換器と、
前記熱交換器に空気を送風する送風機と、
を備える熱交換器ユニット。 A heat exchanger according to any one of claims 1 to 4,
A blower for blowing air to the heat exchanger,
A heat exchanger unit comprising: - 前記熱交換器は、前記第1伝熱管が上下方向に延伸するように配置されている請求項7に記載の熱交換器ユニット。 The heat exchanger unit according to claim 7, wherein the heat exchanger is arranged such that the first heat transfer tube extends in a vertical direction.
- 請求項5又は請求項6に記載の熱交換装置と、
前記熱交換装置に空気を送風する送風機と、
を備える熱交換器ユニット。 A heat exchange device according to claim 5 or 6,
A blower that blows air to the heat exchange device,
A heat exchanger unit comprising: - 前記熱交換装置は、前記第1伝熱管及び前記第2伝熱管が上下方向に延伸するように配置されている請求項9に記載の熱交換器ユニット。 The heat exchanger unit according to claim 9, wherein the heat exchange device is arranged such that the first heat transfer tube and the second heat transfer tube extend in a vertical direction.
- 請求項7~請求項10のいずれか一項に記載の熱交換器ユニットを備える冷凍サイクル装置。 冷凍 A refrigeration cycle apparatus comprising the heat exchanger unit according to any one of claims 7 to 10.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020529871A JPWO2020012549A1 (en) | 2018-07-10 | 2018-07-10 | Heat exchanger, heat exchanger unit and refrigeration cycle device |
PCT/JP2018/025982 WO2020012549A1 (en) | 2018-07-10 | 2018-07-10 | Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/025982 WO2020012549A1 (en) | 2018-07-10 | 2018-07-10 | Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020012549A1 true WO2020012549A1 (en) | 2020-01-16 |
Family
ID=69141401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/025982 WO2020012549A1 (en) | 2018-07-10 | 2018-07-10 | Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020012549A1 (en) |
WO (1) | WO2020012549A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021245734A1 (en) * | 2020-06-01 | 2021-12-09 | ||
WO2022224350A1 (en) * | 2021-04-20 | 2022-10-27 | 三菱電機株式会社 | Heat exchanger |
WO2023105703A1 (en) * | 2021-12-09 | 2023-06-15 | 三菱電機株式会社 | Dehumidifying device |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5378948A (en) * | 1976-12-23 | 1978-07-12 | Mitsui Mining & Smelting Co | Structure of connecting metal plate and metal pipe |
JPH0396574U (en) * | 1989-12-29 | 1991-10-02 | ||
JP2003114057A (en) * | 2001-10-05 | 2003-04-18 | Matsushita Electric Ind Co Ltd | Heat exchange device and heat exchange system using the same |
JP2004044940A (en) * | 2002-07-12 | 2004-02-12 | Denso Corp | Cooler |
US20040108105A1 (en) * | 2001-03-21 | 2004-06-10 | Dwyer Robert Charles | Fluid to gas heat exchangers |
JP2005140352A (en) * | 2003-11-04 | 2005-06-02 | Daikin Ind Ltd | Small diameter multitubular heat transfer tube, and its manufacturing method |
US8261567B2 (en) * | 2009-06-23 | 2012-09-11 | Hussmann Corporation | Heat exchanger coil with wing tube profile for a refrigerated merchandiser |
US20130206376A1 (en) * | 2012-02-14 | 2013-08-15 | The University Of Tokyo | Heat exchanger, refrigeration cycle device equipped with heat exchanger, or heat energy recovery device |
JP2013257095A (en) * | 2012-06-13 | 2013-12-26 | Sanden Corp | Finless heat exchanger |
US20140027098A1 (en) * | 2011-04-14 | 2014-01-30 | Carrier Corporation | Heat exchanger |
US20140231056A1 (en) * | 2011-10-13 | 2014-08-21 | Carrier Corporation | Heat exchanger |
-
2018
- 2018-07-10 WO PCT/JP2018/025982 patent/WO2020012549A1/en active Application Filing
- 2018-07-10 JP JP2020529871A patent/JPWO2020012549A1/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5378948A (en) * | 1976-12-23 | 1978-07-12 | Mitsui Mining & Smelting Co | Structure of connecting metal plate and metal pipe |
JPH0396574U (en) * | 1989-12-29 | 1991-10-02 | ||
US20040108105A1 (en) * | 2001-03-21 | 2004-06-10 | Dwyer Robert Charles | Fluid to gas heat exchangers |
JP2003114057A (en) * | 2001-10-05 | 2003-04-18 | Matsushita Electric Ind Co Ltd | Heat exchange device and heat exchange system using the same |
JP2004044940A (en) * | 2002-07-12 | 2004-02-12 | Denso Corp | Cooler |
JP2005140352A (en) * | 2003-11-04 | 2005-06-02 | Daikin Ind Ltd | Small diameter multitubular heat transfer tube, and its manufacturing method |
US8261567B2 (en) * | 2009-06-23 | 2012-09-11 | Hussmann Corporation | Heat exchanger coil with wing tube profile for a refrigerated merchandiser |
US20140027098A1 (en) * | 2011-04-14 | 2014-01-30 | Carrier Corporation | Heat exchanger |
US20140231056A1 (en) * | 2011-10-13 | 2014-08-21 | Carrier Corporation | Heat exchanger |
US20130206376A1 (en) * | 2012-02-14 | 2013-08-15 | The University Of Tokyo | Heat exchanger, refrigeration cycle device equipped with heat exchanger, or heat energy recovery device |
JP2013257095A (en) * | 2012-06-13 | 2013-12-26 | Sanden Corp | Finless heat exchanger |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021245734A1 (en) * | 2020-06-01 | 2021-12-09 | ||
WO2021245734A1 (en) * | 2020-06-01 | 2021-12-09 | 三菱電機株式会社 | Heat exchanger and refrigeration cycle apparatus |
JP7353489B2 (en) | 2020-06-01 | 2023-09-29 | 三菱電機株式会社 | Heat exchanger and refrigeration cycle equipment |
WO2022224350A1 (en) * | 2021-04-20 | 2022-10-27 | 三菱電機株式会社 | Heat exchanger |
EP4328534A4 (en) * | 2021-04-20 | 2024-06-05 | Mitsubishi Electric Corporation | Heat exchanger |
WO2023105703A1 (en) * | 2021-12-09 | 2023-06-15 | 三菱電機株式会社 | Dehumidifying device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020012549A1 (en) | 2021-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10627175B2 (en) | Heat exchanger and refrigeration cycle apparatus | |
US11009300B2 (en) | Heat exchanger and air-conditioning apparatus | |
JP2008241057A (en) | Finned tube heat exchanger, and heat exchanger unit and air conditioner using the same | |
JP6790077B2 (en) | Heat exchanger | |
JP6847229B2 (en) | Heat exchanger and refrigeration cycle equipment | |
JP2011127831A (en) | Heat exchanger and refrigerating cycle device including the same | |
WO2020012549A1 (en) | Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system | |
JP2019011923A (en) | Heat exchanger | |
WO2021234964A1 (en) | Heat exchanger and air conditioner | |
JP6318371B2 (en) | Outdoor unit and refrigeration cycle apparatus using the same | |
JP6980117B2 (en) | Heat exchanger, heat exchanger unit, and refrigeration cycle device | |
JPWO2018235215A1 (en) | Heat exchangers, refrigeration cycle devices and air conditioners | |
WO2017158795A1 (en) | Heat exchanger and air conditioner | |
WO2018207321A1 (en) | Heat exchanger and refrigeration cycle device | |
JP2011112315A (en) | Fin tube type heat exchanger and air conditioner using the same | |
JP6198976B2 (en) | Heat exchanger and refrigeration cycle apparatus | |
WO2018185824A1 (en) | Heat exchanger and refrigeration cycle device | |
US11573056B2 (en) | Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus | |
EP3832244A1 (en) | Heat exchanger, heat exchanger unit, and refrigeration cycle device | |
JPWO2020178977A1 (en) | Heat exchanger, heat exchanger unit, and refrigeration cycle equipment | |
JP6621928B2 (en) | Heat exchanger and air conditioner | |
WO2020012548A1 (en) | Heat exchanger, heat exchanger unit, and refrigeration cycle device | |
JP6640500B2 (en) | Air conditioner outdoor unit | |
WO2019239554A1 (en) | Heat exchanger, heat exchanger unit, and refrigeration cycle device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18926125 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020529871 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18926125 Country of ref document: EP Kind code of ref document: A1 |