WO2020094378A1 - Procede de reformage en lit fixe utilisant un catalyseur de forme particuliere - Google Patents

Procede de reformage en lit fixe utilisant un catalyseur de forme particuliere Download PDF

Info

Publication number
WO2020094378A1
WO2020094378A1 PCT/EP2019/078574 EP2019078574W WO2020094378A1 WO 2020094378 A1 WO2020094378 A1 WO 2020094378A1 EP 2019078574 W EP2019078574 W EP 2019078574W WO 2020094378 A1 WO2020094378 A1 WO 2020094378A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
extruded
section
weight
content
Prior art date
Application number
PCT/EP2019/078574
Other languages
English (en)
Inventor
Bogdan Harbuzaru
Sylvie Lacombe
Jacques Lavy
Christophe Vallee
Kevin DEBOLT
Pierre-Yves Le Goff
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to KR1020217013125A priority Critical patent/KR20210076028A/ko
Priority to JP2021524050A priority patent/JP2022506608A/ja
Priority to BR112021004765-4A priority patent/BR112021004765A2/pt
Priority to US17/292,158 priority patent/US20210388272A1/en
Priority to CN201980073277.8A priority patent/CN113242765A/zh
Priority to EP19787286.4A priority patent/EP3877084A1/fr
Publication of WO2020094378A1 publication Critical patent/WO2020094378A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/085Catalytic reforming characterised by the catalyst used containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • B01J27/13Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • B01J37/24Chlorinating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention applies to the technical field of refining and in particular to reforming. More particularly, the present invention relates to a catalytic reforming process in a fixed bed using a catalyst with specific morphology.
  • the catalytic reforming process is a process widely used by refiners to recover heavy petrol obtained by distillation.
  • the hydrocarbons of the heavy gasoline charge (paraffins and naphthenes) containing from 5 to 12 carbon atoms approximately per molecule are transformed during this process into aromatic hydrocarbons or failing that into branched paraffins. This transformation is obtained at high temperature (of the order of 500 ° C.), at low to medium pressure (3.5 to 25.10 5 Pa) and in the presence of a catalyst.
  • Catalytic reforming produces reformate which improves the octane number of petroleum fractions.
  • the reformate is mainly formed of C5 + compounds (containing at least 5 carbon atoms).
  • This process also produces a hydrogen-rich gas, a combustible gas (formed by C1-C2 compounds) and liquefied gases (formed by C3-C4 compounds).
  • coke formation also occurs, in particular by condensation of aromatic rings forming a solid product, rich in carbon, which is deposited on the active sites of the catalyst.
  • the reactions which produce C1 -C4 compounds (also called C4-) and coke are detrimental to the reformate yield and the stability of the catalyst.
  • the high activity of the catalyst must be combined with the greatest possible selectivity, that is to say that the cracking reactions leading to light products containing from 1 to 4 carbon atoms (C4 -) must be limited.
  • catalysts for fixed beds there are two main categories of reforming catalysts: on the one hand, catalysts for fixed beds (semi-regenerative process), on the other hand, catalysts for mobile beds (continuous process).
  • They are bifunctional catalysts, that is to say that they consist of two functions, a metallic and an acid, each of the functions having a well defined role in the activity of the catalyst.
  • the metallic function essentially ensures the dehydrogenation of naphthenes and paraffins and the hydrogenation of precursors of coke.
  • the acid function ensures the isomerization of naphthenes and paraffins and the cyclization of paraffins.
  • the acid function is provided by the support itself, most often a pure halogenated alumina.
  • the metallic function is provided by a noble metal from the platinum family and at least one additional metal, mainly tin for the continuous process (moving bed), and rhenium in the semi-regenerative process (fixed bed).
  • reforming catalysts are extremely sensitive, in addition to coke, to various poisons or inhibitors capable of degrading their activity: in particular nitrogen, metals and water.
  • the coke when deposited on the surface of the catalyst, results in a loss of activity over time which leads to higher operating temperatures, a lower reformate yield, and a shorter cycle time. It is therefore important to seek to increase the activity of the catalysts in order to obtain high yields of C5 + at the lowest possible temperature, so as to maximize the cycle time of the catalyst. It is necessary after a certain period of time to regenerate the catalyst in order to remove the coke and the inhibitors which have deposited on its active sites.
  • the regeneration of reforming catalysts essentially comprises a controlled combustion step to first remove the coke and an oxychlorination step which essentially allows the metals to be redispersed and the acidity of the alumina to be adjusted by adding oxidizing medium to chlorine or chlorinated organic compounds.
  • the catalyst regeneration treatments are carried out under very severe conditions which can lead to its degradation due to the high temperature and the presence of combustion water. It is therefore important to seek to improve the stability of the catalyst by limiting the formation of coke in order to be able to space these regeneration phases as much as possible.
  • reforming catalysts are in the form of balls, cylinders or, more rarely, trilobes. It is well known to those skilled in the art that the step of shaping the reforming catalyst is of importance because of its impact on the pressure drop undergone during the passage of the effluent through the catalyst bed. It is indeed desirable to minimize this pressure drop so as to control on the one hand the operational pressure of the process which has an impact on the yields of C5 + and on the other hand to limit the energy consumption of the pumps and compressors of unity. Likewise, it is generally known that the activity of the catalyst increases with the reduction in the size of the balls, cylinders or trilobes, in the event of internal diffusional limitations.
  • the pressure drop normally increases until reaching intolerable levels. Thanks to the use of specific catalyst morphology, the pressure drops can be reduced for smaller balls, cylinders or trilobes, which increases the activity.
  • An object according to the invention relates to a process for reforming a fixed bed of a hydrocarbon charge comprising n-paraffinic, naphthenic and aromatic hydrocarbons containing from 5 to 12 carbon atoms per molecule at a temperature between 400 and 700 ° C, a pressure of between 0.1 and 4 MPa, and a mass flow rate of charge treated per unit mass of catalyst and per hour of between 0.1 and 10 h 1 , by bringing said charge into contact with a catalyst comprising at least platinum, at least one promoter metal chosen from the group formed by rhenium and iridium, at least one halogen chosen from the group formed by fluorine, chlorine, bromine and iodine, and a porous support for alumina in the form of an extruded characterized by a length "I" of between 1 and 10 mm, a section comprising four lobes, and preferably consisting of four lobes, section called quadrilobed, and such that the largest diameter "D" of the cross section
  • the largest diameter "D" of the cross section of said extruded quadrilobed section is between 1, 1 and 2.2 mm.
  • said extruded quadrilobed section has a length "I" of between 2 and 7 mm.
  • said section of the quadrilobed section extrudate has symmetrical lobes.
  • said section of the extrudate of quadrilobed section has asymmetrical lobes.
  • said extruded quadrilobed section is an axial extruded.
  • said extruded quadrilobed section is a helical extruded having a pitch of rotation between 10 and 180 ° per mm.
  • the platinum content of said catalyst relative to the total weight of the catalyst is between 0.02 to 2% by weight.
  • the rhenium or iridium content of said catalyst is between 0.02 and 10% by weight relative to the total weight of the catalyst.
  • said catalyst further comprises at least one dopant chosen from the group formed by gallium, germanium, indium, tin, antimony, thallium, lead, bismuth, titanium, chromium , manganese, molybdenum, tungsten, rhodium, zinc and phosphorus.
  • dopant chosen from the group formed by gallium, germanium, indium, tin, antimony, thallium, lead, bismuth, titanium, chromium , manganese, molybdenum, tungsten, rhodium, zinc and phosphorus.
  • the content of said dopant is between 0.01 and 2% by weight relative to the weight of the catalyst.
  • the halogen content of said catalyst is between 0.1 and 15% by weight relative to the total weight of the catalyst.
  • the halogen is chlorine and its content is between 0.5 and 2% by weight relative to the total weight of the catalyst.
  • the specific surface of said porous support is between 150 and 400 m 2 / g.
  • the volume of the pores of the support is between 0.2 and 1 cm 3 / g, and the mean diameter of the mesopores is between 5 and 20 nm.
  • group IB according to the CAS classification corresponds to the metals in column 1 1 according to the new IUPAC classification.
  • specific surface means the BET specific surface determined by nitrogen adsorption in accordance with standard ASTM D 3663-78 established from the BRUNAUER-EMMETT-TELLER method described in the periodical "Journal of the American Chemical Society", 60, 309, (1938).
  • the largest diameter “D” is understood to mean the largest diameter of the equivalent circle passing through the ends of two opposite lobes.
  • Figure 1 is a graph illustrating the temperature profile:
  • a catalyst A non-conforming comprising a support in cylindrical extruded form (succession of points in the form of a circle);
  • a catalyst B non-conforming comprising a support in trilobed extruded form (succession of points in the form of a diamond);
  • a catalyst C according to the invention comprising a support in extruded quadrilobed form (succession of points in the form of a triangle).
  • the abscissa represents the time under load (in hours) and the ordinate represents the temperature of the catalytic bed (in ° C). From this graph it is possible to characterize the stability of the catalyst by calculating the slope of the temperature between two times under given load. The slope is thus expressed in ° C / day (° C / d). The lower the slope, the more stable the catalyst is considered.
  • FIGS. 2a, 3a and 4a are cross-sectional representations of examples of quadrilobe type catalysts used in the context of the process according to the invention. More particularly, FIG. 2a is a sectional representation of an example of a symmetrical quadrilobe catalyst, FIG. 3a is a representation in section of an example of an asymmetric quadrilobe catalyst of the “Butterfly” type, and FIG. 4a is a representation of section of an example of an asymmetric quadrilobe catalyst of the “Batman” type.
  • FIGS 2b, 3b and 4b show photographs of the catalysts shown in Figures 2a, 3a and 4a.
  • the reforming process increases the octane number of gasoline fractions from the distillation of crude oil and / or other refining processes.
  • the aromatic production processes provide the bases (benzene, toluene and xylene) usable in petrochemicals. These processes are of additional interest by contributing to the production of large quantities of hydrogen essential for the hydrotreatment or hydroconversion processes of the refinery.
  • the hydrocarbon feedstock used in the context of the process according to the invention contains n-paraffinic, iso-paraffinic, naphthenic and aromatic hydrocarbons containing from 5 to 12 carbon atoms per molecule. This load is defined, among other things, by its density and its weight composition.
  • the reforming process in a fixed bed according to the invention is carried out by bringing a hydrocarbon feedstock (detailed below) into contact with a specific reforming catalyst (detailed later in the description) at a temperature between 400 and 700 ° C, preferably between 350 and 550 ° C, a pressure between 0.1 and 4 MPa, preferably between 1 and 3 MPa, and a mass flow rate of feed treated per unit mass of catalyst and per hour between 0 , 1 and 10 h 1 , preferably between 0.5 and 6 h 1 .
  • Part of the hydrogen produced is recycled according to a molar recycling rate (flow of recycled hydrogen over flow of hydrocarbon feedstock) of between 0.1 and 8, preferably between 2 and 7.
  • the hydrocarbon charge to be treated generally contains paraffinic, naphthenic and aromatic hydrocarbons containing from 5 to 12 carbon atoms per molecule. This load is defined, among other things, by its density and its weight composition. These fillers can have an initial boiling point of between 40 ° C and 70 ° C and a final boiling point of between 160 ° C and 220 ° C. They can also be constituted by a fraction or a mixture of gasoline fractions having initial and final boiling points of between 40 ° C and 220 ° C. The charge to be treated can thus also consist of a heavy naphtha having a boiling point of between 160 ° C. and 200 ° C.
  • the catalyst used in the context of the process according to the invention comprises at least platinum.
  • the platinum content relative to the total weight of the catalyst can be between 0.02 to 2% by weight, preferably between 0.05 and 1.5% by weight, even more preferably between 0.1 and 0.8 % weight.
  • the catalyst comprises one or more promoter metals which have the effect of promoting the dehydrogenating activity of platinum, of limiting the parasitic reactions of CC bond breakage and of stabilizing the metallic phase.
  • the promoter metals are chosen from the group formed by rhenium and iridium.
  • the content of each promoter metal may be between 0.02 and 10% by weight relative to the total weight of the catalyst, preferably between 0.05 and 5% by weight, even more preferably between 0.1 and 2% by weight.
  • the catalyst used in the context of the process according to the invention can also comprise at least one dopant chosen from the group formed by gallium, germanium, indium, tin, antimony, thallium, lead, bismuth, titanium, chromium, manganese, molybdenum, tungsten, rhodium, zinc and phosphorus.
  • a dopant chosen from the group formed by gallium, germanium, indium, tin, antimony, thallium, lead, bismuth, titanium, chromium, manganese, molybdenum, tungsten, rhodium, zinc and phosphorus.
  • the content of each dopant may be between 0.01 to 2% by weight, preferably between 0.01 to 1% by weight, more preferably between 0.01 to 0.7% by weight, relative to the total weight of the catalyst. .
  • the catalyst used in the process according to the invention can also comprise at least one halogen used to acidify the alumina support.
  • the halogen content can represent between 0.1 to 15% by weight relative to the total weight of the catalyst, preferably between 0.2 to 5% relative to the total weight of the catalyst.
  • the catalyst comprises a single halogen which is chlorine, the chlorine content is between 0.5 and 2% by weight relative to the total weight of the catalyst.
  • the porous support of the catalyst used in the process according to the invention is based on alumina.
  • the alumina (s) of the porous support used in the catalyst can be of type c, h, g or d. Preferably, they are of type g or d. Even more preferably, they are of the y type.
  • the specific surface of said porous support is between 150 and 400 m 2 / g, preferably between 150 and 300 m 2 / g, even more preferably between 160 and 250 m 2 / g.
  • the volume of the pores with a diameter of less than 10 microns is preferably between 0.2 and 1 cm 3 / g, preferably between 0.4 and 0.9 cm 3 / g.
  • the average diameter of the mesopores (pores with a diameter between 2 and 50 nm) is preferably between 5 and 20 nm, more preferably between 7 and 16 nm.
  • the specific morphology of the porous support makes it possible to unexpectedly increase the stability of the catalyst while preserving an activity at least as good as the activity of the reforming catalysts in the form of extruded type cylinder or three-lobed.
  • the porous support is in the form of extrudates, the section of which comprises four lobes, and preferably consists of four lobes.
  • the section of the extrudate may have symmetrical lobes.
  • FIGS. 2a and 2b show an example of a quadrilobe extrudate having symmetrical lobes (the four lobes are identical).
  • the section of the extrudate (perpendicular to the extrusion axis) may also have asymmetrical lobes.
  • FIGS. 3a to 4b show an example of a quadrilobe extrudate having asymmetrical lobes (that is to say that at least one lobe is different from the other lobes).
  • the porous support can be in the form of an extrudate of straight quadrilobed section or in the form of a helical extrudate having a pitch of rotation of between 10 and 180 ° per mm.
  • the length of the quadrilobed section extrudate is between 1 and 10 mm, preferably between 2 and 7 mm.
  • the largest diameter "D” of the cross section of the quadrilobed section extrudate is preferably between 1 and 3 mm, more preferably between 1, 1 and 2.2 mm.
  • the largest diameter “D” is understood to mean the largest diameter of the equivalent circle passing through the ends of two opposite lobes.
  • porous alumina support can be synthesized by various methods known to those skilled in the art.
  • the porous support based on alumina is prepared from a boehmite powder obtained by hydrolysis of aluminum alcoholates.
  • boehmite powder prepared by hydrolysis of aluminum alcoholates can be found in patents FR 1391644 or US 5,055,019.
  • This boehmite powder is then shaped, for example by mixing and extrusion.
  • One or more heat treatments can then lead to obtaining alumina.
  • the heat treatment is calcination in dry air at a temperature between 540 ° C and 800 ° C.
  • the porous support based on alumina is prepared from a boehmite powder obtained by a precipitation reaction from aluminum salts.
  • Boehmite powder can for example be obtained by precipitation of basic and / or acid solutions of aluminum salts induced by change of pH or any other method known to those skilled in the art. This gel is then shaped, for example by kneading-extrusion. Then a series of heat treatments of the product is carried out, leading to the production of alumina. This method is also described in the section entitled "Alumina” by P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, JL Le Loarer, JP Jolivet and C. Froidefond, in "Handbook of Porous Solids" (F. Schüth, KSW Sing and J. Weitkamp, Wiley-VCH, Weinheim, Germany, 2002).
  • the porous support is prepared from a boehmite powder obtained by hydrolysis of alcoholates.
  • the catalyst used in the process according to the invention can be prepared by depositing its various constituents on the alumina support.
  • the deposition of each constituent can be carried out on the alumina support before or after shaping thereof.
  • the constituents can be introduced successively in any order, from a solution or from separate solutions. In the latter case, intermediate drying and / or calcination can be carried out.
  • the deposition of the various constituents of the catalyst can be carried out by conventional techniques, in the liquid phase or in the gas phase, using suitable precursor compounds.
  • the techniques used can be, for example, dry or excess impregnation on boehmite powder, or else the mixture of the solution (s) ) containing the constituent during the kneading or mixing stage before extrusion.
  • the techniques used can be for example dry impregnation, impregnation by excess of solution. Washing and / or drying and / or calcination steps may possibly be carried out before each new impregnation step.
  • the deposition of platinum can be carried out by conventional techniques, in particular impregnation from an aqueous or organic solution of a precursor of platinum or containing a salt or a platinum compound.
  • salts or compounds which can be used include hexachloroplatinic acid, ammonia compounds, ammonium chloroplatinate, platinum chloride, dicarbonyl platinum dichloride and hexahydroxyplatinic acid.
  • the ammoniacal compounds can be, for example, the platinum II tetraamine salts of formula Pt (NH 3 ) 4 X 2 , the platinum complexes with the halogen-polyketones and the halogenated compounds of formula H (Pt (acac) 2 X) in which element X is a halogen chosen from the group formed by chlorine, fluorine, bromine and iodine, and preferably chlorine, and the acac group represents the remainder of formula C 5 H 7 0 2 derived from l acetylacetone.
  • the deposition of platinum can occur at any time during the preparation of the catalyst. It can be carried out in isolation or simultaneously with the deposition of other constituents, for example promoter metal (s).
  • the deposition of the dopant (s) and / or the promoter (s) can also be carried out by conventional techniques from precursor compounds such as phosphorus compounds, halides, nitrates, sulfates, acetates, tartrates, citrates, carbonates, oxalates of doping metals and amine complexes.
  • precursor compounds such as phosphorus compounds, halides, nitrates, sulfates, acetates, tartrates, citrates, carbonates, oxalates of doping metals and amine complexes.
  • any other salt or oxide of these metals soluble in water, acids, or in another suitable solvent is also suitable as a precursor.
  • Such precursors include perrhenic acid, perrhenates, chromates, molybdates, tungstates, gallium chloride, gallium nitrate, thallium acetate, thallium nitrate , indium acetylacetonate, indium nitrate, indium acetate, indium trifluoroacetate, indium chloride, bismuth acetate, bismuth nitrate, H 3 P0 4 , a solution of (NH 4 ) 2 HP0 4 , a solution of Na 2 HP0 4 and a solution of Na 3 P0 4 . It is also possible to introduce the dopant (s), by mixing an aqueous solution of their precursor compound (s) with the support before it is shaped.
  • the deposition of the dopant (s) and / or the promoter (s) can be carried out using a solution of an organometallic compound of said metals in an organic solvent. In this case, this deposition is carried out for example after that of the platinum, then the solid is calcined and optionally performs a reduction under pure or diluted hydrogen at high temperature, for example between 300 and 500 ° C.
  • the organometallic compounds are chosen from the group consisting of the complexes of said promoter metal and the hydrocarbylmetals such as alkyl, cycloalkyl, aryl, alkylaryl and arylalkyl metals. Compounds of the alcoholate type or organohalogenated compounds can also be used.
  • the impregnating solvent can be chosen from the group consisting of paraffinic, naphthenic or aromatic hydrocarbons containing from 6 to 12 carbon atoms per molecule and halogenated organic compounds containing from 1 to 12 carbon atoms per molecule. Mention may be made, for example, of n-heptane, methylcyclohexane and chloroform. It is also possible to use mixtures of the solvents defined above.
  • Halogen preferably chlorine
  • the halogen can also be added by impregnation with an aqueous solution of the corresponding acid, for example hydrochloric acid, at any time during the preparation.
  • a typical protocol is to impregnate the solid so as to introduce the desired amount of halogen.
  • the catalyst is kept in contact with the aqueous solution for at least 30 minutes to deposit this amount of halogen.
  • Chlorine can also be added to the catalyst using an oxychlorination treatment.
  • oxychlorination treatment can for example be carried out between 350 and 550 ° C for two hours under an air flow containing the desired amount of chlorine and possibly containing water.
  • halogenated compound When the various precursors used in the preparation of the catalyst do not contain halogen or contain insufficient halogen, it may be necessary to add a halogenated compound during the preparation.
  • Any compound known to a person skilled in the art can be used and incorporated in any of the steps for preparing the catalyst.
  • organic compounds such as methyl or ethyl halides, for example dichloromethane, chloroform, dichloroethane, methyl chloroform or carbon tetrachloride.
  • the shaping of the porous support by extrusion a method well known to those skilled in the art, can be carried out before or after the deposition of all the constituents on said porous support.
  • the geometry of the die which gives their shape to the extrudates, is such that the extrudate has a section comprising four lobes and whose largest diameter “D” of the cross section of said extrudate is between 1 and 3 mm.
  • a final heat treatment is carried out between 300 and 1000 ° C., which may comprise only a single step at a temperature of 400 to 900 ° C. preferably, and under an oxygen-containing atmosphere, and preferably in the presence of free oxygen or dry air. This treatment corresponds to the drying-calcination step following the deposition of the last constituent.
  • the catalyst Before its use, the catalyst is subjected to a treatment under hydrogen and to a treatment using a sulfur precursor in order to obtain an active and selective metallic phase.
  • the procedure for this treatment under hydrogen also called reduction under hydrogen, consists in maintaining the catalyst in a stream of pure or diluted hydrogen at a temperature between 100 and 600 ° C, and preferably between 200 and 580 ° C, for 30 minutes to 6 hours. This reduction can be carried out immediately after calcination, or later at the user. It is also possible to directly reduce the dried product at the user.
  • the treatment procedure using a sulfur precursor is carried out after reduction.
  • total sulfur content is meant in the sense of the present invention, the total amount of sulfur present on the final catalyst obtained at the end of the sulfurization step, the sulfur possibly being in the form of sulfate and / or sulfur in the reduced state.
  • the sulfur treatment also called sulfurization
  • the catalyst in reduced form is brought into contact with a sulfur precursor for 1 hour at a temperature between 450 and 580 ° C. in the presence of pure or diluted hydrogen.
  • the sulfur precursor can be dimethyl disulfide, dihydrogen sulfide, light mercaptans, organic sulfides such as, for example, dimethyldisulfide.
  • the catalyst can be prepared by a manufacturing process comprising the following steps:
  • said porous alumina support is impregnated with a solution containing a chlorine precursor
  • step 1) impregnating said alumina support obtained in step 1) or 2) with at least one solution of at least one platinum precursor;
  • step 6) drying and calcining said support obtained in step 4) or 5) to obtain a catalyst in the form of oxide;
  • the catalyst in the form of oxide obtained in the preceding step is reduced under pure hydrogen at a temperature of for example between 100 and 600 ° C. and for 30 minutes to 6 hours to obtain a reduced catalyst;
  • the reduced catalyst obtained in the preceding step is brought into contact with at least one sulfur precursor for example, for at least one hour at a temperature between 450 ° and 580 ° C.
  • Steps (2), (3), (4) and (5) the order of which can be reversed, can be carried out simultaneously or successively. At least one of steps (2), (3), (4) and (5) can be carried out before the step of shaping the support.
  • the porous alumina-based support according to step 1) is not supplied directly in the form of an extrudate of length "I" between 1 and 10 mm and of section comprising four lobes such as the largest diameter "D" of the cross section of said extruded is between 1 and 3 mm, then the shaping of the support can be carried out between one of steps 1) to 6) (that is to say before the final drying-calcination step).
  • a commercial boehmite powder resulting from a hydrolysis reaction of aluminum alcoholates, is kneaded with water and then extruded through a cylindrical die with a diameter of 2 mm and calcined at 740 ° C. 20 g of this support are brought into contact for 3 hours with 100 cm 3 of an aqueous hydrochloric acid solution comprising 0.2 g of chlorine. The impregnation solution is then withdrawn. The solid thus obtained is dried for 1 hour at 120 ° C. and then calcined for 2 hours at 450 ° C. 100 cm 3 of an aqueous solution of hexachloroplatinic acid comprising 0.07 g of platinum are then brought into contact with the support obtained at the end of the preceding step for 3 hours.
  • the amount of hydrochloric acid is adjusted in order to have a chlorine content of 1.1% by weight in the final catalyst.
  • the impregnation solution is then withdrawn. 60 cm 3 of an aqueous solution comprising 0.09 g of rhenium introduced in the form of ammonium perrhenate are then brought into contact with the support obtained at the end of the previous step for 3 hours.
  • the impregnation solution is then withdrawn.
  • the catalyst thus obtained is dried for 1 hour at 120 ° C., calcined for 2 hours at 520 ° C. and then reduced under hydrogen for 2 hours at 520 ° C.
  • the catalyst is then sulfurized with a hydrogen / H 2 S mixture (1% vol. Of H 2 S) for 9 minutes at 520 ° C. (flow rate: 0.15 l / min under normal conditions of temperature and pressure).
  • the final catalyst contains 0.25% by weight of platinum, 0.25% by weight of rhenium, and 1.1% by weight of chlorine relative to the total weight of the catalyst.
  • Example 2 Preparation of a non-conforming catalyst B (support in the form of an extrudate
  • the catalyst is prepared according to a protocol identical to Example 1 except that the extrusion is carried out through a three-lobed die whose largest diameter "D" is 2 mm.
  • the catalyst is prepared according to a protocol identical to Example 1 with the exception that the extrusion is carried out through a symmetrical four-lobe die (as shown in FIG. 2a) whose largest diameter "D" is 2 mm.
  • Example 4 Catalytic test
  • Catalysts A to C are tested for the transformation of a naphtha-type hydrocarbon feedstock from petroleum distillation, the characteristics of which are as follows:
  • This transformation is carried out in a pilot test unit in a crossed bed in the presence of hydrogen.
  • the test is carried out using the following operating conditions:
  • the temperature profile of catalysts A to C is shown in Figure 1. From this graph it is possible to characterize the stability of the catalyst by calculating the slope of the temperature between two times under given load. The slope is thus expressed in ° C / day (° C / d). The lower the slope, the more stable the catalyst is considered. Catalyst C is more stable than catalysts A and B, the slope representative of the temperature growth as a function of the time under load being the lowest (cf. table 1 below). This better stability is also correlated with a lower carbon content (representative of the coke deposited on the catalyst) at the end of the test (see Table 1 below).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Nanotechnology (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Procédé de reformage en lit fixe d'une charge hydrocarbonée comprenant des hydrocarbures n-paraffiniques, naphténiques et aromatiques, à une température comprise entre 400 et 700°C, une pression comprise entre 0,1 et 4 MPa, et un débit massique de charge traitée par unité de masse de catalyseur et par heure compris entre 0,1 et 10 h-1, par mise en contact de ladite charge avec un catalyseur comprenant du platine, un métal promoteur choisi dans le groupe formé par le rhénium et l'iridium, un halogène choisi dans le groupe formé par le fluor, le chlore, le brome et l'iode, et un support poreux d'alumine se présentant sous la forme d'un extrudé caractérisé par une longueur « I » comprise entre 1 et 10 mm, une section comportant quatre lobes dont le plus grand diamètre « D » de la section transversale dudit extrudé est compris entre 1 et 3 mm.

Description

PROCEDE DE REFORMAGE EN LIT FIXE UTILISANT UN CATALYSEUR DE FORME
PARTICULIERE
Domaine technique
L'invention s'applique au domaine technique du raffinage et en particulier au reformage. Plus particulièrement, la présente invention concerne un procédé de reformage catalytique en lit fixe en utilisant un catalyseur à morphologie spécifique.
Etat de la technique
Le procédé de reformage catalytique est un procédé très largement utilisé par les raffineurs pour valoriser l'essence lourde obtenue par distillation. Les hydrocarbures de la charge d'essence lourde (des paraffines et des naphtènes) contenant de 5 à 12 atomes de carbone environ par molécule sont transformés au cours de ce procédé en hydrocarbures aromatiques ou à défaut en paraffines branchées. Cette transformation est obtenue à haute température (de l'ordre de 500°C), à pression basse à moyenne (3,5 à 25.105 Pa) et en présence d'un catalyseur. Le reformage catalytique produit du reformat qui permet d'améliorer l'indice d'octane des coupes pétrolières. Le reformat est majoritairement formé de composés en C5+ (contenant au moins 5 atomes de carbone). Ce procédé produit également un gaz riche en hydrogène, un gaz combustible (formé par des composés en C1 -C2) et des gaz liquéfiés (formés par des composés en C3-C4). Enfin, il se produit aussi une formation de coke notamment par condensation de noyaux aromatiques formant un produit solide, riche en carbone, qui se dépose sur les sites actifs du catalyseur. Les réactions qui produisent des composés en C1 -C4 (appelés aussi C4-) et le coke sont préjudiciables au rendement en reformat et à la stabilité du catalyseur. La forte activité du catalyseur doit se conjuguer avec la plus grande sélectivité possible, c'est-à-dire que les réactions de craquage conduisant à des produits légers contenant de 1 à 4 atomes de carbone (C4 -) doivent être limitées.
Il existe deux grandes catégories de catalyseurs de reformage : d’une part, les catalyseurs pour lits fixes (procédé semi-régénératif), d’autre part, les catalyseurs pour lits mobiles (procédé continu). Ce sont des catalyseurs bifonctionnels, c'est-à-dire qu'ils sont constitués de deux fonctions, une métallique et une acide, chacune des fonctions ayant un rôle bien défini dans l'activité du catalyseur. La fonction métallique assure essentiellement la déshydrogénation des naphtènes et des paraffines et l’hydrogénation des précurseurs de coke. La fonction acide assure l’isomérisation des naphtènes et des paraffines et la cyclisation des paraffines. La fonction acide est apportée par le support lui-même, le plus souvent une alumine pure halogénée. La fonction métallique est assurée par un métal noble de la famille du platine et au moins un métal additionnel, principalement l'étain pour le procédé continu (lit mobile), et le rhénium dans le procédé semi-régénératif (lit fixe).
Ces catalyseurs de reformage sont extrêmement sensibles, outre le coke, à divers poisons ou inhibiteurs susceptibles de dégrader leur activité : en particulier l'azote, les métaux et l'eau. Le coke, en se déposant sur la surface du catalyseur entraîne une perte d'activité au cours du temps qui conduit à des températures de fonctionnement plus élevées, un rendement en reformat plus faible, et une durée de cycle plus faible. Il est donc important de rechercher à augmenter l'activité des catalyseurs pour obtenir des rendements en C5+ élevés à la plus faible température possible, de manière à maximiser la durée de cycle du catalyseur. Il est nécessaire au bout d'une certaine période de régénérer le catalyseur pour éliminer le coke et les inhibiteurs qui se sont déposés sur ses sites actifs. La régénération des catalyseurs de reformage comprend essentiellement une étape de combustion contrôlée pour en premier lieu éliminer le coke et une étape d'oxychloration qui permet essentiellement de redisperser les métaux et d'ajuster l'acidité de l'alumine par ajout en milieu oxydant de chlore ou de composés organiques chlorés. Les traitements de régénération du catalyseur s'effectuent dans des conditions très sévères qui peuvent conduire à sa dégradation du fait de la température élevée et de la présence d'eau de combustion. Il est donc important de rechercher à améliorer la stabilité du catalyseur en limitant la formation de coke pour pouvoir ainsi espacer au maximum ces phases de régénération.
Généralement, les catalyseurs de reformage se présentent sous la forme de billes, de cylindres ou, plus rarement, de trilobés. Il est bien connu de l'homme du métier que l’étape de mise en forme du catalyseur de reformage revêt une importance du fait de son impact sur la perte de charge subie lors du passage de l'effluent à travers le lit de catalyseur. Il est en effet souhaitable de minimiser cette perte de charge de façon à maîtriser d’une part la pression opérationnelle du procédé qui a un impact sur les rendements en C5+ et d’autre part à limiter la consommation d’énergie des pompes et compresseurs de l’unité. De même, il est généralement connu que l'activité du catalyseur augmente avec la diminution de la taille des billes, des cylindres ou des trilobés, en cas de limitations diffusionnelles internes. Cependant, à mesure que la taille des billes, des cylindres ou des trilobés diminue, la perte de charge augmente normalement jusqu' à atteindre des niveaux intolérables. Grâce à l'utilisation de morphologie spécifiques de catalyseur, les pertes de charge peuvent être réduites pour les billes, cylindres ou trilobés plus petits, ce qui augmente l'activité.
Objets de l’invention
Cependant, à ce jour, aucune différenciation n’a été réellement apportée sur l'avantage de la morphologie d’un catalyseur sur sa stabilité. De façon surprenante, la demanderesse a découvert que la mise en oeuvre d'un catalyseur sous forme d’extrudé quadrilobé, i.e. de section comprenant quatre lobes, dans un procédé de reformage en lit fixe permet l'obtention de performances améliorées en termes de stabilité par rapport à celles des catalyseurs sous forme de cylindre, ou sous forme d'extrudés avec d'autres géométries, et en particulier sous forme de trilobé, tout en conservant de bonnes performances en termes d’activité.
Un objet selon l’invention concerne un procédé de reformage en lit fixe d’une charge hydrocarbonée comprenant des hydrocarbures n-paraffiniques, naphténiques et aromatiques contenant de 5 à 12 atomes de carbone par molécule à une température comprise entre 400 et 700°C, une pression comprise entre 0,1 et 4 MPa, et un débit massique de charge traitée par unité de masse de catalyseur et par heure compris entre 0,1 et 10 h 1 , par mise en contact de ladite charge avec un catalyseur comprenant au moins du platine, au moins un métal promoteur choisi dans le groupe formé par le rhénium et l’iridium, au moins un halogène choisi dans le groupe formé par le fluor, le chlore, le brome et l’iode, et un support poreux d’alumine se présentant sous la forme d’un extrudé caractérisé par une longueur « I » comprise entre 1 et 10 mm, une section comportant quatre lobes, et de préférence consistant en quatre lobes, section dite quadrilobée, et telle que le plus grand diamètre « D » de la section transversale dudit extrudé est compris entre 1 et 3 mm.
De préférence, le plus grand diamètre « D » de la section transversale dudit extrudé de section quadrilobée, compris entre 1 ,1 et 2,2 mm.
De préférence, ledit extrudé de section quadrilobée présente une longueur « I » comprise entre 2 et 7 mm.
Dans un mode de réalisation selon l’invention, ladite section de l’extrudé de section quadrilobée présente des lobes symétriques.
Dans un autre mode de réalisation selon l’invention, ladite section de l’extrudé de section quadrilobée présente des lobes asymétriques. Dans un mode de réalisation selon l’invention, ledit extrudé de section quadrilobée est un extrudé axial.
Dans un autre mode de réalisation selon l’invention, ledit extrudé de section quadrilobée est un extrudé hélicoïdal ayant un pas de rotation compris entre 10 et 180° par mm.
De préférence, la teneur en platine dudit catalyseur par rapport au poids total du catalyseur est comprise entre 0,02 à 2 % poids.
De préférence, la teneur en rhénium ou en iridium dudit catalyseur est comprise entre 0,02 et 10 % en poids par rapport au poids total du catalyseur.
De préférence, ledit catalyseur comprend en outre au moins un dopant choisi dans le groupe formé par le gallium, le germanium, l’indium, l’étain, l’antimoine, le thallium, le plomb, le bismuth, le titane, le chrome, le manganèse, le molybdène, le tungstène, le rhodium, le zinc et le phosphore.
De préférence, la teneur dudit dopant est comprise entre 0,01 et 2 % en poids par rapport au poids du catalyseur.
De préférence, la teneur en halogène dudit catalyseur est comprise entre 0,1 et 15% en poids par rapport au poids total du catalyseur.
De préférence, l'halogène est le chlore et sa teneur est comprise entre 0,5 et 2 % poids par rapport au poids total du catalyseur.
De préférence, la surface spécifique dudit support poreux est comprise entre 150 et 400 m2/g.
De préférence, le volume des pores du support dont le diamètre inférieur à 10 microns est compris entre 0,2 et 1 cm3/g, et le diamètre moyen des mésopores est compris entre 5 et 20 nm.
Description détaillée de l’invention
Définitions
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81 ème édition, 2000-2001 ). Par exemple, le groupe IB selon la classification CAS correspond aux métaux de la colonne 1 1 selon la nouvelle classification IUPAC.
Dans l’exposé qui suit de l’invention, on entend par surface spécifique, la surface spécifique B.E.T. déterminée par adsorption d’azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique « Journal of the American Chemical Society », 60, 309, (1938).
On entend par plus grand diamètre « D » le plus grand diamètre du cercle équivalent passant par les extrémités de deux lobes opposées.
Liste des figures
La figure 1 est un graphe illustrant le profil de température :
- d’un catalyseur A (non conforme) comprenant un support sous forme extrudée cylindrique (succession de points sous forme de rond) ;
- d’un catalyseur B (non conforme) comprenant un support sous forme extrudée trilobée (succession de points sous forme de losange) ;
- d’un catalyseur C conforme à l’invention comprenant un support sous forme extrudée quadrilobée (succession de points sous forme de triangle).
L’abscisse représente le temps sous charge (en heures) et l’ordonnée représente la température du lit catalytique (en °C). De ce graphique il est possible de caractériser la stabilité du catalyseur en calculant la pente de la température entre deux temps sous charge donnés. La pente s’exprime ainsi en °C/jour (°C/j). Plus la pente est faible, plus le catalyseur est considéré comme stable.
Les figures 2a, 3a et 4a sont des représentations en coupe transversale d’exemples de catalyseurs de type quadrilobe utilisés dans le cadre du procédé selon l’invention. Plus particulièrement, la figure 2a est une représentation en coupe d’un exemple de catalyseur quadrilobe symétrique, la figure 3a est une représentation en coupe d’un exemple de catalyseur quadrilobe asymétrique de type « Butterfly », et la figure 4a est une représentation en coupe d’un exemple de catalyseur quadrilobe asymétrique de type « Batman ».
Les figures 2b, 3b et 4b représentent des photographies des catalyseurs représentés aux figures 2a, 3a et 4a.
Description détaillée
Dans le sens de la présente invention, les différents modes de réalisation présentés peuvent être utilisés seuls ou en combinaison les uns avec les autres, sans limitation de combinaison. Le procédé de reformage permet d'augmenter l'indice d'octane des fractions essences provenant de la distillation du pétrole brut et/ou d'autres procédés de raffinage. Les procédés de production d'aromatiques fournissent les bases (benzène, toluène et xylène) utilisables en pétrochimie. Ces procédés revêtent un intérêt supplémentaire en contribuant à la production de quantités importantes d'hydrogène indispensable pour les procédés d'hydrotraitement ou hydroconversion de la raffinerie. La charge hydrocarbonée utilisée dans le cadre du procédé selon l’invention contient des hydrocarbures n-paraffiniques, iso-paraffiniques, naphténiques et aromatiques contenant de 5 à 12 atomes de carbone par molécule. Cette charge est définie, entre autres, par sa densité et sa composition pondérale.
Le procédé de reformage en lit fixe selon l’invention est réalisé par mise en contact d’une charge hydrocarbonée (détaillée ci-après) avec un catalyseur de reformage spécifique (détaillé plus loin dans la description) à une température comprise entre 400 et 700°C, de préférence entre 350 et 550°C, une pression comprise entre 0,1 et 4 MPa, de préférence entre 1 et 3 MPa, et un débit massique de charge traitée par unité de masse de catalyseur et par heure compris entre 0,1 et 10 h 1 , de préférence entre 0,5 et 6 h 1. Une partie de l'hydrogène produit est recyclé selon un taux de recyclage molaire (débit d'hydrogène recyclé sur débit de charge hydrocarbonée) compris entre 0,1 et 8, de préférence entre 2 et 7.
La charge hydrocarbonée à traiter contient généralement des hydrocarbures paraffiniques, naphténiques et aromatiques contenant de 5 à 12 atomes de carbone par molécule. Cette charge est définie, entre autres, par sa densité et sa composition pondérale. Ces charges peuvent avoir un point initial d'ébullition compris entre 40°C et 70°C et un point final d'ébullition compris entre 160°C et 220°C. Elles peuvent également être constituées par une fraction ou un mélange de fractions essences ayant des points d'ébullition initiaux et finaux compris entre 40°C et 220°C. La charge à traiter peut ainsi également être constituée par un naphta lourd ayant un point d'ébullition compris entre 160°C à 200°C.
Le catalyseur utilisé dans le cadre du procédé selon l’invention comprend au moins du platine. La teneur en platine par rapport au poids total du catalyseur peut être comprise entre 0,02 à 2 % poids, de manière préférée entre 0,05 et 1 ,5 % poids, de manière encore plus préférée entre 0,1 et 0,8 % poids. Le catalyseur comprend un ou plusieurs métaux promoteurs qui ont pour effet de promouvoir l'activité déshydrogénante du platine, de limiter les réactions parasites de rupture de liaison C-C et de stabiliser la phase métallique. Les métaux promoteurs sont choisis dans le groupe formé par le rhénium et l'iridium. La teneur de chaque métal promoteur peut être comprise entre 0,02 et 10% poids par rapport au poids total du catalyseur, de préférence entre 0,05 et 5% poids, de manière encore plus préférée entre 0,1 et 2% poids.
Le catalyseur utilisé dans le cadre du procédé selon l'invention peut comprendre, en outre, au moins un dopant choisi dans le groupe formé par le gallium, le germanium, l’indium, l’étain, l’antimoine, le thallium, le plomb, le bismuth, le titane, le chrome, le manganèse, le molybdène, le tungstène, le rhodium, le zinc et le phosphore. De préférence, plusieurs dopants sont utilisés dans le cadre du procédé selon l’invention. La teneur de chaque dopant peut être comprise par rapport au poids total du catalyseur entre 0,01 à 2 % en poids, de préférence entre 0,01 à 1 % en poids, plus préférentiellement entre 0,01 à 0,7% en poids.
Le catalyseur utilisé dans le cadre du procédé selon l’invention peut comprendre également au moins un halogène utilisé pour acidifier le support d'alumine. La teneur en halogène peut représenter entre 0,1 à 15% en poids par rapport au poids total du catalyseur, de préférence entre 0,2 à 5 % par rapport au poids total du catalyseur. De préférence, on utilise un seul halogène, en particulier le chlore. Lorsque le catalyseur comprend un seul halogène qui est le chlore, la teneur en chlore est comprise entre 0,5 et 2 % poids par rapport au poids total du catalyseur.
Le support poreux du catalyseur utilisé dans le cadre du procédé selon l'invention est à base d’alumine. La ou les alumines du support poreux utilisées dans le catalyseur peuvent être de type c, h, g ou d. De manière préférée, elles sont de type g ou d. De manière encore plus préférée, elles sont de type y.
Avantageusement, la surface spécifique dudit support poreux est comprise entre 150 et 400 m2/g, de préférence entre 150 et 300 m2/g, de manière encore plus préférée entre 160 et 250 m2/g. Le volume des pores de diamètre inférieur à 10 microns est de préférence compris entre 0,2 et 1 cm3/g, de manière préférée entre 0,4 et 0,9 cm3/g. Le diamètre moyen des mésopores (pores de diamètre compris entre 2 et 50 nm) est de préférence compris entre 5 et 20 nm, de manière préférée entre 7 et 16 nm. Selon un aspect essentiel de l’invention, la morphologie spécifique du support poreux permet d’augmenter de manière inattendue la stabilité du catalyseur tout en préservant une activité au moins aussi bonne que l’activité des catalyseurs de reformage se présentant sous la forme d’extrudés de type cylindre ou trilobé.
Le support poreux se présente sous la forme d’extrudés dont la section comprend quatre lobes, et de préférence est constitué de quatre lobes. La section de l’extrudé (perpendiculaire à l’axe d’extrusion) peut présenter des lobes symétriques. A titre d’exemple et sans caractère limitatif, les figures 2a et 2b présentent un exemple d’extrudé quadrilobe possédant des lobes symétriques (les quatre lobes sont identiques). La section de l’extrudé (perpendiculaire à l’axe d’extrusion) peut également présenter des lobes asymétriques. A titre d’exemple et sans caractère limitatif, les figures 3a à 4b présentent un exemple d’extrudé quadrilobe possédant des lobes asymétriques (c’est-à-dire qu’au moins un lobe est différent des autres lobes).
Le support poreux peut se présenter sous la forme d’un extrudé de section quadrilobée droit ou sous la forme d’un extrudé hélicoïdal ayant un pas de rotation compris entre 10 et 180° par mm.
Plus particulièrement, la longueur de l’extrudé de section quadrilobée est comprise entre 1 et 10 mm, de préférence entre 2 et 7 mm.
Le plus grand diamètre « D » de la section transversale de l’extrudé de section quadrilobée est de préférence compris entre 1 et 3 mm, de manière préférée entre 1 ,1 et 2,2 mm. On entend par plus grand diamètre « D » le plus grand diamètre du cercle équivalent passant par les extrémités de deux lobes opposées.
Le support poreux à base d’alumine peut être synthétisé par différentes méthodes connues par l’homme du métier.
Selon un mode de réalisation, le support poreux à base d’alumine est préparé à partir d’une poudre de boehmite obtenue par hydrolyse d’alcoolates d’aluminium. Des exemples de poudre de boehmite préparée par hydrolyse d’alcoolates d’aluminium peuvent être trouvés dans les brevets FR 1391644 ou US 5,055,019. Cette poudre de boehmite est ensuite mise en forme, par exemple par malaxage et extrusion. Un ou plusieurs traitements thermiques peuvent ensuite conduire à l’obtention de l’alumine. De manière préférée, le traitement thermique est une calcination sous air sec à une température comprise entre 540°C et 800°C. Selon un autre mode de réalisation, le support poreux à base d’alumine est préparé à partir d’une poudre de boehmite obtenue par une réaction de précipitation à partir de sels d’aluminium. La poudre de boehmite peut par exemple être obtenue par précipitation de solutions basiques et/ou acides de sels d’aluminium induite par changement de pH ou toute autre méthode connue de l’homme de métier. Ce gel est ensuite mis en forme, par exemple par malaxage-extrusion. Puis on effectue une série de traitements thermiques du produit conduisant à l’obtention de l’alumine. Cette méthode est également décrite dans la partie intitulée « Alumina » de P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, J.L. Le Loarer, J. P. Jolivet et C. Froidefond, dans « Handbook of Porous Solids » (F. Schüth, K.S.W. Sing et J. Weitkamp, Wiley-VCH, Weinheim, Germany, 2002).
De manière préférée, le support poreux est préparé à partir d’une poudre de boehmite obtenue par hydrolyse d’alcoolates.
Le catalyseur utilisé dans le cadre du procédé selon l’invention peut être préparé par dépôt de ses différents constituants sur le support d'alumine. Le dépôt de chaque constituant peut être effectué sur le support d'alumine avant ou après mise en forme de celui-ci. Les constituants peuvent être introduits successivement dans n'importe quel ordre, à partir d'une solution ou de solutions distinctes. Dans ce dernier cas, on peut procéder à des séchages et/ou des calcinations intermédiaires.
Le dépôt des différents constituants du catalyseur peut être effectué par des techniques classiques, en phase liquide ou en phase gazeuse, à partir de composés précurseurs appropriés. Lorsque le dépôt des différents constituants du catalyseur est effectué avant la mise en forme du support, les techniques employées peuvent être par exemple l’imprégnation à sec ou en excès sur poudre de boehmite, ou encore le mélange de la(les) solution(s) contenant le constituant lors de l’étape de malaxage ou de mélange avant extrusion. Lorsque le dépôt est effectué sur le support d'alumine mis en forme, les techniques employées peuvent être par exemple l'imprégnation à sec, l'imprégnation par excès de solution. Des étapes de lavage et/ou séchage et/ou calcination peuvent éventuellement être menées avant chaque nouvelle étape d'imprégnation.
Le dépôt du platine peut être effectué par des techniques classiques, notamment l'imprégnation à partir d'une solution aqueuse ou organique d'un précurseur du platine ou contenant un sel ou un composé du platine. A titre d'exemple de sels ou de composés utilisables, on peut citer l'acide hexachloroplatinique, les composés ammoniaqués, le chloroplatinate d'ammonium, le chlorure de platine, le dichlorure de platine dicarbonyle et l'acide hexahydroxyplatinique. Les composés ammoniaqués peuvent être par exemple les sels de platine II tetraamines de formule Pt(NH3)4X2, les complexes de platine avec les halogènes-polycétones et les composés halogénés de formule H(Pt(acac)2X) dans lesquels l'élément X est un halogène choisi dans le groupe formé par le chlore, le fluor, le brome et l'iode, et de préférence le chlore, et le groupe acac représente le reste de formule C5H702 dérivé de l'acétylacétone. Parmi les solvants organiques utilisables, on peut citer les hydrocarbures paraffiniques, naphténiques ou aromatiques, et les composés organiques halogénés ayant par exemple 1 à 12 atomes de carbone par molécule. On peut citer par exemple le n-heptane, le méthylcyclohexane, le toluène et le chloroforme. On peut aussi utiliser des mélanges de solvants. Le dépôt du platine peut intervenir à tout moment lors de la préparation du catalyseur. Il peut être effectué isolément ou simultanément au dépôt d'autres constituants, par exemple du ou des métaux promoteurs.
Le dépôt du ou des dopants et/ou du ou des promoteurs peut être effectué également par des techniques classiques à partir de composés précurseurs tels que les composés phosphorés, les halogénures, les nitrates, les sulfates, les acétates, les tartrates, les citrates, les carbonates, les oxalates des métaux dopants et les complexes du type amine. Dans le cas de dopants ou précurseurs métalliques, tout autre sel ou oxyde de ces métaux soluble dans l'eau, les acides, ou dans un autre solvant approprié, convient également comme précurseur. A titre d'exemples de tels précurseurs, on peut ainsi citer l'acide perrhénique, les perrhénates, les chromâtes, les molybdates,les tungstates, le chlorure de gallium, le nitrate de gallium, l’acétate de thallium, le nitrate de thallium, l’acétylacétonate d’indium, le nitrate d’indium, l’acétate d’indium, le trifluoroacétate d’indium, le chlorure d’indium, l’acétate de bismuth, le nitrate de bismuth, H3P04, une solution de (NH4)2HP04, une solution de Na2HP04 et une solution de Na3P04. On peut aussi introduire le ou les dopants, par mélange d'une solution aqueuse de leur(s) composé(s) précurseur(s) avec le support avant sa mise en forme.
Le dépôt du ou des dopants et/ou du ou des promoteurs peut être effectué à l'aide d'une solution d'un composé organométallique desdits métaux dans un solvant organique. Dans ce cas, on effectue par exemple ce dépôt après celui du platine, puis on calcine le solide et on effectue éventuellement une réduction sous hydrogène pur ou dilué à haute température, par exemple entre 300 et 500°C. Les composés organométalliques sont choisis dans le groupe constitué par les complexes dudit métal promoteur et les hydrocarbylmétaux tels que les alkyl, cycloalkyl, aryl, alkylaryl et arylalkyl métaux. On peut également employer des composés du type alcoolate ou des composés organohalogénés. On peut citer en particulier le tétrabutylétain dans le cas où le dopant est l'étain, et le triphénylindium dans le cas où le dopant est l'indium. Le solvant d'imprégnation peut être choisi dans le groupe constitué par les hydrocarbures paraffiniques, naphténiques ou aromatiques contenant de 6 à 12 atomes de carbone par molécule et les composés organiques halogénés contenant de 1 à 12 atomes de carbone par molécule. On peut citer par exemple le n-heptane, le méthylcyclohexane et le chloroforme. On peut aussi utiliser des mélanges des solvants définis ci-dessus.
L'halogène, de manière préférée le chlore, peut être introduit dans le catalyseur en même temps qu'un autre constituant métallique, par exemple dans les cas où on utilise un halogénure comme composé précurseur du métal de la famille du platine, du métal promoteur ou du métal dopant.
L’halogène peut également être ajouté au moyen d’une imprégnation par une solution aqueuse de l’acide correspondant, par exemple l’acide chlorhydrique, à tout moment de la préparation. Un protocole typique consiste à imprégner le solide de façon à introduire la quantité d’halogène souhaitée. Le catalyseur est maintenu en contact avec la solution aqueuse pendant au moins 30 minutes pour déposer cette quantité d’halogène.
Le chlore peut également être ajouté au catalyseur au moyen d’un traitement d’oxychloration. Un tel traitement peut par exemple être effectué entre 350 et 550°C pendant deux heures sous un débit d’air contenant la quantité de chlore souhaitée et contenant éventuellement de l’eau.
Lorsque les divers précurseurs utilisés dans la préparation du catalyseur ne contiennent pas d’halogène ou contiennent de l’halogène en quantité insuffisante, il peut être nécessaire d’ajouter un composé halogéné lors de la préparation. Tout composé connu de l’homme de métier peut être utilisé et incorporé à l’une quelconque des étapes de préparation du catalyseur. En particulier, il est possible d’utiliser des composés organiques tels que des halogénures de méthyle ou d’éthyle, par exemple du dichlorométhane, du chloroforme, du dichloroéthane, du méthylchloroforme ou du tétrachlorure de carbone. La mise en forme du support poreux par extrusion, méthode bien connue de l’Homme du métier, peut être réalisée avant ou après le dépôt de tous les constituants sur ledit support poreux. La géométrie de la filière, qui confère leur forme aux extrudés, est telle que l’extrudé présente une section comportant quatre lobes et dont le plus grand diamètre « D » de la section transversale dudit extrudé est compris entre 1 et 3 mm. Après mise en forme du support poreux et le dépôt de tous les constituants, on procède à un traitement thermique final entre 300 et 1000°C, qui peut ne comporter qu'une seule étape à une température de 400 à 900°C de préférence, et sous atmosphère contenant de l'oxygène, et de préférence en présence d'oxygène libre ou d'air sec. Ce traitement correspond à l’étape de séchage- calcination suivant le dépôt du dernier constituant.
Avant son utilisation, le catalyseur est soumis à un traitement sous hydrogène et à un traitement à l'aide d'un précurseur soufré afin d’obtenir une phase métallique active et sélective. La procédure de ce traitement sous hydrogène, aussi appelée réduction sous hydrogène, consiste à maintenir le catalyseur dans un courant d’hydrogène pur ou dilué à une température comprise entre 100 et 600°C, et de préférence entre 200 et 580°C, pendant 30 minutes à 6 heures. Cette réduction peut être effectuée aussitôt après la calcination, ou plus tard chez l’utilisateur. Il est aussi possible de réduire directement le produit séché chez l’utilisateur. La procédure de traitement à l'aide d'un précurseur soufré s'effectue après la réduction. Elle permet d'obtenir un catalyseur sulfuré dont la teneur totale en soufre est comprise entre 700 et 1600 ppm par rapport au poids total du catalyseur, de préférence entre 800 et 1400 ppm et de manière encore plus préférée entre 800 et 1300 ppm. Par "teneur totale en soufre", on entend au sens de la présente invention, la quantité totale de soufre présent sur le catalyseur final obtenu à l'issue de l'étape de sulfuration, le soufre pouvant être sous forme de sulfate et/ou de soufre à l'état réduit. Le traitement au soufre (aussi appelé sulfuration) s'effectue par toute méthode bien connue de l'homme du métier. Par exemple, le catalyseur sous forme réduite est mis en contact avec un précurseur soufré pendant 1 heure à une température entre 450 et 580°C en présence d'hydrogène pur ou dilué. Le précurseur soufré peut être du disulfure de diméthyle, du sulfure de dihydrogène, des mercaptans légers, des sulfures organiques comme par exemple le diméthyldisulfure. Ainsi, selon un exemple non limitatif, on peut préparer le catalyseur par un procédé de fabrication comprenant les étapes suivantes :
1 ) on prépare un support poreux à base d’alumine ;
2) éventuellement, on imprègne ledit support poreux d’alumine avec une solution contenant un précurseur de chlore ;
3) on imprègne ledit support d'alumine obtenue à l’étape 1 ) ou 2) avec au moins une solution d'au moins un précurseur du platine ;
4) on imprègne ledit support obtenu à l'étape précédente avec au moins une solution d'au moins un précurseur de métal promoteur ;
5) on imprègne ledit support obtenu à l'étape précédente avec au moins une solution d'au moins un dopant, cette étape étant optionnelle ;
6) on sèche et calcine ledit support obtenu à l'étape 4) ou 5) pour obtenir un catalyseur sous forme d'oxyde ;
7) on réduit sous hydrogène pur le catalyseur sous forme d'oxyde obtenu à l'étape précédente à une température comprise par exemple entre 100 et 600°C et pendant 30 minutes à 6 heures pour obtenir un catalyseur réduit ;
8) on met en contact le catalyseur réduit obtenu à l'étape précédente avec au moins un précurseur soufré par exemple, pendant au moins une heure à une température comprise entre 450° et 580°C.
Les étapes (2), (3), (4) et (5) dont l'ordre peut être inversé, peuvent être effectuées simultanément ou successivement. Au moins une des étapes (2), (3), (4) et (5) peut être effectuée avant l'étape de mise en forme du support. Ainsi, si le support poreux à base d’alumine selon l’étape 1 ) n’est pas approvisionnée directement sous la forme d’un extrudé de longueur « I » comprise entre 1 et 10 mm et de section comportant quatre lobes telle que le plus grand diamètre « D » de la section transversale dudit extrudé est compris entre 1 et 3 mm, alors la mise en forme du support peut être réalisée entre l’une des étapes 1 ) à 6) (c’est-à-dire avant l’étape finale de séchage-calcination).
L'invention va maintenant être décrite dans les exemples de réalisation suivants donnés à titre illustratif et non limitatif. EXEMPLES
d’un catalyseur A non conforme (support sous forme d’extrudé en
Figure imgf000016_0001
Une poudre de boehmite commerciale, issue d’une réaction d’hydrolyse d’alcoolates d’aluminium est malaxée avec de l’eau puis extrudée au travers d’une filière cylindrique de diamètre 2 mm et calcinée à 740 °C. 20 g de ce support sont mis en contact pendant 3 heures avec 100 cm3 d’une solution aqueuse d’acide chlorhydrique comprenant 0,2 g de chlore. La solution d'imprégnation est alors soutirée. Le solide ainsi obtenu est séché 1 heure à 120°C puis calciné pendant 2 heures à 450°C. 100 cm3 d’une solution aqueuse d’acide hexachloroplatinique comprenant 0,07 g de platine sont ensuite mis en contact avec le support obtenu à l'issue de l'étape précédente pendant 3 heures. La quantité d'acide chlorhydrique est ajustée afin d'avoir une teneur en chlore de 1 ,1 % poids dans le catalyseur final. La solution d'imprégnation est alors soutirée. 60 cm3 d'une solution aqueuse comprenant 0,09 g de rhénium introduit sous forme de perrhénate d'ammonium sont ensuite mis en contact avec le support obtenu à l'issue de l'étape précédente pendant 3 heures. La solution d'imprégnation est alors soutirée. Le catalyseur ainsi obtenu est séché 1 heure à 120°C, calciné pendant 2 heures à 520°C puis réduit sous hydrogène 2 heures à 520°C. Le catalyseur est alors sulfuré avec un mélange hydrogène/H2S (1%vol. d'H2S) pendant 9 minutes à 520°C (débit: 0,15 l/min en conditions normales de température et de pression).
Le catalyseur final contient 0,25 % poids de platine, 0,25% poids de rhénium, et 1 ,1 % poids de chlore par rapport au poids total du catalyseur.
Exemple 2 : Préparation d’un catalyseur B non conforme (support sous forme d’extrudé
Le catalyseur est préparé selon un protocole identique à l’exemple 1 à l’exception du fait que l’extrusion est faite au travers d’une filière trilobé dont le plus grand diamètre « D » est de 2 mm.
d’un catalyseur C conforme (support sous forme d’extrudé
Figure imgf000016_0002
Le catalyseur est préparé selon un protocole identique à l’exemple 1 à l’exception du fait que l’extrusion est faite au travers d’une filière quadrilobe symétrique (telle que représentée en figure 2a) dont le plus grand diamètre « D » est de 2 mm. Exemple 4 : Test catalytique
Les catalyseurs A à C sont testés pour la transformation d'une charge hydrocarbonée de type naphtha issue de la distillation de pétrole, dont les caractéristiques sont les suivantes :
densité à 15°C : 0,761 kg/dm3
paraffines / naphtènes / aromatiques : 44,1 / 38,7 / 17,2 % vol
Cette transformation est réalisée dans une unité de test pilote en lit traversé en présence d'hydrogène. Le test est conduit en utilisant les conditions opératoires suivantes :
pression totale : 1 ,2 MPa
débit de charge : 4,8 kg par kg de catalyseur par heure
indice d’octane recherche : 102
rapport molaire hydrogène recyclé sur charge hydrocarbonée : 2,5.
Tous les tests des catalyseurs ont été réalisés à une température variable mais permettant d'obtenir un indice d'octane recherche (indice RON) constant et égal à 102.
Le profil de température des catalyseurs A à C est représenté en figure 1. De ce graphique il est possible de caractériser la stabilité du catalyseur en calculant la pente de la température entre deux temps sous charge donnés. La pente s’exprime ainsi en °C/jour (°C/j). Plus la pente est faible, plus le catalyseur est considéré comme stable. Le catalyseur C est plus stable que les catalyseurs A et B, la pente représentative de la croissance de la température en fonction du temps sous charge étant la plus faible (cf. tableau 1 ci-après). Cette meilleure stabilité est également corrélée à une teneur en carbone (représentative du coke déposé sur le catalyseur) en fin de test plus faible (cf. tableau 1 ci-après).
Figure imgf000017_0001
Tableau 1 : Stabilité des catalyseurs A à C et teneur en carbone

Claims

REVENDICATIONS
1. Procédé de reformage en lit fixe d’une charge hydrocarbonée comprenant des hydrocarbures n-paraffiniques, naphténiques et aromatiques contenant de 5 à 12 atomes de carbone par molécule à une température comprise entre 400 et 700°C, une pression comprise entre 0,1 et 4 MPa, et un débit massique de charge traitée par unité de masse de catalyseur et par heure compris entre 0,1 et 10 h 1 , par mise en contact de ladite charge avec un catalyseur comprenant au moins du platine, au moins un métal promoteur choisi dans le groupe formé par le rhénium et l’iridium, au moins un halogène choisi dans le groupe formé par le fluor, le chlore, le brome et l’iode, et un support poreux d’alumine se présentant sous la forme d’un extrudé caractérisé par une longueur « I » comprise entre 1 et 10 mm, une section comportant quatre lobes et telle que le plus grand diamètre « D » de la section transversale dudit extrudé est compris entre 1 et 3 mm.
2. Procédé selon la revendication 1 , dans lequel le plus grand diamètre « D » de la section transversale dudit extrudé est compris entre 1 ,1 et 2,2 mm.
3. Procédé selon les revendications 1 ou 2, dans lequel ledit extrudé présente une longueur « I » comprise entre 2 et 7 mm.
4. Procédé selon l’une quelconque des revendications 1 à 3, dans lequel ladite section de l’extrudé présente des lobes symétriques.
5. Procédé selon l’une quelconque des revendications 1 à 3, dans lequel ladite section de l’extrudé présente des lobes asymétriques.
6. Procédé selon l’une quelconque des revendications 1 à 5, dans lequel ledit extrudé est un extrudé axial.
7. Procédé selon l’une quelconque des revendications 1 à 5, dans lequel ledit extrudé est un extrudé hélicoïdal ayant un pas de rotation compris entre 10 et 180° par mm.
8. Procédé selon l’une quelconque des revendications 1 à 7, dans lequel la teneur en platine dudit catalyseur par rapport au poids total du catalyseur est comprise entre 0,02 à 2 % poids.
9. Procédé selon l’une quelconque des revendications 1 à 8, dans lequel la teneur en rhénium ou en iridium dudit catalyseur est comprise entre 0,02 et 10 % en poids par rapport au poids total du catalyseur.
10. Procédé selon l’une quelconque des revendications 1 à 9, dans lequel ledit catalyseur comprend en outre au moins un dopant choisi dans le groupe formé par le gallium, le germanium, l’indium, l’étain, l’antimoine, le thallium, le plomb, le bismuth, le titane, le chrome, le manganèse, le molybdène, le tungstène, le rhodium, le zinc et le phosphore.
1 1. Procédé selon la revendication 10, dans lequel la teneur dudit dopant est compris entre 0,01 et 2 % en poids par rapport au poids du catalyseur.
12. Procédé selon l'une quelconque des revendications 1 à 1 1 , dans lequel la teneur en halogène dudit catalyseur est comprise entre 0,1 et 15% en poids par rapport au poids total du catalyseur.
13. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel l'halogène est le chlore et sa teneur est comprise entre 0,5 et 2 % poids par rapport au poids total du catalyseur.
14. Procédé selon l'une quelconque des revendications 1 à 13, dans lequel la surface spécifique dudit support poreux est comprise entre 150 et 400 m2/g.
15. Procédé selon l’une quelconque des revendications 1 à 14, dans lequel le volume des pores du support dont le diamètre inférieur à 10 microns est compris entre 0,2 et 1 cm3/g, et le diamètre moyen des mésopores est compris entre 5 et 20 nm.
PCT/EP2019/078574 2018-11-08 2019-10-21 Procede de reformage en lit fixe utilisant un catalyseur de forme particuliere WO2020094378A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217013125A KR20210076028A (ko) 2018-11-08 2019-10-21 특정 형태를 갖는 촉매를 이용한 고정층 개질 방법
JP2021524050A JP2022506608A (ja) 2018-11-08 2019-10-21 特定形状の触媒を用いる固定床接触改質方法
BR112021004765-4A BR112021004765A2 (pt) 2018-11-08 2019-10-21 processo de reforma em leito fixo utilizando um catalisador de forma particular
US17/292,158 US20210388272A1 (en) 2018-11-08 2019-10-21 Method for fixed-bed reforming using a catalyst having a particular form
CN201980073277.8A CN113242765A (zh) 2018-11-08 2019-10-21 使用具有特定形式的催化剂的固定床重整方法
EP19787286.4A EP3877084A1 (fr) 2018-11-08 2019-10-21 Procede de reformage en lit fixe utilisant un catalyseur de forme particuliere

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1871420A FR3088338B1 (fr) 2018-11-08 2018-11-08 Procede de reformage en lit fixe utilisant un catalyseur de forme particuliere
FR1871420 2018-11-08

Publications (1)

Publication Number Publication Date
WO2020094378A1 true WO2020094378A1 (fr) 2020-05-14

Family

ID=66041566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/078574 WO2020094378A1 (fr) 2018-11-08 2019-10-21 Procede de reformage en lit fixe utilisant un catalyseur de forme particuliere

Country Status (8)

Country Link
US (1) US20210388272A1 (fr)
EP (1) EP3877084A1 (fr)
JP (1) JP2022506608A (fr)
KR (1) KR20210076028A (fr)
CN (1) CN113242765A (fr)
BR (1) BR112021004765A2 (fr)
FR (1) FR3088338B1 (fr)
WO (1) WO2020094378A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1391644A (fr) 1963-05-11 1965-03-05 Deutsche Erdoel Ag Procédé d'hydrolyse d'alcoolates d'aluminium en présence d'alcools
US3674680A (en) * 1970-03-09 1972-07-04 Standard Oil Co Process and catalyst for hydroprocessing a resid hydrocarbon
US3857780A (en) * 1972-05-22 1974-12-31 W Gustafson Hydroforming petroleum fractions in gas phase using shaped catalyst particles
US4328130A (en) * 1980-10-22 1982-05-04 Chevron Research Company Shaped channeled catalyst
US5055019A (en) 1988-07-14 1991-10-08 Condea Chemie Gmbh Process for the production of boehmitic aluminas
EP2441516A1 (fr) * 2010-10-15 2012-04-18 IFP Energies Nouvelles Catalyseur optimisé pour le reformage catalytique

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990964A (en) * 1973-08-03 1976-11-09 American Cyanamid Company Hydrotreating of petroleum distillates using shaped catalyst particles
GB1474248A (en) * 1974-12-06 1977-05-18 American Cyanamid Co Hydroforming petroleum fractions in gas phase using shaped catalyst particles
US4394303A (en) * 1981-05-12 1983-07-19 Chevron Research Company Large pore shaped hydroprocessing catalysts
NZ217874A (en) * 1985-10-25 1989-01-27 Mobil Oil Corp Quadrulobe catalysts
US4677094A (en) * 1986-09-22 1987-06-30 Uop Inc. Trimetallic reforming catalyst
US5880051A (en) * 1996-10-23 1999-03-09 Uop Llc Reforming catalyst system with differentiated acid properties
US7115538B2 (en) * 2001-12-05 2006-10-03 Exxonmobil Chemical Patents Inc. Ethylbenzene conversion catalyst and process
MY139580A (en) * 2002-06-07 2009-10-30 Shell Int Research Shaped catalyst particles for hydrocarbon synthesis
US7166756B2 (en) * 2003-02-14 2007-01-23 Exxonmobil Research And Engineering Company Method for hydrocarbon isomerization
US7297402B2 (en) * 2004-04-15 2007-11-20 Shell Oil Company Shaped particle having an asymmetrical cross sectional geometry
JP5544090B2 (ja) * 2006-01-17 2014-07-09 エクソンモービル リサーチ アンド エンジニアリング カンパニー ナフサ水素化脱硫用の高温アルミナ担体を有する選択的触媒
US7901565B2 (en) * 2006-07-11 2011-03-08 Basf Corporation Reforming sulfur-containing hydrocarbons using a sulfur resistant catalyst
US8414851B2 (en) * 2010-06-11 2013-04-09 Uop Llc Apparatus for the reduction of gasoline benzene content by alkylation with dilute ethylene
CN103521245B (zh) * 2012-07-02 2016-08-24 中国石油化工股份有限公司 一种规整条形重整催化剂及其制备方法
US9499403B2 (en) * 2013-07-10 2016-11-22 Saudi Arabian Oil Company Catalyst and process for thermo-neutral reforming of liquid hydrocarbons
FR3015309B1 (fr) * 2013-12-19 2016-01-29 IFP Energies Nouvelles Extrusion helicoidale de supports catalytiques multilobes dissymetriques
JP6574349B2 (ja) * 2015-06-30 2019-09-11 Jxtgエネルギー株式会社 ナフテン系炭化水素用の脱水素触媒の製造方法、水素の製造システムの製造方法及び水素の製造方法
CN106622304B (zh) * 2015-11-02 2019-06-11 中国石油化工股份有限公司 一种石脑油重整催化剂,其制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1391644A (fr) 1963-05-11 1965-03-05 Deutsche Erdoel Ag Procédé d'hydrolyse d'alcoolates d'aluminium en présence d'alcools
US3674680A (en) * 1970-03-09 1972-07-04 Standard Oil Co Process and catalyst for hydroprocessing a resid hydrocarbon
US3857780A (en) * 1972-05-22 1974-12-31 W Gustafson Hydroforming petroleum fractions in gas phase using shaped catalyst particles
US4328130A (en) * 1980-10-22 1982-05-04 Chevron Research Company Shaped channeled catalyst
US5055019A (en) 1988-07-14 1991-10-08 Condea Chemie Gmbh Process for the production of boehmitic aluminas
EP2441516A1 (fr) * 2010-10-15 2012-04-18 IFP Energies Nouvelles Catalyseur optimisé pour le reformage catalytique

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"CRC Handbook of Chemistry and Physics", 2000
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 60, 1938, pages 309
P. EUZENP. RAYBAUDX. KROKIDISH. TOULHOATJ.L. LE LOARERJ.P. JOLIVETC. FROIDEFOND: "Handbook of Porous Solids", 2002, WILEY-VCH, article "Alumina"

Also Published As

Publication number Publication date
FR3088338B1 (fr) 2021-10-29
BR112021004765A2 (pt) 2021-08-03
CN113242765A (zh) 2021-08-10
JP2022506608A (ja) 2022-01-17
EP3877084A1 (fr) 2021-09-15
US20210388272A1 (en) 2021-12-16
KR20210076028A (ko) 2021-06-23
FR3088338A1 (fr) 2020-05-15

Similar Documents

Publication Publication Date Title
EP2441516B1 (fr) Catalyseur optimisé pour le reformage catalytique
EP0832168B1 (fr) Catalyseurs utilisables dans les reactions de transformation d'hydrocarbures contenant un metal dopant
EP0831966B1 (fr) Catalyseurs utilisables dans les reactions de transformation d'hydrocarbures et contenant du silicium
EP0832169B1 (fr) Procede de transformation d'hydrocarbures en composes aromatiques avec un catalyseur contenant des metaux dopants
EP3740309B1 (fr) Procede de preparation d'un catalyseur particulier d'hydrogenation selective et d'hydrogenation des aromatiques par malaxage
EP0832167B1 (fr) Procede de reformage avec un catalyseur contenant des metaux alcalins ou alcalino-terreux
EP2296809B1 (fr) Preparation de supports soufres pour le reformage catalytique
EP0832170B1 (fr) Procede de transformation catalytique d'hydrocarbures en composes aromatiques avec un catalyseur comprenant du silicium
WO2020094378A1 (fr) Procede de reformage en lit fixe utilisant un catalyseur de forme particuliere
EP2448671B1 (fr) Catalyseur multi-metallique presentant une forte interaction metallique
EP0623387B1 (fr) Procédé d'hydrogénation catalytique
FR2735395A1 (fr) Catalyseurs utilisables dans les reactions de transformation d'hydrocarbures et contenant des metaux alcalins et alcalino-terreux
FR2735396A1 (fr) Catalyseurs utilisables dans les reactions de transformation d'hydrocarbures et contenant du titane, zirconium, hafnium, cobalt, nickel et/ou zinc
EP4157521A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute
FR2735491A1 (fr) Procede de transformation catalytique d'hydrocarbures en composes aromatiques avec un catalyseur comprenant du silicium
FR2735393A1 (fr) Catalyseurs utilisables dans les reactions de transformation d'hydrocarbures et contenant du silicium et des metaux alcalins ou alcalino-terreux
FR2735397A1 (fr) Catalyseurs utilisables dans les reactions de transformation d'hydrocarbures et contenant des lanthanides
FR2735391A1 (fr) Catalyseurs utilisables dans les reactions de transformation d'hydrocarbures et contenant du silicium
FR2735493A1 (fr) Procede de transformation catalytique d'hydrocarbures en composes aromatiques avec un catalyseur comprenant du silicium et des metaux alcalins ou alcalino-terreux
FR2735394A1 (fr) Catalyseurs utilisables dans les reactions de transformation d'hydrocarbures et contenant du silicium et des metaux alcalins ou alcalino-terreux
FR2509629A1 (fr) Nouveaux catalyseurs de conversion d'hydrocarbures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19787286

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021004765

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217013125

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021524050

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019787286

Country of ref document: EP

Effective date: 20210608

ENP Entry into the national phase

Ref document number: 112021004765

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210312