WO2019235392A1 - Optical switch device - Google Patents
Optical switch device Download PDFInfo
- Publication number
- WO2019235392A1 WO2019235392A1 PCT/JP2019/021829 JP2019021829W WO2019235392A1 WO 2019235392 A1 WO2019235392 A1 WO 2019235392A1 JP 2019021829 W JP2019021829 W JP 2019021829W WO 2019235392 A1 WO2019235392 A1 WO 2019235392A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- optical switch
- switch
- ports
- signal
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 864
- 238000010521 absorption reaction Methods 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 5
- 230000031700 light absorption Effects 0.000 claims description 30
- 238000009826 distribution Methods 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 238000012546 transfer Methods 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 25
- 239000000758 substrate Substances 0.000 description 25
- 239000013307 optical fiber Substances 0.000 description 18
- 239000012792 core layer Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 238000005253 cladding Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 7
- 238000004891 communication Methods 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 101000577065 Arabidopsis thaliana Mannose-6-phosphate isomerase 2 Proteins 0.000 description 4
- 102100025022 Mannose-6-phosphate isomerase Human genes 0.000 description 4
- QLBALZYOTXGTDQ-VFFCLECNSA-N PGI2-EA Chemical compound O1\C(=C/CCCC(=O)NCCO)C[C@@H]2[C@@H](/C=C/[C@@H](O)CCCCC)[C@H](O)C[C@@H]21 QLBALZYOTXGTDQ-VFFCLECNSA-N 0.000 description 4
- 230000005701 quantum confined stark effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 101000577063 Arabidopsis thaliana Mannose-6-phosphate isomerase 1 Proteins 0.000 description 2
- 101001094831 Homo sapiens Phosphomannomutase 2 Proteins 0.000 description 2
- 108091022912 Mannose-6-Phosphate Isomerase Proteins 0.000 description 2
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 230000005697 Pockels effect Effects 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/025—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/27—Arrangements for networking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q3/00—Selecting arrangements
- H04Q3/42—Circuit arrangements for indirect selecting controlled by common circuits, e.g. register controller, marker
- H04Q3/52—Circuit arrangements for indirect selecting controlled by common circuits, e.g. register controller, marker using static devices in switching stages, e.g. electronic switching arrangements
Definitions
- the present invention relates to an optical switch device for a node device, which is an important optical component for supporting a large-capacity optical communication network.
- An optical communication network is composed of a plurality of links and node devices, and research and development for high-speed and large-capacity communication is being conducted in each of them. While the link speeds up signals and multiplexes the wavelength, the node device is required to have a technology for flexibly changing the path connecting the node devices in order to realize efficient traffic.
- Various transmission systems have been studied as node technology, and optical switching technology that does not require optical / electrical conversion is effective in terms of power consumption and delay of network devices. Active optical transmission systems have been actively studied.
- optical circuit switching Optical Circuit Switching: OCS
- OPS optical packet switching
- a link is established between specific node devices, and continuous data transmission is possible.
- an optical path is generally set by occupying a specific wavelength band.
- the link wavelength is occupied, transfer from other node devices is hindered.
- the OCS system is suitable for cases where high reliability is required because there is little packet loss, and when large amounts of data are stably transmitted.
- connectionless transmission is possible without establishing a link between node devices.
- a label is given to an optical packet to be transmitted in advance, and the packet is transferred while considering collision avoidance in each node device based on the label.
- the OPS method is suitable for data in which traffic fluctuation of transmission data is large or data that requires low delay.
- Non-Patent Document 1 a flexible network based on a combination of these two methods is considered promising for future large-capacity optical communication networks, and research on node technologies for realizing them is underway.
- Such an optical switch is a thermo-optic (TO) switch configured on a planar lightwave circuit (PLC), an InP-based electroabsorption modulator (EAM), or Mach-Zehnder interference.
- a switch using a meter (Mach-Zehnder Interferometer: MZI), a semiconductor optical amplifier (SOA), a LiNbO 3 phase modulator type switch, and the like have been researched and developed.
- MZI Machine-Zehnder Interferometer
- SOA semiconductor optical amplifier
- LiNbO 3 phase modulator type switch and the like
- FIG. 15 shows a perspective view of a conventional 2 ⁇ 2 optical switch element.
- the 2 ⁇ 2 optical switch element shown in FIG. 15 is a directional coupler type optical switch element.
- an optical input section (I in the figure) On the n-InP substrate, an optical input section (I in the figure), an optical switch section (II), and an optical output Part (same III) and light absorption part (same IV) are provided.
- an i-MQW layer 5, an i-InP clad layer 4, and a p-InP clad layer 3 are laminated on an n-InP substrate 6 in order.
- the InP cladding layer 3 has a structure as shown in FIG. 15 and is formed in a thin line shape. Further, on both the p-InP cladding layer 3 above p-InP cladding layer 3 of one of the optical switching unit II and the light absorbing portion IV is, p + -InGaAs capping layer 2 is formed, p + -InGaAs cap On the layer 2, p-type electrodes 1, 10, and 11 are formed. An n-type electrode 7 is formed on the back surface of the n-InP substrate 6. Reference numeral 9 denotes an electrical separation groove.
- the input signal light is guided in a portion located in the lower part of the p-InP clad layer 3 formed in a thin line shape in the i-MQW layer 5.
- the i-MQW layer 5 positioned below the p-InP cladding layer 3 provided in the light input part I, the light switch part II, the light output part III, and the light absorption part IV is respectively referred to as an input optical waveguide and an optical switch light. These are referred to as a waveguide, an output optical waveguide, and a light absorption optical waveguide.
- the input signal light is input to one of the input optical waveguides (A or B in FIG. 15) and guided to the optical switch optical waveguide.
- a desired voltage is applied between the p-type electrode 1 and the n-type electrode 7 provided in the optical switch unit II, for example, due to a multiple quantum well (MQW) structure.
- MQW multiple quantum well
- QCSE Quantum Confined Stark Effect
- the light absorption part IV a desired electric field is applied between the p-type electrode 10 or 11 and the n-type electrode 7 provided in a light absorption optical waveguide different from the light absorption optical waveguide to which signal light is input.
- the crosstalk light leaking from the optical switch optical waveguide is absorbed by the optical absorption optical waveguide, while the signal light output from the optical switch optical waveguide is directed to the output optical waveguide (C or D in FIG. 15).
- an optical switch element capable of reducing the influence of leakage light from the optical switch optical waveguide is realized.
- WSS Wavelength selective switches
- the optical switch is required to have high speed.
- a structure in which carriers are injected into a semiconductor such as InP or Si and switched by an electro-optic effect is generally used.
- a semiconductor optical waveguide has a strong optical confinement, an optical fiber is used. Connection loss and the propagation loss tends to increase due to carrier absorption and the like.
- the loss in the node device can be compensated by an amplifier such as an EDFA (Erbium-Doped Fiber Amplifier), but it is not preferable because it deteriorates the signal quality, and low loss is important in the optical switch device.
- EDFA Erbium-Doped Fiber Amplifier
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a low-loss optical switch device that realizes a node device that transfers an optical signal of an optical circuit switching method and an optical signal of an optical packet switching method. .
- An optical switch device for solving the above-mentioned problems is In an optical switch device provided in a node device constituting a network and having a plurality of optical input ports and a plurality of optical output ports,
- the optical switch device includes a plurality of optical switches,
- the optical switch has an optical waveguide structure made of a material whose refractive index or absorption coefficient changes in the order of nanoseconds, and an OCS optical signal which is an optical signal of an optical circuit switching system by changing the refractive index or the absorption coefficient.
- OPS optical signal which is an optical packet switching type optical signal is switched.
- the node device is a ROADM (Reconfigurable Optical Add / Drop Multiplexer) node device having a wavelength selective switch
- the optical switch device is An add / drop process between the OCS optical signal and the OPS optical signal is arranged after the wavelength selective switch and switches the OCS optical signal and the OPS optical signal to the preset optical output port.
- a first optical switch unit comprising a plurality of the optical switches that perform the switching, and a plurality of the optical switches that perform the add / drop processing of the OPS optical signal by switching the OPS optical signal to the preset optical output port.
- a second optical switch unit comprising a plurality of the optical switches that perform the switching, and a plurality of the optical switches that perform the add / drop processing of the OPS optical signal by switching the OPS optical signal to the preset optical output port.
- An optical switch device for solving the above-mentioned problems is as follows.
- a network controller that controls switching in the first optical switch unit, and a label table that controls switching in the second optical switch unit based on a label of the OPS optical signal.
- the first optical switch unit includes an N ⁇ (K + L) optical switch having an N ⁇ (K + L) port configuration and an (K + L) ⁇ N optical switch having a (K + L) ⁇ N port configuration
- the second optical switch unit includes an M ⁇ K optical switch having an M ⁇ K port configuration and a K ⁇ M optical switch having a K ⁇ M port configuration
- the L ports on the output side of the N ⁇ (K + L) optical switch are connected to the L ports on the input side of the (K + L) ⁇ N optical switch, and K on the output side of the N ⁇ (K + L) optical switch.
- the K ports on the output side of the M ⁇ K optical switch are connected to the K ports on the input side of the K ⁇ M optical switch.
- An optical switch device for solving the above-mentioned problems is as follows.
- the N ⁇ (K + L) optical switch, the (K + L) ⁇ N optical switch, the M ⁇ K optical switch, and the K ⁇ M optical switch are each a 1 ⁇ J distribution selection type optical switch having a 1 ⁇ J port configuration.
- the 1 ⁇ J distribution selection type optical switch includes a 1 ⁇ J optical coupler and J light absorption gates.
- An optical switch device for solving the above-mentioned problems is as follows.
- J is an integer greater than or equal to 2
- the N ⁇ (K + L) optical switch, the (K + L) ⁇ N optical switch, the M ⁇ K optical switch, and the K ⁇ M optical switch are each a 1 ⁇ 2 Mach-Zehnder interferometer or a plurality of 2 ⁇ 2 Mach-Zehnder interferometers.
- a 1 ⁇ J optical switch having a 1 ⁇ J port configuration consisting of: 1 ⁇ 2 Mach-Zehnder interferometer or at least one 1 ⁇ J optical switch,
- the 1 ⁇ J optical switch connects one of two ports on the input side of the subsequent 2 ⁇ 2 Mach-Zehnder interferometer to each of the two ports on the output side of the previous 2 ⁇ 2 Mach-Zehnder interferometer,
- a plurality of the 2 ⁇ 2 Mach-Zehnder interferometers are connected in multiple stages in a tree shape.
- An optical switch device for solving the above-mentioned problems is as follows.
- a light absorption gate is provided after the N ⁇ (K + L) optical switch.
- An optical switch device for solving the above-mentioned problems is as follows.
- the optical switch device Between the N ⁇ (K + L) optical switch and the (K + L) ⁇ N optical switch, between the N ⁇ (K + L) optical switch and the K ⁇ M optical switch, and between the M ⁇ K optical switch and the (K + L) ⁇ N optical switches are connected to each other by an optical waveguide, and an optical waveguide having an intersection with another optical waveguide is used in some of the optical waveguides.
- the N ⁇ (K + L) optical switch, the (K + L) ⁇ N optical switch, the M ⁇ K optical switch, the K ⁇ M optical switch, and the optical waveguide are monolithically integrated on the same chip.
- An optical switch device for solving the above-mentioned problems is as follows.
- the optical switch device Between the N ⁇ (K + L) optical switch and the (K + L) ⁇ N optical switch, between the N ⁇ (K + L) optical switch and the K ⁇ M optical switch, and between the M ⁇ K optical switch and the The (K + L) ⁇ N optical switch is connected to each other by an optical waveguide, and the N ⁇ (K + L) optical switch and the (K + L) ⁇ N optical switch are arranged so that all the optical waveguides do not cross each other.
- the N ⁇ (K + L) optical switch, the (K + L) ⁇ N optical switch, the M ⁇ K optical switch, the K ⁇ M optical switch, and the optical waveguide are monolithically integrated on the same chip.
- An optical switch device for solving the above-mentioned problems is In the optical switch device according to the eighth or ninth invention, All of the optical input port and the optical output port of the optical switch device are arranged at one end of the chip.
- a low-loss optical switch device that realizes a node device that transfers an optical circuit switching type optical signal and an optical packet switching type optical signal.
- FIG. 3 is a graph showing the transmittance with respect to an applied voltage in a light absorption gate of the distribution selection type optical switch shown in FIG. 1.
- FIG. 3 is a graph showing a transmittance with respect to an injection current in each optical output port of the MZI type optical switch shown in FIG. 2.
- FIG. It is sectional drawing which shows the structure of the optical waveguide of the optical switch shown in FIG.1 and FIG.2.
- OPS optical signal A high-speed optical switch used for switching an OPS optical signal (hereinafter referred to as an OPS optical signal) will be described.
- the switching mechanism the distribution selection type optical switch 20 shown in FIG. 1 or the MZI type optical switch 30 shown in FIG. 2 is used. These can also be used for switching of OCS optical signals (hereinafter referred to as OCS optical signals).
- the input light input from the optical input port PI is divided into two light beams using a 1 ⁇ 2 optical coupler 21 which is a multi-mode interference (MMI) optical coupler.
- the waveguides 22 1 and 22 2 are branched, and the two optical waveguides 22 1 and 22 2 are connected to the light absorption gates 23 1 and 23 2 of the respective optical output ports PO 1 and PO 2 .
- the light absorption gates 23 1 and 23 2 each have an n-InP substrate, an n-InP lower cladding layer, an InGaAsP core layer, a p-InP upper cladding layer, and a p + -InGaAs cap layer.
- the light of the optical waveguide 22 1 or 22 2 that does not require output is absorbed by the light absorption gate 23 1 or 23 2.
- switching can be performed.
- SOA or the like may be used for the EAM used as the light absorption gate.
- a 1 ⁇ 2 optical coupler 31 which is an MMI optical coupler similar to FIG. 1 is used to input light input from the optical input port PI into two optical waveguides 32 1 and 32 2.
- the input light branched into two is subjected to a phase difference due to phase modulation controlled by the control electrodes 33 1 and 33 2 in the two optical waveguides 32 1 and 32 2 , and then the MMI optical coupler. They are recombined using a certain 2 ⁇ 2 optical coupler 34.
- n is an integer of 0 or more. Therefore, if a phase modulation region is arranged and controlled in one of the optical waveguides 32 1 or 32 2 , a 1 ⁇ 2 switching operation can be obtained.
- the refractive indexes of the optical waveguides 32 1 and 32 2 may be changed.
- the refractive index of the optical waveguide is changed using the FK effect or QCSE effect due to voltage application or the plasma effect due to current injection.
- the optical waveguide is affected using the Pockels effect due to voltage application. If the refractive index is changed, a switching operation can be performed.
- a directional coupler or the like may be used as the MMI optical coupler that divides the light intensity into two equal parts.
- the extinction ratio is 20 dB or more and the applied voltage is ⁇ 7 V with respect to the light absorption gates 23 1 and 23 2 .
- an extinction ratio of 40 dB or more can be obtained.
- the input signal light is the light in FIG. Output to the output port PO 1 side.
- the refractive index of the arm optical waveguide that is injected changes, and the phase of the propagating light changes.
- the injection current into the arm optical waveguide is about 5 mA, the output from the optical output port PO 1 is minimum, and the optical output to the optical output port PO 2 is maximum. In this case, the ratio of the light output to the optical output and the optical output port PO 1 to the optical output port PO 1 are obtained at least 20 dB.
- a 1 ⁇ J optical switch having a 1 ⁇ J port configuration includes a 1 ⁇ J optical coupler and J light absorption gates.
- the MZI type optical switch not only the one-stage MZI type optical switch 30 but also a 2 ⁇ 2 MZI type optical switch 60 to be described later is connected in multiple stages in a tree shape, so that a large number of optical output ports can be connected. Switching is possible.
- the input side of the rear 2 ⁇ 2 MZI optical switch 60 is connected to each of the two ports on the output side of the front 2 ⁇ 2 MZI optical switch 60. One of the two ports is connected.
- an n-InP lower clad layer, a bulk i-InGaAsP core layer with a 1.4Q composition of 0.3 ⁇ m thickness, a p-InP upper clad layer, and a p + -InGaAs cap layer are formed on an n-InP substrate.
- Grow by vapor phase growth method Metal Organic Vapor Phase Epitaxy: MOVPE.
- an input optical waveguide having a high-mesa optical waveguide structure, a 1 ⁇ 2 optical coupler 21, optical waveguides 22 1 and 22 2 , light absorption gates 23 1 and 23 2 and an output optical waveguide are collectively formed by photolithography and dry etching.
- BCB benzocyclobutene
- O 2 / C 2 F 6 mixed gas is used.
- Etching back is performed by RIE (Reactive Ion Etching) until the substrate surface before embedding (the uppermost surface of the substrate) is exposed, and the substrate surface is flattened.
- a p-type electrode is formed on the light absorption gate 23 1, the light absorption gate 23 2 , and the p + -InGaAs cap layer of the 1 ⁇ 2 coupler 21, and the back surface of the n-InP substrate or the optical waveguide structure of the same substrate An n-type electrode is formed in a region where is not formed.
- MOVPE growth and formation of an optical waveguide structure can be performed at once. Further, unlike the conventional optical switch element shown in FIG. 15, the n-InP upper cladding layer and the p + -InGaAs cap layer are removed between the 1 ⁇ 2 optical coupler 21 and the light absorption gates 23 1 and 23 2. The process to do becomes unnecessary. Therefore, it is possible to provide an optical switch that has a simple manufacturing method, does not deteriorate optical characteristics, and has extremely low optical crosstalk.
- FIG. 5 shows a cross-sectional view of the optical waveguide structure.
- reference numeral 41 denotes an n-InP substrate
- reference numeral 42 denotes an n-InP lower cladding layer
- reference numeral 43 denotes an InGaAsP core layer
- reference numeral 44 denotes a p-InP upper cladding layer
- reference numeral 45 denotes a p + -InGaAs cap layer.
- an InGaAsP core layer 43 having a thickness of 0.3 ⁇ m and a width of 1.5 ⁇ m and a 1.4Q composition is used. These design values are important parameters that determine the optical characteristics of the optical switch.
- the thickness of the InGaAsP core layer 43 is a single mode waveguide condition with respect to the input signal light, and a condition having sufficient light confinement in the InGaAsP core layer 43, and is 0.1 ⁇ m to 0. A range of 4 ⁇ m is desirable.
- the width of the InGaAsP core layer 43 is a single mode waveguide condition for the input signal light, and is preferably in the range of 0.8 ⁇ m to 3 ⁇ m.
- composition of the InGaAsP core layer 43 is 1.3Q to 1.5Q, and each electrode length is preferably in the range of 100 ⁇ m to 2000 ⁇ m in the case of EAM and 50 ⁇ m to 1000 ⁇ m in the case of MZI.
- the bulk layer is used as the InGaAsP core layer 43 of the light absorption gates 23 1 and 23 2 , but an MQW structure may be used. In that case, quenching can be performed with high efficiency by the QCSE effect.
- the optical waveguide structure is a high mesa optical waveguide structure, other structures such as a ridge type optical waveguide structure may be manufactured.
- an embedded optical waveguide structure or a rib optical waveguide structure in which both sides of the InGaAsP core layer 43 are embedded with a semiconductor may be used.
- optical switch in this embodiment has been described using an InP-based compound semiconductor
- a GaAs-based compound semiconductor may be used.
- the same can be realized by using a material system such as a silicon fine wire optical waveguide.
- Optical waveguide structures using these materials can change the refractive index or absorption coefficient in the order of nanoseconds, and such high-speed changes enable high-speed switching of OCS optical signals and OPS optical signals.
- the optical switch device according to the present invention is provided in a ROADM node device of a network that uses both an OCS optical signal and an OPS optical signal.
- the ROADM node device has a WSS, and the optical switch device according to the present invention is arranged at a stage subsequent to the WSS of the node device.
- FIG. 6 shows an optical switch device according to this embodiment.
- an optical switch device having four optical input ports PI 1 to PI 4 and four optical output ports PO 1 to PO 4 is assumed to be capable of simultaneously transferring an OCS optical signal and an OPS optical signal. .
- two 1 ⁇ 2 optical switches (hereinafter referred to as 1 ⁇ 2SW) 51 1 and 51 2 and a 2 ⁇ 1 optical switch (hereinafter referred to as 2 ⁇ 1SW) 52 1 , 52 2 (first optical switch unit), and for add / drop of an OPS optical signal, two 2 ⁇ 2 optical switches (hereinafter referred to as 2 ⁇ 2SW) 53 1 and 53 2 are used (first).
- 2 optical switch section For add / drop between an OCS optical signal and an OPS optical signal, two 1 ⁇ 2SW) 51 1 and 51 2 and a 2 ⁇ 1 optical switch (hereinafter referred to as 2 ⁇ 1SW) 52 1 , 52 2 (first optical switch unit), and for add / drop of an OPS optical signal, two 2 ⁇ 2 optical switches (hereinafter referred to as 2 ⁇ 2SW) 53 1 and 53 2 are used (first). 2 optical switch section).
- the optical input port PI 1 is connected to the input side of the 1 ⁇ 2 SW 51 1
- the optical input port PI 2 is connected to the input side of the 1 ⁇ 2 SW 51 2
- the optical input ports PI 3 and PI 4 are 2 ⁇ 2 SW 53 1. Is connected to the input side.
- the optical output port PO 1 is connected to the output side of the 2 ⁇ 1 SW 52 1
- the optical output port PO 2 is connected to the output side of the 2 ⁇ 1 SW 52 2
- the optical output ports PO 3 and PO 4 are 2 ⁇ 2SW53 is connected to the second output side.
- 1 one of the optical output port of ⁇ 2SW51 1 is the optical fiber 54 1 is connected to the 2 ⁇ 1SW52 1 of one of the optical input port, 1 ⁇ 2SW51 1 of the other light output port, the optical fiber 54 2 is connected to one optical input port of the 2 ⁇ 2 SW 53 2 .
- 1 ⁇ 2SW51 2 of one of the optical output port, the optical fiber 543 is connected to the 2 ⁇ 1SW52 2 of one of the optical input port, 1 ⁇ 2SW51 2 of the other light output port, the optical fiber 54 4 is connected to the other optical input port of the 2 ⁇ 2 SW 53 2 .
- the 2 ⁇ 2SW53 1 of one of the optical output port, the optical fiber 54 5 is connected to the 2 ⁇ 1SW52 1 of the other optical input port
- the 2 ⁇ 2SW53 1 of the other light output port, the optical fiber the 54 6, are connected to the 2 ⁇ 1SW52 2 of the other optical input port.
- each switching element is an individual chip or module, and these are connected by the optical fibers 54 1 to 54 6 .
- 1 ⁇ 2 SWs and 2 ⁇ 1 SWs may be the same chip or module.
- the operation speed can be increased. It is possible to switch between the OCS optical signal and the OPS optical signal.
- the above 2 ⁇ 2 SW 53 1 and 53 2 adopt the MZI type optical switch 60 as shown in FIG. 7 and the 2 ⁇ 2 SW 70 as shown in FIG. 8 to enable high-speed OPS optical signal processing.
- the MZI type optical switch 60 shown in FIG. 7 and the 2 ⁇ 2 SW 70 shown in FIG. 8 will be described below.
- the MZI type optical switch 60 shown in FIG. 7 has a configuration in which the MZI type optical switch 30 shown in FIG. 2 is expanded to 2 ⁇ 2.
- the MZI type optical switch 60 is a 2 ⁇ 2 light which is an MMI optical coupler in which optical input ports PI 1 and PI 2 are connected to the input side and optical waveguides 62 1 and 62 2 are connected to the output side.
- the 2 ⁇ 2 SW 70 shown in FIG. 8 has a configuration in which distribution selection type optical switches 71 1 to 71 4 having the same configuration as the distribution selection type optical switch 20 shown in FIG. Specifically, the optical input port PI 1 is connected to the input side of the distribution selection type optical switch 71 1 , and the optical input port PI 2 is connected to the input side of the distribution selection type optical switch 71 2 . Further, the optical output port PO 1 is connected to the output side of the distributor selection optical switch 71 3, optical output port PO 2 is connected to the output side of the distributor selection optical switch 71 4.
- one of the optical output port of broadcast-and-select optical switch 71 1 the optical waveguide 72 1 is connected to one of the optical input port of broadcast-and-select optical switch 71 3, other one of the distribution selective optical switch 71 1 the optical output port, the optical waveguide 72 2 is connected to one of the optical input port of broadcast-and-select optical switch 71 4.
- one of the optical output port of broadcast-and-select optical switch 71 2, the optical waveguide 72 3 is connected to the other optical input port of broadcast-and-select optical switch 71 3, broadcast-and-select optical switch 71 2 Nomou one optical output port, the optical waveguide 72 4 is connected to the other optical input port of broadcast-and-select optical switch 71 4.
- high-speed switching of the OPS optical signal is performed by 2 ⁇ 2 SWs 53 1 and 53 2 .
- the label of the OPS optical signal is read immediately before 2 ⁇ 2 SW 53 1 and 2 ⁇ 2 SW 53 2 , and switching to a preset optical output port is performed based on the label table.
- the optical switch device in the WSS-based ROADM node device, includes 1 ⁇ 2 SW 51 1 , 51 2 and 2 ⁇ 1 SW 52 1 , 52 2 dedicated for add / drop between the OCS optical signal and the OPS optical signal.
- the high-speed optical switch described above is used for these. With such a configuration, it is possible to handle both the OCS optical signal and the OPS optical signal without giving any disadvantage to the OCS optical signal. Furthermore, by optimizing the number of ports of each optical switch and the connection of optical fibers to the network configuration, it is possible to establish a node technology that suppresses loss, which is a drawback of high-speed optical switches.
- FIG. 9 shows an optical switch device according to this embodiment.
- the optical switch device similarly to the optical switch device shown in the first embodiment, the optical switch device has four optical input ports PI 1 to PI 4 and four optical output ports PO 1 to PO 4 , and the OCS optical signal and the OPS light are used. It is assumed that signals can be transferred simultaneously.
- two of 1 ⁇ 2 SW 51 1 , 51 2 and two of 2 ⁇ 1 SW 52 1 , 52 2 are used, and for add / drop of the OPS optical signal, 2 ⁇ Two 2SWs 53 1 and 53 2 are used.
- the optical input ports PI 1 to PI 4 the optical output ports PO 1 to PO 4 , 1 ⁇ 2 SW 51 1 , 51 2 , 2 ⁇ 1 SW 52 1 , 52 2 , 2 ⁇ 2 SW 53 1 , 53 2 are described in the first embodiment.
- the configuration is the same as that of the illustrated optical switch device, and therefore, the same reference numerals are given in FIG.
- 1 ⁇ 2 SW 51 1 , 51 2 , 2 ⁇ 1 SW 52 1 , 52 2 and 2 ⁇ 2 SW 53 1 , 53 2 are integrated on one chip as switching elements, and each switching element They are connected by an optical waveguide having a structure equivalent to that of the optical waveguide shown in FIG.
- the optical waveguides 82 1 to 82 6 are monolithically integrated on the same chip substrate 81 together with 1 ⁇ 2 SW 51 1 , 51 2 , 2 ⁇ 1 SW 52 1 , 52 2 and 2 ⁇ 2 SW 53 1 , 53 2 ,
- the optical switches are connected by optical waveguides 82 1 to 82 6 .
- the chip substrate 81 for example, the n-InP substrate shown in FIG. 5 may be adopted.
- 1 one of the optical output port of ⁇ 2SW51 1 is the optical waveguide 82 1 is connected to the 2 ⁇ 1SW52 1 of one of the optical input port, the 1 ⁇ 2SW51 1 of the other optical output port,
- the optical waveguide 82 2 is connected to one optical input port of the 2 ⁇ 2 SW 53 2 .
- 1 ⁇ 2SW51 2 of one of the optical output port, the optical waveguide 82 3 is connected to the 2 ⁇ 1SW52 2 of one of the optical input port, 1 ⁇ 2SW51 2 of the other light output port, the optical waveguide 82 4 is connected to the other optical input port of the 2 ⁇ 2 SW 53 2 .
- the 2 ⁇ 2SW53 1 of one of the optical output port, the optical waveguide 82 5, is connected to the 2 ⁇ 1SW52 1 of the other optical input port
- the 2 ⁇ 2SW53 1 of the other light output port, the optical waveguide the 82 6, are connected to the 2 ⁇ 1SW52 2 of the other optical input port.
- the distribution selection type optical switch 20 shown in FIG. 1 and the MZI type optical switch 30 shown in FIG. 2 for the above 1 ⁇ 2 SW 51 1 , 51 2 and 2 ⁇ 1 SW 52 1 , 52 2 as well, it is possible to increase the speed. It is possible to switch between the OCS optical signal and the OPS optical signal. Further, the above-described 2 ⁇ 2 SWs 53 1 and 53 2 also employ the MZI type optical switch 60 shown in FIG. 7 and the 2 ⁇ 2 SW 70 shown in FIG. 8 to enable high-speed OPS optical signal processing. .
- the optical switches employed in the 1 ⁇ 2 SW 51 1 , 51 2 , 2 ⁇ 1 SW 52 1 , 52 2, and 2 ⁇ 2 SW 53 1 , 53 2 are the same in the third to fifth embodiments described later.
- the add / drop of the OPS optical signal can be realized on the same chip in addition to the add / drop of the OCS optical signal and the OPS optical signal. Miniaturization is possible. Further, regarding the connection loss with the optical fiber that is the loss source of the optical switch device, it is not necessary to connect the switching elements with the optical fiber, so that a reduction in loss can be expected.
- high-speed switching of the OPS optical signal is performed by 2 ⁇ 2 SWs 53 1 and 53 2 . Specifically, at 2 ⁇ 2SW53 1 and 2 ⁇ 2SW53 2 just before reading the label of the OPS optical signal, performs switching on the basis of the label table.
- the optical switch device in the WSS-based ROADM node device, includes 1 ⁇ 2 SW 51 1 , 51 2 and 2 ⁇ 1 SW 52 1 , 52 2 dedicated for add / drop between the OCS optical signal and the OPS optical signal.
- the high-speed optical switch described above is used for these.
- label information needs to be added, it is possible to handle both the OCS optical signal and the OPS optical signal without giving a disadvantage to the OCS optical signal.
- by optimizing the number of ports of each optical switch and the connection of optical waveguides to the network configuration it is possible to establish a node technology that suppresses the loss that is a disadvantage of the high-speed optical switch.
- FIG. 11 shows an optical switch device according to this embodiment.
- the optical switch device similarly to the optical switch device shown in the first embodiment, the optical switch device has four optical input ports PI 1 to PI 4 and four optical output ports PO 1 to PO 4 , and the OCS optical signal and the OPS light are used. It is assumed that signals can be transferred simultaneously.
- two of 1 ⁇ 2 SW 51 1 , 51 2 and two of 2 ⁇ 1 SW 52 1 , 52 2 are used, and for add / drop of the OPS optical signal, 2 ⁇ Two 2SWs 53 1 and 53 2 are used.
- the optical input ports PI 1 to PI 4 the optical output ports PO 1 to PO 4 , 1 ⁇ 2 SW 51 1 , 51 2 , 2 ⁇ 1 SW 52 1 , 52 2 , 2 ⁇ 2 SW 53 1 , 53 2 are arranged. Except for this, the configuration is the same as that of the optical switch device shown in the first embodiment. Therefore, the same reference numerals are given in FIG.
- 1 ⁇ 2 SW 51 1 , 51 2 , 2 ⁇ 1 SW 52 1 , 52 2 and 2 ⁇ 2 SW 53 1 , 53 2 are integrated on one chip as switching elements, and each switching element They are connected by an optical waveguide having a structure equivalent to that of the optical waveguide shown in FIG.
- the optical waveguides 84 1 to 84 6 are monolithically integrated on the same chip substrate 81 together with 1 ⁇ 2 SW 51 1 , 51 2 , 2 ⁇ 1 SW 52 1 , 52 2 and 2 ⁇ 2 SW 53 1 , 53 2 ,
- the optical switches are connected by optical waveguides 84 1 to 84 6 .
- 1 one of the optical output port of ⁇ 2SW51 1 is the optical waveguide 84 1 is connected to the 2 ⁇ 1SW52 1 of one of the optical input port, the 1 ⁇ 2SW51 1 of the other optical output port,
- the optical waveguide 84 2 is connected to one optical input port of the 2 ⁇ 2 SW 53 2 .
- 1 ⁇ 2SW51 2 of one of the optical output port, the optical waveguide 84 3, is connected to the 2 ⁇ 1SW52 2 of one of the optical input port, 1 ⁇ 2SW51 2 of the other light output port, the optical waveguide 84 4 is connected to the other optical input port of the 2 ⁇ 2 SW 53 2 .
- the 2 ⁇ 2SW53 1 of one of the optical output port, the optical waveguide 84 5 is connected to the 2 ⁇ 1SW52 1 of the other optical input port
- the 2 ⁇ 2SW53 1 of the other light output port, the optical waveguide the 84 6, are connected to the 2 ⁇ 1SW52 2 of the other optical input port.
- the 1 ⁇ 2 SW 51 1 , 51 2 , 2 ⁇ 1 SW 52 1 , 52 2 and 2 ⁇ 2 SW 53 1 , 53 2 are connected to each other so that the optical waveguides 84 1 to 84 6 connecting them do not cross each other. Are arranged adjacent to each other.
- 1 ⁇ 2SW51 1 and 2 ⁇ 2SW53 2 which are connected by the optical waveguide 84 2 are arranged adjacently
- 2 ⁇ 2SW53 2 and 1 ⁇ 2SW51 2 which are connected by the optical waveguide 84 4 are arranged adjacent to each other
- 2 ⁇ 1SW52 1 and 2 ⁇ 2SW53 1 connected by the optical waveguide 84 5 are arranged adjacent to each other
- 2 ⁇ 2SW53 1 and 2 ⁇ 1SW52 2 connected by the optical waveguide 84 6 are arranged adjacent to each other.
- the 1 ⁇ 2 SW 51 1 and the 2 ⁇ 1 SW 52 1 connected by the optical waveguide 84 1 are arranged at different ends, but it can be said that they are arranged adjacent to each other on the connection, and the optical waveguide 84 3. in even 1 ⁇ 2SW51 2 and 2 ⁇ 1SW52 2 to be connected are disposed on different ends from each other, connected on can be said to be disposed adjacent.
- the arrangement of the optical input ports PI 1 to PI 4 and the optical output ports PO 1 to PO 4 is different from that of the second embodiment.
- the optical input ports PI 1 to PI 4 are arranged at one end and the optical output ports PO 1 to PO 4 are arranged at the other end.
- optical input ports PI 1 and PI 2 and optical output ports PO 3 and PO 4 are disposed at one end, and optical input ports PI 3 and PI 4 and optical are disposed at the other end.
- Output ports PO 1 and PO 2 are arranged.
- the add / drop of the OPS optical signal can be realized on the same chip. Miniaturization is possible. Further, regarding the connection loss with the optical fiber that is the loss source of the optical switch device, it is not necessary to connect the switching elements with the optical fiber, so that a reduction in loss can be expected.
- the optical switch apparatus shown in Example 2 using the optical waveguide 82 1-82 6 on the chip substrate 81, for connecting the respective switching element, intersection is generated in a part of the optical waveguide
- the intersection of the optical waveguides is eliminated by changing the arrangement of the optical input / output ports and the switching elements. In general, loss of light intensity and crosstalk to other ports occur at the intersections of the optical waveguides. Therefore, in this embodiment, it is possible to suppress deterioration of signal characteristics.
- FIG. 12 shows an optical switch device according to this embodiment.
- the optical switch device similarly to the optical switch device shown in the first embodiment, the optical switch device has four optical input ports PI 1 to PI 4 and four optical output ports PO 1 to PO 4 , and the OCS optical signal and the OPS light are used. It is assumed that signals can be transferred simultaneously.
- two of 1 ⁇ 2 SW 51 1 , 51 2 and two of 2 ⁇ 1 SW 52 1 , 52 2 are used, and for add / drop of the OPS optical signal, 2 ⁇ Two 2SWs 53 1 and 53 2 are used.
- the optical input ports PI 1 to PI 4 the optical output ports PO 1 to PO 4 , 1 ⁇ 2 SW 51 1 , 51 2 , 2 ⁇ 1 SW 52 1 , 52 2 , 2 ⁇ 2 SW 53 1 , 53 2 are arranged. Except for this, the configuration is the same as that of the optical switch device shown in the first embodiment. Therefore, the same reference numerals are given in FIG.
- 1 ⁇ 2 SW 51 1 , 51 2 , 2 ⁇ 1 SW 52 1 , 52 2 and 2 ⁇ 2 SW 53 1 , 53 2 are integrated on one chip as switching elements, and each switching element They are connected by an optical waveguide having a structure equivalent to that of the optical waveguide shown in FIG.
- optical waveguides 85 1 to 85 6 are monolithically integrated on the same chip substrate 81 together with 1 ⁇ 2 SW 51 1 , 51 2 , 2 ⁇ 1 SW 52 1 , 52 2 and 2 ⁇ 2 SW 53 1 , 53 2 ,
- the optical switches are connected by optical waveguides 85 1 to 85 6 .
- 1 one of the optical output port of ⁇ 2SW51 1 is the optical waveguide 85 1 is connected to the 2 ⁇ 1SW52 1 of one of the optical input port, the 1 ⁇ 2SW51 1 of the other optical output port,
- the optical waveguide 85 2 is connected to one optical input port of the 2 ⁇ 2 SW 53 2 .
- the 1 ⁇ 2SW51 one optical output port of the 2, the optical waveguide 85 3, is connected to the 2 ⁇ 1SW52 2 of one of the optical input port, 1 ⁇ 2SW51 2 of the other light output port, the optical waveguide 85 4 is connected to the other optical input port of the 2 ⁇ 2 SW 53 2 .
- the 2 ⁇ 2SW53 1 of one of the optical output port, the optical waveguide 85 5 is connected to the 2 ⁇ 1SW52 1 of the other optical input port
- the 2 ⁇ 2SW53 1 of the other light output port, the optical waveguide the 85 6, are connected to the 2 ⁇ 1SW52 2 of the other optical input port.
- the 1 ⁇ 2 SW 51 1 , 51 2 , 2 ⁇ 1 SW 52 1 are arranged so that all of the optical input ports PI 1 to PI 4 and the optical output ports PO 1 to PO 4 are arranged at one end of the chip substrate 81. , 52 2 and 2 ⁇ 2 SW 53 1 , 53 2 are arranged.
- the arrangement of the optical input ports PI 1 to PI 4 and the optical output ports PO 1 to PO 4 is different from those in the second and third embodiments.
- the optical input ports PI 1 to PI 4 are arranged at one end, and the optical output ports PO 1 to PO 4 are arranged at the other end.
- the optical input ports PI 1 and PI 2 and the optical output ports PO 3 and PO 4 are disposed at one end, and the optical input ports PI 3 and PI 4 and the optical output ports PO 1 and PO 2 are disposed at the other end.
- the optical input ports PI 1 to PI 4 and the optical output ports PO 1 to PO 4 are all arranged at one end.
- the add / drop of the OPS optical signal can be realized on the same chip. Miniaturization is possible. Further, regarding the connection loss with the optical fiber that is the loss source of the optical switch device, it is not necessary to connect the switching elements with the optical fiber, so that a reduction in loss can be expected.
- the optical input / output port of the optical switch device is arranged on one side of the chip, so that it can be easily modularized.
- FIG. 13 shows an optical switch device according to this embodiment.
- the optical switch device similarly to the optical switch device shown in the first embodiment, the optical switch device has four optical input ports PI 1 to PI 4 and four optical output ports PO 1 to PO 4 , and the OCS optical signal and the OPS light are used. It is assumed that signals can be transferred simultaneously.
- two of 1 ⁇ 2 SW 51 1 , 51 2 and two of 2 ⁇ 1 SW 52 1 , 52 2 are used, and for add / drop of the OPS optical signal, 2 ⁇ Two 2SWs 53 1 and 53 2 are used.
- the optical input ports PI 1 to PI 4 the optical output ports PO 1 to PO 4 , 1 ⁇ 2 SW 51 1 , 51 2 , 2 ⁇ 1 SW 52 1 , 52 2 , 2 ⁇ 2 SW 53 1 , 53 2 are arranged. Except for this, the configuration is the same as that of the optical switch device shown in the first embodiment. Therefore, the same reference numerals are given in FIG.
- 1 ⁇ 2 SW 51 1 , 51 2 , 2 ⁇ 1 SW 52 1 , 52 2 and 2 ⁇ 2 SW 53 1 , 53 2 are integrated on one chip as switching elements, and each switching element They are connected by an optical waveguide having a structure equivalent to that of the optical waveguide shown in FIG.
- the optical waveguides 86 1 to 86 6 are monolithically integrated on the same chip substrate 81 together with 1 ⁇ 2 SW 51 1 , 51 2 , 2 ⁇ 1 SW 52 1 , 52 2 and 2 ⁇ 2 SW 53 1 , 53 2 ,
- the optical switches are connected by optical waveguides 86 1 to 86 6 .
- 1 one of the optical output port of ⁇ 2SW51 1 is the optical waveguide 86 1 is connected to the 2 ⁇ 1SW52 1 of one of the optical input port, the 1 ⁇ 2SW51 1 of the other optical output port,
- the optical waveguide 86 2 is connected to one optical input port of the 2 ⁇ 2 SW 53 2 .
- 1 ⁇ 2SW51 2 of one of the optical output port, the optical waveguide 86 3 is connected to the 2 ⁇ 1SW52 2 of one of the optical input port, 1 ⁇ 2SW51 2 of the other light output port, the optical waveguide 86 4 is connected to the other optical input port of the 2 ⁇ 2 SW 53 2 .
- the 2 ⁇ 2SW53 1 of one of the optical output port, the optical waveguide 86 5 is connected to the 2 ⁇ 1SW52 1 of the other optical input port
- the 2 ⁇ 2SW53 1 of the other light output port, the optical waveguide the 86 6, are connected to the 2 ⁇ 1SW52 2 of the other optical input port.
- the 1 ⁇ 2 SW 51 1 , 51 2 , 2 ⁇ 1 SW 52 1 , 52 2 and 2 ⁇ 2 SW 53 1 , 53 2 are connected to each other so that the optical waveguides 84 1 to 84 6 connecting them do not cross each other. Are arranged adjacent to each other.
- the 1 ⁇ 2 SW 51 1 , 51 2 , 2 ⁇ 1 SW 52 1 are arranged so that all of the optical input ports PI 1 to PI 4 and the optical output ports PO 1 to PO 4 are arranged at one end of the chip substrate 81.
- 52 2 and 2 ⁇ 2 SW 53 1 , 53 2 are arranged.
- the end of one side of the chip substrate 81, 1 ⁇ 2SW51 1 and 2 ⁇ 2SW53 2 which are connected by optical waveguides 862 are arranged adjacent, and 2 ⁇ 2SW53 2 which are connected by the optical waveguide 86 4 1 ⁇ 2SW51 2 are arranged adjacent, 1 ⁇ 2SW51 2 and 2 ⁇ 1SW52 2 are arranged adjacently, 2 ⁇ 1SW52 2 and 2 ⁇ connected by optical waveguides 86 6 connected by optical waveguides 86 3 2SW53 1 are arranged adjacently, 2 ⁇ 2SW53 1 and 2 ⁇ 1SW52 1 connected by optical waveguides 86 5 are arranged adjacent.
- the 1 ⁇ 2 SW 51 1 and the 2 ⁇ 1 SW 52 2 connected by the optical waveguide 86 1 are arranged at both ends of one end portion of the chip substrate 81, but it can be said that they are arranged adjacent to each other on the connection. .
- the arrangement of the optical input ports PI 1 to PI 4 and the optical output ports PO 1 to PO 4 is different from those in the second and third embodiments.
- the optical input ports PI 1 to PI 4 are arranged at one end, and the optical output ports PO 1 to PO 4 are arranged at the other end.
- the optical input ports PI 1 and PI 2 and the optical output ports PO 3 and PO 4 are disposed at one end, and the optical input ports PI 3 and PI 4 and the optical output ports PO 1 and PO 2 are disposed at the other end.
- the optical input ports PI 1 to PI 4 and the optical output ports PO 1 to PO 4 are all arranged at one end.
- the add / drop of the OPS optical signal can be realized on the same chip. Miniaturization is possible. Further, regarding the connection loss with the optical fiber that is the loss source of the optical switch device, it is not necessary to connect the switching elements with the optical fiber, so that a reduction in loss can be expected.
- the optical input / output port of the optical switch device is arranged on one side of the chip, so that it can be easily modularized.
- the switching elements are connected to each other using the optical waveguides 85 1 to 85 6 on the chip substrate 81, a crossing portion is generated in some of the optical waveguides.
- the intersection of the optical waveguides is eliminated by changing the arrangement of the optical input / output ports and the switching elements. In general, loss of light intensity and crosstalk to other ports occur at the intersections of the optical waveguides. Therefore, in this embodiment, it is possible to suppress deterioration of signal characteristics.
- Example 6 In the present embodiment, modified examples of the first to fifth embodiments will be described. In the first to fifth embodiments described above, a mode with a small number of optical input / output ports is shown for the sake of simplicity of description. is there. Therefore, the configuration of the optical switch device having a large number of optical input / output ports will be described with reference to FIG. 14, taking the optical switch device shown in FIG. 6 of Embodiment 1 as an example.
- each of K, L, M, and N is an integer of 1 or more
- the optical input / output port of the optical switch for adding / dropping the OCS optical signal and the OPS optical signal is an N port
- the optical switch for adding / dropping the OPS optical signal The input / output port is M port
- the optical input / output port between optical switches for cut-through of OCS optical signals is L port
- the optical input / output port between optical switches for add / drop of OPS optical signals is K Port.
- the optical switch for adding / dropping the OCS optical signal and the OPS optical signal includes N ⁇ (K + L) SW 91 and (K + L) ⁇ N port configurations having an N ⁇ (K + L) port configuration.
- the optical switch for adding and dropping the OPS optical signal may be M ⁇ KSW 93 having an M ⁇ K port configuration and K ⁇ MSW 94 having a K ⁇ M port configuration.
- the N ⁇ (K + L) SW 91 has optical input ports PI1 1 to PI1 N , optical output ports PMO1 1 to PMO1 L, and optical output ports PMO2 1 to PMO2 K
- (K + L) ⁇ NSW 92 is an optical input port.
- PMI1 1 to PMI1 L and optical input ports PMI2 1 to PMI2 K and optical output ports PO1 1 to PO1 N are included.
- the M ⁇ KSW 93 includes optical input ports PI2 1 to PI2 M and optical output ports PMO3 1 to PMO3 K.
- the K ⁇ MSW 94 has optical input ports PMI3 1 to PMI3 K and optical output ports PO2 1 to PO2 M.
- the N ⁇ (K + L) SW91 optical output ports PMO1 1 ⁇ PMO1 L, (K + L) is connected to the optical input port PMI 1 1 ⁇ PMI 1 L of ⁇ NSW92, N ⁇ (K + L) SW91 optical output ports pMO2 1 ⁇ the pMO2 K, connects to the optical input port PMI3 1 ⁇ PMI3 K of K ⁇ MSW94, an optical output port pMO3 1 ⁇ pMO3 K of M ⁇ KSW93, connected to the (K + L) optical input port PMI2 1 ⁇ PMI2 K of ⁇ NSW92 doing.
- Such N ⁇ (K + L) SW 91, (K + L) ⁇ NSW 92, M ⁇ KSW 93, and K ⁇ MSW 94 each have at least one 1 ⁇ J using the above-described 1 ⁇ J distribution selection type optical switch as a basic component. It consists of a distribution selection type optical switch. Alternatively, one 1 ⁇ 2 MZI optical switch 30 having the 1 ⁇ J MZI optical switch 30 described above or a 1 ⁇ J optical switch composed of a plurality of 2 ⁇ 2 MZI optical switches 60 as basic components. Alternatively, it is composed of at least one 1 ⁇ J optical switch.
- N ⁇ (K + L) SW 91 and (K + L) ⁇ NSW 92 optical input / output ports for adding and dropping OCS optical signals and OPS optical signals are N ports.
- N optical switches may be used with a single port.
- the optical output port for add / drop of the OPS optical signal is set so that the total number of optical output ports for cut-through of the OCS optical signal becomes L port.
- the OPS optical signal must be set so that the total number of optical input ports for cut-through of the OCS optical signal is L ports in the N optical switches on the output side. It is necessary to make the total number of add-drop optical input ports equal to K ports.
- the optical switch device shown in the first embodiment can be applied to a form having a large number of optical input / output ports.
- the configuration of the second embodiment is substantially the same as that of the first embodiment, and the configurations of the optical input / output ports and the switching elements are different from those of the third to fifth embodiments.
- the configuration is the same as that of the first embodiment. Therefore, the modification described with reference to FIG. 14 is also applicable to the second to fifth embodiments.
- the present invention is suitable for an optical switch device for a node device of a large-capacity optical communication network.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Nonlinear Science (AREA)
- Computing Systems (AREA)
- Electromagnetism (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
- Optical Communication System (AREA)
Abstract
Provided is a low-loss optical switch device for realizing a node device that transfers an optical signal of an optical line exchange system and an optical signal of an optical packet exchange system. The optical switch device is disposed in a node device constituting a network and includes optical input ports PI1 to PI4 and optical output ports PO1 to PO4. The optical switch device comprises 1×2 optical switches 511, 512, 2×1 optical switches 521, 522, and 2×2 optical switches 531, 532. The optical switches comprise an optical waveguide of a material of which the refractive index or absorption coefficient varies on the order of nanoseconds. The refractive index or the absorption coefficient is changed to thereby perform switching of both an OCS optical signal of the optical line exchange system and an OPS optical signal of the optical packet exchange system.
Description
本発明は、大容量光通信ネットワークを支えるための重要な光部品であるノード装置用の光スイッチ装置に関する。
The present invention relates to an optical switch device for a node device, which is an important optical component for supporting a large-capacity optical communication network.
近年、通信トラフィックの急激な増大に対応すべく、光通信ネットワークの高速、大容量化が進められている。光通信ネットワークは複数のリンク、ノード装置で構成されており、それぞれにおいて高速、大容量通信に向けた研究開発が行われている。リンクでは信号の高速化や波長の多重化などが進む一方で、ノード装置では効率的なトラフィックを実現すべく、ノード装置間を接続する経路を柔軟に変更する技術が重要とされている。ノード技術としては様々な伝送方式が検討されており、光/電気変換を必要としない光スイッチング技術は、ネットワーク機器の消費電力や遅延等の面において有効な技術であり、光スイッチング技術を主体とした光伝送方式が盛んに研究されている。
In recent years, high-speed and large-capacity optical communication networks have been promoted to cope with the rapid increase in communication traffic. An optical communication network is composed of a plurality of links and node devices, and research and development for high-speed and large-capacity communication is being conducted in each of them. While the link speeds up signals and multiplexes the wavelength, the node device is required to have a technology for flexibly changing the path connecting the node devices in order to realize efficient traffic. Various transmission systems have been studied as node technology, and optical switching technology that does not require optical / electrical conversion is effective in terms of power consumption and delay of network devices. Active optical transmission systems have been actively studied.
その中でも、光回線交換(Optical Circuit Switching:OCS)方式と光パケット交換(Optical Packet Switching:OPS)方式は相反する特徴を持ち、それぞれに適したデータや運用が考えられる。
Among them, the optical circuit switching (Optical Circuit Switching: OCS) system and the optical packet switching (OPS) system have contradictory characteristics, and data and operations suitable for each can be considered.
OCS方式では、特定のノード装置間でリンクが確立され、連続したデータの伝送が可能である。リンクの確立には、特定の波長帯域を占有することによって光パスが設定されることが一般的であるが、リンクの波長を占有するため、他のノード装置からの転送の妨げとなる。OCS方式では、パケットのロスが少ないため高い信頼性が求められる場合や安定して大容量のデータを伝送する場合に適している。
In the OCS system, a link is established between specific node devices, and continuous data transmission is possible. In establishing a link, an optical path is generally set by occupying a specific wavelength band. However, since the link wavelength is occupied, transfer from other node devices is hindered. The OCS system is suitable for cases where high reliability is required because there is little packet loss, and when large amounts of data are stably transmitted.
その一方、OPS方式では、ノード装置間のリンクを確立せず、コネクションレスな伝送が可能である。伝送される光パケットに予めラベルを付与し、そのラベルに基づいて各ノード装置での衝突回避を考慮しながら転送されることが一般的である。OPS方式では、伝送データのトラフィック変動が大きな場合や低遅延性が要求されるデータに適している。非特許文献1に示すように、将来の大容量光通信ネットワークには、これら2つの方式の組み合わせによる柔軟なネットワークが有望視されており、それらを実現するノード技術の研究が進められている。
On the other hand, in the OPS system, connectionless transmission is possible without establishing a link between node devices. Generally, a label is given to an optical packet to be transmitted in advance, and the packet is transferred while considering collision avoidance in each node device based on the label. The OPS method is suitable for data in which traffic fluctuation of transmission data is large or data that requires low delay. As shown in Non-Patent Document 1, a flexible network based on a combination of these two methods is considered promising for future large-capacity optical communication networks, and research on node technologies for realizing them is underway.
光スイッチング技術としては、光/電気変換を必要とせず、光信号を光のまま高速にスイッチングすることが求められる。このような光スイッチは平面光波回路(Planar Lightwave Circuit:PLC)上に構成した熱光学(Thermo-Optic:TO)スイッチ、InP系の電界吸収型光変調器(Electro Absorption Modulator:EAM)やマッハツェンダ干渉計(Mach-Zehnder Interferometer:MZI)や半導体光増幅器(Semiconductor Optical Amplifier:SOA)を用いたスイッチ、LiNbO3系の位相変調器型のスイッチなどが研究開発されている。1×N光スイッチを構成する従来技術として、例えば、特許文献1に示す2×2光スイッチ素子が提案されている。
As an optical switching technique, optical / electrical conversion is not required, and an optical signal is required to be switched at high speed as light. Such an optical switch is a thermo-optic (TO) switch configured on a planar lightwave circuit (PLC), an InP-based electroabsorption modulator (EAM), or Mach-Zehnder interference. A switch using a meter (Mach-Zehnder Interferometer: MZI), a semiconductor optical amplifier (SOA), a LiNbO 3 phase modulator type switch, and the like have been researched and developed. As a conventional technique for forming a 1 × N optical switch, for example, a 2 × 2 optical switch element disclosed in Patent Document 1 has been proposed.
図15に従来の2×2光スイッチ素子の斜視図を示す。図15の2×2光スイッチ素子は、方向性結合器型の光スイッチ素子であり、n-InP基板上に、光入力部(図中のI)、光スイッチ部(同II)、光出力部(同III)及び光吸収部(同IV)を設けた構成となっている。
FIG. 15 shows a perspective view of a conventional 2 × 2 optical switch element. The 2 × 2 optical switch element shown in FIG. 15 is a directional coupler type optical switch element. On the n-InP substrate, an optical input section (I in the figure), an optical switch section (II), and an optical output Part (same III) and light absorption part (same IV) are provided.
より詳細に説明すると、従来の2×2光スイッチ素子は、n-InP基板6上に、i-MQW層5、i-InPクラッド層4、p-InPクラッド層3が順に積層され、p-InPクラッド層3は、図15に示すような構造で、細線状に形成されている。更に、光スイッチ部IIの一方のp-InPクラッド層3上及び光吸収部IVの両方のp-InPクラッド層3上には、p+-InGaAsキャップ層2が形成され、p+-InGaAsキャップ層2上にはp型電極1、10、11が各々形成されている。n-InP基板6の裏面にはn型電極7が形成されている。なお、符号9は、電気的分離溝である。
More specifically, in the conventional 2 × 2 optical switch element, an i-MQW layer 5, an i-InP clad layer 4, and a p-InP clad layer 3 are laminated on an n-InP substrate 6 in order. The InP cladding layer 3 has a structure as shown in FIG. 15 and is formed in a thin line shape. Further, on both the p-InP cladding layer 3 above p-InP cladding layer 3 of one of the optical switching unit II and the light absorbing portion IV is, p + -InGaAs capping layer 2 is formed, p + -InGaAs cap On the layer 2, p- type electrodes 1, 10, and 11 are formed. An n-type electrode 7 is formed on the back surface of the n-InP substrate 6. Reference numeral 9 denotes an electrical separation groove.
入力信号光は、i-MQW層5内であって、細線状に形成されたp-InPクラッド層3の下部に位置する部分を導波する。以下、光入力部I、光スイッチ部II、光出力部III及び光吸収部IVに設けたp-InPクラッド層3の下部に位置するi-MQW層5を、それぞれ入力光導波路、光スイッチ光導波路、出力光導波路及び光吸収光導波路と呼ぶこととする。
The input signal light is guided in a portion located in the lower part of the p-InP clad layer 3 formed in a thin line shape in the i-MQW layer 5. Hereinafter, the i-MQW layer 5 positioned below the p-InP cladding layer 3 provided in the light input part I, the light switch part II, the light output part III, and the light absorption part IV is respectively referred to as an input optical waveguide and an optical switch light. These are referred to as a waveguide, an output optical waveguide, and a light absorption optical waveguide.
入力信号光は、いずれか一方の入力光導波路(図15中のA又はB)に入力され、光スイッチ光導波路に導かれる。光スイッチ光導波路では、光スイッチ部IIに設けたp型電極1とn型電極7との間に所望の電圧を印加することにより、例えば、多重量子井戸(Multiple Quantum Well:MQW)構造に起因する量子井戸閉じ込め効果(Quantum Confined Stark Effect:QCSE)により、p型電極1下方の光スイッチ光導波路の屈折率を変えることで、いずれか一方の光スイッチ光導波路からのみ信号光を出力する。すなわち、光路切り替えを行う。
The input signal light is input to one of the input optical waveguides (A or B in FIG. 15) and guided to the optical switch optical waveguide. In the optical switch optical waveguide, a desired voltage is applied between the p-type electrode 1 and the n-type electrode 7 provided in the optical switch unit II, for example, due to a multiple quantum well (MQW) structure. By changing the refractive index of the optical switch optical waveguide below the p-type electrode 1 by the quantum well confinement effect (Quantum Confined Stark Effect: QCSE), signal light is output only from one of the optical switch optical waveguides. That is, the optical path is switched.
光吸収部IVでは、信号光が入力された光吸収光導波路と異なる光吸収光導波路に設けたp型電極10又は11とn型電極7との間に、所望の電界が印加される。これにより、前記光スイッチ光導波路から漏れ出たクロストーク光は光吸収光導波路で吸収される一方、光スイッチ光導波路から出力された信号光は出力光導波路(図15中のC又はD)へ導かれる。このように、光吸収部IVを備えることにより、前記光スイッチ光導波路からの漏れ光の影響を低減可能な光スイッチ素子を実現している。
In the light absorption part IV, a desired electric field is applied between the p-type electrode 10 or 11 and the n-type electrode 7 provided in a light absorption optical waveguide different from the light absorption optical waveguide to which signal light is input. Thereby, the crosstalk light leaking from the optical switch optical waveguide is absorbed by the optical absorption optical waveguide, while the signal light output from the optical switch optical waveguide is directed to the output optical waveguide (C or D in FIG. 15). Led. Thus, by providing the light absorption part IV, an optical switch element capable of reducing the influence of leakage light from the optical switch optical waveguide is realized.
OPS方式とOCS方式を統合させたネットワークの実現には、既存のROADM(Reconfigurable Optical Add/Drop Multiplexer)ネットワーク技術への適応が不可欠である。リングネットワークのROADMにおける光スイッチには、波長選択スイッチ(Wavelength Selective Switch:WSS)が用いられているが、ノード装置にはWSSの機能と高速光スイッチの機能が求められる。WSS単体では、OPS方式とOCS方式両方の信号を扱うことができないため、それらを実現する新たなノード技術の実現が課題である。
To realize a network that integrates the OPS method and the OCS method, it is essential to adapt to the existing ROADM (Reconfigurable Optical Add / Drop Multiplexer) network technology. Wavelength selective switches (WSS) are used as optical switches in ROADMs of ring networks, but node devices are required to have WSS functions and high-speed optical switch functions. Since the WSS alone cannot handle both OPS and OCS signals, it is a challenge to realize a new node technology that realizes them.
そこで、OPS方式への対応を可能とする場合、光パケットと光パケットとの間でスイッチングする必要があるため、光スイッチには高速性が求められる。光スイッチの高速動作を可能とするためには、InPやSiなどの半導体にキャリアを注入し、電気光学効果によってスイッチングする構造が一般的となるが、半導体光導波路は光閉じ込めが強いため光ファイバとの接続損失は大きく、また、キャリアの吸収などによって伝搬損失が大きくなる傾向がある。ノード装置における損失はEDFA(Erbium-Doped Fiber Amplifier)などの増幅器によって補償も可能であるが、信号品質の劣化を招くため好ましくなく、光スイッチデバイスにおいては低損失性が重要となる。
Therefore, when it is possible to cope with the OPS system, since it is necessary to switch between optical packets, the optical switch is required to have high speed. In order to enable high-speed operation of an optical switch, a structure in which carriers are injected into a semiconductor such as InP or Si and switched by an electro-optic effect is generally used. However, since a semiconductor optical waveguide has a strong optical confinement, an optical fiber is used. Connection loss and the propagation loss tends to increase due to carrier absorption and the like. The loss in the node device can be compensated by an amplifier such as an EDFA (Erbium-Doped Fiber Amplifier), but it is not preferable because it deteriorates the signal quality, and low loss is important in the optical switch device.
本発明は、上記課題に鑑みなされたもので、光回線交換方式の光信号と光パケット交換方式の光信号を転送するノード装置を実現する低損失な光スイッチ装置を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a low-loss optical switch device that realizes a node device that transfers an optical signal of an optical circuit switching method and an optical signal of an optical packet switching method. .
上記課題を解決する第1の発明に係る光スイッチ装置は、
ネットワークを構成するノード装置に設けられ、複数の光入力ポートと複数の光出力ポートとを有する光スイッチ装置において、
当該光スイッチ装置は、複数の光スイッチからなり、
前記光スイッチは、屈折率又は吸収係数がナノ秒オーダで変化する材料の光導波路構造からなり、前記屈折率又は前記吸収係数を変化させることにより、光回線交換方式の光信号であるOCS光信号及び光パケット交換方式の光信号であるOPS光信号の両方のスイッチングを行う
ことを特徴とする。 An optical switch device according to a first invention for solving the above-mentioned problems is
In an optical switch device provided in a node device constituting a network and having a plurality of optical input ports and a plurality of optical output ports,
The optical switch device includes a plurality of optical switches,
The optical switch has an optical waveguide structure made of a material whose refractive index or absorption coefficient changes in the order of nanoseconds, and an OCS optical signal which is an optical signal of an optical circuit switching system by changing the refractive index or the absorption coefficient. And OPS optical signal which is an optical packet switching type optical signal is switched.
ネットワークを構成するノード装置に設けられ、複数の光入力ポートと複数の光出力ポートとを有する光スイッチ装置において、
当該光スイッチ装置は、複数の光スイッチからなり、
前記光スイッチは、屈折率又は吸収係数がナノ秒オーダで変化する材料の光導波路構造からなり、前記屈折率又は前記吸収係数を変化させることにより、光回線交換方式の光信号であるOCS光信号及び光パケット交換方式の光信号であるOPS光信号の両方のスイッチングを行う
ことを特徴とする。 An optical switch device according to a first invention for solving the above-mentioned problems is
In an optical switch device provided in a node device constituting a network and having a plurality of optical input ports and a plurality of optical output ports,
The optical switch device includes a plurality of optical switches,
The optical switch has an optical waveguide structure made of a material whose refractive index or absorption coefficient changes in the order of nanoseconds, and an OCS optical signal which is an optical signal of an optical circuit switching system by changing the refractive index or the absorption coefficient. And OPS optical signal which is an optical packet switching type optical signal is switched.
上記課題を解決する第2の発明に係る光スイッチ装置は、
上記第1の発明に記載の光スイッチ装置において、
前記ノード装置は、波長選択スイッチを有するROADM(Reconfigurable Optical Add/Drop Multiplexer)ノード装置であり、
当該光スイッチ装置は、
前記波長選択スイッチの後段に配置されると共に、前記OCS光信号と前記OPS光信号を予め設定した前記光出力ポートにスイッチングして、前記OCS光信号と前記OPS光信号との間のアドドロップ処理を行う複数の前記光スイッチからなる第1の光スイッチ部と、前記OPS光信号を予め設定した前記光出力ポートにスイッチングして、前記OPS光信号のアドドロップ処理を行う複数の前記光スイッチからなる第2の光スイッチ部とを有する
ことを特徴とする。 An optical switch device according to a second invention for solving the above-mentioned problems is as follows.
In the optical switch device according to the first invention,
The node device is a ROADM (Reconfigurable Optical Add / Drop Multiplexer) node device having a wavelength selective switch,
The optical switch device is
An add / drop process between the OCS optical signal and the OPS optical signal is arranged after the wavelength selective switch and switches the OCS optical signal and the OPS optical signal to the preset optical output port. A first optical switch unit comprising a plurality of the optical switches that perform the switching, and a plurality of the optical switches that perform the add / drop processing of the OPS optical signal by switching the OPS optical signal to the preset optical output port. And a second optical switch unit.
上記第1の発明に記載の光スイッチ装置において、
前記ノード装置は、波長選択スイッチを有するROADM(Reconfigurable Optical Add/Drop Multiplexer)ノード装置であり、
当該光スイッチ装置は、
前記波長選択スイッチの後段に配置されると共に、前記OCS光信号と前記OPS光信号を予め設定した前記光出力ポートにスイッチングして、前記OCS光信号と前記OPS光信号との間のアドドロップ処理を行う複数の前記光スイッチからなる第1の光スイッチ部と、前記OPS光信号を予め設定した前記光出力ポートにスイッチングして、前記OPS光信号のアドドロップ処理を行う複数の前記光スイッチからなる第2の光スイッチ部とを有する
ことを特徴とする。 An optical switch device according to a second invention for solving the above-mentioned problems is as follows.
In the optical switch device according to the first invention,
The node device is a ROADM (Reconfigurable Optical Add / Drop Multiplexer) node device having a wavelength selective switch,
The optical switch device is
An add / drop process between the OCS optical signal and the OPS optical signal is arranged after the wavelength selective switch and switches the OCS optical signal and the OPS optical signal to the preset optical output port. A first optical switch unit comprising a plurality of the optical switches that perform the switching, and a plurality of the optical switches that perform the add / drop processing of the OPS optical signal by switching the OPS optical signal to the preset optical output port. And a second optical switch unit.
上記課題を解決する第3の発明に係る光スイッチ装置は、
上記第2の発明に記載の光スイッチ装置において、
前記第1の光スイッチ部でのスイッチングを制御するネットワークコントローラと、前記第2の光スイッチ部でのスイッチングを前記OPS光信号のラベルに基づいて制御するラベルテーブルとを有する
ことを特徴とする。 An optical switch device according to a third invention for solving the above-mentioned problems is as follows.
In the optical switch device according to the second invention,
A network controller that controls switching in the first optical switch unit, and a label table that controls switching in the second optical switch unit based on a label of the OPS optical signal.
上記第2の発明に記載の光スイッチ装置において、
前記第1の光スイッチ部でのスイッチングを制御するネットワークコントローラと、前記第2の光スイッチ部でのスイッチングを前記OPS光信号のラベルに基づいて制御するラベルテーブルとを有する
ことを特徴とする。 An optical switch device according to a third invention for solving the above-mentioned problems is as follows.
In the optical switch device according to the second invention,
A network controller that controls switching in the first optical switch unit, and a label table that controls switching in the second optical switch unit based on a label of the OPS optical signal.
上記課題を解決する第4の発明に係る光スイッチ装置は、
上記第2又は第3の発明に記載の光スイッチ装置において、
K、L、M、Nをそれぞれ1以上の整数とすると、
前記第1の光スイッチ部は、N×(K+L)のポート構成のN×(K+L)光スイッチと(K+L)×Nのポート構成の(K+L)×N光スイッチとを有し、
前記第2の光スイッチ部は、M×Kのポート構成のM×K光スイッチとK×Mのポート構成のK×M光スイッチとを有し、
前記N×(K+L)光スイッチの出力側のL個のポートを前記(K+L)×N光スイッチの入力側のL個のポートに接続し、前記N×(K+L)光スイッチの出力側のK個のポートを前記K×M光スイッチの入力側のK個のポートに接続し、
前記M×K光スイッチの出力側のK個のポートを前記(K+L)×N光スイッチの入力側のK個のポートに接続した
ことを特徴とする。 An optical switch device according to a fourth invention for solving the above-mentioned problems is as follows.
In the optical switch device according to the second or third invention,
If K, L, M, and N are each an integer of 1 or more,
The first optical switch unit includes an N × (K + L) optical switch having an N × (K + L) port configuration and an (K + L) × N optical switch having a (K + L) × N port configuration,
The second optical switch unit includes an M × K optical switch having an M × K port configuration and a K × M optical switch having a K × M port configuration,
The L ports on the output side of the N × (K + L) optical switch are connected to the L ports on the input side of the (K + L) × N optical switch, and K on the output side of the N × (K + L) optical switch. Connected to the K ports on the input side of the K × M optical switch,
The K ports on the output side of the M × K optical switch are connected to the K ports on the input side of the (K + L) × N optical switch.
上記第2又は第3の発明に記載の光スイッチ装置において、
K、L、M、Nをそれぞれ1以上の整数とすると、
前記第1の光スイッチ部は、N×(K+L)のポート構成のN×(K+L)光スイッチと(K+L)×Nのポート構成の(K+L)×N光スイッチとを有し、
前記第2の光スイッチ部は、M×Kのポート構成のM×K光スイッチとK×Mのポート構成のK×M光スイッチとを有し、
前記N×(K+L)光スイッチの出力側のL個のポートを前記(K+L)×N光スイッチの入力側のL個のポートに接続し、前記N×(K+L)光スイッチの出力側のK個のポートを前記K×M光スイッチの入力側のK個のポートに接続し、
前記M×K光スイッチの出力側のK個のポートを前記(K+L)×N光スイッチの入力側のK個のポートに接続した
ことを特徴とする。 An optical switch device according to a fourth invention for solving the above-mentioned problems is as follows.
In the optical switch device according to the second or third invention,
If K, L, M, and N are each an integer of 1 or more,
The first optical switch unit includes an N × (K + L) optical switch having an N × (K + L) port configuration and an (K + L) × N optical switch having a (K + L) × N port configuration,
The second optical switch unit includes an M × K optical switch having an M × K port configuration and a K × M optical switch having a K × M port configuration,
The L ports on the output side of the N × (K + L) optical switch are connected to the L ports on the input side of the (K + L) × N optical switch, and K on the output side of the N × (K + L) optical switch. Connected to the K ports on the input side of the K × M optical switch,
The K ports on the output side of the M × K optical switch are connected to the K ports on the input side of the (K + L) × N optical switch.
上記課題を解決する第5の発明に係る光スイッチ装置は、
上記第4の発明に記載の光スイッチ装置において、
Jを2以上の整数とすると、
前記N×(K+L)光スイッチ、前記(K+L)×N光スイッチ、前記M×K光スイッチ及び前記K×M光スイッチは、各々、1×Jのポート構成の1×J分配選択型光スイッチを基本の構成要素として、少なくとも1つの前記1×J分配選択型光スイッチから構成され、
前記1×J分配選択型光スイッチは、1×J光カプラとJ個の光吸収ゲートからなる
ことを特徴とする。 An optical switch device according to a fifth invention for solving the above-mentioned problems is as follows.
In the optical switch device according to the fourth invention,
If J is an integer greater than or equal to 2,
The N × (K + L) optical switch, the (K + L) × N optical switch, the M × K optical switch, and the K × M optical switch are each a 1 × J distribution selection type optical switch having a 1 × J port configuration. Is composed of at least one 1 × J distribution selection type optical switch,
The 1 × J distribution selection type optical switch includes a 1 × J optical coupler and J light absorption gates.
上記第4の発明に記載の光スイッチ装置において、
Jを2以上の整数とすると、
前記N×(K+L)光スイッチ、前記(K+L)×N光スイッチ、前記M×K光スイッチ及び前記K×M光スイッチは、各々、1×Jのポート構成の1×J分配選択型光スイッチを基本の構成要素として、少なくとも1つの前記1×J分配選択型光スイッチから構成され、
前記1×J分配選択型光スイッチは、1×J光カプラとJ個の光吸収ゲートからなる
ことを特徴とする。 An optical switch device according to a fifth invention for solving the above-mentioned problems is as follows.
In the optical switch device according to the fourth invention,
If J is an integer greater than or equal to 2,
The N × (K + L) optical switch, the (K + L) × N optical switch, the M × K optical switch, and the K × M optical switch are each a 1 × J distribution selection type optical switch having a 1 × J port configuration. Is composed of at least one 1 × J distribution selection type optical switch,
The 1 × J distribution selection type optical switch includes a 1 × J optical coupler and J light absorption gates.
上記課題を解決する第6の発明に係る光スイッチ装置は、
上記第4の発明に記載の光スイッチ装置において、
Jを2以上の整数とすると、
前記N×(K+L)光スイッチ、前記(K+L)×N光スイッチ、前記M×K光スイッチ及び前記K×M光スイッチは、各々、1×2マッハツェンダ干渉計又は複数の2×2マッハツェンダ干渉計からなる1×Jのポート構成の1×J光スイッチを基本の構成要素として、1つの前記1×2マッハツェンダ干渉計又は少なくとも1つの前記1×J光スイッチから構成され、
前記1×J光スイッチは、前段の前記2×2マッハツェンダ干渉計の出力側の2つのポートの各々に後段の前記2×2マッハツェンダ干渉計の入力側の2つのポートの一方を接続して、複数の前記2×2マッハツェンダ干渉計をツリー状に多段に接続した構成であることを特徴とする。 An optical switch device according to a sixth invention for solving the above-mentioned problems is as follows.
In the optical switch device according to the fourth invention,
If J is an integer greater than or equal to 2,
The N × (K + L) optical switch, the (K + L) × N optical switch, the M × K optical switch, and the K × M optical switch are each a 1 × 2 Mach-Zehnder interferometer or a plurality of 2 × 2 Mach-Zehnder interferometers. A 1 × J optical switch having a 1 × J port configuration consisting of: 1 × 2 Mach-Zehnder interferometer or at least one 1 × J optical switch,
The 1 × J optical switch connects one of two ports on the input side of the subsequent 2 × 2 Mach-Zehnder interferometer to each of the two ports on the output side of the previous 2 × 2 Mach-Zehnder interferometer, A plurality of the 2 × 2 Mach-Zehnder interferometers are connected in multiple stages in a tree shape.
上記第4の発明に記載の光スイッチ装置において、
Jを2以上の整数とすると、
前記N×(K+L)光スイッチ、前記(K+L)×N光スイッチ、前記M×K光スイッチ及び前記K×M光スイッチは、各々、1×2マッハツェンダ干渉計又は複数の2×2マッハツェンダ干渉計からなる1×Jのポート構成の1×J光スイッチを基本の構成要素として、1つの前記1×2マッハツェンダ干渉計又は少なくとも1つの前記1×J光スイッチから構成され、
前記1×J光スイッチは、前段の前記2×2マッハツェンダ干渉計の出力側の2つのポートの各々に後段の前記2×2マッハツェンダ干渉計の入力側の2つのポートの一方を接続して、複数の前記2×2マッハツェンダ干渉計をツリー状に多段に接続した構成であることを特徴とする。 An optical switch device according to a sixth invention for solving the above-mentioned problems is as follows.
In the optical switch device according to the fourth invention,
If J is an integer greater than or equal to 2,
The N × (K + L) optical switch, the (K + L) × N optical switch, the M × K optical switch, and the K × M optical switch are each a 1 × 2 Mach-Zehnder interferometer or a plurality of 2 × 2 Mach-Zehnder interferometers. A 1 × J optical switch having a 1 × J port configuration consisting of: 1 × 2 Mach-Zehnder interferometer or at least one 1 × J optical switch,
The 1 × J optical switch connects one of two ports on the input side of the subsequent 2 × 2 Mach-Zehnder interferometer to each of the two ports on the output side of the previous 2 × 2 Mach-Zehnder interferometer, A plurality of the 2 × 2 Mach-Zehnder interferometers are connected in multiple stages in a tree shape.
上記課題を解決する第7の発明に係る光スイッチ装置は、
上記第4~第6の発明のいずれか1つに記載の光スイッチ装置において、
前記N×(K+L)光スイッチの後段に光吸収ゲートを設けた
ことを特徴とする。 An optical switch device according to a seventh invention for solving the above-mentioned problems is as follows.
In the optical switch device according to any one of the fourth to sixth inventions,
A light absorption gate is provided after the N × (K + L) optical switch.
上記第4~第6の発明のいずれか1つに記載の光スイッチ装置において、
前記N×(K+L)光スイッチの後段に光吸収ゲートを設けた
ことを特徴とする。 An optical switch device according to a seventh invention for solving the above-mentioned problems is as follows.
In the optical switch device according to any one of the fourth to sixth inventions,
A light absorption gate is provided after the N × (K + L) optical switch.
上記課題を解決する第8の発明に係る光スイッチ装置は、
上記第4~第7の発明のいずれか1つに記載の光スイッチ装置において、
前記N×(K+L)光スイッチと前記(K+L)×N光スイッチとの間、前記N×(K+L)光スイッチと前記K×M光スイッチとの間、及び、前記M×K光スイッチと前記(K+L)×N光スイッチとの間を、各々、光導波路で接続すると共に、一部の前記光導波路に他の前記光導波路との交差部を有する光導波路を用い、
前記N×(K+L)光スイッチ、前記(K+L)×N光スイッチ、前記M×K光スイッチ、前記K×M光スイッチ及び前記光導波路を、同一チップ上にモノリシック集積した
ことを特徴とする。 An optical switch device according to an eighth invention for solving the above-mentioned problems is as follows.
In the optical switch device according to any one of the fourth to seventh inventions,
Between the N × (K + L) optical switch and the (K + L) × N optical switch, between the N × (K + L) optical switch and the K × M optical switch, and between the M × K optical switch and the (K + L) × N optical switches are connected to each other by an optical waveguide, and an optical waveguide having an intersection with another optical waveguide is used in some of the optical waveguides.
The N × (K + L) optical switch, the (K + L) × N optical switch, the M × K optical switch, the K × M optical switch, and the optical waveguide are monolithically integrated on the same chip.
上記第4~第7の発明のいずれか1つに記載の光スイッチ装置において、
前記N×(K+L)光スイッチと前記(K+L)×N光スイッチとの間、前記N×(K+L)光スイッチと前記K×M光スイッチとの間、及び、前記M×K光スイッチと前記(K+L)×N光スイッチとの間を、各々、光導波路で接続すると共に、一部の前記光導波路に他の前記光導波路との交差部を有する光導波路を用い、
前記N×(K+L)光スイッチ、前記(K+L)×N光スイッチ、前記M×K光スイッチ、前記K×M光スイッチ及び前記光導波路を、同一チップ上にモノリシック集積した
ことを特徴とする。 An optical switch device according to an eighth invention for solving the above-mentioned problems is as follows.
In the optical switch device according to any one of the fourth to seventh inventions,
Between the N × (K + L) optical switch and the (K + L) × N optical switch, between the N × (K + L) optical switch and the K × M optical switch, and between the M × K optical switch and the (K + L) × N optical switches are connected to each other by an optical waveguide, and an optical waveguide having an intersection with another optical waveguide is used in some of the optical waveguides.
The N × (K + L) optical switch, the (K + L) × N optical switch, the M × K optical switch, the K × M optical switch, and the optical waveguide are monolithically integrated on the same chip.
上記課題を解決する第9の発明に係る光スイッチ装置は、
上記第4~第7の発明のいずれか1つに記載の光スイッチ装置において、
前記N×(K+L)光スイッチと前記(K+L)×N光スイッチとの間、前記N×(K+L)光スイッチと前記K×M光スイッチとの間、及び、前記M×K光スイッチと前記(K+L)×N光スイッチとの間を、各々、光導波路で接続すると共に、全ての前記光導波路が互いに交差しないように、前記N×(K+L)光スイッチ、前記(K+L)×N光スイッチ、前記M×K光スイッチ及び前記K×M光スイッチを配置し、
前記N×(K+L)光スイッチ、前記(K+L)×N光スイッチ、前記M×K光スイッチ、前記K×M光スイッチ及び前記光導波路を、同一チップ上にモノリシック集積した
ことを特徴とする。 An optical switch device according to a ninth invention for solving the above-mentioned problems is as follows.
In the optical switch device according to any one of the fourth to seventh inventions,
Between the N × (K + L) optical switch and the (K + L) × N optical switch, between the N × (K + L) optical switch and the K × M optical switch, and between the M × K optical switch and the The (K + L) × N optical switch is connected to each other by an optical waveguide, and the N × (K + L) optical switch and the (K + L) × N optical switch are arranged so that all the optical waveguides do not cross each other. , Arranging the M × K optical switch and the K × M optical switch,
The N × (K + L) optical switch, the (K + L) × N optical switch, the M × K optical switch, the K × M optical switch, and the optical waveguide are monolithically integrated on the same chip.
上記第4~第7の発明のいずれか1つに記載の光スイッチ装置において、
前記N×(K+L)光スイッチと前記(K+L)×N光スイッチとの間、前記N×(K+L)光スイッチと前記K×M光スイッチとの間、及び、前記M×K光スイッチと前記(K+L)×N光スイッチとの間を、各々、光導波路で接続すると共に、全ての前記光導波路が互いに交差しないように、前記N×(K+L)光スイッチ、前記(K+L)×N光スイッチ、前記M×K光スイッチ及び前記K×M光スイッチを配置し、
前記N×(K+L)光スイッチ、前記(K+L)×N光スイッチ、前記M×K光スイッチ、前記K×M光スイッチ及び前記光導波路を、同一チップ上にモノリシック集積した
ことを特徴とする。 An optical switch device according to a ninth invention for solving the above-mentioned problems is as follows.
In the optical switch device according to any one of the fourth to seventh inventions,
Between the N × (K + L) optical switch and the (K + L) × N optical switch, between the N × (K + L) optical switch and the K × M optical switch, and between the M × K optical switch and the The (K + L) × N optical switch is connected to each other by an optical waveguide, and the N × (K + L) optical switch and the (K + L) × N optical switch are arranged so that all the optical waveguides do not cross each other. , Arranging the M × K optical switch and the K × M optical switch,
The N × (K + L) optical switch, the (K + L) × N optical switch, the M × K optical switch, the K × M optical switch, and the optical waveguide are monolithically integrated on the same chip.
上記課題を解決する第10の発明に係る光スイッチ装置は、
上記第8又は第9の発明に記載の光スイッチ装置において、
当該光スイッチ装置の前記光入力ポートと前記光出力ポートの全てを、前記チップの一方側の端部に配置した
ことを特徴とする。 An optical switch device according to a tenth invention for solving the above-mentioned problems is
In the optical switch device according to the eighth or ninth invention,
All of the optical input port and the optical output port of the optical switch device are arranged at one end of the chip.
上記第8又は第9の発明に記載の光スイッチ装置において、
当該光スイッチ装置の前記光入力ポートと前記光出力ポートの全てを、前記チップの一方側の端部に配置した
ことを特徴とする。 An optical switch device according to a tenth invention for solving the above-mentioned problems is
In the optical switch device according to the eighth or ninth invention,
All of the optical input port and the optical output port of the optical switch device are arranged at one end of the chip.
本発明によれば、光回線交換方式の光信号と光パケット交換方式の光信号を転送するノード装置を実現する低損失な光スイッチ装置を提供することができる。
According to the present invention, it is possible to provide a low-loss optical switch device that realizes a node device that transfers an optical circuit switching type optical signal and an optical packet switching type optical signal.
OPS方式の光信号(以降、OPS光信号)のスイッチングに用いる高速光スイッチについて説明する。スイッチング機構には、図1に示す分配選択型光スイッチ20や図2に示すMZI型光スイッチ30を用いる。これらは、OCS方式の光信号(以降、OCS光信号)のスイッチングにも使用可能である。
A high-speed optical switch used for switching an OPS optical signal (hereinafter referred to as an OPS optical signal) will be described. As the switching mechanism, the distribution selection type optical switch 20 shown in FIG. 1 or the MZI type optical switch 30 shown in FIG. 2 is used. These can also be used for switching of OCS optical signals (hereinafter referred to as OCS optical signals).
図1の分配選択型光スイッチ20では、光入力ポートPIから入力された入力光を、マルチモード干渉(Multi-Mode Interference:MMI)光カプラである1×2光カプラ21を用いて2つの光導波路221、222に分岐しており、2つの光導波路221、222は、各光出力ポートPO1、PO2の光吸収ゲート231、232に接続されている。
In the distribution selection type optical switch 20 of FIG. 1, the input light input from the optical input port PI is divided into two light beams using a 1 × 2 optical coupler 21 which is a multi-mode interference (MMI) optical coupler. The waveguides 22 1 and 22 2 are branched, and the two optical waveguides 22 1 and 22 2 are connected to the light absorption gates 23 1 and 23 2 of the respective optical output ports PO 1 and PO 2 .
光吸収ゲート231、232は、後述するように、n-InP基板、n-InP下部クラッド層、InGaAsPコア層、p-InP上部クラッド層、p+-InGaAsキャップ層を有している。そして、光吸収ゲート231、232では、n-InP基板に設けたn型電極を接地しており(電位=0V)、各光吸収ゲート231、232に設けたp型電極にマイナス電圧を印加すると、フランツケルディッシュ(Franz-Keldysh:FK)効果により、InGaAsPコア層における吸収端がシフトし、光吸収ゲート231、232を伝搬する信号光波長での吸収係数が増加する。
As will be described later, the light absorption gates 23 1 and 23 2 each have an n-InP substrate, an n-InP lower cladding layer, an InGaAsP core layer, a p-InP upper cladding layer, and a p + -InGaAs cap layer. In the light absorption gates 23 1 and 23 2 , the n-type electrode provided on the n-InP substrate is grounded (potential = 0 V), and the p-type electrode provided in each of the light absorption gates 23 1 and 23 2 is minus. When a voltage is applied, the absorption edge in the InGaAsP core layer shifts due to the Franz-Keldysh (FK) effect, and the absorption coefficient at the wavelength of the signal light propagating through the light absorption gates 23 1 and 23 2 increases.
このようにして、光吸収ゲート231又は232への印加電圧を制御することにより、出力不要な方の光導波路221又は222の光を光吸収ゲート231又は232で吸収しており、これによりスイッチングすることができる。ここで、光吸収ゲートとして用いるEAMにはSOA等を用いてもよい。
In this way, by controlling the voltage applied to the light absorption gate 23 1 or 23 2 , the light of the optical waveguide 22 1 or 22 2 that does not require output is absorbed by the light absorption gate 23 1 or 23 2. Thus, switching can be performed. Here, SOA or the like may be used for the EAM used as the light absorption gate.
図2のMZI型光スイッチ30では、図1と同様のMMI光カプラである1×2光カプラ31を用いて、光入力ポートPIから入力された入力光を2つの光導波路321、322に分岐しており、2分岐された入力光は、2つの光導波路321、322において、制御電極331、332により制御された位相変調よる位相差を受けた後に、MMI光カプラである2×2光カプラ34を用いて、再度結合されている。
In the MZI type optical switch 30 shown in FIG. 2, a 1 × 2 optical coupler 31 which is an MMI optical coupler similar to FIG. 1 is used to input light input from the optical input port PI into two optical waveguides 32 1 and 32 2. The input light branched into two is subjected to a phase difference due to phase modulation controlled by the control electrodes 33 1 and 33 2 in the two optical waveguides 32 1 and 32 2 , and then the MMI optical coupler. They are recombined using a certain 2 × 2 optical coupler 34.
このようにすると、干渉効果により、2つの光導波路321、322間の位相差が、±nπであれば、光出力ポートPO1又はPO2の一方から出力し、±(2n+1)π/2であれば、光出力ポートPO1又はPO2の他方から出力される。なお、nは、0以上の整数である。従って、光導波路321又は322の片方の光導波路内に位相変調領域を配置して制御すれば、1×2のスイッチング動作が得られる。
In this case, if the phase difference between the two optical waveguides 32 1 and 32 2 is ± nπ due to the interference effect, the light is output from one of the optical output ports PO 1 and PO 2 and ± (2n + 1) π / If it is 2, the light is output from the other of the optical output ports PO 1 and PO 2 . Note that n is an integer of 0 or more. Therefore, if a phase modulation region is arranged and controlled in one of the optical waveguides 32 1 or 32 2 , a 1 × 2 switching operation can be obtained.
上述した位相変調を得るには光導波路321、322の屈折率を変化させればよい。InP系の光導波路では、電圧印加によるFK効果やQCSE効果もしくは電流注入によるプラズマ効果を用いて光導波路の屈折率を変化させ、LN系の光導波路では、電圧印加によるポッケルス効果を用いて光導波路の屈折率を変化させれば、スイッチング動作を行うことができる。また、光強度を2等分するMMI光カプラは方向性結合器などを用いてもよい。
In order to obtain the above-described phase modulation, the refractive indexes of the optical waveguides 32 1 and 32 2 may be changed. In an InP optical waveguide, the refractive index of the optical waveguide is changed using the FK effect or QCSE effect due to voltage application or the plasma effect due to current injection. In the LN optical waveguide, the optical waveguide is affected using the Pockels effect due to voltage application. If the refractive index is changed, a switching operation can be performed. A directional coupler or the like may be used as the MMI optical coupler that divides the light intensity into two equal parts.
そして、図1に示した分配選択型光スイッチ20の場合は、図3に示すように、光吸収ゲート231、232に対して、印加電圧-3Vで消光比20dB以上、印加電圧-7Vで消光比40dB以上を得ることができる。
In the case of the distribution selection type optical switch 20 shown in FIG. 1, with respect to the light absorption gates 23 1 and 23 2 , the extinction ratio is 20 dB or more and the applied voltage is −7 V with respect to the light absorption gates 23 1 and 23 2 . Thus, an extinction ratio of 40 dB or more can be obtained.
また、図2に示したMZI型光スイッチ30の場合は、図4に示すように、2つのアーム光導波路321、322への注入電流が0mAの場合、入力信号光は図2における光出力ポートPO1側に出力される。制御電極331、332のどちらか一方に電流を注入すると、注入した方のアーム光導波路の屈折率が変化し、伝搬する光の位相が変化する。このアーム光導波路への注入電流が5mA程度となったとき、光出力ポートPO1からの出力は最小となり、光出力ポートPO2への光出力が最大となる。このとき、光出力ポートPO1への光出力と光出力ポートPO1への光出力との比は20dB以上が得られる。
In the case of the MZI type optical switch 30 shown in FIG. 2, as shown in FIG. 4, when the current injected into the two arm optical waveguides 32 1 and 32 2 is 0 mA, the input signal light is the light in FIG. Output to the output port PO 1 side. When a current is injected into one of the control electrodes 33 1 and 33 2 , the refractive index of the arm optical waveguide that is injected changes, and the phase of the propagating light changes. When the injection current into the arm optical waveguide is about 5 mA, the output from the optical output port PO 1 is minimum, and the optical output to the optical output port PO 2 is maximum. In this case, the ratio of the light output to the optical output and the optical output port PO 1 to the optical output port PO 1 are obtained at least 20 dB.
なお、分配選択型光スイッチの場合は、1×2の分配選択型光スイッチ20だけでなく、分岐数を増やすことで、多数の光出力ポートへのスイッチングが可能である。この場合、Jを2以上の整数とすると、1×Jのポート構成の1×J光スイッチとする場合には、1×J光カプラとJ個の光吸収ゲートから構成される。
In the case of a distribution selection type optical switch, switching to a large number of optical output ports is possible by increasing the number of branches in addition to the 1 × 2 distribution selection type optical switch 20. In this case, when J is an integer of 2 or more, a 1 × J optical switch having a 1 × J port configuration includes a 1 × J optical coupler and J light absorption gates.
また、MZI型光スイッチの場合は、1段のMZI型光スイッチ30だけでなく、後述する2×2のMZI型光スイッチ60をツリー状に多段に接続することで、多数の光出力ポートへのスイッチングが可能である。この場合、1×J光スイッチとする場合には、前段の2×2のMZI型光スイッチ60の出力側の2つのポートの各々に、後段の2×2のMZI型光スイッチ60の入力側の2つのポートの一方を接続した構成となる。
In the case of the MZI type optical switch, not only the one-stage MZI type optical switch 30 but also a 2 × 2 MZI type optical switch 60 to be described later is connected in multiple stages in a tree shape, so that a large number of optical output ports can be connected. Switching is possible. In this case, in the case of the 1 × J optical switch, the input side of the rear 2 × 2 MZI optical switch 60 is connected to each of the two ports on the output side of the front 2 × 2 MZI optical switch 60. One of the two ports is connected.
次に、高速動作可能な光スイッチとなる分配選択型光スイッチ20の作製方法について述べる。
Next, a manufacturing method of the distribution selection type optical switch 20 which is an optical switch capable of high-speed operation will be described.
まず、n-InP基板上に、n-InP下部クラッド層、1.4Q組成0.3μm膜厚のバルクi-InGaAsPコア層、p-InP上部クラッド層、p+-InGaAsキャップ層を、有機金属気相成長法(Metal Organic Vapor Phase Epitaxy:MOVPE)により成長させる。
First, an n-InP lower clad layer, a bulk i-InGaAsP core layer with a 1.4Q composition of 0.3 μm thickness, a p-InP upper clad layer, and a p + -InGaAs cap layer are formed on an n-InP substrate. Grow by vapor phase growth method (Metal Organic Vapor Phase Epitaxy: MOVPE).
次いで、フォトリソグラフィとドライエッチングとにより、ハイメサ光導波路構造を有する入力光導波路、1×2光カプラ21、光導波路221、222、光吸収ゲート231、232及び出力光導波路を一括形成する。光導波路構造を形成後、局所領域への埋め込みが可能で平坦化に優れた有機材料であるベンゾシクロブテン(Benzocyclobutene:BCB)をスピンコートにより塗布し、O2/C2F6混合ガスを用いたRIE(Reactive Ion Etching)により、埋め込み前の基板表面(基板最上面)が露出するまでエッチバックし、基板表面を平坦化する。
Next, an input optical waveguide having a high-mesa optical waveguide structure, a 1 × 2 optical coupler 21, optical waveguides 22 1 and 22 2 , light absorption gates 23 1 and 23 2 and an output optical waveguide are collectively formed by photolithography and dry etching. To do. After forming the optical waveguide structure, benzocyclobutene (BCB), which is an organic material that can be embedded in a local region and has excellent planarization, is applied by spin coating, and an O 2 / C 2 F 6 mixed gas is used. Etching back is performed by RIE (Reactive Ion Etching) until the substrate surface before embedding (the uppermost surface of the substrate) is exposed, and the substrate surface is flattened.
最後に、光吸収ゲート231及び光吸収ゲート232、更に、1×2カプラ21のp+-InGaAsキャップ層上にp型電極を形成し、n-InP基板裏面ないし同基板の光導波路構造が形成されていない領域にn型電極を形成する。
Finally, a p-type electrode is formed on the light absorption gate 23 1, the light absorption gate 23 2 , and the p + -InGaAs cap layer of the 1 × 2 coupler 21, and the back surface of the n-InP substrate or the optical waveguide structure of the same substrate An n-type electrode is formed in a region where is not formed.
上記の作製方法では、MOVPE成長及び光導波路構造の形成を一括で行えるようになる。また、図15に示した従来の光スイッチ素子と異なり、1×2光カプラ21と光吸収ゲート231、232との間で、n-InP上部クラッド層及びp+-InGaAsキャップ層を除去するプロセスが不要となる。ゆえに、作製方法が簡便で、光学的特性を劣化させることなく、かつ、極めて低い光クロストークを有する光スイッチを提供することができるようになる。
In the above manufacturing method, MOVPE growth and formation of an optical waveguide structure can be performed at once. Further, unlike the conventional optical switch element shown in FIG. 15, the n-InP upper cladding layer and the p + -InGaAs cap layer are removed between the 1 × 2 optical coupler 21 and the light absorption gates 23 1 and 23 2. The process to do becomes unnecessary. Therefore, it is possible to provide an optical switch that has a simple manufacturing method, does not deteriorate optical characteristics, and has extremely low optical crosstalk.
図5に上記の光導波路構造の断面図を示す。図5では、符号41をn-InP基板、符号42をn-InP下部クラッド層、符号43をInGaAsPコア層、符号44をp-InP上部クラッド層、符号45をp+-InGaAsキャップ層としている。本形態では、図5に示すように、膜厚0.3μm、幅1.5μmの1.4Q組成のInGaAsPコア層43を用いている。これらの設計値は、光スイッチの光学的特性を決める重要なパラメータとなる。
FIG. 5 shows a cross-sectional view of the optical waveguide structure. In FIG. 5, reference numeral 41 denotes an n-InP substrate, reference numeral 42 denotes an n-InP lower cladding layer, reference numeral 43 denotes an InGaAsP core layer, reference numeral 44 denotes a p-InP upper cladding layer, and reference numeral 45 denotes a p + -InGaAs cap layer. . In this embodiment, as shown in FIG. 5, an InGaAsP core layer 43 having a thickness of 0.3 μm and a width of 1.5 μm and a 1.4Q composition is used. These design values are important parameters that determine the optical characteristics of the optical switch.
そして、入力信号光波長が、例えば、1.53μmから1.57μmで動作し、低損失、高速かつ低消費電力な動作を実現するためには、下記の条件が満たされることが好ましい。
(1)InGaAsPコア層43の厚さは、入力信号光に対してシングルモード導波条件であり、かつ、InGaAsPコア層43への十分な光閉じ込めを有する条件であり、0.1μm~0.4μmの範囲が望ましい。
(2)InGaAsPコア層43の幅は、入力信号光に対してシングルモード導波条件であり、0.8μm~3μmの範囲が望ましい。
(3)InGaAsPコア層43の組成は、1.3Q~1.5Qであり、各電極長は、EAMの場合は100μm~2000μm、MZIの場合は50μm~1000μmの範囲が望ましい。 In order to operate with an input signal light wavelength of, for example, 1.53 μm to 1.57 μm and realize an operation with low loss, high speed, and low power consumption, it is preferable that the following conditions are satisfied.
(1) The thickness of theInGaAsP core layer 43 is a single mode waveguide condition with respect to the input signal light, and a condition having sufficient light confinement in the InGaAsP core layer 43, and is 0.1 μm to 0. A range of 4 μm is desirable.
(2) The width of theInGaAsP core layer 43 is a single mode waveguide condition for the input signal light, and is preferably in the range of 0.8 μm to 3 μm.
(3) The composition of theInGaAsP core layer 43 is 1.3Q to 1.5Q, and each electrode length is preferably in the range of 100 μm to 2000 μm in the case of EAM and 50 μm to 1000 μm in the case of MZI.
(1)InGaAsPコア層43の厚さは、入力信号光に対してシングルモード導波条件であり、かつ、InGaAsPコア層43への十分な光閉じ込めを有する条件であり、0.1μm~0.4μmの範囲が望ましい。
(2)InGaAsPコア層43の幅は、入力信号光に対してシングルモード導波条件であり、0.8μm~3μmの範囲が望ましい。
(3)InGaAsPコア層43の組成は、1.3Q~1.5Qであり、各電極長は、EAMの場合は100μm~2000μm、MZIの場合は50μm~1000μmの範囲が望ましい。 In order to operate with an input signal light wavelength of, for example, 1.53 μm to 1.57 μm and realize an operation with low loss, high speed, and low power consumption, it is preferable that the following conditions are satisfied.
(1) The thickness of the
(2) The width of the
(3) The composition of the
なお、本形態における光スイッチでは、光吸収ゲート231、232のInGaAsPコア層43としてバルク層を用いるように説明してきたが、MQW構造としてもよい。その場合は、QCSE効果により高効率に消光できるようになる。また、光導波路構造をハイメサ光導波路構造としているが、それ以外の構造、例えば、リッジ型光導波路構造として作製してもよい。あるいは、InGaAsPコア層43の両横が半導体で埋め込まれた埋め込み型光導波路構造やリブ型光導波路構造などであってもよい。
In the optical switch according to this embodiment, the bulk layer is used as the InGaAsP core layer 43 of the light absorption gates 23 1 and 23 2 , but an MQW structure may be used. In that case, quenching can be performed with high efficiency by the QCSE effect. Further, although the optical waveguide structure is a high mesa optical waveguide structure, other structures such as a ridge type optical waveguide structure may be manufactured. Alternatively, an embedded optical waveguide structure or a rib optical waveguide structure in which both sides of the InGaAsP core layer 43 are embedded with a semiconductor may be used.
また、本形態における光スイッチでは、InP系の化合物半導体を用いて説明してきたが、GaAs系の化合物半導体を用いてもよい。また、シリコン細線光導波路などの材料系を用いても、同様に実現できる。これらの材料を用いた光導波路構造では、ナノ秒オーダの屈折率又は吸収係数の変化が可能であり、このような高速変化により、OCS光信号やOPS光信号の高速なスイッチングが可能となる。
Further, although the optical switch in this embodiment has been described using an InP-based compound semiconductor, a GaAs-based compound semiconductor may be used. The same can be realized by using a material system such as a silicon fine wire optical waveguide. Optical waveguide structures using these materials can change the refractive index or absorption coefficient in the order of nanoseconds, and such high-speed changes enable high-speed switching of OCS optical signals and OPS optical signals.
以降、上述した光スイッチを複数用いる本発明に係る光スイッチ装置について、その実施形態のいくつかを説明する。なお、本発明に係る光スイッチ装置は、OCS光信号とOPS光信号の両方を使用するネットワークのROADMノード装置に設けられるものである。ROADMノード装置は、WSSを有しており、本発明に係る光スイッチ装置は、当該ノード装置のWSSの後段に配置されている。
Hereinafter, some embodiments of the optical switch device according to the present invention using a plurality of the optical switches described above will be described. The optical switch device according to the present invention is provided in a ROADM node device of a network that uses both an OCS optical signal and an OPS optical signal. The ROADM node device has a WSS, and the optical switch device according to the present invention is arranged at a stage subsequent to the WSS of the node device.
[実施例1]
図6に本実施例に係る光スイッチ装置を示す。ここでは、一例として、4つの光入力ポートPI1~PI4と4つの光出力ポートPO1~PO4を持つ光スイッチ装置とし、OCS光信号とOPS光信号とが同時に転送可能なものとする。OCS光信号とOPS光信号間のアドドロップ用には、1×2光スイッチ(以降、1×2SW)511、512の2つと2×1光スイッチ(以降、2×1SW)521、522の2つを用い(第1の光スイッチ部)、OPS光信号のアドドロップ用には、2×2光スイッチ(以降、2×2SW)531、532の2つを用いる(第2の光スイッチ部)。 [Example 1]
FIG. 6 shows an optical switch device according to this embodiment. Here, as an example, an optical switch device having four optical input ports PI 1 to PI 4 and four optical output ports PO 1 to PO 4 is assumed to be capable of simultaneously transferring an OCS optical signal and an OPS optical signal. . For add / drop between an OCS optical signal and an OPS optical signal, two 1 × 2 optical switches (hereinafter referred to as 1 × 2SW) 51 1 and 51 2 and a 2 × 1 optical switch (hereinafter referred to as 2 × 1SW) 52 1 , 52 2 (first optical switch unit), and for add / drop of an OPS optical signal, two 2 × 2 optical switches (hereinafter referred to as 2 × 2SW) 53 1 and 53 2 are used (first). 2 optical switch section).
図6に本実施例に係る光スイッチ装置を示す。ここでは、一例として、4つの光入力ポートPI1~PI4と4つの光出力ポートPO1~PO4を持つ光スイッチ装置とし、OCS光信号とOPS光信号とが同時に転送可能なものとする。OCS光信号とOPS光信号間のアドドロップ用には、1×2光スイッチ(以降、1×2SW)511、512の2つと2×1光スイッチ(以降、2×1SW)521、522の2つを用い(第1の光スイッチ部)、OPS光信号のアドドロップ用には、2×2光スイッチ(以降、2×2SW)531、532の2つを用いる(第2の光スイッチ部)。 [Example 1]
FIG. 6 shows an optical switch device according to this embodiment. Here, as an example, an optical switch device having four optical input ports PI 1 to PI 4 and four optical output ports PO 1 to PO 4 is assumed to be capable of simultaneously transferring an OCS optical signal and an OPS optical signal. . For add / drop between an OCS optical signal and an OPS optical signal, two 1 × 2 optical switches (hereinafter referred to as 1 × 2SW) 51 1 and 51 2 and a 2 × 1 optical switch (hereinafter referred to as 2 × 1SW) 52 1 , 52 2 (first optical switch unit), and for add / drop of an OPS optical signal, two 2 × 2 optical switches (hereinafter referred to as 2 × 2SW) 53 1 and 53 2 are used (first). 2 optical switch section).
光入力ポートPI1は、1×2SW511の入力側に接続され、光入力ポートPI2は、1×2SW512の入力側に接続され、光入力ポートPI3、PI4は、2×2SW531の入力側に接続されている。また、光出力ポートPO1は、2×1SW521の出力側に接続され、光出力ポートPO2は、2×1SW522の出力側に接続され、光出力ポートPO3、PO4は、2×2SW532の出力側に接続されている。
The optical input port PI 1 is connected to the input side of the 1 × 2 SW 51 1 , the optical input port PI 2 is connected to the input side of the 1 × 2 SW 51 2 , and the optical input ports PI 3 and PI 4 are 2 × 2 SW 53 1. Is connected to the input side. The optical output port PO 1 is connected to the output side of the 2 × 1 SW 52 1 , the optical output port PO 2 is connected to the output side of the 2 × 1 SW 52 2 , and the optical output ports PO 3 and PO 4 are 2 × 2SW53 is connected to the second output side.
そして、1×2SW511の一方の光出力ポートは、光ファイバ541により、2×1SW521の一方の光入力ポートに接続され、1×2SW511のもう一方の光出力ポートは、光ファイバ542により、2×2SW532の一方の光入力ポートに接続される。また、1×2SW512の一方の光出力ポートは、光ファイバ543により、2×1SW522の一方の光入力ポートに接続され、1×2SW512のもう一方の光出力ポートは、光ファイバ544により、2×2SW532のもう一方の光入力ポートに接続される。また、2×2SW531の一方の光出力ポートは、光ファイバ545により、2×1SW521のもう一方の光入力ポートに接続され、2×2SW531のもう一方の光出力ポートは、光ファイバ546により、2×1SW522のもう一方の光入力ポートに接続される。
Then, 1 one of the optical output port of × 2SW51 1 is the optical fiber 54 1 is connected to the 2 × 1SW52 1 of one of the optical input port, 1 × 2SW51 1 of the other light output port, the optical fiber 54 2 is connected to one optical input port of the 2 × 2 SW 53 2 . Also, 1 × 2SW51 2 of one of the optical output port, the optical fiber 543, is connected to the 2 × 1SW52 2 of one of the optical input port, 1 × 2SW51 2 of the other light output port, the optical fiber 54 4 is connected to the other optical input port of the 2 × 2 SW 53 2 . Further, the 2 × 2SW53 1 of one of the optical output port, the optical fiber 54 5, is connected to the 2 × 1SW52 1 of the other optical input port, the 2 × 2SW53 1 of the other light output port, the optical fiber the 54 6, are connected to the 2 × 1SW52 2 of the other optical input port.
このように、本実施例の光スイッチ装置では、それぞれのスイッチング要素を個別のチップ又はモジュールとし、それらを光ファイバ541~546で接続している。なお、1×2SW同士、2×1SW同士は、同一のチップ又はモジュールとしてもよい。
Thus, in the optical switch device of this embodiment, each switching element is an individual chip or module, and these are connected by the optical fibers 54 1 to 54 6 . Note that 1 × 2 SWs and 2 × 1 SWs may be the same chip or module.
上記の1×2SW511、512や2×1SW521、522には、図1に示した分配選択型光スイッチ20や図2に示したMZI型光スイッチ30を採用することで、高速にOCS光信号とOPS光信号の切換えを可能とする。また、上記の2×2SW531、532には、図7に示すようなMZI型光スイッチ60や図8に示すような2×2SW70を採用することで、高速なOPS光信号の処理を可能とする。図7に示すMZI型光スイッチ60と図8に示す2×2SW70について、以下に説明する。
By adopting the distribution selection type optical switch 20 shown in FIG. 1 or the MZI type optical switch 30 shown in FIG. 2 for the above 1 × 2 SW 51 1 , 51 2 and 2 × 1 SW 52 1 , 52 2 , the operation speed can be increased. It is possible to switch between the OCS optical signal and the OPS optical signal. In addition, the above 2 × 2 SW 53 1 and 53 2 adopt the MZI type optical switch 60 as shown in FIG. 7 and the 2 × 2 SW 70 as shown in FIG. 8 to enable high-speed OPS optical signal processing. And The MZI type optical switch 60 shown in FIG. 7 and the 2 × 2 SW 70 shown in FIG. 8 will be described below.
図7に示すMZI型光スイッチ60は、図2に示したMZI型光スイッチ30を2×2に拡張した構成である。具体的には、MZI型光スイッチ60は、入力側に光入力ポートPI1、PI2が接続され、出力側に光導波路621、622が接続されたMMI光カプラである2×2光カプラ61と、光導波路621、622内に各々設けられた制御電極631、632と、入力側に光導波路621、622が接続され、出力側に光出力ポートPO1、PO2が接続されたMMI光カプラである2×2光カプラ64とを有する構成である。
The MZI type optical switch 60 shown in FIG. 7 has a configuration in which the MZI type optical switch 30 shown in FIG. 2 is expanded to 2 × 2. Specifically, the MZI type optical switch 60 is a 2 × 2 light which is an MMI optical coupler in which optical input ports PI 1 and PI 2 are connected to the input side and optical waveguides 62 1 and 62 2 are connected to the output side. a coupler 61, a control electrode 63 1, 63 2 each provided on the optical waveguide 62 1, 62 2, the optical waveguide 62 1, 62 2 is connected to the input side, the optical output port PO 1, PO to the output side 2 has a 2 × 2 optical coupler 64 which is an MMI optical coupler to which 2 is connected.
また、図8に示す2×2SW70は、図1に示した分配選択型光スイッチ20と同じ構成の分配選択型光スイッチ711~714を2対2で向かい合わせて接続した構成である。
具体的には、光入力ポートPI1は、分配選択型光スイッチ711の入力側に接続され、光入力ポートPI2は、分配選択型光スイッチ712の入力側に接続されている。また、光出力ポートPO1は、分配選択型光スイッチ713の出力側に接続され、光出力ポートPO2は、分配選択型光スイッチ714の出力側に接続されている。 Also, the 2 × 2SW 70 shown in FIG. 8 has a configuration in which distribution selection type optical switches 71 1 to 71 4 having the same configuration as the distribution selection type optical switch 20 shown in FIG.
Specifically, the optical input port PI 1 is connected to the input side of the distribution selection type optical switch 71 1 , and the optical input port PI 2 is connected to the input side of the distribution selection type optical switch 71 2 . Further, the optical output port PO 1 is connected to the output side of the distributor selection optical switch 71 3, optical output port PO 2 is connected to the output side of the distributor selection optical switch 71 4.
具体的には、光入力ポートPI1は、分配選択型光スイッチ711の入力側に接続され、光入力ポートPI2は、分配選択型光スイッチ712の入力側に接続されている。また、光出力ポートPO1は、分配選択型光スイッチ713の出力側に接続され、光出力ポートPO2は、分配選択型光スイッチ714の出力側に接続されている。 Also, the 2 × 2
Specifically, the optical input port PI 1 is connected to the input side of the distribution selection type optical switch 71 1 , and the optical input port PI 2 is connected to the input side of the distribution selection type optical switch 71 2 . Further, the optical output port PO 1 is connected to the output side of the distributor selection optical switch 71 3, optical output port PO 2 is connected to the output side of the distributor selection optical switch 71 4.
そして、分配選択型光スイッチ711の一方の光出力ポートは、光導波路721により、分配選択型光スイッチ713の一方の光入力ポートに接続され、分配選択型光スイッチ711のもう一方の光出力ポートは、光導波路722により、分配選択型光スイッチ714の一方の光入力ポートに接続される。また、分配選択型光スイッチ712の一方の光出力ポートは、光導波路723により、分配選択型光スイッチ713のもう一方の光入力ポートに接続され、分配選択型光スイッチ712のもう一方の光出力ポートは、光導波路724により、分配選択型光スイッチ714のもう一方の光入力ポートに接続される。
Then, one of the optical output port of broadcast-and-select optical switch 71 1, the optical waveguide 72 1 is connected to one of the optical input port of broadcast-and-select optical switch 71 3, other one of the distribution selective optical switch 71 1 the optical output port, the optical waveguide 72 2 is connected to one of the optical input port of broadcast-and-select optical switch 71 4. Also, one of the optical output port of broadcast-and-select optical switch 71 2, the optical waveguide 72 3, is connected to the other optical input port of broadcast-and-select optical switch 71 3, broadcast-and-select optical switch 71 2 Nomou one optical output port, the optical waveguide 72 4 is connected to the other optical input port of broadcast-and-select optical switch 71 4.
そして、OCS光信号とOPS光信号間の高速スイッチングは1×2SW511、512及び2×1SW521、522で行う。具体的には、1×2SW511、512及び2×1SW521、522は、図示省略したネットワークコントローラの制御に従って、OCS光信号とOPS光信号の振り分けを行って、予め設定した光出力ポートへのスイッチングを行う。ドロップしないOCS光信号はそのままカットスルーされて転送されるため、遅延や損失なく転送が可能である。
Then, high-speed switching between the OCS optical signal and the OPS optical signal is performed by 1 × 2 SW 51 1 , 51 2 and 2 × 1 SW 52 1 , 52 2 . Specifically, the 1 × 2 SW 51 1 , 51 2 and the 2 × 1 SW 52 1 , 52 2 distribute the OCS optical signal and the OPS optical signal according to the control of the network controller (not shown), and set the optical output port set in advance. Switching to. Since the OCS optical signal that does not drop is cut and transferred as it is, it can be transferred without delay or loss.
また、OPS光信号の高速スイッチングは2×2SW531、532で行う。具体的には、2×2SW531及び2×2SW532の直前で、OPS光信号のラベルを読み取り、ラベルテーブルに基づいて、予め設定した光出力ポートへのスイッチングを行う。
Further, high-speed switching of the OPS optical signal is performed by 2 × 2 SWs 53 1 and 53 2 . Specifically, the label of the OPS optical signal is read immediately before 2 × 2 SW 53 1 and 2 × 2 SW 53 2 , and switching to a preset optical output port is performed based on the label table.
つまり、WSSベースのROADMノード装置において、本実施例に係る光スイッチ装置には、OCS光信号とOPS光信号間のアドドロップ専用の1×2SW511、512及び2×1SW521、522を導入しており、これらに上述した高速な光スイッチを用いている。このような構成とすることで、OCS光信号へのデメリットを与えず、OCS光信号とOPS光信号の両方を扱うことが可能となる。更に、各光スイッチのポート数及び光ファイバの接続をネットワーク形態に最適化することで、高速光スイッチの欠点である損失を抑えたノード技術の確立が可能である。
That is, in the WSS-based ROADM node device, the optical switch device according to the present embodiment includes 1 × 2 SW 51 1 , 51 2 and 2 × 1 SW 52 1 , 52 2 dedicated for add / drop between the OCS optical signal and the OPS optical signal. The high-speed optical switch described above is used for these. With such a configuration, it is possible to handle both the OCS optical signal and the OPS optical signal without giving any disadvantage to the OCS optical signal. Furthermore, by optimizing the number of ports of each optical switch and the connection of optical fibers to the network configuration, it is possible to establish a node technology that suppresses loss, which is a drawback of high-speed optical switches.
[実施例2]
図9に本実施例に係る光スイッチ装置を示す。ここでも、実施例1に示した光スイッチ装置と同様に、4つの光入力ポートPI1~PI4と4つの光出力ポートPO1~PO4を持つ光スイッチ装置とし、OCS光信号とOPS光信号とが同時に転送可能なものとする。
OCS光信号とOPS光信号間のアドドロップ用には、1×2SW511、512の2つと2×1SW521、522の2つを用い、OPS光信号のアドドロップ用には、2×2SW531、532の2つを用いる。つまり、光入力ポートPI1~PI4、光出力ポートPO1~PO4、1×2SW511、512、2×1SW521、522、2×2SW531、532については、実施例1に示した光スイッチ装置と同じ構成であり、そのため、図9では、同じ符号を付している。 [Example 2]
FIG. 9 shows an optical switch device according to this embodiment. Here, similarly to the optical switch device shown in the first embodiment, the optical switch device has four optical input ports PI 1 to PI 4 and four optical output ports PO 1 to PO 4 , and the OCS optical signal and the OPS light are used. It is assumed that signals can be transferred simultaneously.
For add / drop between the OCS optical signal and the OPS optical signal, two of 1 × 2 SW 51 1 , 51 2 and two of 2 × 1 SW 52 1 , 52 2 are used, and for add / drop of the OPS optical signal, 2 × Two 2SWs 53 1 and 53 2 are used. That is, the optical input ports PI 1 to PI 4 , the optical output ports PO 1 to PO 4 , 1 × 2SW 51 1 , 51 2 , 2 × 1 SW 52 1 , 52 2 , 2 × 2 SW 53 1 , 53 2 are described in the first embodiment. The configuration is the same as that of the illustrated optical switch device, and therefore, the same reference numerals are given in FIG.
図9に本実施例に係る光スイッチ装置を示す。ここでも、実施例1に示した光スイッチ装置と同様に、4つの光入力ポートPI1~PI4と4つの光出力ポートPO1~PO4を持つ光スイッチ装置とし、OCS光信号とOPS光信号とが同時に転送可能なものとする。
OCS光信号とOPS光信号間のアドドロップ用には、1×2SW511、512の2つと2×1SW521、522の2つを用い、OPS光信号のアドドロップ用には、2×2SW531、532の2つを用いる。つまり、光入力ポートPI1~PI4、光出力ポートPO1~PO4、1×2SW511、512、2×1SW521、522、2×2SW531、532については、実施例1に示した光スイッチ装置と同じ構成であり、そのため、図9では、同じ符号を付している。 [Example 2]
FIG. 9 shows an optical switch device according to this embodiment. Here, similarly to the optical switch device shown in the first embodiment, the optical switch device has four optical input ports PI 1 to PI 4 and four optical output ports PO 1 to PO 4 , and the OCS optical signal and the OPS light are used. It is assumed that signals can be transferred simultaneously.
For add / drop between the OCS optical signal and the OPS optical signal, two of 1 × 2 SW 51 1 , 51 2 and two of 2 × 1 SW 52 1 , 52 2 are used, and for add / drop of the OPS optical signal, 2 × Two 2SWs 53 1 and 53 2 are used. That is, the optical input ports PI 1 to PI 4 , the optical output ports PO 1 to PO 4 , 1 × 2
そして、本実施例に係る光スイッチ装置においては、1×2SW511、512、2×1SW521、522及び2×2SW531、532をスイッチング要素として1チップ上に集積し、各スイッチング要素間を図5に示した光導波路と同等の構造の光導波路で接続している。具体的には、同一のチップ基板81上に、1×2SW511、512、2×1SW521、522及び2×2SW531、532と共に光導波路821~826をモノリシック集積して、光スイッチ同士を光導波路821~826で接続している。なお、チップ基板81としては、例えば、図5に示したn-InP基板を採用してもよい。
In the optical switch device according to the present embodiment, 1 × 2 SW 51 1 , 51 2 , 2 × 1 SW 52 1 , 52 2 and 2 × 2 SW 53 1 , 53 2 are integrated on one chip as switching elements, and each switching element They are connected by an optical waveguide having a structure equivalent to that of the optical waveguide shown in FIG. Specifically, the optical waveguides 82 1 to 82 6 are monolithically integrated on the same chip substrate 81 together with 1 × 2 SW 51 1 , 51 2 , 2 × 1 SW 52 1 , 52 2 and 2 × 2 SW 53 1 , 53 2 , The optical switches are connected by optical waveguides 82 1 to 82 6 . As the chip substrate 81, for example, the n-InP substrate shown in FIG. 5 may be adopted.
具体的には、1×2SW511の一方の光出力ポートは、光導波路821により、2×1SW521の一方の光入力ポートに接続され、1×2SW511のもう一方の光出力ポートは、光導波路822により、2×2SW532の一方の光入力ポートに接続される。また、1×2SW512の一方の光出力ポートは、光導波路823により、2×1SW522の一方の光入力ポートに接続され、1×2SW512のもう一方の光出力ポートは、光導波路824により、2×2SW532のもう一方の光入力ポートに接続される。また、2×2SW531の一方の光出力ポートは、光導波路825により、2×1SW521のもう一方の光入力ポートに接続され、2×2SW531のもう一方の光出力ポートは、光導波路826により、2×1SW522のもう一方の光入力ポートに接続される。
Specifically, 1 one of the optical output port of × 2SW51 1 is the optical waveguide 82 1 is connected to the 2 × 1SW52 1 of one of the optical input port, the 1 × 2SW51 1 of the other optical output port, The optical waveguide 82 2 is connected to one optical input port of the 2 × 2 SW 53 2 . Also, 1 × 2SW51 2 of one of the optical output port, the optical waveguide 82 3, is connected to the 2 × 1SW52 2 of one of the optical input port, 1 × 2SW51 2 of the other light output port, the optical waveguide 82 4 is connected to the other optical input port of the 2 × 2 SW 53 2 . Further, the 2 × 2SW53 1 of one of the optical output port, the optical waveguide 82 5, is connected to the 2 × 1SW52 1 of the other optical input port, the 2 × 2SW53 1 of the other light output port, the optical waveguide the 82 6, are connected to the 2 × 1SW52 2 of the other optical input port.
上記の1×2SW511、512や2×1SW521、522にも、図1に示した分配選択型光スイッチ20や図2に示したMZI型光スイッチ30を採用することで、高速にOCS光信号とOPS光信号の切換えを可能とする。また、上記の2×2SW531、532にも、図7に示したMZI型光スイッチ60や図8に示した2×2SW70を採用することで、高速なOPS光信号の処理を可能とする。1×2SW511、512、2×1SW521、522及び2×2SW531、532に採用する光スイッチについては、後述する実施例3~実施例5でも同様である。
By adopting the distribution selection type optical switch 20 shown in FIG. 1 and the MZI type optical switch 30 shown in FIG. 2 for the above 1 × 2 SW 51 1 , 51 2 and 2 × 1 SW 52 1 , 52 2 as well, it is possible to increase the speed. It is possible to switch between the OCS optical signal and the OPS optical signal. Further, the above-described 2 × 2 SWs 53 1 and 53 2 also employ the MZI type optical switch 60 shown in FIG. 7 and the 2 × 2 SW 70 shown in FIG. 8 to enable high-speed OPS optical signal processing. . The optical switches employed in the 1 × 2 SW 51 1 , 51 2 , 2 × 1 SW 52 1 , 52 2, and 2 × 2 SW 53 1 , 53 2 are the same in the third to fifth embodiments described later.
このようにして、本実施例に係る光スイッチ装置においては、OCS光信号とOPS光信号のアドドロップに加え、OPS光信号のアドドロップを同一チップ上で実現できるため、光スイッチ装置の大幅な小型化が可能である。また、光スイッチデバイスの損失源である光ファイバとの接続損失に関して、各スイッチング要素間を光ファイバで接続する必要がなくなるため、低損失化も期待できる。
In this way, in the optical switch device according to the present embodiment, the add / drop of the OPS optical signal can be realized on the same chip in addition to the add / drop of the OCS optical signal and the OPS optical signal. Miniaturization is possible. Further, regarding the connection loss with the optical fiber that is the loss source of the optical switch device, it is not necessary to connect the switching elements with the optical fiber, so that a reduction in loss can be expected.
更に、図10に示すように、アド側の1×2SW511、512の後段に光吸収ゲートとなるEAM831~834を追加することで、具体的には、1×2SW511、512の光出力ポートの各々にEAM831~834を追加することで、他ポートへのクロストークを抑制したスイッチングが可能となる。光吸収ゲート(例えば、上記のEAM831~834)については、後述する実施例3~実施例5でも同様である。
Further, as shown in FIG. 10, by adding EAM 83 1 to 83 4 to be light absorption gates after the 1 × 2 SW 51 1 , 51 2 on the add side, specifically, 1 × 2 SW 51 1 , 51 2 By adding EAM 83 1 to 83 4 to each of the optical output ports, switching that suppresses crosstalk to other ports becomes possible. The same applies to the light absorption gates (for example, EAM 83 1 to 83 4 described above) in Examples 3 to 5 described later.
そして、OCS光信号とOPS光信号間の高速スイッチングは1×2SW511、512及び2×1SW521、522で行う。具体的には、1×2SW511、512及び2×1SW521、522は、図示省略したネットワークコントローラの制御に従って、OCS光信号とOPS光信号の振り分けを行って、予め設定したポートへのスイッチングを行う。この際、OCS光信号においても、OPS光信号と同様にラベルを付与し、それに従って、OCS光信号とOPS光信号のアドドロップを行う。ドロップしないOCS光信号はそのままカットスルーされて転送されるため、遅延や損失なく転送が可能である。
Then, high-speed switching between the OCS optical signal and the OPS optical signal is performed by 1 × 2 SW 51 1 , 51 2 and 2 × 1 SW 52 1 , 52 2 . Specifically, the 1 × 2 SW 51 1 , 51 2 and the 2 × 1 SW 52 1 , 52 2 distribute the OCS optical signal and the OPS optical signal according to the control of the network controller (not shown), Perform switching. At this time, the OCS optical signal is also labeled similarly to the OPS optical signal, and the OCS optical signal and the OPS optical signal are added / dropped accordingly. Since the OCS optical signal that does not drop is cut and transferred as it is, it can be transferred without delay or loss.
また、OPS光信号の高速スイッチングは2×2SW531、532で行う。具体的には、2×2SW531及び2×2SW532の直前で、OPS光信号のラベルを読み取り、ラベルテーブルに基づいてスイッチングを行う。
Further, high-speed switching of the OPS optical signal is performed by 2 × 2 SWs 53 1 and 53 2 . Specifically, at 2 × 2SW53 1 and 2 × 2SW53 2 just before reading the label of the OPS optical signal, performs switching on the basis of the label table.
つまり、WSSベースのROADMノード装置において、本実施例に係る光スイッチ装置には、OCS光信号とOPS光信号間のアドドロップ専用の1×2SW511、512及び2×1SW521、522を導入しており、これらに上述した高速な光スイッチを用いている。このような構成とすることで、ラベル情報の追加が必要なものの、OCS光信号へのデメリットを与えず、OCS光信号とOPS光信号の両方を扱うことが可能となる。更に、各光スイッチのポート数及び光導波路の接続をネットワーク形態に最適化することで、高速光スイッチの欠点である損失を抑えたノード技術の確立が可能である。
That is, in the WSS-based ROADM node device, the optical switch device according to the present embodiment includes 1 × 2 SW 51 1 , 51 2 and 2 × 1 SW 52 1 , 52 2 dedicated for add / drop between the OCS optical signal and the OPS optical signal. The high-speed optical switch described above is used for these. With such a configuration, although label information needs to be added, it is possible to handle both the OCS optical signal and the OPS optical signal without giving a disadvantage to the OCS optical signal. Furthermore, by optimizing the number of ports of each optical switch and the connection of optical waveguides to the network configuration, it is possible to establish a node technology that suppresses the loss that is a disadvantage of the high-speed optical switch.
[実施例3]
図11に本実施例に係る光スイッチ装置を示す。ここでも、実施例1に示した光スイッチ装置と同様に、4つの光入力ポートPI1~PI4と4つの光出力ポートPO1~PO4を持つ光スイッチ装置とし、OCS光信号とOPS光信号とが同時に転送可能なものとする。OCS光信号とOPS光信号間のアドドロップ用には、1×2SW511、512の2つと2×1SW521、522の2つを用い、OPS光信号のアドドロップ用には、2×2SW531、532の2つを用いる。つまり、光入力ポートPI1~PI4、光出力ポートPO1~PO4、1×2SW511、512、2×1SW521、522、2×2SW531、532については、それらの配置を除いて、実施例1に示した光スイッチ装置と同じ構成であり、そのため、図11でも、同じ符号を付している。 [Example 3]
FIG. 11 shows an optical switch device according to this embodiment. Here, similarly to the optical switch device shown in the first embodiment, the optical switch device has four optical input ports PI 1 to PI 4 and four optical output ports PO 1 to PO 4 , and the OCS optical signal and the OPS light are used. It is assumed that signals can be transferred simultaneously. For add / drop between the OCS optical signal and the OPS optical signal, two of 1 × 2 SW 51 1 , 51 2 and two of 2 × 1 SW 52 1 , 52 2 are used, and for add / drop of the OPS optical signal, 2 × Two 2SWs 53 1 and 53 2 are used. In other words, the optical input ports PI 1 to PI 4 , the optical output ports PO 1 to PO 4 , 1 × 2SW 51 1 , 51 2 , 2 × 1 SW 52 1 , 52 2 , 2 × 2 SW 53 1 , 53 2 are arranged. Except for this, the configuration is the same as that of the optical switch device shown in the first embodiment. Therefore, the same reference numerals are given in FIG.
図11に本実施例に係る光スイッチ装置を示す。ここでも、実施例1に示した光スイッチ装置と同様に、4つの光入力ポートPI1~PI4と4つの光出力ポートPO1~PO4を持つ光スイッチ装置とし、OCS光信号とOPS光信号とが同時に転送可能なものとする。OCS光信号とOPS光信号間のアドドロップ用には、1×2SW511、512の2つと2×1SW521、522の2つを用い、OPS光信号のアドドロップ用には、2×2SW531、532の2つを用いる。つまり、光入力ポートPI1~PI4、光出力ポートPO1~PO4、1×2SW511、512、2×1SW521、522、2×2SW531、532については、それらの配置を除いて、実施例1に示した光スイッチ装置と同じ構成であり、そのため、図11でも、同じ符号を付している。 [Example 3]
FIG. 11 shows an optical switch device according to this embodiment. Here, similarly to the optical switch device shown in the first embodiment, the optical switch device has four optical input ports PI 1 to PI 4 and four optical output ports PO 1 to PO 4 , and the OCS optical signal and the OPS light are used. It is assumed that signals can be transferred simultaneously. For add / drop between the OCS optical signal and the OPS optical signal, two of 1 × 2 SW 51 1 , 51 2 and two of 2 × 1 SW 52 1 , 52 2 are used, and for add / drop of the OPS optical signal, 2 × Two 2SWs 53 1 and 53 2 are used. In other words, the optical input ports PI 1 to PI 4 , the optical output ports PO 1 to PO 4 , 1 × 2
そして、本実施例に係る光スイッチ装置においても、1×2SW511、512、2×1SW521、522及び2×2SW531、532をスイッチング要素として1チップ上に集積し、各スイッチング要素間を図5に示した光導波路と同等の構造の光導波路で接続している。具体的には、同一のチップ基板81上に、1×2SW511、512、2×1SW521、522及び2×2SW531、532と共に光導波路841~846をモノリシック集積して、光スイッチ同士を光導波路841~846で接続している。
Also in the optical switch device according to the present embodiment, 1 × 2 SW 51 1 , 51 2 , 2 × 1 SW 52 1 , 52 2 and 2 × 2 SW 53 1 , 53 2 are integrated on one chip as switching elements, and each switching element They are connected by an optical waveguide having a structure equivalent to that of the optical waveguide shown in FIG. Specifically, the optical waveguides 84 1 to 84 6 are monolithically integrated on the same chip substrate 81 together with 1 × 2 SW 51 1 , 51 2 , 2 × 1 SW 52 1 , 52 2 and 2 × 2 SW 53 1 , 53 2 , The optical switches are connected by optical waveguides 84 1 to 84 6 .
具体的には、1×2SW511の一方の光出力ポートは、光導波路841により、2×1SW521の一方の光入力ポートに接続され、1×2SW511のもう一方の光出力ポートは、光導波路842により、2×2SW532の一方の光入力ポートに接続される。また、1×2SW512の一方の光出力ポートは、光導波路843により、2×1SW522の一方の光入力ポートに接続され、1×2SW512のもう一方の光出力ポートは、光導波路844により、2×2SW532のもう一方の光入力ポートに接続される。また、2×2SW531の一方の光出力ポートは、光導波路845により、2×1SW521のもう一方の光入力ポートに接続され、2×2SW531のもう一方の光出力ポートは、光導波路846により、2×1SW522のもう一方の光入力ポートに接続される。
Specifically, 1 one of the optical output port of × 2SW51 1 is the optical waveguide 84 1 is connected to the 2 × 1SW52 1 of one of the optical input port, the 1 × 2SW51 1 of the other optical output port, The optical waveguide 84 2 is connected to one optical input port of the 2 × 2 SW 53 2 . Also, 1 × 2SW51 2 of one of the optical output port, the optical waveguide 84 3, is connected to the 2 × 1SW52 2 of one of the optical input port, 1 × 2SW51 2 of the other light output port, the optical waveguide 84 4 is connected to the other optical input port of the 2 × 2 SW 53 2 . Further, the 2 × 2SW53 1 of one of the optical output port, the optical waveguide 84 5, is connected to the 2 × 1SW52 1 of the other optical input port, the 2 × 2SW53 1 of the other light output port, the optical waveguide the 84 6, are connected to the 2 × 1SW52 2 of the other optical input port.
そして、1×2SW511、512、2×1SW521、522及び2×2SW531、532は、これらを接続する光導波路841~846が交差しないように、接続されるスイッチング要素同士が隣接するように配置されている。
The 1 × 2 SW 51 1 , 51 2 , 2 × 1 SW 52 1 , 52 2 and 2 × 2 SW 53 1 , 53 2 are connected to each other so that the optical waveguides 84 1 to 84 6 connecting them do not cross each other. Are arranged adjacent to each other.
例えば、光導波路842で接続される1×2SW511と2×2SW532が隣接して配置され、光導波路844で接続される2×2SW532と1×2SW512が隣接して配置され、また、光導波路845で接続される2×1SW521と2×2SW531が隣接して配置され、光導波路846で接続される2×2SW531と2×1SW522が隣接して配置されている。光導波路841で接続される1×2SW511と2×1SW521は、互いに異なる端部に配置されているが、接続上は、隣接して配置されていると言え、また、光導波路843で接続される1×2SW512と2×1SW522も、互いに異なる端部に配置されているが、接続上は、隣接して配置されていると言える。
For example, 1 × 2SW51 1 and 2 × 2SW53 2 which are connected by the optical waveguide 84 2 are arranged adjacently, 2 × 2SW53 2 and 1 × 2SW51 2 which are connected by the optical waveguide 84 4 are arranged adjacent to each other, Further, 2 × 1SW52 1 and 2 × 2SW53 1 connected by the optical waveguide 84 5 are arranged adjacent to each other, and 2 × 2SW53 1 and 2 × 1SW52 2 connected by the optical waveguide 84 6 are arranged adjacent to each other. Yes. The 1 × 2 SW 51 1 and the 2 × 1 SW 52 1 connected by the optical waveguide 84 1 are arranged at different ends, but it can be said that they are arranged adjacent to each other on the connection, and the optical waveguide 84 3. in even 1 × 2SW51 2 and 2 × 1SW52 2 to be connected are disposed on different ends from each other, connected on can be said to be disposed adjacent.
上述した配置により、光入力ポートPI1~PI4及び光出力ポートPO1~PO4の配置が、実施例2とは相違している。具体的には、実施例2では、一方の端部に光入力ポートPI1~PI4が配置され、他方の端部に光出力ポートPO1~PO4が配置されているのに対して、本実施例では、一方の端部には、光入力ポートPI1、PI2及び光出力ポートPO3、PO4が配置され、他方の端部には、光入力ポートPI3、PI4及び光出力ポートPO1、PO2が配置されている。
With the arrangement described above, the arrangement of the optical input ports PI 1 to PI 4 and the optical output ports PO 1 to PO 4 is different from that of the second embodiment. Specifically, in the second embodiment, the optical input ports PI 1 to PI 4 are arranged at one end and the optical output ports PO 1 to PO 4 are arranged at the other end. In this embodiment, optical input ports PI 1 and PI 2 and optical output ports PO 3 and PO 4 are disposed at one end, and optical input ports PI 3 and PI 4 and optical are disposed at the other end. Output ports PO 1 and PO 2 are arranged.
このようにして、本実施例に係る光スイッチ装置においても、OCS光信号とOPS光信号のアドドロップに加え、OPS光信号のアドドロップを同一チップ上で実現できるため、光スイッチ装置の大幅な小型化が可能である。また、光スイッチデバイスの損失源である光ファイバとの接続損失に関して、各スイッチング要素間を光ファイバで接続する必要がなくなるため、低損失化も期待できる。
In this way, in the optical switch device according to the present embodiment, in addition to the add / drop of the OCS optical signal and the OPS optical signal, the add / drop of the OPS optical signal can be realized on the same chip. Miniaturization is possible. Further, regarding the connection loss with the optical fiber that is the loss source of the optical switch device, it is not necessary to connect the switching elements with the optical fiber, so that a reduction in loss can be expected.
また、実施例2に示した光スイッチ装置においては、チップ基板81上で光導波路821~826を用いて、各スイッチング要素間を接続するため、一部の光導波路に交差部が発生していたが、本実施例に係る光スイッチ装置においては、光入出力ポート、スイッチング要素の配置を変更することで、光導波路の交差部を排除している。光導波路の交差部では、一般的に、光強度の損失と他ポートへのクロストークが発生するため、本実施例においては、信号特性の劣化を抑制することができる。
Further, in the optical switch apparatus shown in Example 2, using the optical waveguide 82 1-82 6 on the chip substrate 81, for connecting the respective switching element, intersection is generated in a part of the optical waveguide However, in the optical switch device according to the present embodiment, the intersection of the optical waveguides is eliminated by changing the arrangement of the optical input / output ports and the switching elements. In general, loss of light intensity and crosstalk to other ports occur at the intersections of the optical waveguides. Therefore, in this embodiment, it is possible to suppress deterioration of signal characteristics.
[実施例4]
図12に本実施例に係る光スイッチ装置を示す。ここでも、実施例1に示した光スイッチ装置と同様に、4つの光入力ポートPI1~PI4と4つの光出力ポートPO1~PO4を持つ光スイッチ装置とし、OCS光信号とOPS光信号とが同時に転送可能なものとする。OCS光信号とOPS光信号間のアドドロップ用には、1×2SW511、512の2つと2×1SW521、522の2つを用い、OPS光信号のアドドロップ用には、2×2SW531、532の2つを用いる。つまり、光入力ポートPI1~PI4、光出力ポートPO1~PO4、1×2SW511、512、2×1SW521、522、2×2SW531、532については、それらの配置を除いて、実施例1に示した光スイッチ装置と同じ構成であり、そのため、図12でも、同じ符号を付している。 [Example 4]
FIG. 12 shows an optical switch device according to this embodiment. Here, similarly to the optical switch device shown in the first embodiment, the optical switch device has four optical input ports PI 1 to PI 4 and four optical output ports PO 1 to PO 4 , and the OCS optical signal and the OPS light are used. It is assumed that signals can be transferred simultaneously. For add / drop between the OCS optical signal and the OPS optical signal, two of 1 × 2 SW 51 1 , 51 2 and two of 2 × 1 SW 52 1 , 52 2 are used, and for add / drop of the OPS optical signal, 2 × Two 2SWs 53 1 and 53 2 are used. In other words, the optical input ports PI 1 to PI 4 , the optical output ports PO 1 to PO 4 , 1 × 2SW 51 1 , 51 2 , 2 × 1 SW 52 1 , 52 2 , 2 × 2 SW 53 1 , 53 2 are arranged. Except for this, the configuration is the same as that of the optical switch device shown in the first embodiment. Therefore, the same reference numerals are given in FIG.
図12に本実施例に係る光スイッチ装置を示す。ここでも、実施例1に示した光スイッチ装置と同様に、4つの光入力ポートPI1~PI4と4つの光出力ポートPO1~PO4を持つ光スイッチ装置とし、OCS光信号とOPS光信号とが同時に転送可能なものとする。OCS光信号とOPS光信号間のアドドロップ用には、1×2SW511、512の2つと2×1SW521、522の2つを用い、OPS光信号のアドドロップ用には、2×2SW531、532の2つを用いる。つまり、光入力ポートPI1~PI4、光出力ポートPO1~PO4、1×2SW511、512、2×1SW521、522、2×2SW531、532については、それらの配置を除いて、実施例1に示した光スイッチ装置と同じ構成であり、そのため、図12でも、同じ符号を付している。 [Example 4]
FIG. 12 shows an optical switch device according to this embodiment. Here, similarly to the optical switch device shown in the first embodiment, the optical switch device has four optical input ports PI 1 to PI 4 and four optical output ports PO 1 to PO 4 , and the OCS optical signal and the OPS light are used. It is assumed that signals can be transferred simultaneously. For add / drop between the OCS optical signal and the OPS optical signal, two of 1 × 2 SW 51 1 , 51 2 and two of 2 × 1 SW 52 1 , 52 2 are used, and for add / drop of the OPS optical signal, 2 × Two 2SWs 53 1 and 53 2 are used. In other words, the optical input ports PI 1 to PI 4 , the optical output ports PO 1 to PO 4 , 1 × 2
そして、本実施例に係る光スイッチ装置においても、1×2SW511、512、2×1SW521、522及び2×2SW531、532をスイッチング要素として1チップ上に集積し、各スイッチング要素間を図5に示した光導波路と同等の構造の光導波路で接続している。具体的には、同一のチップ基板81上に、1×2SW511、512、2×1SW521、522及び2×2SW531、532と共に光導波路851~856をモノリシック集積して、光スイッチ同士を光導波路851~856で接続している。
Also in the optical switch device according to the present embodiment, 1 × 2 SW 51 1 , 51 2 , 2 × 1 SW 52 1 , 52 2 and 2 × 2 SW 53 1 , 53 2 are integrated on one chip as switching elements, and each switching element They are connected by an optical waveguide having a structure equivalent to that of the optical waveguide shown in FIG. Specifically, optical waveguides 85 1 to 85 6 are monolithically integrated on the same chip substrate 81 together with 1 × 2 SW 51 1 , 51 2 , 2 × 1 SW 52 1 , 52 2 and 2 × 2 SW 53 1 , 53 2 , The optical switches are connected by optical waveguides 85 1 to 85 6 .
具体的には、1×2SW511の一方の光出力ポートは、光導波路851により、2×1SW521の一方の光入力ポートに接続され、1×2SW511のもう一方の光出力ポートは、光導波路852により、2×2SW532の一方の光入力ポートに接続される。また、1×2SW512の一方の光出力ポートは、光導波路853により、2×1SW522の一方の光入力ポートに接続され、1×2SW512のもう一方の光出力ポートは、光導波路854により、2×2SW532のもう一方の光入力ポートに接続される。また、2×2SW531の一方の光出力ポートは、光導波路855により、2×1SW521のもう一方の光入力ポートに接続され、2×2SW531のもう一方の光出力ポートは、光導波路856により、2×1SW522のもう一方の光入力ポートに接続される。
Specifically, 1 one of the optical output port of × 2SW51 1 is the optical waveguide 85 1 is connected to the 2 × 1SW52 1 of one of the optical input port, the 1 × 2SW51 1 of the other optical output port, The optical waveguide 85 2 is connected to one optical input port of the 2 × 2 SW 53 2 . Further, the 1 × 2SW51 one optical output port of the 2, the optical waveguide 85 3, is connected to the 2 × 1SW52 2 of one of the optical input port, 1 × 2SW51 2 of the other light output port, the optical waveguide 85 4 is connected to the other optical input port of the 2 × 2 SW 53 2 . Further, the 2 × 2SW53 1 of one of the optical output port, the optical waveguide 85 5, is connected to the 2 × 1SW52 1 of the other optical input port, the 2 × 2SW53 1 of the other light output port, the optical waveguide the 85 6, are connected to the 2 × 1SW52 2 of the other optical input port.
そして、光入力ポートPI1~PI4及び光出力ポートPO1~PO4の全てがチップ基板81の一方側の端部に配置されるように、1×2SW511、512、2×1SW521、522及び2×2SW531、532が配置されている。
The 1 × 2 SW 51 1 , 51 2 , 2 × 1 SW 52 1 are arranged so that all of the optical input ports PI 1 to PI 4 and the optical output ports PO 1 to PO 4 are arranged at one end of the chip substrate 81. , 52 2 and 2 × 2 SW 53 1 , 53 2 are arranged.
上述した配置により、光入力ポートPI1~PI4及び光出力ポートPO1~PO4の配置が、実施例2、実施例3とは相違している。具体的には、実施例2では、一方の端部に光入力ポートPI1~PI4が配置され、他方の端部に光出力ポートPO1~PO4が配置されており、実施例3では、一方の端部に光入力ポートPI1、PI2及び光出力ポートPO3、PO4が配置され、他方の端部に光入力ポートPI3、PI4及び光出力ポートPO1、PO2が配置されているのに対して、本実施例では、光入力ポートPI1~PI4及び光出力ポートPO1~PO4の全てが一方の端部に配置されている。
With the arrangement described above, the arrangement of the optical input ports PI 1 to PI 4 and the optical output ports PO 1 to PO 4 is different from those in the second and third embodiments. Specifically, in the second embodiment, the optical input ports PI 1 to PI 4 are arranged at one end, and the optical output ports PO 1 to PO 4 are arranged at the other end. The optical input ports PI 1 and PI 2 and the optical output ports PO 3 and PO 4 are disposed at one end, and the optical input ports PI 3 and PI 4 and the optical output ports PO 1 and PO 2 are disposed at the other end. In contrast, in this embodiment, the optical input ports PI 1 to PI 4 and the optical output ports PO 1 to PO 4 are all arranged at one end.
このようにして、本実施例に係る光スイッチ装置においても、OCS光信号とOPS光信号のアドドロップに加え、OPS光信号のアドドロップを同一チップ上で実現できるため、光スイッチ装置の大幅な小型化が可能である。また、光スイッチデバイスの損失源である光ファイバとの接続損失に関して、各スイッチング要素間を光ファイバで接続する必要がなくなるため、低損失化も期待できる。
In this way, in the optical switch device according to the present embodiment, in addition to the add / drop of the OCS optical signal and the OPS optical signal, the add / drop of the OPS optical signal can be realized on the same chip. Miniaturization is possible. Further, regarding the connection loss with the optical fiber that is the loss source of the optical switch device, it is not necessary to connect the switching elements with the optical fiber, so that a reduction in loss can be expected.
また、本実施例に係る光スイッチ装置においては、当該光スイッチ装置の光入出力ポートをチップの片側に揃えることで、容易にモジュール化を可能としている。
Further, in the optical switch device according to the present embodiment, the optical input / output port of the optical switch device is arranged on one side of the chip, so that it can be easily modularized.
[実施例5]
図13に本実施例に係る光スイッチ装置を示す。ここでも、実施例1に示した光スイッチ装置と同様に、4つの光入力ポートPI1~PI4と4つの光出力ポートPO1~PO4を持つ光スイッチ装置とし、OCS光信号とOPS光信号とが同時に転送可能なものとする。OCS光信号とOPS光信号間のアドドロップ用には、1×2SW511、512の2つと2×1SW521、522の2つを用い、OPS光信号のアドドロップ用には、2×2SW531、532の2つを用いる。つまり、光入力ポートPI1~PI4、光出力ポートPO1~PO4、1×2SW511、512、2×1SW521、522、2×2SW531、532については、それらの配置を除いて、実施例1に示した光スイッチ装置と同じ構成であり、そのため、図13でも、同じ符号を付している。 [Example 5]
FIG. 13 shows an optical switch device according to this embodiment. Here, similarly to the optical switch device shown in the first embodiment, the optical switch device has four optical input ports PI 1 to PI 4 and four optical output ports PO 1 to PO 4 , and the OCS optical signal and the OPS light are used. It is assumed that signals can be transferred simultaneously. For add / drop between the OCS optical signal and the OPS optical signal, two of 1 × 2 SW 51 1 , 51 2 and two of 2 × 1 SW 52 1 , 52 2 are used, and for add / drop of the OPS optical signal, 2 × Two 2SWs 53 1 and 53 2 are used. In other words, the optical input ports PI 1 to PI 4 , the optical output ports PO 1 to PO 4 , 1 × 2SW 51 1 , 51 2 , 2 × 1 SW 52 1 , 52 2 , 2 × 2 SW 53 1 , 53 2 are arranged. Except for this, the configuration is the same as that of the optical switch device shown in the first embodiment. Therefore, the same reference numerals are given in FIG.
図13に本実施例に係る光スイッチ装置を示す。ここでも、実施例1に示した光スイッチ装置と同様に、4つの光入力ポートPI1~PI4と4つの光出力ポートPO1~PO4を持つ光スイッチ装置とし、OCS光信号とOPS光信号とが同時に転送可能なものとする。OCS光信号とOPS光信号間のアドドロップ用には、1×2SW511、512の2つと2×1SW521、522の2つを用い、OPS光信号のアドドロップ用には、2×2SW531、532の2つを用いる。つまり、光入力ポートPI1~PI4、光出力ポートPO1~PO4、1×2SW511、512、2×1SW521、522、2×2SW531、532については、それらの配置を除いて、実施例1に示した光スイッチ装置と同じ構成であり、そのため、図13でも、同じ符号を付している。 [Example 5]
FIG. 13 shows an optical switch device according to this embodiment. Here, similarly to the optical switch device shown in the first embodiment, the optical switch device has four optical input ports PI 1 to PI 4 and four optical output ports PO 1 to PO 4 , and the OCS optical signal and the OPS light are used. It is assumed that signals can be transferred simultaneously. For add / drop between the OCS optical signal and the OPS optical signal, two of 1 × 2 SW 51 1 , 51 2 and two of 2 × 1 SW 52 1 , 52 2 are used, and for add / drop of the OPS optical signal, 2 × Two 2SWs 53 1 and 53 2 are used. In other words, the optical input ports PI 1 to PI 4 , the optical output ports PO 1 to PO 4 , 1 × 2
そして、本実施例に係る光スイッチ装置においても、1×2SW511、512、2×1SW521、522及び2×2SW531、532をスイッチング要素として1チップ上に集積し、各スイッチング要素間を図5に示した光導波路と同等の構造の光導波路で接続している。具体的には、同一のチップ基板81上に、1×2SW511、512、2×1SW521、522及び2×2SW531、532と共に光導波路861~866をモノリシック集積して、光スイッチ同士を光導波路861~866で接続している。
Also in the optical switch device according to the present embodiment, 1 × 2 SW 51 1 , 51 2 , 2 × 1 SW 52 1 , 52 2 and 2 × 2 SW 53 1 , 53 2 are integrated on one chip as switching elements, and each switching element They are connected by an optical waveguide having a structure equivalent to that of the optical waveguide shown in FIG. Specifically, the optical waveguides 86 1 to 86 6 are monolithically integrated on the same chip substrate 81 together with 1 × 2 SW 51 1 , 51 2 , 2 × 1 SW 52 1 , 52 2 and 2 × 2 SW 53 1 , 53 2 , The optical switches are connected by optical waveguides 86 1 to 86 6 .
具体的には、1×2SW511の一方の光出力ポートは、光導波路861により、2×1SW521の一方の光入力ポートに接続され、1×2SW511のもう一方の光出力ポートは、光導波路862により、2×2SW532の一方の光入力ポートに接続される。また、1×2SW512の一方の光出力ポートは、光導波路863により、2×1SW522の一方の光入力ポートに接続され、1×2SW512のもう一方の光出力ポートは、光導波路864により、2×2SW532のもう一方の光入力ポートに接続される。また、2×2SW531の一方の光出力ポートは、光導波路865により、2×1SW521のもう一方の光入力ポートに接続され、2×2SW531のもう一方の光出力ポートは、光導波路866により、2×1SW522のもう一方の光入力ポートに接続される。
Specifically, 1 one of the optical output port of × 2SW51 1 is the optical waveguide 86 1 is connected to the 2 × 1SW52 1 of one of the optical input port, the 1 × 2SW51 1 of the other optical output port, The optical waveguide 86 2 is connected to one optical input port of the 2 × 2 SW 53 2 . Also, 1 × 2SW51 2 of one of the optical output port, the optical waveguide 86 3, is connected to the 2 × 1SW52 2 of one of the optical input port, 1 × 2SW51 2 of the other light output port, the optical waveguide 86 4 is connected to the other optical input port of the 2 × 2 SW 53 2 . Further, the 2 × 2SW53 1 of one of the optical output port, the optical waveguide 86 5, is connected to the 2 × 1SW52 1 of the other optical input port, the 2 × 2SW53 1 of the other light output port, the optical waveguide the 86 6, are connected to the 2 × 1SW52 2 of the other optical input port.
そして、1×2SW511、512、2×1SW521、522及び2×2SW531、532は、これらを接続する光導波路841~846が交差しないように、接続されるスイッチング要素同士が隣接するように配置されている。また、光入力ポートPI1~PI4及び光出力ポートPO1~PO4の全てがチップ基板81の一方側の端部に配置されるように、1×2SW511、512、2×1SW521、522及び2×2SW531、532が配置されている。
The 1 × 2 SW 51 1 , 51 2 , 2 × 1 SW 52 1 , 52 2 and 2 × 2 SW 53 1 , 53 2 are connected to each other so that the optical waveguides 84 1 to 84 6 connecting them do not cross each other. Are arranged adjacent to each other. The 1 × 2 SW 51 1 , 51 2 , 2 × 1 SW 52 1 are arranged so that all of the optical input ports PI 1 to PI 4 and the optical output ports PO 1 to PO 4 are arranged at one end of the chip substrate 81. , 52 2 and 2 × 2 SW 53 1 , 53 2 are arranged.
例えば、チップ基板81の一方側の端部において、光導波路862で接続される1×2SW511と2×2SW532が隣接して配置され、光導波路864で接続される2×2SW532と1×2SW512が隣接して配置され、光導波路863で接続される1×2SW512と2×1SW522が隣接して配置され、光導波路866で接続される2×1SW522と2×2SW531が隣接して配置され、光導波路865で接続される2×2SW531と2×1SW521が隣接して配置されている。光導波路861で接続される1×2SW511と2×1SW522は、チップ基板81の一方側の端部の両端に配置されているが、接続上は、隣接して配置されていると言える。
For example, the end of one side of the chip substrate 81, 1 × 2SW51 1 and 2 × 2SW53 2 which are connected by optical waveguides 862 are arranged adjacent, and 2 × 2SW53 2 which are connected by the optical waveguide 86 4 1 × 2SW51 2 are arranged adjacent, 1 × 2SW51 2 and 2 × 1SW52 2 are arranged adjacently, 2 × 1SW52 2 and 2 × connected by optical waveguides 86 6 connected by optical waveguides 86 3 2SW53 1 are arranged adjacently, 2 × 2SW53 1 and 2 × 1SW52 1 connected by optical waveguides 86 5 are arranged adjacent. The 1 × 2 SW 51 1 and the 2 × 1 SW 52 2 connected by the optical waveguide 86 1 are arranged at both ends of one end portion of the chip substrate 81, but it can be said that they are arranged adjacent to each other on the connection. .
上述した配置により、光入力ポートPI1~PI4及び光出力ポートPO1~PO4の配置が、実施例2、実施例3とは相違している。具体的には、実施例2では、一方の端部に光入力ポートPI1~PI4が配置され、他方の端部に光出力ポートPO1~PO4が配置されており、実施例3では、一方の端部に光入力ポートPI1、PI2及び光出力ポートPO3、PO4が配置され、他方の端部に光入力ポートPI3、PI4及び光出力ポートPO1、PO2が配置されているのに対して、本実施例では、光入力ポートPI1~PI4及び光出力ポートPO1~PO4の全てが一方側の端部に配置されている。
With the arrangement described above, the arrangement of the optical input ports PI 1 to PI 4 and the optical output ports PO 1 to PO 4 is different from those in the second and third embodiments. Specifically, in the second embodiment, the optical input ports PI 1 to PI 4 are arranged at one end, and the optical output ports PO 1 to PO 4 are arranged at the other end. The optical input ports PI 1 and PI 2 and the optical output ports PO 3 and PO 4 are disposed at one end, and the optical input ports PI 3 and PI 4 and the optical output ports PO 1 and PO 2 are disposed at the other end. In contrast, in this embodiment, the optical input ports PI 1 to PI 4 and the optical output ports PO 1 to PO 4 are all arranged at one end.
このようにして、本実施例に係る光スイッチ装置においても、OCS光信号とOPS光信号のアドドロップに加え、OPS光信号のアドドロップを同一チップ上で実現できるため、光スイッチ装置の大幅な小型化が可能である。また、光スイッチデバイスの損失源である光ファイバとの接続損失に関して、各スイッチング要素間を光ファイバで接続する必要がなくなるため、低損失化も期待できる。
In this way, in the optical switch device according to the present embodiment, in addition to the add / drop of the OCS optical signal and the OPS optical signal, the add / drop of the OPS optical signal can be realized on the same chip. Miniaturization is possible. Further, regarding the connection loss with the optical fiber that is the loss source of the optical switch device, it is not necessary to connect the switching elements with the optical fiber, so that a reduction in loss can be expected.
また、本実施例に係る光スイッチ装置においては、当該光スイッチ装置の光入出力ポートをチップの片側に揃えることで、容易にモジュール化を可能としている。
Further, in the optical switch device according to the present embodiment, the optical input / output port of the optical switch device is arranged on one side of the chip, so that it can be easily modularized.
また、実施例4に示した光スイッチ装置においては、チップ基板81上で光導波路851~856を用いて、各スイッチング要素間を接続するため、一部の光導波路に交差部が発生していたが、本実施例に係る光スイッチ装置においては、光入出力ポート、スイッチング要素の配置を変更することで、光導波路の交差部を排除している。光導波路の交差部では、一般的に、光強度の損失と他ポートへのクロストークが発生するため、本実施例においては、信号特性の劣化を抑制することができる。
In the optical switch device shown in the fourth embodiment, since the switching elements are connected to each other using the optical waveguides 85 1 to 85 6 on the chip substrate 81, a crossing portion is generated in some of the optical waveguides. However, in the optical switch device according to the present embodiment, the intersection of the optical waveguides is eliminated by changing the arrangement of the optical input / output ports and the switching elements. In general, loss of light intensity and crosstalk to other ports occur at the intersections of the optical waveguides. Therefore, in this embodiment, it is possible to suppress deterioration of signal characteristics.
[実施例6]
本実施例では、実施例1~5の変形例を説明する。上述した実施例1~5では、説明を簡単にするため、光入出力ポート数の少ない形態を示したが、実施例1~5は、光入出力ポート数が多い形態への適用も可能である。そこで、実施例1の図6に示した光スイッチ装置を例にとって、光入出力ポート数が多い光スイッチ装置の形態を、図14を参照して説明する。 [Example 6]
In the present embodiment, modified examples of the first to fifth embodiments will be described. In the first to fifth embodiments described above, a mode with a small number of optical input / output ports is shown for the sake of simplicity of description. is there. Therefore, the configuration of the optical switch device having a large number of optical input / output ports will be described with reference to FIG. 14, taking the optical switch device shown in FIG. 6 ofEmbodiment 1 as an example.
本実施例では、実施例1~5の変形例を説明する。上述した実施例1~5では、説明を簡単にするため、光入出力ポート数の少ない形態を示したが、実施例1~5は、光入出力ポート数が多い形態への適用も可能である。そこで、実施例1の図6に示した光スイッチ装置を例にとって、光入出力ポート数が多い光スイッチ装置の形態を、図14を参照して説明する。 [Example 6]
In the present embodiment, modified examples of the first to fifth embodiments will be described. In the first to fifth embodiments described above, a mode with a small number of optical input / output ports is shown for the sake of simplicity of description. is there. Therefore, the configuration of the optical switch device having a large number of optical input / output ports will be described with reference to FIG. 14, taking the optical switch device shown in FIG. 6 of
K、L、M、Nをそれぞれ1以上の整数とし、OCS光信号とOPS光信号のアドドロップ用の光スイッチの光入出力ポートをNポート、OPS光信号のアドドロップ用の光スイッチの光入出力ポートをMポートとし、OCS光信号のカットスルー用の光スイッチ同士の間の光入出力ポートをLポート、OPS光信号のアドドロップ用の光スイッチ同士の間の光入出力ポートをKポートとする。この場合、図14に示すように、OCS光信号とOPS光信号のアドドロップ用の光スイッチを、N×(K+L)のポート構成のN×(K+L)SW91、(K+L)×Nのポート構成の(K+L)×NSW92とし、OPS光信号のアドドロップ用の光スイッチを、M×Kのポート構成のM×KSW93、K×Mのポート構成のK×MSW94とすればよい。
Each of K, L, M, and N is an integer of 1 or more, the optical input / output port of the optical switch for adding / dropping the OCS optical signal and the OPS optical signal is an N port, and the optical switch for adding / dropping the OPS optical signal The input / output port is M port, the optical input / output port between optical switches for cut-through of OCS optical signals is L port, and the optical input / output port between optical switches for add / drop of OPS optical signals is K Port. In this case, as shown in FIG. 14, the optical switch for adding / dropping the OCS optical signal and the OPS optical signal includes N × (K + L) SW 91 and (K + L) × N port configurations having an N × (K + L) port configuration. (K + L) × NSW 92, and the optical switch for adding and dropping the OPS optical signal may be M × KSW 93 having an M × K port configuration and K × MSW 94 having a K × M port configuration.
つまり、N×(K+L)SW91は、光入力ポートPI11~PI1N、光出力ポートPMO11~PMO1L及び光出力ポートPMO21~PMO2Kを有し、(K+L)×NSW92は、光入力ポートPMI11~PMI1L及び光入力ポートPMI21~PMI2K、光出力ポートPO11~PO1Nを有し、M×KSW93は、光入力ポートPI21~PI2M及び光出力ポートPMO31~PMO3Kを有し、K×MSW94は、光入力ポートPMI31~PMI3K及び光出力ポートPO21~PO2Mを有している。
That is, the N × (K + L) SW 91 has optical input ports PI1 1 to PI1 N , optical output ports PMO1 1 to PMO1 L, and optical output ports PMO2 1 to PMO2 K , and (K + L) × NSW 92 is an optical input port. PMI1 1 to PMI1 L and optical input ports PMI2 1 to PMI2 K and optical output ports PO1 1 to PO1 N are included. The M × KSW 93 includes optical input ports PI2 1 to PI2 M and optical output ports PMO3 1 to PMO3 K. The K × MSW 94 has optical input ports PMI3 1 to PMI3 K and optical output ports PO2 1 to PO2 M.
そして、N×(K+L)SW91の光出力ポートPMO11~PMO1Lを、(K+L)×NSW92の光入力ポートPMI11~PMI1Lに接続し、N×(K+L)SW91の光出力ポートPMO21~PMO2Kを、K×MSW94の光入力ポートPMI31~PMI3Kに接続し、M×KSW93の光出力ポートPMO31~PMO3Kを、(K+L)×NSW92の光入力ポートPMI21~PMI2Kに接続している。
Then, the N × (K + L) SW91 optical output ports PMO1 1 ~ PMO1 L, (K + L) is connected to the optical input port PMI 1 1 ~ PMI 1 L of × NSW92, N × (K + L) SW91 optical output ports pMO2 1 ~ the pMO2 K, connects to the optical input port PMI3 1 ~ PMI3 K of K × MSW94, an optical output port pMO3 1 ~ pMO3 K of M × KSW93, connected to the (K + L) optical input port PMI2 1 ~ PMI2 K of × NSW92 doing.
このようなN×(K+L)SW91、(K+L)×NSW92、M×KSW93及びK×MSW94は、各々、上述した1×J分配選択型光スイッチを基本の構成要素として、少なくとも1つの1×J分配選択型光スイッチから構成する。又は、上述した1×2のMZI型光スイッチ30又は複数の2×2のMZI型光スイッチ60からなる1×J光スイッチを基本の構成要素として、1つの1×2のMZI型光スイッチ30又は少なくとも1つの1×J光スイッチから構成される。
Such N × (K + L) SW 91, (K + L) × NSW 92, M × KSW 93, and K × MSW 94 each have at least one 1 × J using the above-described 1 × J distribution selection type optical switch as a basic component. It consists of a distribution selection type optical switch. Alternatively, one 1 × 2 MZI optical switch 30 having the 1 × J MZI optical switch 30 described above or a 1 × J optical switch composed of a plurality of 2 × 2 MZI optical switches 60 as basic components. Alternatively, it is composed of at least one 1 × J optical switch.
なお、図14では、OCS光信号とOPS光信号のアドドロップ用のN×(K+L)SW91及び(K+L)×NSW92の光入出力ポートをNポートとしたが、各光スイッチの光入出力ポートを1ポートとして、N個の光スイッチを用いるようにしてもよい。ただし、このような場合、入力側のN個の光スイッチにおいて、OCS光信号のカットスルー用の光出力ポートの総数がLポートとなるように、OPS光信号のアドドロップ用の光出力ポートの総数がKポートとなるようにする必要があり、同様に、出力側のN個の光スイッチにおいて、OCS光信号のカットスルー用の光入力ポートの総数がLポートとなるように、OPS光信号のアドドロップ用の光入力ポートの総数がKポートとなるようにする必要がある。
In FIG. 14, N × (K + L) SW 91 and (K + L) × NSW 92 optical input / output ports for adding and dropping OCS optical signals and OPS optical signals are N ports. N optical switches may be used with a single port. However, in such a case, in the N optical switches on the input side, the optical output port for add / drop of the OPS optical signal is set so that the total number of optical output ports for cut-through of the OCS optical signal becomes L port. Similarly, the OPS optical signal must be set so that the total number of optical input ports for cut-through of the OCS optical signal is L ports in the N optical switches on the output side. It is necessary to make the total number of add-drop optical input ports equal to K ports.
これを、図6を参照して説明すると、図6に示した構成では、N=2、M=2、L=2、K=2であって、2個の1×2SW511、512と2×1SW521、522を用いている。そして、図6では、入力側の2個の1×2SW511、512において、OCS光信号のカットスルー用の光出力ポートを各々1個、総数L=2個のポートとし、OPS光信号のアドドロップ用の光出力ポートを各々1個、総数K=2個のポートとしている。同様に、出力側の2個の2×1SW521、522において、OCS光信号のカットスルー用の光入力ポートを各々1個、総数L=2個のポートとし、OPS光信号のアドドロップ用の光入力ポートを各々1個、総数K=2個のポートとしている。
This will be described with reference to FIG. 6. In the configuration shown in FIG. 6, N = 2, M = 2, L = 2, K = 2, and two 1 × 2SWs 51 1 and 51 2 2 × 1SWs 52 1 and 52 2 are used. In FIG. 6, the two 1 × 2 SWs 51 1 and 51 2 on the input side each have one optical output port for cut-through of the OCS optical signal, and the total number L = 2 ports. Each add / drop optical output port is K = 2 ports in total. Similarly, in the two 2 × 1 SWs 52 1 and 52 2 on the output side, there is one optical input port for cut-through of the OCS optical signal, and a total number L = 2 ports, for add / drop of the OPS optical signal. The number of optical input ports is one and the total number is K = 2.
以上説明したように、実施例1に示した光スイッチ装置は、光入出力ポート数が多い形態へ適用可能である。また、実施例2については、実施例1と実質的に同等の構成であり、実施例3~実施例5については、光入出力ポート、スイッチング要素の配置が異なるが、要素間の接続構成は同じであり、実施例1と実質的に同等の構成である。従って、図14で説明した変形例は、実施例2~実施例5にも適用可能である。
As described above, the optical switch device shown in the first embodiment can be applied to a form having a large number of optical input / output ports. The configuration of the second embodiment is substantially the same as that of the first embodiment, and the configurations of the optical input / output ports and the switching elements are different from those of the third to fifth embodiments. The configuration is the same as that of the first embodiment. Therefore, the modification described with reference to FIG. 14 is also applicable to the second to fifth embodiments.
本発明は、大容量光通信ネットワークのノード装置用の光スイッチ装置に好適なものである。
The present invention is suitable for an optical switch device for a node device of a large-capacity optical communication network.
20 分配選択型光スイッチ
21 1×2光カプラ
221、222 光導波路
231、232 光吸収ゲート
30 MZI型光スイッチ
31 1×2光カプラ
321、322 光導波路
331、332 制御電極
34 2×2光カプラ
511、512 1×2SW
521、522 2×1SW
531、532 2×2SW
541~546 光ファイバ
60 MZI型光スイッチ
61 2×2光カプラ
621、622 光導波路
631、632 制御電極
64 2×2光カプラ
70 2×2SW
711~714 分配選択型光スイッチ
721~724 光導波路
81 チップ基板
821~826 光導波路
831~834 EAM
841~846 光導波路
851~856 光導波路
861~866 光導波路
91 N×(K+L)SW
92 (K+L)×NSW
93 M×KSW
94 K×MSW 20 Distribution SelectType Optical Switch 21 1 × 2 Optical Coupler 22 1 , 22 2 Optical Waveguide 23 1 , 23 2 Optical Absorption Gate 30 MZI Type Optical Switch 31 1 × 2 Optical Coupler 32 1 , 32 2 Optical Waveguide 33 1 , 33 2 Control electrode 34 2 × 2 optical coupler 51 1 , 51 2 1 × 2SW
52 1 , 52 2 2 × 1SW
53 1 , 53 2 2 × 2SW
54 1 to 54 6Optical fiber 60 MZI type optical switch 61 2 × 2 optical coupler 62 1 , 62 2 Optical waveguide 63 1 , 63 2 Control electrode 64 2 × 2 optical coupler 70 2 × 2 SW
71 1 to 71 4 Distribution selection type optical switch 72 1 to 72 4Optical waveguide 81 Chip substrate 82 1 to 82 6 Optical waveguide 83 1 to 83 4 EAM
84 1 to 84 6 Optical waveguide 85 1 to 85 6 Optical waveguide 86 1 to 86 6 Optical waveguide 91 N × (K + L) SW
92 (K + L) × NSW
93 M × KSW
94 K x MSW
21 1×2光カプラ
221、222 光導波路
231、232 光吸収ゲート
30 MZI型光スイッチ
31 1×2光カプラ
321、322 光導波路
331、332 制御電極
34 2×2光カプラ
511、512 1×2SW
521、522 2×1SW
531、532 2×2SW
541~546 光ファイバ
60 MZI型光スイッチ
61 2×2光カプラ
621、622 光導波路
631、632 制御電極
64 2×2光カプラ
70 2×2SW
711~714 分配選択型光スイッチ
721~724 光導波路
81 チップ基板
821~826 光導波路
831~834 EAM
841~846 光導波路
851~856 光導波路
861~866 光導波路
91 N×(K+L)SW
92 (K+L)×NSW
93 M×KSW
94 K×MSW 20 Distribution Select
52 1 , 52 2 2 × 1SW
53 1 , 53 2 2 × 2SW
54 1 to 54 6
71 1 to 71 4 Distribution selection type optical switch 72 1 to 72 4
84 1 to 84 6 Optical waveguide 85 1 to 85 6 Optical waveguide 86 1 to 86 6 Optical waveguide 91 N × (K + L) SW
92 (K + L) × NSW
93 M × KSW
94 K x MSW
Claims (10)
- ネットワークを構成するノード装置に設けられ、複数の光入力ポートと複数の光出力ポートとを有する光スイッチ装置において、
当該光スイッチ装置は、複数の光スイッチからなり、
前記光スイッチは、屈折率又は吸収係数がナノ秒オーダで変化する材料の光導波路構造からなり、前記屈折率又は前記吸収係数を変化させることにより、光回線交換方式の光信号であるOCS光信号及び光パケット交換方式の光信号であるOPS光信号の両方のスイッチングを行う
ことを特徴とする光スイッチ装置。 In an optical switch device provided in a node device constituting a network and having a plurality of optical input ports and a plurality of optical output ports,
The optical switch device includes a plurality of optical switches,
The optical switch has an optical waveguide structure made of a material whose refractive index or absorption coefficient changes in the order of nanoseconds, and an OCS optical signal which is an optical signal of an optical circuit switching system by changing the refractive index or the absorption coefficient. And an OPS optical signal, which is an optical packet switching type optical signal, is switched. - 請求項1に記載の光スイッチ装置において、
前記ノード装置は、波長選択スイッチを有するROADM(Reconfigurable Optical Add/Drop Multiplexer)ノード装置であり、
当該光スイッチ装置は、
前記波長選択スイッチの後段に配置されると共に、前記OCS光信号と前記OPS光信号を予め設定した前記光出力ポートにスイッチングして、前記OCS光信号と前記OPS光信号との間のアドドロップ処理を行う複数の前記光スイッチからなる第1の光スイッチ部と、前記OPS光信号を予め設定した前記光出力ポートにスイッチングして、前記OPS光信号のアドドロップ処理を行う複数の前記光スイッチからなる第2の光スイッチ部とを有する
ことを特徴とする光スイッチ装置。 The optical switch device according to claim 1,
The node device is a ROADM (Reconfigurable Optical Add / Drop Multiplexer) node device having a wavelength selective switch,
The optical switch device is
An add / drop process between the OCS optical signal and the OPS optical signal is arranged after the wavelength selective switch and switches the OCS optical signal and the OPS optical signal to the preset optical output port. A first optical switch unit comprising a plurality of the optical switches that perform the switching, and a plurality of the optical switches that perform the add / drop processing of the OPS optical signal by switching the OPS optical signal to the preset optical output port. And a second optical switch unit. - 請求項2に記載の光スイッチ装置において、
前記第1の光スイッチ部でのスイッチングを制御するネットワークコントローラと、前記第2の光スイッチ部でのスイッチングを前記OPS光信号のラベルに基づいて制御するラベルテーブルとを有する
ことを特徴とする光スイッチ装置。 The optical switch device according to claim 2,
An optical system comprising: a network controller that controls switching in the first optical switch unit; and a label table that controls switching in the second optical switch unit based on a label of the OPS optical signal. Switch device. - 請求項2又は請求項3に記載の光スイッチ装置において、
K、L、M、Nをそれぞれ1以上の整数とすると、
前記第1の光スイッチ部は、N×(K+L)のポート構成のN×(K+L)光スイッチと(K+L)×Nのポート構成の(K+L)×N光スイッチとを有し、
前記第2の光スイッチ部は、M×Kのポート構成のM×K光スイッチとK×Mのポート構成のK×M光スイッチとを有し、
前記N×(K+L)光スイッチの出力側のL個のポートを前記(K+L)×N光スイッチの入力側のL個のポートに接続し、前記N×(K+L)光スイッチの出力側のK個のポートを前記K×M光スイッチの入力側のK個のポートに接続し、
前記M×K光スイッチの出力側のK個のポートを前記(K+L)×N光スイッチの入力側のK個のポートに接続した
ことを特徴とする光スイッチ装置。 In the optical switch device according to claim 2 or 3,
If K, L, M, and N are each an integer of 1 or more,
The first optical switch unit includes an N × (K + L) optical switch having an N × (K + L) port configuration and an (K + L) × N optical switch having a (K + L) × N port configuration,
The second optical switch unit includes an M × K optical switch having an M × K port configuration and a K × M optical switch having a K × M port configuration,
The L ports on the output side of the N × (K + L) optical switch are connected to the L ports on the input side of the (K + L) × N optical switch, and K on the output side of the N × (K + L) optical switch. Connected to the K ports on the input side of the K × M optical switch,
An optical switch device characterized in that K ports on the output side of the M × K optical switch are connected to K ports on the input side of the (K + L) × N optical switch. - 請求項4に記載の光スイッチ装置において、
Jを2以上の整数とすると、
前記N×(K+L)光スイッチ、前記(K+L)×N光スイッチ、前記M×K光スイッチ及び前記K×M光スイッチは、各々、1×Jのポート構成の1×J分配選択型光スイッチを基本の構成要素として、少なくとも1つの前記1×J分配選択型光スイッチから構成され、
前記1×J分配選択型光スイッチは、1×J光カプラとJ個の光吸収ゲートからなる
ことを特徴とする光スイッチ装置。 The optical switch device according to claim 4,
If J is an integer greater than or equal to 2,
The N × (K + L) optical switch, the (K + L) × N optical switch, the M × K optical switch, and the K × M optical switch are each a 1 × J distribution selection type optical switch having a 1 × J port configuration. Is composed of at least one 1 × J distribution selection type optical switch,
The 1 × J distribution selection type optical switch comprises a 1 × J optical coupler and J light absorption gates. - 請求項4に記載の光スイッチ装置において、
Jを2以上の整数とすると、
前記N×(K+L)光スイッチ、前記(K+L)×N光スイッチ、前記M×K光スイッチ及び前記K×M光スイッチは、各々、1×2マッハツェンダ干渉計又は複数の2×2マッハツェンダ干渉計からなる1×Jのポート構成の1×J光スイッチを基本の構成要素として、1つの前記1×2マッハツェンダ干渉計又は少なくとも1つの前記1×J光スイッチから構成され、
前記1×J光スイッチは、前段の前記2×2マッハツェンダ干渉計の出力側の2つのポートの各々に後段の前記2×2マッハツェンダ干渉計の入力側の2つのポートの一方を接続して、複数の前記2×2マッハツェンダ干渉計をツリー状に多段に接続した構成であることを特徴とする光スイッチ装置。 The optical switch device according to claim 4,
If J is an integer greater than or equal to 2,
The N × (K + L) optical switch, the (K + L) × N optical switch, the M × K optical switch, and the K × M optical switch are each a 1 × 2 Mach-Zehnder interferometer or a plurality of 2 × 2 Mach-Zehnder interferometers. A 1 × J optical switch having a 1 × J port configuration consisting of: 1 × 2 Mach-Zehnder interferometer or at least one 1 × J optical switch,
The 1 × J optical switch connects one of two ports on the input side of the subsequent 2 × 2 Mach-Zehnder interferometer to each of the two ports on the output side of the previous 2 × 2 Mach-Zehnder interferometer, An optical switching device characterized in that a plurality of the 2 × 2 Mach-Zehnder interferometers are connected in a tree shape in multiple stages. - 請求項4から請求項6のいずれか1つに記載の光スイッチ装置において、
前記N×(K+L)光スイッチの後段に光吸収ゲートを設けた
ことを特徴とする光スイッチ装置。 The optical switch device according to any one of claims 4 to 6,
An optical switch device characterized in that a light absorption gate is provided after the N × (K + L) optical switch. - 請求項4から請求項7のいずれか1つに記載の光スイッチ装置において、
前記N×(K+L)光スイッチと前記(K+L)×N光スイッチとの間、前記N×(K+L)光スイッチと前記K×M光スイッチとの間、及び、前記M×K光スイッチと前記(K+L)×N光スイッチとの間を、各々、光導波路で接続すると共に、一部の前記光導波路に他の前記光導波路との交差部を有する光導波路を用い、
前記N×(K+L)光スイッチ、前記(K+L)×N光スイッチ、前記M×K光スイッチ、前記K×M光スイッチ及び前記光導波路を、同一チップ上にモノリシック集積した
ことを特徴とする光スイッチ装置。 In the optical switch device according to any one of claims 4 to 7,
Between the N × (K + L) optical switch and the (K + L) × N optical switch, between the N × (K + L) optical switch and the K × M optical switch, and between the M × K optical switch and the (K + L) × N optical switches are connected to each other by an optical waveguide, and an optical waveguide having an intersection with another optical waveguide is used in some of the optical waveguides.
The light characterized in that the N × (K + L) optical switch, the (K + L) × N optical switch, the M × K optical switch, the K × M optical switch, and the optical waveguide are monolithically integrated on the same chip. Switch device. - 請求項4から請求項7のいずれか1つに記載の光スイッチ装置において、
前記N×(K+L)光スイッチと前記(K+L)×N光スイッチとの間、前記N×(K+L)光スイッチと前記K×M光スイッチとの間、及び、前記M×K光スイッチと前記(K+L)×N光スイッチとの間を、各々、光導波路で接続すると共に、全ての前記光導波路が互いに交差しないように、前記N×(K+L)光スイッチ、前記(K+L)×N光スイッチ、前記M×K光スイッチ及び前記K×M光スイッチを配置し、
前記N×(K+L)光スイッチ、前記(K+L)×N光スイッチ、前記M×K光スイッチ、前記K×M光スイッチ及び前記光導波路を、同一チップ上にモノリシック集積した
ことを特徴とする光スイッチ装置。 In the optical switch device according to any one of claims 4 to 7,
Between the N × (K + L) optical switch and the (K + L) × N optical switch, between the N × (K + L) optical switch and the K × M optical switch, and between the M × K optical switch and the The (K + L) × N optical switch is connected to each other by an optical waveguide, and the N × (K + L) optical switch and the (K + L) × N optical switch are arranged so that all the optical waveguides do not cross each other. , Arranging the M × K optical switch and the K × M optical switch,
The light characterized in that the N × (K + L) optical switch, the (K + L) × N optical switch, the M × K optical switch, the K × M optical switch, and the optical waveguide are monolithically integrated on the same chip. Switch device. - 請求項8又は請求項9に記載の光スイッチ装置において、
当該光スイッチ装置の前記光入力ポートと前記光出力ポートの全てを、前記チップの一方側の端部に配置した
ことを特徴とする光スイッチ装置。 In the optical switch device according to claim 8 or 9,
An optical switch device characterized in that all of the optical input port and the optical output port of the optical switch device are arranged at one end of the chip.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018110264A JP2019213152A (en) | 2018-06-08 | 2018-06-08 | Optical switch device |
JP2018-110264 | 2018-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019235392A1 true WO2019235392A1 (en) | 2019-12-12 |
Family
ID=68769525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/021829 WO2019235392A1 (en) | 2018-06-08 | 2019-05-31 | Optical switch device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019213152A (en) |
WO (1) | WO2019235392A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024038542A1 (en) * | 2022-08-18 | 2024-02-22 | Nippon Telegraph And Telephone Corporation | Optical switch and switching system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08211427A (en) * | 1995-02-08 | 1996-08-20 | Nippon Telegr & Teleph Corp <Ntt> | Optical multiplexer and demultiplexer |
JP2007148042A (en) * | 2005-11-28 | 2007-06-14 | Nippon Telegr & Teleph Corp <Ntt> | Wavelength selective optical switch, optical multiplexer, optical demultiplexer, and wavelength selective optical switch module |
JP2016152522A (en) * | 2015-02-18 | 2016-08-22 | 日本電信電話株式会社 | Virtual optical circuit switched system |
-
2018
- 2018-06-08 JP JP2018110264A patent/JP2019213152A/en not_active Withdrawn
-
2019
- 2019-05-31 WO PCT/JP2019/021829 patent/WO2019235392A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08211427A (en) * | 1995-02-08 | 1996-08-20 | Nippon Telegr & Teleph Corp <Ntt> | Optical multiplexer and demultiplexer |
JP2007148042A (en) * | 2005-11-28 | 2007-06-14 | Nippon Telegr & Teleph Corp <Ntt> | Wavelength selective optical switch, optical multiplexer, optical demultiplexer, and wavelength selective optical switch module |
JP2016152522A (en) * | 2015-02-18 | 2016-08-22 | 日本電信電話株式会社 | Virtual optical circuit switched system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024038542A1 (en) * | 2022-08-18 | 2024-02-22 | Nippon Telegraph And Telephone Corporation | Optical switch and switching system |
Also Published As
Publication number | Publication date |
---|---|
JP2019213152A (en) | 2019-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6195187B1 (en) | Wavelength-division multiplexed M×N×M cross-connect switch using active microring resonators | |
JP5515927B2 (en) | Semiconductor optical device | |
JP2007248850A (en) | Mach-zehnder type semiconductor element and control method thereof | |
JP6017380B2 (en) | 1 × N optical switch element and N × N optical switch element | |
WO2011071919A1 (en) | Traveling wave mach-zehnder optical device | |
EP1308772A2 (en) | A multimode interference (MMI) device | |
Doerr et al. | Wavelength-division multiplexing cross connect in InP | |
CN104503023B (en) | External modulation type based on multimode interference structure lacks mould optical communication transmission chip | |
EP1191387B1 (en) | Light-controlled light modulator | |
JP5917645B2 (en) | Optical switch element | |
WO2019235392A1 (en) | Optical switch device | |
Govdeli et al. | On-chip switch and add/drop multiplexer design with left-handed behavior in photonic crystals | |
JP2014191218A (en) | Optical modulator | |
US11921397B2 (en) | Optical switch element | |
JP7356050B2 (en) | optical switch device | |
JP7364934B2 (en) | 1 x N optical switch | |
JP6023028B2 (en) | Optical switch element | |
JP7252494B2 (en) | light switch | |
US11824584B2 (en) | Node apparatus | |
JP2007094336A (en) | Optical semiconductor device and method of manufacturing optical semiconductor device | |
JPH05224245A (en) | Hybrid optical circuit and matrix optical switch | |
Yamanaka | Ultrafast electroabsorption modulators with traveling-wave electrodes | |
US20200064556A1 (en) | NxN Optical Switch | |
Lebby et al. | Indium phosphide (InP) for optical interconnects | |
US6879740B2 (en) | Optical space switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19814884 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19814884 Country of ref document: EP Kind code of ref document: A1 |