WO2018220829A1 - ポリシー生成装置及び車両 - Google Patents
ポリシー生成装置及び車両 Download PDFInfo
- Publication number
- WO2018220829A1 WO2018220829A1 PCT/JP2017/020643 JP2017020643W WO2018220829A1 WO 2018220829 A1 WO2018220829 A1 WO 2018220829A1 JP 2017020643 W JP2017020643 W JP 2017020643W WO 2018220829 A1 WO2018220829 A1 WO 2018220829A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- policy
- reward
- driver
- driving
- Prior art date
Links
- 230000009471 action Effects 0.000 claims abstract description 22
- 238000012545 processing Methods 0.000 claims abstract description 11
- 238000001514 detection method Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 230000006399 behavior Effects 0.000 description 14
- 230000015654 memory Effects 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0088—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/10—Path keeping
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
Definitions
- the present invention relates to a policy generation device and a vehicle.
- Patent Document 1 describes a technique for extracting a high risk object from an arrangement pattern of objects using a neural network based on a gaze behavior model of a skilled driver.
- Patent Document 1 the extracted high-risk target is merely presented to the driver and is not used for vehicle travel control. It is possible to define an action (for example, approach to such a target) to be suppressed by automatic driving using a high risk target. However, it is difficult to imitate natural driving performed by a human driver, particularly a driving expert, only by avoiding the behavior to be suppressed.
- An object of some aspects of the present invention is to provide a technique for generating a policy that imitates driving performed by a human driver.
- an apparatus for generating a policy for determining a trajectory in automatic driving of a vehicle wherein a reward estimator, a situation around the vehicle, and a behavior of the vehicle are represented by the reward estimator. And a processing unit that generates a policy so that an expected value of reward obtained by inputting to is increased, and the reward is updated based on an actual action by a predetermined driver, and the reward estimator is updated.
- An apparatus is provided in which the inputted behavior of the vehicle is updated based on the policy.
- FIG. 6 is a diagram illustrating an example of a method for generating a policy according to some embodiments.
- FIG. 1 is a block diagram of a vehicle control apparatus according to an embodiment of the present invention, which controls a vehicle 1.
- the outline of a vehicle 1 is shown in a plan view and a side view.
- the vehicle 1 is a sedan type four-wheeled passenger car as an example.
- the control unit 2 includes a plurality of ECUs 20 to 29 that are communicably connected via an in-vehicle network.
- Each ECU includes a processor typified by a CPU, a memory such as a semiconductor memory, an interface with an external device, and the like.
- the memory stores a program executed by the processor, data used by the processor for processing, and the like.
- Each ECU may include a plurality of processors, memories, interfaces, and the like.
- the ECU 20 includes a processor 20a and a memory 20b. When the processor 20a executes an instruction included in the program stored in the memory 20b, processing by the ECU 20 is executed.
- the ECU 20 may include a dedicated integrated circuit such as an ASIC for executing processing by the ECU 20.
- the ECU 20 executes control related to automatic driving of the vehicle 1.
- automatic operation at least one of steering and acceleration / deceleration of the vehicle 1 is automatically controlled.
- both steering and acceleration / deceleration are automatically controlled.
- the ECU 21 controls the electric power steering device 3.
- the electric power steering device 3 includes a mechanism that steers the front wheels in accordance with the driving operation (steering operation) of the driver with respect to the steering wheel 31.
- the electric power steering device 3 includes a motor that provides a driving force for assisting the steering operation and automatically steering the front wheels, a sensor that detects the steering angle, and the like.
- the ECU 21 automatically controls the electric power steering device 3 in response to an instruction from the ECU 20 to control the traveling direction of the vehicle 1.
- the ECUs 22 and 23 control the detection units 41 to 43 that detect the surrounding conditions of the vehicle and perform information processing on detection results.
- the detection unit 41 is a camera that captures the front of the vehicle 1 (hereinafter may be referred to as the camera 41). In the present embodiment, two detection units 41 are provided at the front of the roof of the vehicle 1. By analyzing the image captured by the camera 41, it is possible to extract the outline of the target and the lane markings (white lines, etc.) on the road.
- the detection unit 42 is a lidar (laser radar) (hereinafter may be referred to as a lidar 42), and detects a target around the vehicle 1 or measures a distance from the target.
- a lidar 42 laser radar
- the detection unit 43 is a millimeter wave radar (hereinafter may be referred to as a radar 43), detects a target around the vehicle 1, and measures a distance from the target.
- five radars 43 are provided, one at the front center of the vehicle 1, one at each front corner, and one at each rear corner.
- the ECU22 controls one camera 41 and each lidar 42, and processes information of a detection result.
- the ECU 23 performs control of the other camera 42 and each radar 43 and information processing of detection results.
- the ECU 24 controls the gyro sensor 5, the GPS sensor 24b, and the communication device 24c and performs information processing on the detection result or the communication result.
- the gyro sensor 5 detects the rotational movement of the vehicle 1. The course of the vehicle 1 can be determined based on the detection result of the gyro sensor 5 or the wheel immediately.
- the GPS sensor 24 b detects the current position of the vehicle 1.
- the communication device 24c performs wireless communication with a server that provides map information and traffic information, and acquires these information.
- the ECU 24 can access a map information database 24a constructed in a memory, and the ECU 24 searches for a route from the current location to the destination.
- the ECU 24, the map database 24a, and the GPS sensor 24b constitute a so-called navigation device.
- the ECU 25 includes a communication device 25a for inter-vehicle communication.
- the communication device 25a performs wireless communication with other vehicles in the vicinity and exchanges information between the vehicles.
- the ECU 26 controls the power plant 6.
- the power plant 6 is a mechanism that outputs a driving force for rotating the driving wheels of the vehicle 1 and includes, for example, an engine and a transmission.
- the ECU 26 controls the output of the engine in response to the driver's driving operation (accelerator operation or acceleration operation) detected by the operation detection sensor 7a provided on the accelerator pedal 7A, the vehicle speed detected by the vehicle speed sensor 7c, or the like.
- the gear position of the transmission is switched based on the information.
- the ECU 26 automatically controls the power plant 6 in response to an instruction from the ECU 20 to control acceleration / deceleration of the vehicle 1.
- the ECU 27 controls a lighting device (headlight, taillight, etc.) including the direction indicator 8 (blinker).
- a lighting device headlight, taillight, etc.
- the direction indicator 8 blinked
- the direction indicator 8 is provided at the front part, the door mirror, and the rear part of the vehicle 1.
- the ECU 28 controls the input / output device 9.
- the input / output device 9 outputs information to the driver and receives input of information from the driver.
- the voice output device 91 notifies the driver of information by voice.
- the display device 92 notifies the driver of information by displaying an image.
- the display device 92 is disposed on the driver's seat surface, for example, and constitutes an instrument panel or the like.
- voice and a display were illustrated here, you may alert
- information may be notified by combining a plurality of voice, display, vibration, or light. Furthermore, the combination may be varied or the notification mode may be varied depending on the level of information to be notified (for example, the degree of urgency).
- the input device 93 is a switch group that is arranged at a position where the driver can operate and gives an instruction to the vehicle 1, but a voice input device may also be included.
- the ECU29 controls the brake device 10 and a parking brake (not shown).
- the brake device 10 is, for example, a disc brake device, and is provided on each wheel of the vehicle 1.
- the vehicle 1 is decelerated or stopped by applying resistance to the rotation of the wheel.
- the ECU 29 controls the operation of the brake device 10 in response to a driver's driving operation (brake operation) detected by an operation detection sensor 7b provided on the brake pedal 7B.
- the ECU 29 automatically controls the brake device 10 in response to an instruction from the ECU 20 to control deceleration and stop of the vehicle 1.
- the brake device 10 and the parking brake can be operated to maintain the vehicle 1 in a stopped state.
- the transmission of the power plant 6 includes a parking lock mechanism, this can be operated to maintain the vehicle 1 in a stopped state.
- the policy is a model (function) for calculating a trajectory that the vehicle 1 should take for a given surrounding situation of the vehicle 1.
- the track that the vehicle 1 should take is, for example, a track that the vehicle 1 should travel in a short period (for example, 5 seconds) in order to travel toward the destination.
- This trajectory is specified by determining the position of the vehicle 1 in a predetermined time (for example, 0.1 second). For example, when specifying a trajectory for 5 seconds in increments of 0.1 seconds, the positions of the vehicle 1 at 50 points in time from 0.1 seconds to 5.0 seconds are determined, and the 50 points Is determined as the track that the vehicle 1 should travel.
- the “short period” is a period that is significantly shorter than the entire travel of the vehicle 1. For example, the range in which the detection unit can detect the surrounding environment, the time required for braking the vehicle 1, etc. It is determined based on.
- the “predetermined time” is set to a length that allows the vehicle 1 to adapt to changes in the surrounding environment.
- the ECU 20 controls the steering and acceleration / deceleration of the vehicle 1 by instructing the ECU 21, the ECUs 26 and 29 according to the trajectory thus identified.
- the apparatus 200 includes a processor 201, a memory 202, a reward estimator 203, and a storage device 204.
- the processor 201 is a general-purpose circuit such as a CPU, for example, and controls the entire apparatus 200.
- the memory 202 is configured by a combination of ROM and RAM, and programs and data necessary for the operation of the device 200 are read from the storage device 204 and executed.
- the reward estimator 203 is a device used for deep learning.
- the reward estimator 203 may be configured with a general-purpose circuit such as a CPU, or may be configured with a dedicated circuit such as an ASIC or FPGA.
- the storage device 204 stores data used for processing of the device 200, and is configured with, for example, an HDD or an SDD.
- the storage device 204 may be included in the device 200 or may be configured as a device separate from the device 200.
- the storage device 204 may be a database server connected to the device 200 through a network.
- the storage device 204 stores a reference action based on actual driving data of a predetermined driver.
- the predetermined driver may include, for example, at least one of an accident-free driver, a taxi driver, and a certified driving expert.
- An accident-free driver is a driver who has not caused an accident for a predetermined period (for example, five years).
- a taxi driver is a driver who drives a taxi as a business.
- a certified driving expert is a driver who has been certified as being excellent by the government or a company. Below, a driving expert is treated as a predetermined driver.
- the reference action is a combination of the surrounding situation of the vehicle and the action actually taken by the driving expert in the surrounding situation.
- the surrounding situation includes, for example, the speed of the host vehicle, the position of the host vehicle in the lane, the position of another target (other vehicle or pedestrian) with respect to the host vehicle, and the like.
- the behavior includes, for example, a change in an accelerator operation amount, a change in a brake operation amount, a change in a handle operation amount, and an operation of a direction indicator of a vehicle.
- the storage device 204 stores about 500,000 sets of this reference drive, for example.
- the behavior may be expressed by one value for each operation amount, or may be expressed as a probability distribution having each value for each operation amount.
- This probability distribution is a distribution that has a higher value for an action with a higher probability that a driving expert takes in a situation where the vehicle 1 is placed, and has a lower value for an action with a lower probability that a driving expert takes.
- travel data is collected from a large number of vehicles, and travel data satisfying a predetermined standard such as no sudden start, sudden braking, sudden steering, or stable travel speed is extracted. Then, it may be handled as driving data of a driving expert.
- a method for generating a policy for calculating a route in automatic driving will be described with reference to FIG. This method is performed by the processor 201 of the apparatus 200.
- a policy is generated by reverse reinforcement learning.
- step S301 the processor 201 performs initial setting of a reward for each event.
- Events to which rewards are assigned include those that receive positive rewards and those that receive negative rewards.
- As an event in which a positive reward is given there is a case where the vehicle reaches the destination within a time limit.
- a negative reward event when a vehicle collides with another vehicle, when it continues to stop despite being able to proceed, when driving at a high speed in the pedestrian's close range, when sudden acceleration / deceleration is performed and so on.
- step S302 the processor 201 performs initial setting of the provisional policy.
- the temporary policy is a temporary policy that is updated as necessary by subsequent processing.
- the initial setting of the provisional policy may be performed by randomly setting model parameters.
- step S303 the processor 201 performs machine learning using the reward estimator 203 to calculate an expected value of reward when acting in accordance with the provisional policy for a given surrounding situation.
- the processor 201 randomly determines one initial surrounding situation in which the vehicle is placed. Then, the processor 201 determines an action to be taken by the vehicle according to the provisional policy with respect to the surrounding situation. Thereafter, the processor 201 simulates a change in the surrounding situation when the vehicle takes this action.
- the processor 201 repeats this process until a predetermined period (for example, 1 hour) elapses or reaches an event for which a reward is set, and calculates an expected value of the reward for the event that occurred during the travel. Specifically, the processor 201 calculates an expected value of reward obtained by inputting the ambient situation of the vehicle and the behavior of the vehicle to the reward estimator 203.
- step S304 the processor 201 determines whether or not the calculated expected value of reward satisfies the learning end condition.
- the processor 201 advances the process to step S306 if the condition is satisfied (“YES” in step S304), and advances the process to step S305 if the condition is not satisfied (“NO” in step S304). For example, the processor 201 determines that the learning end condition is satisfied when the expected value of reward calculated in a plurality of trials exceeds a threshold value.
- step S305 the processor 201 updates the provisional policy and returns the process to step S303.
- the processor 201 updates the provisional policy so that the expected value of reward increases.
- step S306 the processor 201 sets the provisional policy obtained through steps S302 to S305 as an intermediate policy.
- the intermediate policy is a policy obtained by reinforcement learning in steps S302 to S305.
- step S307 the processor 201 determines an action to be taken by the vehicle according to the intermediate policy for a certain situation. This situation is selected from the situations included in the reference behavior of the driving expert stored in the storage device 204. In this step, an action may be determined for each of a plurality of situations.
- step S308 the processor 201 compares the action determined in step S307 with the reference action in the same situation, and determines whether those errors are equal to or less than a threshold value.
- the processor 201 advances the process to step S310 if it is equal to or less than the threshold (“YES” in step S308), and advances the process to step S309 if it is larger than the threshold (“NO” in step S308).
- the accelerator operation amount when the difference between them is 1% or less of the reference action amount, it may be determined that the error is equal to or less than a threshold value.
- step S309 the processor 201 updates the reward for each individual event. For example, the processor 201 updates the reward so that an error from the above-described reference behavior is reduced. After that, the processor 201 returns the process to step S302 to determine the intermediate policy again.
- step S310 the processor 201 sets the intermediate policy obtained through steps S301 to S309 as the final policy.
- the final policy is a policy stored in the ECU 20 of the vehicle 1 and used for automatic driving.
- the final policy is stored in the memory 20b of the ECU 20.
- the processor 20a of the ECU 20 determines a track by applying a final policy to the situation around the vehicle 1, and controls the traveling of the vehicle 1 according to the track.
- This configuration makes it possible to generate a policy that mimics the behavior of a highly skilled driver.
- a vehicle (1) that performs automatic driving A storage unit (20b) for storing a policy generated by the device (200) according to any one of configurations 1 to 3;
- a vehicle comprising: a control unit (20a) that determines a track by applying the policy to a situation around the vehicle, and controls travel of the vehicle according to the track.
- This configuration enables automatic driving according to a policy that imitates driver behavior.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- Data Mining & Analysis (AREA)
- Automation & Control Theory (AREA)
- Game Theory and Decision Science (AREA)
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
車両の自動運転における軌道を決定するためのポリシーを生成する装置は、報酬推定器と、車両の周囲の状況と車両の行動とを報酬推定器へ入力することによって得られる報酬の期待値が高くなるようにポリシーを生成する処理部と、を備える。報酬は、所定の運転者による実際の行動に基づいて更新される。報酬推定器に入力される車両の行動は、ポリシーに基づいて更新される。
Description
本発明は、ポリシー生成装置及び車両に関する。
運転支援や自動運転に対して人工知能関連技術が活用されてきている。特許文献1には、熟練ドライバーの注視行動モデルに基づくニューラルネットワークを利用して、対象物の配置パターンから高危険度対象物を抽出する技術が記載されている。
特許文献1では、抽出した高危険度対象物標を運転者に提示するにとどまり、車両の走行制御に利用していない。高危険度対象物標を用いて自動運転で抑制されるべき行動(例えば、このような物標への接近)を規定することは可能である。しかし、抑制されるべき行動を回避するだけでは人間の運転者、特に運転熟練者が行う自然な走行を模倣することは困難である。本発明の一部の側面では、人間の運転者が行う走行を模倣するポリシーを生成するための技術を提供することを目的とする。
一部の実施形態によれば、車両の自動運転における軌道を決定するためのポリシーを生成する装置であって、報酬推定器と、車両の周囲の状況と前記車両の行動とを前記報酬推定器へ入力することによって得られる報酬の期待値が高くなるようにポリシーを生成する処理部と、を備え、前記報酬は、所定の運転者による実際の行動に基づいて更新され、前記報酬推定器に入力される前記車両の行動は、前記ポリシーに基づいて更新されることを特徴とする装置が提供される。
本発明によれば、人間の運転者が行う走行を模倣するポリシーを生成するための技術が提供される。
本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。添付図面において、同じ又は同様の構成に同じ参照番号を付す。
添付の図面は明細書に含まれ、その一部を構成し、本発明の実施形態を示し、その記述と共に本発明の原理を説明するために用いられる。
一部の実施形態の車両の構成例を説明する図。
一部の実施形態のポリシーを生成する装置の構成例を説明する図。
一部の実施形態のポリシーを生成する方法の例を説明する図。
添付の図面を参照しつつ本発明の実施形態について以下に説明する。様々な実施形態を通じて同様の要素には同一の参照符号を付し、重複する説明を省略する。また、各実施形態は適宜変更、組み合わせが可能である。
図1は、本発明の一実施形態に係る車両用制御装置のブロック図であり、車両1を制御する。図1において、車両1はその概略が平面図と側面図とで示されている。車両1は一例としてセダンタイプの四輪の乗用車である。
図1の制御装置は、制御ユニット2を含む。制御ユニット2は車内ネットワークにより通信可能に接続された複数のECU20~29を含む。各ECUは、CPUに代表されるプロセッサ、半導体メモリ等のメモリ、外部デバイスとのインタフェース等を含む。メモリにはプロセッサが実行するプログラムやプロセッサが処理に使用するデータ等が格納される。各ECUはプロセッサ、メモリおよびインタフェース等を複数備えていてもよい。例えば、ECU20は、プロセッサ20aとメモリ20bとを備える。メモリ20bに格納されたプログラムが含む命令をプロセッサ20aが実行することによって、ECU20による処理が実行される。これに代えて、ECU20は、ECU20による処理を実行するためのASIC等の専用の集積回路を備えてもよい。
以下、各ECU20~29が担当する機能等について説明する。なお、ECUの数や、担当する機能については適宜設計可能であり、本実施形態よりも細分化したり、統合したりすることが可能である。
ECU20は、車両1の自動運転に関わる制御を実行する。自動運転においては、車両1の操舵と、加減速の少なくともいずれか一方を自動制御する。後述する制御例では、操舵と加減速の双方を自動制御する。
ECU21は、電動パワーステアリング装置3を制御する。電動パワーステアリング装置3は、ステアリングホイール31に対する運転者の運転操作(操舵操作)に応じて前輪を操舵する機構を含む。また、電動パワーステアリング装置3は操舵操作をアシストしたり、前輪を自動操舵したりするための駆動力を発揮するモータや、操舵角を検知するセンサ等を含む。車両1の運転状態が自動運転の場合、ECU21は、ECU20からの指示に対応して電動パワーステアリング装置3を自動制御し、車両1の進行方向を制御する。
ECU22および23は、車両の周囲状況を検知する検知ユニット41~43の制御および検知結果の情報処理を行う。検知ユニット41は、車両1の前方を撮影するカメラであり(以下、カメラ41と表記する場合がある。)、本実施形態の場合、車両1のルーフ前部に2つ設けられている。カメラ41が撮影した画像の解析により、物標の輪郭抽出や、道路上の車線の区画線(白線等)を抽出可能である。
検知ユニット42は、ライダ(レーザレーダ)であり(以下、ライダ42と表記する場合がある)、車両1の周囲の物標を検知したり、物標との距離を測距したりする。本実施形態の場合、ライダ42は5つ設けられており、車両1の前部の各隅部に1つずつ、後部中央に1つ、後部各側方に1つずつ設けられている。検知ユニット43は、ミリ波レーダであり(以下、レーダ43と表記する場合がある)、車両1の周囲の物標を検知したり、物標との距離を測距したりする。本実施形態の場合、レーダ43は5つ設けられており、車両1の前部中央に1つ、前部各隅部に1つずつ、後部各隅部に一つずつ設けられている。
ECU22は、一方のカメラ41と、各ライダ42の制御および検知結果の情報処理を行う。ECU23は、他方のカメラ42と、各レーダ43の制御および検知結果の情報処理を行う。車両の周囲状況を検知する装置を二組備えたことで、検知結果の信頼性を向上でき、また、カメラ、ライダ、レーダといった種類の異なる検知ユニットを備えたことで、車両の周辺環境の解析を多面的に行うことができる。
ECU24は、ジャイロセンサ5、GPSセンサ24b、通信装置24cの制御および検知結果あるいは通信結果の情報処理を行う。ジャイロセンサ5は車両1の回転運動を検知する。ジャイロセンサ5の検知結果や、車輪即等により車両1の進路を判定することができる。GPSセンサ24bは、車両1の現在位置を検知する。通信装置24cは、地図情報や交通情報を提供するサーバと無線通信を行い、これらの情報を取得する。ECU24は、メモリに構築された地図情報のデータベース24aにアクセス可能であり、ECU24は現在地から目的地へのルート探索等を行う。ECU24、地図データベース24a、GPSセンサ24bは、いわゆるナビゲーション装置を構成している。
ECU25は、車車間通信用の通信装置25aを備える。通信装置25aは、周辺の他車両と無線通信を行い、車両間での情報交換を行う。
ECU26は、パワープラント6を制御する。パワープラント6は車両1の駆動輪を回転させる駆動力を出力する機構であり、例えば、エンジンと変速機とを含む。ECU26は、例えば、アクセルペダル7Aに設けた操作検知センサ7aにより検知した運転者の運転操作(アクセル操作あるいは加速操作)に対応してエンジンの出力を制御したり、車速センサ7cが検知した車速等の情報に基づいて変速機の変速段を切り替えたりする。車両1の運転状態が自動運転の場合、ECU26は、ECU20からの指示に対応してパワープラント6を自動制御し、車両1の加減速を制御する。
ECU27は、方向指示器8(ウィンカ)を含む灯火器(ヘッドライト、テールライト等)を制御する。図1の例の場合、方向指示器8は車両1の前部、ドアミラーおよび後部に設けられている。
ECU28は、入出力装置9の制御を行う。入出力装置9は運転者に対する情報の出力と、運転者からの情報の入力の受け付けを行う。音声出力装置91は運転者に対して音声により情報を報知する。表示装置92は運転者に対して画像の表示により情報を報知する。表示装置92は例えば運転席表面に配置され、インストルメントパネル等を構成する。なお、ここでは、音声と表示を例示したが振動や光により情報を報知してもよい。また、音声、表示、振動または光のうちの複数を組み合わせて情報を報知してもよい。更に、報知すべき情報のレベル(例えば緊急度)に応じて、組み合わせを異ならせたり、報知態様を異ならせたりしてもよい。入力装置93は運転者が操作可能な位置に配置され、車両1に対する指示を行うスイッチ群であるが、音声入力装置も含まれてもよい。
ECU29は、ブレーキ装置10やパーキングブレーキ(不図示)を制御する。ブレーキ装置10は例えばディスクブレーキ装置であり、車両1の各車輪に設けられ、車輪の回転に抵抗を加えることで車両1を減速あるいは停止させる。ECU29は、例えば、ブレーキペダル7Bに設けた操作検知センサ7bにより検知した運転者の運転操作(ブレーキ操作)に対応してブレーキ装置10の作動を制御する。車両1の運転状態が自動運転の場合、ECU29は、ECU20からの指示に対応してブレーキ装置10を自動制御し、車両1の減速および停止を制御する。ブレーキ装置10やパーキングブレーキは車両1の停止状態を維持するために作動することもできる。また、パワープラント6の変速機がパーキングロック機構を備える場合、これを車両1の停止状態を維持するために作動することもできる。
続いて、図2を参照して、自動運転における経路を算出するためのポリシーを生成するための装置200の構成について説明する。ポリシーとは、車両1の所与の周囲状況に対して車両1がとるべき軌道を算出するためのモデル(関数)のことである。
車両1がとるべき軌道とは、例えば、目的地へ向けて車両1が走行するために短期間(例えば5秒間)で車両1が走行すべき軌道のことである。この軌道は、所定時間(例えば0.1秒)刻みで車両1の位置を決定することによって特定される。例えば、0.1秒刻みで5秒間分の軌道を特定する場合、0.1秒後から5.0秒後までの50個の時点における車両1の位置がそれぞれ決定され、この50個の点が結ばれる軌道が車両1の進むべき軌道として決定される。ここでの「短期間」は、車両1が走行する全行程と比較して大幅に短い期間であり、例えば、検知ユニットが周囲の環境を検知できる範囲や、車両1の制動に必要な時間等に基づいて定められる。また、「所定時間」は、周囲の環境の変化に車両1が適応することができるような短さに設定される。ECU20は、このようにして特定した軌道に従って、ECU21、ECU26および29に指示して、車両1の操舵、加減速を制御する。
装置200は、プロセッサ201と、メモリ202と、報酬推定器203と、記憶装置204とを備える。プロセッサ201は、例えばCPU等の汎用回路であり、装置200全体の処理を司る。メモリ202は、ROMやRAMの組み合わせによって構成され、装置200の動作に必要なプログラムやデータが記憶装置204から読み出されて実行される。
報酬推定器203は、深層学習を行うために用いられるデバイスである。報酬推定器203は、CPU等の汎用回路で構成されてもよいし、ASICやFPGAなどの専用回路で構成されてもよい。記憶装置204は、装置200の処理に用いられるデータを格納し、例えばHDDやSDDで構成される。記憶装置204は装置200に含まれてもよいし、装置200とは別個の装置として構成されてもよい。例えば、記憶装置204は、ネットワークを通じて装置200に接続されたデータベースサーバなどであってもよい。
例えば、記憶装置204は、所定の運転者の実際の走行データに基づく参照行動を記憶している。所定の運転者は、例えば無事故運転者と、タクシー運転者と、認定を受けた運転熟練者との少なくとも何れかを含んでもよい。無事故運転者とは、所定の期間(例えば5年間)事故を起こしていない運転者のことである。タクシー運転者とは、業としてタクシーを運転する運転者のことである。認定を受けた運転熟練者とは、政府や企業などから優良であることの認定を受けた運転者のことである。以下では、所定の運転者として運転熟練者を扱う。
参照行動とは、車両の周囲状況と、その周囲状況において運転熟練者が実際にとった行動との組み合わせのことである。周囲状況は、例えば自車両の速度、車線における自車両の位置、自車両に対する他の物標(他車両や歩行者)の位置などを含む。行動は、例えば車両の例えばアクセル操作量の変化、ブレーキ操作量の変化、ハンドル操作量の変化や、方向指示器の操作を含む。記憶装置204はこの参照駆動を例えば50万セット程度記憶している。行動は各操作量について1つの値で表現されてもよいし、各操作量について、各値を有する確率分布として表現されてもよい。この確率分布は、車両1が置かれた状況で運転熟達者がとる確率が高い行動ほど高い値を有し、運転熟達者がとる確率が低い行動ほど低い値を有する分布である。また、多数の車両から走行データを収集し、その中から、急発進、急制動、急ハンドルが行われない、又は、走行速度が安定している等の所定の基準を満たした走行データを抽出して、運転熟達者の走行データとして取り扱ってもよい。
続いて、図3を参照して、自動運転における経路を算出するためのポリシーを生成するための方法について説明する。この方法は、装置200のプロセッサ201によって実行される。以下の方法では、逆強化学習によってポリシーが生成される。
ステップS301で、プロセッサ201は、各事象に対する報酬の初期設定を行う。報酬が割り当てられる事象には、正の報酬が与えられるものと、負の報酬が与えられるものがある。正の報酬が与えられる事象として、車両が制限時間内に目的地へ到達した場合がある。負の報酬が与えられる事象として、車両が他車両に衝突した場合、進行可能にもかかわらず停止し続ける場合、歩行者の至近距離を高速で走行した場合、急加速・急減速を行った場合などがある。
ステップS302で、プロセッサ201は、暫定ポリシーの初期設定を行う。暫定ポリシーとは、後続の処理によって必要に応じて更新される暫定的なポリシーのことである。例えば、暫定ポリシーの初期設定は、モデルのパラメータをランダムに設定することによって行われてもよい。
ステップS303で、プロセッサ201は、報酬推定器203を用いて機械学習を行うことによって、所与の周囲状況に対して暫定ポリシーに従って行動した場合の報酬の期待値を算出する。まず、プロセッサ201は、車両がおかれる初期の周囲状況をランダムに1つ決定する。そして、プロセッサ201は、この周囲状況に対して暫定ポリシーに従って車両がとる行動を決定する。その後、プロセッサ201は、車両がこの行動をとった場合の周囲状況の変化をシミュレートする。プロセッサ201は、一定期間(例えば、1時間)が経過するか、報酬が設定された事象に到達するまでこの処理を繰り返し、その走行中に発生した事象の報酬の期待値を算出する。具体的に、プロセッサ201は、車両の周囲状況と車両の行動とを報酬推定器203へ入力することによって得られる報酬の期待値を算出する。
ステップS304で、プロセッサ201は、算出された報酬の期待値が学習終了条件を満たすかどうかを判定する。プロセッサ201は、条件を満たす場合(ステップS304で「YES」)に処理をステップS306へ進め、条件を満たさない場合(ステップS304で「NO」)に処理をステップS305に進める。例えば、プロセッサ201は、複数回の試行において算出された報酬の期待値が閾値を超えた場合に学習終了条件を満たすと判定する。
ステップS305で、プロセッサ201は、暫定ポリシーを更新して処理をステップS303に戻す。例えば、プロセッサ201は、報酬の期待値が高くなるように暫定ポリシーを更新する。
ステップS306で、プロセッサ201は、ステップS302~S305を通じて得られた暫定ポリシーを中間ポリシーとする。中間ポリシーとは、ステップS302~S305までの強化学習によって得られたポリシーのことである。
ステップS307で、プロセッサ201は、ある状況に対して中間ポリシーに従って車両がとる行動を決定する。この状況は、記憶装置204に記憶された運転熟練者の参照行動に含まれる状況から選択される。このステップで、複数の状況に対してそれぞれ行動が決定されてもよい。
ステップS308で、プロセッサ201は、ステップS307で決定された行動と、同じ状況での参照行動とを比較し、それらの誤差が閾値以下であるかを判定する。プロセッサ201は、閾値以下の場合(ステップS308で「YES」)に処理をステップS310へ進め、閾値よりも大きい場合(ステップS308で「NO」)に処理をステップS309に進める。例えば、アクセル操作量について、両者の差が参照行動量の1%以下であるときに誤差が閾値以下であると判定されてもよい。
ステップS309で、プロセッサ201は、個別の事象に対する報酬を更新する。例えば、プロセッサ201は、上述の参照行動との誤差が低減するように報酬を更新する。その後、プロセッサ201は処理をステップS302に戻して、中間ポリシーを再度決定する。
ステップS310で、プロセッサ201は、ステップS301~S309を通じて得られた中間ポリシーを最終ポリシーとする。最終ポリシーとは、車両1のECU20へ格納され、自動運転に使用されるポリシーである。
ECU20のメモリ20bにこの最終ポリシーが格納される。ECU20のプロセッサ20aは、車両1の周囲の状況に対して最終ポリシーを適用することによって軌道を決定し、この軌道に従って車両1の走行を制御する。
<実施形態のまとめ>
<構成1>
車両(1)の自動運転における軌道を決定するためのポリシーを生成する装置(200)であって、
報酬推定器(203)と、
車両の周囲の状況と前記車両の行動とを前記報酬推定器へ入力することによって得られる報酬の期待値が高くなるようにポリシーを生成する処理部(201)と、
を備え、
前記報酬は、所定の運転者による実際の行動に基づいて更新され、
前記報酬推定器に入力される前記車両の行動は、前記ポリシーに基づいて更新される
ことを特徴とする装置。
<構成1>
車両(1)の自動運転における軌道を決定するためのポリシーを生成する装置(200)であって、
報酬推定器(203)と、
車両の周囲の状況と前記車両の行動とを前記報酬推定器へ入力することによって得られる報酬の期待値が高くなるようにポリシーを生成する処理部(201)と、
を備え、
前記報酬は、所定の運転者による実際の行動に基づいて更新され、
前記報酬推定器に入力される前記車両の行動は、前記ポリシーに基づいて更新される
ことを特徴とする装置。
この構成によれば、運転者の行動を模倣するポリシーが生成可能である。
<構成2>
前記処理部は、前記ポリシーに基づいて決定された行動と前記所定の運転者の実際の行動との比較結果に基づいて前記報酬を更新することを特徴とする構成1に記載の装置。
前記処理部は、前記ポリシーに基づいて決定された行動と前記所定の運転者の実際の行動との比較結果に基づいて前記報酬を更新することを特徴とする構成1に記載の装置。
この構成によれば、人間の運転者が行う走行を模倣するポリシーを生成することが可能となる。
<構成3>
前記所定の運転者は、無事故運転者と、タクシー運転者と、認定を受けた運転熟練者との少なくとも何れかを含むことを特徴とする構成1又は2に記載の装置。
前記所定の運転者は、無事故運転者と、タクシー運転者と、認定を受けた運転熟練者との少なくとも何れかを含むことを特徴とする構成1又は2に記載の装置。
この構成によれば、技術が高い運転者の行動を模倣するポリシーが生成可能になる。
<構成4>
自動運転を行う車両(1)であって、
構成1乃至3の何れか1項に記載の装置(200)によって生成されたポリシーを格納する記憶部(20b)と、
前記車両の周囲の状況に対して前記ポリシーを適用することによって軌道を決定し、前記軌道に従って前記車両の走行を制御する制御部(20a)と
を備えることを特徴とする車両。
自動運転を行う車両(1)であって、
構成1乃至3の何れか1項に記載の装置(200)によって生成されたポリシーを格納する記憶部(20b)と、
前記車両の周囲の状況に対して前記ポリシーを適用することによって軌道を決定し、前記軌道に従って前記車両の走行を制御する制御部(20a)と
を備えることを特徴とする車両。
この構成によれば、運転者の行動を模倣するポリシーに従った自動運転が可能になる。
本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
Claims (4)
- 車両の自動運転における軌道を決定するためのポリシーを生成する装置であって、
報酬推定器と、
車両の周囲の状況と前記車両の行動とを前記報酬推定器へ入力することによって得られる報酬の期待値が高くなるようにポリシーを生成する処理部と、
を備え、
前記報酬は、所定の運転者による実際の行動に基づいて更新され、
前記報酬推定器に入力される前記車両の行動は、前記ポリシーに基づいて更新される
ことを特徴とする装置。 - 前記処理部は、前記ポリシーに基づいて決定された行動と前記所定の運転者の実際の行動との比較結果に基づいて前記報酬を更新することを特徴とする請求項1に記載の装置。
- 前記所定の運転者は、無事故運転者と、タクシー運転者と、認定を受けた運転熟練者との少なくとも何れかを含むことを特徴とする請求項1又は2に記載の装置。
- 自動運転を行う車両であって、
請求項1乃至3の何れか1項に記載の装置によって生成されたポリシーを格納する記憶部と、
前記車両の周囲の状況に対して前記ポリシーを適用することによって軌道を決定し、前記軌道に従って前記車両の走行を制御する制御部と
を備えることを特徴とする車両。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780091112.4A CN110663073B (zh) | 2017-06-02 | 2017-06-02 | 策略生成装置及车辆 |
JP2019521906A JP6790258B2 (ja) | 2017-06-02 | 2017-06-02 | ポリシー生成装置及び車両 |
DE112017007596.3T DE112017007596T5 (de) | 2017-06-02 | 2017-06-02 | Strategieerzeugungsvorrichtung und Fahrzeug |
PCT/JP2017/020643 WO2018220829A1 (ja) | 2017-06-02 | 2017-06-02 | ポリシー生成装置及び車両 |
US16/680,919 US20200081436A1 (en) | 2017-06-02 | 2019-11-12 | Policy generation device and vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/020643 WO2018220829A1 (ja) | 2017-06-02 | 2017-06-02 | ポリシー生成装置及び車両 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/680,919 Continuation US20200081436A1 (en) | 2017-06-02 | 2019-11-12 | Policy generation device and vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018220829A1 true WO2018220829A1 (ja) | 2018-12-06 |
Family
ID=64454605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/020643 WO2018220829A1 (ja) | 2017-06-02 | 2017-06-02 | ポリシー生成装置及び車両 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200081436A1 (ja) |
JP (1) | JP6790258B2 (ja) |
CN (1) | CN110663073B (ja) |
DE (1) | DE112017007596T5 (ja) |
WO (1) | WO2018220829A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112682184A (zh) * | 2019-10-18 | 2021-04-20 | 丰田自动车株式会社 | 车辆用控制装置、车辆用控制系统以及车辆控制方法 |
JP2022046402A (ja) * | 2020-09-10 | 2022-03-23 | 株式会社東芝 | タスク実行エージェントシステム及び方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11131992B2 (en) * | 2018-11-30 | 2021-09-28 | Denso International America, Inc. | Multi-level collaborative control system with dual neural network planning for autonomous vehicle control in a noisy environment |
US20220276650A1 (en) * | 2019-08-01 | 2022-09-01 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods for risk management for autonomous devices and related node |
US11568342B1 (en) * | 2019-08-16 | 2023-01-31 | Lyft, Inc. | Generating and communicating device balance graphical representations for a dynamic transportation system |
JP6744597B1 (ja) * | 2019-10-18 | 2020-08-19 | トヨタ自動車株式会社 | 車両用制御データの生成方法、車両用制御装置、車両用制御システム、および車両用学習装置 |
JP7314813B2 (ja) * | 2020-01-29 | 2023-07-26 | トヨタ自動車株式会社 | 車両制御方法、車両用制御装置及びサーバ |
CN113291142B (zh) * | 2021-05-13 | 2022-11-11 | 广西大学 | 一种智能行驶系统及其控制方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016536220A (ja) * | 2013-12-11 | 2016-11-24 | インテル コーポレイション | 個別的な運転の好みに適応された車両のコンピュータ化された支援又は自立運転 |
WO2017057528A1 (ja) * | 2015-10-01 | 2017-04-06 | 株式会社発明屋 | 非ロボットカー、ロボットカー、道路交通システム、車両共用システム、ロボットカー教習システム及びロボットカー教習方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9182761B2 (en) * | 2011-08-25 | 2015-11-10 | Nissan Motor Co., Ltd. | Autonomous driving control system for vehicle |
US20130217331A1 (en) * | 2012-02-17 | 2013-08-22 | Intertrust Technologies Corporation | Systems and methods for vehicle policy enforcement |
CN103324085B (zh) * | 2013-06-09 | 2016-03-02 | 中国科学院自动化研究所 | 基于监督式强化学习的最优控制方法 |
CN103381826B (zh) * | 2013-07-31 | 2016-03-09 | 中国人民解放军国防科学技术大学 | 基于近似策略迭代的自适应巡航控制方法 |
CN103646298B (zh) * | 2013-12-13 | 2018-01-02 | 中国科学院深圳先进技术研究院 | 一种自动驾驶方法及系统 |
CN103777631B (zh) * | 2013-12-16 | 2017-01-18 | 北京交控科技股份有限公司 | 一种自动驾驶的控制系统及方法 |
CN104134378A (zh) * | 2014-06-23 | 2014-11-05 | 北京交通大学 | 一种基于驾驶经验和在线学习的城轨列车智能控制方法 |
CN104391504B (zh) * | 2014-11-25 | 2017-05-31 | 浙江吉利汽车研究院有限公司 | 基于车联网的自动驾驶控制策略的生成方法与生成装置 |
US9645577B1 (en) * | 2016-03-23 | 2017-05-09 | nuTonomy Inc. | Facilitating vehicle driving and self-driving |
CN105892471B (zh) * | 2016-07-01 | 2019-01-29 | 北京智行者科技有限公司 | 汽车自动驾驶方法和装置 |
CN106184223A (zh) * | 2016-09-28 | 2016-12-07 | 北京新能源汽车股份有限公司 | 一种自动驾驶控制方法、装置及汽车 |
-
2017
- 2017-06-02 WO PCT/JP2017/020643 patent/WO2018220829A1/ja active Application Filing
- 2017-06-02 CN CN201780091112.4A patent/CN110663073B/zh active Active
- 2017-06-02 DE DE112017007596.3T patent/DE112017007596T5/de active Pending
- 2017-06-02 JP JP2019521906A patent/JP6790258B2/ja not_active Expired - Fee Related
-
2019
- 2019-11-12 US US16/680,919 patent/US20200081436A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016536220A (ja) * | 2013-12-11 | 2016-11-24 | インテル コーポレイション | 個別的な運転の好みに適応された車両のコンピュータ化された支援又は自立運転 |
WO2017057528A1 (ja) * | 2015-10-01 | 2017-04-06 | 株式会社発明屋 | 非ロボットカー、ロボットカー、道路交通システム、車両共用システム、ロボットカー教習システム及びロボットカー教習方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112682184A (zh) * | 2019-10-18 | 2021-04-20 | 丰田自动车株式会社 | 车辆用控制装置、车辆用控制系统以及车辆控制方法 |
JP2022046402A (ja) * | 2020-09-10 | 2022-03-23 | 株式会社東芝 | タスク実行エージェントシステム及び方法 |
JP7225292B2 (ja) | 2020-09-10 | 2023-02-20 | 株式会社東芝 | タスク実行エージェントシステム及び方法 |
US12085947B2 (en) | 2020-09-10 | 2024-09-10 | Kabushiki Kaisha Toshiba | Task performing agent systems and methods |
Also Published As
Publication number | Publication date |
---|---|
CN110663073A (zh) | 2020-01-07 |
US20200081436A1 (en) | 2020-03-12 |
DE112017007596T5 (de) | 2020-02-20 |
CN110663073B (zh) | 2022-02-11 |
JPWO2018220829A1 (ja) | 2020-04-16 |
JP6790258B2 (ja) | 2020-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018220829A1 (ja) | ポリシー生成装置及び車両 | |
CN110248861B (zh) | 在车辆操纵过程中使用机器学习模型来引导车辆 | |
US10507813B2 (en) | Method and system for automated vehicle emergency light control of an autonomous driving vehicle | |
JP7440324B2 (ja) | 車両制御装置、車両制御方法、及びプログラム | |
US11242040B2 (en) | Emergency braking for autonomous vehicles | |
CN109933062A (zh) | 自动驾驶车辆的报警系统 | |
CN109421742A (zh) | 用于监测自主车辆的方法和设备 | |
CN109421738A (zh) | 用于监视自主车辆的方法和装置 | |
EP3882100B1 (en) | Method for operating an autonomous driving vehicle | |
JP6889274B2 (ja) | 走行モデル生成システム、走行モデル生成システムにおける車両、処理方法およびプログラム | |
US10803307B2 (en) | Vehicle control apparatus, vehicle, vehicle control method, and storage medium | |
US20200247415A1 (en) | Vehicle, and control apparatus and control method thereof | |
JP6817166B2 (ja) | 自動運転のポリシー生成装置及び車両 | |
JP2020035222A (ja) | 学習装置、学習方法、およびプログラム | |
WO2020049685A1 (ja) | 車両制御装置、自動運転車開発システム、車両制御方法、およびプログラム | |
WO2018220851A1 (ja) | 自動運転車の制御のための車両制御装置及び方法 | |
US20200339194A1 (en) | Vehicle control apparatus, vehicle, and control method | |
JP2019156133A (ja) | 車両制御装置、車両制御方法、及びプログラム | |
JP2021127002A (ja) | 車両制御装置、車両制御方法、およびプログラム | |
JP2022526376A (ja) | 自律型車両の例外処理 | |
JP6941636B2 (ja) | 車両の制御システム及び車両 | |
US20220234599A1 (en) | Vehicle control apparatus | |
US20220009494A1 (en) | Control device, control method, and vehicle | |
US20200309560A1 (en) | Control apparatus, control method, and storage medium | |
WO2023228781A1 (ja) | 処理システム及び情報提示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17911474 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019521906 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17911474 Country of ref document: EP Kind code of ref document: A1 |