WO2019186930A1 - ホットスタンプ成形体 - Google Patents
ホットスタンプ成形体 Download PDFInfo
- Publication number
- WO2019186930A1 WO2019186930A1 PCT/JP2018/013369 JP2018013369W WO2019186930A1 WO 2019186930 A1 WO2019186930 A1 WO 2019186930A1 JP 2018013369 W JP2018013369 W JP 2018013369W WO 2019186930 A1 WO2019186930 A1 WO 2019186930A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- martensite
- grain boundary
- hot
- hot stamping
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12785—Group IIB metal-base component
- Y10T428/12792—Zn-base component
- Y10T428/12799—Next to Fe-base component [e.g., galvanized]
Definitions
- the present invention relates to a hot stamping molded body having excellent bending deformability, particularly used for structural members and reinforcing members of automobiles and structures that require strength.
- Hot stamping in which press forming is performed after heating a steel sheet to a high temperature in the austenite region, is being promoted.
- Hot stamping has been attracting attention as a technology that achieves both molding on automobile members and ensuring strength, because quenching is performed in the mold simultaneously with pressing.
- a molded body made of a high-strength steel plate using hot stamping must have the ability to absorb impact (collision deformation part) at the time of collision, and for that purpose, high impact absorption ability (bending deformation ability) is required.
- Patent Document 1 as a technology that meets this requirement, hot stamping steel is annealed, and Mn and Cr are concentrated in the carbide to form a carbide that is difficult to dissolve. A technique for suppressing the growth of the material and making it finer is disclosed.
- Patent Document 2 discloses a technique for refining austenite by heating at a heating rate of 90 ° C./s or less during hot stamping.
- Patent Literature 3 Patent Literature 4, and Patent Literature 5 also disclose a technique for improving toughness by refining austenite.
- Patent Documents 1 to 5 it is difficult to obtain finer austenite, and it is not possible to obtain strength or bending deformability higher than conventional.
- the present invention has been made in view of the problems of the prior art, and aims to provide a hot stamp molded body that solves the above problems by securing a superior bending deformability in a hot stamp molded body of a high-strength steel sheet.
- the present inventors diligently studied a method for solving the above problems.
- the rotation angle is 5 ° to 75 ° among the grain boundaries whose rotation axis is the ⁇ 011> direction of the crystal grains of the lower bainite, martensite, and tempered martensite. It has been found that if 80% or more of the grain boundaries of 15 ° or more are generated, excellent bending deformability can be obtained.
- the present invention has been made based on the above findings and has been further studied, and the gist thereof is as follows.
- Component composition is mass%, C: 0.35% or more, 0.75% or less, Si: 0.005% or more, 0.25% or less, Mn: 0.5% or more, 3.0 %: Sol.Al: 0.0002% or more, 3.0% or less, Cr: 0.05% or more, 1.00% or less, B: 0.0005% or more, 0.010% or less, Nb: 0 0.01% or more, 0.15% or less, Mo: 0.005% or more, 1.00% or less, Ti: 0% or more, 0.15% or less, Ni: 0% or more, 3.00% or less, P : 0.10% or less, S: 0.10% or less, and N: 0.010% or less, the balance being Fe and inevitable impurities, the microstructure is lower bainite, martensite, and tempered martens The lower bainite, the martensite And with the ⁇ 011> direction of the crystal grains of the tempered martensite as the rotation axis, the grain boundary length at which the rotation angle is 15 °
- the feature of the present invention is that, in the hot stamped molded body, the grain angle where the rotation angle is 5 ° or more and 75 ° or less with the ⁇ 011> direction of the crystal grains of lower bainite or martensite and tempered martensite as the rotation axis, By generating 80% or more of the grain boundaries having a rotation angle of 15 ° or more, excellent bending deformability is obtained.
- the excellent bending deformability is improved because the large-angle boundary of 15 ° or more is more cracked than the small-angle boundary of less than 15 °. This is because the effect of suppressing propagation is high.
- the present inventors have found that the above structure can be obtained by the following method.
- the amount of molten steel cast per unit time is controlled. Thereby, precipitation of Mo and Nb is suppressed, and the solid solution amount of Mo and Nb in the steel is increased.
- concentration of Mn and Cr in the carbide is suppressed by controlling the reduction ratio, temperature, and cooling conditions after rolling in hot finish rolling.
- concentration of Mn and Cr in the carbide is suppressed by controlling the reduction ratio, temperature, and cooling conditions after rolling in hot finish rolling.
- it is desirable that the carbide is easily dissolved. Therefore, it is important not to concentrate an element that inhibits dissolution of carbides such as Mn and Cr into carbides.
- the strength of austenite can be increased due to the effects of solute Mo and Nb.
- advantageous crystal orientations that relieve stress generated by the transformation are preferentially generated.
- the ⁇ 112 ⁇ ⁇ 111> X-ray random intensity ratio of the crystal grains of the lower bainite, martensite and tempered martensite can be controlled in the hot stamping steel sheet.
- the texture memory effect of austenite and martensite causes the lower bainite, martensite, and tempered martensite crystal grains to be formed.
- the grain boundaries having a rotation angle of 5 ° to 75 ° with the ⁇ 011> direction as the rotation axis 80% or more of the grain boundaries having a rotation angle of 15 ° or more are generated.
- the crystal orientation control expressed in the steel sheet for hot stamping is hot stamped by utilizing the grain boundaries of lower bainite, martensite, and tempered martensite as austenite reverse transformation sites. It can be handed over to the molded body.
- % related to the component composition means mass%.
- C 0.35% or more, 0.75% or less
- C is an important element for obtaining a tensile strength of 2000 MPa or more. If it is less than 0.35%, martensite is soft and it is difficult to ensure a tensile strength of 2000 MPa or more, so C is 0.35% or more. Preferably it is 0.37% or more.
- the upper limit is not particularly defined, the upper limit is set to 0.75% in view of the balance between required strength and early fracture suppression.
- Si 0.005% or more, 0.25% or less
- Si is an element that enhances the bending deformability and contributes to the improvement of the shock absorbing ability. If it is less than 0.005%, the bending deformability is poor and the impact absorbing ability deteriorates, so 0.005% or more is added. Preferably it is 0.01% or more. On the other hand, if it exceeds 0.25%, the amount of solid solution in the carbide increases and the carbide becomes difficult to dissolve, and the undissolved carbide becomes a reverse transformation site of austenite, and lower bainite, martensite or tempered martensite.
- the grain boundary where the rotation angle is 15 ° or more cannot be controlled to 80% or more. Is 0.25%. Preferably it is 0.22% or less.
- Mn 0.5% to 3.0%
- Mn is an element that contributes to improvement in strength by solid solution strengthening. If it is less than 0.5%, the solid solution strengthening ability is poor and the martensite becomes soft, and it is difficult to ensure a tensile strength of 2000 MPa or more, so 0.5% or more is added. Preferably it is 0.7% or more.
- the grain boundary having a rotation angle of 5 ° or more and 75 ° or less with the ⁇ 011> direction of the tempered martensite crystal grains as the rotation axis the grain boundary having a rotation angle of 15 ° or more cannot be controlled to 80% or more.
- 3.0% is the upper limit. Preferably, it is 2.5% or less.
- Al is an element that acts to deoxidize molten steel and to make the steel sound. If it is less than 0.0002%, deoxidation is sufficient and a coarse oxide is generated, causing premature breakage. Al is made 0.0002% or more. Preferably it is 0.0010% or more. On the other hand, if added over 3.0%, a coarse oxide is generated and causes early breakage, so the content is made 3.0% or less. Preferably it is 2.5% or less, More preferably, it is 0.5% or less.
- Cr 0.05% or more, 1.00% or less
- Cr is an element that contributes to improvement in strength by solid solution strengthening. If it is less than 0.05%, the solid solution strengthening ability is poor, the martensite becomes soft, and it is difficult to ensure a tensile strength of 2000 MPa or more, so 0.05% or more is added. Preferably it is 0.1% or more.
- the grain boundary having a rotation angle of 5 ° or more and 75 ° or less with the ⁇ 011> direction of the tempered martensite crystal grains as the rotation axis the grain boundary having a rotation angle of 15 ° or more cannot be controlled to 80% or more.
- the upper limit is 1.00%. Preferably, it is 0.8% or less.
- B 0.0005% or more and 0.010% or less
- B is an element that contributes to improving the strength by solid solution strengthening. If it is less than 0.0005%, the solid solution strengthening ability is poor and the martensite becomes soft, and it is difficult to ensure a tensile strength of 2000 MPa or more, so 0.0005% or more is added. Preferably it is 0.0008% or more.
- the grain boundary having a rotation angle of 5 ° or more and 75 ° or less with the ⁇ 011> direction of the tempered martensite crystal grains as the rotation axis the grain boundary having a rotation angle of 15 ° or more cannot be controlled to 80% or more.
- 0.010% is the upper limit. Preferably, it is 0.007% or less.
- Nb 0.01% or more and 0.15% or less
- Nb is an element that dissolves in the grain boundary of prior austenite and increases the strength of the grain boundary.
- Nb improves the embrittlement strength of the grain boundary because it dissolves at the grain boundary and inhibits P grain boundary segregation. Therefore, 0.01% or more is added. Preferably it is 0.030% or more.
- the ⁇ 112 ⁇ ⁇ 111> X-ray random strength of the crystal grains of lower bainite, martensite or tempered martensite The grain boundary where the ratio cannot be 2.8 or more, and as a result, the rotation angle is 5 ° or more and 75 ° or less with the ⁇ 011> direction of the crystal grains of lower bainite, martensite, or tempered martensite as the rotation axis.
- the grain boundary where the rotation angle is 15 ° or more cannot be controlled to 80% or more, so it is 0.15% or less. Preferably it is 0.12% or less.
- Mo 0.005% or more and 1.00% or less
- Mo is an element that dissolves in the grain boundary of prior austenite and increases the strength of the grain boundary. Moreover, since Mo inhibits P grain boundary segregation by forming a solid solution at the grain boundary, the embrittlement strength of the grain boundary is improved. Therefore, 0.005 or more is added. Preferably it is 0.030% or more. On the other hand, when added over 1.00%, it becomes easy to precipitate as carbide, and it becomes easy to precipitate as carbide. In the steel sheet for hot stamping, ⁇ 112 ⁇ ⁇ of the grains of lower bainite, martensite or tempered martensite The X-ray random intensity ratio of 111> cannot be made 2.8 or more.
- the rotation angle is 5 ° or more with the ⁇ 011> direction of the crystal grains of lower bainite, martensite, or tempered martensite as the rotation axis.
- the grain boundaries that are 75 ° or less the grain boundaries that have a rotation angle of 15 ° or more cannot be controlled to 80% or more. Preferably it is 0.80% or less.
- Ti 0% or more, 0.15% or less
- Ti is not an essential element, but Ti is an element that contributes to improvement in strength by solid solution strengthening, and may be added as necessary.
- it is preferable to set it as 0.01% or more.
- it is 0.02% or more.
- coarse carbides and nitrides are formed to cause early breakage, so the content is made 0.15% or less.
- it is 0.12% or less.
- Ni 0% or more and 3.00% or less
- Ni is not an essential element, it is an element that contributes to improvement in strength by solid solution strengthening, and may be added as necessary.
- it is preferable to set it as 0.01% or more.
- it is 0.02% or more.
- the steel becomes brittle and causes premature fracture, so the content is made 3.00% or less.
- it is 2.00% or less.
- P 0.10% or less
- P is an impurity element and is an element that easily segregates at the grain boundary and lowers the embrittlement strength of the grain boundary. If it exceeds 0.10%, the embrittlement strength of the grain boundary is remarkably lowered and premature fracture is caused, so P is made 0.10% or less. Preferably it is 0.050% or less.
- the lower limit is not particularly limited, but if it is reduced to less than 0.0001%, the de-P cost increases significantly and becomes economically disadvantageous, so 0.0001% is a practical lower limit on a practical steel sheet.
- S is an impurity element and is an element that forms inclusions. If it exceeds 0.10%, inclusions are generated and cause early breakage, so S is made 0.10% or less. Preferably it is 0.0050% or less.
- the lower limit is not particularly limited, but if it is reduced to less than 0.0015%, the de-S cost is significantly increased, which is economically disadvantageous, so 0.0015% is a practical lower limit on a practical steel sheet.
- N 0.010% or less
- N is an impurity element, and forms nitrides and causes early breakage. Therefore, the N content is set to 0.010% or less. Preferably it is 0.0075% or less.
- the lower limit is not particularly limited, but if it is reduced to less than 0.0001%, the de-N cost greatly increases and becomes economically disadvantageous, so 0.0001% is a practical lower limit on a practical steel sheet.
- the balance of the component composition is Fe and impurities.
- impurities include elements that are allowed from steel raw materials or scraps and / or inevitably mixed in the steel making process, and are allowed to the extent that they do not impair the properties of the hot stamped article of the present invention.
- Control of crystal orientation of lower bainite, martensite, and tempered martensite is an important structural factor for ensuring excellent bending deformability.
- the ⁇ 011> direction of the crystal grains of the lower bainite, martensite, and tempered martensite is used as the rotation axis.
- the grain boundaries having a rotation angle of 5 ° or more and 75 ° or less it is preferable to increase the grain boundaries having a rotation angle of 15 ° or more, and the ratio needs to be controlled to 80% or more. More preferably, it is 85% or more.
- the ratio of the grain boundary where the rotation angle is 15 ° or more is Measure as follows.
- a mirror surface is finished using a liquid in which a diamond powder having a particle size of 1 ⁇ m to 6 ⁇ m is dispersed in a diluent such as alcohol or pure water.
- finish polishing is performed for 8 to 20 minutes using a standard colloidal silica suspension (particle size: 0.04 ⁇ m).
- the polished sample is washed with acetone or ethyl alcohol, dried, and set in a scanning electron microscope.
- the scanning electron microscope used is a model equipped with an EBSD detector (TSL DVC5 detector).
- Crystal orientation information is obtained by EBSD measurement at a measurement interval of 0.1 ⁇ m in a range of 50 ⁇ m in the plate thickness direction and 50 ⁇ m in the rolling direction at the plate thickness 3/8 position to 5/8 position.
- the measurement conditions are a vacuum level of 9.6 ⁇ 10 ⁇ 5 or less, an acceleration voltage of 15 kV, an irradiation current of 13 nA, a Binning size of 4 ⁇ 4, and an exposure time of 42 seconds.
- the measurement data is among the grain boundaries of the body-centered cubic structure.
- the length of the grain boundary whose rotation angle is 5 ° or more and 75 ° or less with the ⁇ 011> direction as the rotation axis is calculated.
- the length of the grain boundary having a rotation angle of 15 ° to 75 ° with the ⁇ 011> direction as the rotation axis is calculated, and the rotation angle is 5 ° to 75 ° with the ⁇ 011> direction as the rotation axis.
- the value divided by the grain boundary length is calculated.
- Grain boundaries where the above measurement is carried out at least 5 locations and the average value is a grain boundary where the rotation angle is 5 ° or more and 75 ° or less with the ⁇ 011> direction of the crystal grains of lower bainite, martensite or tempered martensite as the rotation axis Of these, the ratio of grain boundaries where the rotation angle is 15 ° or more is used.
- the microstructure In order for the hot stamping molded body to obtain a tensile strength of 1500 MPa or more, the microstructure needs to contain martensite or tempered martensite having an area ratio of 90% or more. Preferably it is 94% or more. From the viewpoint of securing tensile strength, the microstructure may be lower bainite.
- the structure having an area ratio of 90% or more may be one of lower bainite, martensite, and tempered martensite, or a mixed structure thereof.
- the balance of the microstructure is not particularly specified, and examples thereof include upper bainite, retained austenite, and pearlite.
- the area ratio of lower bainite, martensite, and tempered martensite is measured as follows.
- a section perpendicular to the plate surface is cut out from the center of the hot stamped body, and the measurement surface is polished using # 600 to # 1500 silicon carbide paper, and then a diamond powder having a particle size of 1 to 6 ⁇ m is diluted with a diluent such as alcohol or the like. Use a liquid dispersed in pure water to give a mirror finish.
- the corroded sample is washed with acetone or ethyl alcohol, dried, and subjected to observation with a scanning electron microscope.
- the scanning electron microscope used is assumed to be equipped with a two-electron detector.
- the sample was irradiated with an electron beam at an acceleration voltage of 10 kV and an irradiation current level of 8, and the sample thickness was 1/8 to 3/8 centered on the 1/4 position.
- a secondary electron image of the range is taken.
- the photographing magnification is 10,000 times on the basis of a screen of 386 mm wide ⁇ 290 mm long, and the number of photographing fields is 10 fields or more.
- the crystal grain boundary and the carbide are captured with a bright contrast, and therefore the structure can be easily determined by the position of the crystal grain boundary and the carbide.
- carbide is formed inside the crystal grain, it is tempered martensite or lower bainite, and the structure where the carbide is not observed inside the crystal grain is martensite.
- the structure in which carbides are formed at the grain boundaries is upper bainite or pearlite.
- the same field of view as the position where the secondary electron image is taken is measured by an electron backscatter diffraction method.
- the scanning electron microscope to be used is equipped with a camera capable of electron backscatter diffraction.
- the sample In a vacuum of 9.6 ⁇ 10 ⁇ 5 or less, the sample is irradiated with an electron beam at an acceleration voltage of 25 kV and an irradiation current level of 16, and a face-centered cubic lattice map is created from the obtained measurement data.
- the imaging magnification is to create a mesh of 2 ⁇ m intervals on a photograph taken at a magnification of 10,000 with reference to a screen of horizontal 386 mm ⁇ longitudinal 290 mm, and select a microstructure located at the intersection of the mesh.
- a value obtained by dividing the number of intersections of each structure by all the intersections is defined as the area fraction of the microstructure. This operation is performed in 10 fields of view, and the average value is calculated as the area ratio of the microstructure.
- the molten steel which has the above-mentioned chemical composition is made into a steel piece (slab) by a continuous casting method.
- this continuous casting process it is preferable to set the molten steel casting amount per unit time to 6 ton / min or less.
- the casting amount (casting speed) per unit time of molten steel exceeds 6 ton / min during continuous casting, microsegregation of Mn increases and the nucleation amount of precipitates mainly composed of Mo and Nb increases. . More preferably, the casting amount is 5 ton / min or less.
- the lower limit of the casting amount is not particularly limited, but is preferably 0.1 ton / min or more from the viewpoint of operation cost.
- Hot rolling process The above-mentioned steel slab is hot-rolled to obtain a steel plate. At that time, the hot rolling is finished in a temperature range defined by the formula (2) of A3 transformation temperature + 10 ° C. or more and A3 transformation temperature + 200 ° C. or less, and the final rolling reduction at that time is set to 12% or more. Cooling is started within 1 second after the completion, and the temperature range from the finish rolling finish temperature to 550 ° C. is cooled at a cooling rate of 100 ° C./second or more and wound at a temperature of less than 500 ° C.
- A3 transformation temperature 850 + 10 ⁇ (C + N) ⁇ Mn + 350 ⁇ Nb + 250 ⁇ Ti + 40 ⁇ B + 10 ⁇ Cr + 100 ⁇ Mo (2)
- the recrystallization of austenite is promoted by setting the finish rolling temperature to A3 transformation temperature + 10 ° C. or higher.
- A3 transformation temperature + 10 ° C. or higher is suppressed, and the precipitation sites of Nb and Mo can be reduced.
- the consumption of C can be suppressed by reducing the precipitation sites of Nb and Mo, the number density of carbides can be increased in a later step.
- it is A3 transformation temperature + 30 ° C. or higher.
- finish rolling temperature By setting the finish rolling temperature to A3 transformation temperature + 200 ° C. or less, excessive grain growth of austenite is suppressed.
- finish rolling in a temperature range of A3 transformation temperature + 200 ° C. or less recrystallization of austenite is promoted, and excessive grain growth does not occur. Therefore, fine carbides can be obtained in the winding process.
- it is A3 transformation temperature +150 degrees C or less.
- Austenite recrystallization is promoted by setting the reduction ratio of finish rolling to 12% or more. Thereby, the formation of a low-angle grain boundary in the crystal grains is suppressed, and the precipitation sites of Nb and Mo can be reduced. Preferably, it is 15% or more.
- Nb and Mo in austenite By starting cooling within 1 second after finishing rolling, preferably within 0.8 seconds, and cooling the temperature range from the finishing rolling finishing temperature to 550 ° C. at a cooling rate of 100 ° C./second or more, Nb and The residence time in the temperature range where the precipitation of Mn is promoted can be reduced. As a result, precipitation of Nb and Mo in austenite can be suppressed, and the amount of Nb and Mo dissolved in the austenite grain boundary increases.
- the coiling temperature By setting the coiling temperature to less than 500 ° C., the above effect can be enhanced, and the ⁇ 112 ⁇ ⁇ 111> X-ray random intensity ratio of the crystal grains can be controlled in the hot stamping steel sheet.
- Nb and Mo are dissolved in austenite.
- austenite By transforming from austenite in which Nb and Mo are dissolved to lower bainite, martensite, or tempered martensite, Nb, Mo Produces a crystal orientation that is advantageous in order to relieve the stress generated by transformation, so that the ⁇ 112 ⁇ ⁇ 111> X-ray random intensity ratio of the crystal grains can be controlled.
- it Preferably it is less than 480 degreeC.
- the lower limit is not particularly defined, but it is difficult to wind up at room temperature or lower in actual operation, so the room temperature is the lower limit.
- a plating layer may be formed on the surface of the softening layer for the purpose of improving corrosion resistance.
- the plating layer may be either an electroplating layer or a hot dipping layer.
- Examples of the electroplating layer include an electrogalvanizing layer and an electro Zn—Ni alloy plating layer.
- the hot dip galvanized layer includes hot dip galvanized layer, alloyed hot dip galvanized layer, hot dip aluminum plated layer, hot dip Zn-Al alloy plated layer, hot dip Zn-Al-Mg alloy plated layer, hot dip Zn-Al-Mg-Si alloy.
- a plating layer etc. are illustrated.
- the adhesion amount of the plating layer is not particularly limited and may be a general adhesion amount.
- the hot stamping molded body of the present invention is a hot stamping steel sheet which is heated and held at a temperature range of 500 ° C. or higher and A3 point or lower at an average heating rate of less than 100 ° C./s, and then hot stamped and molded.
- the molded body is produced by cooling to room temperature.
- a part or all of the hot stamping body may be tempered at a temperature of 200 ° C. or higher and 500 ° C. or lower.
- the lower bainite, martensite, and tempered martensite grain boundaries formed in the steel sheet for hot stamping are heated to a temperature range of 500 ° C. or more and A3 or less at an average heating rate of less than 100 ° C./s. It functions as a transformation site, and the texture angle effect of austenite and martensite allows the rotation angle to be 5 ° to 75 ° with the ⁇ 011> direction of the crystal grains of the lower bainite, martensite, or tempered martensite as the rotation axis.
- 80% or more of the grain boundaries that have a rotation angle of 15 ° or more can be generated.
- the average heating rate is 100 ° C./s or more, fine carbides become austenite reverse transformation sites, so that the texture memory effect of austenite and martensite cannot be obtained.
- it is 90 degrees C / s or less.
- the lower limit is not particularly specified, but if it is less than 0.01 ° C./s, the production cost is disadvantageous, so 0.01 ° C./s or more is preferable. More preferably, it is 1 ° C./s or more.
- the holding temperature at the time of hot stamping is preferably A3 point + 10 ° C. or higher and A3 point + 150 ° C. or lower in order to refine the prior austenite grains.
- the cooling rate after hot stamping is preferably 10 ° C./s or more from the viewpoint of improving the strength.
- the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
- the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
- Steel strips produced by casting molten steel having the composition shown in Tables 1-1 to 1-3 are subjected to hot rolling and cold rolling shown in Tables 2-1 to 2-3 to obtain hot stamping steel plates.
- the steel sheet for hot stamping was subjected to the heat treatment shown in Tables 3-1 to 3-3, and hot stamping was performed to produce a molded body.
- Tables 3-1 to 3-3 show the microstructure and mechanical properties of the hot stamping products.
- the area ratio of the lower bainite, martensite, and tempered martensite, and the rotation angle of 5 as the rotation axis is the ⁇ 011> direction of the crystal grains of the lower bainite, martensite, or tempered martensite.
- the ratio of the grain boundary where the rotation angle is 15 ° or more among the grain boundaries where the angle is from 75 ° to 75 ° was measured.
- the strength of the hot stamped molded body was evaluated by a tensile test.
- a tensile test a No. 5 test piece described in JIS Z 2201 was prepared, and the test was performed according to the test method described in JIS Z 2241.
- the maximum strength was 2000 MPa or more.
- the bending deformability was evaluated under the following measurement conditions based on the VDA standard (VDA238-100) defined by the German Automobile Manufacturers Association.
- VDA238-100 the displacement at the maximum load obtained by a bending test is converted into an angle based on the VDA, the maximum bending angle is obtained, and a material having a maximum bending angle of 50 ° or more is regarded as acceptable.
- the hot stamped article of the present invention has a tensile strength of 2000 MPa or more and was confirmed to have excellent bending deformability. On the other hand, in the example where the chemical composition and the manufacturing method are not appropriate, the target characteristics were not obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
Cは、2000MPa以上の引張強さを得るために重要な元素である。0.35%未満では、マルテンサイトが軟らかく、2000MPa以上の引張強さを確保することが困難であるので、Cは0.35%以上とする。好ましくは0.37%以上である。上限は特に定めないが、要求される強度と早期破断抑制のバランスを鑑みて、上限を0.75%とする。
Siは、曲げ変形能を高めて衝撃吸収能の向上に寄与する元素である。0.005%未満では曲げ変形能が乏しく衝撃吸収能が劣化するため、0.005%以上添加する。好ましくは0.01%以上である。一方、0.25%を超えると、炭化物への固溶量が増加して炭化物が溶解しにくくなり、溶け残った炭化物がオーステナイトの逆変態サイトとなってしまい、下部ベイナイト又はマルテンサイト又は焼戻しマルテンサイトの結晶粒の<011>方向を回転軸として回転角が5°以上75°以下となる粒界のうち、回転角が15°以上となる粒界を80%以上に制御できなくなるため、上限を0.25%とする。好ましくは0.22%以下である。
Mnは、固溶強化で強度の向上に寄与する元素である。0.5%未満では固溶強化能が乏しくマルテンサイトが軟らかくなり、2000MPa以上の引張強さを確保することが困難であるので、0.5%以上添加する。好ましくは0.7%以上である。一方、3.0%を超えて添加すると、炭化物への固溶量が増加して炭化物が溶解しにくくなり、溶け残った炭化物がオーステナイトの逆変態サイトとなってしまい、下部ベイナイト又はマルテンサイト又は焼戻しマルテンサイトの結晶粒の<011>方向を回転軸として回転角が5°以上75°以下となる粒界のうち、回転角が15°以上となる粒界を80%以上に制御できなくなるため、3.0%を上限とする。好ましくは、2.5%以下である。
Alは、溶鋼を脱酸して鋼を健全化する作用をなす元素である。0.0002%未満では、脱酸が十分で粗大な酸化物が生成して早期破断を引き起こすため、sol.Alは0.0002%以上とする。好ましくは0.0010%以上である。一方、3.0%を超えて添加すると、粗大な酸化物が生成し早期破断を引き起こすため、3.0%以下とする。好ましくは2.5%以下、より好ましくは0.5%以下である。
Crは、固溶強化で強度の向上に寄与する元素である。0.05%未満では固溶強化能が乏しくマルテンサイトが軟らかくなり、2000MPa以上の引張強さを確保することが困難であるので、0.05%以上添加する。好ましくは0.1%以上である。一方、1.00%を超えて添加すると、炭化物への固溶量が増加して炭化物が溶解しにくくなり、溶け残った炭化物がオーステナイトの逆変態サイトとなってしまい、下部ベイナイト又はマルテンサイト又は焼戻しマルテンサイトの結晶粒の<011>方向を回転軸として回転角が5°以上75°以下となる粒界のうち、回転角が15°以上となる粒界を80%以上に制御できなくなるため、1.00%を上限とする。好ましくは、0.8%以下である。
Bは、固溶強化で強度の向上に寄与する元素である。0.0005%未満では固溶強化能が乏しくマルテンサイトが軟らかくなり、2000MPa以上の引張強さを確保することが困難であるので、0.0005%以上添加する。好ましくは0.0008%以上である。一方、0.010%を超えて添加すると、炭化物への固溶量が増加して炭化物が溶解しにくくなり、溶け残った炭化物がオーステナイトの逆変態サイトとなってしまい、下部ベイナイト又はマルテンサイト又は焼戻しマルテンサイトの結晶粒の<011>方向を回転軸として回転角が5°以上75°以下となる粒界のうち、回転角が15°以上となる粒界を80%以上に制御できなくなるため、0.010%を上限とする。好ましくは、0.007%以下である。
Nbは、旧オーステナイトの粒界に固溶して粒界の強度を上昇させる元素である。また、Nbは、粒界に固溶することでPの粒界偏析を阻害するため、粒界の脆化強度を向上させる。そのため、0.01%以上添加する。好ましくは0.030%以上である。一方、0.15%を超えて添加すると、炭化物として析出しやすくなり、ホットスタンプ用鋼鈑において、下部ベイナイト又はマルテンサイト又は焼戻しマルテンサイトの結晶粒の{112}<111>のX線ランダム強度比を2.8以上とすることができず、結果として、下部ベイナイト又はマルテンサイト又は焼戻しマルテンサイトの結晶粒の<011>方向を回転軸として回転角が5°以上75°以下となる粒界のうち、回転角が15°以上となる粒界を80%以上に制御できなくなるため、0.15%以下とする。好ましくは0.12%以下である。
Moは、旧オーステナイトの粒界に固溶して粒界の強度を上昇させる元素である。また、Moは、粒界に固溶することでPの粒界偏析を阻害するため、粒界の脆化強度を向上させる。そのため、0.005以上添加する。好ましくは0.030%以上である。一方、1.00%を超えて添加すると、炭化物として析出しやすくなり、炭化物として析出しやすくなり、ホットスタンプ用鋼鈑において、下部ベイナイト又はマルテンサイト又は焼戻しマルテンサイトの結晶粒の{112}<111>のX線ランダム強度比を2.8以上とすることができず、結果として、下部ベイナイト又はマルテンサイト又は焼戻しマルテンサイトの結晶粒の<011>方向を回転軸として回転角が5°以上75°以下となる粒界のうち、回転角が15°以上となる粒界を80%以上に制御できなくなるため、1.00%以下とする。好ましくは0.80%以下である。
Tiは、必須の元素ではないが、固溶強化で強度の向上に寄与する元素であるため、必要に応じて添加してもよい。Tiを添加する場合、添加の効果を得るためには、0.01%以上とするのが好ましい。好ましくは0.02%以上である。一方、0.15%を超えて添加すると、粗大な炭化物や窒化物を形成して早期破断を引き起こすため、0.15%以下とする。好ましくは0.12%以下である。
Niは、必須の元素ではないが、固溶強化で強度の向上に寄与する元素であるため、必要に応じて添加してもよい。Niを添加する場合、添加の効果を得るためには、0.01%以上とするのが好ましい。好ましくは0.02%以上である。一方、3.00%を超えて添加すると、鋼が脆くなり早期破断を引き起こすため、3.00%以下とする。好ましくは2.00%以下である。
Pは不純物元素であり、粒界に偏析しやすく、粒界の脆化強度を低下させる元素である。0.10%を超えると、粒界の脆化強度が著しく低下し、早期破断を引き起こすため、Pは0.10%以下とする。好ましくは0.050%以下である。下限は、特に限定しないが、0.0001%未満に低減すると、脱Pコストが大幅に上昇し、経済的に不利になるので、実用鋼板上、0.0001%が実質的な下限である。
Sは不純物元素であり、介在物を形成する元素である。0.10%を超えると、介在物が生成し早期破断を引き起こすため、Sは0.10%以下とする。好ましくは0.0050%以下である。下限は、特に限定しないが、0.0015%未満に低減すると、脱Sコストが大幅に上昇し、経済的に不利になるので、実用鋼板上、0.0015%が実質的な下限である。
Nは不純物元素であり、窒化物を形成して早期破断を引き起こすため、0.010%以下とする。好ましくは0.0075%以下である。下限は、特に限定しないが、0.0001%未満に低減すると、脱Nコストが大幅に上昇し、経済的に不利になるので、実用鋼板上、0.0001%が実質的な下限である。
次に、本発明に係るホットスタンプ成形体、およびホットスタンプ成形体の製造に用いるホットスタンプ用鋼板を得るための製造方法の形態を説明するが、本発明は、以下に説明するような形態に限定されない。
上述の化学組成を有する溶鋼を連続鋳造法により、鋼片(スラブ)にする。この連続鋳造工程では、単位時間当たりの溶鋼鋳込み量を6ton/分以下とすることが好ましい。連続鋳造時に溶鋼の単位時間あたりの鋳込み量(鋳込み速度)が6ton/分を超えると、Mnのミクロ偏析が増加するとともに、MoやNbを主体とする析出物の核生成量が増加してしまう。鋳込み量を5ton/分を以下とすることがさらに好ましい。鋳込み量の下限は特に限定されないが、操業コストの観点から、0.1ton/分以上であることが好ましい。
上述の鋼片を熱間圧延して鋼板とする。その際、式(2)で定義されるA3変態温度+10℃以上かつA3変態温度+200℃以下の温度域で熱間圧延を終了し、その際の最終段圧下率を12%以上とし、仕上げ圧延終了後から1秒以内に冷却を開始し、仕上げ圧延終了温度から550℃までの温度域を100℃/秒以上の冷却速度で冷却し、500℃未満の温度で巻き取る。
軟化層の表面上に、耐食性の向上等を目的として、めっき層を形成してもよい。めっき層は、電気めっき層及び溶融めっき層のいずれでもよい。電気めっき層としては、電気亜鉛めっき層、電気Zn-Ni合金めっき層等が例示される。溶融めっき層としては、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、溶融アルミニウムめっき層、溶融Zn-Al合金めっき層、溶融Zn-Al-Mg合金めっき層、溶融Zn-Al-Mg-Si合金めっき層等が例示される。めっき層の付着量は、特に制限されず一般的な付着量でよい。
ホットスタンプ用鋼板の製造においては、その他、酸洗、冷間圧延、調質圧延等、公知の製法を含んでもよい。
曲げ稜線:圧延と直角な方向
試験方法:ロール支持、ポンチ押し込み
ロール径:φ30mm
ポンチ形状:先端R=0.4mm
ロール間距離:2.0×1.0(mm)+0.5mm
押し込み速度:20mm/min
試験機:SHIMADZU AUTOGRAPH 20kN
Claims (2)
- 成分組成が、質量%で、
C :0.35%以上、0.75%以下、
Si:0.005%以上、0.25%以下、
Mn:0.5%以上、3.0%以下、
sol.Al:0.0002%以上、3.0%以下、
Cr:0.05%以上、1.00%以下、
B :0.0005%以上、0.010%以下、
Nb:0.01%以上、0.15%以下、
Mo:0.005%以上、1.00%以下、
Ti:0%以上、0.15%以下、
Ni:0%以上、3.00%以下、
P:0.10%以下、
S:0.10%以下、及び
N:0.010%以下を含有し、残部がFe及び不可避的不純物であり、
ミクロ組織が、下部ベイナイト、マルテンサイト、及び焼戻しマルテンサイトの少なくとも1種を、面積率で90%以上含み、
上記下部ベイナイト、上記マルテンサイト、及び上記焼戻しマルテンサイトの結晶粒の<011>方向を回転軸として、回転角が5°以上75°以下となる粒界の長さに対する回転角が15°以上となる粒界の長さの割合が80%以上である
ことを特徴とするホットスタンプ成形体。 - めっき層を有することを特徴とする請求項1に記載のホットスタンプ成形体。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018535450A JP6477978B1 (ja) | 2018-03-29 | 2018-03-29 | ホットスタンプ成形体 |
PCT/JP2018/013369 WO2019186930A1 (ja) | 2018-03-29 | 2018-03-29 | ホットスタンプ成形体 |
MX2020010135A MX2020010135A (es) | 2018-03-29 | 2018-03-29 | Articulo estampado en caliente. |
CN201880088267.7A CN111655885B (zh) | 2018-03-29 | 2018-03-29 | 热冲压成型体 |
EP18912209.6A EP3778951B1 (en) | 2018-03-29 | 2018-03-29 | Hot-stamped article |
US17/042,476 US11180837B2 (en) | 2018-03-29 | 2018-03-29 | Hot stamped article |
KR1020207027253A KR102460598B1 (ko) | 2018-03-29 | 2018-03-29 | 핫 스탬프 성형체 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/013369 WO2019186930A1 (ja) | 2018-03-29 | 2018-03-29 | ホットスタンプ成形体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019186930A1 true WO2019186930A1 (ja) | 2019-10-03 |
Family
ID=65655772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/013369 WO2019186930A1 (ja) | 2018-03-29 | 2018-03-29 | ホットスタンプ成形体 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11180837B2 (ja) |
EP (1) | EP3778951B1 (ja) |
JP (1) | JP6477978B1 (ja) |
KR (1) | KR102460598B1 (ja) |
CN (1) | CN111655885B (ja) |
MX (1) | MX2020010135A (ja) |
WO (1) | WO2019186930A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020241258A1 (ja) * | 2019-05-31 | 2020-12-03 | 日本製鉄株式会社 | ホットスタンプ成形体 |
JPWO2021141097A1 (ja) * | 2020-01-09 | 2021-07-15 | ||
JPWO2021141100A1 (ja) * | 2020-01-09 | 2021-07-15 | ||
JPWO2021141103A1 (ja) * | 2020-01-09 | 2021-07-15 | ||
EP3960894A1 (en) * | 2020-09-01 | 2022-03-02 | Hyundai Steel Company | Material for hot stamping and method for manufacturing the same |
WO2023234337A1 (ja) * | 2022-06-03 | 2023-12-07 | 日本製鉄株式会社 | ホットスタンプ成形体 |
EP4209610A4 (en) * | 2020-09-01 | 2024-01-17 | Hyundai Steel Company | HOT STAMPING MATERIAL AND METHOD FOR PRODUCING IT |
JP7534618B2 (ja) | 2020-09-18 | 2024-08-15 | 日本製鉄株式会社 | 高炭素鋼部品 |
WO2024190491A1 (ja) * | 2023-03-13 | 2024-09-19 | 日本製鉄株式会社 | 鋼部材及び鋼板 |
WO2024190779A1 (ja) * | 2023-03-13 | 2024-09-19 | 日本製鉄株式会社 | 鋼部材及び鋼板 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019186927A1 (ja) * | 2018-03-29 | 2019-10-03 | 日本製鉄株式会社 | ホットスタンプ用鋼板 |
US11904573B2 (en) * | 2019-05-31 | 2024-02-20 | Nippon Steel Corporation | Hot-stamp-molded article |
KR102568217B1 (ko) * | 2021-09-23 | 2023-08-21 | 주식회사 포스코 | 구멍확장성이 우수한 초고강도 냉연강판 및 그 제조방법 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5114691B1 (ja) | 1969-08-14 | 1976-05-11 | ||
JP2002309345A (ja) | 2001-02-07 | 2002-10-23 | Nkk Corp | 焼入れ後の衝撃特性に優れる薄鋼板およびその製造方法 |
JP2010174283A (ja) * | 2009-01-28 | 2010-08-12 | Jfe Steel Corp | 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法 |
JP5369714B2 (ja) | 2009-01-28 | 2013-12-18 | Jfeスチール株式会社 | 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法 |
JP2014015638A (ja) | 2012-07-06 | 2014-01-30 | Nippon Steel & Sumitomo Metal | 熱間プレス鋼板部材およびその製造方法ならびに熱間プレス用鋼板 |
WO2015147216A1 (ja) | 2014-03-26 | 2015-10-01 | 新日鐵住金株式会社 | 高強度熱間成形鋼板部材 |
WO2015194571A1 (ja) * | 2014-06-20 | 2015-12-23 | 株式会社神戸製鋼所 | 熱間プレス用鋼板、並びに該鋼板を用いた熱間プレス成形品及びその製造方法 |
JP2017043825A (ja) * | 2015-08-28 | 2017-03-02 | 新日鐵住金株式会社 | ホットスタンプ用鋼板およびその製造方法、ならびにホットスタンプ鋼板部材 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4276482B2 (ja) * | 2003-06-26 | 2009-06-10 | 新日本製鐵株式会社 | 極限変形能と形状凍結性に優れた高強度熱延鋼板とその製造方法 |
JP5463906B2 (ja) * | 2009-12-28 | 2014-04-09 | 新日鐵住金株式会社 | ホットスタンプ用鋼板及びその製造方法 |
CN102939399B (zh) * | 2010-06-14 | 2015-01-28 | 新日铁住金株式会社 | 热压印成型体、热压印用钢板的制造方法及热压印成型体的制造方法 |
CN103314120B (zh) * | 2010-10-22 | 2014-11-05 | 新日铁住金株式会社 | 热锻压成形体的制造方法及热锻压成形体 |
KR101253885B1 (ko) * | 2010-12-27 | 2013-04-16 | 주식회사 포스코 | 연성이 우수한 성형 부재용 강판, 성형 부재 및 그 제조방법 |
EP3020845B1 (en) | 2013-09-18 | 2018-01-31 | Nippon Steel & Sumitomo Metal Corporation | Hot-stamp part and method of manufacturing the same |
JP6326761B2 (ja) * | 2013-10-23 | 2018-05-23 | 新日鐵住金株式会社 | ホットスタンプ鋼材の製造方法、ホットスタンプ用鋼板の製造方法及びホットスタンプ用鋼板 |
CN104195443A (zh) * | 2014-05-19 | 2014-12-10 | 首钢总公司 | 汽车用高抗弯性能热成形钢及其制造方法 |
WO2016132549A1 (ja) * | 2015-02-20 | 2016-08-25 | 新日鐵住金株式会社 | 熱延鋼板 |
US20180023162A1 (en) * | 2015-02-20 | 2018-01-25 | Nippon Steel & Sumitomo Metal Corporation | Hot-rolled steel sheet |
EP3272893B1 (en) * | 2015-03-16 | 2020-12-30 | JFE Steel Corporation | Steel material for composite pressure vessel liner, steel tubing for composite pressure vessel liner, and method for manufacturing steel tubing for composite pressure vessel liner |
KR101797316B1 (ko) * | 2015-12-21 | 2017-11-14 | 주식회사 포스코 | 고강도 및 우수한 내구성을 가지는 자동차용 부품 및 그 제조방법 |
KR101917472B1 (ko) * | 2016-12-23 | 2018-11-09 | 주식회사 포스코 | 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법 |
-
2018
- 2018-03-29 US US17/042,476 patent/US11180837B2/en active Active
- 2018-03-29 EP EP18912209.6A patent/EP3778951B1/en active Active
- 2018-03-29 CN CN201880088267.7A patent/CN111655885B/zh active Active
- 2018-03-29 MX MX2020010135A patent/MX2020010135A/es unknown
- 2018-03-29 JP JP2018535450A patent/JP6477978B1/ja active Active
- 2018-03-29 KR KR1020207027253A patent/KR102460598B1/ko active IP Right Grant
- 2018-03-29 WO PCT/JP2018/013369 patent/WO2019186930A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5114691B1 (ja) | 1969-08-14 | 1976-05-11 | ||
JP2002309345A (ja) | 2001-02-07 | 2002-10-23 | Nkk Corp | 焼入れ後の衝撃特性に優れる薄鋼板およびその製造方法 |
JP2010174283A (ja) * | 2009-01-28 | 2010-08-12 | Jfe Steel Corp | 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法 |
JP5369714B2 (ja) | 2009-01-28 | 2013-12-18 | Jfeスチール株式会社 | 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法 |
JP2014015638A (ja) | 2012-07-06 | 2014-01-30 | Nippon Steel & Sumitomo Metal | 熱間プレス鋼板部材およびその製造方法ならびに熱間プレス用鋼板 |
WO2015147216A1 (ja) | 2014-03-26 | 2015-10-01 | 新日鐵住金株式会社 | 高強度熱間成形鋼板部材 |
WO2015194571A1 (ja) * | 2014-06-20 | 2015-12-23 | 株式会社神戸製鋼所 | 熱間プレス用鋼板、並びに該鋼板を用いた熱間プレス成形品及びその製造方法 |
JP2017043825A (ja) * | 2015-08-28 | 2017-03-02 | 新日鐵住金株式会社 | ホットスタンプ用鋼板およびその製造方法、ならびにホットスタンプ鋼板部材 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3778951A4 |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7151890B2 (ja) | 2019-05-31 | 2022-10-12 | 日本製鉄株式会社 | ホットスタンプ成形体 |
JPWO2020241258A1 (ja) * | 2019-05-31 | 2020-12-03 | ||
WO2020241258A1 (ja) * | 2019-05-31 | 2020-12-03 | 日本製鉄株式会社 | ホットスタンプ成形体 |
CN114829652B (zh) * | 2020-01-09 | 2023-04-28 | 日本制铁株式会社 | 热压成形体 |
EP4089193A4 (en) * | 2020-01-09 | 2023-07-26 | Nippon Steel Corporation | HOT STAMPING MOLDED BODY |
JPWO2021141103A1 (ja) * | 2020-01-09 | 2021-07-15 | ||
WO2021141103A1 (ja) * | 2020-01-09 | 2021-07-15 | 日本製鉄株式会社 | ホットスタンプ成形体 |
WO2021141100A1 (ja) * | 2020-01-09 | 2021-07-15 | 日本製鉄株式会社 | ホットスタンプ成形体 |
JP7319571B2 (ja) | 2020-01-09 | 2023-08-02 | 日本製鉄株式会社 | ホットスタンプ成形体 |
CN114829651A (zh) * | 2020-01-09 | 2022-07-29 | 日本制铁株式会社 | 热压成形体 |
CN114829652A (zh) * | 2020-01-09 | 2022-07-29 | 日本制铁株式会社 | 热压成形体 |
WO2021141097A1 (ja) * | 2020-01-09 | 2021-07-15 | 日本製鉄株式会社 | ホットスタンプ成形体 |
JPWO2021141097A1 (ja) * | 2020-01-09 | 2021-07-15 | ||
CN114829651B (zh) * | 2020-01-09 | 2023-05-12 | 日本制铁株式会社 | 热压成形体 |
JPWO2021141100A1 (ja) * | 2020-01-09 | 2021-07-15 | ||
EP4089194A4 (en) * | 2020-01-09 | 2023-07-26 | Nippon Steel Corporation | HOT STAMPING MOLDED BODY |
JP7319569B2 (ja) | 2020-01-09 | 2023-08-02 | 日本製鉄株式会社 | ホットスタンプ成形体 |
JP7319570B2 (ja) | 2020-01-09 | 2023-08-02 | 日本製鉄株式会社 | ホットスタンプ成形体 |
EP3960894A1 (en) * | 2020-09-01 | 2022-03-02 | Hyundai Steel Company | Material for hot stamping and method for manufacturing the same |
EP4209610A4 (en) * | 2020-09-01 | 2024-01-17 | Hyundai Steel Company | HOT STAMPING MATERIAL AND METHOD FOR PRODUCING IT |
US11898218B2 (en) | 2020-09-01 | 2024-02-13 | Hyundai Steel Company | Material for hot stamping and method for manufacturing the same |
JP7534618B2 (ja) | 2020-09-18 | 2024-08-15 | 日本製鉄株式会社 | 高炭素鋼部品 |
WO2023234337A1 (ja) * | 2022-06-03 | 2023-12-07 | 日本製鉄株式会社 | ホットスタンプ成形体 |
WO2024190491A1 (ja) * | 2023-03-13 | 2024-09-19 | 日本製鉄株式会社 | 鋼部材及び鋼板 |
WO2024190779A1 (ja) * | 2023-03-13 | 2024-09-19 | 日本製鉄株式会社 | 鋼部材及び鋼板 |
Also Published As
Publication number | Publication date |
---|---|
KR102460598B1 (ko) | 2022-10-31 |
EP3778951A4 (en) | 2021-10-27 |
JP6477978B1 (ja) | 2019-03-06 |
CN111655885B (zh) | 2021-11-19 |
EP3778951B1 (en) | 2024-08-28 |
EP3778951A1 (en) | 2021-02-17 |
KR20200121872A (ko) | 2020-10-26 |
CN111655885A (zh) | 2020-09-11 |
US20210010118A1 (en) | 2021-01-14 |
JPWO2019186930A1 (ja) | 2020-04-30 |
US11180837B2 (en) | 2021-11-23 |
MX2020010135A (es) | 2020-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6477978B1 (ja) | ホットスタンプ成形体 | |
JP6477980B1 (ja) | ホットスタンプ成形体 | |
JP6460287B1 (ja) | ホットスタンプ用鋼板 | |
WO2019186931A1 (ja) | ホットスタンプ成形体 | |
JP2009173959A (ja) | 高強度鋼板およびその製造方法 | |
JP7151889B2 (ja) | ホットスタンプ用鋼板 | |
JP7366121B2 (ja) | ホットスタンプ用鋼板 | |
TWI664302B (zh) | Hot stamping | |
JP7455112B2 (ja) | ホットスタンプ成形体 | |
TWI663265B (zh) | Hot stamping steel plate | |
TWI663267B (zh) | Hot stamping | |
TW201942364A (zh) | 熱壓印成形體 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018535450 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18912209 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20207027253 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018912209 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018912209 Country of ref document: EP Effective date: 20201029 |