WO2020066343A1 - 細胞膜透過性ペプチド - Google Patents

細胞膜透過性ペプチド Download PDF

Info

Publication number
WO2020066343A1
WO2020066343A1 PCT/JP2019/031670 JP2019031670W WO2020066343A1 WO 2020066343 A1 WO2020066343 A1 WO 2020066343A1 JP 2019031670 W JP2019031670 W JP 2019031670W WO 2020066343 A1 WO2020066343 A1 WO 2020066343A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
cell membrane
group
integer
arg
Prior art date
Application number
PCT/JP2019/031670
Other languages
English (en)
French (fr)
Inventor
優佳 松田
寛士 北
慶士 高津
達也 馬渡
北野 光昭
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2020548136A priority Critical patent/JP7489319B2/ja
Priority to US17/276,041 priority patent/US20220048953A1/en
Priority to KR1020217010553A priority patent/KR20210064254A/ko
Publication of WO2020066343A1 publication Critical patent/WO2020066343A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/65Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/10Fusion polypeptide containing a localisation/targetting motif containing a tag for extracellular membrane crossing, e.g. TAT or VP22

Definitions

  • the present invention relates to a peptide having excellent cell membrane permeability.
  • PPI protein-protein interaction
  • Non-Patent Document 1 discloses various CPPs.
  • an object of the present invention is to provide a novel peptide having excellent cell membrane permeability.
  • the present inventors have intensively studied to solve the above problems. As a result, it becomes possible to efficiently deliver a bioactive peptide into a cell by finding a peptide having excellent cell membrane permeability and binding the peptide to the bioactive peptide to be delivered into the cell. And completed the present invention. Hereinafter, the present invention will be described.
  • A, B and C are independently aliphatic amino acids selected from alanine, 2-methylalanine, valine, leucine and isoleucine
  • D is any amino acid
  • l is an integer of 1 or more and 4 or less
  • m is an integer of 0 or more and 5 or less
  • n is an integer of 6 or more;
  • n is an integer of 4 or more;
  • n is an integer of 4 or more.
  • n is an integer of 4 or more.
  • ⁇ 4 ⁇ The cell membrane-penetrating peptide according to any one of the above [1] to [3], wherein ⁇ C is 2-methylalanine.
  • the cell membrane-permeable peptide according to the present invention has excellent cell membrane permeability, it can efficiently deliver a physiologically active substance into cells. Therefore, the cell membrane permeable peptide according to the present invention can be an excellent molecular target drug, and is industrially very excellent.
  • FIG. 1 is a graph showing logarithmic values of fluorescence intensity ratios obtained by a cell membrane permeability test of various peptide conjugates.
  • the bioactive peptide contained in the cell membrane permeable peptide according to the present invention is to be delivered into cells, and is not particularly limited as long as it exhibits some physiological action in cells. Since such a bioactive peptide is to be delivered into a cell, the number of amino acid residues constituting the bioactive peptide is preferably 4 or more and 20 or less. Some bioactive peptides show bioactivity even when the number of amino acid residues is four. In addition, when the number of the amino acid residues is 20 or less, the amino acid residue can be more reliably delivered into cells. The number of the amino acid residues is more preferably 5 or more and 15 or less.
  • the bioactive peptide binds to the cell membrane penetration promoting peptide, ie, ( ABC ) l- (D) m- (Arg) n or (Arg) n- (D) m- (ABC) l May be provided.
  • the linker may be a general linker group other than an amino acid residue or a peptide.
  • the number of bonds is preferably 10 or less or 5 or less, more preferably 3 or less.
  • the linker group formed by bonding two or more of the above groups include an amino group, an imino group, an ether group, a thioether group, a carbonyl group, a thionyl group, an ester group, an amide group, a sulfoxide group, a sulfonyl group, and / or Or a C 1-6 alkylene group having a sulfonylamide group at one or both ends.
  • the linker is a peptide
  • the number of amino acid residues forming the linker is preferably 1 or more and 20 or less.
  • the linker peptide does not affect the activity of the physiologically active peptide.
  • the linker peptide include a GS linker and a GGS linker.
  • the GGS linker is composed of a sequence in which the GGS sequence is repeated at least once and at most six times.
  • the GS linker is a sequence in which the GGGGS sequence is repeated once or more and about six times or less, particularly three times.
  • the bioactive peptide may be cyclized if possible.
  • the cyclization stabilizes and becomes less susceptible to attack by a protease or the like in a living body, and may further improve cell membrane permeability.
  • a side chain reactive group of an amino acid residue contained in the physiologically active peptide may be used. Examples of the side chain reactive group include a hydroxyl group of Ser or Thr, a thiol group of Cys, a carboxy group of Asp or Glu, and an amino group of Lys.
  • the cross-linking compound for cyclizing the physiologically active peptide a compound having a plurality of reactive groups that react with the above-mentioned side chain reactive group may be used.
  • the number of reactive groups is preferably 2.
  • the reactive group include a carboxy group, an active ester group, an acid chloride group, an acid bromide group, a halogeno group, an epoxy group, a hydroxyl group, and an amino group.
  • a base, a condensing agent and the like may be added to promote the reaction.
  • linker group for linking a plurality of reactive groups in the cross-linking compound examples include the same as the above-mentioned linker group for bonding the physiologically active peptide to the N-terminal side.
  • the length of the linker group may be appropriately adjusted depending on the number of residues between amino acid residues used for cyclization, a desired ring size, and the like.
  • cross-linking compound for cross-linking the physiologically active peptide examples include the following compounds.
  • the N-terminal side of the cell membrane penetrating peptide according to the present invention is-(ABC) l- (D) m- (Arg) n or-(Arg) n- (D) m- (AB- C) l , and these peptides have a function of promoting the penetration of bioactive peptides into cell membranes.
  • these peptides may be referred to as “cell membrane permeation promoting peptides” for convenience.
  • AC is an aliphatic amino acid independently selected from alanine, 2-methylalanine, valine, leucine, and isoleucine.
  • a and B are preferably leucine
  • C is preferably alanine or 2-methylalanine (2-aminoisobutyric acid), and more preferably 2-methylalanine.
  • [Arg] units are conventionally known as having cell membrane permeability.
  • the number of [Arg] units that is, n is 4 or more, depending on the number of [ABC] units. In relation to the [ABC] unit, it is preferable that the smaller the [ABC] unit, the larger the [Arg] unit.
  • n is preferably an integer of 8 or more.
  • n is preferably an integer of 6 or more.
  • n is preferably an integer of 4 or more.
  • the upper limit of the number of [Arg] units is not particularly limited, but can be, for example, 16 or less, preferably 14 or less, and more preferably 10 or less.
  • ⁇ ⁇ ⁇ ⁇ [ABC] unit is an extremely important unit for cell membrane permeability in the cell membrane penetration promoting peptide. According to the experimental findings of the present inventors, cell membrane permeability is remarkably improved even when only one [ABC] unit is added to oligoarginine. Although the reason is not necessarily clear, it is known that the repetitive sequence of [Leu-Leu-Aib] has a helical structure, so that the secondary structure of the unit may contribute to the improvement of cell membrane permeability. There is. The number of [ABC] units, that is, 1 is 1 or more and 4 or less. According to the experimental findings by the present inventors, in the absence of the [ABC] unit, the cell membrane permeation performance of the peptide is not sufficient. On the other hand, if the [ABC] unit is in excess, the water solubility of the peptide may be reduced and handling may be difficult, and therefore l is more preferably 4 or less.
  • the [D] unit mainly has a role of a linker connecting the [Arg] unit and the [ABC] unit.
  • D is any amino acid, for example, Gly; Ala; branched amino acids of Val, Leu, Ile; hydroxy amino acids of Ser, Thr; sulfur-containing amino acids of Cys, Met; acid amide amino acids of Asn, Gln; Pro; , Thr, Trp aromatic amino acids; Asp, Glu acidic amino acids; Lys, Arg, His basic amino acids, including Gly, Ala, branched amino acids, hydroxy amino acids, sulfur-containing amino acids, acid amide amino acids Neutral amino acids selected are preferred, amino acids selected from Gly, Ala, Val, Leu, and Ile are more preferred, and Gly is even more preferred.
  • the number of units, that is, m is 0 or more and 5 or less. m is preferably 1 or more, more preferably 2 or more, and preferably 4 or less,
  • the position of (ABC) l and the position of (Arg) n may be interchanged with each other, but the sequence represented by the formula (I) is more preferable. .
  • the cell membrane-permeable peptide according to the present invention has the sequence represented by formula (I) or formula (II), for example, another peptide may be bound to the N-terminus or C-terminus.
  • the other peptide added to the terminal is not particularly limited as long as it does not inhibit the cell membrane permeability of the peptide of the present invention.
  • the number of amino acid residues is preferably 1 or more and 10 or less, more preferably 5 or less.
  • the sequence of the cell membrane permeable peptide according to the present invention preferably comprises only the sequence represented by the formula (I) or (II), and more preferably comprises only the sequence represented by the formula (I).
  • N-terminus or C-terminus of the cell membrane-permeable peptide according to the present invention may be chemically modified.
  • C-terminal -COOH or -COO - may be a, amidated (-CONH 2), alkyl amidation (-CONHR), or may be esterified (-COOR), also, N
  • the terminal may be -NH 2 or -NH 3 + or may be acylated (-NHCOR).
  • R represents a C 1-6 alkyl group.
  • the C-terminal is preferably amidated.
  • C 1-6 alkyl group refers to a linear or branched monovalent saturated aliphatic hydrocarbon group having 1 to 6 carbon atoms.
  • it is a C 1-4 alkyl group, more preferably a C 1-2 alkyl group, and most preferably methyl.
  • the cell membrane permeable peptide according to the present invention may be in the form of a salt.
  • Such salts are preferably pharmaceutically acceptable.
  • counter cations constituting such salts include metal ions, ammonium ions (NH 4 + ), organic base ions, and basic amino acid ions.
  • counter anions include inorganic acid ions and organic acid ions. Ions and acidic amino acid ions.
  • Examples of the metal ion constituting the metal salt include an alkali metal ion such as lithium ion, sodium ion and potassium ion; an alkaline earth metal ion such as calcium ion and barium ion; and a magnesium ion.
  • Examples of the organic base constituting the organic base salt include trimethylamine, triethylamine, pyridine, picoline, 2,6-lutidine, ethanolamine, diethanolamine, triethanolamine, cyclohexylamine, dicyclohexylamine, N, N′-dibenzylethylenediamine Is mentioned.
  • Examples of the basic amino acid constituting the basic amino acid salt include lysine, arginine, and histidine.
  • Examples of the inorganic acid constituting the inorganic acid salt include hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid and the like.
  • Examples of the organic acid constituting the organic acid salt include formic acid, acetic acid, trifluoroacetic acid, phthalic acid, fumaric acid, oxalic acid, tartaric acid, maleic acid, citric acid, succinic acid, malic acid, methanesulfonic acid, benzenesulfonic acid Acids, p-toluenesulfonic acid and the like.
  • Examples of the acidic amino acids constituting the acidic amino acid salt include aspartic acid and glutamic acid.
  • the cell membrane permeable peptide according to the present invention can be produced by a conventional method, but can be produced by, for example, a solid phase synthesis method since the total number of amino acid residues is relatively small. Specifically, after designing the amino acid sequence of the cell membrane permeable peptide, the amino group and, if necessary, the C-terminal amino acid residue protected with a side chain reactive group are bonded to a solid resin, and thereafter, the amino group Deprotection and coupling of the next amino acid residue are repeated, and finally, the peptide is cut off from the solid resin and deprotected. Washing is performed after each reaction.
  • the peptide When cyclizing a physiologically active peptide, the peptide may be cyclized in a state bound to the solid resin, or the peptide may be cut off from the solid resin and then cyclized, but the number of production steps is smaller. It is preferable to cyclize the bioactive peptide after separating the peptide from the solid resin. Since the peptide for promoting cell membrane penetration is composed of amino acid residues having no reactive group in the side chain, it is considered that the bioactive peptide is circularized by the cross-linking compound in principle.
  • the bioactive peptide permeates the cell membrane and is delivered to the inside of the cell by the cell membrane-permeable peptide according to the present invention, it is considered that the side effect is relatively small and the action effect of the bioactive peptide is effectively exerted. Since the cell membrane-permeable peptide of the present invention is a peptide, it is preferably administered by injection.
  • Water is preferred as the solvent for the injection containing the cell membrane permeable peptide of the present invention. Further, depending on the water solubility of the peptide of the present invention, it may contain a water-miscible organic solvent such as ethanol, ethylene glycol, propylene glycol, or polyethylene glycol. In addition, additional components such as salts such as sodium chloride, buffer components, and preservatives may be included. Needless to say, the injection must be an isotonic solution or a substantially isotonic solution.
  • the dose of the cell membrane penetrating peptide according to the present invention may be appropriately adjusted depending on the severity, age, sex, weight, symptoms, etc. of the patient to be administered.
  • the dose can be adjusted in the range of 0.001 mg / kg / day to 100 mg / kg / day, preferably in the range of 0.005 mg / kg / day to 50 mg / kg / day.
  • Examples 1 to 9 and Comparative Examples 1 to 6 Synthesis of peptide conjugate A peptide conjugate having the following sequence was synthesized on a Rink Amide resin (0.2 mmol / g) by a solid phase synthesis method using microwaves. The peptide chain part was synthesized. F-Ahx- (cargo peptide)-(Leu-Leu-Aib) l- (Gly) m- (Arg) n -NH 2 [Wherein F represents a fluorescein-containing group that is a fluorescent group, Ahx represents 6-aminohexanoic acid, Aib represents 2-aminoisobutyric acid (2-methylalanine), and the cargo peptide has the following structure: . ]
  • EXAMPLE 8 (SEQ ID NO 14): F-Ahx- (cargo peptide) - (Arg) 9 - ( Gly) 3 - (Leu-Leu-Aib) -NH 2
  • Example 9 (SEQ ID NO: 15): F-Ahx- (cargo peptide)-(Leu-Leu-Ala)-(Gly) 3- (Arg) 9 -NH 2
  • TSA trifluoroacetic acid
  • TIS triisopropylsilane
  • DODT 3,6-dioxa-1,8-octanedithiol
  • the obtained peptide is dissolved in a mixed solvent of N, N-dimethylformamide (DMF) and water, and 1,3-dibromoacetone (1.5 equivalents) and N, N-diisopropylethylamine (3.0 equivalents) are added.
  • the cargo peptide was cyclized by time treatment.
  • the peptide was purified from the reaction solution by reverse phase HPLC and lyophilized.
  • Fluorescence intensity ratio (F n -F 1 ) / (F 2 -F 1 )
  • F n Mode of fluorescence intensity of test compound
  • F 1 Mode of fluorescence intensity of test compound of Comparative Example 1
  • F 2 Mode of fluorescence intensity of test compound of Comparative Example 2

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本発明は、細胞膜透過性に優れた新規細胞膜透過性ペプチドを提供することを目的とする。本発明に係る細胞膜透過性ペプチドまたはその塩は、下記式(I)または(II)で表される配列を有することを特徴とする。 X-(A-B-C)l-(D)m-(Arg)n ・・・ (I) X-(Arg)n-(D)m-(A-B-C)l ・・・ (II) [式中、Xは生理活性ペプチドであり、A、BおよびCは脂肪族アミノ酸であり、Dは任意のアミノ酸であり、lは、1以上、4以下の整数であり、mは、0以上、5以下の整数であり、lが1のとき、nは8以上の整数であり、lが2のとき、nは6以上の整数であり、lが3のとき、nは4以上の整数であり、lが4のとき、nは4以上の整数である。]

Description

細胞膜透過性ペプチド
 本発明は、細胞膜透過性に優れた細胞膜透過性ペプチドに関するものである。
 近年、特定のタンパク質や遺伝子を標的として攻撃する分子標的薬が注目を集めており、細胞内タンパク質-タンパク質相互作用(PPI)は魅力的な創薬ターゲットの一つである。しかし、タンパク質間の相互作用面は広く、親水性が高いため、既存の低分子がPPIを阻害することは難しい。それに対して、ペプチド等の中分子はPPIを阻害することが可能であるが、その多くは細胞膜透過性を持たない。
 ペプチドを細胞内に送達する方法として、細胞膜透過性ペプチド(CPPs)をカーゴ分子に結合させて細胞膜透過性を付与する方法が知られている。既存のCPPsとしては、HIV-1ウイルス由来のTATペプチド(特許文献1)、ショウジョウバエのAntennapediaのホメオドメインに由来するペネトラチンの改変型(特許文献2)、オリゴアルギニン(非特許文献1~3)などが知られており、その他、非特許文献4にも様々なCPPsが開示されている。
特開平10-33186号公報 特表2002-530059号公報
Futaki,S.ら,J.Biol.Chem.,2001,276,pp.5836-5840 Dana Maria Copoloviciら,ACS Nano,2014,8,p.1972 James R.Maioloら,Biochimica et Biophysica Acta,1712(2005),pp.161-172 Paul A.Wenderら,Proc.Natl.Acad.Sci.,2000,97(24)8,pp.13003-13008
 上述したように、細胞膜透過性ペプチドは種々知られているが、実際に臨床に適用されているものは少なく、より優れた新規細胞膜透過性ペプチドが模索されている。
 そこで本発明は、細胞膜透過性に優れた新規細胞膜透過性ペプチドを提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、優れた細胞膜透過性能を有するペプチドを見出し、細胞内に送達すべき生理活性ペプチドにかかるペプチドを結合させることにより、生理活性ペプチドを細胞内へ効率的に送達することが可能になることを見出して、本発明を完成した。
 以下、本発明を示す。
 [1] 下記式(I)または式(II)で表される配列を有することを特徴とする細胞膜透過性ペプチドまたはその塩。
 X-(A-B-C)l-(D)m-(Arg)n ・・・ (I)
 X-(Arg)n-(D)m-(A-B-C)l ・・・ (II)
[式中、
 Xは生理活性ペプチドであり、
 A、BおよびCは、独立して、アラニン、2-メチルアラニン、バリン、ロイシン、およびイソロイシンから選択される脂肪族アミノ酸であり、
 Dは任意のアミノ酸であり、
 lは、1以上、4以下の整数であり、
 mは、0以上、5以下の整数であり、
 lが1のとき、nは8以上の整数であり、
 lが2のとき、nは6以上の整数であり、
 lが3のとき、nは4以上の整数であり、
 lが4のとき、nは4以上の整数である。]
 [2] AおよびBがロイシンである上記[1]に記載の細胞膜透過性ペプチドまたはその塩。
 [3] Dがグリシンである上記[1]または[2]に記載の細胞膜透過性ペプチドまたはその塩。
 [4] Cが2-メチルアラニンである上記[1]~[3]のいずれかに記載の細胞膜透過性ペプチド。
 [5] 生理活性ペプチドが環状化されたものである上記[1]~[4]のいずれかに記載の細胞膜透過性ペプチドまたはその塩。
 [6] C末端がアミド化されている上記[1]~[5]のいずれかに記載の細胞膜透過性ペプチド。
 本発明に係る細胞膜透過性ペプチドは、優れた細胞膜透過性能を有することから、生理活性物質を細胞内へ効率的に送達することができる。よって本発明に係る細胞膜透過性ペプチドは、優れた分子標的薬となり得ることから、産業上非常に優れている。
図1は、様々なペプチドコンジュゲートの細胞膜透過性試験によって得られた蛍光強度比の対数値を示すグラフである。
 本発明に係る細胞膜透過性ペプチドに含まれる生理活性ペプチドは、細胞内へ送達すべきものであり、細胞内で何らかの生理的作用を示すものであれば特に制限されない。かかる生理活性ペプチドは、細胞内に送達されるべきものであることから、生理活性ペプチドを構成するアミノ酸残基数としては、4以上、20以下が好ましい。生理活性ペプチドの中には、アミノ酸残基数が4であっても生理活性を示すものがある。また、当該アミノ酸残基数が20以下であれば、より確実に細胞内に送達され得る。当該アミノ酸残基数としては、5以上、15以下がより好ましい。
 生理活性ペプチドは、細胞膜透過促進ペプチド、即ち(A-B-C)l-(D)m-(Arg)nまたは(Arg)n-(D)m-(A-B-C)lと結合するためのリンカーを有していてもよい。リンカーは、アミノ酸残基やペプチドの他、一般的なリンカー基であってもよい。かかるリンカー基としては、例えば、特に制限されるものではないが、C1-6アルキレン基、アミノ基(-NH-)、イミノ基(>C=N-または-N=C<)、エーテル基(-O-)、チオエーテル基(-S-)、カルボニル基(-C(=O)-)、チオニル基(-C(=S)-)、エステル基(-C(=O)-O-または-O-C(=O)-)、アミド基(-C(=O)-NH-または-NH-C(=O)-)、スルホキシド基(-S(=O)-)、スルホニル基(-S(=O)2-)、スルホニルアミド基(-NH-S(=O)2-および-S(=O)2-NH-)、並びにこれら基が2以上結合して形成された基を挙げることができる。上記基が2以上結合してリンカー基を形成する場合の結合数としては、10以下または5以下が好ましく、3以下がより好ましい。上記基が2以上結合して形成されたリンカー基としては、例えば、アミノ基、イミノ基、エーテル基、チオエーテル基、カルボニル基、チオニル基、エステル基、アミド基、スルホキシド基、スルホニル基、および/またはスルホニルアミド基を一端または両端に有するC1-6アルキレン基を挙げることができる。また、リンカーがペプチドである場合、リンカーを形成するアミノ酸残基の数としては1以上、20以下が好ましい。また、当該リンカーペプチドは、生理活性ペプチドの活性に影響を与えないものであることが好ましい。リンカーペプチドとしては、GSリンカーやGGSリンカーを挙げることができる。GGSリンカーは、GGS配列が1回以上、6回以下程度繰り返される配列からなる。一方、GSリンカーは、GGGGS配列が1回以上、6回以下程度、特に3回繰り返される配列である。
 生理活性ペプチドは、可能であれば環状化してもよい。環状化により生体内においてプロテアーゼなどによる攻撃を受け難くなり安定化する他、細胞膜透過性がより一層向上する可能性もある。環状化には、生理活性ペプチドに含まれるアミノ酸残基の側鎖反応性基を利用すればよい。側鎖反応性基としては、例えば、SerやThrの水酸基、Cysのチオール基、AspやGluのカルボキシ基、Lysのアミノ基を挙げることがでる。
 生理活性ペプチドの環状化のための架橋化合物としては、上記側鎖反応性基と反応する反応性基を複数有する化合物を用いればよい。反応性基の数としては2が好ましい。当該反応性基としては、カルボキシ基、活性エステル基、酸クロライド基、酸ブロマイド基、ハロゲノ基、エポキシ基、水酸基、アミノ基などを挙げることができる。環状化の際には、反応を促進するために塩基や縮合剤などを添加してもよい。
 架橋化合物における複数の反応性基を連結するリンカー基としては、生理活性ペプチドとN-末端側部とを結合するための上記リンカー基と同様のものを挙げることができる。当該リンカー基の長さは、環状化に利用するアミノ酸残基間の残基数や、所望の環の大きさなどにより適宜調整すればよい。
 生理活性ペプチドを架橋するための架橋化合物としては、例えば、以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 本発明に係る細胞膜透過性ペプチドのN末端側は、-(A-B-C)l-(D)m-(Arg)nまたは-(Arg)n-(D)m-(A-B-C)lであり、これらペプチドは、生理活性ペプチドの細胞膜透過を促進する機能を有する。以下、これらペプチドを、便宜上、「細胞膜透過促進ペプチド」という場合がある。
 細胞膜透過促進ペプチドにおいて、A~Cは、独立して、アラニン、2-メチルアラニン、バリン、ロイシン、およびイソロイシンから選択される脂肪族アミノ酸である。AおよびBとしてはロイシンが好ましく、Cとしては、アラニンまたは2-メチルアラニン(2-アミノイソ酪酸)が好ましく、2-メチルアラニンがより好ましい。
 [Arg]単位は、従来、細胞膜透過性を有するものとして知られている。本発明においては、[Arg]単位に加えて少なくとも[A-B-C]単位を用いることにより、[Arg]単位単独の場合に比べて細胞膜透過性を顕著に改善している。[Arg]単位の数、即ちnは、[A-B-C]単位の数にもよるが、4以上である。[A-B-C]単位との関係で、[A-B-C]単位が少ないほど[Arg]単位は多いことが好ましい。具体的には、[A-B-C]単位の数であるlが1のときnとしては8以上の整数が好ましく、lが2のときnとしては6以上の整数が好ましく、lが3または4のときnとしては4以上の整数が好ましい。[Arg]単位の数の上限は特に制限されないが、例えば16以下とすることができ、14以下または12以下が好ましく、10以下がより好ましい。
 細胞膜透過促進ペプチドにおいて[A-B-C]単位は、細胞膜透過性にとり極めて重要な単位である。本発明者らの実験的知見によれば、オリゴアルギニンに[A-B-C]単位を1つ加えたのみでも、細胞膜透過性は顕著に向上する。その理由は必ずしも明らかではないが、[Leu-Leu-Aib]の繰り返し配列はヘリックス構造をとることが知られているため、当該単位の二次構造が細胞膜透過性の向上に寄与している可能性がある。[A-B-C]単位の数、即ちlは、1以上、4以下である。本発明者らによる実験的知見によれば、[A-B-C]単位が無い場合には、ペプチドの細胞膜透過性能は全く十分ではない。一方、[A-B-C]単位が過剰であると、ペプチドの水溶性が低下して取扱い難くなる可能性があり得るため、lとしては4以下がより好ましい。
 細胞膜透過促進ペプチドにおいて[D]単位は、主に[Arg]単位と[A-B-C]単位を結合するリンカーの役割を有する。Dは任意のアミノ酸であり、例えば、Gly;Ala;Val、Leu、Ileの分枝アミノ酸;Ser、Thrのヒドロキシアミノ酸;Cys、Metの含硫アミノ酸;Asn、Glnの酸アミドアミノ酸;Pro;Phe、Thr、Trpの芳香族アミノ酸;Asp、Gluの酸性アミノ酸;Lys、Arg、Hisの塩基性アミノ酸を挙げることができ、Gly、Ala、分枝アミノ酸、ヒドロキシアミノ酸、含硫アミノ酸、酸アミドアミノ酸から選択される中性アミノ酸が好ましく、Gly、Ala、Val、Leu、およびIleから選択されるアミノ酸がより好ましく、Glyがより更に好ましい。[D]単位の数、即ちmは、0以上、5以下である。mとしては1以上が好ましく、2以上がより好ましく、また、4以下が好ましく、3以下がより好ましい。
 本発明に係る細胞膜透過性ペプチドにおいては、(A-B-C)lの位置と(Arg)nの位置は、互いに入れ替わっていてもよいが、式(I)で表される配列がより好ましい。
 本発明に係る細胞膜透過性ペプチドは、式(I)または式(II)で表される配列を有する限り、例えば、N末端またはC末端に別のペプチドが結合していてもよい。末端に付加される別のペプチドは、本発明ペプチドの細胞膜透過性を阻害しない限り特に制限されないが、例えば、そのアミノ酸残基数としては1以上、10以下が好ましく、5以下がより好ましい。本発明に係る細胞膜透過性ペプチドの配列は、式(I)または式(II)で表される配列のみからなることが好ましく、式(I)で表される配列のみからなることがより好ましい。
 本発明に係る細胞膜透過性ペプチドのN末端またはC末端は、化学的に修飾されていてもよい。例えば、C末端は-COOHまたは-COO-であってもよいし、アミド化(-CONH2)、アルキルアミド化(-CONHR)、またはエステル化(-COOR)されていてもよく、また、N末端は-NH2または-NH3 +であってもよいし、アシル化(-NHCOR)されていてもよい。Rは、C1-6アルキル基を示す。特に、C末端はアミド化することが好ましい。C末端をアミド化することで、エキソプロテアーゼに対する分解耐性が向上したり、また、ペプチド合成時における分子内縮合反応や分子間縮合反応を抑制できる。
 「C1-6アルキル基」は、炭素数1以上、6以下の直鎖状または分枝鎖状の一価飽和脂肪族炭化水素基をいう。例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、n-ヘキシル等である。好ましくはC1-4アルキル基であり、より好ましくはC1-2アルキル基であり、最も好ましくはメチルである。
 本発明に係る細胞膜透過性ペプチドは、塩の形態であってもよい。かかる塩は、薬学上許容されるものが好ましい。かかる塩を構成するカウンターカチオンとしては、例えば、金属イオン、アンモニウムイオン(NH4 +)、有機塩基イオン、塩基性アミノ酸イオンを挙げることができ、カウンターアニオンとしては、例えば、無機酸イオン、有機酸イオン、および酸性アミノ酸イオンを挙げることができる。
 金属塩を構成する金属イオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオンなどのアルカリ金属イオン;カルシウムイオン、バリウムイオンなどのアルカリ土類金属イオン;マグネシウムイオンなどが挙げられる。有機塩基塩を構成する有機塩基としては、例えば、トリメチルアミン、トリエチルアミン、ピリジン、ピコリン、2,6-ルチジン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、N,N'-ジベンジルエチレンジアミンが挙げられる。塩基性アミノ酸塩を構成する塩基性アミノ酸としては、リシン、アルギニン、ヒスチジンが挙げられる。
 無機酸塩を構成する無機酸としては、例えば、塩酸、臭化水素酸、硝酸、硫酸、リン酸などが挙げられる。有機酸塩を構成する有機酸としては、例えば、ギ酸、酢酸、トリフルオロ酢酸、フタル酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸などが挙げられる。酸性アミノ酸塩を構成する酸性アミノ酸としては、アスパラギン酸とグルタミン酸が挙げられる。
 本発明に係る細胞膜透過性ペプチドは常法により製造することができるが、総アミノ酸残基数が比較的少ないため、例えば固相合成法により製造することができる。具体的には、細胞膜透過性ペプチドのアミノ酸配列をデザインした後、固体樹脂にアミノ基と必要に応じて側鎖反応性基が保護されたC末端アミノ酸残基を結合し、以後、アミノ基の脱保護と次のアミノ酸残基の結合を繰り返し、最後にペプチドの固体樹脂からの切り離しと脱保護を行う。また、各反応の後には洗浄を行う。
 生理活性ペプチドを環状化する場合には、ペプチドが固体樹脂に結合された状態で環状化してもよいし、ペプチドを固体樹脂から切り離してから環状化してもよいが、製造工程数がより少ないことからペプチドを固体樹脂から切り離してから生理活性ペプチドを環状化することが好ましい。なお、細胞膜透過促進ペプチドは、側鎖に反応性基を有さないアミノ酸残基で構成されているため、原則として架橋化合物により生理活性ペプチドが環状化されると考えられる。
 本発明に係る細胞膜透過性ペプチドにより、生理活性ペプチドが細胞膜を透過して細胞内まで送達されるため、副作用が比較的少なく且つ生理活性ペプチドの作用効果が効果的に発揮されると考えられる。本発明の細胞膜透過性ペプチドはペプチドであることから、注射投与されることが好ましい。
 本発明の細胞膜透過性ペプチドを含む注射剤の溶媒としては、水が好ましい。更に、本発明ペプチドの水溶性によっては、エタノール、エチレングリコール、プロピレングリコール、ポリエチレングリコールなどの水混和性有機溶媒を含んでいてもよい。その他、塩化ナトリウムなどの塩、緩衝成分、防腐剤などの添加成分を含んでいてもよい。勿論ではあるが、注射剤は等張液または略等張液である必要がある。
 本発明に係る細胞膜透過性ペプチドの投与量は、投与されるべき患者の重篤度、年齢、性別、体重、症状などにより適宜調整すればよい。例えば、投与量を0.001mg/kg/日以上、100mg/kg/日以下、好ましくは0.005mg/kg/日以上、50mg/kg/日以下の範囲で調整することができる。
 本願は、2018年9月26日に出願された日本国特許出願第2018-180130号に基づく優先権の利益を主張するものである。2018年9月26日に出願された日本国特許出願第2018-180130号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 実施例1~9,比較例1~6: ペプチドコンジュゲートの合成
 マイクロウェーブを用いた固相合成法により、Rink Amide樹脂(0.2mmol/g)上で、以下の配列を有するペプチドコンジュゲートのペプチド鎖部分を合成した。
 F-Ahx-(カーゴペプチド)-(Leu-Leu-Aib)l-(Gly)m-(Arg)n-NH2
[式中、Fは蛍光基であるフルオロセイン含有基を示し、Ahxは6-アミノヘキサン酸を示し、Aibは2-アミノイソ酪酸(2-メチルアラニン)を示し、カーゴペプチドは以下の構造を有する。]
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-T000003
 実施例8(配列番号14): F-Ahx-(カーゴペプチド)-(Arg)9-(Gly)3-(Leu-Leu-Aib)-NH2
 実施例9(配列番号15): F-Ahx-(カーゴペプチド)-(Leu-Leu-Ala)-(Gly)3-(Arg)9-NH2
 ペプチドを形成した樹脂を、トリフルオロ酢酸(TFA)/水/トリイソプロピルシラン(TIS)/3,6-ジオキサ-1,8-オクタンジチオール(DODT)=92.5/2.5/2.5/2.5(容量比)の混合溶液に3時間浸漬し、ペプチドを樹脂から切り出した。
 得られたペプチドをN,N-ジメチルホルムアミド(DMF)と水の混合溶媒に溶解し、1,3-ジブロモアセトン(1.5当量)とN,N-ジイソプロピルエチルアミン(3.0当量)で1時間処理することにより、カーゴペプチドを環状化した。
 ペプチドを反応溶液から逆相HPLCにより精製し、凍結乾燥した。次いで、DMF中でフルオレセインイソチオシアネート(FITC,1.5当量)とN,N-ジイソプロピルエチルアミン(3.0当量)で4時間処理してN末端を蛍光標識した後、逆相HPLCにより精製することにより、実施例1~9および比較例1~6のペプチドコンジュゲートを合成した。
 試験例1: 細胞膜透過能評価
 HeLa細胞(Human cervix adenocarcinoma cell)を、実施例1~9または比較例1~6のペプチドコンジュゲート2μMを含む培養液中、37℃で2時間培養した。次いで、細胞を回収し、ヨウ化プロピジウム溶液で染色後、フローサイトメーターで蛍光強度を測定し、下記式によって比較例2に対する蛍光強度比を算出した。結果を図1と表2に示す。
 蛍光強度比=(Fn-F1)/(F2-F1
  Fn: 被検化合物の蛍光強度最頻値
  F1: 比較例1の被検化合物の蛍光強度最頻値
  F2: 比較例2の被検化合物の蛍光強度最頻値
Figure JPOXMLDOC01-appb-T000004
 図1と表2に示される結果の通り、培養2時間後の比較例2に対する蛍光強度を比較した結果、本発明に係る実施例1~9のペプチドコンジュゲートは、従来、細胞膜透過性を有するとされている[Arg]単位鎖を有する一方で[Leu-Leu-Aib]単位を有さない比較例2よりも、細胞膜透過性能に優れることが実証された。

Claims (6)

  1.  下記式(I)または式(II)で表される配列を有することを特徴とする細胞膜透過性ペプチドまたはその塩。
     X-(A-B-C)l-(D)m-(Arg)n ・・・ (I)
     X-(Arg)n-(D)m-(A-B-C)l ・・・ (II)
    [式中、
     Xは生理活性ペプチドであり、
     A、BおよびCは、独立して、アラニン、2-メチルアラニン、バリン、ロイシン、およびイソロイシンから選択される脂肪族アミノ酸であり、
     Dは任意のアミノ酸であり、
     lは、1以上、4以下の整数であり、
     mは、0以上、5以下の整数であり、
     lが1のとき、nは8以上の整数であり、
     lが2のとき、nは6以上の整数であり、
     lが3のとき、nは4以上の整数であり、
     lが4のとき、nは4以上の整数である。]
  2.  AおよびBがロイシンである請求項1に記載の細胞膜透過性ペプチドまたはその塩。
  3.  Dがグリシンである請求項1または2に記載の細胞膜透過性ペプチドまたはその塩。
  4.  Cが2-メチルアラニンである請求項1~3のいずれかに記載の細胞膜透過性ペプチド。
  5.  生理活性ペプチドが環状化されたものである請求項1~4のいずれかに記載の細胞膜透過性ペプチドまたはその塩。
  6.  C末端がアミド化されている請求項1~5のいずれかに記載の細胞膜透過性ペプチド。
PCT/JP2019/031670 2018-09-26 2019-08-09 細胞膜透過性ペプチド WO2020066343A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020548136A JP7489319B2 (ja) 2018-09-26 2019-08-09 細胞膜透過性ペプチド
US17/276,041 US20220048953A1 (en) 2018-09-26 2019-08-09 Cell-penetrating peptide
KR1020217010553A KR20210064254A (ko) 2018-09-26 2019-08-09 세포막 투과성 펩티드

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-180130 2018-09-26
JP2018180130 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020066343A1 true WO2020066343A1 (ja) 2020-04-02

Family

ID=69950471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031670 WO2020066343A1 (ja) 2018-09-26 2019-08-09 細胞膜透過性ペプチド

Country Status (4)

Country Link
US (1) US20220048953A1 (ja)
JP (1) JP7489319B2 (ja)
KR (1) KR20210064254A (ja)
WO (1) WO2020066343A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514602A (ja) * 2002-06-18 2006-05-11 シーイーピーイーピー エービー 細胞侵入ペプチド
JP2006169242A (ja) * 2004-11-22 2006-06-29 Kobe Univ がん細胞の細胞分裂期におけるカスパーゼの活性化と、カスパーゼ阻害物質の抗がん剤などへの利用
WO2011020188A1 (en) * 2009-08-21 2011-02-24 University Of Waterloo Peptide sequences and peptide-mediated sirna delivery
JP2013531988A (ja) * 2010-06-14 2013-08-15 エフ.ホフマン−ラ ロシュ アーゲー 細胞透過性ペプチドおよびその使用
WO2015069586A2 (en) * 2013-11-06 2015-05-14 Merck Sharp & Dohme Corp. Dual molecular delivery of oligonucleotides and peptide containing conjugates
JP2015522264A (ja) * 2012-06-26 2015-08-06 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 細胞透過性ペプチドおよび細胞透過性ペプチドを同定する方法
CN109517071A (zh) * 2018-11-12 2019-03-26 华中科技大学 穿膜肽及其包覆疏水分子的粒子和粒子的制备方法与应用
JP2019118307A (ja) * 2018-01-05 2019-07-22 公益財団法人ヒューマンサイエンス振興財団 細胞膜透過ペプチド、構築物、及び、カーゴ分子を細胞内に輸送する方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2135642C (en) 1992-08-21 1999-12-14 James G. Barsoum Tat-derived transport polypeptides
CA2350919A1 (en) 1998-11-13 2000-05-25 Cyclacel Limited Antennapedia homeodomain helix 3 derived translocation vectors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514602A (ja) * 2002-06-18 2006-05-11 シーイーピーイーピー エービー 細胞侵入ペプチド
JP2006169242A (ja) * 2004-11-22 2006-06-29 Kobe Univ がん細胞の細胞分裂期におけるカスパーゼの活性化と、カスパーゼ阻害物質の抗がん剤などへの利用
WO2011020188A1 (en) * 2009-08-21 2011-02-24 University Of Waterloo Peptide sequences and peptide-mediated sirna delivery
JP2013531988A (ja) * 2010-06-14 2013-08-15 エフ.ホフマン−ラ ロシュ アーゲー 細胞透過性ペプチドおよびその使用
JP2015522264A (ja) * 2012-06-26 2015-08-06 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 細胞透過性ペプチドおよび細胞透過性ペプチドを同定する方法
WO2015069586A2 (en) * 2013-11-06 2015-05-14 Merck Sharp & Dohme Corp. Dual molecular delivery of oligonucleotides and peptide containing conjugates
JP2019118307A (ja) * 2018-01-05 2019-07-22 公益財団法人ヒューマンサイエンス振興財団 細胞膜透過ペプチド、構築物、及び、カーゴ分子を細胞内に輸送する方法
CN109517071A (zh) * 2018-11-12 2019-03-26 华中科技大学 穿膜肽及其包覆疏水分子的粒子和粒子的制备方法与应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MISAWA, T. ET AL.: "Development of helix-stabilized amphipathic cell -penetrating peptides for siRNA delivery", JOURNAL OF PEPTIDE SCIENCE , 35TH EUROPEAN PEPTIDE SYMPOSIUM, vol. 24, no. 2, 31 August 2018 (2018-08-31), pages S169 *
MISAWA, TAKASHI ET AL.: "Abstracts of the 137th Annual Meeting of the Pharmaceutical Society of Japan in Sendai", DEVELOPMENT OF TRANSMEMBRANE BIOPEPTIDES INTENDED FOR INTRACELLULAR INTRODUCTION OF HYDROPHILIC MOLECULES, 5 March 2017 (2017-03-05) *
OOKUBO, N. ET AL.: "The transdermal inhibition of melanogenesis by a cell -membrane-permeable peptide delivery system based on poly-arginine", BIOMATERIALS, vol. 35, 2014, pages 4508 - 4516, XP028631244, DOI: 10.1016/j.biomaterials.2014.01.052 *
PARK, J. H. ET AL.: "Amphiphilic peptide carrier for the combined delivery of curcumin and plasmid DNA into the lungs", BIOMATERIALS, vol. 33, 2012, pages 6542 - 6550, XP028401113, DOI: 10.1016/j.biomaterials.2012.05.046 *

Also Published As

Publication number Publication date
JPWO2020066343A1 (ja) 2021-08-30
KR20210064254A (ko) 2021-06-02
US20220048953A1 (en) 2022-02-17
JP7489319B2 (ja) 2024-05-23

Similar Documents

Publication Publication Date Title
Paradís-Bas et al. The road to the synthesis of “difficult peptides”
US10407468B2 (en) Methods for synthesizing α4β7 peptide antagonists
US9029332B2 (en) Cross-linked peptides and proteins, methods of making same, and uses thereof
CA3049889A1 (en) Peptide inhibitors of interleukin-23 receptor and their use to treat inflammatory diseases
US20180105572A1 (en) Novel cyclic monomer and dimer peptides having integrin antagonist activity
CA3188410A1 (en) Conjugated hepcidin mimetics
US20240226225A1 (en) Conjugated hepcidin mimetics
KR20220035199A (ko) 인크레틴 유사체의 제조 방법
CN115151556A (zh) 人转铁蛋白受体结合肽
CA2931694C (en) Fatty acid derivatives of dimeric peptide ligands of psd-95 and use thereof for treating excitotoxic disease
WO2019136824A1 (zh) 抑制MERS-CoV感染的多肽
EP4182023A1 (en) Inhibitors of complement factor c3 and their medical uses
WO2009155789A1 (zh) 抑制hiv感染的多肽及其衍生物
WO2020066343A1 (ja) 細胞膜透過性ペプチド
JP6647207B2 (ja) ヘマグルチニン結合ペプチド
US20170369529A1 (en) Cell penetrating peptides
US20220106367A1 (en) Preparation and use of ginsentides and ginsentide-like peptides
TW202306965A (zh) Psd-95抑制劑及其用途
US10385096B2 (en) Pro-Amb reverse turn restricted bioactive peptide analogues
WO2024094685A1 (en) Ccr2 inhibitors and methods of use
JP2024523280A (ja) Ghr結合ペプチドおよびそれを含む組成物
Hu et al. Synthesis and evaluation of backbone/amide-modified analogs of leualacin
Paradís Bas Development of New Tools for the Synthesis of" difficult Peptides"
KR20160066281A (ko) 혈장 내에서 안정성이 증가된 신규한 세포투과성 펩타이드 및 이것의 용도
Kawczyński et al. Cell-penetrating peptides-mechanism of transduction and synthesis: short review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548136

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217010553

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19865326

Country of ref document: EP

Kind code of ref document: A1