WO2019053943A1 - 同期電動機の制御装置及び制御方法 - Google Patents
同期電動機の制御装置及び制御方法 Download PDFInfo
- Publication number
- WO2019053943A1 WO2019053943A1 PCT/JP2018/018446 JP2018018446W WO2019053943A1 WO 2019053943 A1 WO2019053943 A1 WO 2019053943A1 JP 2018018446 W JP2018018446 W JP 2018018446W WO 2019053943 A1 WO2019053943 A1 WO 2019053943A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- drive control
- rectangular wave
- voltage command
- synchronous motor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/28—Arrangements for controlling current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/539—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
- H02M7/5395—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
- H02P27/085—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
- H02P6/16—Circuit arrangements for detecting position
- H02P6/17—Circuit arrangements for detecting position and for generating speed information
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2207/00—Indexing scheme relating to controlling arrangements characterised by the type of motor
- H02P2207/05—Synchronous machines, e.g. with permanent magnets or DC excitation
Definitions
- the present invention relates to a control device that controls driving of a synchronous motor and a control method of the synchronous motor.
- PWM drive control using a PWM signal and rectangular wave drive control using a pulse-like rectangular wave signal are known.
- PWM drive control a voltage within the range of a voltage waveform of a sine wave output from the control device of the synchronous motor can be applied to the synchronous motor.
- the rectangular wave drive control since the voltage is applied to the synchronous motor in a pulse shape, the maximum voltage input to the control device of the synchronous motor can be applied to the synchronous motor. Therefore, in general, the modulation factor in the rectangular wave drive control is higher than the modulation factor in the PWM drive control.
- a method of switching between the PWM drive control and the rectangular wave drive control is used as a control method of the synchronous motor.
- the configurations disclosed in Patent Documents 1 to 3 are known.
- Patent Document 1 discloses an AC motor drive control device that switches between PWM current control and rectangular wave voltage phase control in accordance with the current phase of an alternating current supplied to the AC motor.
- a current sensor and a current phase determination unit are required.
- Patent Document 2 discloses an inverter control device that switches between PWM control and one-pulse control based on a torque command value of a motor.
- a value obtained from the current detected by the current sensor is fed back to the torque command value to drive the motor according to the torque command value. I have control.
- Patent Document 3 discloses a drive control device of an electric motor that switches between PWM energization and rectangular wave energization using a voltage command Duty.
- the drive control device disclosed in Patent Document 3 switches control of PWM energization and rectangular wave energization without using a current sensor.
- An object of the present invention is to provide a control device for a synchronous motor, which switches drive control of the synchronous motor between PWM drive control and rectangular wave drive control, efficiently taking the synchronous motor into consideration in consideration of the influence of the rotational speed of the synchronous motor.
- the object is to obtain a drivable configuration.
- the control device for a synchronous motor is a control device for a synchronous motor that controls driving of the synchronous motor.
- the control device detects a rotational speed of the synchronous motor, a PWM signal generation unit that generates a PWM signal based on an input command, a rectangular wave signal generation unit that generates a rectangular wave signal based on the input command, and And a PWM signal generated by the PWM signal generation unit in accordance with at least the rotation speed, or any of the rectangular wave signals generated by the rectangular wave signal generation unit,
- a signal switching determination unit that determines whether the synchronous motor is to be used as a control signal for drive control, and a signal that is determined to be used as the control signal by the signal switching determination unit among the PWM signal and the rectangular wave signal
- a drive control unit that controls the drive of the synchronous motor.
- a control method of a synchronous motor is a control method of a synchronous motor which controls driving of the synchronous motor using a PWM signal or a rectangular wave signal generated based on an input signal.
- This control method comprises at least a rotational speed acquisition step of acquiring a rotational speed of the synchronous motor, a voltage command amplitude acquisition step of acquiring an amplitude of a voltage command corresponding to the PWM signal based on an input command, and A signal switching determination step of determining which one of the PWM signal and the rectangular wave signal is to be used as a control signal for driving and controlling the synchronous motor according to And a drive control step of controlling the drive of the synchronous motor using a signal determined to be used as the control signal in the signal switching determination step.
- the PWM signal is generated according to the amplitude of the voltage command generated corresponding to the PWM signal based on the input command and the rotational speed of the synchronous motor.
- one of the rectangular wave signals is used to control the drive of the synchronous motor.
- FIG. 1 is a control block diagram showing a schematic configuration of a control device according to the first embodiment.
- FIG. 2 is a flowchart showing the operation of the signal switching determination unit.
- FIG. 3 is a diagram showing a region of drive control of the motor defined by the first rotational speed threshold, the second rotational speed threshold, and the first voltage command amplitude threshold.
- FIG. 4 is a flowchart illustrating the operation of the signal switching determination unit of the control device according to the second embodiment.
- FIG. 5 is a diagram showing a drive control area of the motor defined by the first rotation speed threshold, the second rotation speed threshold, the first voltage command amplitude threshold, and the second voltage command amplitude threshold in the second embodiment.
- FIG. 1 is a control block diagram showing a schematic configuration of a control device according to the first embodiment.
- FIG. 2 is a flowchart showing the operation of the signal switching determination unit.
- FIG. 3 is a diagram showing a region of drive control of the motor defined by the first rotational speed threshold, the
- FIG. 6 is a diagram showing an area of drive control of the motor defined by the first rotational speed threshold, the second rotational speed threshold, the first voltage command amplitude threshold and the second voltage command amplitude threshold in another embodiment.
- FIG. 7 is a diagram showing an area of drive control of the motor defined by the first rotational speed threshold, the second rotational speed threshold, the first voltage command amplitude threshold and the second voltage command amplitude threshold in another embodiment. .
- the control device for a synchronous motor is a control device for a synchronous motor that controls driving of the synchronous motor.
- the control device detects a rotational speed of the synchronous motor, a PWM signal generation unit that generates a PWM signal based on an input command, a rectangular wave signal generation unit that generates a rectangular wave signal based on the input command, and And a PWM signal generated by the PWM signal generation unit in accordance with at least the rotation speed, or any of the rectangular wave signals generated by the rectangular wave signal generation unit,
- a signal switching determination unit that determines whether the synchronous motor is to be used as a control signal for drive control, and a signal that is determined to be used as the control signal by the signal switching determination unit among the PWM signal and the rectangular wave signal
- a drive control unit that controls the drive of the synchronous motor (a first configuration).
- drive control using either the PWM signal or the rectangular wave signal can be performed according to at least the rotational speed of the synchronous motor. Therefore, PWM drive control using a PWM signal and rectangular wave drive control using a rectangular wave signal can be performed at an appropriate timing with respect to the rotation speed of the synchronous motor. Therefore, the synchronous motor can be driven efficiently.
- the control device of the synchronous motor further includes a voltage command generation unit that generates a voltage command corresponding to the PWM signal based on the input command.
- the signal switching determination unit determines that the PWM signal is to be used as the control signal when the rotational speed is smaller than a rotational speed threshold or when the amplitude of the voltage command is smaller than a voltage command amplitude threshold.
- the rotational speed is equal to or higher than the rotational speed threshold
- either the PWM signal or the rectangular wave signal is selected according to at least one of the drive control state of the synchronous motor by the drive control unit and the voltage command amplitude. Is determined to be used as the control signal (second configuration).
- the synchronous motor when the rotation speed of the synchronous motor is smaller than the rotation speed threshold, the synchronous motor is drive-controlled by PWM drive control.
- PWM drive control When the rotational speed of the synchronous motor is smaller than the rotational speed threshold, when the synchronous motor is subjected to rectangular wave drive control, an overcurrent may flow in the switching element of the control device and the coil of the synchronous motor. Therefore, as described above, when the rotation speed of the synchronous motor is smaller than the rotation speed threshold, an overcurrent flows in the control device and the synchronous motor by driving and controlling the synchronous motor by PWM drive control. Can be prevented.
- the synchronous motor is driven and controlled by PWM drive control.
- the voltage command amplitude is smaller than the voltage command amplitude threshold value, it is not necessary to improve the voltage utilization factor of the synchronous motor, so the synchronous motor is subjected to PWM drive control.
- PWM drive control or rectangular wave drive control is performed according to at least one of the drive control state of the synchronous motor by the drive control unit and the voltage command amplitude. By doing this, it is possible to switch between PWM drive control and rectangular wave drive control at appropriate timing. Thereby, the synchronous motor can be driven efficiently.
- the signal switching determination unit determines the rectangular wave from the PWM signal.
- a first rotational speed threshold which is a threshold of rotational speed when switching to a signal, is set as the rotational speed threshold, and the voltage command amplitude is equal to or higher than the voltage command amplitude threshold when the rotational speed is equal to or higher than the first rotational speed threshold.
- a second rotation speed threshold which is a threshold of the rotation speed when switching from the rectangular wave signal to the PWM signal, is set as the rotation speed threshold, and the rotation speed is set to If 2 less than the rotational speed threshold, it determines that use of the PWM signal as the control signal (third configuration).
- the rotational speed of the synchronous motor is equal to or higher than the first rotational speed threshold and the voltage command amplitude is equal to or higher than the voltage command threshold, ie, the voltage command amplitude is large.
- the voltage supplied to the synchronous motor may be increased by rectangular wave driving the synchronous motor. it can. Therefore, it is possible to prevent the reduction of the torque generated by the synchronous motor.
- the first rotation speed threshold is larger than the second rotation speed threshold (fourth configuration).
- the signal switching determination unit determines the PWM as the rotational speed threshold. While setting the 1st rotation speed threshold which is a threshold of the rotation speed at the time of changing from a signal to the rectangular wave signal, the threshold of voltage command amplitude at the time of switching from the PWM signal to the rectangular wave signal as the voltage command amplitude threshold.
- the rectangular wave signal is set when the first voltage command amplitude threshold is set and the rotation speed is equal to or higher than the first rotation speed threshold and the voltage command amplitude is equal to or higher than the first voltage command amplitude threshold.
- a second rotational speed threshold which is a threshold of rotational speed when switching from the rectangular wave signal to the PWM signal is set as the rotational speed threshold
- the voltage command amplitude threshold is determined from the rectangular wave signal
- a second voltage command amplitude threshold which is a threshold of voltage command amplitude at the time of switching to the PWM signal is set, and when the rotation speed is smaller than the second rotation speed threshold, or the voltage command amplitude is the second voltage
- the rotational speed threshold and the voltage command amplitude threshold are changed according to the drive control of the synchronous motor determined by the drive control determination unit. Therefore, an appropriate threshold can be set according to the state of drive control of the synchronous motor. Therefore, the switching between the PWM drive control and the rectangular wave drive control in the drive control of the synchronous motor can be more appropriately performed in accordance with the operation state of the synchronous motor.
- the first rotation speed threshold is larger than the second rotation speed threshold.
- the first voltage command amplitude threshold is larger than the second voltage command amplitude threshold (sixth configuration).
- the drive control of the synchronous motor is not stable.
- the region when the PWM drive control is switched to the rectangular wave drive control and the rectangular wave drive control are switched to the PWM drive control It overlaps with the area at the time. Therefore, it is possible to prevent the drive control of the synchronous motor from being frequently changed due to the minute fluctuation of the rotational speed of the synchronous motor and the voltage command amplitude. Thus, drive control of the synchronous motor can be stably performed.
- a control method of a synchronous motor is a control method of a synchronous motor which controls driving of the synchronous motor using a PWM signal or a rectangular wave signal generated based on an input signal.
- This control method comprises at least a rotational speed acquisition step of acquiring a rotational speed of the synchronous motor, a voltage command amplitude acquisition step of acquiring an amplitude of a voltage command corresponding to the PWM signal based on an input command, and A signal switching determination step of determining which one of the PWM signal and the rectangular wave signal is to be used as a control signal for driving and controlling the synchronous motor according to And a drive control step of controlling the drive of the synchronous motor using a signal determined to be used as the control signal in the signal switching determination step (a first method).
- FIG. 1 is a block diagram showing a schematic configuration of a control device 1 according to Embodiment 1 of the present invention.
- Control device 1 generates a PWM signal and a rectangular wave signal based on the rotational speed command as an input command, and uses either the PWM signal or the rectangular wave signal according to the voltage command amplitude and the rotational speed of motor 2.
- the motor 2 (synchronous motor) is driven and controlled using the determined signal.
- the motor 2 is a three-phase AC motor, but the motor 2 may be a motor of any configuration.
- the control device 1 includes a PWM drive control unit 10, a rectangular wave drive control unit 20, a drive control unit 30, a rotational speed detection unit 40, and a signal switching determination unit 50.
- the PWM drive control unit 10 generates a PWM signal based on the rotational speed command (input command) input to the control device 1.
- the PWM drive control unit 10 includes a torque command generation unit 11, a current command generation unit 12, a voltage command generation unit 13, and a PWM signal generation unit 14.
- the torque command generation unit 11 generates a torque command Tref based on the rotational speed command input to the control device 1.
- the current command generation unit 12 generates the d-axis current command Idref and the q-axis current command Iqref based on the torque command Tref generated by the torque command generation unit 11.
- Voltage command generation unit 13 generates d-axis voltage command Vdref and q-axis voltage command Vqref based on d-axis current command Idref and q-axis current command Iqref generated by current command generation unit 12, and also generates these commands.
- U phase voltage command Vuref, V phase voltage command Vvref, and W phase voltage command Vwref are generated.
- voltage command generation unit 13 obtains voltage command amplitude Apwm, which is the amplitude of the voltage command in PWM drive control, from d-axis voltage command Vdref and q-axis voltage command Vqref.
- the voltage command amplitude Apwm obtained by the voltage command generation unit 13 is input to a signal switching determination unit 50 described later.
- Voltage command generation unit 13 considers a value having the largest voltage absolute value among U-phase voltage command Vuref, V-phase voltage command Vvref and W-phase voltage command Vwref as a voltage command amplitude, and determines the voltage command. It may be treated as an amplitude Apwm.
- the PWM signal generation unit 14 generates a PWM signal for PWM drive control based on the U-phase voltage command Vuref, the V-phase voltage command Vvref and the W-phase voltage command Vwref generated by the voltage command generation unit 13.
- the PWM signal is input to the drive control unit 30, and is used for drive control of a switching element (not shown) of the drive control unit 30.
- the rectangular wave drive control unit 20 generates a rectangular wave signal based on the rotational speed command (input command) input to the control device 1.
- the rectangular wave drive control unit 20 includes a phase generation unit 21 and a rectangular wave signal generation unit 22.
- the phase generation unit 21 generates a phase command based on the rotational speed command input to the control device 1.
- the rectangular wave signal generation unit 22 generates a rectangular wave signal based on the phase command generated by the phase generation unit 21.
- the rectangular wave signal is input to the drive control unit 30, and is used for drive control of a switching element (not shown) of the drive control unit 30.
- the drive control unit 30 controls the drive of the motor 2 using either the PWM signal generated by the PWM drive control unit 10 or the rectangular wave signal generated by the rectangular wave drive control unit 20.
- the drive control unit 30 includes a signal selection unit 31 and an inverter unit 32.
- the signal selection unit 31 sets any one of the PWM signal generated by the PWM drive control unit 10 or the rectangular wave signal generated by the rectangular wave drive control unit 20 as the determination result of the signal switching determination unit 50 described later. Choose accordingly. Although described later in detail, the signal selection unit 31 generates a PWM signal or a rectangular wave according to the voltage command amplitude Apwm output from the voltage command generation unit 13 and the rotation speed Nmtr of the motor 2 detected by the rotation speed detection unit 40. One of the signals is selected and output as a control signal.
- the inverter unit 32 supplies power to coils (not shown) of each phase of the motor 2 based on the control signal (PWM signal or rectangular wave signal) output from the signal selection unit 31.
- the inverter unit 32 has a plurality of switching elements.
- the inverter unit 32 drives and controls these switching elements based on a control signal (a PWM signal or a rectangular wave signal) output from the signal selection unit 31 to generate a PWM signal for each phase coil of the motor 2. Or supply power according to the square wave signal.
- the inverter part 32 has the structure similar to the conventional inverter apparatus, it abbreviate
- drive control unit 30 is configured to be switchable between PWM drive control that controls the drive of motor 2 using a PWM signal and rectangular wave drive control that controls the drive of motor 2 using a rectangular wave signal. There is.
- the motor 2 is controlled by the drive control unit 30 so as to be rapidly accelerated from the stop state to a region of high rotational speed that is equal to or higher than a predetermined rotational speed.
- the drive control unit 30 decelerates the motor 2 in the free running state by turning off all the plurality of switching elements of the inverter unit 32 after a specified time has elapsed after the motor 2 reaches the predetermined rotation speed or more. Stop it.
- the rotational speed detection unit 40 detects the rotational speed Nmtr of the motor 2 based on the position signal output from the position sensor 2 a that detects the rotational position of the rotor (not shown) of the motor 2.
- the signal switching determination unit 50 uses the rotational speed Nmtr detected by the rotational speed detection unit 40 and the voltage command amplitude Apwm output from the voltage command generation unit 13 according to the drive control state of the motor 2 to obtain a drive control unit.
- the CPU 30 determines which of the PWM signal and the rectangular wave signal is used as a control signal to drive and control the motor 2. That is, the signal switching determination unit 50 determines which of the PWM drive control and the rectangular wave drive control is to be performed by the drive control unit 30.
- the drive control state of the motor 2 means a state in which the motor 2 is subjected to PWM drive control or rectangular wave drive control.
- the signal switching determination unit 50 outputs a determination signal that causes the signal selection unit 31 of the drive control unit 30 to select a rectangular wave signal when the rotational speed Nmtr and the voltage command amplitude Apwm are each equal to or greater than the set threshold. In cases other than the above, the determination signal that causes the signal selection unit 31 of the drive control unit 30 to select the PWM signal is output.
- the signal switching determination unit 50 determines that the rotation speed Nmtr is smaller than the first rotation speed threshold Nthr_one (rotation speed threshold), and the rotation speed Nmtr. Is greater than or equal to the first rotational speed threshold Nthr_one and the voltage command amplitude Apwm is smaller than the first voltage command amplitude threshold Athr_one (voltage command amplitude threshold), the determination signal is made to cause the drive control unit 30 to continue PWM drive control.
- the rotational speed Nmtr is at least the first rotational speed threshold Nthr_one
- the voltage command amplitude Apwm is at least the first voltage command amplitude threshold Athr_one.
- the determination signal is output to cause the drive control unit 30 to switch from PWM drive control to rectangular wave drive control.
- the signal switching determination unit 50 controls the drive control unit 30 if the rotational speed Nmtr is equal to or higher than the second rotational speed threshold Nthr_pwm (rotational speed threshold). The determination signal is output to continue the rectangular wave drive control.
- the signal switching determination unit 50 causes the drive control unit 30 to generate a rectangle from PWM drive control. A determination signal is output to switch to wave drive control.
- the second rotational speed threshold Nthr_pwm is a rotational speed that switches from rectangular wave drive control to PWM drive control so that an overcurrent does not flow to the motor 2 and the drive control unit 30.
- the first rotation speed threshold Nthr_one is larger than the second rotation speed threshold Nthr_pwm.
- the first voltage command amplitude threshold value Athr_one is a voltage command amplitude value to be switched from PWM drive control to rectangular wave drive control in consideration of a voltage utilization factor.
- the signal switching determination unit 50 stores the determination result in a memory or the like (not shown), and using the determination result, whether the current drive control of the motor 2 is PWM drive control or rectangular wave drive control Determine
- FIG. 2 is a flowchart showing the switching determination of the drive control of the motor 2 by the signal switching determination unit 50.
- step SA1 the signal switching determination unit 50 acquires the rotation speed Nmtr of the motor 2 detected by the rotation speed detection unit 40.
- step SA2 the signal switching determination unit 50 acquires the voltage command amplitude Apwm output from the voltage command generation unit 13.
- step SA3 the signal switching determination unit 50 determines whether the drive control by the drive control unit 30 is PWM drive control.
- step SA3 the drive control by the drive control unit 30 is PWM drive control (in the case of YES)
- the process proceeds to step SA4 and later to determine the rotation speed Nmtr of the motor 2.
- step SA3 when it is determined in step SA3 that the drive control by drive control unit 30 is not PWM drive control, that is, when it is determined that the drive control by drive control unit 30 is rectangular wave drive control (case of NO).
- step SA9 the rotational speed Nmtr of the motor 2.
- step SA4 which proceeds when the drive control by the drive control unit 30 is PWM drive control, it is determined whether the rotational speed Nmtr of the motor 2 is equal to or greater than the first rotational speed threshold Nthr_one.
- the first rotational speed threshold Nthr_one is the rotational speed of the motor 2 that can be switched from PWM drive control to rectangular wave drive control in the drive control unit 30.
- step SA4 when the rotational speed Nmtr is equal to or higher than the first rotational speed threshold Nthr_one (in the case of YES), the process proceeds to step SA5 and subsequent steps to determine the voltage command amplitude Apwm.
- step SA4 when the rotational speed Nmtr is smaller than the first rotational speed threshold Nthr_one in step SA4 (in the case of NO), the process proceeds to step SA6 and the signal switching determination unit 50 performs PWM drive on the drive control unit 30. It outputs a judgment signal to continue the control.
- step SA5 which proceeds when the rotational speed Nmtr is equal to or higher than the first rotational speed threshold Nthr_one, it is determined whether the voltage command amplitude Apwm is equal to or higher than the first voltage command amplitude threshold Athr_one.
- the first voltage command amplitude threshold value Athr_one is a voltage command amplitude value to be switched from PWM drive control to rectangular wave drive control in consideration of a voltage utilization factor.
- step SA5 If it is determined in step SA5 that the voltage command amplitude Apwm is equal to or greater than the first voltage command amplitude threshold Athr_one (in the case of YES), the process proceeds to step SA7 and the signal switching determination unit 50 sends the drive control unit 30 a command. On the other hand, a determination signal is output to switch to rectangular wave drive control.
- step SA5 when it is determined in step SA5 that the voltage command amplitude Apwm is smaller than the first voltage command amplitude threshold Athr_one (in the case of NO), the process proceeds to step SA8, and the signal switching determination unit 50 A determination signal to continue the PWM drive control is output at 30.
- step SA9 the process proceeds to step SA9 in which the drive control by drive control unit 30 is determined to be rectangular wave drive control in step SA3 described above, the rotational speed Nmtr of motor 2 is greater than or equal to the second rotational speed threshold Nthr_pwm. Determine if there is.
- the second rotation speed threshold Nthr_pwm is a rotation speed to switch from rectangular wave drive control to PWM drive control so that an overcurrent does not flow to the motor 2 and the drive control unit 30.
- step SA9 when the rotational speed Nmtr is equal to or higher than the second rotational speed threshold Nthr_pwm (in the case of YES), the process proceeds to step SA10, and the signal switching determination unit 50 causes the drive control unit 30 to perform rectangular wave drive control. It outputs a judgment signal to be continued.
- step SA9 if the rotational speed Nmtr is smaller than the second rotational speed threshold Nthr_pwm in step SA9 (in the case of NO), the process proceeds to step SA11 and the signal switching determination unit 50 performs PWM drive on the drive control unit 30. A determination signal is output to switch to control.
- the signal switching determination unit 50 determines that the drive control by the drive control unit 30 is the rectangular wave drive control (in the case of NO in step SA3), only the rotational speed Nmtr is The PWM drive control and the rectangular wave drive control are switched using this.
- the operation pattern of the motor 2 of this embodiment is an operation pattern for decelerating the motor 2 in a free run state and stopping the motor 2 when the motor 2 is stopped. Therefore, when switching the motor 2 from rectangular wave drive control to PWM drive control, it is not necessary to consider the voltage command amplitude as when switching from PWM drive control to rectangular wave drive control, and the motor 2 is restarted after stopping.
- the drive control unit 30 may be set to perform PWM drive control of the motor 2.
- step SA1 corresponds to the rotational speed acquisition step
- step SA2 corresponds to the voltage command amplitude acquisition step
- steps SA3 to SA5 and SA9 correspond to the signal switching determination step
- steps SA6 to SA8, SA10 and SA11 correspond to the drive control step.
- the first rotation speed threshold Nthr_one is a rotation speed larger than the second rotation speed threshold Nthr_pwm.
- the drive control of the motor 2 defined by the first rotational speed threshold Nthr_one, the second rotational speed threshold Nthr_pwm, and the first voltage command amplitude threshold Athr_one in the relationship between the rotational speed of the motor 2 and the voltage command amplitude.
- a mixed area exists between the PWM drive area for performing PWM drive control and the rectangular wave drive area for performing rectangular wave drive control.
- the rotational speed is smaller than the first rotational speed threshold Nthr_one, or the rotational speed is the first
- the voltage command amplitude Apwm is smaller than the first threshold voltage amplitude threshold Athr_one, the PWM drive control is continued.
- the mixed area is located between the PWM drive area and the rectangular wave drive area, and in the mixed area, the drive control unit 30 performs PWM drive control at the time of determination by the signal switching determination unit 50.
- the drive control of the motor 2 differs depending on whether it is performed or rectangular wave drive control is performed.
- the rotational speed Nmtr of the motor 2 and the voltage command amplitude Apwm at the PWM drive control are taken into consideration.
- the drive control of the motor 2 can be switched at an appropriate timing. As a result, it is possible to prevent an overcurrent from flowing in the motor 2 and a reduction in the output torque of the motor 2.
- the first rotational speed threshold Nthr_one when switching the drive control of the motor 2 from PWM drive control to rectangular wave drive control, and the second rotational speed when the drive control of the motor 2 is switched from rectangular wave drive control to PWM drive control By making the value larger than the threshold value Nthr_pwm, frequent switching of the drive control of the motor 2 can be prevented even when the rotational speed Nmtr of the motor 2 fluctuates.
- FIG. 4 shows a flow of switching determination of drive control of the motor 2 by the signal switching determination unit 50 in the control device according to the second embodiment.
- the configuration of the control device is the same as that of the control device 1 of the first embodiment, and the flow of the switching determination of the drive control of the motor 2 is different from the flow of the first embodiment.
- the flow at the time of switching from rectangular wave drive control to PWM drive control is different from the flow of the first embodiment.
- the signal switching determination unit 50 obtains the rotation speed Nmtr of the motor 2 and the voltage command amplitude Apwm at the time of PWM drive control (steps SB1 and SB2). It is determined whether the current drive control is PWM drive control or rectangular wave drive control (step SB3).
- step SB1 to step SB8 in the signal switching determination unit 50 are the same as the operations from step SA1 to SA8 of the first embodiment, and thus detailed description of the operation of each step is omitted.
- step SB3 If the drive control of the motor is rectangular wave drive control (NO in step SB3), the process proceeds to step SB9, and the rotation speed Nmtr of the motor 2 is the second rotation speed threshold value as in step SA9 of the first embodiment. It is determined whether or not Nthr_pwm (rotational speed threshold) or more.
- step SB9 If it is determined in step SB9 that the rotational speed Nmtr of the motor 2 is equal to or higher than the second rotational speed threshold Nthr_pwm (in the case of YES), the process proceeds to step SB10 and later, the voltage command amplitude Apwm is the second voltage command amplitude. It is determined whether the threshold Athr_pwm or more.
- the second voltage command amplitude threshold value Athr_pwm is a voltage command amplitude value that can be switched from rectangular wave drive control to PWM drive control in the drive control unit 30.
- step SB9 when it is determined in step SB9 that the rotational speed Nmtr of the motor 2 is smaller than the second rotational speed threshold Nthr_pwm (in the case of NO), the process proceeds to step SB11 and the signal switching determination unit 50 performs drive control. A determination signal is output to unit 30 so as to switch to PWM drive control.
- step SB10 If it is determined in step SB10 that the voltage command amplitude Apwm is equal to or higher than the second voltage command amplitude threshold Athr_pwm (in the case of YES), the process proceeds to step SB12 and the signal switching determination unit 50 sends the drive control unit 30 On the other hand, the determination signal is output to continue the rectangular wave drive control.
- step SB10 when it is determined in step SB10 that the voltage command amplitude Apwm is smaller than the second voltage command amplitude threshold Athr_pwm (in the case of NO), the process proceeds to step SB13 and the signal switching determination unit 50 A determination signal is output to switch to PWM drive control at 30.
- step SB1 corresponds to the rotational speed acquisition process
- step SB2 corresponds to the voltage command amplitude acquisition process
- steps SB3 to SB5, SB9 and SB10 correspond to the signal switching determination step
- steps SB6 to SB8 and SB11 to SB13 correspond to the drive control step.
- the first rotation speed threshold Nthr_one is a rotation speed larger than the second rotation speed threshold Nthr_pwm.
- the first voltage command amplitude threshold Athr_one is a voltage command amplitude value larger than the second voltage command amplitude threshold Athr_pwm.
- a mixed area exists between the PWM drive area for performing PWM drive control and the rectangular wave drive area for performing rectangular wave drive control.
- the rotational speed is smaller than the first rotational speed threshold Nthr_one, or the rotational speed is the first
- the voltage command amplitude Apwm is smaller than the first threshold voltage amplitude threshold Athr_one, the PWM drive control is continued.
- the rotational speed is the second rotational speed threshold Nthr_pwm or more and the voltage command amplitude is the second When the voltage command amplitude threshold value Athr_pwm or more, the rectangular wave drive control is continued.
- the mixed area is located between the PWM drive area and the rectangular wave drive area, and in the mixed area, the drive control unit 30 performs PWM drive control at the time of determination by the signal switching determination unit 50.
- Drive control differs depending on whether it is performed or rectangular wave drive control is performed.
- the drive control of the motor 2 when the drive control of the motor 2 is rectangular wave drive control, the drive control of the motor 2 is switched to PWM drive control when the voltage command amplitude Apwm is smaller than the second voltage command amplitude threshold Athr_pwm. .
- the drive control of the motor 2 can be switched in consideration of the voltage command amplitude Apwm. Therefore, the drive control of the motor 2 can be performed at more appropriate timing.
- the configuration of the present embodiment is particularly effective when drive control of the motor 2 is performed even when the motor 2 is decelerating.
- the first voltage command amplitude threshold Athr_one when switching the drive control of the motor 2 from PWM drive control to rectangular wave drive control and the second voltage when switching the drive control of the motor 2 from rectangular wave drive control to PWM drive control
- the value larger than the command amplitude threshold Athr_pwm By making the value larger than the command amplitude threshold Athr_pwm, frequent switching of the drive control of the motor 2 can be prevented even when the value of the voltage command amplitude Apwm fluctuates.
- the rotational speed threshold and the voltage command are at the boundary between the PWM drive area and the mixed area and at the boundary between the rectangular wave drive area and the mixed area.
- the amplitude threshold is constant.
- the rotational speed threshold and the voltage command amplitude threshold may be respectively changing values.
- FIG. 6 shows a drive control area of the motor 2 when the first voltage command amplitude threshold Athr_one and the second voltage command amplitude threshold Athr_pwm are changed according to the rotational speed of the motor 2 in the case of the second embodiment.
- the first voltage command amplitude threshold Athr_one and the second voltage command amplitude threshold Athr_pwm decrease as the rotation speed of the motor 2 increases.
- the first voltage command amplitude threshold Athr_one and the second voltage command amplitude threshold Athr_pwm are set to be smaller as the rotational speed of the motor 2 is larger.
- only one of the first voltage command amplitude threshold Athr_one and the second voltage command amplitude threshold Athr_pwm may be set to be smaller as the rotational speed of the motor 2 is larger.
- FIG. 7 shows a drive control area of the motor 2 when the first rotational speed threshold Nthr_one and the second rotational speed threshold Nthr_pwm of the motor 2 are changed according to the voltage command amplitude in the case of the second embodiment.
- the first rotational speed threshold Nthr_one and the second rotational speed threshold Nthr_pwm decrease as the voltage command amplitude increases.
- the first rotational speed threshold Nthr_one and the second rotational speed threshold Nthr_pwm are set to be smaller as the voltage command amplitude is larger.
- only one of the first rotational speed threshold Nthr_one and the second rotational speed threshold Nthr_pwm may be set to be smaller as the voltage command amplitude is larger.
- the rotational speed threshold and the voltage command amplitude threshold may be changed respectively. That is, the first voltage command amplitude threshold Athr_one and the second voltage command amplitude threshold Athr_pwm decrease as the rotation speed of the motor 2 increases, and the first rotation speed threshold Nthr_one and the second rotation speed threshold Nthr_pwm are voltage commands The larger the amplitude, the smaller it may be.
- 6 and 7 show other examples of the drive control area of the motor in the case of the second embodiment, but the same applies to the drive control area of the motor in the case of the first embodiment.
- the first rotation speed threshold Nthr_one is a rotation speed larger than the second rotation speed threshold Nthr_pwm.
- the first rotation speed threshold Nthr_one may be the same rotation speed as the second rotation speed threshold Nthr_pwm.
- the first rotational speed threshold Nthr_one is a rotational speed larger than the second rotational speed threshold Nthr_pwm
- the first voltage command amplitude threshold Athr_one is a voltage command amplitude larger than the second voltage command amplitude threshold Athr_pwm. It is a value.
- the first rotation speed threshold Nthr_one may be the same rotation speed as the second rotation speed threshold Nthr_pwm.
- the first voltage command amplitude threshold Athr_one may be the same voltage command amplitude value as the second voltage command amplitude threshold Athr_pwm.
- the configuration of the control device 1 that controls the drive of the motor 2 that is a three-phase alternating current motor has been described.
- the present invention is not limited to this. It may apply to That is, the motor may have any configuration as long as it is a synchronous motor.
- the present invention is applicable to a control device capable of switching drive control of a synchronous motor between PWM drive control and rectangular wave drive control.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Inverter Devices (AREA)
Abstract
同期電動機の駆動制御を、PWM駆動制御と矩形波駆動制御とに切り替える同期電動機の制御装置において、前記同期電動機の回転速度の影響を考慮して、前記同期電動機を効率良く駆動可能な構成を得る。制御装置1は、PWM信号を生成するPWM信号生成部14と、矩形波信号を生成する矩形波信号生成部22と、モータ2の回転速度を検出する回転速度検出部40と、少なくとも前記回転速度に応じて、前記PWM信号または前記矩形波信号のいずれを、モータ2を駆動制御する際の制御信号として用いるかを判定する信号切替判定部50と、信号切替判定部50によって前記制御信号として用いると判定された信号を用いて、モータ2の駆動を制御する駆動制御部30と、を備える。
Description
本発明は、同期電動機の駆動を制御する制御装置及び同期電動機の制御方法に関する。
同期電動機の駆動を制御する制御方法として、PWM信号を用いたPWM駆動制御と、パルス状の矩形波信号を用いた矩形波駆動制御とが知られている。PWM駆動制御では、同期電動機の制御装置から出力される正弦波の電圧波形の範囲内の電圧を、前記同期電動機に印加することができる。一方、矩形波駆動制御では、パルス状に同期電動機に電圧を印加するため、該同期電動機の制御装置に入力された最大電圧を、前記同期電動機に印加することができる。よって、一般的に、前記矩形波駆動制御における変調率は、前記PWM駆動制御における変調率よりも高い。
同期電動機の電圧利用率を向上させるために、前記同期電動機の制御方法として、前記PWM駆動制御と前記矩形波駆動制御とを切り替える方法が用いられている。このように前記PWM駆動制御と前記矩形波駆動制御とを切り替える構成として、例えば、特許文献1から3に開示される構成が知られている。
特許文献1には、交流電動機に供給される交流電流の電流位相に応じて、PWM電流制御と矩形波電圧位相制御とを切り替える交流電動機の駆動制御装置が開示されている。この特許文献1に開示されている駆動制御装置では、交流電流の電流位相を検出する必要があるため、電流センサ及び電流位相判定部が必要である。
特許文献2には、モータのトルク指令値に基づいて、PWM制御とワンパルス制御とを切り替えるインバータ制御装置が開示されている。この特許文献2に開示されているインバータ制御装置では、電流センサで検出された電流から得られた値を、トルク指令値に対してフィードバックすることにより、モータをトルク指令値に従って駆動させるように駆動制御している。
特許文献3には、電圧指令Dutyを用いて、PWM通電と矩形波通電とを切り替える電動機の駆動制御装置が開示されている。この特許文献3に開示されている駆動制御装置は、電流センサを用いずにPWM通電と矩形波通電との制御切替を行う。
ところで、近年、同期電動機に供給される交流電流を検出するための電流検出器を設けずに、前記同期電動機の駆動制御の切替を行う制御装置が求められている。そのため、前記同期電動機の駆動制御として、電流検出が必要な上述の特許文献1、2に開示される駆動制御ではなく、上述の特許文献3に開示される駆動制御の適用が検討されている。
しかしながら、前記特許文献3の駆動制御では、電圧指令Dutyのみを用いて、PWM駆動制御と矩形波駆動制御とを切り替える。そのため、前記特許文献3の構成では、前記同期電動機の回転速度に応じて、前記PWM駆動制御及び前記矩形波駆動制御から適切な駆動制御を選択することができない。
例えば、前記同期電動機の回転速度が大きい場合には、前記同期電動機で生じる誘起電圧の増大によって前記同期電動機に流せる電流が低下する。そのため、前記同期電動機の駆動制御に電圧利用率がより高い矩形波駆動制御を用いることが好ましい。しかしながら、前記同期電動機の回転速度に関係なく前記同期電動機の駆動制御を切り替える前記特許文献3の構成では、前記同期電動機の回転速度が大きい場合に、矩形波駆動制御を用いることができない可能性がある。
また、前記同期電動機の回転速度が小さい場合には、前記同期電動機に印加される電圧と前記同期電動機で生じる誘起電圧との電位差が大きく、且つ、電気角の半周期の期間が長い。そのため、前記同期電動機の駆動制御に矩形波駆動制御を用いた場合、制御装置における特定相のスイッチング素子及び前記同期電動機の特定相のコイルに過電流が流れる可能性がある。前記特許文献3の構成では、上述のように前記同期電動機の回転速度を考慮していないため、前記同期電動機の回転速度が小さい場合でも、前記同期電動機の駆動制御を矩形波駆動制御に切り替える可能性がある。
本発明の目的は、同期電動機の駆動制御を、PWM駆動制御と矩形波駆動制御とに切り替える同期電動機の制御装置において、前記同期電動機の回転速度の影響を考慮して、前記同期電動機を効率良く駆動可能な構成を得ることにある。
本発明の一実施形態に係る同期電動機の制御装置は、同期電動機の駆動を制御する同期電動機の制御装置である。この制御装置は、入力指令に基づいて、PWM信号を生成するPWM信号生成部と、前記入力指令に基づいて、矩形波信号を生成する矩形波信号生成部と、前記同期電動機の回転速度を検出する回転速度検出部と、少なくとも前記回転速度に応じて、前記PWM信号生成部によって生成された前記PWM信号、または、前記矩形波信号生成部によって生成された前記矩形波信号のいずれの信号を、前記同期電動機を駆動制御する際の制御信号として用いるかを判定する信号切替判定部と、前記PWM信号及び前記矩形波信号のうち、前記信号切替判定部によって前記制御信号として用いると判定された信号を用いて、前記同期電動機の駆動を制御する駆動制御部と、を備える。
本発明の一実施形態に係る同期電動機の制御方法は、入力信号に基づいて生成されるPWM信号または矩形波信号を用いて、同期電動機の駆動を制御する同期電動機の制御方法である。この制御方法は、前記同期電動機の回転速度を取得する回転速度取得工程と、入力指令に基づいて、前記PWM信号に対応する電圧指令の振幅を取得する電圧指令振幅取得工程と、少なくとも前記回転速度に応じて、前記PWM信号または前記矩形波信号のいずれの信号を、前記同期電動機を駆動制御する際の制御信号として用いるかを判定する信号切替判定工程と、前記PWM信号及び前記矩形波信号のうち、前記信号切替判定工程で前記制御信号として用いると判定された信号を用いて、前記同期電動機の駆動を制御する駆動制御工程と、を有する。
本発明の一実施形態に係る同期電動機の制御装置によれば、入力指令に基づいてPWM信号に対応して生成された電圧指令の振幅、及び、前記同期電動機の回転速度に応じて、PWM信号または矩形波信号のいずれか一方を用いて、前記同期電動機の駆動を制御する。これにより、前記同期電動機の回転速度の影響を考慮して、前記同期電動機を効率良く駆動可能な制御装置の構成が得られる。
本発明の一実施形態に係る同期電動機の制御装置は、同期電動機の駆動を制御する同期電動機の制御装置である。この制御装置は、入力指令に基づいて、PWM信号を生成するPWM信号生成部と、前記入力指令に基づいて、矩形波信号を生成する矩形波信号生成部と、前記同期電動機の回転速度を検出する回転速度検出部と、少なくとも前記回転速度に応じて、前記PWM信号生成部によって生成された前記PWM信号、または、前記矩形波信号生成部によって生成された前記矩形波信号のいずれの信号を、前記同期電動機を駆動制御する際の制御信号として用いるかを判定する信号切替判定部と、前記PWM信号及び前記矩形波信号のうち、前記信号切替判定部によって前記制御信号として用いると判定された信号を用いて、前記同期電動機の駆動を制御する駆動制御部と、を備える(第1の構成)。
これにより、少なくとも同期電動機の回転速度に応じて、PWM信号または矩形波信号のいずれか一方を用いた駆動制御を行うことができる。よって、PWM信号を用いたPWM駆動制御と矩形波信号を用いた矩形波駆動制御とを、同期電動機の回転速度に対し、適切なタイミングで行うことができる。したがって、同期電動機を効率良く駆動させることができる。
前記第1の構成において、同期電動機の制御装置は、前記入力指令に基づいて、前記PWM信号に対応する電圧指令を生成する電圧指令生成部をさらに備える。前記信号切替判定部は、前記回転速度が回転速度閾値よりも小さい場合、または、前記電圧指令の振幅が電圧指令振幅閾値よりも小さい場合に、前記PWM信号を前記制御信号として用いると判定し、前記回転速度が前記回転速度閾値以上の場合には、前記駆動制御部による前記同期電動機の駆動制御状態及び前記電圧指令振幅の少なくとも一方に応じて、前記PWM信号または前記矩形波信号のいずれか一方を前記制御信号として用いると判定する(第2の構成)。
これにより、同期電動機の回転速度が回転速度閾値よりも小さい場合には、前記同期電動機はPWM駆動制御によって駆動制御される。前記同期電動機の回転速度が回転速度閾値よりも小さい場合には、前記同期電動機を矩形波駆動制御すると、制御装置のスイッチング素子及び前記同期電動機のコイルに過電流が流れる可能性がある。よって、上述のように、同期電動機の回転速度が回転速度閾値よりも小さい場合には、前記同期電動機をPWM駆動制御によって駆動制御することにより、前記制御装置及び前記同期電動機に過電流が流れることを防止できる。
また、PWM信号に対応して生成された電圧指令の振幅が電圧指令振幅閾値よりも小さい場合にも、前記同期電動機はPWM駆動制御によって駆動制御される。前記電圧指令振幅が電圧指令振幅閾値よりも小さい場合には、同期電動機の電圧利用率を向上させる必要がないため、前記同期電動機をPWM駆動制御する。
一方、前記同期電動機の回転速度が前記回転速度閾値以上の場合には、前記駆動制御部による前記同期電動機の駆動制御状態及び前記電圧指令振幅の少なくとも一方に応じてPWM駆動制御または矩形波駆動制御を行うことにより、適切なタイミングでPWM駆動制御と矩形波駆動制御とを切り替えることができる。これにより、前記同期電動機を効率良く駆動させることができる。
前記第2の構成において、前記信号切替判定部は、前記駆動制御部による前記同期電動機の駆動制御が、前記PWM信号によって駆動制御されるPWM駆動制御の場合には、前記PWM信号から前記矩形波信号に切り替える際の回転速度の閾値である第1回転速度閾値を前記回転速度閾値として設定し、前記回転速度が前記第1回転速度閾値以上の場合で且つ前記電圧指令振幅が電圧指令振幅閾値以上の場合に、前記矩形波信号を前記制御信号として用いると判定し、前記駆動制御部による前記同期電動機の駆動制御が、前記矩形波信号によって駆動制御される矩形波駆動制御の場合には、前記矩形波信号から前記PWM信号に切り替える際の回転速度の閾値である第2回転速度閾値を前記回転速度閾値として設定し、前記回転速度が前記第2回転速度閾値よりも小さい場合に、前記PWM信号を前記制御信号として用いると判定する(第3の構成)。
これにより、同期電動機をPWM駆動制御している場合において、前記同期電動機の回転速度が第1回転速度閾値以上で且つ電圧指令振幅が電圧指令閾値以上の場合、すなわち、前記電圧指令振幅が大きいにも関わらず、前記同期電動機で生じる誘起電圧の増大によって前記同期電動機に流せる電流が低下する場合には、前記同期電動機を矩形波駆動することにより、前記同期電動機に供給する電圧を増大させることができる。よって、前記同期電動機で発生するトルクの低下を防止できる。
一方、前記同期電動機を矩形波駆動制御している場合において、前記同期電動機の回転速度が回転速度閾値よりも小さい場合には、前記同期電動機をPWM駆動制御することにより、制御装置及び前記同期電動機に過電流が流れることを防止できる。
しかも、上述の構成により、前記同期電動機の駆動制御を矩形波駆動制御からPWM駆動制御に切り替える際に、PWM駆動制御から矩形波駆動制御に切り替える際のように電圧指令振幅の判定を行う必要がない。よって、前記同期電動機の駆動制御を矩形波駆動制御からPWM駆動制御に切り替える際に、制御装置の演算負荷を軽減することができる。
前記第3の構成において、前記第1回転速度閾値は、前記第2回転速度閾値よりも大きい(第4の構成)。
回転速度の微小な変化によって、PWM駆動制御と矩形波駆動制御とが頻繁に切り替わると、同期電動機の駆動制御が安定しない。これに対し、上述の構成により、前記回転速度において、前記PWM駆動制御から前記矩形波駆動制御に切り替えられる際の領域と、前記矩形波駆動制御から前記PWM駆動制御に切り替えられる際の領域とは重複する。よって、前記同期電動機の前記回転速度の微小な変動によって、前記同期電動機の駆動制御が頻繁に変更されることを防止できる。よって、前記同期電動機の駆動制御を安定して行うことができる。
前記第2の構成において、前記信号切替判定部は、前記駆動制御部による前記同期電動機の駆動制御が、前記PWM信号によって駆動制御されるPWM駆動制御の場合に、前記回転速度閾値として、前記PWM信号から前記矩形波信号に切り替える際の回転速度の閾値である第1回転速度閾値を設定するとともに、前記電圧指令振幅閾値として、前記PWM信号から前記矩形波信号に切り替える際の電圧指令振幅の閾値である第1電圧指令振幅閾値を設定し、前記回転速度が前記第1回転速度閾値以上の場合で且つ前記電圧指令振幅が前記第1電圧指令振幅閾値以上の場合に、前記矩形波信号を前記制御信号として用いると判定し、前記駆動制御部による前記同期電動機の駆動制御が、前記矩形波信号によって駆動制御される矩形波駆動制御の場合に、前記回転速度閾値として、前記矩形波信号から前記PWM信号に切り替える際の回転速度の閾値である第2回転速度閾値を設定するとともに、前記電圧指令振幅閾値は、前記矩形波信号から前記PWM信号に切り替える際の電圧指令振幅の閾値である第2電圧指令振幅閾値を設定し、前記回転速度が前記第2回転速度閾値よりも小さい場合、または、前記電圧指令振幅が前記第2電圧指令振幅閾値よりも小さい場合に、前記PWM信号を前記制御信号として用いると判定する(第5の構成)。
これにより、駆動制御判定部によって判定された同期電動機の駆動制御に応じて、回転速度閾値及び電圧指令振幅閾値が変更される。よって、同期電動機の駆動制御の状態に応じて、適切な閾値を設定することができる。したがって、前記同期電動機の駆動制御におけるPWM駆動制御と矩形波駆動制御との切替を、前記同期電動機の運転状態に合わせて、より適切に行うことができる。
前記第5の構成において、前記第1回転速度閾値は、前記第2回転速度閾値よりも大きい。前記第1電圧指令振幅閾値は、前記第2電圧指令振幅閾値よりも大きい(第6の構成)。
回転速度及び電圧指令振幅の微小な変化によって、PWM駆動制御と矩形波駆動制御とが頻繁に切り替わると、同期電動機の駆動制御が安定しない。これに対し、上述の構成により、前記回転速度及び前記電圧指令振幅において、前記PWM駆動制御から前記矩形波駆動制御に切り替えられる際の領域と、前記矩形波駆動制御から前記PWM駆動制御に切り替えられる際の領域とは重複する。よって、前記同期電動機の前記回転速度及び前記電圧指令振幅の微小な変動によって、前記同期電動機の駆動制御が頻繁に変更されることを防止できる。よって、前記同期電動機の駆動制御を安定して行うことができる。
本発明の一実施形態に係る同期電動機の制御方法は、入力信号に基づいて生成されるPWM信号または矩形波信号を用いて、同期電動機の駆動を制御する同期電動機の制御方法である。この制御方法は、前記同期電動機の回転速度を取得する回転速度取得工程と、入力指令に基づいて、前記PWM信号に対応する電圧指令の振幅を取得する電圧指令振幅取得工程と、少なくとも前記回転速度に応じて、前記PWM信号または前記矩形波信号のいずれの信号を、前記同期電動機を駆動制御する際の制御信号として用いるかを判定する信号切替判定工程と、前記PWM信号及び前記矩形波信号のうち、前記信号切替判定工程で前記制御信号として用いると判定された信号を用いて、前記同期電動機の駆動を制御する駆動制御工程と、を有する(第1の方法)。
これにより、同期電動機の回転速度に応じて、前記同期電動機の駆動制御におけるPWM駆動制御と矩形波駆動制御との切替を適切に行うことができる。したがって、同期電動機を効率良く駆動させることができる。
以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。
[実施形態1]
(全体構成)
図1は、本発明の実施形態1に係る制御装置1の概略構成を示すブロック図である。制御装置1は、入力指令としての回転速度指令に基づいてPWM信号及び矩形波信号をそれぞれ生成し、電圧指令振幅及びモータ2の回転速度に応じてPWM信号または矩形波信号のいずれの信号を用いるかを決定し、決定された信号を用いてモータ2(同期電動機)を駆動制御する。なお、本実施形態では、モータ2は、三相交流モータであるが、モータ2はどのような構成のモータであってもよい。
(全体構成)
図1は、本発明の実施形態1に係る制御装置1の概略構成を示すブロック図である。制御装置1は、入力指令としての回転速度指令に基づいてPWM信号及び矩形波信号をそれぞれ生成し、電圧指令振幅及びモータ2の回転速度に応じてPWM信号または矩形波信号のいずれの信号を用いるかを決定し、決定された信号を用いてモータ2(同期電動機)を駆動制御する。なお、本実施形態では、モータ2は、三相交流モータであるが、モータ2はどのような構成のモータであってもよい。
制御装置1は、PWM駆動制御部10と、矩形波駆動制御部20と、駆動制御部30と、回転速度検出部40と、信号切替判定部50とを備える。
PWM駆動制御部10は、制御装置1に入力される回転速度指令(入力指令)に基づいてPWM信号を生成する。PWM駆動制御部10は、トルク指令生成部11と、電流指令生成部12と、電圧指令生成部13と、PWM信号生成部14とを有する。
トルク指令生成部11は、制御装置1に入力される回転速度指令に基づいてトルク指令Trefを生成する。
電流指令生成部12は、トルク指令生成部11で生成されたトルク指令Trefに基づいて、d軸電流指令Idref及びq軸電流指令Iqrefを生成する。
電圧指令生成部13は、電流指令生成部12で生成されたd軸電流指令Idref及びq軸電流指令Iqrefに基づいて、d軸電圧指令Vdref及びq軸電圧指令Vqrefを生成するとともに、これらの指令からU相電圧指令Vuref、V相電圧指令Vvref及びW相電圧指令Vwrefを生成する。また、電圧指令生成部13は、d軸電圧指令Vdref及びq軸電圧指令VqrefからPWM駆動制御における電圧指令の振幅である電圧指令振幅Apwmを求める。電圧指令生成部13で得られた電圧指令振幅Apwmは、後述の信号切替判定部50に入力される。
なお、電圧指令生成部13は、U相電圧指令Vuref、V相電圧指令Vvref及びW相電圧指令Vwrefのうち、電圧の絶対値が最も大きい値を、電圧指令振幅と見做して、電圧指令振幅Apwmとして扱ってもよい。
PWM信号生成部14は、電圧指令生成部13で生成されたU相電圧指令Vuref、V相電圧指令Vvref及びW相電圧指令Vwrefに基づいて、PWM駆動制御のためのPWM信号を生成する。このPWM信号は、駆動制御部30に入力されて、駆動制御部30の図示しないスイッチング素子の駆動制御に用いられる。
なお、PWM駆動制御部10におけるトルク指令生成部11、電流指令生成部12、電圧指令生成部13及びPWM信号生成部14の各構成は、従来のPWM駆動制御において各信号を生成する構成と同様であるため、詳しい説明を省略する。
矩形波駆動制御部20は、制御装置1に入力される回転速度指令(入力指令)に基づいて矩形波信号を生成する。矩形波駆動制御部20は、位相生成部21と、矩形波信号生成部22とを有する。
位相生成部21は、制御装置1に入力される回転速度指令に基づいて位相指令を生成する。矩形波信号生成部22は、位相生成部21で生成された位相指令に基づいて、矩形波信号を生成する。この矩形波信号は、駆動制御部30に入力されて、駆動制御部30の図示しないスイッチング素子の駆動制御に用いられる。
なお、矩形波駆動制御部20における位相生成部21及び矩形波信号生成部22の各構成は、従来の矩形波駆動制御において各信号を生成する構成と同様であるため、詳しい説明を省略する。
駆動制御部30は、PWM駆動制御部10で生成されたPWM信号、または、矩形波駆動制御部20で生成された矩形波信号のいずれか一方を用いて、モータ2の駆動を制御する。具体的には、駆動制御部30は、信号選択部31と、インバータ部32とを有する。
信号選択部31は、PWM駆動制御部10で生成されたPWM信号、または、矩形波駆動制御部20で生成された矩形波信号のいずれか一方を、後述の信号切替判定部50の判定結果に応じて選択する。詳しくは後述するが、信号選択部31は、電圧指令生成部13から出力された電圧指令振幅Apwm及び回転速度検出部40で検出されたモータ2の回転速度Nmtrに応じて、PWM信号または矩形波信号の一方を選択し、制御信号として出力する。
インバータ部32は、信号選択部31から出力された制御信号(PWM信号または矩形波信号)に基づいて、モータ2の各相のコイル(図示省略)に電力を供給する。特に図示しないが、インバータ部32は、複数のスイッチング素子を有する。インバータ部32は、これらのスイッチング素子を信号選択部31から出力された制御信号(PWM信号または矩形波信号)に基づいて駆動制御することにより、モータ2の各相のコイルに対して、PWM信号または矩形波信号に応じた電力を供給する。なお、インバータ部32は、従来のインバータ装置と同様の構成を有するため、インバータ部32の詳しい構成については説明を省略する。
すなわち、駆動制御部30は、PWM信号を用いてモータ2の駆動を制御するPWM駆動制御と、矩形波信号を用いてモータ2の駆動を制御する矩形波駆動制御とを切り替え可能に構成されている。
なお、本実施形態では、モータ2は、駆動制御部30によって、停止状態から所定回転速度以上の高回転速度の領域まで急加速されるように制御される。駆動制御部30は、モータ2が前記所定回転速度以上に達してから規定時間経過後に、インバータ部32の複数のスイッチング素子をすべてOFF状態にすることにより、モータ2をフリーラン状態で減速させて、停止させる。
回転速度検出部40は、モータ2の図示しない回転子の回転位置を検出する位置センサ2aから出力された位置信号に基づいて、モータ2の回転速度Nmtrを検出する。
信号切替判定部50は、モータ2の駆動制御状態に応じて、回転速度検出部40で検出された回転速度Nmtr及び電圧指令生成部13から出力された電圧指令振幅Apwmを用いて、駆動制御部30がPWM信号または矩形波信号のいずれの信号を制御信号として用いてモータ2を駆動制御するかを判定する。すなわち、信号切替判定部50は、駆動制御部30にPWM駆動制御または矩形波駆動制御のいずれの駆動制御を行わせるかを判定する。なお、モータ2の駆動制御状態とは、モータ2がPWM駆動制御または矩形波駆動制御されている状態を意味する。
信号切替判定部50は、回転速度Nmtr及び電圧指令振幅Apwmが、それぞれ設定された閾値以上の場合に、駆動制御部30の信号選択部31に矩形波信号を選択させる判定信号を出力し、それ以外の場合には、駆動制御部30の信号選択部31にPWM信号を選択させる判定信号を出力する。
詳しくは、信号切替判定部50は、駆動制御部30がPWM駆動制御を行っている際に、回転速度Nmtrが第1回転速度閾値Nthr_one(回転速度閾値)よりも小さい場合、及び、回転速度Nmtrが第1回転速度閾値Nthr_one以上で且つ電圧指令振幅Apwmが第1電圧指令振幅閾値Athr_one(電圧指令振幅閾値)よりも小さい場合には、駆動制御部30にPWM駆動制御を継続させるように判定信号を出力する。また、信号切替判定部50は、駆動制御部30がPWM駆動制御を行っている際に、回転速度Nmtrが第1回転速度閾値Nthr_one以上で且つ電圧指令振幅Apwmが第1電圧指令振幅閾値Athr_one以上の場合には、駆動制御部30にPWM駆動制御から矩形波駆動制御に切り替えさせるように判定信号を出力する。
また、信号切替判定部50は、駆動制御部30が矩形波駆動制御を行っている際に、回転速度Nmtrが第2回転速度閾値Nthr_pwm(回転速度閾値)以上の場合には、駆動制御部30に矩形波駆動制御を継続させるように判定信号を出力する。信号切替判定部50は、駆動制御部30が矩形波駆動制御を行っている際に、回転速度Nmtrが第2回転速度閾値Nthr_pwmよりも小さい場合には、駆動制御部30にPWM駆動制御から矩形波駆動制御に切り替えさせるように判定信号を出力する。
ここで、第2回転速度閾値Nthr_pwmは、モータ2及び駆動制御部30に過電流が流れないように、矩形波駆動制御からPWM駆動制御に切り替える回転速度である。また、第1回転速度閾値Nthr_oneは、第2回転速度閾値Nthr_pwmよりも大きい。
第1電圧指令振幅閾値Athr_oneは、電圧利用率を考慮して、PWM駆動制御から矩形波駆動制御に切り替える電圧指令振幅値である。
なお、信号切替判定部50は、判定結果を図示しないメモリ等に記憶していて、その判定結果を用いて、現在のモータ2の駆動制御がPWM駆動制御であるか矩形波駆動制御であるかを判定する。
(モータの駆動制御の切替)
次に、上述のような構成を有する制御装置1において、モータ2の駆動制御の切替動作について図2を用いて説明する。図2は、信号切替判定部50によるモータ2の駆動制御の切替判定を示すフローである。
次に、上述のような構成を有する制御装置1において、モータ2の駆動制御の切替動作について図2を用いて説明する。図2は、信号切替判定部50によるモータ2の駆動制御の切替判定を示すフローである。
図2に示すフローがスタートすると(START)、まずステップSA1において、信号切替判定部50は、回転速度検出部40によって検出されたモータ2の回転速度Nmtrを取得する。続くステップSA2において、信号切替判定部50は、電圧指令生成部13から出力された電圧指令振幅Apwmを取得する。
その後、ステップSA3で、信号切替判定部50は、駆動制御部30による駆動制御がPWM駆動制御であるかどうかを判定する。ステップSA3において、駆動制御部30による駆動制御がPWM駆動制御であると判定された場合(YESの場合)には、ステップSA4以降に進んで、モータ2の回転速度Nmtrの判定を行う。
一方、ステップSA3において、駆動制御部30による駆動制御がPWM駆動制御でないと判定された場合、すなわち駆動制御部30による駆動制御が矩形波駆動制御であると判定された場合(NOの場合)には、ステップSA9以降に進んで、モータ2の回転速度Nmtrの判定を行う。
駆動制御部30による駆動制御がPWM駆動制御の場合に進むステップSA4では、モータ2の回転速度Nmtrが第1回転速度閾値Nthr_one以上であるかどうかを判定する。この第1回転速度閾値Nthr_oneは、駆動制御部30においてPWM駆動制御から矩形波駆動制御に切り替え可能なモータ2の回転速度である。
ステップSA4において、回転速度Nmtrが第1回転速度閾値Nthr_one以上の場合(YESの場合)には、ステップSA5以降に進んで、電圧指令振幅Apwmの判定を行う。
一方、ステップSA4において、回転速度Nmtrが第1回転速度閾値Nthr_oneよりも小さい場合(NOの場合)には、ステップSA6に進んで、信号切替判定部50は、駆動制御部30に対してPWM駆動制御を継続させる判定信号を出力する。
回転速度Nmtrが第1回転速度閾値Nthr_one以上の場合に進むステップSA5では、電圧指令振幅Apwmが第1電圧指令振幅閾値Athr_one以上であるかどうかを判定する。この第1電圧指令振幅閾値Athr_oneは、電圧利用率を考慮して、PWM駆動制御から矩形波駆動制御に切り替える電圧指令振幅値である。
ステップSA5において、電圧指令振幅Apwmが第1電圧指令振幅閾値Athr_one以上であると判定された場合(YESの場合)には、ステップSA7に進んで、信号切替判定部50は、駆動制御部30に対して矩形波駆動制御に切り替えるように判定信号を出力する。
一方、ステップSA5において、電圧指令振幅Apwmが第1電圧指令振幅閾値Athr_oneよりも小さいと判定された場合(NOの場合)には、ステップSA8に進んで、信号切替判定部50は、駆動制御部30にPWM駆動制御を継続させる判定信号を出力する。
ステップSA6からSA8において、信号切替判定部50が駆動制御部30に判定信号を出力した後、このフローを終了する(END)。
上述のステップSA3において駆動制御部30による駆動制御が矩形波駆動制御であると判定された場合(NOの場合)に進むステップSA9では、モータ2の回転速度Nmtrが第2回転速度閾値Nthr_pwm以上であるかどうかを判定する。この第2回転速度閾値Nthr_pwmは、モータ2及び駆動制御部30に過電流が流れないように、矩形波駆動制御からPWM駆動制御に切り替える回転速度である。
ステップSA9において、回転速度Nmtrが第2回転速度閾値Nthr_pwm以上の場合(YESの場合)には、ステップSA10に進んで、信号切替判定部50は、駆動制御部30に対して矩形波駆動制御を継続させる判定信号を出力する。
一方、ステップSA9において、回転速度Nmtrが第2回転速度閾値Nthr_pwmよりも小さい場合(NOの場合)には、ステップSA11に進んで、信号切替判定部50は、駆動制御部30に対してPWM駆動制御に切り替えるように判定信号を出力する。
このように、本実施形態では、信号切替判定部50によって駆動制御部30による駆動制御が矩形波駆動制御であると判定された場合(ステップSA3においてNOの場合)には、回転速度Nmtrのみを用いて、PWM駆動制御と矩形波駆動制御とを切り替える。これは、本実施形態のモータ2の運転パターンが、モータ2を停止させる際に、モータ2をフリーラン状態で減速させて、停止させる運転パターンであるからである。そのため、モータ2を矩形波駆動制御からPWM駆動制御に切り替える際に、PWM駆動制御から矩形波駆動制御に切り替える際のように電圧指令振幅を考慮する必要がなく、モータ2を停止後に再始動する際にモータ2をPWM駆動制御できるように駆動制御部30が設定されていればよい。
ステップSA10、SA11において、信号切替判定部50が駆動制御部30に判定信号を出力した後、このフローを終了する(END)。
ここで、ステップSA1が回転速度取得工程に対応し、ステップSA2が電圧指令振幅取得工程に対応する。ステップSA3からSA5、SA9が、信号切替判定工程に対応し、ステップSA6からSA8、SA10、SA11が、駆動制御工程に対応する。
本実施形態では、第1回転速度閾値Nthr_oneは、第2回転速度閾値Nthr_pwmよりも大きい回転速度である。
図3に、モータ2の回転速度と電圧指令振幅との関係において、上述の第1回転速度閾値Nthr_one、第2回転速度閾値Nthr_pwm及び第1電圧指令振幅閾値Athr_oneによって規定されるモータ2の駆動制御の領域を示す。
図3に示すように、回転速度と電圧指令振幅との関係において、PWM駆動制御を行うPWM駆動領域と矩形波駆動制御を行う矩形波駆動領域との間には、混在領域が存在する。この混在領域では、駆動制御部30が信号切替判定部50による判定時にPWM駆動制御を行っている際には、回転速度が第1回転速度閾値Nthr_oneよりも小さい場合、または、回転速度が第1回転速度閾値Nthr_one以上で且つ電圧指令振幅Apwmが第1電圧指令振幅閾値Athr_oneよりも小さい場合に、PWM駆動制御を継続する。
一方、前記混在領域では、駆動制御部30が信号切替判定部50による判定時に矩形波駆動制御を行っている際には、回転速度が第2回転速度閾値Nthr_pwm以上の場合に、矩形波駆動制御を継続する。
このように、図3において、PWM駆動領域と矩形波駆動領域との間には、混在領域が位置し、該混在領域では、駆動制御部30が信号切替判定部50による判定時にPWM駆動制御を行っているか矩形波駆動制御を行っているかによって、モータ2の駆動制御が異なる。
これにより、PWM駆動制御と矩形波駆動制御とを切り替える際に、モータ2の回転速度及び電圧指令振幅の変動によって、PWM駆動制御と矩形波駆動制御とが頻繁に切り替わることを防止できる。よって、モータ2の駆動制御を安定して行うことができる。
以上より、本実施形態では、モータ2の駆動制御をPWM駆動制御と矩形波駆動制御とで切り替える際に、モータ2の回転速度Nmtr及びPWM駆動制御時の電圧指令振幅Apwmを考慮することで、適切なタイミングでモータ2の駆動制御を切り替えることができる。これにより、モータ2に過電流が流れたり、モータ2の出力トルクの低下が生じたりすることを防止できる。
また、モータ2の駆動制御をPWM駆動制御から矩形波駆動制御に切り替える際の第1回転速度閾値Nthr_oneを、モータ2の駆動制御を矩形波駆動制御からPWM駆動制御に切り替える際の第2回転速度閾値Nthr_pwmよりも大きくすることにより、モータ2の回転速度Nmtrが変動した場合でも、モータ2の駆動制御が頻繁に切り替わることを防止できる。
さらに、モータ2をフリーラン状態で減速させて、停止させる運転パターンにおいて、モータ2の駆動制御を矩形波駆動制御からPWM駆動制御に切り替える際に、PWM駆動制御から矩形波駆動制御に切り替える際のように電圧指令振幅の判定を行う必要がない。よって、モータ2の駆動制御を矩形波駆動制御からPWM駆動制御に切り替える際に、制御装置1の演算負荷を軽減することができる。
[実施形態2]
図4に、実施形態2に係る制御装置において、信号切替判定部50によるモータ2の駆動制御の切替判定のフローを示す。この実施形態では、制御装置の構成は実施形態1の制御装置1の構成と同様であり、モータ2の駆動制御の切替判定のフローが実施形態1のフローとは異なる。具体的には、信号切替判定部50によるモータ2の駆動制御の切替判定フローのうち、矩形波駆動制御からPWM駆動制御に切り替える際のフローが、実施形態1のフローとは異なる。以下では、実施形態1と同様の構成には同一の符号を付して説明を省略し、実施形態1の構成とは異なる構成についてのみ説明する。
図4に、実施形態2に係る制御装置において、信号切替判定部50によるモータ2の駆動制御の切替判定のフローを示す。この実施形態では、制御装置の構成は実施形態1の制御装置1の構成と同様であり、モータ2の駆動制御の切替判定のフローが実施形態1のフローとは異なる。具体的には、信号切替判定部50によるモータ2の駆動制御の切替判定フローのうち、矩形波駆動制御からPWM駆動制御に切り替える際のフローが、実施形態1のフローとは異なる。以下では、実施形態1と同様の構成には同一の符号を付して説明を省略し、実施形態1の構成とは異なる構成についてのみ説明する。
図4に示すフローがスタートする(START)と、信号切替判定部50は、モータ2の回転速度Nmtr及びPWM駆動制御時の電圧指令振幅Apwmを取得した後(ステップSB1、SB2)、モータ2の現在の駆動制御がPWM駆動制御であるか矩形波駆動制御であるかの判定を行う(ステップSB3)。
モータ2の駆動制御がPWM駆動制御の場合(ステップSB3においてYESの場合)には、実施形態1のステップSA4からSA8と同様、モータ2の回転速度Nmtrが第1回転速度閾値Nthr_one以上で且つ電圧指令振幅Apwmが第1電圧指令振幅閾値Athr_one以上の場合に、信号切替判定部50は、モータ2の駆動制御をPWM駆動制御から矩形波駆動制御に切り替えるように判定信号を出力する。モータ2の回転速度Nmtrが第1回転速度閾値Nthr_oneよりも小さい場合、または、電圧指令振幅Apwmが第1電圧指令振幅閾値Athr_oneよりも小さい場合には、信号切替判定部50は、モータ2の駆動制御としてPWM駆動制御を継続するように判定信号を出力する。
信号切替判定部50におけるステップSB1からステップSB8までの動作は、実施形態1のステップSA1からSA8までの動作と同様であるため、各ステップの動作の詳しい説明を省略する。
モータの駆動制御が矩形波駆動制御の場合(ステップSB3においてNOの場合)には、ステップSB9に進んで、実施形態1のステップSA9と同様に、モータ2の回転速度Nmtrが第2回転速度閾値Nthr_pwm(回転速度閾値)以上であるかどうかの判定を行う。
ステップSB9において、モータ2の回転速度Nmtrが第2回転速度閾値Nthr_pwm以上であると判定された場合(YESの場合)には、ステップSB10以降に進んで、電圧指令振幅Apwmが第2電圧指令振幅閾値Athr_pwm以上であるかどうかを判定する。この第2電圧指令振幅閾値Athr_pwmは、駆動制御部30において矩形波駆動制御からPWM駆動制御に切り替え可能な電圧指令振幅値である。
一方、ステップSB9において、モータ2の回転速度Nmtrが第2回転速度閾値Nthr_pwmよりも小さいと判定された場合(NOの場合)には、ステップSB11に進んで、信号切替判定部50は、駆動制御部30に対してPWM駆動制御に切り替えるように判定信号を出力する。
ステップSB10において、電圧指令振幅Apwmが第2電圧指令振幅閾値Athr_pwm以上であると判定された場合(YESの場合)には、ステップSB12に進んで、信号切替判定部50は、駆動制御部30に対して矩形波駆動制御を継続するように判定信号を出力する。
一方、ステップSB10において、電圧指令振幅Apwmが第2電圧指令振幅閾値Athr_pwmよりも小さいと判定された場合(NOの場合)には、ステップSB13に進んで、信号切替判定部50は、駆動制御部30にPWM駆動制御に切り替えるように判定信号を出力する。
ステップSB11からSB13において、信号切替判定部50が駆動制御部30に判定信号を出力した後、このフローを終了する(END)。
ここで、ステップSB1が回転速度取得工程に対応し、ステップSB2が電圧指令振幅取得工程に対応する。ステップSB3からSB5、SB9、SB10が、信号切替判定工程に対応し、ステップSB6からSB8、SB11からSB13が、駆動制御工程に対応する。
本実施形態では、第1回転速度閾値Nthr_oneは、第2回転速度閾値Nthr_pwmよりも大きい回転速度である。第1電圧指令振幅閾値Athr_oneは、第2電圧指令振幅閾値Athr_pwmよりも大きい電圧指令振幅値である。
図5に、モータ2の回転速度と電圧指令振幅との関係において、上述の第1回転速度閾値Nthr_one、第2回転速度閾値Nthr_pwm、第1電圧指令振幅閾値Athr_one及び第2電圧指令振幅閾値Athr_pwmによって規定されるモータ2の駆動制御の領域を示す。
図5に示すように、回転速度と電圧指令振幅との関係において、PWM駆動制御を行うPWM駆動領域と矩形波駆動制御を行う矩形波駆動領域との間には、混在領域が存在する。この混在領域では、駆動制御部30が信号切替判定部50による判定時にPWM駆動制御を行っている際には、回転速度が第1回転速度閾値Nthr_oneよりも小さい場合、または、回転速度が第1回転速度閾値Nthr_one以上で且つ電圧指令振幅Apwmが第1電圧指令振幅閾値Athr_oneよりも小さい場合に、PWM駆動制御を継続する。
一方、前記混在領域では、駆動制御部30が信号切替判定部50による判定時に矩形波駆動制御を行っている際には、回転速度が第2回転速度閾値Nthr_pwm以上で且つ電圧指令振幅が第2電圧指令振幅閾値Athr_pwm以上の場合に、矩形波駆動制御を継続する。
このように、図5において、PWM駆動領域と矩形波駆動領域との間には、混在領域が位置し、該混在領域では、駆動制御部30が信号切替判定部50による判定時にPWM駆動制御を行っているか矩形波駆動制御を行っているかによって、駆動制御が異なる。
これにより、PWM駆動制御と矩形波駆動制御とを切り替える際に、モータ2の回転速度及び電圧指令振幅の変動によって、PWM駆動制御と矩形波駆動制御とが頻繁に切り替わることを防止できる。よって、モータ2の駆動制御を安定して行うことができる。
以上より、本実施形態では、モータ2の駆動制御が矩形波駆動制御の場合、電圧指令振幅Apwmが第2電圧指令振幅閾値Athr_pwmよりも小さい場合に、モータ2の駆動制御をPWM駆動制御に切り替える。これにより、モータ2の駆動制御が矩形波駆動制御の場合にも、電圧指令振幅Apwmを考慮して、モータ2の駆動制御を切り替えることができる。よって、モータ2の駆動制御を、より適切なタイミングで行うことが可能になる。なお、本実施形態の構成は、モータ2の減速時もモータ2の駆動制御を行う場合に、特に有効である。
また、モータ2の駆動制御をPWM駆動制御から矩形波駆動制御に切り替える際の第1電圧指令振幅閾値Athr_oneを、モータ2の駆動制御を矩形波駆動制御からPWM駆動制御に切り替える際の第2電圧指令振幅閾値Athr_pwmよりも大きくすることにより、電圧指令振幅Apwmの値が変動した場合でも、モータ2の駆動制御が頻繁に切り替わることを防止できる。
(その他の実施形態)
以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
前記各実施形態では、モータ2の回転速度と電圧指令振幅との関係において、PWM駆動領域と混在領域との境界、及び、矩形波駆動領域と混在領域との境界では、回転速度閾値及び電圧指令振幅閾値は、それぞれ一定である。しかしながら、回転速度閾値及び電圧指令振幅閾値は、それぞれ、変化する値であってもよい。
図6に、実施形態2の場合において、モータ2の回転速度に応じて第1電圧指令振幅閾値Athr_one及び第2電圧指令振幅閾値Athr_pwmを変化させた場合のモータ2の駆動制御の領域を示す。この図6では、第1電圧指令振幅閾値Athr_one及び第2電圧指令振幅閾値Athr_pwmは、モータ2の回転速度が大きくなるほど、小さくなる。
すなわち、図6の場合には、第1電圧指令振幅閾値Athr_one及び第2電圧指令振幅閾値Athr_pwmは、モータ2の回転速度が大きいほど値が小さくなるように設定されている。なお、第1電圧指令振幅閾値Athr_oneまたは第2電圧指令振幅閾値Athr_pwmのいずれか一方のみが、モータ2の回転速度が大きいほど値が小さくなるように設定されていてもよい。
図7に、実施形態2の場合において、電圧指令振幅に応じてモータ2の第1回転速度閾値Nthr_one及び第2回転速度閾値Nthr_pwmを変化させた場合のモータ2の駆動制御の領域を示す。この図7では、第1回転速度閾値Nthr_one及び第2回転速度閾値Nthr_pwmは、電圧指令振幅が大きくなるほど、小さくなる。
すなわち、図7の場合には、第1回転速度閾値Nthr_one及び第2回転速度閾値Nthr_pwmは、電圧指令振幅が大きいほど値が小さくなるように設定されている。なお、第1回転速度閾値Nthr_one及び第2回転速度閾値Nthr_pwmのいずれか一方のみが、電圧指令振幅が大きいほど値が小さくなるように設定されていてもよい。
なお、回転速度閾値及び電圧指令振幅閾値を、それぞれ変化させてもよい。すなわち、第1電圧指令振幅閾値Athr_one及び第2電圧指令振幅閾値Athr_pwmは、モータ2の回転速度が大きくなるほど、小さくなり、且つ、第1回転速度閾値Nthr_one及び第2回転速度閾値Nthr_pwmは、電圧指令振幅が大きくなるほど、小さくなってもよい。
また、図6及び図7では、実施形態2の場合におけるモータの駆動制御の領域について、他の例を示したが、実施形態1の場合におけるモータの駆動制御の領域についても同様である。
前記実施形態1では、第1回転速度閾値Nthr_oneは、第2回転速度閾値Nthr_pwmよりも大きい回転速度である。しかしながら、第1回転速度閾値Nthr_oneは、第2回転速度閾値Nthr_pwmと同じ回転速度であってもよい。
前記実施形態2では、第1回転速度閾値Nthr_oneは、第2回転速度閾値Nthr_pwmよりも大きい回転速度であり、第1電圧指令振幅閾値Athr_oneは、第2電圧指令振幅閾値Athr_pwmよりも大きい電圧指令振幅値である。しかしながら、第1回転速度閾値Nthr_oneは、第2回転速度閾値Nthr_pwmと同じ回転速度であってもよい。第1電圧指令振幅閾値Athr_oneは、第2電圧指令振幅閾値Athr_pwmと同じ電圧指令振幅値であってもよい。
前記各実施形態では、3相交流モータであるモータ2の駆動を制御する制御装置1の構成について説明したが、この限りではなく、3相以外の複数相の交流モータの駆動を制御する制御装置に適用してもよい。すなわち、モータは、同期電動機であれば、どのような構成を有していてもよい。
本発明は、同期電動機の駆動制御をPWM駆動制御と矩形波駆動制御とで切り替え可能な制御装置に利用可能である。
Claims (7)
- 同期電動機の駆動を制御する同期電動機の制御装置であって、
入力指令に基づいて、PWM信号を生成するPWM信号生成部と、
前記入力指令に基づいて、矩形波信号を生成する矩形波信号生成部と、
前記同期電動機の回転速度を検出する回転速度検出部と、
少なくとも前記回転速度に応じて、前記PWM信号生成部によって生成された前記PWM信号、または、前記矩形波信号生成部によって生成された前記矩形波信号のいずれの信号を、前記同期電動機を駆動制御する際の制御信号として用いるかを判定する信号切替判定部と、
前記PWM信号及び前記矩形波信号のうち、前記信号切替判定部によって前記制御信号として用いると判定された信号を用いて、前記同期電動機の駆動を制御する駆動制御部と、
を備える、同期電動機の制御装置。 - 請求項1に記載の同期電動機の制御装置において、
前記入力指令に基づいて、前記PWM信号に対応する電圧指令を生成する電圧指令生成部をさらに備え、
前記信号切替判定部は、
前記回転速度が回転速度閾値よりも小さい場合、または、前記電圧指令の振幅が電圧指令振幅閾値よりも小さい場合に、前記PWM信号を前記制御信号として用いると判定し、
前記回転速度が前記回転速度閾値以上の場合には、前記駆動制御部による前記同期電動機の駆動制御状態及び前記電圧指令振幅の少なくとも一方に応じて、前記PWM信号または前記矩形波信号のいずれか一方を前記制御信号として用いると判定する、
同期電動機の制御装置。 - 請求項2に記載の同期電動機の制御装置において、
前記信号切替判定部は、
前記駆動制御部による前記同期電動機の駆動制御が、前記PWM信号によって駆動制御されるPWM駆動制御の場合には、前記PWM信号から前記矩形波信号に切り替える際の回転速度の閾値である第1回転速度閾値を前記回転速度閾値として設定し、前記回転速度が前記第1回転速度閾値以上の場合で且つ前記電圧指令振幅が電圧指令振幅閾値以上の場合に、前記矩形波信号を前記制御信号として用いると判定し、
前記駆動制御部による前記同期電動機の駆動制御が、前記矩形波信号によって駆動制御される矩形波駆動制御の場合には、前記矩形波信号から前記PWM信号に切り替える際の回転速度の閾値である第2回転速度閾値を前記回転速度閾値として設定し、前記回転速度が前記第2回転速度閾値よりも小さい場合に、前記PWM信号を前記制御信号として用いると判定する、
同期電動機の制御装置。 - 請求項3に記載の同期電動機の制御装置において、
前記第1回転速度閾値は、前記第2回転速度閾値よりも大きい、
同期電動機の制御装置。 - 請求項2に記載の同期電動機の制御装置において、
前記信号切替判定部は、
前記駆動制御部による前記同期電動機の駆動制御が、前記PWM信号によって駆動制御されるPWM駆動制御の場合に、前記回転速度閾値として、前記PWM信号から前記矩形波信号に切り替える際の回転速度の閾値である第1回転速度閾値を設定するとともに、前記電圧指令振幅閾値として、前記PWM信号から前記矩形波信号に切り替える際の電圧指令振幅の閾値である第1電圧指令振幅閾値を設定し、前記回転速度が前記第1回転速度閾値以上の場合で且つ前記電圧指令振幅が前記第1電圧指令振幅閾値以上の場合に、前記矩形波信号を前記制御信号として用いると判定し、
前記駆動制御部による前記同期電動機の駆動制御が、前記矩形波信号によって駆動制御される矩形波駆動制御の場合に、前記回転速度閾値として、前記矩形波信号から前記PWM信号に切り替える際の回転速度の閾値である第2回転速度閾値を設定するとともに、前記電圧指令振幅閾値として、前記矩形波信号から前記PWM信号に切り替える際の電圧指令振幅の閾値である第2電圧指令振幅閾値を設定し、前記回転速度が前記第2回転速度閾値よりも小さい場合、または、前記電圧指令振幅が前記第2電圧指令振幅閾値よりも小さい場合に、前記PWM信号を前記制御信号として用いると判定する、
同期電動機の制御装置。 - 請求項5に記載の同期電動機の制御装置において、
前記第1回転速度閾値は、前記第2回転速度閾値よりも大きく、
前記第1電圧指令振幅閾値は、前記第2電圧指令振幅閾値よりも大きい、
同期電動機の制御装置。 - 入力信号に基づいて生成されるPWM信号または矩形波信号を用いて、同期電動機の駆動を制御する同期電動機の制御方法であって、
前記同期電動機の回転速度を取得する回転速度取得工程と、
入力指令に基づいて、前記PWM信号に対応する電圧指令の振幅を取得する電圧指令振幅取得工程と、
少なくとも前記回転速度に応じて、前記PWM信号または前記矩形波信号のいずれの信号を、前記同期電動機を駆動制御する際の制御信号として用いるかを判定する信号切替判定工程と、
前記PWM信号及び前記矩形波信号のうち、前記信号切替判定工程で前記制御信号として用いると判定された信号を用いて、前記同期電動機の駆動を制御する駆動制御工程と、を有する、
同期電動機の制御方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880059093.1A CN111095779A (zh) | 2017-09-14 | 2018-05-14 | 同步电动机的控制装置及控制方法 |
US16/639,089 US11296625B2 (en) | 2017-09-14 | 2018-05-14 | Control device and control method for synchronous electric motor |
EP18857106.1A EP3683959B1 (en) | 2017-09-14 | 2018-05-14 | Control device and control method for synchronous electric motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017176701A JP7121248B2 (ja) | 2017-09-14 | 2017-09-14 | 同期電動機の制御装置及び制御方法 |
JP2017-176701 | 2017-09-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019053943A1 true WO2019053943A1 (ja) | 2019-03-21 |
Family
ID=65723979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/018446 WO2019053943A1 (ja) | 2017-09-14 | 2018-05-14 | 同期電動機の制御装置及び制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11296625B2 (ja) |
EP (1) | EP3683959B1 (ja) |
JP (1) | JP7121248B2 (ja) |
CN (1) | CN111095779A (ja) |
WO (1) | WO2019053943A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020237876A1 (zh) * | 2019-05-31 | 2020-12-03 | 广东美的制冷设备有限公司 | 驱动控制方法、装置、家电设备和计算机可读存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005218299A (ja) | 1999-07-08 | 2005-08-11 | Toyota Motor Corp | 交流電動機の駆動制御装置 |
JP2007259575A (ja) * | 2006-03-23 | 2007-10-04 | Hitachi Ltd | 界磁巻線型同期電動機及び電動駆動装置 |
JP2013230052A (ja) * | 2012-04-26 | 2013-11-07 | Toyota Motor Corp | モータ制御装置 |
JP2014207765A (ja) | 2013-04-12 | 2014-10-30 | 三菱電機株式会社 | 電動機の駆動制御装置 |
JP2017060367A (ja) | 2015-09-18 | 2017-03-23 | シンフォニアテクノロジー株式会社 | インバータ制御装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04236190A (ja) * | 1991-01-11 | 1992-08-25 | Toyota Motor Corp | ブラシレスモータのための電気制御装置 |
JP4667608B2 (ja) * | 2001-01-24 | 2011-04-13 | トヨタ自動車株式会社 | 交流電動機の駆動制御装置 |
JP2006238631A (ja) * | 2005-02-25 | 2006-09-07 | Mitsubishi Heavy Ind Ltd | Id/Iqテーブルを使用したモータの制御方法 |
US7408317B2 (en) * | 2005-05-04 | 2008-08-05 | Wildeck, Inc. | Apparatus having a motor, controller for the motor, and method of controlling the motor |
JP4706324B2 (ja) * | 2005-05-10 | 2011-06-22 | トヨタ自動車株式会社 | モータ駆動システムの制御装置 |
JP4894308B2 (ja) * | 2006-03-13 | 2012-03-14 | コニカミノルタオプト株式会社 | 駆動装置 |
JP4729526B2 (ja) | 2007-03-29 | 2011-07-20 | トヨタ自動車株式会社 | 電動機の駆動制御装置 |
JP4424427B2 (ja) | 2008-03-18 | 2010-03-03 | トヨタ自動車株式会社 | 車両の制御装置および制御方法 |
JP4513907B2 (ja) * | 2008-06-30 | 2010-07-28 | トヨタ自動車株式会社 | ハイブリッド車両 |
JP2010161907A (ja) * | 2009-01-09 | 2010-07-22 | Toyota Motor Corp | モータ駆動制御システムの制御装置 |
JP5482574B2 (ja) * | 2010-08-27 | 2014-05-07 | トヨタ自動車株式会社 | 交流電動機の制御システム |
CN103444074B (zh) * | 2011-04-05 | 2015-12-16 | 丰田自动车株式会社 | 电动机的控制装置及具备该电动机的控制装置的电动车辆、以及电动机的控制方法 |
US20150311833A1 (en) * | 2014-04-29 | 2015-10-29 | Advanced Power Electronic Solutions, LLC. | General-purpose design of dc-ac inverters in electrified automobile systems |
JP6179494B2 (ja) * | 2014-09-26 | 2017-08-16 | 株式会社デンソー | 交流電動機の制御装置 |
JP6464924B2 (ja) * | 2015-05-25 | 2019-02-06 | 株式会社デンソー | 回転電機の制御装置 |
-
2017
- 2017-09-14 JP JP2017176701A patent/JP7121248B2/ja active Active
-
2018
- 2018-05-14 US US16/639,089 patent/US11296625B2/en active Active
- 2018-05-14 CN CN201880059093.1A patent/CN111095779A/zh not_active Withdrawn
- 2018-05-14 EP EP18857106.1A patent/EP3683959B1/en active Active
- 2018-05-14 WO PCT/JP2018/018446 patent/WO2019053943A1/ja unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005218299A (ja) | 1999-07-08 | 2005-08-11 | Toyota Motor Corp | 交流電動機の駆動制御装置 |
JP2007259575A (ja) * | 2006-03-23 | 2007-10-04 | Hitachi Ltd | 界磁巻線型同期電動機及び電動駆動装置 |
JP2013230052A (ja) * | 2012-04-26 | 2013-11-07 | Toyota Motor Corp | モータ制御装置 |
JP2014207765A (ja) | 2013-04-12 | 2014-10-30 | 三菱電機株式会社 | 電動機の駆動制御装置 |
JP2017060367A (ja) | 2015-09-18 | 2017-03-23 | シンフォニアテクノロジー株式会社 | インバータ制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3683959A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020237876A1 (zh) * | 2019-05-31 | 2020-12-03 | 广东美的制冷设备有限公司 | 驱动控制方法、装置、家电设备和计算机可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
JP7121248B2 (ja) | 2022-08-18 |
EP3683959A4 (en) | 2021-05-12 |
JP2019054620A (ja) | 2019-04-04 |
EP3683959A1 (en) | 2020-07-22 |
CN111095779A (zh) | 2020-05-01 |
US20200212829A1 (en) | 2020-07-02 |
EP3683959B1 (en) | 2022-12-14 |
US11296625B2 (en) | 2022-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080252239A1 (en) | Method capable of controlling brushless dc motor | |
JP6296566B2 (ja) | モータ駆動制御装置 | |
CN103001568A (zh) | 马达控制装置 | |
JPH0746855A (ja) | インバータの二相pwm制御装置 | |
JP5217477B2 (ja) | 電圧型pwmインバータの制御装置 | |
JP2014075931A (ja) | ステッピングモータの駆動制御装置 | |
JP2008148395A (ja) | モータインバータ装置及びその制御方法 | |
WO2019053943A1 (ja) | 同期電動機の制御装置及び制御方法 | |
JP7189075B2 (ja) | 電動機駆動制御装置および該方法ならびに電動機駆動制御システム | |
JP2017205017A (ja) | 空気調和機のモータ制御装置及び空気調和機 | |
JP4705839B2 (ja) | 電力変換装置 | |
JP2002010675A (ja) | Dcブラシレスモータ装置 | |
JP2020048360A (ja) | モータ制御装置、モータシステム及びインバータ制御方法 | |
JP2008259360A (ja) | ブラシレスモータ用通電制御回路 | |
JP4269921B2 (ja) | ブラシレスモータの駆動装置 | |
JP5606899B2 (ja) | ブラシレスモータの駆動制御装置 | |
JP6681266B2 (ja) | 電動機の制御装置及びそれを備えた電動車両 | |
JP2017063532A (ja) | モータ制御装置 | |
WO2022259624A1 (ja) | インバータ制御装置、インバータ制御方法 | |
JP2012070489A (ja) | モータの駆動制御装置およびモータの駆動制御方法 | |
JP4539224B2 (ja) | 電動機駆動装置の制御方法 | |
JP2010193566A (ja) | モータ制御装置 | |
JP2006109641A (ja) | インバータ制御装置 | |
US20140097773A1 (en) | Method and device for operating an electronically commutated electric machine | |
KR101972874B1 (ko) | 전동기 구동 제어 장치 및 전동기 구동 제어 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18857106 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018857106 Country of ref document: EP Effective date: 20200414 |