WO2020121737A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2020121737A1
WO2020121737A1 PCT/JP2019/044840 JP2019044840W WO2020121737A1 WO 2020121737 A1 WO2020121737 A1 WO 2020121737A1 JP 2019044840 W JP2019044840 W JP 2019044840W WO 2020121737 A1 WO2020121737 A1 WO 2020121737A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
mode
compressor
refrigerant
heat
Prior art date
Application number
PCT/JP2019/044840
Other languages
English (en)
French (fr)
Inventor
孝史 青木
竜 宮腰
耕平 山下
洪銘 張
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to CN201980081508.XA priority Critical patent/CN113165472B/zh
Publication of WO2020121737A1 publication Critical patent/WO2020121737A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices

Definitions

  • the present invention relates to a heat pump type air conditioner for air conditioning the interior of a vehicle.
  • the electric compressor produces a relatively large driving sound at high rotation speeds, the level of the sound in the passenger compartment becomes low, and when it becomes quiet, this driving sound becomes annoying to passengers. Therefore, considering the influence of the noise generated by the compressor on passengers in the passenger compartment, the situation where the sound level in the passenger compartment is low (quiet), that is, when the shift position is other than the forward position, When the outside air temperature, the set temperature, and the vehicle interior temperature are not high or low, the upper limit rotation speed of the compressor is controlled to be lowered (see, for example, Patent Document 3).
  • the air conditioning performance inside the vehicle will naturally decrease. Therefore, in consideration of the air conditioning performance, it is not desirable to reduce the upper limit rotation speed as described above as much as possible. Also, if the sound level in the vehicle interior is high, the driving sound generated by the compressor will not make the passengers jar, but with conventional control, this is still accurately grasped and the appropriate upper limit rotation of the compressor is achieved. The number could not be changed.
  • the present invention has been made to solve the above-mentioned conventional technical problems, and appropriately controls the upper limit rotation speed of an electric compressor to effectively cool an object to be temperature-controlled and comfortably. It is an object of the present invention to provide a vehicle air conditioner that can realize various vehicle interior air conditioning.
  • the vehicle air conditioner of the present invention is an electric compressor that compresses a refrigerant, a heat absorber that absorbs the refrigerant and cools the air supplied to the vehicle interior, and is mounted on a vehicle that absorbs the refrigerant.
  • the upper limit rotation speed for controlling the compressor is changed between the predetermined maximum value and the minimum value in the direction of decreasing the sound level and It has a single mode of absorbing the refrigerant in one of the heat exchangers and a cooperative mode of absorbing the refrigerant in the heat absorber and the heat exchanger to be temperature-controlled, and in controlling the compressor in the cooperative mode. It is characterized in that the upper limit rotation speed is changed in a direction to be higher than the upper limit rotation speed in controlling the compressor in the single mode.
  • the control device sets the minimum value of the upper limit rotation speed for controlling the compressor in the cooperative mode to the upper limit rotation speed for controlling the compressor in the single mode. It is characterized in that it is changed in the direction of increasing it from the minimum number.
  • the control device changes in a direction of increasing the upper limit rotational speed in controlling the compressor when the temperature of the temperature controlled object is higher than a predetermined threshold value. It is characterized by
  • the control unit when the temperature of the temperature controlled object is higher than a predetermined threshold value, sets the minimum value of the upper limit rotation speed in controlling the compressor to the upper limit. It is characterized by setting the maximum value of the rotation speed.
  • An air conditioner for a vehicle includes the air flow passage through which the air supplied to the vehicle compartment in each of the above inventions and an indoor blower for causing the air to flow through the air flow passage.
  • the factors that influence the sound level are the air volume of the indoor blower, the blowing mode that blows air into the passenger compartment, the introduction mode of the air that flows into the air flow passage, the volume of the audio equipment installed in the vehicle, the vehicle speed, and the outside temperature. Any of the above, or a combination thereof, or all of them.
  • a vehicle air conditioner provides a heat absorber valve device that controls the flow of the refrigerant to the heat absorber in each of the above inventions, and a valve that controls the flow of the refrigerant to the heat exchanger for temperature adjustment.
  • the temperature control target valve device is provided, and the control device opens the temperature control target valve device and controls the rotation speed of the compressor based on the temperature of the temperature control target heat exchanger or the target cooled by it.
  • the temperature control target cooling (single) mode in which the heat absorber valve device is closed and the heat absorber valve device are opened, and the rotation speed of the compressor is controlled based on the temperature of the heat absorber or the target cooled by the heat absorber
  • the air conditioning (single) mode in which the valve device for temperature control is closed, and the valve device for temperature control target is opened, and the rotation speed of the compressor is based on the temperature of the heat exchanger for temperature control or the target cooled by it.
  • Temperature control target cooling (priority) + air conditioning mode in which the heat absorber or the object cooled by the heat absorber is controlled to be opened or closed based on the temperature of the heat absorber or the object cooled by the heat absorber or the heat absorber or The rotation speed of the compressor is controlled based on the temperature of the object to be cooled by, and the valve device for the temperature controlled object is opened/closed based on the temperature of the heat exchanger for the temperature controlled object or the object cooled by it. It has an air conditioning (priority) + temperature controlled cooling mode, and the single mode is either one or both of the temperature controlled cooling (single) mode and the air conditioning (single) mode. , One of the temperature controlled cooling (priority)+air conditioning mode and the air conditioning (priority)+temperature controlled target cooling mode, or both.
  • An air conditioner for a vehicle includes a heat absorber for a front seat for absorbing the refrigerant to cool the air supplied to the front portion of the vehicle compartment in each of the above aspects, and a vehicle for absorbing the refrigerant to absorb the refrigerant.
  • a heat absorber for the rear seat for cooling the air supplied to the rear part of the room is provided, and the control device includes a first heat absorber for the front seat and a heat absorber for the rear seat to evaporate the refrigerant. It has an operation mode and a second operation mode in which the heat absorber for the front seat and the heat absorber for the rear seat absorb heat of the refrigerant. In this second operation mode, the compressor is compared with the first operation mode. It is characterized in that it is changed in the direction of increasing the upper limit rotation speed in the control of.
  • a vehicle air conditioner according to a ninth aspect of the present invention is the vehicle air conditioner according to any one of the above aspects, wherein the control device is configured to give a predetermined notification for notifying that the vehicle is operating with a change to a direction in which the upper limit rotational speed for controlling the compressor is increased. It is characterized by having a device.
  • an electric compressor that compresses a refrigerant, a heat absorber that absorbs the refrigerant and cools the air to be supplied to the vehicle interior, and a temperature control unit that is installed in the vehicle to absorb the refrigerant.
  • the control device is based on factors that affect the level of sound in the vehicle interior. , As the sound level in the vehicle interior becomes lower, the upper limit rotational speed for controlling the compressor is changed between the predetermined maximum value and the minimum value in the direction of decreasing the sound level in the vehicle interior. It becomes low and quiet, and the compressor drive noise becomes noticeable, and the compressor drive noise can be reduced in a situation where an occupant is uncomfortable.
  • a single mode in which the refrigerant absorbs heat in one of the heat exchanger or the heat exchanger to be temperature-controlled and a coordinated mode in which the refrigerant absorbs heat in the heat absorber and the heat exchanger to be temperature-controlled
  • the upper limit rotation speed of the compressor in the cooperative mode is changed to be higher than the upper limit rotation speed of the compressor in the independent mode, so that the refrigerant is used for the heat absorber and the temperature controlled object.
  • the coordinated mode in which heat is absorbed by the heat exchanger it is possible to avoid an inconvenience in which the upper limit rotational speed in controlling the compressor is increased and the capacity of the compressor becomes insufficient. As a result, appropriate cooling of the temperature-controlled object and comfortable air-conditioning operation can be realized, and the product characteristics can be improved.
  • control device sets the minimum value of the upper limit rotational speed of the compressor in the cooperative mode to a value lower than the minimum upper limit rotational speed of the compressor in the independent mode. If the change is made in the increasing direction, it is possible to avoid the inconvenience that the maximum value of the upper limit rotation speed rises and to improve the reliability.
  • the control device may change the temperature in the direction of increasing the upper limit rotational speed for controlling the compressor. It becomes possible to increase the upper limit rotation speed in controlling the compressor based on the fact that the temperature of the target becomes high and cooling is required.
  • the control device sets the minimum value of the upper limit rotation speed in controlling the compressor to the maximum value of the upper limit rotation speed.
  • the control device When the upper limit rotation speed of the compressor is changed based on a plurality of factors affecting the sound level in the vehicle compartment, the control device according to the invention of claim 6 lowers the sound level in the vehicle compartment.
  • the upper limit rotation speed change value that is changed to decrease the upper limit rotation speed for compressor control is calculated for each factor, and the highest value among the calculated upper limit rotation speed change values for each factor is compressed.
  • a heat absorber valve device for controlling the flow of the refrigerant to the heat absorber and a valve device for the temperature controlled object for controlling the flow of the refrigerant to the heat exchanger for the temperature controlled object are provided.
  • the control device opens the valve device for the temperature-controlled object, controls the rotation speed of the compressor based on the temperature of the heat exchanger for the temperature-controlled object or the object cooled by the heat exchanger for the temperature controlled object, the valve device for the heat absorber.
  • Temperature controlled target cooling (priority) + air-conditioning mode that controls opening and closing of the heat absorber valve device based on the temperature of the object cooled by it, and the temperature of the heat absorber or the object cooled by opening the valve device for the heat absorber Controlling the number of revolutions of the compressor on the basis of the temperature, and controlling the opening/closing of the temperature-controlled object heat exchanger or the temperature-controlled object valve device based on the temperature of the temperature-controlled object valve device (priority) + temperature If it has a cooling target cooling mode, it only cools the temperature-controlled object, only air-conditions the interior of the vehicle, and conditions that prioritizes cooling of the temperature-controlled object while also cooling the vehicle interior. With this, it becomes possible to switch and execute the state in which the object to be temperature-controlled is also cooled while giving priority to the air conditioning in the vehicle interior.
  • the independent mode is either one of the temperature controlled cooling (single) mode and the air conditioning (single) mode, or both
  • the cooperative mode is the temperature controlled cooling (priority)+air conditioning mode and the air conditioning.
  • (Priority) + controlled temperature controlled cooling mode, or both so that controlled temperature controlled cooling (priority) + air conditioning mode or air conditioning (priority) + controlled temperature controlled cooling mode It is possible to avoid the inconvenience that the capacity of the machine falls into a state of being inadequate, and to realize appropriate cooling of the temperature-controlled object and comfortable air conditioning operation.
  • a heat absorber for the front seat for absorbing the heat of the refrigerant to cool the air supplied to the front part of the vehicle interior, and the air for absorbing the heat of the refrigerant and supplying the air to the rear part of the vehicle interior.
  • a rear seat heat absorber for cooling, the control device includes a first operation mode in which the refrigerant is evaporated by one of the front seat heat absorber and the rear seat heat absorber, and the front seat heat absorber.
  • control device with a predetermined informing device for informing that the operation is performed by changing the direction to increase the upper limit rotational speed in controlling the compressor, the control device is useless. It becomes possible to eliminate the inconvenience that gives the user a feeling of discomfort or anxiety.
  • FIG. 1 It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied (Example 1). It is a block diagram of an electric circuit of a control device of an air harmony device for vehicles of Drawing 1. It is a figure explaining the driving mode which the control apparatus of FIG. 2 performs. It is a block diagram of the air conditioning apparatus for vehicles explaining the heating mode by the heat pump controller of the control apparatus of FIG. It is a block diagram of the vehicle air conditioner explaining the dehumidification heating mode by the heat pump controller of the control apparatus of FIG. It is a block diagram of the air conditioning apparatus for vehicles explaining the dehumidification cooling mode by the heat pump controller of the control apparatus of FIG.
  • FIG. 4 It is a block diagram of the vehicle air conditioner explaining the cooling mode by the heat pump controller of the control apparatus of FIG. It is a block diagram of the air conditioning apparatus for vehicles explaining the air conditioning (priority) + battery cooling mode and battery cooling (priority) + air conditioning mode by the heat pump controller of the control apparatus of FIG. It is a block diagram of the vehicle air conditioning apparatus explaining the battery cooling (single) mode by the heat pump controller of the control apparatus of FIG. It is a block diagram of the air conditioning apparatus for vehicles explaining the defrost mode by the heat pump controller of the control apparatus of FIG. It is a control block diagram regarding compressor control of the heat pump controller of the control device of FIG. FIG. 4 is another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2.
  • FIG. 7 is yet another control block diagram related to compressor control of the heat pump controller of the control device in FIG. 2. It is a block diagram explaining control of the solenoid valve 35 in battery cooling (priority) + air conditioning mode of the heat pump controller of the control apparatus of FIG. It is a figure explaining an example of calculation of the upper limit rotation speed change value of a compressor based on the air volume of an indoor blower by the heat pump controller of the control apparatus of FIG. It is a figure explaining an example of calculation of the upper limit rotation speed change value of the compressor based on the blowing mode by the heat pump controller of the control apparatus of FIG.
  • FIG. 3 is a diagram illustrating an example of calculation of an upper limit rotation speed change value of a compressor based on a volume (audio level) of an audio device by a heat pump controller of the control device of FIG. 2.
  • FIG. 3 is a diagram illustrating an example of calculation of a compressor upper limit rotation speed change value based on a vehicle speed by a heat pump controller of the control device in FIG. 2. It is a figure explaining an example of calculation of the upper limit rotation speed change value of the compressor based on the outside temperature by the heat pump controller of the control apparatus of FIG.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • a vehicle of an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and electric power charged in a battery 55 mounted in the vehicle is used as a traveling motor (electric motor). (Not shown) to drive and run, and the compressor 2 of the vehicle air conditioner 1 of the present invention, which will be described later, is also driven by the electric power supplied from the battery 55. ..
  • EV electric vehicle
  • an engine internal combustion engine
  • electric motor traveling motor
  • the vehicle air conditioner 1 of the embodiment is a heating mode, a dehumidification heating mode, a dehumidification cooling mode, a cooling mode, and a defrosting mode in a heat pump operation using the refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat.
  • the air conditioning (priority)+battery cooling mode, the battery cooling (priority)+air conditioning mode, and the battery cooling (single) mode are switched and executed to perform air conditioning in the vehicle compartment and temperature control of the battery 55. It is a thing.
  • the cooling mode is an example of the air conditioning (single) mode in the present invention
  • the battery cooling (single) mode is an example of the temperature controlled target cooling (independent) mode in the present invention.
  • These are the single modes in the present invention. It becomes an example of.
  • an example of the air conditioning (priority)+battery cooling mode in the present invention is the air conditioning (priority)+temperature controlled target cooling mode
  • battery cooling (priority)+air conditioning mode is the temperature controlled target cooling (priority)+ in the present invention.
  • This is an example of the air conditioning mode, and these are examples of the cooperative mode in the present invention.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and a running motor.
  • the vehicle to which the vehicle air conditioner 1 of the embodiment is applied is one in which the battery 55 can be charged from an external charger (quick charger, ordinary charger, or the like).
  • the battery 55, the traveling motor, the inverter controlling the same, and the like described above are the objects of temperature adjustment mounted on the vehicle in the present invention, but in the following embodiments, the battery 55 will be taken as an example for description.
  • the vehicle air conditioner 1 of the embodiment is for performing air conditioning (heating, cooling, dehumidification, and ventilation) of a vehicle interior of an electric vehicle, and an electric compressor 2 for compressing a refrigerant and an interior of the vehicle interior.
  • an outdoor expansion valve 6 consisting of a motor-operated valve (electronic expansion valve) for decompressing and expanding the refrigerant during heating, and as a radiator for radiating the refrigerant during cooling
  • An outdoor heat exchanger 7 that functions and performs heat exchange between the refrigerant and the outside air so as to function as an evaporator that absorbs the refrigerant (absorbs heat into the refrigerant) during heating, and a mechanical expansion valve that decompresses and expands the refrigerant.
  • An indoor expansion valve 8 including: a heat absorber 9 that is provided in the air flow passage 3 and that evaporates the refrigerant during cooling and dehumidification to absorb heat from the inside and outside of the vehicle (the refrigerant absorbs heat); and an accumulator 12 and the like. Are sequentially connected by a refrigerant pipe 13 to form a refrigerant circuit R.
  • the outdoor expansion valve 6 decompresses and expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7, and can be fully closed. Further, in the embodiment, the indoor expansion valve 8 using the mechanical expansion valve decompresses and expands the refrigerant flowing into the heat absorber 9, and adjusts the degree of superheat of the refrigerant in the heat absorber 9.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air through the outdoor heat exchanger 7, whereby the outdoor air is discharged while the vehicle is stopped (that is, the vehicle speed is 0 km/h).
  • the heat exchanger 7 is configured to ventilate outside air.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A on the refrigerant outlet side of the outdoor heat exchanger 7 is used when flowing the refrigerant to the heat absorber 9.
  • the refrigerant pipe 13B on the outlet side of the supercooling section 16 is connected to the receiver dryer section 14 via an electromagnetic valve 17 (for cooling) as an open/close valve, and the check valve 18, the indoor expansion valve 8 and the heat absorption It is connected to the refrigerant inlet side of the heat absorber 9 through an electromagnetic valve 35 (for a cabin) as a device valve device in order.
  • the receiver dryer unit 14 and the supercooling unit 16 structurally form a part of the outdoor heat exchanger 7.
  • the check valve 18 has the forward direction of the indoor expansion valve 8.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and the branched refrigerant pipe 13D is passed through an electromagnetic valve 21 (for heating) as an on-off valve opened during heating. It is connected to the refrigerant pipe 13C on the refrigerant outlet side of the heat absorber 9 for communication.
  • the refrigerant pipe 13C is connected to the inlet side of the accumulator 12, and the outlet side of the accumulator 12 is connected to the refrigerant suction side refrigerant pipe 13K of the compressor 2.
  • a strainer 19 is connected to the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4, and the refrigerant pipe 13E is connected to the refrigerant pipes 13J and 13F before the outdoor expansion valve 6 (refrigerant upstream side).
  • One of the branched and branched refrigerant pipes 13J is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • the other branched refrigerant pipe 13F is connected to the refrigerant downstream side of the check valve 18 and the refrigerant upstream side of the indoor expansion valve 8 via an electromagnetic valve 22 (for dehumidification) as an opening/closing valve that is opened during dehumidification. It is communicatively connected to the located refrigerant pipe 13B.
  • the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve are connected. It becomes a bypass circuit that bypasses 18. Further, a solenoid valve 20 as an opening/closing valve for bypass is connected in parallel to the outdoor expansion valve 6.
  • an intake switching damper 26 is provided at 25 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is the air inside the vehicle interior and the outside air (outside air introduction) which is the air outside the vehicle interior.
  • an indoor blower (blower fan) 27 for feeding the introduced inside air or outside air to the air flow passage 3 is provided.
  • an auxiliary heater 23 as an auxiliary heating device including a PTC heater (electric heater) is provided in the embodiment, and passes through the radiator 4. It is possible to heat the air supplied to the passenger compartment. Further, in the air flow passage 3 on the air upstream side of the radiator 4, the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated. An air mix damper 28 that adjusts the ratio of ventilation to the device 4 and the auxiliary heater 23 is provided.
  • the vehicle air conditioner 1 includes an equipment temperature adjusting device 61 for adjusting the temperature of the battery 55 by circulating a heat medium in the battery 55 (object to be temperature adjusted).
  • the device temperature adjusting device 61 of the embodiment includes a circulation pump 62 as a circulating device for circulating a heat medium in the battery 55, a refrigerant-heat medium heat exchanger 64 as a heat exchanger for temperature control, and a heating device.
  • a heat medium heater 63 as a device is provided, and these and the battery 55 are annularly connected by a heat medium pipe 66.
  • the inlet of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of this heat medium passage 64A is connected to the inlet of the heat medium heater 63.
  • the outlet of the heat medium heater 63 is connected to the inlet of the battery 55, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
  • the heat medium used in the device temperature adjusting device 61 for example, water, a refrigerant such as HFO-1234yf, a liquid such as coolant, or a gas such as air can be adopted.
  • water is used as the heat medium.
  • the heat medium heater 63 is composed of an electric heater such as a PTC heater. Further, it is assumed that, for example, a jacket structure is provided around the battery 55 so that a heat medium can flow in a heat exchange relationship with the battery 55.
  • the heat medium discharged from the circulation pump 62 flows into the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64.
  • the heat medium exiting the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heating heater 63, and if the heat medium heating heater 63 is generating heat, the heat medium heating heater 63 heats the heat medium heating heater 63 and then the battery. 55, where the heat medium exchanges heat with the battery 55.
  • the heat medium that has exchanged heat with the battery 55 is sucked into the circulation pump 62 and circulated in the heat medium pipe 66.
  • a branch pipe 67 as a branch circuit is provided in the refrigerant pipe 13B located on the refrigerant downstream side of the connecting portion between the refrigerant pipe 13F and the refrigerant pipe 13B of the refrigerant circuit R and on the refrigerant upstream side of the indoor expansion valve 8.
  • auxiliary expansion valve 68 which is a mechanical expansion valve in the embodiment, and an electromagnetic valve (for chiller) 69 as a valve device for the temperature-controlled object are sequentially provided.
  • the auxiliary expansion valve 68 decompresses and expands the refrigerant flowing into a later-described refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64, and adjusts the degree of superheat of the refrigerant in the refrigerant passage 64B of the refrigerant-heat medium heat exchanger 64. To do.
  • the other end of the branch pipe 67 is connected to the refrigerant flow passage 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 71 is connected to the outlet of the refrigerant flow passage 64B.
  • the other end is connected to a refrigerant pipe 13C on the refrigerant upstream side (refrigerant upstream side of the accumulator 12) from the confluence with the refrigerant pipe 13D.
  • the auxiliary expansion valve 68, the electromagnetic valve 69, the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and the like also form a part of the refrigerant circuit R and, at the same time, a part of the device temperature adjusting device 61. It will be.
  • the solenoid valve 69 When the solenoid valve 69 is open, the refrigerant (a part or all of the refrigerant) discharged from the outdoor heat exchanger 7 flows into the branch pipe 67, the pressure is reduced by the auxiliary expansion valve 68, and then the refrigerant is passed through the solenoid valve 69. -The refrigerant flows into the refrigerant channel 64B of the heat medium heat exchanger 64 and evaporates there. The refrigerant absorbs heat from the heat medium flowing through the heat medium passage 64A in the process of flowing through the refrigerant passage 64B, and then is sucked into the compressor 2 through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12 through the refrigerant pipe 13K.
  • FIG. 2 shows a block diagram of the control device 11 of the vehicle air conditioner 1 of the embodiment.
  • the control device 11 includes an air conditioning controller 45 and a heat pump controller 32, each of which includes a microcomputer that is an example of a computer including a processor, and these include a CAN (Controller Area Network) and a LIN (Local Interconnect Network). Is connected to the vehicle communication bus 65 that constitutes the. Further, the compressor 2 and the auxiliary heater 23, the circulation pump 62 and the heat medium heating heater 63 are also connected to the vehicle communication bus 65, and the air conditioning controller 45, the heat pump controller 32, the compressor 2, the auxiliary heater 23, the circulation pump 62 and the heat generator. The medium heater 63 is configured to send and receive data via the vehicle communication bus 65.
  • the vehicle communication bus 65 includes a vehicle controller 72 (ECU) that controls the entire vehicle including traveling, a battery controller (BMS: Battery Management System) 73 that controls the charging and discharging of the battery 55, and a GPS navigation device 74.
  • the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 are also configured by a microcomputer that is an example of a computer including a processor.
  • the air conditioning controller 45 and the heat pump controller 32 that configure the control device 11 connect the vehicle communication bus 65 to each other. Information (data) is transmitted and received to and from the vehicle controller 72, the battery controller 73, and the GPS navigation device 74 via the above.
  • the air conditioning controller 45 is a higher-level controller that controls the vehicle interior air conditioning.
  • the inputs of the air conditioning controller 45 are an outside air temperature sensor 33 that detects the outside air temperature Tam of the vehicle and an outside air humidity that detects outside air humidity.
  • the sensor 34, the HVAC suction temperature sensor 36 that detects the temperature of the air that is sucked into the air flow passage 3 from the suction port 25 and flows into the heat absorber 9, and the inside air temperature sensor 37 that detects the air (inside air) temperature in the vehicle interior.
  • An inside air humidity sensor 38 for detecting the humidity of the air in the vehicle compartment
  • an indoor CO 2 concentration sensor 39 for detecting the carbon dioxide concentration in the vehicle compartment
  • an outlet temperature sensor 41 for detecting the temperature of the air blown into the vehicle compartment.
  • An air conditioning operation unit 53 for performing air conditioning setting operations in the vehicle interior such as mode switching and information display is connected.
  • Reference numeral 53A in the figure is a display provided as a notification device on the air conditioning operation unit 53.
  • the output of the air conditioning controller 45 is connected to the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, and the outlet switching damper 31, which are connected to the air conditioning controller 45. Controlled by.
  • the heat pump controller 32 is a controller that mainly controls the refrigerant circuit R, and the heat pump controller 32 has an input that releases heat to detect the refrigerant inlet temperature Tcxin of the radiator 4 (which is also the refrigerant temperature discharged from the compressor 2 ).
  • Radiator pressure sensor 47 for detecting the refrigerant pressure (pressure of radiator 4; radiator pressure Pci), and temperature of heat absorber 9 (temperature of heat absorber 9 itself, or air immediately after being cooled by heat absorber 9) Temperature of (cooling target): Heat absorber temperature sensor 48 for detecting heat absorber temperature Te, and refrigerant temperature at the outlet of the outdoor heat exchanger 7 (refrigerant evaporation temperature of the outdoor heat exchanger 7: outdoor heat exchanger temperature) Outputs of the outdoor heat exchanger temperature sensor 49 for detecting TXO) and the auxiliary heater temperature sensors 50A (driver side) and 50B (passenger side) for detecting the temperature of the auxiliary heater 23 are connected.
  • the output of the heat pump controller 32 includes the outdoor expansion valve 6, the solenoid valve 22 (for dehumidification), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), the solenoid valve 20 (for bypass), and the solenoid valve 35.
  • the electromagnetic valves (for the cabin) and the electromagnetic valve 69 (for the chiller) are connected, and they are controlled by the heat pump controller 32.
  • the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63 each have a built-in controller, and in the embodiment, the controller of the compressor 2, the auxiliary heater 23, the circulation pump 62, and the heat medium heating heater 63. Transmits and receives data to and from the heat pump controller 32 via the vehicle communication bus 65, and is controlled by the heat pump controller 32.
  • the circulation pump 62 and the heat medium heater 63 that constitute the device temperature adjusting device 61 may be controlled by the battery controller 73. Further, in the battery controller 73, the temperature of the heat medium on the outlet side of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 of the device temperature adjusting device 61 (heat medium temperature Tw: heat exchanger for temperature controlled).
  • the temperature of the heat medium temperature sensor 76 that detects the temperature of the object to be cooled by the battery is connected to the output of the battery temperature sensor 77 that detects the temperature of the battery 55 to be temperature-controlled (the temperature of the battery 55 itself: the battery temperature Tcell). Has been done.
  • the remaining amount of the battery 55 (the amount of stored electricity), the information regarding the charging of the battery 55 (the information that the battery is being charged, the charging completion time, the remaining charging time, etc.), the heat medium temperature Tw, and the battery temperature Tcell are It is transmitted from the battery controller 73 to the air conditioning controller 45 and the vehicle controller 72 via the vehicle communication bus 65.
  • the information about the charging completion time and the remaining charging time when the battery 55 is charged is information supplied from an external charger such as a quick charger.
  • Information about the volume AUD (audio level) of the audio device provided in the vehicle is transmitted from the vehicle controller 72 to the air conditioning controller 45.
  • the heat pump controller 32 and the air conditioning controller 45 send and receive data to and from each other via the vehicle communication bus 65, and control each device based on the output of each sensor and the setting input by the air conditioning operation unit 53.
  • the voltage (BLV) of 27, the information from the battery controller 73 described above, the information from the GPS navigation device 74, the volume AUD (audio level) information of the audio equipment provided in the vehicle, and the output of the air conditioning operation unit 53 are the air conditioning controller. It is configured to be transmitted from 45 to the heat pump controller 32 via the vehicle communication bus 65 and used for control by the heat pump controller 32.
  • the heat pump controller 32 also transmits data (information) regarding the control of the refrigerant circuit R to the air conditioning controller 45 via the vehicle communication bus 65.
  • the control device 11 controls the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the air conditioning operation of the air conditioning (priority)+battery cooling mode and the battery cooling.
  • air conditioning controller 45 heat pump controller 32
  • the air conditioning operation of the air conditioning (priority)+battery cooling mode and the battery cooling are switched and executed.
  • the battery 55 is not charged in the embodiment, and the ignition of the vehicle is performed. This is executed when (IGN) is turned on and the air conditioning switch of the air conditioning operation unit 53 is turned on. However, it is executed even when the ignition is OFF during remote operation (pre-air conditioning, etc.). Even when the battery 55 is being charged, there is no battery cooling request, and the process is executed when the air conditioning switch is ON.
  • each battery cooling operation in the battery cooling (priority)+air conditioning mode and the battery cooling (single) mode is executed, for example, when the plug of the quick charger (external power source) is connected and the battery 55 is being charged. It is something.
  • the battery cooling (single) mode is executed when the air conditioning switch is OFF and there is a battery cooling request (during traveling at a high outside air temperature, etc.) other than during charging of the battery 55.
  • the heat pump controller 32 operates the circulation pump 62 of the device temperature adjusting device 61 when the ignition is turned on, or when the battery 55 is being charged even when the ignition is turned off. It is assumed that the heat medium is circulated in the heat medium pipe 66 as indicated by broken lines in FIGS. Further, although not shown in FIG. 3, the heat pump controller 32 of the embodiment also executes a battery heating mode for heating the battery 55 by causing the heat medium heating heater 63 of the device temperature adjusting device 61 to generate heat.
  • FIG. 4 shows how the refrigerant flows in the refrigerant circuit R in the heating mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 21 and the solenoid valve 17 , The solenoid valve 20, the solenoid valve 22, the solenoid valve 35, and the solenoid valve 69 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
  • the liquefied refrigerant in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump.
  • the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D, the solenoid valve 21, and further enters the accumulator 12 via this refrigerant pipe 13C, where it is gas-liquid separated.
  • the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated.
  • the air heated by the radiator 4 is blown out from the air outlet 29, so that the interior of the vehicle is heated.
  • the heat pump controller 32 calculates a target heater temperature TCO (of the radiator 4) calculated from a target outlet temperature TAO, which will be described later, which is a target temperature of the air blown into the vehicle interior (a target value of the temperature of the air blown into the vehicle interior).
  • the target radiator pressure PCO is calculated from the target temperature), and the rotational speed of the compressor 2 is based on the target radiator pressure PCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the heat pump controller 32 supplements this shortage with the heat generated by the auxiliary heater 23. As a result, the vehicle interior is heated without any trouble even when the outside temperature is low.
  • FIG. 5 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and heating mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35, and closes the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air and condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4, a part of it enters the refrigerant pipe 13J through the refrigerant pipe 13E and reaches the outdoor expansion valve 6.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and pumps up heat from the outside air ventilated by traveling or by the outdoor blower 15 (heat absorption).
  • the low-temperature refrigerant leaving the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipes 13A and 13D and the solenoid valve 21, enters the accumulator 12 via the refrigerant pipe 13C, and is separated into gas and liquid there. After that, the circulation in which the gas refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K is repeated.
  • the rest of the condensed refrigerant flowing through the radiator pipe 13E via the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F via the solenoid valve 22 and reaches the refrigerant pipe 13B.
  • the refrigerant reaches the indoor expansion valve 8, is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 via the electromagnetic valve 35, and is evaporated.
  • the water in the air blown out from the indoor blower 27 is condensed and adheres to the heat absorber 9 due to the heat absorbing action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 flows out into the refrigerant pipe 13C, joins the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 from the refrigerant pipe 13K via the accumulator 12. Repeat the cycle.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated), so that dehumidification and heating of the vehicle interior is performed.
  • the heat pump controller 32 rotates the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. Or the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is its target value. ..
  • the heat pump controller 32 controls the compressor 2 by selecting whichever of the radiator target pressure Pci and the heat absorber temperature Te, whichever is lower than the target compressor speed obtained from the calculation. Further, the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te.
  • the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. .. As a result, the vehicle interior is dehumidified and heated even when the outside temperature is low.
  • FIG. 6 shows how the refrigerant flows in the refrigerant circuit R in the dehumidifying and cooling mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17 and the solenoid valve 35, and closes the solenoid valve 20, the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by exchanging heat with the high temperature refrigerant in the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
  • the refrigerant exiting the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipes 13E and 13J, and then passes through the outdoor expansion valve 6 controlled to open more (a region of a larger valve opening) than the heating mode or the dehumidifying and heating mode. It flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 is condensed by being cooled there by traveling or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18.
  • the refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, moisture in the air blown out from the indoor blower 27 is condensed and attached to the heat absorber 9, and the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 from the refrigerant pipe 13K via the refrigerant pipe 13K.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (has a lower heating capacity than that during dehumidification heating) in the process of passing through the radiator 4 and the auxiliary heater 23 (when heat is generated). As a result, dehumidification and cooling of the vehicle interior are performed.
  • the heat pump controller 32 absorbs heat based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target temperature of the heat absorber 9 (target value of the heat absorber temperature Te).
  • the rotation speed of the compressor 2 is controlled so that the device temperature Te becomes the target heat absorber temperature TEO, and the radiator pressure Pci (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator pressure PCO.
  • the valve opening of the outdoor expansion valve 6 is controlled so that the radiator pressure Pci becomes the target radiator pressure PCO. Amount).
  • the heat pump controller 32 supplements the shortage with the heat generated by the auxiliary heater 23. To do. As a result, dehumidifying and cooling are performed without excessively reducing the temperature inside the vehicle compartment.
  • FIG. 7 shows how the refrigerant flows in the refrigerant circuit R in the cooling mode (solid arrow).
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 35, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 69.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the auxiliary heater 23 is not energized.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (because of only reheating (reheating) during cooling), it almost passes through the radiator 4,
  • the discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E.
  • the electromagnetic valve 20 since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled there by traveling or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
  • the refrigerant discharged from the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16, and reaches the indoor expansion valve 8 via the check valve 18.
  • the refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 through the electromagnetic valve 35, and evaporates. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and then is sucked into the compressor 2 via the refrigerant pipe 13K.
  • the air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
  • the heat pump controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • Air conditioning (priority) + battery cooling mode cooperative mode, air conditioning (priority) + temperature controlled cooling mode
  • the air conditioning (priority)+battery cooling mode will be described with reference to FIG. FIG. 8 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the air conditioning (priority)+battery cooling mode.
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, the solenoid valve 35, and the solenoid valve 69, and closes the solenoid valves 21 and 22.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the auxiliary heater 23 is not energized.
  • the heat medium heater 63 is not energized.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is ventilated through the radiator 4, since the proportion thereof is small (because of only reheating (reheating) during cooling), it almost passes through the radiator 4,
  • the discharged refrigerant reaches the refrigerant pipe 13J via the refrigerant pipe 13E.
  • the electromagnetic valve 20 since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, and is cooled there by traveling or by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied. To do.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16.
  • the refrigerant flowing into the refrigerant pipe 13B is branched after passing through the check valve 18, and one of the refrigerant flows through the refrigerant pipe 13B as it is to reach the indoor expansion valve 8.
  • the refrigerant flowing into the indoor expansion valve 8 is decompressed there, then flows into the heat absorber 9 through the electromagnetic valve 35, and is evaporated. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 and exchanging heat with the heat absorber 9 is cooled.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C, and then is sucked into the compressor 2 via the refrigerant pipe 13K.
  • the air cooled by the heat absorber 9 is blown into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
  • the rest of the refrigerant that has passed through the check valve 18 is split, flows into the branch pipe 67, and reaches the auxiliary expansion valve 68.
  • the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant passage 64B repeats the circulation in which the refrigerant is sucked into the compressor 2 from the refrigerant pipe 13K through the refrigerant pipe 71, the refrigerant pipe 13C and the accumulator 12 in sequence (shown by a solid arrow in FIG. 8).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage there.
  • the heat medium is cooled by exchanging heat with the refrigerant that evaporates in 64B and absorbing heat.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63.
  • the heat medium heating heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 8 ).
  • the heat pump controller 32 maintains the electromagnetic valve 35 in the open state, and will be described later based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the rotation speed of the compressor 2 is controlled as shown in FIG.
  • the solenoid valve 69 is controlled to open and close as follows based on the temperature of the heat medium detected by the heat medium temperature sensor 76 (heat medium temperature Tw: transmitted from the battery controller 73).
  • the heat absorber temperature Te is the temperature of the heat absorber 9 in the embodiment or the temperature of the object (air) cooled by it.
  • the heat medium temperature Tw is adopted as the temperature of the object (heat medium) cooled by the refrigerant-heat medium heat exchanger 64 (heat exchanger for temperature adjustment) in the embodiment, but the temperature adjustment is performed. It is also an index showing the temperature of the target battery 55 (hereinafter the same).
  • FIG. 13 shows a block diagram of opening/closing control of the solenoid valve 69 in this air conditioning (priority)+battery cooling mode.
  • the heat medium temperature Tw detected by the heat medium temperature sensor 76 and a predetermined target heat medium temperature TWO as a target value of the heat medium temperature Tw are input to the temperature controlled target electromagnetic valve control unit 90 of the heat pump controller 32. It Then, the temperature controlled target electromagnetic valve control unit 90 sets the upper limit value TwUL and the lower limit value TwLL with a predetermined temperature difference above and below the target heat medium temperature TWO, and from the state where the electromagnetic valve 69 is closed.
  • the solenoid valve 69 is opened (instruction to open the solenoid valve 69).
  • the refrigerant flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64, evaporates, and cools the heat medium flowing through the heat medium channel 64A. Therefore, the battery 55 is cooled by the cooled heat medium. To be done.
  • the solenoid valve 69 is closed (instruction to close the solenoid valve 69). After that, the solenoid valve 69 is repeatedly opened and closed as described above to control the heat medium temperature Tw to the target heat medium temperature TWO while giving priority to the cooling in the vehicle compartment, to cool the battery 55.
  • the heat pump controller 32 calculates the above-mentioned target outlet temperature TAO from the following formula (I).
  • the target outlet temperature TAO is a target value of the temperature of the air blown into the vehicle compartment from the outlet 29.
  • TAO (Tset-Tin) ⁇ K+Tbal(f(Tset, SUN, Tam)) ..(I)
  • Tset is the set temperature of the vehicle interior set by the air conditioning operation unit 53
  • Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the solar radiation sensor 51 detects the temperature. It is a balance value calculated from the amount of solar radiation SUN and the outside air temperature Tam detected by the outside air temperature sensor 33.
  • the target outlet temperature TAO is higher as the outside air temperature Tam is lower, and is decreased as the outside air temperature Tam is increased.
  • the heat pump controller 32 selects any one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of startup. Further, after the start-up, each of the air conditioning operations is selected and switched according to changes in operating conditions such as the outside air temperature Tam, the target outlet temperature TAO, and the heat medium temperature Tw, environmental conditions, and setting conditions. For example, the transition from the cooling mode to the air conditioning (priority)+battery cooling mode is executed based on the input of the battery cooling request from the battery controller 73. In this case, the battery controller 73 outputs a battery cooling request and transmits it to the heat pump controller 32 and the air conditioning controller 45, for example, when the heat medium temperature Tw or the battery temperature Tcell rises above a predetermined value.
  • Battery cooling (priority) + air conditioning mode (cooperative mode, temperature controlled cooling (priority) + air conditioning mode)
  • the operation during charging of the battery 55 will be described.
  • the plug for charging a quick charger (external power source) is connected and the battery 55 is being charged (these information is transmitted from the battery controller 73)
  • the ignition (IGN) of the vehicle is turned on/off.
  • the heat pump controller 32 executes battery cooling (priority)+air conditioning mode.
  • the way the refrigerant flows in the refrigerant circuit R in the battery cooling (priority)+air conditioning mode is the same as in the air conditioning (priority)+battery cooling mode shown in FIG.
  • the heat pump controller 32 maintains the electromagnetic valve 69 in an open state, and the heat detected by the heat medium temperature sensor 76 (transmitted from the battery controller 73) is detected. Based on the medium temperature Tw, the rotation speed of the compressor 2 is controlled as shown in FIG. 14 described later.
  • the solenoid valve 35 is controlled to open and close as follows based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • FIG. 15 shows a block diagram of opening/closing control of the solenoid valve 35 in this battery cooling (priority)+air conditioning mode.
  • the heat absorber electromagnetic valve control unit 95 of the heat pump controller 32 receives the heat absorber temperature Te detected by the heat absorber temperature sensor 48 and a predetermined target heat absorber temperature TEO as a target value of the heat absorber temperature Te. Then, the heat absorber electromagnetic valve control unit 95 sets the upper limit value TeUL and the lower limit value TeLL with a predetermined temperature difference above and below the target heat absorber temperature TEO, and changes the heat absorber temperature from the state in which the solenoid valve 35 is closed.
  • the solenoid valve 35 is closed (instruction to close the solenoid valve 35). Thereafter, such opening/closing of the solenoid valve 35 is repeated to control the heat absorber temperature Te to the target heat absorber temperature TEO while prioritizing the cooling of the battery 55 to cool the vehicle interior.
  • Battery cooling (independent) mode (independent mode, temperature controlled cooling (independent) mode)
  • the heat pump controller 32 executes the battery cooling (single) mode. However, it is executed when the air conditioning switch is OFF and there is a battery cooling request (during traveling at a high outside air temperature) other than during charging of the battery 55.
  • FIG. 9 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in the battery cooling (single) mode.
  • the heat pump controller 32 opens the solenoid valve 17, the solenoid valve 20, and the solenoid valve 69, and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 35.
  • the compressor 2 and the outdoor blower 15 are operated.
  • the indoor blower 27 is not operated and the auxiliary heater 23 is not energized. Further, the heat medium heater 63 is not energized in this operation mode.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, it passes only here, and the refrigerant exiting the radiator 4 reaches the refrigerant pipe 13J via the refrigerant pipe 13E. At this time, since the electromagnetic valve 20 is open, the refrigerant passes through the electromagnetic valve 20 and flows into the outdoor heat exchanger 7 as it is, where it is air-cooled by the outside air ventilated by the outdoor blower 15 to be condensed and liquefied.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A, the solenoid valve 17, the receiver dryer unit 14, and the supercooling unit 16. After passing through the check valve 18, all of the refrigerant flowing into the refrigerant pipe 13B flows into the branch pipe 67 and reaches the auxiliary expansion valve 68. Here, the refrigerant is decompressed, then flows into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 via the electromagnetic valve 69, and evaporates there. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeatedly passes through the refrigerant pipe 71, the refrigerant pipe 13C, and the accumulator 12 and is repeatedly sucked into the compressor 2 from the refrigerant pipe 13K (represented by a solid arrow in FIG. 9).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 66, and the refrigerant flow passage there.
  • the heat medium is cooled by being absorbed by the refrigerant evaporated in 64B.
  • the heat medium exiting the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 reaches the heat medium heater 63.
  • the heat medium heater 63 does not generate heat in this operation mode, the heat medium passes through as it is to the battery 55 and exchanges heat with the battery 55. As a result, the battery 55 is cooled, and the heat medium after cooling the battery 55 is repeatedly sucked into the circulation pump 62 and repeatedly circulated (indicated by a dashed arrow in FIG. 9 ).
  • the heat pump controller 32 controls the number of revolutions of the compressor 2 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76 as shown in FIG. To cool.
  • the battery 55 can be strongly cooled when it is not necessary to air-condition the vehicle interior.
  • FIG. 10 shows how the refrigerant flows in the refrigerant circuit R in the defrosting mode (solid arrow).
  • the refrigerant evaporates in the outdoor heat exchanger 7 and absorbs heat from the outside air to reach a low temperature, so that the moisture in the outside air adheres to the outdoor heat exchanger 7 as frost.
  • the defrosting mode of the outdoor heat exchanger 7 is executed as follows.
  • the heat pump controller 32 sets the refrigerant circuit R to the heating mode described above, and then fully opens the valve opening degree of the outdoor expansion valve 6. Then, the compressor 2 is operated, the high-temperature refrigerant discharged from the compressor 2 is caused to flow into the outdoor heat exchanger 7 through the radiator 4 and the outdoor expansion valve 6, and the frost formation on the outdoor heat exchanger 7 is prevented. Thaw ( Figure 10). Then, the heat pump controller 32 defrosts the outdoor heat exchanger 7 when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 49 becomes higher than a predetermined defrosting end temperature (for example, +3° C.). Is completed and the defrosting mode is terminated.
  • a predetermined defrosting end temperature for example, +3° C.
  • the heat pump controller 32 executes the battery heating mode when the air conditioning operation is executed or when the battery 55 is charged. In this battery heating mode, the heat pump controller 32 operates the circulation pump 62 to energize the heat medium heating heater 63. The solenoid valve 69 is closed.
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow passage 64A of the refrigerant-heat medium heat exchanger 64 through the heat medium pipe 66, and passes therethrough to reach the heat medium heater 63.
  • the heat medium heating heater 63 is generating heat, the heat medium is heated by the heat medium heating heater 63 to increase its temperature, and then reaches the battery 55 to exchange heat with the battery 55.
  • the battery 55 is heated, and the heat medium after heating the battery 55 is repeatedly circulated by being sucked into the circulation pump 62.
  • the heat pump controller 32 controls the energization of the heat medium heating heater 63 based on the heat medium temperature Tw detected by the heat medium temperature sensor 76 to set the heat medium temperature Tw to the predetermined target heat medium temperature. Adjust to TWO and heat battery 55.
  • TGNCh is calculated, and in the dehumidifying cooling mode, the cooling mode, and the air conditioning (priority)+battery cooling mode, based on the heat absorber temperature Te, the target rotation speed of the compressor 2 (compressor target rotation speed) according to the control block diagram of FIG. Calculate TGNCc.
  • the dehumidifying and heating mode the lower direction of the compressor target rotation speed TGNCh and the compressor target rotation speed TGNc is selected.
  • the target rotation speed of the compressor 2 (compressor target rotation speed) TGNCw is calculated based on the heat medium temperature Tw by the control block diagram of FIG. To do.
  • FIG. 11 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCh of the compressor 2 based on the radiator pressure Pci.
  • the F/F manipulated variable TGNChff of the compressor target rotation speed is calculated.
  • the heater temperature Thp is an air temperature (estimated value) on the leeward side of the radiator 4, and the radiator pressure Pci detected by the radiator pressure sensor 47 and the refrigerant outlet of the radiator 4 detected by the radiator outlet temperature sensor 44. It is calculated (estimated) from the temperature Tci.
  • the degree of supercooling SC is calculated from the refrigerant inlet temperature Tcxin and the refrigerant outlet temperature Tci of the radiator 4 detected by the radiator inlet temperature sensor 43 and the radiator outlet temperature sensor 44.
  • the target radiator pressure PCO is calculated by the target value calculator 79 based on the target supercooling degree TGSC and the target heater temperature TCO. Further, the F/B (feedback) manipulated variable calculation unit 81 calculates the F/B manipulated variable TGNChfb of the compressor target rotational speed by PID calculation or PI calculation based on the target radiator pressure PCO and the radiator pressure Pci. Then, the F/F operation amount TGNChff calculated by the F/F operation amount calculation unit 78 and the F/B operation amount TGNChfb calculated by the F/B operation amount calculation unit 81 are added by the adder 82 to obtain a limit setting unit as TGNCh00. It is input to 83.
  • the lower limit rotational speed ECNpdLimLo and the upper limit rotational speed ECNpdLimHi in control are set to TGNCh0, and then the compressor OFF control unit 84 is used to determine the target compressor rotational speed TGNCh. That is, the rotation speed of the compressor 2 is limited to the upper limit rotation speed ECNpdLimHi or less.
  • the heat pump controller 32 controls the operation of the compressor 2 so that the radiator pressure Pci becomes the target radiator pressure PCO by the compressor target rotation speed TGNCh calculated based on the radiator pressure Pci.
  • the compressor OFF control unit 84 sets the compressor target rotation speed TGNCh to the above-described lower limit rotation speed ECNpdLimLo, and the radiator pressure Pci is a predetermined upper limit value PUL and lower limit value PLL set above and below the target radiator pressure PCO. If the state of rising to the upper limit value PUL of the above continues for the predetermined time th1, the compressor 2 is stopped and the ON-OFF mode for ON-OFF controlling the compressor 2 is entered.
  • the compressor 2 In the ON-OFF mode of the compressor 2, when the radiator pressure Pci decreases to the lower limit value PLL, the compressor 2 is started to operate the compressor target rotation speed TGNCh as the lower limit rotation speed ECNpdLimLo, and heat is released in that state.
  • the container pressure Pci rises to the upper limit value PUL, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed ECNpdLimLo are repeated.
  • the radiator pressure Pci decreases to the lower limit value PUL and the compressor 2 is started, and the radiator pressure Pci does not become higher than the lower limit value PUL for a predetermined time th2, the compressor 2 is turned on and off. Is completed and the normal mode is restored.
  • FIG. 12 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCc of the compressor 2 based on the heat absorber temperature Te.
  • the F/F operation amount calculation unit 86 of the heat pump controller 32 has an outside air temperature Tam, an air volume Ga of air flowing through the air flow passage 3 (may be the blower voltage BLV of the indoor blower 27), a target radiator pressure PCO, The F/F manipulated variable TGNCcff of the compressor target rotation speed is calculated based on the target heat absorber temperature TEO which is the target value of the heat absorber temperature Te.
  • the F/B manipulated variable calculation unit 87 also calculates the F/B manipulated variable TGNCcfb of the compressor target rotation speed by PID calculation or PI calculation based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F/F operation amount TGNCcff calculated by the F/F operation amount calculation unit 86 and the F/B operation amount TGNCcfb calculated by the F/B operation amount calculation unit 87 are added by the adder 88 to obtain a limit setting unit as TGNCc00. It is input to 89.
  • the lower limit rotational speed TGNCcLimLo and the upper limit rotational speed TGNCcLimHi in control are set to TGNCc0, and then the compressor OFF control unit 91 is used to determine the target compressor rotational speed TGNCc. Therefore, the rotation speed of the compressor 2 is limited to the upper limit rotation speed TGNCcLimHi or less. However, the upper limit rotation speed TGNCcLimHi is changed by the heat pump controller 32 as described later.
  • this value TGNCc00 is the target compressor rotation speed TGNCc (compressor 2 Will be the number of rotations).
  • the heat pump controller 32 controls the operation of the compressor 2 so that the heat absorber temperature Te becomes the target heat absorber temperature TEO by the compressor target rotation speed TGNCc calculated based on the heat absorber temperature Te.
  • the compressor OFF control unit 91 determines that the compressor target rotation speed TGNCc becomes the above-described lower limit rotation speed TGNCcLimLo, and the heat absorber temperature Te is set between the upper limit value TeUL and the lower limit value TeLL set above and below the target heat absorber temperature TEO.
  • the compressor 2 is stopped and the ON-OFF mode in which the compressor 2 is ON-OFF controlled is entered.
  • FIG. 14 is a control block diagram of the heat pump controller 32 that calculates the target rotation speed (compressor target rotation speed) TGNCw of the compressor 2 based on the heat medium temperature Tw.
  • the F/F operation amount calculation unit 92 of the heat pump controller 32 uses the outside air temperature Tam, the flow rate Gw of the heat medium in the device temperature adjustment device 61 (calculated from the output of the circulation pump 62), and the heat generation amount of the battery 55 (battery).
  • the F/B operation amount calculation unit 93 performs the PID calculation or the PI calculation based on the target heat medium temperature TWO and the heat medium temperature Tw (transmitted from the battery controller 73) to perform the F/B operation amount TGNCwfb of the compressor target rotation speed. To calculate. Then, the F/F operation amount TGNCwff calculated by the F/F operation amount calculation unit 92 and the F/B operation amount TGNCwfb calculated by the F/B operation amount calculation unit 93 are added by the adder 94 to obtain a limit setting unit as TGNCw00. 96 is input.
  • the lower limit speed TGNCwLimLo for control and the upper limit speed TGNCwLimHi are set to TGNCw0, and then the compressor OFF control unit 97 is used to determine the target compressor speed TGNCw. Therefore, the rotation speed of the compressor 2 is limited to the upper limit rotation speed TGNCwLimHi or less. However, the upper limit rotation speed TGNCwLimHi is changed by the heat pump controller 32 as described later.
  • the value TGNCw00 added by the adder 94 is within the upper limit rotation speed TGNCwLimHi and the lower limit rotation speed TGNCwLimLo, and if the ON-OFF mode described later does not occur, this value TGNCw00 is the target compressor rotation speed TGNCw (compressor 2 Will be the number of rotations).
  • the heat pump controller 32 controls the operation of the compressor 2 so that the heat medium temperature Tw becomes the target heat medium temperature TWO by the compressor target rotation speed TGNCw calculated based on the heat medium temperature Tw.
  • the compressor OFF control unit 97 determines that the compressor target rotation speed TGNCw becomes the above-described lower limit rotation speed TGNCwLimLo, and the heat medium temperature Tw is the upper limit value TwUL and the lower limit value TwLL set above and below the target heat medium temperature TWO.
  • the compressor 2 is stopped and the ON-OFF mode for ON-OFF control of the compressor 2 is entered.
  • the compressor 2 In the ON-OFF mode of the compressor 2 in this case, when the heat medium temperature Tw rises to the upper limit value TwUL, the compressor 2 is started and the compressor target rotation speed TGNCw is operated as the lower limit rotation speed TGNCwLimLo, and the state is maintained. If the heat medium temperature Tw has dropped to the lower limit value TwLL, the compressor 2 is stopped again. That is, the operation (ON) and the stop (OFF) of the compressor 2 at the lower limit rotation speed TGNCwLimLo are repeated.
  • Factors other than the driving sound of the compressor 2 factors such as the air volume of the indoor blower 27, the blowing mode from each of the above-described outlets, and the air to the air flow passage 3 are factors that affect the sound level in the vehicle interior.
  • the introduction mode, the volume AUD (audio level) of the audio equipment provided in the vehicle, the vehicle speed VSP, and the outside air temperature Tam are adopted.
  • the heat pump controller 32 in the embodiment uses the formulas (II) and (III) to describe the compressor target rotation used in the cooling mode, the air conditioning (priority)+battery cooling mode and the like described above.
  • the upper limit rotation speed TGNCcLimHi of the number TGNCc and the upper limit rotation speed TGNCwLimHi of the compressor target rotation speed TGNCw used in the battery cooling (single) mode and the battery cooling (priority)+air conditioning mode are changed.
  • TGNCcLimHi MAX(TGNCcLimBLV, TGNCcLimMOD, TGNCcLimREC, TGNCcLimAUD, TGNCcLimVSP, TGNCcLimTam).
  • TGNCwLimHi MAX(TGNCwLimBLV, TGNCwLimMOD, TGNCwLimREC, TGNCwLimAUD, TGNCwLimVSP, TGNCwLimTam).
  • the above-mentioned TGNCcLimBLV and TGNCwLimBLV are upper limit rotation speed change values based on the air volume of the indoor blower 27, and TGNCcLimMOD and TGNCwLimMOD are upper limit rotation speeds based on the blowout mode from the blowout port 29 such as the FOOT blowout port and the VENT blowout port.
  • TGNCcLimREC and TGNCwLimREC are upper limit rotational speed change values based on the air introduction mode (internal air circulation mode, external air introduction mode) to the air flow passage 3 described above, and TGNCcLimAUD and TGNCwLimAUD are volume levels of the acoustic device described above. It is the upper limit rotation speed change value based on. Further, TGNCcLimVSP and TGNCwLimVSP are upper limit rotation speed change values based on the vehicle speed, and TGNCcLimTam and TGNCwLimTam are upper limit rotation speed change values based on the outside air temperature Tam.
  • the heat pump controller 32 of the embodiment includes the upper limit rotation speed change values TGNCcLimBLV and TGNCwLimBLV based on the air volume of the indoor blower 27, the upper limit rotation speed change values TGNCcLimMOD and TGNCwLimMOD based on the blowing mode, and the upper limit rotation speed change value TGNCcLimREC based on the introduction mode.
  • TGNCwLimREC the upper limit rotation speed change values TGNCcLimAUD and TGNCwLimAUD based on the volume of the audio device
  • the upper limit rotation speed change values TGNCcLimVSP and TGNCwLimVSP based on the vehicle speed
  • the upper limit rotation speed change values TGNmTmTmTmTmTmTmTmCmTmTm, which are the highest outside temperature Tam, and MAX) values are determined as the upper limit engine speed TGNCcLimHi (FIG. 12) and the upper limit engine speed TGNCwLimHi (FIG. 14), respectively.
  • the upper limit rotation speed of the compressor 2 is preferably high. This is because it is possible to reduce adverse effects on the air conditioning performance and the cooling performance of the battery 55.
  • the heat pump controller 32 uses the blower voltage BLV of the indoor blower 27 as an index indicating the air volume of the indoor blower 27, and calculates the upper limit rotation speed change values TGNCcLimBLV, TGNCwLimBLV according to the blower voltage BLV.
  • the heat pump controller 32 changes the upper limit rotation speed change values TGNCcLimBLV and TGNCwLimBLV in a decreasing direction as the blower voltage BLV becomes lower, that is, as the air volume of the indoor blower 27 becomes lower.
  • the graph on the upper side of FIG. 16 shows the case of the single mode (cooling mode and battery cooling (single) mode) in the present invention.
  • the horizontal axis is the blower voltage BLV, and the predetermined values BLV1 to BLV4 have a relationship of BLV4 ⁇ BLV3 ⁇ BLV2 ⁇ BLV1. Use the calculated value.
  • the vertical axis represents the upper limit rotation speed change values TGNCcLimBLV and TGNCwLimBLV, and the maximum value NC1 and the minimum value NC2 have a relationship of NC2 ⁇ NC1.
  • This maximum value NC1 is the maximum number of revolutions allowed when operating the compressor 2 in the embodiment.
  • the upper limit rotation speed change value TGNCcLimBLV for the upper limit rotation speed TGNCcLimHi (FIG. 12) and the upper limit rotation speed change value TGNCwLimBLV for the upper limit rotation speed TGNCwLimHi (FIG. 14) are set to the blower voltage BLV of the predetermined value BLV1.
  • the blower voltage BLV is decreased (the air volume of the indoor blower 27 is decreased) and is maintained until it becomes BLV2, and when it is lower than BLV2, TGNCcLimBLV and TGNCwLimBLV are started to be decreased, and BLV4 becomes NC2 at a constant rate.
  • TGNCcLimBLV and TGNCwLimBLV are lowered.
  • the lower graph of FIG. 16 shows the case of the cooperative mode (air conditioning (priority)+battery cooling mode and battery cooling (priority)+air conditioning mode) in the present invention.
  • the maximum value NC1 and the minimum value NC3 on the vertical axis have a relationship of NC3 ⁇ NC1, and further NC2 ⁇ NC3.
  • the heat pump controller 32 increases the minimum value NC3 of the upper limit rotation speed change values TGNCcLimBLV and TGNCwLimBLV of the compressor 2 in the coordinated mode from the minimum value NC2 of the upper limit rotation speed change values TGNCcLimBLV and TGNCwLimBLV in the single mode. Will be changed in.
  • the upper limit rotation speed change value TGNCcLimBLV for the upper limit rotation speed TGNCcLimHi (FIG. 12) and the upper limit rotation speed change value TGNCwLimBLV for the upper limit rotation speed TGNCwLimHi (FIG. 14) are set to the blower voltage BLV of the predetermined value BLV1. When it is NC1. Then, the blower voltage BLV is decreased (the air volume of the indoor blower 27 is decreased) and maintained at BLV2. When it becomes lower than BLV2, TGNCcLimBLV and TGNCwLimBLV are started to be decreased, and BLV4 becomes NC3 at a constant rate. TGNCcLimBLV and TGNCwLimBLV are lowered.
  • the upper limit rotation speed change values TGNCcLimBLV and TGNCwLimBLV are the highest in the formulas (II) and (III) (MAX)
  • the upper limit rotation speed change values TGNCcLimBLV, TGNCwLimBLV are the upper limit rotation speeds TGNCcLimHi (FIG. 12), the upper limit rotation speeds. Determined as the number TGNCwLimHi (FIG. 14), the rotational speed NC of the compressor 2 is no longer controlled.
  • the heat pump controller 32 controls the compressor upper limit rotation speeds TGNCcLimHi (FIG. 12) and TGNCwLimHi (FIG. 14) in the cooperative mode (air conditioning (priority)+battery cooling mode and battery cooling (priority)+air conditioning mode). Is changed so as to be higher than the single mode (cooling mode and battery cooling (single) mode). Therefore, in the cooperative mode in which the refrigerant absorbs heat in the heat absorber 9 and the refrigerant-heat medium heat exchanger 64, the compressor is It is possible to avoid the disadvantage that the capacity of the compressor 2 becomes insufficient by increasing the upper limit rotational speed TGNCcLimHi (FIG. 12) and TGNCwLimHi (FIG. 14) in the control of No. 2 described above. As a result, appropriate cooling of the battery 55 and comfortable air-conditioning operation can be realized, and the product characteristics can be improved.
  • the heat pump controller 32 sets the minimum value NC3 of the upper limit rotation speeds TGNCcLimHi (FIG. 12) and TGNCwLimHi (FIG. 14) in the control of the compressor 2 in the cooperative mode to the minimum value NC2 in the single mode. Since the value is also changed in the direction of raising the maximum value, it is possible to avoid the disadvantage that the maximum value NC1 of the upper limit rotational speed rises and to improve the reliability.
  • the heat pump controller 32 sets the blowout mode flag fMOD (“1”) when the blowout mode of the air from the blowout port 29 is the FOOT mode in which it blows out from the FOOT blowout port, and blows out when it is the VENT mode that blows out from the VENT blowout port.
  • the mode flag fMOD is reset (“0”).
  • the heat pump controller 32 sets the upper limit rotation speeds TGNccLimHi (FIG. 12) and the upper limit rotation speeds for TGNCwLimHi (FIG. 14).
  • the number change values TGNCcLIMMOD and TGNCwLIMMOD are set to the minimum value NC2, and when reset, the maximum value NC1 is set.
  • the blowout mode flag fMOD is set, in the cooperative mode (air conditioning (priority)+battery cooling mode and battery cooling (priority)+air conditioning mode)
  • the upper limit rotation speeds TGNCcLimHi (FIG. 12) and TGNCwLimHi (FIG. 14).
  • the upper limit rotation speed change values TGNCcLimMOD and TGNCwLimMOD are set to the minimum value NC3, and when reset, the maximum value NC1 is set.
  • NC1 to NC3 The relationship between NC1 to NC3 is the same as that in the case of FIG. 16 described above, that is, the heat pump controller 32 compares the blowout mode with the FOOT mode (fMOD is set) with the VENT mode (fMOD reset).
  • the upper limit rotation speed change values TGNCcLimMOD and TGNCwLimMOD are changed in the direction of lowering.
  • these upper limit rotation speed change values TGNCcLimMOD and TGNCwLimMOD are upper limit rotation speeds TGNCcLimHi (FIG. 12) and upper limit rotations. Determined as the number TGNCwLimHi (FIG. 14), the rotational speed NC of the compressor 2 is no longer controlled.
  • the sound level in the passenger compartment reaching the ears of the passenger is lower than in the VENT mode in which air is blown out from the VENT air outlet, and compression is performed.
  • the driving sound of the aircraft 2 also becomes noticeable, which is annoying to passengers. Therefore, when the heat pump controller 32 is in the FOOT mode, the upper limit rotational speeds TGNCcLimHi (FIG. 12) and TGNCwLimHi (FIG. 14) in controlling the compressor 2 are changed to be lower than those in the VENT mode. In the mode, the driving sound of the compressor 2 can be reduced, and the passenger compartment can be comfortably air-conditioned.
  • the heat pump controller 32 sets the minimum value NC3 of the upper limit rotational speeds TGNCcLimHi (FIG. 12) and TGNCwLimHi (FIG. 14) in controlling the compressor 2 in the cooperative mode to the minimum value in the single mode. Since the change is made in a direction higher than NC2, it is possible to avoid the inconvenience that the capacity of the compressor 2 becomes insufficient, while avoiding the inconvenience that the maximum upper limit speed NC1 increases. Will be able to improve.
  • the heat pump controller 32 sets the introduction mode flag fREC (“1”) when the introduction mode of the air into the air flow passage 3 is the outside air introduction mode, and resets the introduction mode flag fREC (when the introduction mode flag fREC is the inside air circulation mode). 0”).
  • the heat pump controller 32 sets the upper limit rotation speeds TGNccLimHi (FIG. 12) and the upper limit rotation speeds for TGNCwLimHi (FIG. 14).
  • the number change values TGNCcLimREC and TGNCwLimREC are set to the minimum value NC2, and when reset, the maximum value NC1 is set.
  • the introduction mode flag fREC is set, in the cooperative mode (air conditioning (priority)+battery cooling mode and battery cooling (priority)+air conditioning mode)
  • the upper limit rotational speed change values TGNCcLimREC and TGNCwLimREC for the are set to the minimum value NC3, and when reset, the maximum value NC1 is set.
  • the heat pump controller 32 compares the case where the air introduction mode of the air into the air flow passage 3 is the outside air introduction mode with the case where the inside air circulation mode is used. Then, the upper limit rotation speed change values TGNCcLimREC and TGNCwLimREC are changed in the direction of lowering.
  • the upper limit rotation speed change values TGNCcLimREC and TGNCwLimREC are the highest in the formulas (II) and (III) (MAX)
  • the upper limit rotation speed change values TGNCcLimREC and TGNCwLimREC are the upper limit rotation speeds TGNCcLimHi (FIG. 12) and the upper limit rotation speeds. Determined as the number TGNCwLimHi (FIG. 14), the rotational speed NC of the compressor 2 is no longer controlled.
  • the amount of air blown into the passenger compartment is lower than in the inside air circulation mode in which the inside air is introduced.
  • the driving sound also becomes noticeable, which is annoying to passengers. Therefore, when the heat pump controller 32 is in the outside air introduction mode, the upper limit rotational speeds TGNCcLimHi (FIG. 12) and TGNCwLimHi (FIG. 14) in controlling the compressor 2 are changed in a lower direction as compared with the case of the inside air circulation mode.
  • the driving sound of the compressor 2 can be reduced, and the passenger compartment can be comfortably air-conditioned.
  • the heat pump controller 32 sets the minimum value NC3 of the upper limit rotational speeds TGNCcLimHi (FIG. 12) and TGNCwLimHi (FIG. 14) in controlling the compressor 2 in the cooperative mode to the minimum value in the single mode. Since the change is made in a direction higher than NC2, it is possible to avoid the inconvenience that the capacity of the compressor 2 becomes insufficient, while avoiding the inconvenience that the maximum upper limit speed NC1 increases. Will be able to improve.
  • the heat pump controller 32 calculates the upper limit rotation speed change values TGNCcLimAUD and TGNCwLimAUD according to the volume AUD of the audio device which is information input from the vehicle side. In this case, the heat pump controller 32 changes the upper limit rotation speed change values TGNCcLimAUD and TGNCwLimAUD in a decreasing direction as the volume AUD decreases.
  • the graph on the upper side of FIG. 19 shows the case of the single mode (cooling mode and battery cooling (single) mode) in the present invention.
  • the horizontal axis represents the volume AUD of the audio device, and the predetermined values AUD1 to AUD4 have a relationship of AUD4 ⁇ AUD3 ⁇ AUD2 ⁇ AUD1, and the relationship between the volume AUD of the audio device and the level of the sound in the vehicle interior is preset. The value is determined by experiment.
  • the vertical axis represents the upper limit rotation speed change values TGNCcLimAUD and TGNCwLimAUD, and the maximum value NC1 and the minimum value NC2 have a relationship of NC2 ⁇ NC1.
  • This maximum value NC1 is the maximum number of revolutions allowed when operating the compressor 2 in the embodiment.
  • the upper limit rotation speed change value TGNccLimAUD for the upper limit rotation speed TGNCcLimHi (FIG. 12) and the upper limit rotation speed change value TGNCwLimAUD for the upper limit rotation speed TGNCwLimHi (FIG. 14) are set when the volume AUD is the predetermined value AUD1. Is NC1. Then, the volume AUD is maintained until it decreases to AUD2, and when it becomes lower than AUD2, TGNCcLimAUD and TGNCwLimAUD are started to be decreased, and TGNCcLimAUD and TGNCwLimAUD are decreased at a constant rate until AUD4 becomes NC2.
  • the lower graph of FIG. 19 shows the case of the cooperative mode (air conditioning (priority)+battery cooling mode and battery cooling (priority)+air conditioning mode) in the present invention.
  • the maximum value NC1 and the minimum value NC3 on the vertical axis have a relationship of NC3 ⁇ NC1, and further NC2 ⁇ NC3.
  • the heat pump controller 32 increases the minimum value NC3 of the upper limit rotation speed change values TGNCcLimAUD and TGNCwLimAUD of the compressor 2 in the cooperative mode from the minimum value NC2 of the upper limit rotation speed change values TGNCcLimAUD and TGNCwLimAUD in the single mode. Will be changed in.
  • the upper limit engine speed change value TGNccLimAUD for the upper limit engine speed TGNCcLimHi (FIG. 12) and the upper limit engine speed change value TGNCwLimAUD for the upper limit engine speed TGNCwLimHi (FIG. 14) are set. Is NC1. Then, the volume AUD is maintained until it becomes AUD2, and when it becomes lower than AUD2, TGNCcLimAUD and TGNCwLimAUD are started to be lowered, and TGNCcLimAUD and TGNCwLimAUD are lowered at a constant rate until it becomes NC3 at AUD4.
  • the upper limit rotation speed change values TGNCcLimAUD and TGNCwLimAUD are the highest in the formulas (II) and (III) (MAX)
  • the upper limit rotation speed change values TGNCcLimAUD and TGNCwLimAUD are the upper limit rotation speeds TGNccLimHi (FIG. 12) and the upper limit rotation speeds. Determined as the number TGNCwLimHi (FIG. 14), the rotational speed NC of the compressor 2 is no longer controlled.
  • the heat pump controller 32 reduces the upper limit rotational speed TGNCcLimHi (FIG. 12) and TGNCwLimHi (FIG. 14) of the compressor 2 as the volume AUD decreases. By changing in the lowering direction, the driving sound of the compressor 2 can be reduced in a situation where the volume AUD of the audio device is low, and the passenger compartment can be comfortably air-conditioned.
  • the heat pump controller 32 sets the minimum value NC3 of the upper limit rotational speeds TGNCcLimHi (FIG. 12) and TGNCwLimHi (FIG. 14) in controlling the compressor 2 in the cooperative mode to the minimum value in the single mode. Since the change is made in a direction higher than NC2, it is possible to avoid the inconvenience that the capacity of the compressor 2 becomes insufficient, while avoiding the inconvenience that the maximum upper limit speed NC1 increases. Will be able to improve.
  • the heat pump controller 32 calculates the upper limit rotation speed change values TGNCcLimVSP and TGNCwLimVSP according to the vehicle speed VSP detected by the vehicle speed sensor 52. In this case, the heat pump controller 32 changes the upper limit rotation speed change values TGNCcLimVSP and TGNCwLimVSP in a decreasing direction as the vehicle speed VSP becomes lower.
  • the graph on the upper side of FIG. 20 shows the case of the single mode (cooling mode and battery cooling (single) mode) in the present invention.
  • the horizontal axis represents the vehicle speed VSP
  • the predetermined values VSP1 to VSP4 have a relationship of VSP4 ⁇ VSP3 ⁇ VSP2 ⁇ VSP1 and a value obtained by an experiment in advance from the relationship between the vehicle speed VSP and the sound level in the vehicle interior.
  • the vertical axis represents the upper limit rotation speed change values TGNCcLimVSP and TGNCwLimVSP, and the highest value NC1 and the lowest value NC2 have a relationship of NC2 ⁇ NC1.
  • This maximum value NC1 is the maximum number of revolutions allowed when operating the compressor 2 in the embodiment.
  • the upper limit rotation speed change value TGNCcLimVSP for the upper limit rotation speed TGNCcLimHi (FIG. 12) and the upper limit rotation speed change value TGNCwLimVSP for the upper limit rotation speed TGNCwLimHi (FIG. 14) are set. Is NC1. Then, it is maintained until the vehicle speed VSP decreases to VSP2, and when it becomes lower than VSP2, TGNCcLimVSP and TGNCwLimVSP are started to be decreased, and TGNCcLimVSP and TGNCwLimVSP are decreased at a constant rate until VSP4 becomes NC2.
  • the lower graph of FIG. 20 shows the case of the cooperative mode (air conditioning (priority)+battery cooling mode and battery cooling (priority)+air conditioning mode) in the present invention.
  • the maximum value NC1 and the minimum value NC3 on the vertical axis have a relationship of NC3 ⁇ NC1, and further NC2 ⁇ NC3.
  • the heat pump controller 32 increases the minimum value NC3 of the upper limit rotation speed change values TGNCcLimVSP, TGNCwLimVSP of the compressor 2 in the cooperative mode from the minimum value NC2 of the upper limit rotation speed change values TGNCcLimVSP, TGNCwLimVSP in the single mode. Will be changed in.
  • the upper limit engine speed change value TGNCcLimVSP for the upper limit engine speed TGNCcLimHi (FIG. 12) and the upper limit engine speed change value TGNCwLimVSP for the upper limit engine speed TGNCwLimHi (FIG. 14) are set in the cooperative mode. Is NC1. Then, it is maintained until the vehicle speed VSP decreases to VSP2, and when it becomes lower than VSP2, TGNCcLimVSP and TGNCwLimVSP are started to be decreased, and TGNCcLimVSP and TGNCwLimVSP are decreased at a constant rate until VSP4 becomes NC3.
  • the upper limit rotation speed change values TGNCcLimVSP and TGNCwLimVSP are the highest in the formulas (II) and (III) (MAX)
  • the upper limit rotation speed change values TGNCcLimVSP and TGNCwLimVSP are the upper limit rotation speeds TGNCcLimHi (FIG. 12) and the upper limit rotation speeds. Determined as the number TGNCwLimHi (FIG. 14), the rotational speed NC of the compressor 2 is no longer controlled.
  • the upper limit rotational speed TGNCcLimHi (FIG. 12) and TGNCwLimHi (FIG. 14) in controlling the compressor 2 are lowered.
  • the heat pump controller 32 sets the minimum value NC3 of the upper limit rotational speeds TGNCcLimHi (FIG. 12) and TGNCwLimHi (FIG. 14) in controlling the compressor 2 in the cooperative mode to the minimum value in the single mode. Since the change is made in a direction higher than NC2, it is possible to avoid the inconvenience that the capacity of the compressor 2 becomes insufficient, while avoiding the inconvenience that the maximum upper limit speed NC1 increases. Will be able to improve.
  • the heat pump controller 32 calculates the upper limit rotation speed change values TGNCcLimTam and TGNCwLimTam according to the outside air temperature Tam detected by the outside air temperature sensor 33. In this case, the heat pump controller 32 changes the upper limit rotation speed change values TGNCcLimTam and TGNCwLimTam in a decreasing direction as the outside air temperature Tam decreases.
  • the upper graph of FIG. 21 shows the case of the single mode (cooling mode and battery cooling (single) mode) in the present invention.
  • the horizontal axis is the outside air temperature Tam
  • the predetermined values Tam1 to Tam4 have a relationship of Tam4 ⁇ Tam3 ⁇ Tam2 ⁇ Tam1 and are obtained by an experiment in advance from the relationship between the outside air temperature Tam and the sound level in the vehicle interior.
  • the vertical axis represents the upper limit rotation speed change values TGNCcLimTam and TGNCwLimTam
  • the maximum value NC1 and the minimum value NC2 have a relationship of NC2 ⁇ NC1.
  • This maximum value NC1 is the maximum number of revolutions allowed when operating the compressor 2 in the embodiment.
  • the upper limit rotation speed change value TGNCcLimTam for the upper limit rotation speed TGNCcLimHi (FIG. 12) and the upper limit rotation speed change value TGNCwLimTam for the upper limit rotation speed TGNCwLimHi (FIG. 14) are set at the outside air temperature Tam of the predetermined value Tam1. When it is NC1. Then, it is maintained until the outside air temperature Tam drops to Tam2, and when it falls below Tam2, TGNCcLimTam and TGNCwLimTam start to be lowered, and TGNCcLimTam and TGNCwLimTam are lowered at a constant rate until it becomes NC2 at Tam4.
  • the lower graph of FIG. 21 shows the case of the cooperative mode (air conditioning (priority)+battery cooling mode and battery cooling (priority)+air conditioning mode) in the present invention.
  • the maximum value NC1 and the minimum value NC3 on the vertical axis have a relationship of NC3 ⁇ NC1, and further NC2 ⁇ NC3.
  • the heat pump controller 32 increases the minimum value NC3 of the upper limit rotation speed change values TGNCcLimTam and TGNCwLimTam of the compressor 2 in the cooperative mode from the minimum value NC2 of the upper limit rotation speed change values TGNCcLimTam and TGNCwLimTam in the single mode. Will be changed in.
  • the upper limit rotation speed change value TGNccLimTam for the upper limit rotation speed TGNCcLimHi (FIG. 12) and the upper limit rotation speed change value TGNCwLimTam for the upper limit rotation speed TGNCwLimHi (FIG. 14) are set to the outside air temperature Tam of the predetermined value Tam1. When it is NC1. Then, it is maintained until the outside air temperature Tam falls to Tam2, and when it falls below Tam2, it starts lowering TGNCcLimTam and TGNCwLimTam, and lowers TGNCcLimTam and TGNCwLimTam at a constant rate until it becomes NC3 at Tam4.
  • the upper limit rotation speed change values TGNCcLimTam and TGNCwLimTam are the highest in the formulas (II) and (III) (MAX)
  • the upper limit rotation speed change values TGNCcLimTam and TGNCwLimTam are the upper limit rotation speeds TGNccLimHi (FIG. 12) and the upper limit rotation speeds. Determined as the number TGNCwLimHi (FIG. 14), the rotational speed NC of the compressor 2 is no longer controlled.
  • the vehicle is configured by the heat pump controller 32 changing the upper limit rotational speeds TGNCcLimHi (FIG. 12) and TGNCwLimHi (FIG. 14) in controlling the compressor 2 as the outside air temperature Tam becomes lower.
  • the upper limit rotation speed TGNCcLimHi (Fig. 12) and TGNCwLimHi (Fig. 14) of the compressor 2 are lowered. Therefore, it becomes possible to reduce the generation of noise due to vibration.
  • the heat pump controller 32 sets the minimum value NC3 of the upper limit rotational speeds TGNCcLimHi (FIG. 12) and TGNCwLimHi (FIG. 14) in the control of the compressor 2 in the cooperative mode to the minimum value in the single mode. Since the change is made in a direction to raise the value higher than NC2, it is possible to avoid the inconvenience that the capacity of the compressor 2 becomes insufficient, while avoiding the inconvenience that the maximum value NC1 of the upper limit rotation speed increases. You will be able to improve.
  • the compressor 2 is controlled in comparison with the single mode (cooling mode, battery cooling (single-purpose) mode). Since the upper limit rotational speeds of TGNCcLimHi and TGNCwLimHi are changed so as to increase, the refrigerant evaporates (heat absorption) becomes longer in the air conditioning (priority) + battery cooling mode or battery cooling (priority) + compression in the air conditioning mode. It is possible to avoid the inconvenience that the upper limit rotational speeds TGNCcLimHi and TGNCwLimHi of the control of the machine 2 are increased and the capacity of the compressor 2 becomes insufficient. As a result, it is possible to appropriately cool the battery 55, realize a comfortable air conditioning operation, and improve reliability and marketability.
  • the heat pump controller 32 causes the refrigerant-heat medium heat exchanger 64 to absorb the refrigerant in the battery cooling (single) mode, and the heat absorber 9 to absorb the refrigerant in the cooling mode, and the battery cooling (priority)+
  • the refrigerant-heat medium heat exchanger 64 and the heat absorber 9 absorb the heat of the refrigerant, so that the battery 55 of the battery 55 is cooled in the battery cooling (single) mode and the cooling mode.
  • cooling of the battery 55 can be performed while cooling the battery 55.
  • the compressor 2 is controlled. It is possible to avoid the inconvenience that the upper limit rotational speeds TGNCwLimHi and TGNCcLimHi are raised to the state where the capacity of the compressor 2 becomes insufficient.
  • an electromagnetic valve 69 that controls the flow of the refrigerant to the refrigerant-heat medium heat exchanger 64 and an electromagnetic valve 35 that controls the flow of the refrigerant to the heat absorber 9 are provided, and the heat pump controller 32 is set to the battery.
  • the cooling (single) mode and the cooling mode either one of the solenoid valve 69 and the solenoid valve 35 is opened and the other is closed, and in the battery cooling (priority)+air conditioning mode and the air conditioning (priority)+battery cooling mode. Since the solenoid valve 69 and the solenoid valve 35 are opened, the operation modes can be smoothly executed.
  • the electromagnetic valve 69 is opened to control the rotation speed of the compressor 2 by the heat medium temperature Tw, and the electromagnetic valve 35 is closed in the battery cooling (single) mode, and the electromagnetic valve 35 is opened to set the heat absorber temperature Te. Since the rotation speed of the compressor 2 is controlled and the cooling mode in which the electromagnetic valve 69 is closed is executed, it is possible to smoothly cool the battery 55 and air-condition the vehicle interior.
  • the solenoid valve 69 is opened, the rotation speed of the compressor 2 is controlled by the heat medium temperature Tw, and the solenoid valve 35 is opened/closed by the heat absorber temperature Te. 35 is opened, the rotation speed of the compressor 2 is controlled by the heat absorber temperature Te, and the air conditioning (priority)+battery cooling mode in which the electromagnetic valve 69 is opened/closed is controlled by the heat medium temperature Tw.
  • the air conditioning (priority)+battery cooling mode in which the electromagnetic valve 69 is opened/closed is controlled by the heat medium temperature Tw.
  • the heat pump controller 32 sets the minimum value NC3 and the minimum value NC2 in the above-described control of FIGS. 16 to 21 to the maximum value NC1. That is, when the battery temperature Tcell becomes higher than the threshold value Tcell1, the heat pump controller 32 operates in the compressor 2 in the battery cooling (single) mode, the battery cooling (priority)+air conditioning mode, and the air conditioning (priority)+battery cooling mode.
  • the upper limit rotational speeds TGNCcLimHi and TGNCwLimHi in the control are fixed to the maximum value NC1 without being limited by the sound level in the vehicle interior.
  • the heat pump controller 32 changes the battery temperature Tcell to be higher than the predetermined threshold value Tcell1
  • the heat pump controller 32 changes in the direction of increasing the upper limit rotation speeds TGNCcLimHi and TGNCwLimHi in controlling the compressor 2, so that the temperature of the battery 55 is increased.
  • the upper limit rotational speeds TGNCcLimHi and TGNCwLimHi of the control of the compressor 2 can be increased based on the need for cooling.
  • the heat pump controller 32 sets the minimum values NC3 and NC2 of the upper limit rotation speeds TGNCcLimHi and TGNCwLimHi in the control of the compressor 2 to the maximum value NC1, the maximum value NC1 rises. While avoiding the above, the battery 55 can be cooled prior to the problem of the drive sound of the compressor 2, and the reliability can be further improved.
  • control device 11 air conditioning controller 45
  • air conditioning controller 45 has the operation mode described above in the cooperative mode (battery cooling (priority)+air conditioning). Mode and air-conditioning (priority)+battery cooling mode) is being executed, and the fact that the upper limit rotational speed is being increased by increasing the temperature of the battery temperature Tcell is changed by a predetermined value on the display 53A of the air-conditioning operation unit 53. Display (notify) at the position. This display example is shown in FIG. The uppermost row of FIG. 22 is a state during normal operation (including a first operation mode described later), and for example, a gray square D1 is displayed.
  • the battery cooling (single) mode the cooling mode, the heating mode, the dehumidifying heating mode, and the dehumidifying cooling mode described above.
  • the above-described cooperative mode battery cooling (priority)+air conditioning mode and air conditioning (priority)+battery cooling mode
  • the display state is switched to the square D2.
  • the display state is switched to the square D3.
  • FIG. 23 shows a configuration diagram of a vehicle air conditioner 1 of another embodiment to which the present invention is applicable.
  • FIG. 23 shows an example of a vehicle air conditioner 1 including a rear seat heat absorber 101 as an evaporator for cooling the air supplied to the rear portion (rear seat) of the vehicle compartment.
  • the same reference numerals as those in FIG. 1 have the same or similar functions.
  • the heat absorber 9 becomes a heat absorber for the front seat for cooling the air supplied to the front part (front seat) in the passenger compartment.
  • the indoor blower 27, the muffler 5, the strainer 19 and the like are not shown in FIG. 19, it is assumed that they are actually provided at similar positions.
  • the solenoid valve 20 and the solenoid valve 22 are not provided, and the refrigerant pipe 13B discharged from the supercooling unit 16 is connected to the indoor expansion valve 8 (in this case, a fully-closed electrically-operable Valve).
  • the refrigerant pipe 13D is branched from the refrigerant pipe 13B.
  • An indoor blower (not shown) is also provided in the air flow passage 3A of the rear seat HVAC unit 10A. Further, a rear seat heat absorber 101 and an auxiliary heater 102 are arranged in the air flow passage 3A, and a refrigerant pipe 13H connected to the refrigerant pipe 13B is connected via an indoor expansion valve 103 for the rear seat (a motor valve that can be fully closed). It is connected to the inlet of the rear seat heat absorber 101. Further, the refrigerant pipe 13L at the outlet of the rear seat heat absorber 101 is connected to the refrigerant pipe 13C via the refrigerant pipe 71.
  • the heating mode on the front seat side is the same as in the case of FIG. That is, the refrigerant discharged from the compressor 2 is radiated by the radiator 4, decompressed by the outdoor expansion valve 6, and then absorbed by the outdoor heat exchanger 7. However, the refrigerant discharged from the outdoor heat exchanger 7 will flow to the receiver dryer unit 14, the supercooling unit 16, the refrigerant pipe 13B, the solenoid valve 21, the refrigerant pipe 13C, and the accumulator 12.
  • the cooling mode on the front seat side is also the same as in the case of FIG. However, the outdoor expansion valve 6 is fully opened. That is, the refrigerant discharged from the compressor 2 is radiated by the outdoor heat exchanger 7, decompressed by the indoor expansion valve 8, and then absorbed by the heat absorber 9.
  • the electromagnetic valve 21 is closed and the indoor expansion valve 8 is opened so that the refrigerant discharged from the compressor 2 is radiated by the radiator 4 and the indoor expansion valve 8 decompresses the refrigerant, and then the heat absorber 9 is used. By absorbing heat with, the dehumidifying mode on the front seat side is executed.
  • the indoor expansion valve 103 is closed and the auxiliary heater 102 is caused to generate heat. Further, in the cooling mode, the heat generation of the auxiliary heater 102 is stopped, the indoor expansion valve 103 is opened, the pressure of the refrigerant is reduced, and then the rear seat heat absorber 101 absorbs the heat. In addition, in the dehumidification mode, the auxiliary heater 102 is additionally heated. In the case of this embodiment, the heat pump controller 32 thus executes the cooling mode, the heating mode, and the dehumidifying mode for the front part (front seat side) and the rear part (rear seat side) in the passenger compartment.
  • the heat pump controller 32 also executes the same air conditioning (priority)+battery cooling mode, battery cooling (priority)+air conditioning mode, and battery cooling (single) mode as described above. However, in the air-conditioning (priority)+battery cooling mode and the battery cooling (priority)+air-conditioning mode, the case where the refrigerant absorbs heat (evaporates) by both the heat absorber 9 and the heat absorber 101 for the rear seat is included. Be done.
  • the heat pump controller 32 basically controls the rotation speed of the compressor 2 by the heat absorber temperature Te and the heat medium temperature Tw as described above, but in this example, the indoor expansion valve 8 and the solenoid valve 69. In the cooling mode only on the rear seat side, in which the rear seat heat absorber 101 absorbs the refrigerant, the rotation speed of the compressor 2 is controlled by the temperature of the rear seat heat absorber 101.
  • the electromagnetic valve 69 is closed, the indoor expansion valve 103 is also closed to absorb (evaporate) the refrigerant only by the heat absorber 9, the electromagnetic valve 69 is opened, and the indoor expansion valves 8 and 103 are opened.
  • the first mode is the mode in which the refrigerant is absorbed by the refrigerant-heat medium heat exchanger 64 alone, and the mode in which the electromagnetic valve 69 is closed and the indoor expansion valve 8 is also closed and the refrigerant is evaporated only by the heat absorber 101 for the rear seat.
  • the operation mode is set, and a state of vaporizing by any two of them is the second operation mode.
  • the heat pump controller 32 also executes a mode in which the refrigerant is evaporated in all of them, but in that case, a mode in which the refrigerant is absorbed in all of the heat absorbers 9 and 101 and the refrigerant-heat medium heat exchanger 64 is also used. It shall be included in the second operation mode.
  • the heat pump controller 32 changes to increase the upper limit rotation speed of the compressor 2. That is, in the first operation mode, the upper limit engine speed TGNCcLimHi and the upper limit engine speed TGNCwLimHi are set to NCMaxLo. In that state, when switching to the second operation mode at the timing of time t1 (lower part of FIG. 24 ), the upper limit engine speed TGNCcLimHi and the upper limit engine speed TGNCwLimHi are increased at a predetermined increase rate, and finally NCMaxHi. (The upper part of FIG. 24).
  • the heat pump controller 32 lowers the upper limit rotation speed TGNCcLimHi and the upper limit rotation speed TGNCwLimHi etc. at a predetermined drop rate, and finally returns to NCMaxLo. This makes it possible to avoid the inconvenience that the capacity of the compressor 2 falls short. Further, similarly, since the display 53A notifies that the vehicle is driving with the upper limit rotation speed increased, it is possible to eliminate the discomfort and anxiety of the user.
  • the heat medium temperature Tw is adopted as the temperature of the target (heat medium) cooled by the refrigerant-heat medium heat exchanger 64 (heat exchanger for temperature control), but the battery temperature Tcell is used. It may be adopted as the temperature of the object to be cooled by the refrigerant-heat medium heat exchanger 64 (heat exchanger for temperature control), and the temperature of the refrigerant-heat medium heat exchanger 64 (refrigerant-heat medium heat exchanger) The temperature of 64 itself, the temperature of the refrigerant flowing out of the refrigerant channel 64B, etc.) may be adopted as the temperature of the refrigerant-heat medium heat exchanger 64 (heat exchanger for temperature adjustment).
  • the heat medium is circulated to control the temperature of the battery 55, but the invention of claim 1 is not limited to this, and the temperature of the refrigerant and the battery 55 (object to be temperature controlled) to be directly heat-exchanged.
  • a heat exchanger for adjustment may be provided.
  • the battery temperature Tcell becomes the temperature of the target to be cooled by the target heat exchanger for temperature adjustment.
  • a vehicle capable of cooling the battery 55 in the battery cooling (priority)+air conditioning mode and the air conditioning (priority)+battery cooling mode for simultaneously cooling the battery 55 and cooling the vehicle interior can cool the vehicle interior.
  • the cooling of the battery 55 is not limited to during cooling, but other air conditioning operation, for example, the above-described dehumidifying and heating mode and cooling of the battery 55 may be performed at the same time.
  • the dehumidifying and heating mode also becomes the air conditioning (single) mode in the present invention
  • the solenoid valve 69 is opened, and a part of the refrigerant directed to the heat absorber 9 via the refrigerant pipe 13F is caused to flow into the branch pipe 67, so that the refrigerant-heat It will flow to the medium heat exchanger 64.
  • the electromagnetic valve 35 is the heat absorber valve device (valve device) and the electromagnetic valve 69 is the temperature controlled valve device (valve device).
  • the indoor expansion valve 8 and the auxiliary expansion valve 68 are fully closed.
  • the solenoid valves 35 and 69 are not necessary, the indoor expansion valve 8 serves as the heat absorber valve device (valve device) of the present invention, and the auxiliary expansion valve 68 serves as a temperature control target. It becomes a valve device (valve device).
  • each operation mode such as a heating mode, a dehumidification heating mode, a dehumidification cooling mode, a cooling mode, an air conditioning (priority)+battery cooling mode, a battery cooling (priority)+air conditioning mode, and a battery cooling (single) mode is provided.
  • the present invention has been described with respect to the vehicle air conditioner 1, the present invention is not limited to this, and it is possible to execute, for example, a battery cooling (single) mode, a cooling mode, a battery cooling (priority)+air conditioning mode, and an air conditioning (priority)+battery cooling mode.
  • the present invention is also effective for the above-described vehicle air conditioner.
  • the factors that affect the sound level in the vehicle compartment are set to the air volume of the indoor blower 27, the blowing mode for blowing air into the vehicle compartment, the introduction mode of the air flowing into the air flow passage 3, and the vehicle.
  • the volume of the audio device, the vehicle speed, and the outside air temperature are described above, the present invention is not limited thereto, and any one of them or a combination thereof may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】電動式の圧縮機の上限回転数を適切に制御して、効果的な被温調対象の冷却と、快適な車室内空調を実現することができる車両用空気調和装置を提供する。 【解決手段】車室内の音のレベルに影響する要因に基づき、当該車室内の音のレベルが低くなる程、下げる方向で圧縮機2の制御上の上限回転数を所定の最高値と最低値の間で変更する。吸熱器9又は冷媒-熱媒体熱交換器64で冷媒を吸熱させる単独モードと、吸熱器及び冷媒-熱媒体熱交換器で冷媒を吸熱させる協調モードを有し、協調モードでの圧縮機の制御上の上限回転数を、単独モードでの圧縮機の制御上の上限回転数よりも上げる方向で変更する。

Description

車両用空気調和装置
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置に関するものである。
 近年の環境問題の顕在化から、車両に搭載されたバッテリから供給される電力で走行用モータを駆動する電気自動車やハイブリッド自動車等の車両が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、電動式の圧縮機と、放熱器と、吸熱器と、室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させることで暖房し、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させることで冷房する等して車室内を空調するものが開発されている(例えば、特許文献1参照)。
 一方、例えばバッテリ(被温調対象)は充放電による自己発熱等で高温となった環境下で充放電を行うと劣化が進行し、やがては作動不良を起こして破損する危険性がある。また、低温環境下でも充放電性能が低下する。そこで、冷媒回路にバッテリ用の熱交換器を別途設け、冷媒回路を循環する冷媒をこのバッテリ用の熱交換器で吸熱させ、バッテリ用冷媒(熱媒体)をこのバッテリ用の熱交換器で冷却し、冷却された熱媒体をバッテリに循環させることでバッテリを冷却することができるようにしたものも開発されている(例えば、特許文献2参照)。
 
 また、電動式の圧縮機は高回転時に比較的大きな駆動音を発生するため、車室内の音のレベルが低くなり、静かになるとこの駆動音が搭乗者にとって耳障りとなる。そこで、係る圧縮機が発生する騒音が車室内の搭乗者に及ぼす影響を考慮し、車室内の音のレベルが低くなる(静かになる)状況、即ち、シフト位置が前進位置以外の場合や、外気温度、設定温度、車室内温度が高い、或いは、低い状況以外の場合には、圧縮機の上限回転数を低下させるように制御していた(例えば、特許文献3参照)。
特開2014-213765号公報 特許第5668700号公報 特開2013-63711号公報
 しかしながら、圧縮機の上限回転数を低下させれば、当然に車室内の空調性能は低下する。従って、空調性能を考慮すれば出来るだけ上記のような上限回転数の低下は行いたくない。また、車室内の音のレベルが高ければ、圧縮機が発生する駆動音が搭乗者に耳障りとなることも無くなるが、従来の制御では未だこれを的確に把握して適切な圧縮機の上限回転数の変更を行えなかった。
 また、例えばバッテリ(被温調対象)の冷却のみを行っている状態から車室内の空調も行う状態に切り換えた場合、バッテリ用の熱交換器や吸熱器を含む熱交換の経路が増えるため、圧縮機の能力(回転数)が不足する状態となり、目標とするバッテリ(被温調対象)の冷却能力や車室内の空調能力(吹出温度)を満足することができなくなる問題があった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、電動式の圧縮機の上限回転数を適切に制御して、効果的な被温調対象の冷却と、快適な車室内空調を実現することができる車両用空気調和装置を提供することを目的とする。
 本発明の車両用空気調和装置は、冷媒を圧縮する電動式の圧縮機と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、冷媒を吸熱させて車両に搭載された被温調対象を冷却するための被温調対象用熱交換器と、制御装置を少なくとも備えて車室内を空調するものであって、制御装置は、車室内の音のレベルに影響する要因に基づき、当該車室内の音のレベルが低くなる程、下げる方向で圧縮機の制御上の上限回転数を所定の最高値と最低値の間で変更すると共に、吸熱器又は被温調対象用熱交換器のうちの何れか一方で冷媒を吸熱させる単独モードと、吸熱器及び被温調対象用熱交換器で冷媒を吸熱させる協調モードを有し、協調モードでの圧縮機の制御上の上限回転数を、単独モードでの圧縮機の制御上の上限回転数よりも上げる方向で変更することを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、協調モードでの圧縮機の制御上の上限回転数の最低値を、単独モードでの圧縮機の制御上の上限回転数の最低値よりも上げる方向で変更することを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記各発明において制御装置は、被温調対象の温度が所定の閾値より高い場合、圧縮機の制御上の上限回転数を上げる方向で変更することを特徴とする。
 請求項4の発明の車両用空気調和装置は、上記発明において制御装置は、被温調対象の温度が所定の閾値より高い場合、圧縮機の制御上の上限回転数の最低値を、当該上限回転数の最高値にすることを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記各発明において車室内に供給する空気が流通する空気流通路と、この空気流通路に空気を流通させるための室内送風機を備え、車室内の音のレベルに影響する要因は、室内送風機の風量、車室内に空気を吹き出す吹出モード、空気流通路に流入する空気の導入モード、車両に設けられた音響機器の音量、車速、及び、外気温度のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てであることを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記各発明において制御装置は、車室内の音のレベルに影響する複数の要因に基づいて圧縮機の上限回転数を変更する場合、車室内の音のレベルが低くなる程、圧縮機の制御上の上限回転数を下げる方向で変更する上限回転数変更値を各要因毎に算出すると共に、算出された各要因毎の上限回転数変更値のうち、最も高い値を圧縮機の制御上の上限回転数とすることを特徴とする。
 請求項7の発明の車両用空気調和装置は、上記各発明において吸熱器への冷媒の流通を制御する吸熱器用弁装置と、被温調対象用熱交換器への冷媒の流通を制御する被温調対象用弁装置を備え、制御装置は、被温調対象用弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器用弁装置を閉じる被温調対象冷却(単独)モードと、吸熱器用弁装置を開き、吸熱器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、被温調対象用弁装置を閉じる空調(単独)モードと、被温調対象用弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器又はそれにより冷却される対象の温度に基づいて吸熱器用弁装置を開閉制御する被温調対象冷却(優先)+空調モードと、吸熱器用弁装置を開き、吸熱器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて被温調対象用弁装置を開閉制御する空調(優先)+被温調対象冷却モードを有し、単独モードは、被温調対象冷却(単独)モードと空調(単独)モードのうちの何れか一方、又は、双方であり、協調モードは、被温調対象冷却(優先)+空調モードと空調(優先)+被温調対象冷却モードのうちの何れか一方、又は、双方であることを特徴とする。
 請求項8の発明の車両用空気調和装置は、上記各発明において冷媒を吸熱させて車室内の前部に供給する空気を冷却するためのフロントシート用の吸熱器と、冷媒を吸熱させて車室内の後部に供給する空気を冷却するためのリアシート用の吸熱器を備え、制御装置は、フロントシート用の吸熱器とリアシート用の吸熱器のうちの何れか一方で冷媒を蒸発させる第1の運転モードと、フロントシート用の吸熱器及びリアシート用の吸熱器で冷媒を吸熱させる第2の運転モードを有し、この第2の運転モードでは、第1の運転モードに比して、圧縮機の制御上の上限回転数を上げる方向で変更することを特徴とする。
 請求項9の発明の車両用空気調和装置は、上記各発明において制御装置は、圧縮機の制御上の上限回転数を上げる方向に変更して運転していることを報知するための所定の報知装置を有することを特徴とする。
 本発明によれば、冷媒を圧縮する電動式の圧縮機と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、冷媒を吸熱させて車両に搭載された被温調対象を冷却するための被温調対象用熱交換器と、制御装置を少なくとも備えて車室内を空調する車両用空気調和装置において、制御装置が、車室内の音のレベルに影響する要因に基づき、当該車室内の音のレベルが低くなる程、下げる方向で圧縮機の制御上の上限回転数を所定の最高値と最低値の間で変更するようにしたので、車室内の音のレベルが低くなり、静かになって圧縮機の駆動音が目立つようになり、搭乗者に耳障りになる状況において、圧縮機の駆動音を低減することができるようになる。
 更に、吸熱器又は被温調対象用熱交換器のうちの何れか一方で冷媒を吸熱させる単独モードと、吸熱器及び被温調対象用熱交換器で冷媒を吸熱させる協調モードを有し、協調モードでの圧縮機の制御上の上限回転数を、単独モードでの圧縮機の制御上の上限回転数よりも上げる方向で変更するようにしたので、冷媒が吸熱器及び被温調対象用熱交換器で吸熱する協調モードにおいては、圧縮機の制御上の上限回転数を上げて圧縮機の能力が不足する状態に陥る不都合を回避することが可能となる。これらにより、被温調対象の適切な冷却と、快適な空調運転を実現し、商品性を向上させることができるようになる。
 この場合、請求項2の発明の如く制御装置が、協調モードでの圧縮機の制御上の上限回転数の最低値を、単独モードでの圧縮機の制御上の上限回転数の最低値よりも上げる方向で変更するようにすれば、上限回転数の最高値が上昇してしまう不都合も回避でき、信頼性も向上させることができるようになる。
 また、請求項3の発明の如く制御装置が、被温調対象の温度が所定の閾値より高い場合、圧縮機の制御上の上限回転数を上げる方向で変更するようにすれば、被温調対象の温度が高くなり、冷却が必要となっていることに基づいて圧縮機の制御上の上限回転数を上げることができるようになる。
 その場合も、請求項4の発明の如く制御装置が、被温調対象の温度が所定の閾値より高い場合、圧縮機の制御上の上限回転数の最低値を、当該上限回転数の最高値にするようにすれば、上限回転数の最高値が上昇してしまう不都合を回避しながら、圧縮機の駆動音の問題に優先して被温調対象を冷却することができるようになり、更なる信頼性の向上を図ることができるようになる。
 ここで、車室内の音のレベルに影響する要因としては、請求項5の発明の如く、室内送風機の風量、車室内に空気を吹き出す吹出モード、空気流通路に流入する空気の導入モード、車両に設けられた音響機器の音量、車速、及び、外気温度のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てが考えられる。
 そして、車室内の音のレベルに影響する複数の要因に基づいて圧縮機の上限回転数を変更する場合には、請求項6の発明の如く制御装置が、車室内の音のレベルが低くなる程、圧縮機の制御上の上限回転数を下げる方向で変更する上限回転数変更値を各要因毎に算出し、算出された各要因毎の上限回転数変更値のうち、最も高い値を圧縮機の制御上の上限回転数とすることで、何れかの要因で車室内の音のレベルが高く、圧縮機の駆動音が搭乗者の耳障りとなり難い状況では、圧縮機の上限回転数をできるだけ高くすることができるようになり、上限回転数の低下が空調性能や被温調対象の冷却性能に与える悪影響を低減することができるようになる。
 また、請求項7の発明の如く、吸熱器への冷媒の流通を制御する吸熱器用弁装置と、被温調対象用熱交換器への冷媒の流通を制御する被温調対象用弁装置を備え、制御装置が、被温調対象用弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器用弁装置を閉じる被温調対象冷却(単独)モードと、吸熱器用弁装置を開き、吸熱器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、被温調対象用弁装置を閉じる空調(単独)モードと、被温調対象用弁装置を開き、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、吸熱器又はそれにより冷却される対象の温度に基づいて吸熱器用弁装置を開閉制御する被温調対象冷却(優先)+空調モードと、吸熱器用弁装置を開き、吸熱器又はそれにより冷却される対象の温度に基づいて圧縮機の回転数を制御し、被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて被温調対象用弁装置を開閉制御する空調(優先)+被温調対象冷却モードを有するようにすれば、被温調対象の冷却のみを行う状態と、車室内の空調のみを行う状態と、被温調対象の冷却を優先しながら車室内の空調も行う状態と、車室内の空調を優先しながら被温調対象の冷却も行う状態を切り換えて実行することが可能となる。
 そして、単独モードを、被温調対象冷却(単独)モードと空調(単独)モードのうちの何れか一方、又は、双方とし、協調モードを、被温調対象冷却(優先)+空調モードと空調(優先)+被温調対象冷却モードのうちの何れか一方、又は、双方とすることで、被温調対象冷却(優先)+空調モードや空調(優先)+被温調対象冷却モードにおいて圧縮機の能力が不足する状態に陥る不都合を回避し、被温調対象の適切な冷却と、快適な空調運転を実現することができるようになる。
 また、請求項8の発明の如く冷媒を吸熱させて車室内の前部に供給する空気を冷却するためのフロントシート用の吸熱器と、冷媒を吸熱させて車室内の後部に供給する空気を冷却するためのリアシート用の吸熱器を備え、制御装置が、フロントシート用の吸熱器とリアシート用の吸熱器のうちの何れか一方で冷媒を蒸発させる第1の運転モードと、フロントシート用の吸熱器及びリアシート用の吸熱器で冷媒を吸熱させる第2の運転モードを有する場合、この第2の運転モードでは、第1の運転モードに比して、圧縮機の制御上の上限回転数を上げる方向で変更することで、第2の運転モードで圧縮機の能力が不足する状態に陥る不都合を回避することが可能となる。
 更に、請求項9の発明の如く制御装置に、圧縮機の制御上の上限回転数を上げる方向に変更して運転していることを報知するための所定の報知装置を設けることで、無用な不快感や不安感を使用者に与える不都合を解消することができるようになる。
本発明を適用した一実施形態の車両用空気調和装置の構成図である(実施例1)。 図1の車両用空気調和装置の制御装置の電気回路のブロック図である。 図2の制御装置が実行する運転モードを説明する図である。 図2の制御装置のヒートポンプコントローラによる暖房モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラによる除湿暖房モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラによる除湿冷房モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラによる冷房モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラによる空調(優先)+バッテリ冷却モードとバッテリ冷却(優先)+空調モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラによるバッテリ冷却(単独)モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラによる除霜モードを説明する車両用空気調和装置の構成図である。 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する制御ブロック図である。 図2の制御装置のヒートポンプコントローラの圧縮機制御に関するもう一つの制御ブロック図である。 図2の制御装置のヒートポンプコントローラの空調(優先)+バッテリ冷却モードでの電磁弁69の制御を説明するブロック図である。 図2の制御装置のヒートポンプコントローラの圧縮機制御に関する更にもう一つの制御ブロック図である。 図2の制御装置のヒートポンプコントローラのバッテリ冷却(優先)+空調モードでの電磁弁35の制御を説明するブロック図である。 図2の制御装置のヒートポンプコントローラによる室内送風機の風量に基づく圧縮機の上限回転数変更値の算出の一例を説明する図である。 図2の制御装置のヒートポンプコントローラによる吹出モードに基づく圧縮機の上限回転数変更値の算出の一例を説明する図である。 図2の制御装置のヒートポンプコントローラによる内外気モードに基づく圧縮機の上限回転数変更値の算出の一例を説明する図である。 図2の制御装置のヒートポンプコントローラによる音響機器の音量(オーディオレベル)に基づく圧縮機の上限回転数変更値の算出の一例を説明する図である。 図2の制御装置のヒートポンプコントローラによる車速に基づく圧縮機の上限回転数変更値の算出の一例を説明する図である。 図2の制御装置のヒートポンプコントローラによる外気温度に基づく圧縮機の上限回転数変更値の算出の一例を説明する図である。 図2の制御装置の空調操作部のディスプレイの表示状態の一例を示す図である。 本発明を適用した他の実施形態の車両用空気調和装置の構成図である(実施例2)。 図23の場合の圧縮機の上限回転数の変更制御を説明する図である。
 以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
 図1は本発明の一実施形態の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両に搭載されているバッテリ55に充電された電力を走行用モータ(電動モータ。図示せず)に供給することで駆動し、走行するものであり、本発明の車両用空気調和装置1の後述する圧縮機2も、バッテリ55から供給される電力で駆動されるものとする。
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、除霜モード、空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モード、及び、バッテリ冷却(単独)モードの各運転モードを切り換えて実行することで車室内の空調やバッテリ55の温調を行うものである。
 このうち、冷房モードが本発明における空調(単独)モードの実施例、バッテリ冷却(単独)モードが本発明における被温調対象冷却(単独)モードの実施例であり、これらが本発明における単独モードの実施例となる。また、空調(優先)+バッテリ冷却モードが本発明における空調(優先)+被温調対象冷却モードの実施例、バッテリ冷却(優先)+空調モードが本発明における被温調対象冷却(優先)+空調モードの実施例であり、これらが本発明における協調モードの実施例となる。
 尚、車両としては電気自動車に限らず、エンジンと走行用モータを供用する所謂ハイブリッド自動車にも本発明は有効である。また、実施例の車両用空気調和装置1を適用する車両は外部の充電器(急速充電器や普通充電器等)からバッテリ55に充電可能とされているものである。更に、前述したバッテリ55や走行用モータ、それを制御するインバータ等が本発明における車両に搭載された被温調対象となるが、以下の実施例ではバッテリ55を例に採り上げて説明する。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内の空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒がマフラー5と冷媒配管13Gを介して流入し、この冷媒を車室内に放熱(冷媒の熱を放出)させる室内熱交換器としての放熱器4と、暖房時に冷媒を減圧膨張させる電動弁(電子膨張弁)から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱(冷媒に熱を吸収)させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる機械式膨張弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に冷媒を蒸発させて車室内外から冷媒に吸熱(冷媒に熱を吸収)させる吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 そして、室外膨張弁6は放熱器4から出て室外熱交換器7に流入する冷媒を減圧膨張させると共に、全閉も可能とされている。また、実施例では機械式膨張弁が使用された室内膨張弁8は、吸熱器9に流入する冷媒を減圧膨張させると共に、吸熱器9における冷媒の過熱度を調整する。
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7の冷媒出口側の冷媒配管13Aは、吸熱器9に冷媒を流す際に開放される開閉弁としての電磁弁17(冷房用)を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは逆止弁18、室内膨張弁8、及び、吸熱器用弁装置としての電磁弁35(キャビン用)を順次介して吸熱器9の冷媒入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。また、逆止弁18は室内膨張弁8の方向が順方向とされている。
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される開閉弁としての電磁弁21(暖房用)を介して吸熱器9の冷媒出口側の冷媒配管13Cに連通接続されている。そして、この冷媒配管13Cがアキュムレータ12の入口側に接続され、アキュムレータ12の出口側は圧縮機2の冷媒吸込側の冷媒配管13Kに接続されている。
 更に、放熱器4の冷媒出口側の冷媒配管13Eにはストレーナ19が接続されており、更に、この冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐し、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される開閉弁としての電磁弁22(除湿用)を介し、逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bに連通接続されている。
 これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスするバイパス回路となる。また、室外膨張弁6にはバイパス用の開閉弁としての電磁弁20が並列に接続されている。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、放熱器4の風下側(空気下流側)における空気流通路3内には、実施例ではPTCヒータ(電気ヒータ)から成る補助加熱装置としての補助ヒータ23が設けられ、放熱器4を経て車室内に供給される空気を加熱することが可能とされている。更に、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。
 更にまた、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口からの空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 更に、車両用空気調和装置1は、バッテリ55(被温調対象)に熱媒体を循環させて当該バッテリ55の温度を調整するための機器温度調整装置61を備えている。実施例の機器温度調整装置61は、バッテリ55に熱媒体を循環させるための循環装置としての循環ポンプ62と、被温調対象用熱交換器としての冷媒-熱媒体熱交換器64と、加熱装置としての熱媒体加熱ヒータ63を備え、それらとバッテリ55が熱媒体配管66にて環状に接続されている。
 実施例の場合、循環ポンプ62の吐出側に冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口は熱媒体加熱ヒータ63の入口に接続されている。この熱媒体加熱ヒータ63の出口がバッテリ55の入口に接続され、バッテリ55の出口が循環ポンプ62の吸込側に接続されている。
 この機器温度調整装置61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、熱媒体加熱ヒータ63はPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55の周囲には例えば熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。
 そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は冷媒-熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は熱媒体加熱ヒータ63に至り、当該熱媒体加熱ヒータ63が発熱されている場合にはそこで加熱された後、バッテリ55に至り、熱媒体はそこでバッテリ55と熱交換する。そして、このバッテリ55と熱交換した熱媒体が循環ポンプ62に吸い込まれることで熱媒体配管66内を循環される。
 一方、冷媒回路Rの冷媒配管13Fと冷媒配管13Bとの接続部の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bには、分岐回路としての分岐配管67の一端が接続されている。この分岐配管67には実施例では機械式の膨張弁から構成された補助膨張弁68と、被温調対象用弁装置としての電磁弁(チラー用)69が順次設けられている。補助膨張弁68は冷媒-熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に、冷媒-熱媒体熱交換器64の冷媒流路64Bにおける冷媒の過熱度を調整する。
 そして、分岐配管67の他端は冷媒-熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管71の一端が接続され、冷媒配管71の他端は冷媒配管13Dとの合流点より冷媒上流側(アキュムレータ12の冷媒上流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁68や電磁弁69、冷媒-熱媒体熱交換器64の冷媒流路64B等も冷媒回路Rの一部を構成すると同時に、機器温度調整装置61の一部をも構成することになる。
 電磁弁69が開いている場合、室外熱交換器7から出た冷媒(一部又は全ての冷媒)は分岐配管67に流入し、補助膨張弁68で減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、冷媒配管71、冷媒配管13C、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれることになる。
 次に、図2は実施例の車両用空気調和装置1の制御装置11のブロック図を示している。制御装置11は、何れもプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された空調コントローラ45及びヒートポンプコントローラ32から構成されており、これらがCAN(Controller Area Network)やLIN(Local Interconnect Network)を構成する車両通信バス65に接続されている。また、圧縮機2と補助ヒータ23、循環ポンプ62と熱媒体加熱ヒータ63も車両通信バス65に接続され、これら空調コントローラ45、ヒートポンプコントローラ32、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63が車両通信バス65を介してデータの送受信を行うように構成されている。
 更に、車両通信バス65には走行を含む車両全般の制御を司る車両コントローラ72(ECU)と、バッテリ55の充放電の制御を司るバッテリコントローラ(BMS:Battery Management system)73と、GPSナビゲーション装置74が接続されている。車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74もプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成されており、制御装置11を構成する空調コントローラ45とヒートポンプコントローラ32は、車両通信バス65を介してこれら車両コントローラ72やバッテリコントローラ73、GPSナビゲーション装置74と情報(データ)の送受信を行う構成とされている。
 空調コントローラ45は、車両の車室内空調の制御を司る上位のコントローラであり、この空調コントローラ45の入力には、車両の外気温度Tamを検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれて吸熱器9に流入する空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、車室内に吹き出される空気の温度を検出する吹出温度センサ41と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52の各出力と、車室内の設定温度や運転モードの切り換え等の車室内の空調設定操作や情報の表示を行うための空調操作部53が接続されている。尚、図中53Aはこの空調操作部53に設けられた表示による報知装置としてのディスプレイである。
 また、空調コントローラ45の出力には、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31が接続され、それらは空調コントローラ45により制御される。
 ヒートポンプコントローラ32は、主に冷媒回路Rの制御を司るコントローラであり、このヒートポンプコントローラ32の入力には、放熱器4の冷媒入口温度Tcxin(圧縮機2の吐出冷媒温度でもある)を検出する放熱器入口温度センサ43と、放熱器4の冷媒出口温度Tciを検出する放熱器出口温度センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ46と、放熱器4の冷媒出口側の冷媒圧力(放熱器4の圧力:放熱器圧力Pci)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9自体の温度、又は、吸熱器9により冷却された直後の空気(冷却対象)の温度:以下、吸熱器温度Te)を検出する吸熱器温度センサ48と、室外熱交換器7の出口の冷媒温度(室外熱交換器7の冷媒蒸発温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ49と、補助ヒータ23の温度を検出する補助ヒータ温度センサ50A(運転席側)及び50B(助手席側)の各出力が接続されている。
 また、ヒートポンプコントローラ32の出力には、室外膨張弁6、電磁弁22(除湿用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁20(バイパス用)、電磁弁35(キャビン用)及び電磁弁69(チラー用)の各電磁弁が接続され、それらはヒートポンプコントローラ32により制御される。尚、圧縮機2、補助ヒータ23、循環ポンプ62及び熱媒体加熱ヒータ63はそれぞれコントローラを内蔵しており、実施例では圧縮機2や補助ヒータ23、循環ポンプ62や熱媒体加熱ヒータ63のコントローラは車両通信バス65を介してヒートポンプコントローラ32とデータの送受信を行い、このヒートポンプコントローラ32によって制御される。
 尚、機器温度調整装置61を構成する循環ポンプ62や熱媒体加熱ヒータ63はバッテリコントローラ73により制御されるようにしてもよい。更に、このバッテリコントローラ73には機器温度調整装置61の冷媒-熱媒体熱交換器64の熱媒体流路64Aの出口側の熱媒体の温度(熱媒体温度Tw:被温調対象用熱交換器により冷却される対象の温度)を検出する熱媒体温度センサ76と、被温調対象であるバッテリ55の温度(バッテリ55自体の温度:バッテリ温度Tcell)を検出するバッテリ温度センサ77の出力が接続されている。そして、実施例ではバッテリ55の残量(蓄電量)やバッテリ55の充電に関する情報(充電中であることの情報や充電完了時間、残充電時間等)、熱媒体温度Twやバッテリ温度Tcellは、バッテリコントローラ73から車両通信バス65を介して空調コントローラ45や車両コントローラ72に送信される。尚、バッテリ55の充電時における充電完了時間や残充電時間に関する情報は、急速充電器等の外部の充電器から供給される情報である。また、車両に設けられた音響機器の音量AUD(オーディオレベル)に関する情報は、車両コントローラ72から空調コントローラ45に送信される。
 ヒートポンプコントローラ32と空調コントローラ45は車両通信バス65を介して相互にデータの送受信を行い、各センサの出力や空調操作部53にて入力された設定に基づき、各機器を制御するものであるが、この場合の実施例では外気温度センサ33、外気湿度センサ34、HVAC吸込温度センサ36、内気温度センサ37、内気湿度センサ38、室内CO2濃度センサ39、吹出温度センサ41、日射センサ51、車速センサ52、空気流通路3に流入して当該空気流通路3内を流通する空気の風量Ga(空調コントローラ45が算出)、エアミックスダンパ28による風量割合SW(空調コントローラ45が算出)、室内送風機27の電圧(BLV)、前述したバッテリコントローラ73からの情報、GPSナビゲーション装置74からの情報、車両に設けられた音響機器の音量AUD(オーディオレベル)の情報、空調操作部53の出力は空調コントローラ45から車両通信バス65を介してヒートポンプコントローラ32に送信され、ヒートポンプコントローラ32による制御に供される構成とされている。
 また、ヒートポンプコントローラ32からも冷媒回路Rの制御に関するデータ(情報)が車両通信バス65を介して空調コントローラ45に送信される。尚、前述したエアミックスダンパ28による風量割合SWは、0≦SW≦1の範囲で空調コントローラ45が算出する。そして、SW=1のときはエアミックスダンパ28により、吸熱器9を経た空気の全てが放熱器4及び補助ヒータ23に通風されることになる。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。この実施例では制御装置11(空調コントローラ45、ヒートポンプコントローラ32)は、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、空調(優先)+バッテリ冷却モードの各空調運転と、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードの各バッテリ冷却運転と、除霜モードを切り換えて実行する。これらが図3に示されている。
 このうち、暖房モードと、除湿暖房モードと、除湿冷房モードと、冷房モードと、空調(優先)+バッテリ冷却モードの各空調運転は、実施例ではバッテリ55を充電しておらず、車両のイグニッション(IGN)がONされ、空調操作部53の空調スイッチがONされている場合に実行されるものである。但し、リモート運転時(プレ空調等)にはイグニッションがOFFの場合にも実行される。また、バッテリ55を充電中でもバッテリ冷却要求が無く、空調スイッチがONされているときは実行される。一方、バッテリ冷却(優先)+空調モードと、バッテリ冷却(単独)モードの各バッテリ冷却運転は、例えば急速充電器(外部電源)のプラグを接続し、バッテリ55に充電しているときに実行されるものである。但し、バッテリ冷却(単独)モードは、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。
 また、実施例ではヒートポンプコントローラ32は、イグニッションがONされているときや、イグニッションがOFFされていてもバッテリ55が充電中であるときは、機器温度調整装置61の循環ポンプ62を運転し、図4~図10に破線で示す如く熱媒体配管66内に熱媒体を循環させるものとする。更に、図3には示していないが、実施例のヒートポンプコントローラ32は、機器温度調整装置61の熱媒体加熱ヒータ63を発熱させることでバッテリ55を加熱するバッテリ加熱モードも実行する。
 (1)暖房モード
 先ず、図4を参照しながら暖房モードについて説明する。尚、各機器の制御はヒートポンプコントローラ32と空調コントローラ45の協働により実行されるものであるが、以下の説明ではヒートポンプコントローラ32を制御主体とし、簡略化して説明する。図4には暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。ヒートポンプコントローラ32により(オートモード)或いは空調コントローラ45の空調操作部53へのマニュアルの空調設定操作(マニュアルモード)により暖房モードが選択されると、ヒートポンプコントローラ32は電磁弁21を開き、電磁弁17、電磁弁20、電磁弁22、電磁弁35、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、更にこの冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、冷媒配管13Kからガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 ヒートポンプコントローラ32は、車室内に吹き出される空気の目標温度(車室内に吹き出される空気の温度の目標値)である後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の目標温度)から目標放熱器圧力PCOを算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tci及び放熱器圧力センサ47が検出する放熱器圧力Pciに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。
 また、ヒートポンプコントローラ32は、必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く暖房する。
 (2)除湿暖房モード
 次に、図5を参照しながら除湿暖房モードについて説明する。図5は除湿暖房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿暖房モードでは、ヒートポンプコントローラ32は電磁弁21、電磁弁22、電磁弁35を開き、電磁弁17、電磁弁20、電磁弁69は閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て一部は冷媒配管13Jに入り、室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15により通風される外気中から熱を汲み上げる(吸熱)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、この冷媒配管13Cを経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。
 一方、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の残りは分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Bに至る。次に、冷媒は室内膨張弁8に至り、この室内膨張弁8にて減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、アキュムレータ12を経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 ヒートポンプコントローラ32は、実施例では目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御するか、又は、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。このとき、ヒートポンプコントローラ32は放熱器圧力Pciによるか吸熱器温度Teによるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。また、吸熱器温度Teに基づいて室外膨張弁6の弁開度を制御する。
 また、ヒートポンプコントローラ32は、この除湿暖房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、低外気温時等にも車室内を支障無く除湿暖房する。
 (3)除湿冷房モード
 次に、図6を参照しながら除湿冷房モードについて説明する。図6は除湿冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。除湿冷房モードでは、ヒートポンプコントローラ32は電磁弁17、及び、電磁弁35を開き、電磁弁20、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒と熱交換して加熱される。一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13E、13Jを経て室外膨張弁6に至り、暖房モードや除湿暖房モードよりも開き気味(大きい弁開度の領域)で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこを経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4や補助ヒータ23(発熱している場合)を通過する過程で再加熱(除湿暖房時よりも加熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。
 ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と吸熱器9の目標温度(吸熱器温度Teの目標値)である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力Pci(冷媒回路Rの高圧圧力)と目標放熱器圧力PCO(放熱器圧力Pciの目標値)に基づき、放熱器圧力Pciを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量(再加熱量)を得る。
 また、ヒートポンプコントローラ32は、この除湿冷房モードにおいても必要とされる暖房能力に対して放熱器4による暖房能力(再加熱能力)が不足する場合、この不足する分を補助ヒータ23の発熱で補完する。これにより、車室内の温度を下げ過ぎること無く、除湿冷房する。
 (4)冷房モード(単独モード、空調(単独)モード)
 次に、図7を参照しながら冷房モードについて説明する。図7は冷房モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。冷房モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁35を開き、電磁弁21、電磁弁22、及び、電磁弁69を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、補助ヒータ23には通電されない。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入り、逆止弁18を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、ヒートポンプコントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。
 (5)空調(優先)+バッテリ冷却モード(協調モード、空調(優先)+被温調対象冷却モード)
 次に、図8を参照しながら空調(優先)+バッテリ冷却モードについて説明する。図8は空調(優先)+バッテリ冷却モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。空調(優先)+バッテリ冷却モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、電磁弁35、及び、電磁弁69を開き、電磁弁21、及び、電磁弁22を閉じる。
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。尚、この運転モードでは補助ヒータ23には通電されない。また、熱媒体加熱ヒータ63にも通電されない。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒート(再加熱)のみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15により通風される外気によって空冷され、凝縮液化する。
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後に分流され、一方はそのまま冷媒配管13Bを流れて室内膨張弁8に至る。この室内膨張弁8に流入した冷媒はそこで減圧された後、電磁弁35を経て吸熱器9に流入し、蒸発する。このときの吸熱作用で室内送風機27から吹き出されて吸熱器9と熱交換する空気は冷却される。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cを経てアキュムレータ12に至り、そこから冷媒配管13Kを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。
 他方、逆止弁18を経た冷媒の残りは分流され、分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図8に実線矢印で示す)。
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒と熱交換し、吸熱されて熱媒体は冷却される。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図8に破線矢印で示す)。
 この空調(優先)+バッテリ冷却モードにおいては、ヒートポンプコントローラ32は電磁弁35を開いた状態を維持し、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて後述する図12に示す如く圧縮機2の回転数を制御する。また、実施例では熱媒体温度センサ76が検出する熱媒体の温度(熱媒体温度Tw:バッテリコントローラ73から送信される)に基づき、電磁弁69を以下の如く開閉制御する。
 尚、吸熱器温度Teは、実施例における吸熱器9の温度又はそれにより冷却される対象(空気)の温度である。また、熱媒体温度Twは、実施例における冷媒-熱媒体熱交換器64(被温調対象用熱交換器)により冷却される対象(熱媒体)の温度として採用しているが、被温調対象であるバッテリ55の温度を示す指標でもある(以下、同じ)。
 図13はこの空調(優先)+バッテリ冷却モードにおける電磁弁69の開閉制御のブロック図を示している。ヒートポンプコントローラ32の被温調対象用電磁弁制御部90には熱媒体温度センサ76が検出する熱媒体温度Twと、当該熱媒体温度Twの目標値としての所定の目標熱媒体温度TWOが入力される。そして、被温調対象用電磁弁制御部90は、目標熱媒体温度TWOの上下に所定の温度差を有して上限値TwULと下限値TwLLを設定し、電磁弁69を閉じている状態からバッテリ55の発熱等により熱媒体温度Twが高くなり、上限値TwULまで上昇した場合、電磁弁69を開放する(電磁弁69開指示)。これにより、冷媒は冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発し、熱媒体流路64Aを流れる熱媒体を冷却するので、この冷却された熱媒体によりバッテリ55は冷却される。
 その後、熱媒体温度Twが下限値TwLLまで低下した場合、電磁弁69を閉じる(電磁弁69閉指示)。以後、このような電磁弁69の開閉を繰り返して、車室内の冷房を優先しながら、熱媒体温度Twを目標熱媒体温度TWOに制御し、バッテリ55の冷却を行う。
 (6)空調運転の切り換え
 ヒートポンプコントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 そして、ヒートポンプコントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO、熱媒体温度Tw等の運転条件や環境条件、設定条件の変化に応じ、前記各空調運転を選択して切り換えていく。例えば、冷房モードから空調(優先)+バッテリ冷却モードへの移行は、バッテリコントローラ73からのバッテリ冷却要求が入力されたことに基づいて実行される。この場合、バッテリコントローラ73は例えば熱媒体温度Twやバッテリ温度Tcellが所定値以上に上昇した場合にバッテリ冷却要求を出力し、ヒートポンプコントローラ32や空調コントローラ45に送信するものである。
 (7)バッテリ冷却(優先)+空調モード(協調モード、被温調対象冷却(優先)+空調モード)
 次に、バッテリ55の充電中の動作について説明する。例えば急速充電器(外部電源)の充電用のプラグが接続され、バッテリ55が充電されているときに(これらの情報はバッテリコントローラ73から送信される)、車両のイグニッション(IGN)のON/OFFに拘わらず、バッテリ冷却要求があり、空調操作部53の空調スイッチがONされた場合、ヒートポンプコントローラ32はバッテリ冷却(優先)+空調モードを実行する。このバッテリ冷却(優先)+空調モードにおける冷媒回路Rの冷媒の流れ方は、図8に示した空調(優先)+バッテリ冷却モードの場合と同様である。
 但し、このバッテリ冷却(優先)+空調モードの場合、実施例ではヒートポンプコントローラ32は電磁弁69を開いた状態に維持し、熱媒体温度センサ76(バッテリコントローラ73から送信される)が検出する熱媒体温度Twに基づいて後述する図14に示す如く圧縮機2の回転数を制御する。また、実施例では吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づき、電磁弁35を以下の如く開閉制御する。
 図15はこのバッテリ冷却(優先)+空調モードにおける電磁弁35の開閉制御のブロック図を示している。ヒートポンプコントローラ32の吸熱器用電磁弁制御部95には吸熱器温度センサ48が検出する吸熱器温度Teと、当該吸熱器温度Teの目標値としての所定の目標吸熱器温度TEOが入力される。そして、吸熱器用電磁弁制御部95は、目標吸熱器温度TEOの上下に所定の温度差を有して上限値TeULと下限値TeLLを設定し、電磁弁35を閉じている状態から吸熱器温度Teが高くなり、上限値TeULまで上昇した場合、電磁弁35を開放する(電磁弁35開指示)。これにより、冷媒は吸熱器9に流入して蒸発し、空気流通路3を流通する空気を冷却する。
 その後、吸熱器温度Teが下限値TeLLまで低下した場合、電磁弁35を閉じる(電磁弁35閉指示)。以後、このような電磁弁35の開閉を繰り返して、バッテリ55の冷却を優先しながら、吸熱器温度Teを目標吸熱器温度TEOに制御し、車室内の冷房を行う。
 (8)バッテリ冷却(単独)モード(単独モード、被温調対象冷却(単独)モード)
 次に、イグニッションのON/OFFに拘わらず、空調操作部53の空調スイッチがOFFされた状態で、急速充電器の充電用のプラグが接続され、バッテリ55が充電されているとき、バッテリ冷却要求があった場合、ヒートポンプコントローラ32はバッテリ冷却(単独)モードを実行する。但し、バッテリ55の充電中以外にも、空調スイッチがOFFで、バッテリ冷却要求があった場合(高外気温で走行時等)には実行される。図9はこのバッテリ冷却(単独)モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。バッテリ冷却(単独)モードでは、ヒートポンプコントローラ32は電磁弁17、電磁弁20、及び、電磁弁69を開き、電磁弁21、電磁弁22、及び、電磁弁35を閉じる。
 そして、圧縮機2、及び、室外送風機15を運転する。尚、室内送風機27は運転されず、補助ヒータ23にも通電されない。また、この運転モードでは熱媒体加熱ヒータ63も通電されない。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て冷媒配管13Jに至る。このとき、電磁弁20は開放されているので冷媒は電磁弁20を通過し、そのまま室外熱交換器7に流入し、そこで室外送風機15により通風される外気によって空冷され、凝縮液化する。
 室外熱交換器7を出た冷媒は冷媒配管13A、電磁弁17、レシーバドライヤ部14、過冷却部16を経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、逆止弁18を経た後、全てが分岐配管67に流入して補助膨張弁68に至る。ここで冷媒は減圧された後、電磁弁69を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管71、冷媒配管13C及びアキュムレータ12を順次経て冷媒配管13Kから圧縮機2に吸い込まれる循環を繰り返す(図9に実線矢印で示す)。
 一方、循環ポンプ62が運転されているので、この循環ポンプ62から吐出された熱媒体が熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却されるようになる。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、熱媒体加熱ヒータ63に至る。但し、この運転モードでは熱媒体加熱ヒータ63は発熱されないので、熱媒体はそのまま通過してバッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は冷却されると共に、バッテリ55を冷却した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す(図9に破線矢印で示す)。
 このバッテリ冷却(単独)モードにおいても、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて後述する図14に示す如く圧縮機2の回転数を制御することにより、バッテリ55を冷却する。これにより、車室内を空調する必要が無い場合には、バッテリ55を強力に冷却することができるようになる。
 (9)除霜モード
 次に、図10を参照しながら室外熱交換器7の除霜モードについて説明する。図10は除霜モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。前述した如く暖房モードでは、室外熱交換器7では冷媒が蒸発し、外気から吸熱して低温となるため、室外熱交換器7には外気中の水分が霜となって付着する。
 そこで、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXO(室外熱交換器7における冷媒蒸発温度)と、室外熱交換器7の無着霜時における冷媒蒸発温度TXObaseとの差ΔTXO(=TXObase-TXO)を算出しており、室外熱交換器温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下して、その差ΔTXOが所定値以上に拡大した状態が所定時間継続した場合、室外熱交換器7に着霜しているものと判定して所定の着霜フラグをセットする。
 そして、この着霜フラグがセットされており、空調操作部53の空調スイッチがOFFされた状態で、急速充電器に充電用のプラグが接続され、バッテリ55が充電されるとき、ヒートポンプコントローラ32は以下の如く室外熱交換器7の除霜モードを実行する。
 ヒートポンプコントローラ32はこの除霜モードでは、冷媒回路Rを前述した暖房モードの状態とした上で、室外膨張弁6の弁開度を全開とする。そして、圧縮機2を運転し、当該圧縮機2から吐出された高温の冷媒を放熱器4、室外膨張弁6を経て室外熱交換器7に流入させ、当該室外熱交換器7の着霜を融解させる(図10)。そして、ヒートポンプコントローラ32は室外熱交換器温度センサ49が検出する室外熱交換器温度TXOが所定の除霜終了温度(例えば、+3℃等)より高くなった場合、室外熱交換器7の除霜が完了したものとして除霜モードを終了する。
 (10)バッテリ加熱モード
 また、空調運転を実行しているとき、或いは、バッテリ55を充電しているとき、ヒートポンプコントローラ32はバッテリ加熱モードを実行する。このバッテリ加熱モードでは、ヒートポンプコントローラ32は循環ポンプ62を運転し、熱媒体加熱ヒータ63に通電する。尚、電磁弁69は閉じる。
 これにより、循環ポンプ62から吐出された熱媒体は熱媒体配管66内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこを通過して熱媒体加熱ヒータ63に至る。このとき熱媒体加熱ヒータ63は発熱されているので、熱媒体は熱媒体加熱ヒータ63により加熱されて温度上昇した後、バッテリ55に至り、当該バッテリ55と熱交換する。これにより、バッテリ55は加熱されると共に、バッテリ55を加熱した後の熱媒体は、循環ポンプ62に吸い込まれる循環を繰り返す。
 このバッテリ加熱モードにおいては、ヒートポンプコントローラ32は熱媒体温度センサ76が検出する熱媒体温度Twに基づいて熱媒体加熱ヒータ63の通電を制御することにより、熱媒体温度Twを所定の目標熱媒体温度TWOに調整し、バッテリ55を加熱する。
 (11)ヒートポンプコントローラ32による圧縮機2の制御
 また、ヒートポンプコントローラ32は、暖房モードでは放熱器圧力Pciに基づき、図11の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出し、除湿冷房モード、冷房モード、空調(優先)+バッテリ冷却モードでは、吸熱器温度Teに基づき、図12の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出する。尚、除湿暖房モードでは圧縮機目標回転数TGNChと圧縮機目標回転数TGNCcのうちの低い方向を選択する。また、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードでは、熱媒体温度Twに基づき、図13の制御ブロック図により圧縮機2の目標回転数(圧縮機目標回転数)TGNCwを算出する。
 (11-1)放熱器圧力Pciに基づく圧縮機目標回転数TGNChの算出
 先ず、図11を用いて放熱器圧力Pciに基づく圧縮機2の制御について詳述する。図11は放熱器圧力Pciに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F(フィードフォワード)操作量演算部78は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO-Te)/(Thp-Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における冷媒の過冷却度SCの目標値である目標過冷却度TGSCと、ヒータ温度Thpの目標値である前述した目標ヒータ温度TCOと、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを算出する。
 尚、ヒータ温度Thpは放熱器4の風下側の空気温度(推定値)であり、放熱器圧力センサ47が検出する放熱器圧力Pciと放熱器出口温度センサ44が検出する放熱器4の冷媒出口温度Tciから算出(推定)する。また、過冷却度SCは放熱器入口温度センサ43と放熱器出口温度センサ44が検出する放熱器4の冷媒入口温度Tcxinと冷媒出口温度Tciから算出される。
 前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部79が算出する。更に、F/B(フィードバック)操作量演算部81はこの目標放熱器圧力PCOと放熱器圧力Pciに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNChfbを算出する。そして、F/F操作量演算部78が算出したF/F操作量TGNChffとF/B操作量演算部81が算出したF/B操作量TGNChfbは加算器82で加算され、TGNCh00としてリミット設定部83に入力される。
 リミット設定部83では制御上の下限回転数ECNpdLimLoと上限回転数ECNpdLimHiのリミットが付けられてTGNCh0とされた後、圧縮機OFF制御部84を経て圧縮機目標回転数TGNChとして決定される。即ち、圧縮機2の回転数は上限回転数ECNpdLimHi以下に制限される。通常モードではヒートポンプコントローラ32は、この放熱器圧力Pciに基づいて算出された圧縮機目標回転数TGNChにより、放熱器圧力Pciが目標放熱器圧力PCOになるように圧縮機2の運転を制御する。
 尚、圧縮機OFF制御部84は、圧縮機目標回転数TGNChが上述した下限回転数ECNpdLimLoとなり、放熱器圧力Pciが目標放熱器圧力PCOの上下に設定された所定の上限値PULと下限値PLLのうちの上限値PULまで上昇した状態が所定時間th1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。
 この圧縮機2のON-OFFモードでは、放熱器圧力Pciが下限値PLLまで低下した場合、圧縮機2を起動して圧縮機目標回転数TGNChを下限回転数ECNpdLimLoとして運転し、その状態で放熱器圧力Pciが上限値PULまで上昇した場合は圧縮機2を再度停止させる。即ち、下限回転数ECNpdLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、放熱器圧力Pciが下限値PULまで低下し、圧縮機2を起動した後、放熱器圧力Pciが下限値PULより高くならない状態が所定時間th2継続した場合、圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。
 (11-2)吸熱器温度Teに基づく圧縮機目標回転数TGNCcの算出
 次に、図12を用いて吸熱器温度Teに基づく圧縮機2の制御について詳述する。図12は吸熱器温度Teに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部86は外気温度Tamと、空気流通路3内を流通する空気の風量Ga(室内送風機27のブロワ電圧BLVでもよい)と、目標放熱器圧力PCOと、吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを算出する。
 また、F/B操作量演算部87は目標吸熱器温度TEOと吸熱器温度Teに基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCcfbを算出する。そして、F/F操作量演算部86が算出したF/F操作量TGNCcffとF/B操作量演算部87が算出したF/B操作量TGNCcfbは加算器88で加算され、TGNCc00としてリミット設定部89に入力される。
 リミット設定部89では制御上の下限回転数TGNCcLimLoと上限回転数TGNCcLimHiのリミットが付けられてTGNCc0とされた後、圧縮機OFF制御部91を経て圧縮機目標回転数TGNCcとして決定される。従って、圧縮機2の回転数は上限回転数TGNCcLimHi以下に制限される。但し、この上限回転数TGNCcLimHiは後述する如くヒートポンプコントローラ32により変更される。また、加算器88で加算された値TGNCc00が上限回転数TGNCcLimHiと下限回転数TGNCcLimLo以内であり、後述するON-OFFモードにならなければ、この値TGNCc00が圧縮機目標回転数TGNCc(圧縮機2の回転数となる)。通常モードではヒートポンプコントローラ32は、この吸熱器温度Teに基づいて算出された圧縮機目標回転数TGNCcにより、吸熱器温度Teが目標吸熱器温度TEOになるように圧縮機2の運転を制御する。
 尚、圧縮機OFF制御部91は、圧縮機目標回転数TGNCcが上述した下限回転数TGNCcLimLoとなり、吸熱器温度Teが目標吸熱器温度TEOの上下に設定された上限値TeULと下限値TeLLのうちの下限値TeLLまで低下した状態が所定時間tc1継続した場合、圧縮機2を停止させて圧縮機2をON-OFF制御するON-OFFモードに入る。
 この場合の圧縮機2のON-OFFモードでは、吸熱器温度Teが上限値TeULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCcを下限回転数TGNCcLimLoとして運転し、その状態で吸熱器温度Teが下限値TeLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCcLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、吸熱器温度Teが上限値TeULまで上昇し、圧縮機2を起動した後、吸熱器温度Teが上限値TeULより低くならない状態が所定時間tc2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。
 (11-3)熱媒体温度Twに基づく圧縮機目標回転数TGNCwの算出
 次に、図14を用いて熱媒体温度Twに基づく圧縮機2の制御について詳述する。図14は熱媒体温度Twに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCwを算出するヒートポンプコントローラ32の制御ブロック図である。ヒートポンプコントローラ32のF/F操作量演算部92は外気温度Tamと、機器温度調整装置61内の熱媒体の流量Gw(循環ポンプ62の出力から算出される)と、バッテリ55の発熱量(バッテリコントローラ73から送信される)と、バッテリ温度Tcell(バッテリコントローラ73から送信される)と、熱媒体温度Twの目標値である目標熱媒体温度TWOに基づいて圧縮機目標回転数のF/F操作量TGNCcwffを算出する。
 また、F/B操作量演算部93は目標熱媒体温度TWOと熱媒体温度Tw(バッテリコントローラ73から送信される)に基づくPID演算若しくはPI演算により圧縮機目標回転数のF/B操作量TGNCwfbを算出する。そして、F/F操作量演算部92が算出したF/F操作量TGNCwffとF/B操作量演算部93が算出したF/B操作量TGNCwfbは加算器94で加算され、TGNCw00としてリミット設定部96に入力される。
 リミット設定部96では制御上の下限回転数TGNCwLimLoと上限回転数TGNCwLimHiのリミットが付けられてTGNCw0とされた後、圧縮機OFF制御部97を経て圧縮機目標回転数TGNCwとして決定される。従って、圧縮機2の回転数は上限回転数TGNCwLimHi以下に制限される。但し、この上限回転数TGNCwLimHiは後述する如くヒートポンプコントローラ32により変更される。また、加算器94で加算された値TGNCw00が上限回転数TGNCwLimHiと下限回転数TGNCwLimLo以内であり、後述するON-OFFモードにならなければ、この値TGNCw00が圧縮機目標回転数TGNCw(圧縮機2の回転数となる)。通常モードではヒートポンプコントローラ32は、この熱媒体温度Twに基づいて算出された圧縮機目標回転数TGNCwにより、熱媒体温度Twが目標熱媒体温度TWOになるように圧縮機2の運転を制御する。
 尚、圧縮機OFF制御部97は、圧縮機目標回転数TGNCwが上述した下限回転数TGNCwLimLoとなり、熱媒体温度Twが目標熱媒体温度TWOの上下に設定された上限値TwULと下限値TwLLのうちの下限値TwLLまで低下した状態が所定時間tw1継続した場合、圧縮機2を停止させて圧縮機2のON-OFF制御するON-OFFモードに入る。
 この場合の圧縮機2のON-OFFモードでは、熱媒体温度Twが上限値TwULまで上昇した場合、圧縮機2を起動して圧縮機目標回転数TGNCwを下限回転数TGNCwLimLoとして運転し、その状態で熱媒体温度Twが下限値TwLLまで低下した場合は圧縮機2を再度停止させる。即ち、下限回転数TGNCwLimLoでの圧縮機2の運転(ON)と、停止(OFF)を繰り返す。そして、熱媒体温度Twが上限値TwULまで上昇し、圧縮機2を起動した後、熱媒体温度Twが上限値TwULより低くならない状態が所定時間tw2継続した場合、この場合の圧縮機2のON-OFFモードを終了し、通常モードに復帰するものである。
 (12)ヒートポンプコントローラ32による圧縮機2の上限回転数の変更制御
 次に、図16~図24を参照しながらヒートポンプコントローラ32による圧縮機2の上限回転数TGNCcLimHi(図12)及びTGNCwLimHi(図14)の変更制御について説明する。前述した如く圧縮機2は車両のバッテリ55で駆動される電動式の圧縮機であるため、高回転では比較的大きな駆動音を発生する。そのため、車室内の音のレベルが低く、静かな状況ではこの圧縮機2の駆動音が搭乗者に聞こえて耳障りとなる。一方、車室内の音のレベルが高い状況では、圧縮機2を高回転で駆動させても駆動音は耳障りにならない。
 この車室内の音のレベルに影響する要因として、圧縮機2の駆動音以外の要因、実施例では、室内送風機27の風量、前述した各吹出口からの吹出モード、空気流通路3への空気の導入モード、車両に設けられた音響機器の音量AUD(オーディオレベル)、車速VSP、及び、外気温度Tamを採用する。そして、ヒートポンプコントローラ32はこれらの要因に基づき、実施例では式(II)、(III)を用いて前述した冷房モード、空調(優先)+バッテリ冷却モード等の際に使用される圧縮機目標回転数TGNCcの上限回転数TGNCcLimHiと、バッテリ冷却(単独)モード、バッテリ冷却(優先)+空調モードの際に使用される圧縮機目標回転数TGNCwの上限回転数TGNCwLimHiを変更する。
 TGNCcLimHi=MAX(TGNCcLimBLV、TGNCcLimMOD、TGNCcLimREC、TGNCcLimAUD、TGNCcLimVSP、TGNCcLimTam) ・・(II)
 TGNCwLimHi=MAX(TGNCwLimBLV、TGNCwLimMOD、TGNCwLimREC、TGNCwLimAUD、TGNCwLimVSP、TGNCwLimTam) ・・(III)
 尚、上記TGNCcLimBLV及びTGNCwLimBLVは、室内送風機27の風量に基づく上限回転数変更値であり、TGNCcLimMOD及びTGNCwLimMODは、前述したFOOT吹出口、VENT吹出口等の吹出口29からの吹出モードに基づく上限回転数変更値である。また、上記TGNCcLimREC及びTGNCwLimRECは、前述した空気流通路3への空気の導入モード(内気循環モード、外気導入モード)に基づく上限回転数変更値であり、TGNCcLimAUD及びTGNCwLimAUDは、前述した音響機器の音量に基づく上限回転数変更値である。更に、上記TGNCcLimVSP及びTGNCwLimVSPは、車速に基づく上限回転数変更値であり、TGNCcLimTam及びTGNCwLimTamは、外気温度Tamに基づく上限回転数変更値である。
 即ち、実施例のヒートポンプコントローラ32は、室内送風機27の風量に基づく上限回転数変更値TGNCcLimBLV及びTGNCwLimBLV、吹出モードに基づく上限回転数変更値TGNCcLimMOD及びTGNCwLimMOD、導入モードに基づく上限回転数変更値TGNCcLimREC及びTGNCwLimREC、音響機器の音量に基づく上限回転数変更値TGNCcLimAUD及びTGNCwLimAUD、車速に基づく上限回転数変更値TGNCcLimVSP及びTGNCwLimVSP、及び、外気温度Tamに基づく上限回転数変更値TGNCcLimTam及びTGNCwLimTamのうち、最も高い(MAX)値をそれぞれ上限回転数TGNCcLimHi(図12)及び上限回転数TGNCwLimHi(図14)として決定する。
 その理由としては、上記何れかの要因で車室内の音のレベルが高く、圧縮機2の駆動音が搭乗者の耳障りとなり難い状況では、圧縮機2の上限回転数は高い方が良く、その分、空調性能やバッテリ55の冷却性能に与える悪影響を低減することができるようになるからである。次に、各要因に基づく上限回転数変更値の算出手順について説明する。
 (12-1)室内送風機27の風量に基づく上限回転数変更値の算出
 先ず、図16を用いて室内送風機27の風量に基づく上限回転数変更値TGNCcLimBLV、TGNCwLimBLVの算出手順の一例について説明する。ヒートポンプコントローラ32は、室内送風機27のブロワ電圧BLVを当該室内送風機27の風量を示す指標とし、このブロワ電圧BLVに応じて上限回転数変更値TGNCcLimBLV、TGNCwLimBLVを算出する。この場合、ヒートポンプコントローラ32はブロワ電圧BLVが低くなる程、即ち、室内送風機27の風量が低くなる程、下げる方向で上限回転数変更値TGNCcLimBLV、TGNCwLimBLVを変更する。
 ここで、図16の上側のグラフは本発明における単独モード(冷房モード及びバッテリ冷却(単独)モード)の場合を示している。この上側のグラフにおいて横軸はブロワ電圧BLVであり、所定値BLV1~BLV4は、BLV4<BLV3<BLV2<BLV1の関係とし、室内送風機27の風量と車室内の音のレベルの関係から予め実験により求められた値とする。また、縦軸は上限回転数変更値TGNCcLimBLV及びTGNCwLimBLVであり、最高値NC1、最低値NC2は、NC2<NC1の関係とする。この最高値NC1は実施例では圧縮機2を運転する際に許容される最高の回転数である。
 実施例では、単独モードでは上限回転数TGNCcLimHi(図12)用の上限回転数変更値TGNCcLimBLVと上限回転数TGNCwLimHi(図14)用の上限回転数変更値TGNCwLimBLVを、ブロワ電圧BLVが所定値BLV1のときはNC1とする。そして、ブロワ電圧BLVが低下(室内送風機27の風量が低下)してBLV2になるまでそれを維持し、BLV2より下がった場合、TGNCcLimBLV、TGNCwLimBLVを下げ始め、BLV4でNC2になるまで一定の率でTGNCcLimBLV、TGNCwLimBLVを低下させていく。
 TGNCcLimBLV、TGNCwLimBLVをNC2とした状態からブロワ電圧BLVが上昇(室内送風機27の風量が上昇)した場合、BLV3になるまではそれを維持し、BLV3より上がった場合、TGNCcLimBLV、TGNCwLimBLVを上げ始め、BLV1でNC1になるまで一定の率でTGNCcLimBLV、TGNCwLimBLVを上昇させていく。尚、BLV1とBLV2の差、及び、BLV3とBLV4の差はヒステリシスである。
 また、図16の下側のグラフは本発明における協調モード(空調(優先)+バッテリ冷却モード及びバッテリ冷却(優先)+空調モード)の場合を示している。この下側のグラフにおいて縦軸の最高値NC1、最低値NC3は、NC3<NC1の関係とし、更に、NC2<NC3する。これにより、ヒートポンプコントローラ32は、協調モードでの圧縮機2の上限回転数変更値TGNCcLimBLV、TGNCwLimBLVの最低値NC3を、単独モードでの上限回転数変更値TGNCcLimBLV、TGNCwLimBLVの最低値NC2よりも上げる方向で変更することになる。
 実施例では、協調モードでは上限回転数TGNCcLimHi(図12)用の上限回転数変更値TGNCcLimBLVと上限回転数TGNCwLimHi(図14)用の上限回転数変更値TGNCwLimBLVを、ブロワ電圧BLVが所定値BLV1のときはNC1とする。そして、ブロワ電圧BLVが低下(室内送風機27の風量が低下)してBLV2になるまでそれを維持し、BLV2より下がった場合、TGNCcLimBLV、TGNCwLimBLVを下げ始め、BLV4でNC3になるまで一定の率でTGNCcLimBLV、TGNCwLimBLVを低下させていく。
 TGNCcLimBLV、TGNCwLimBLVをNC3とした状態からブロワ電圧BLVが上昇(室内送風機27の風量が上昇)した場合、BLV3になるまではそれを維持し、BLV3より上がった場合、TGNCcLimBLV、TGNCwLimBLVを上げ始め、BLV1でNC1になるまで一定の率でTGNCcLimBLV、TGNCwLimBLVを上昇させていく。
 そして、前記式(II)、式(III)で上限回転数変更値TGNCcLimBLV、TGNCwLimBLVが最も高い場合(MAX)、これら上限回転数変更値TGNCcLimBLV、TGNCwLimBLVが上限回転数TGNCcLimHi(図12)、上限回転数TGNCwLimHi(図14)として決定され、圧縮機2の回転数NCはこれ以上に制御されなくなる。
 室内送風機27の風量(ブロワ電圧BLV)が低下すると、風量が多い場合に比して車室内は音のレベルは低くなり、静かになる。そのため、圧縮機2の駆動音も目立つようになって、搭乗者に耳障りとなる。従って、ヒートポンプコントローラ32により室内送風機27の風量に基づき、当該風量が低くなる程、圧縮機2の制御上の上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)を下げる方向で変更することで、室内送風機27の風量が低下した状況においては圧縮機2の駆動音を低減することができるようになる。また、室内送風機27の風量が低下することは必要な空調能力も低いことを意味するので、総じて搭乗者に快適な車室内空調を実現することができるようになる。
 更に、ヒートポンプコントローラ32は、協調モード(空調(優先)+バッテリ冷却モード及びバッテリ冷却(優先)+空調モード)での圧縮機の制御上の上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)を、単独モード(冷房モード及びバッテリ冷却(単独)モード)より上げる方向で変更するようにしたので、冷媒が吸熱器9及び冷媒-熱媒体熱交換器64で吸熱する協調モードにおいては、圧縮機2の制御上の上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)を上げて圧縮機2の能力が不足する状態に陥る不都合を回避することが可能となる。これらにより、バッテリ55の適切な冷却と、快適な空調運転を実現し、商品性を向上させることができるようになる。
 この場合、実施例ではヒートポンプコントローラ32は、協調モードでの圧縮機2の制御上の上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)の最低値NC3を、単独モードでの最低値NC2よりも上げる方向で変更するので、上限回転数の最高値NC1が上昇してしまう不都合も回避でき、信頼性も向上させることができるようになる。
 (12-2)吹出モードに基づく上限回転数変更値の算出
 次に、図17を用いて吹出口29からの吹出モードに基づく上限回転数変更値TGNCcLimMOD、TGNCwLimMODの算出手順の一例について説明する。ヒートポンプコントローラ32は吹出口29からの空気の吹出モードがFOOT吹出口から吹き出すFOOTモードである場合、吹出モードフラグfMODをセット(「1」)し、VENT吹出口から吹き出すVENTモードである場合は吹出モードフラグfMODをリセット(「0」)する。
 そして、吹出モードフラグfMODがセットされている場合、単独モード(冷房モード、バッテリ冷却(単独)モード)では、ヒートポンプコントローラ32は上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)用の上限回転数変更値TGNCcLimMOD、TGNCwLimMODを最低値NC2とし、リセットされている場合には最高値NC1とする。また、吹出モードフラグfMODがセットされている場合、協調モード(空調(優先)+バッテリ冷却モード及びバッテリ冷却(優先)+空調モード)では、上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)用の上限回転数変更値TGNCcLimMOD、TGNCwLimMODを最低値NC3とし、リセットされている場合には最高値NC1とする。
 上記NC1~NC3の関係は前述の図16の場合と同様であるので、即ち、ヒートポンプコントローラ32は吹出モードがFOOTモード(fMODがセット)である場合、VENTモードの場合(fMODリセット)に比して下げる方向で上限回転数変更値TGNCcLimMOD、TGNCwLimMODを変更することになる。そして、前記式(II)、式(III)で上限回転数変更値TGNCcLimMOD、TGNCwLimMODが最も高い場合(MAX)、これら上限回転数変更値TGNCcLimMOD、TGNCwLimMODが上限回転数TGNCcLimHi(図12)、上限回転数TGNCwLimHi(図14)として決定され、圧縮機2の回転数NCはこれ以上に制御されなくなる。
 搭乗者の耳から遠いFOOT吹出口から空気を吹き出すFOOTモードの場合は、VENT吹出口から吹き出すVENTモードの場合に比して、搭乗者の耳に届く車室内の音のレベルは低くなり、圧縮機2の駆動音も目立つようになって、搭乗者に耳障りとなる。従って、ヒートポンプコントローラ32がFOOTモードの場合、VENTモードの場合に比して圧縮機2の制御上の上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)を下げる方向で変更することで、FOOTモードにおいては圧縮機2の駆動音を低減し、搭乗者に快適な車室内空調を実現することができるようになる。
 そして、この場合も実施例ではヒートポンプコントローラ32は、協調モードでの圧縮機2の制御上の上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)の最低値NC3を、単独モードでの最低値NC2よりも上げる方向で変更するので、圧縮機2の能力が不足する状態に陥る不都合を回避しながら、上限回転数の最高値NC1が上昇してしまう不都合も回避できるようになり、信頼性も向上させることができるようになる。
 (12-3)空気流通路3への空気の導入モードに基づく上限回転数変更値の算出
 次に、図18を用いて空気流通路3への空気の導入モード(内気循環モード、外気導入モード)に基づく上限回転数変更値TGNCcLimREC、TGNCwLimRECの算出手順について説明する。ヒートポンプコントローラ32は空気流通路3への空気の導入モードが外気導入モードである場合、導入モードフラグfRECをセット(「1」)し、内気循環モードである場合は導入モードフラグfRECをリセット(「0」)する。
 そして、導入モードフラグfRECがセットされている場合、単独モード(冷房モード、バッテリ冷却(単独)モード)では、ヒートポンプコントローラ32は上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)用の上限回転数変更値TGNCcLimREC、TGNCwLimRECを最低値NC2とし、リセットされている場合には最高値NC1とする。また、導入モードフラグfRECがセットされている場合、協調モード(空調(優先)+バッテリ冷却モード及びバッテリ冷却(優先)+空調モード)では、上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)用の上限回転数変更値TGNCcLimREC、TGNCwLimRECを最低値NC3とし、リセットされている場合には最高値NC1とする。
 上記NC1~NC3の関係は前述の図16の場合と同様であるので、即ち、ヒートポンプコントローラ32は空気流通路3への空気の導入モードが外気導入モードである場合、内気循環モードの場合に比して下げる方向で上限回転数変更値TGNCcLimREC、TGNCwLimRECを変更することになる。そして、前記式(II)、式(III)で上限回転数変更値TGNCcLimREC、TGNCwLimRECが最も高い場合(MAX)、これら上限回転数変更値TGNCcLimREC、TGNCwLimRECが上限回転数TGNCcLimHi(図12)、上限回転数TGNCwLimHi(図14)として決定され、圧縮機2の回転数NCはこれ以上に制御されなくなる。
 空気流通路3に外気を導入する外気導入モードでは内気を導入する内気循環モードに比して車室内に吹き出される風量が低下するため、車室内は音のレベルは低くなり、圧縮機2の駆動音も目立つようになって、搭乗者に耳障りとなる。従って、ヒートポンプコントローラ32が、外気導入モードの場合、内気循環モードの場合に比して圧縮機2の制御上の上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)を下げる方向で変更することで、外気導入モードにおいては圧縮機2の駆動音を低減し、搭乗者に快適な車室内空調を実現することができるようになる。
 そして、この場合も実施例ではヒートポンプコントローラ32は、協調モードでの圧縮機2の制御上の上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)の最低値NC3を、単独モードでの最低値NC2よりも上げる方向で変更するので、圧縮機2の能力が不足する状態に陥る不都合を回避しながら、上限回転数の最高値NC1が上昇してしまう不都合も回避できるようになり、信頼性も向上させることができるようになる。
 (12-4)音響機器の音量AUD(オーディオレベル)に基づく上限回転数変更値の算出
 次に、図19を用いて音響機器の音量に基づく上限回転数変更値TGNCcLimAUD、TGNCwLimAUDの算出手順の一例について説明する。ヒートポンプコントローラ32は、車両側から入力される情報である音響機器の音量AUDに応じて上限回転数変更値TGNCcLimAUD、TGNCwLimAUDを算出する。この場合、ヒートポンプコントローラ32は音量AUDが低くなる程、下げる方向で上限回転数変更値TGNCcLimAUD、TGNCwLimAUDを変更する。
 ここで、図19の上側のグラフは本発明における単独モード(冷房モード及びバッテリ冷却(単独)モード)の場合を示している。この上側のグラフにおいて横軸は音響機器の音量AUDであり、所定値AUD1~AUD4は、AUD4<AUD3<AUD2<AUD1の関係とし、音響機器の音量AUDと車室内の音のレベルの関係から予め実験により求められた値とする。また、縦軸は上限回転数変更値TGNCcLimAUD及びTGNCwLimAUDであり、最高値NC1、最低値NC2は、NC2<NC1の関係とする。この最高値NC1は実施例では圧縮機2を運転する際に許容される最高の回転数である。
 実施例では、単独モードでは上限回転数TGNCcLimHi(図12)用の上限回転数変更値TGNCcLimAUDと上限回転数TGNCwLimHi(図14)用の上限回転数変更値TGNCwLimAUDを、音量AUDが所定値AUD1のときはNC1とする。そして、音量AUDが低下してAUD2になるまでそれを維持し、AUD2より下がった場合、TGNCcLimAUD、TGNCwLimAUDを下げ始め、AUD4でNC2になるまで一定の率でTGNCcLimAUD、TGNCwLimAUDを低下させていく。
 TGNCcLimAUD、TGNCwLimAUDをNC2とした状態から音量AUDが上昇した場合、AUD3になるまではそれを維持し、AUD3より上がった場合、TGNCcLimAUD、TGNCwLimAUDを上げ始め、AUD1でNC1になるまで一定の率でTGNCcLimAUD、TGNCwLimAUDを上昇させていく。尚、AUD1とAUD2の差、及び、AUD3とAUD4の差はヒステリシスである。
 また、図19の下側のグラフは本発明における協調モード(空調(優先)+バッテリ冷却モード及びバッテリ冷却(優先)+空調モード)の場合を示している。この下側のグラフにおいて縦軸の最高値NC1、最低値NC3は、NC3<NC1の関係とし、更に、NC2<NC3する。これにより、ヒートポンプコントローラ32は、協調モードでの圧縮機2の上限回転数変更値TGNCcLimAUD、TGNCwLimAUDの最低値NC3を、単独モードでの上限回転数変更値TGNCcLimAUD、TGNCwLimAUDの最低値NC2よりも上げる方向で変更することになる。
 実施例では、協調モードでは上限回転数TGNCcLimHi(図12)用の上限回転数変更値TGNCcLimAUDと上限回転数TGNCwLimHi(図14)用の上限回転数変更値TGNCwLimAUDを、音量AUDが所定値AUD1のときはNC1とする。そして、音量AUDが低下してAUD2になるまでそれを維持し、AUD2より下がった場合、TGNCcLimAUD、TGNCwLimAUDを下げ始め、AUD4でNC3になるまで一定の率でTGNCcLimAUD、TGNCwLimAUDを低下させていく。
 TGNCcLimAUD、TGNCwLimAUDをNC3とした状態から音量AUDが上昇した場合、AUD3になるまではそれを維持し、AUD3より上がった場合、TGNCcLimAUD、TGNCwLimAUDを上げ始め、AUD1でNC1になるまで一定の率でTGNCcLimAUD、TGNCwLimAUDを上昇させていく。
 そして、前記式(II)、式(III)で上限回転数変更値TGNCcLimAUD、TGNCwLimAUDが最も高い場合(MAX)、これら上限回転数変更値TGNCcLimAUD、TGNCwLimAUDが上限回転数TGNCcLimHi(図12)、上限回転数TGNCwLimHi(図14)として決定され、圧縮機2の回転数NCはこれ以上に制御されなくなる。
 車両に設けられた音響機器の音量AUDが小さい場合、車室内は音のレベルは低くなり、圧縮機2の駆動音も目立つようになって、搭乗者に耳障りとなる。従って、ヒートポンプコントローラ32により、車両に設けられた音響機器の音量AUDに基づき、当該音量AUDが小さくなる程、圧縮機2の制御上の上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)を下げる方向で変更することで、音響機器の音量AUDが低い状況では圧縮機2の駆動音を低減し、搭乗者に快適な車室内空調を実現することができるようになる。
 そして、この場合も実施例ではヒートポンプコントローラ32は、協調モードでの圧縮機2の制御上の上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)の最低値NC3を、単独モードでの最低値NC2よりも上げる方向で変更するので、圧縮機2の能力が不足する状態に陥る不都合を回避しながら、上限回転数の最高値NC1が上昇してしまう不都合も回避できるようになり、信頼性も向上させることができるようになる。
 (12-5)車速VSPに基づく上限回転数変更値の算出
 次に、図20を用いて車速VSPに基づく上限回転数変更値TGNCcLimVSP、TGNCwLimVSPの算出手順の一例について説明する。ヒートポンプコントローラ32は車速センサ52が検出する車速VSPに応じて上限回転数変更値TGNCcLimVSP、TGNCwLimVSPを算出する。この場合、ヒートポンプコントローラ32は車速VSPが低くなる程、下げる方向で上限回転数変更値TGNCcLimVSP、TGNCwLimVSPを変更する。
 ここで、図20の上側のグラフは本発明における単独モード(冷房モード及びバッテリ冷却(単独)モード)の場合を示している。この上側のグラフにおいて横軸は車速VSPであり、所定値VSP1~VSP4は、VSP4<VSP3<VSP2<VSP1の関係とし、車速VSPと車室内の音のレベルの関係から予め実験により求められた値とする。また、縦軸は上限回転数変更値TGNCcLimVSP及びTGNCwLimVSPであり、最高値NC1、最低値NC2は、NC2<NC1の関係とする。この最高値NC1は実施例では圧縮機2を運転する際に許容される最高の回転数である。
 実施例では、単独モードでは上限回転数TGNCcLimHi(図12)用の上限回転数変更値TGNCcLimVSPと上限回転数TGNCwLimHi(図14)用の上限回転数変更値TGNCwLimVSPを、車速VSPが所定値VSP1のときはNC1とする。そして、車速VSPが低下してVSP2になるまでそれを維持し、VSP2より下がった場合、TGNCcLimVSP、TGNCwLimVSPを下げ始め、VSP4でNC2になるまで一定の率でTGNCcLimVSP、TGNCwLimVSPを低下させていく。
 TGNCcLimVSP、TGNCwLimVSPをNC2とした状態から車速VSPが上昇した場合、VSP3になるまではそれを維持し、VSP3より上がった場合、TGNCcLimVSP、TGNCwLimVSPを上げ始め、VSP1でNC1になるまで一定の率でTGNCcLimVSP、TGNCwLimVSPを上昇させていく。尚、VSP1とVSP2の差、及び、VSP3とVSP4の差はヒステリシスである。
 また、図20の下側のグラフは本発明における協調モード(空調(優先)+バッテリ冷却モード及びバッテリ冷却(優先)+空調モード)の場合を示している。この下側のグラフにおいて縦軸の最高値NC1、最低値NC3は、NC3<NC1の関係とし、更に、NC2<NC3する。これにより、ヒートポンプコントローラ32は、協調モードでの圧縮機2の上限回転数変更値TGNCcLimVSP、TGNCwLimVSPの最低値NC3を、単独モードでの上限回転数変更値TGNCcLimVSP、TGNCwLimVSPの最低値NC2よりも上げる方向で変更することになる。
 実施例では、協調モードでは上限回転数TGNCcLimHi(図12)用の上限回転数変更値TGNCcLimVSPと上限回転数TGNCwLimHi(図14)用の上限回転数変更値TGNCwLimVSPを、車速VSPが所定値VSP1のときはNC1とする。そして、車速VSPが低下してVSP2になるまでそれを維持し、VSP2より下がった場合、TGNCcLimVSP、TGNCwLimVSPを下げ始め、VSP4でNC3になるまで一定の率でTGNCcLimVSP、TGNCwLimVSPを低下させていく。
 TGNCcLimVSP、TGNCwLimVSPをNC3とした状態から車速VSPが上昇した場合、VSP3になるまではそれを維持し、VSP3より上がった場合、TGNCcLimVSP、TGNCwLimVSPを上げ始め、VSP1でNC1になるまで一定の率でTGNCcLimVSP、TGNCwLimVSPを上昇させていく。
 そして、前記式(II)、式(III)で上限回転数変更値TGNCcLimVSP、TGNCwLimVSPが最も高い場合(MAX)、これら上限回転数変更値TGNCcLimVSP、TGNCwLimVSPが上限回転数TGNCcLimHi(図12)、上限回転数TGNCwLimHi(図14)として決定され、圧縮機2の回転数NCはこれ以上に制御されなくなる。
 このようにヒートポンプコントローラ32によって車速VSPの変化に基づき、車速VSPが低くなる程(停車を含む)、圧縮機2の制御上の上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)を下げる方向で連続して変更することで、停車時等に圧縮機2の駆動音を低減し、搭乗者に快適な車室内空調を実現することができるようになる。
 そして、この場合も実施例ではヒートポンプコントローラ32は、協調モードでの圧縮機2の制御上の上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)の最低値NC3を、単独モードでの最低値NC2よりも上げる方向で変更するので、圧縮機2の能力が不足する状態に陥る不都合を回避しながら、上限回転数の最高値NC1が上昇してしまう不都合も回避できるようになり、信頼性も向上させることができるようになる。
 (12-6)外気温度Tamに基づく上限回転数変更値の算出
 次に、図21を用いて外気温度Tamに基づく上限回転数変更値TGNCcLimTam、TGNCwLimTamの算出手順の一例について説明する。ヒートポンプコントローラ32は外気温度センサ33が検出する外気温度Tamに応じて上限回転数変更値TGNCcLimTam、TGNCwLimTamを算出する。この場合、ヒートポンプコントローラ32は外気温度Tamが低くなる程、下げる方向で上限回転数変更値TGNCcLimTam、TGNCwLimTamを変更する。
 ここで、図21の上側のグラフは本発明における単独モード(冷房モード及びバッテリ冷却(単独)モード)の場合を示している。この上側のグラフにおいて横軸は外気温度Tamであり、所定値Tam1~Tam4は、Tam4<Tam3<Tam2<Tam1の関係とし、外気温度Tamと車室内の音のレベルの関係から予め実験により求められた値とする。また、縦軸は上限回転数変更値TGNCcLimTam及びTGNCwLimTamであり、最高値NC1、最低値NC2は、NC2<NC1の関係とする。この最高値NC1は実施例では圧縮機2を運転する際に許容される最高の回転数である。
 実施例では、単独モードでは上限回転数TGNCcLimHi(図12)用の上限回転数変更値TGNCcLimTamと上限回転数TGNCwLimHi(図14)用の上限回転数変更値TGNCwLimTamを、外気温度Tamが所定値Tam1のときはNC1とする。そして、外気温度Tamが低下してTam2になるまでそれを維持し、Tam2より下がった場合、TGNCcLimTam、TGNCwLimTamを下げ始め、Tam4でNC2になるまで一定の率でTGNCcLimTam、TGNCwLimTamを低下させていく。
 TGNCcLimTam、TGNCwLimTamをNC2とした状態から外気温度Tamが上昇した場合、Tam3になるまではそれを維持し、Tam3より上がった場合、TGNCcLimTam、TGNCwLimTamを上げ始め、Tam1でNC1になるまで一定の率でTGNCcLimTam、TGNCwLimTamを上昇させていく。尚、Tam1とTam2の差、及び、Tam3とTam4の差はヒステリシスである。
 また、図21の下側のグラフは本発明における協調モード(空調(優先)+バッテリ冷却モード及びバッテリ冷却(優先)+空調モード)の場合を示している。この下側のグラフにおいて縦軸の最高値NC1、最低値NC3は、NC3<NC1の関係とし、更に、NC2<NC3する。これにより、ヒートポンプコントローラ32は、協調モードでの圧縮機2の上限回転数変更値TGNCcLimTam、TGNCwLimTamの最低値NC3を、単独モードでの上限回転数変更値TGNCcLimTam、TGNCwLimTamの最低値NC2よりも上げる方向で変更することになる。
 実施例では、協調モードでは上限回転数TGNCcLimHi(図12)用の上限回転数変更値TGNCcLimTamと上限回転数TGNCwLimHi(図14)用の上限回転数変更値TGNCwLimTamを、外気温度Tamが所定値Tam1のときはNC1とする。そして、外気温度Tamが低下してTam2になるまでそれを維持し、Tam2より下がった場合、TGNCcLimTam、TGNCwLimTamを下げ始め、Tam4でNC3になるまで一定の率でTGNCcLimTam、TGNCwLimTamを低下させていく。
 TGNCcLimTam、TGNCwLimTamをNC3とした状態から外気温度Tamが上昇した場合、Tam3になるまではそれを維持し、Tam3より上がった場合、TGNCcLimTam、TGNCwLimTamを上げ始め、Tam1でNC1になるまで一定の率でTGNCcLimTam、TGNCwLimTamを上昇させていく。
 そして、前記式(II)、式(III)で上限回転数変更値TGNCcLimTam、TGNCwLimTamが最も高い場合(MAX)、これら上限回転数変更値TGNCcLimTam、TGNCwLimTamが上限回転数TGNCcLimHi(図12)、上限回転数TGNCwLimHi(図14)として決定され、圧縮機2の回転数NCはこれ以上に制御されなくなる。
 このようにヒートポンプコントローラ32により、外気温度Tamが低くなる程、圧縮機2の制御上の上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)を下げる方向で変更することで、車両を構成する機器(圧縮機2のマウントやゴムホース等)が低外気温下で硬化し、振動による騒音が大きくなる状況下においても圧縮機2の上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)を下げ、振動に伴う騒音の発生を低減することができるようになる。
 そして、この場合も実施例ではヒートポンプコントローラ32は、協調モードでの圧縮機2の制御上の上限回転数TGNCcLimHi(図12)、TGNCwLimHi(図14)の最低値NC3を、単独モードでの最低値NC2よりも上げる方向で変更するので、圧縮機2の能力が不足する状態に陥る不都合を回避しながら、上限回転数の最高値NC1が上昇してしまう不都合も回避できるようになり、信頼性も向上させることができるようになる。
 以上のように協調モード(空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モード)では、単独モード(冷房モード、バッテリ冷却(単独)モード)に比して圧縮機2の制御上の上限回転数TGNCcLimHi、TGNCwLimHiを上げる方向で変更するようにしたので、冷媒が蒸発(吸熱)する経路が長くなる空調(優先)+バッテリ冷却モードやバッテリ冷却(優先)+空調モードにおいては、圧縮機2の制御上の上限回転数TGNCcLimHi、TGNCwLimHiを上げて圧縮機2の能力が不足する状態に陥る不都合を回避することが可能となる。これにより、適切なバッテリ55の冷却と、快適な空調運転を実現し、信頼性と商品性を向上させることができるようになる。
 また、実施例ではヒートポンプコントローラ32が、バッテリ冷却(単独)モードでは冷媒-熱媒体熱交換器64で冷媒を吸熱させ、冷房モードでは吸熱器9で冷媒を吸熱させると共に、バッテリ冷却(優先)+空調モードと、空調(優先)+バッテリ冷却モードにおいては、冷媒-熱媒体熱交換器64及び吸熱器9で冷媒を吸熱させるようにしたので、バッテリ冷却(単独)モードと冷房モードではバッテリ55の冷却と車室内の冷房をそれぞれ行い、バッテリ冷却(優先)+空調モードと、空調(優先)+バッテリ冷却モードではバッテリ55を冷却しながら車室内を空調も行うことができるようになる。
 そして、冷媒-熱媒体熱交換器64と吸熱器9の双方で冷媒が吸熱(蒸発)するバッテリ冷却(優先)+空調モードと、空調(優先)+バッテリ冷却モードにおいて、圧縮機2の制御上の上限回転数TGNCwLimHi、TGNCcLimHiを上げて圧縮機2の能力が不足する状態に陥る不都合を回避することができるようになる。
 この場合、実施例では冷媒-熱媒体熱交換器64への冷媒の流通を制御する電磁弁69と、吸熱器9への冷媒の流通を制御する電磁弁35を設け、ヒートポンプコントローラ32が、バッテリ冷却(単独)モードと冷房モードにおいて、電磁弁69と電磁弁35のうちの何れか一方を開き、他方を閉じると共に、バッテリ冷却(優先)+空調モードと、空調(優先)+バッテリ冷却モードにおいては、電磁弁69及び電磁弁35を開くようにしたので、各運転モードを円滑に実行することができるようになる。
 更に、実施例では電磁弁69を開いて熱媒体温度Twで圧縮機2の回転数を制御し、電磁弁35を閉じるバッテリ冷却(単独)モードと、電磁弁35を開いて吸熱器温度Teで圧縮機2の回転数を制御し、電磁弁69を閉じる冷房モードを実行するようにしているので、バッテリ55の冷却と、車室内の空調を円滑に行うことができるようになる。
 また、実施例では電磁弁69を開き、熱媒体温度Twで圧縮機2の回転数を制御し、吸熱器温度Teで電磁弁35を開閉制御するバッテリ冷却(優先)+空調モードと、電磁弁35を開き、吸熱器温度Teで圧縮機2の回転数を制御し、熱媒体温度Twで電磁弁69を開閉制御する空調(優先)+バッテリ冷却モードを実行するようにしているので、バッテリ55を冷却しながら車室内の冷房を行うなかで、状況に応じてバッテリ55の冷却を優先するか、車室内の空調を優先するかを切り換え、効果的なバッテリ55の冷却と、快適な車室内空調を実現することができるようになる。
 (13)バッテリ温度Twによる圧縮機2の上限回転数の変更制御
 上記のように車室内の音のレベルで圧縮機2の上限回転数を変更(制限)しているなかで、圧縮機2の回転数が上限回転数となり、且つ、バッテリコントローラ73から送信されるバッテリ温度Tcell(バッテリ温度センサ77が検出する)が低下せずに所定の閾値Tcell1よりも高くなった場合、ヒートポンプコントローラ32は圧縮機2の制御上の上限回転数TGNCcLimHi、TGNCwLimHiを上げる方向で変更する。これは熱媒体温度Twで圧縮機2の回転数を制御する場合に特に有効である。また、実施例では上述したバッテリ冷却(単独)モード、バッテリ冷却(優先)+空調モード、及び、空調(優先)+バッテリ冷却モードで実行することとする。
 この場合、ヒートポンプコントローラ32は、前述した図16~図21の制御における最低値NC3及び最低値NC2を最高値NC1にする。即ち、ヒートポンプコントローラ32は、バッテリ温度Tcellが閾値Tcell1より高くなった場合、バッテリ冷却(単独)モード、バッテリ冷却(優先)+空調モード、及び、空調(優先)+バッテリ冷却モードにおいて、圧縮機2の制御上の上限回転数TGNCcLimHi、TGNCwLimHiを、車室内の音のレベルによる制限を行わず、最高値NC1に固定することになる。
 このように、ヒートポンプコントローラ32が、バッテリ温度Tcellが所定の閾値Tcell1より高い場合、圧縮機2の制御上の上限回転数TGNCcLimHi、TGNCwLimHiを上げる方向で変更するようにすれば、バッテリ55の温度が高くなり、冷却が必要となっていることに基づいて圧縮機2の制御上の上限回転数TGNCcLimHi、TGNCwLimHiを上げることができるようになる。
 その場合も、ヒートポンプコントローラ32は、圧縮機2の制御上の上限回転数TGNCcLimHi、TGNCwLimHiの最低値NC3やNC2を、最高値NC1にするようにしているので、最高値NC1が上昇してしまう不都合を回避しながら、圧縮機2の駆動音の問題に優先してバッテリ55を冷却することができるようになり、更なる信頼性の向上を図ることができるようになる。
 (14)圧縮機2の制御上の上限回転数を上げる方向で変更していることの報知
 また、制御装置11(空調コントローラ45)は運転モードが上述した協調モード(バッテリ冷却(優先)+空調モード及び空調(優先)+バッテリ冷却モード)を実行していること、及び、バッテリ温度Tcellの温度上昇で上限回転数を上げる方向で変更していることを空調操作部53のディスプレイ53Aの所定の位置に表示(報知)する。この表示例を図22に示す。図22の最上段は通常運転時(後述する第1の運転モードを含む)の状態であり、例えば灰色の四角D1を表示する。前述したバッテリ冷却(単独)モードや冷房モード、暖房モード、除湿暖房モード、除湿冷房モードも同様である。一方、前述した協調モード(バッテリ冷却(優先)+空調モード及び空調(優先)+バッテリ冷却モード)や後述する第2の運転モードを実行する場合や、バッテリ温度Tcellの上昇で上限回転数を変更している場合、四角D2に表示状態を切り換える。尚、例えばエコモード等が使用者により設定された場合には四角D3に表示状態を切り換える。
 前述した如く協調モード(バッテリ冷却(優先)+空調モード及び空調(優先)+バッテリ冷却モード)や、バッテリ温度Tcellが高くなった場合、圧縮機2の上限回転数が高くなるため、圧縮機2の実際の回転数も高くなり、その分、騒音(圧縮機2の駆動音)も大きくなるが、係る場合にディスプレイ53Aで表示(報知)することにより、圧縮機2の上限回転数が上昇していることを使用者に報知し、無用な不快感や不安感を使用者に与える不都合を解消することができるようになる。
 次に、図23は本発明を適用可能な他の実施形態の車両用空気調和装置1の構成図を示している。図23は車室内の後部(リアシート)に供給する空気を冷却するための蒸発器としてのリアシート用の吸熱器101を備えた車両用空気調和装置1の一例である。尚、この図において図1と同一符号で示すものは同一若しくは同様の機能を奏するものとする。
 但し、吸熱器9は車室内の前部(フロントシート)に供給する空気を冷却するためのフロントシート用の吸熱器となる。また、図19では室内送風機27やマフラー5、ストレーナ19等は示していないが、実際には同様の位置に設けられているものとする。更に、この例では電磁弁20や電磁弁22は設けられておらず、過冷却部16から出た冷媒配管13Bが逆止弁18を介して室内膨張弁8(この場合、全閉可能な電動弁)に接続されている。また、冷媒配管13Dは冷媒配管13Bから分岐している。
 そして、リアシート用のHVACユニット10Aの空気流通路3Aにも図示しないが室内送風機が設けられている。また、空気流通路3Aにはリアシート用吸熱器101と補助ヒータ102が配置され、冷媒配管13Bに接続された冷媒配管13Hがリアシート用の室内膨張弁103(全閉可能な電動弁)を介してリアシート用吸熱器101の入口に接続されている。また、リアシート用吸熱器101の出口の冷媒配管13Lが冷媒配管71を介して冷媒配管13Cに接続されている。
 このような構成で、フロントシート側の暖房モードは図1の場合と同様である。即ち、圧縮機2から吐出された冷媒を放熱器4で放熱させ、室外膨張弁6で減圧した後、室外熱交換器7で吸熱させる。但し、室外熱交換器7を出た冷媒は、レシーバドライヤ部14、過冷却部16、冷媒配管13B、電磁弁21、冷媒配管13C、アキュムレータ12へと流れることになる。また、フロントシート側の冷房モードも図1の場合と同様である。但し、室外膨張弁6は全開とされる。即ち、圧縮機2から吐出された冷媒を室外熱交換器7で放熱させ、室内膨張弁8で減圧した後、吸熱器9で吸熱させる。
 尚、この実施例では電磁弁21を閉じ、室内膨張弁8を開いて、圧縮機2から吐出された冷媒を放熱器4で放熱させ、室内膨張弁8で冷媒を減圧した後、吸熱器9で吸熱させることでフロントシート側の除湿モードを実行することになる。
 一方、リアシート側の暖房モードは室内膨張弁103を閉じ、補助ヒータ102を発熱させる。また、冷房モードは補助ヒータ102の発熱を停止して、室内膨張弁103を開き、冷媒を減圧した後、リアシート用吸熱器101で吸熱させる。また、除湿モードはそれに加えて補助ヒータ102を発熱させることになる。この実施例の場合には、このようにしてヒートポンプコントローラ32は、車室内の前部(フロントシート側)と後部(リアシート側)を冷房モード、暖房モード、除湿モードを実行する。
 また、ヒートポンプコントローラ32は前述同様の空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モードを実行する。但し、空調(優先)+バッテリ冷却モードと、バッテリ冷却(優先)+空調モードでは、吸熱器9とリアシート用の吸熱器101の双方、若しくは、何れかで冷媒を吸熱(蒸発)させる場合が含まれる。
 更に、ヒートポンプコントローラ32は基本的には前述同様に吸熱器温度Teや熱媒体温度Twで圧縮機2の回転数を制御するものであるが、この例の場合、室内膨張弁8と電磁弁69を閉じ、リアシート用の吸熱器101のみで冷媒を吸熱させるリアシート側のみの冷房モードでは、当該リアシート用吸熱器101の温度で圧縮機2の回転数を制御することになる。
 そして、この実施例の場合には、電磁弁69を閉じ、室内膨張弁103も閉じて吸熱器9のみで冷媒を吸熱(蒸発)させるモード、電磁弁69を開き、室内膨張弁8、103を閉じて冷媒-熱媒体熱交換器64のみで冷媒を吸熱させるモード、及び、電磁弁69を閉じ、室内膨張弁8も閉じてリアシート用の吸熱器101のみで冷媒を蒸発させるモードが第1の運転モードとなり、それらのうちの何れか二つで蒸発させる状態が第2の運転モードとなる。
 また、それらの全てで冷媒を蒸発させるモードもヒートポンプコントローラ32は実行するものであるが、その場合には吸熱器9、101、冷媒-熱媒体熱交換器64の全てで冷媒を吸熱させるモードも第2の運転モードに含まれるものとする。
 この場合、図24に示す如く第2の運転モードでは、ヒートポンプコントローラ32は圧縮機2の上限回転数を上げる方向で変更する。即ち、上記第1の運転モードでは、上限回転数TGNCcLimHiと上限回転数TGNCwLimHi等をNCMaxLoとしている。その状態で、時刻t1のタイミングで第2の運転モードに切り換わった場合(図24の下段)、上限回転数TGNCcLimHiと上限回転数TGNCwLimHi等を所定の上昇率で上昇させ、最終的にNCMaxHiとする(図24の上段)。
 その後、時刻t2のタイミングで再び第1の運転モードに切り換わった場合、ヒートポンプコントローラ32は上限回転数TGNCcLimHiと上限回転数TGNCwLimHi等を所定の降下率で低下させ、最終的にNCMaxLoに戻す。これにより、圧縮機2の能力が不足する状態に陥る不都合を回避することができるようになる。また、同様にディスプレイ53Aにて上限回転数を上昇させて運転していることを報知するので、使用者の不快感、不安感を解消することができる。
 尚、前述した実施例では熱媒体温度Twを冷媒-熱媒体熱交換器64(被温調対象用熱交換器)により冷却される対象(熱媒体)の温度として採用したが、バッテリ温度Tcellを冷媒-熱媒体熱交換器64(被温調対象用熱交換器)により冷却される対象の温度として採用してもよく、冷媒-熱媒体熱交換器64の温度(冷媒-熱媒体熱交換器64自体の温度、冷媒流路64Bを出た冷媒の温度等)を冷媒-熱媒体熱交換器64(被温調対象用熱交換器)の温度として採用してもよい。
 また、実施例では熱媒体を循環させてバッテリ55の温調を行うようにしたが、請求項1の発明ではそれに限らず、冷媒とバッテリ55(被温調対象)を直接熱交換させる被温調対象用熱交換器を設けてもよい。その場合には、バッテリ温度Tcellが被温調対象用熱交換器により冷却される対象の温度となる。
 また、実施例ではバッテリ55の冷却と車室内の冷房を同時に行うバッテリ冷却(優先)+空調モードと空調(優先)+バッテリ冷却モードでバッテリ55を冷却しながら車室内を冷房することができる車両用空気調和装置1で説明したが、バッテリ55の冷却は冷房中に限らず、他の空調運転、例えば前述した除湿暖房モードとバッテリ55の冷却を同時に行うようにしてもよい。その場合には、除湿暖房モードも本発明における空調(単独)モードとなり、電磁弁69を開き、冷媒配管13Fを経て吸熱器9に向かう冷媒の一部を分岐配管67に流入させ、冷媒-熱媒体熱交換器64に流すことになる。
 更に、実施例1では電磁弁35を吸熱器用弁装置(弁装置)、電磁弁69を被温調対象用弁装置(弁装置)としたが、室内膨張弁8や補助膨張弁68を全閉可能な電動弁にて構成した場合には、各電磁弁35や69は不要となり、室内膨張弁8が本発明における吸熱器用弁装置(弁装置)となり、補助膨張弁68が被温調対象用弁装置(弁装置)となる。
 また、実施例で説明した冷媒回路Rの構成や数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。更に、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、空調(優先)+バッテリ冷却モード、バッテリ冷却(優先)+空調モード、バッテリ冷却(単独)モード等の各運転モードを有する車両用空気調和装置1で本発明を説明したが、それに限らず、例えばバッテリ冷却(単独)モード、冷房モード、バッテリ冷却(優先)+空調モード及び空調(優先)+バッテリ冷却モードを実行可能とされた車両用空気調和装置にも本発明は有効である。
 更にまた、実施例では前記車室内の音のレベルに影響する要因を、室内送風機27の風量、車室内に空気を吹き出す吹出モード、空気流通路3に流入する空気の導入モード、車両に設けられた音響機器の音量、車速、及び、外気温度としたが、それに限らず、それらのうちの何れか、又は、それらの組み合わせであってもよい。
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8、103 室内膨張弁
 9 吸熱器(フロントシート用の吸熱器)
 11 制御装置
 32 ヒートポンプコントローラ(制御装置の一部を構成)
 35 電磁弁(吸熱器用弁装置)
 45 空調コントローラ(制御装置の一部を構成)
 48 吸熱器温度センサ
 55 バッテリ(被温調対象)
 61 機器温度調整装置
 64 冷媒-熱媒体熱交換器(被温調対象用熱交換器)
 68 補助膨張弁
 69 電磁弁(被温調対象用弁装置)
 76 熱媒体温度センサ
 101 リアシート用の吸熱器
 R 冷媒回路

Claims (9)

  1.  冷媒を圧縮する電動式の圧縮機と、
     冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、
     冷媒を吸熱させて車両に搭載された被温調対象を冷却するための被温調対象用熱交換器と、
     制御装置を少なくとも備えて前記車室内を空調する車両用空気調和装置において、
     前記制御装置は、前記車室内の音のレベルに影響する要因に基づき、当該車室内の音のレベルが低くなる程、下げる方向で前記圧縮機の制御上の上限回転数を所定の最高値と最低値の間で変更すると共に、
     前記吸熱器又は前記被温調対象用熱交換器のうちの何れか一方で冷媒を吸熱させる単独モードと、
     前記吸熱器及び前記被温調対象用熱交換器で冷媒を吸熱させる協調モードを有し、
     前記協調モードでの前記圧縮機の制御上の上限回転数を、前記単独モードでの前記圧縮機の制御上の上限回転数よりも上げる方向で変更することを特徴とする車両用空気調和装置。
  2.  前記制御装置は、前記協調モードでの前記圧縮機の制御上の上限回転数の前記最低値を、前記単独モードでの前記圧縮機の制御上の上限回転数の前記最低値よりも上げる方向で変更することを特徴とする請求項1に記載の車両用空気調和装置。
  3.  前記制御装置は、前記被温調対象の温度が所定の閾値より高い場合、前記圧縮機の制御上の上限回転数を上げる方向で変更することを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。
  4.  前記制御装置は、前記被温調対象の温度が所定の閾値より高い場合、前記圧縮機の制御上の上限回転数の前記最低値を、当該上限回転数の前記最高値にすることを特徴とする請求項3に記載の車両用空気調和装置。
  5.  前記車室内に供給する空気が流通する空気流通路と、
     該空気流通路に空気を流通させるための室内送風機を備え、
     前記車室内の音のレベルに影響する要因は、前記室内送風機の風量、前記車室内に空気を吹き出す吹出モード、前記空気流通路に流入する空気の導入モード、車両に設けられた音響機器の音量、車速、及び、外気温度のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てであることを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。
  6.  前記制御装置は、前記車室内の音のレベルに影響する複数の要因に基づいて前記圧縮機の上限回転数を変更する場合、前記車室内の音のレベルが低くなる程、前記圧縮機の制御上の上限回転数を下げる方向で変更する上限回転数変更値を前記各要因毎に算出すると共に、
     算出された各要因毎の上限回転数変更値のうち、最も高い値を前記圧縮機の制御上の上限回転数とすることを特徴とする請求項1乃至請求項5のうちの何れかに記載の車両用空気調和装置。
  7.  前記吸熱器への冷媒の流通を制御する吸熱器用弁装置と、
     前記被温調対象用熱交換器への冷媒の流通を制御する被温調対象用弁装置を備え、
     前記制御装置は、
     前記被温調対象用弁装置を開き、前記被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記吸熱器用弁装置を閉じる被温調対象冷却(単独)モードと、
     前記吸熱器用弁装置を開き、前記吸熱器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記被温調対象用弁装置を閉じる空調(単独)モードと、
     前記被温調対象用弁装置を開き、前記被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記吸熱器又はそれにより冷却される対象の温度に基づいて前記吸熱器用弁装置を開閉制御する被温調対象冷却(優先)+空調モードと、
     前記吸熱器用弁装置を開き、前記吸熱器又はそれにより冷却される対象の温度に基づいて前記圧縮機の回転数を制御し、前記被温調対象用熱交換器又はそれにより冷却される対象の温度に基づいて前記被温調対象用弁装置を開閉制御する空調(優先)+被温調対象冷却モードを有し、
     前記単独モードは、前記被温調対象冷却(単独)モードと前記空調(単独)モードのうちの何れか一方、又は、双方であり、
     前記協調モードは、前記被温調対象冷却(優先)+空調モードと前記空調(優先)+被温調対象冷却モードのうちの何れか一方、又は、双方であることを特徴とする請求項1乃至請求項6のうちの何れかに記載の車両用空気調和装置。
  8.  冷媒を吸熱させて前記車室内の前部に供給する空気を冷却するためのフロントシート用の前記吸熱器と、
     冷媒を吸熱させて前記車室内の後部に供給する空気を冷却するためのリアシート用の前記吸熱器を備え、
     前記制御装置は、
     前記フロントシート用の吸熱器と前記リアシート用の吸熱器のうちの何れか一方で冷媒を蒸発させる第1の運転モードと、
     前記フロントシート用の吸熱器及び前記リアシート用の吸熱器で冷媒を吸熱させる第2の運転モードを有し、
     該第2の運転モードでは、前記第1の運転モードに比して、前記圧縮機の制御上の上限回転数を上げる方向で変更することを特徴とする請求項1乃至請求項7のうちの何れかに記載の車両用空気調和装置。
  9.  前記制御装置は、前記圧縮機の制御上の上限回転数を上げる方向に変更して運転していることを報知するための所定の報知装置を有することを特徴とする請求項1乃至請求項8のうちの何れかに記載の車両用空気調和装置。
PCT/JP2019/044840 2018-12-12 2019-11-15 車両用空気調和装置 WO2020121737A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980081508.XA CN113165472B (zh) 2018-12-12 2019-11-15 车用空调装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-232438 2018-12-12
JP2018232438A JP2020093644A (ja) 2018-12-12 2018-12-12 車両用空気調和装置

Publications (1)

Publication Number Publication Date
WO2020121737A1 true WO2020121737A1 (ja) 2020-06-18

Family

ID=71075487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044840 WO2020121737A1 (ja) 2018-12-12 2019-11-15 車両用空気調和装置

Country Status (3)

Country Link
JP (1) JP2020093644A (ja)
CN (1) CN113165472B (ja)
WO (1) WO2020121737A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112590494B (zh) * 2020-12-28 2022-03-29 曼德电子电器有限公司 热泵控制方法和装置、介质、设备、车辆
CN114103595B (zh) * 2021-12-28 2024-02-27 东风汽车有限公司东风日产乘用车公司 空调控制方法、装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225637A (ja) * 2000-02-17 2001-08-21 Mitsubishi Heavy Ind Ltd 車両用空調装置
JP2003279180A (ja) * 2002-03-22 2003-10-02 Denso Corp 車両用冷凍サイクル装置
JP2010100264A (ja) * 2008-10-27 2010-05-06 Denso Corp 車両用空調装置
JP2012030663A (ja) * 2010-07-29 2012-02-16 Mitsubishi Motors Corp 車両用エアコンシステムの制御装置
JP2013154805A (ja) * 2012-01-31 2013-08-15 Denso Corp 車両空調システム
JP2013180722A (ja) * 2012-03-05 2013-09-12 Denso Corp 車両用空調装置
JP5668700B2 (ja) * 2012-01-25 2015-02-12 株式会社デンソー 車両空調システム
JP2015174473A (ja) * 2014-03-13 2015-10-05 スズキ株式会社 車両用空調装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5287578B2 (ja) * 2009-07-31 2013-09-11 株式会社デンソー 車両用空調装置
DE102010024853B4 (de) * 2009-06-26 2019-05-16 Denso Corporation Klimaanlage für Fahrzeug
JP6174414B2 (ja) * 2013-08-07 2017-08-02 サンデンホールディングス株式会社 車両用空気調和装置
JP6418779B2 (ja) * 2014-05-08 2018-11-07 サンデンホールディングス株式会社 車両用空気調和装置
JP6710061B2 (ja) * 2016-02-26 2020-06-17 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6767857B2 (ja) * 2016-12-14 2020-10-14 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6767856B2 (ja) * 2016-12-14 2020-10-14 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6831239B2 (ja) * 2016-12-27 2021-02-17 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2018103879A (ja) * 2016-12-27 2018-07-05 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225637A (ja) * 2000-02-17 2001-08-21 Mitsubishi Heavy Ind Ltd 車両用空調装置
JP2003279180A (ja) * 2002-03-22 2003-10-02 Denso Corp 車両用冷凍サイクル装置
JP2010100264A (ja) * 2008-10-27 2010-05-06 Denso Corp 車両用空調装置
JP2012030663A (ja) * 2010-07-29 2012-02-16 Mitsubishi Motors Corp 車両用エアコンシステムの制御装置
JP5668700B2 (ja) * 2012-01-25 2015-02-12 株式会社デンソー 車両空調システム
JP2013154805A (ja) * 2012-01-31 2013-08-15 Denso Corp 車両空調システム
JP2013180722A (ja) * 2012-03-05 2013-09-12 Denso Corp 車両用空調装置
JP2015174473A (ja) * 2014-03-13 2015-10-05 スズキ株式会社 車両用空調装置

Also Published As

Publication number Publication date
CN113165472A (zh) 2021-07-23
JP2020093644A (ja) 2020-06-18
CN113165472B (zh) 2024-06-11

Similar Documents

Publication Publication Date Title
JP7300264B2 (ja) 車両用空気調和装置
WO2020075446A1 (ja) 車両用空気調和装置
JP7372732B2 (ja) 車両用空気調和装置
WO2020129495A1 (ja) 車両用空気調和装置
WO2020110508A1 (ja) 車両のバッテリ温度調整装置及びそれを備えた車両用空気調和装置
JP5126173B2 (ja) 車両用空調装置
WO2020090255A1 (ja) 車両用空気調和装置
WO2020100410A1 (ja) 車両用空気調和装置
WO2022064944A1 (ja) 車両用空調装置
WO2020121737A1 (ja) 車両用空気調和装置
CN109661317B (zh) 车用空调装置
WO2020129493A1 (ja) 車両用空気調和装置
WO2020137235A1 (ja) 車両用空気調和装置
CN110740889B (zh) 车用空调装置
WO2020166274A1 (ja) 車両用空気調和装置
JP2020142620A (ja) 車両用空気調和装置
JP7280689B2 (ja) 車両用空気調和装置
WO2020100524A1 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896692

Country of ref document: EP

Kind code of ref document: A1