WO2018212432A1 - Fiber-reinforced plastic and manufacturing method therefor - Google Patents

Fiber-reinforced plastic and manufacturing method therefor Download PDF

Info

Publication number
WO2018212432A1
WO2018212432A1 PCT/KR2018/002263 KR2018002263W WO2018212432A1 WO 2018212432 A1 WO2018212432 A1 WO 2018212432A1 KR 2018002263 W KR2018002263 W KR 2018002263W WO 2018212432 A1 WO2018212432 A1 WO 2018212432A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
continuous
long
oriented
continuous fiber
Prior art date
Application number
PCT/KR2018/002263
Other languages
French (fr)
Korean (ko)
Inventor
오애리
박종성
김희준
문영이
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Publication of WO2018212432A1 publication Critical patent/WO2018212432A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres

Definitions

  • the present invention relates to a fiber-reinforced composite, and more particularly, to reinforce the widthwise properties of a unidirectional continuous fiber composite unidirectionally oriented, and also to solve the problem of widthwise splitting of a unidirectional continuous fiber composite unidirectionally oriented.
  • the present invention relates to a composite material and a method of manufacturing the same.
  • Lightweight and high strength fiber-reinforced composite materials are used in many fields, such as sports leisure structures such as golf clubs, structures such as telephone poles, automobile parts, and aircraft.
  • Fiber Reinforced Plastics refers to composites in which fibers are applied as a reinforcing material in a polymer matrix. Fiber composites that are widely used include glass fiber composites, carbon fiber composites, and the like, depending on the type of fiber.
  • Fibers are classified into short fibers, long fibers, and continuous fibers according to their length and shape.
  • short fiber refers to a fiber having a length of less than 2mm
  • long fiber refers to a fiber having a length of 2mm or more
  • the long fiber generally has a length of 50mm or less.
  • Continuous fibers depend on the final size of the sheet and generally refer to fibers which have a longer length than the long fibers but which are present in a continuous form without breaking at least in the orientation direction within the sheet rather than how long.
  • Continuous fiber composites using continuous fibers are classified into one-way continuous fiber composites, two-way continuous fiber composites, random direction continuous fiber composites, etc. according to the fiber orientation direction.
  • the unidirectional continuous fiber composite material oriented in a single direction has the advantage of excellent rigidity, strength properties.
  • unidirectional continuous fiber composites often cause cracking problems due to their weakness in the width direction. Therefore, there is a need for a fiber-reinforced composite material that can improve the cracking problem of the unidirectional continuous fiber composite material and has excellent widthwise physical properties and can solve the cracking problem in the widthwise direction.
  • One object of the present invention is to provide a fiber-reinforced composite material which is excellent in the widthwise physical properties and solves the widthwise cracking problem based on the unidirectional continuous fiber composite material.
  • Another object of the present invention is to provide a method for producing a fiber-reinforced composite manufacturing method excellent in the widthwise physical properties.
  • Fiber-reinforced composite material according to the present invention for achieving the above object is one direction continuous fiber composites in which the continuous fibers are oriented in the first direction; And a reinforcement layer disposed between the one-way continuous fiber composites, wherein the reinforcement layer comprises a long fiber composite oriented in a second direction in which the long fibers intersect the first direction.
  • the reinforcement layer may be formed in a sheet form.
  • the reinforcement layer may be formed in a plurality of pieces spaced apart from each other.
  • the thickness of the reinforcing material layer may be the same as the thickness of the continuous fiber composite or less than the thickness of the continuous fiber composite.
  • the one-way continuous fiber composites may include 20 to 70 parts by weight of continuous fiber, based on 100 parts by weight of thermoplastic resin.
  • the long fiber composite material may include 20 to 70 parts by weight of long fibers having a length of 2 mm or more with respect to 100 parts by weight of a thermoplastic resin.
  • each of the continuous fibers and long fibers may include one or more of glass fibers, carbon fibers, aramid fibers and natural fibers.
  • Fiber-reinforced composite manufacturing method for achieving the above another object is a sheet in which a long fiber is oriented in a second direction intersecting the first direction, on a one-way continuous fiber composite material is a continuous fiber is oriented in a first direction Placing the fiber composite; Disposing a continuous fiber composite material on which the continuous fibers are oriented in the first direction; And performing lamination.
  • the fiber reinforced composite material according to the present invention as a result of inserting the long fiber composite oriented in the second direction, that is, the width direction, between the continuous fiber composites oriented in the first direction, while maintaining the formability in the width direction, It is possible to solve the cracking problem and to improve the physical properties in the width direction.
  • Figure 1 schematically shows a one-way continuous fiber composite material used in the present invention.
  • FIG. 2 schematically illustrates a long fiber composite oriented in a random direction.
  • FIG. 3 schematically shows a long fiber composite oriented in one direction.
  • FIG. 4 shows an example of laminating continuous fiber composites oriented in a first direction.
  • FIG. 6 illustrates an example in which a long fiber composite oriented in a random direction is interposed between continuous fiber composites oriented in a first direction.
  • FIG. 7 illustrates an example in which a long fiber composite oriented in a second direction is interposed between continuous fiber composites oriented in a first direction according to the present invention.
  • the fiber reinforced composite according to the present invention comprises a unidirectional continuous fiber composite and a reinforcement layer.
  • One-way continuous fiber composites are composites in which the continuous fibers are oriented in a first direction.
  • the one direction including the case where the predetermined two continuous fibers are 10 degrees or less, specifically 5 degrees or less, and not only completely parallel to each other, but also difficult to identify with the naked eye. Error ranges should be understood to include.
  • Figure 1 schematically shows a one-way continuous fiber composite material used in the present invention.
  • the unidirectional continuous fiber composite material 100 has a structure in which a continuous fiber 120 oriented in one direction is impregnated into a base material 110 including a thermoplastic resin.
  • Continuous fiber composite material 100 may be formed to a thickness of approximately 0.1 ⁇ 10mm, but is not limited thereto.
  • the reinforcement layer is disposed between the unidirectional continuous fiber composites.
  • FIG. 2 schematically illustrates a random directional long fiber composite comprising long fibers 130 oriented in a random direction.
  • 3 schematically shows a long fiber composite oriented in one direction.
  • the fiber length is about 2 ⁇ 50mm.
  • the fiber length may be about 2 to 50mm, but is not limited thereto and as needed It may have a length of 50mm or more.
  • the long fiber content in the long fiber composite shown in FIG. 2 is limited to about 40% by weight, but the long fiber content in the long fiber composite shown in FIG. 3 may be up to about 70%. That is, the long fibers included in the long fiber composite shown in FIG. 2 and the long fibers included in the long fiber composite shown in FIG. 3 correspond to different types of fibers depending on the manufacturing process, length, and content range.
  • the long fiber composite is classified into a unidirectional long fiber composite and a random direction long fiber composite according to the orientation direction of the long fiber.
  • the random long fiber composite as in the example shown in FIG. 2 is a case where the long fibers do not have a specific orientation.
  • Such a random direction long fiber composite is difficult to manufacture in a thin thickness.
  • One-way long fiber composites such as the example shown in Figure 3 is a composite material in which the long fibers are oriented in a specific direction, there is an advantage in excellent formability and processability.
  • the reinforcement layer may be formed in the form of a sheet, as shown in FIG. 3.
  • the reinforcement layer may be formed in a plurality of pieces spaced apart from each other, which is a continuous fiber composite oriented in the first direction is cut in the second direction, so that the length of the fiber is about 50mm or less Can be.
  • the fiber length of the long fibers may be 50 mm or more.
  • the thickness of the reinforcement layer may be the same as the thickness of one layer of continuous fiber composite or less than the thickness of one layer of continuous fiber composite. Accordingly, the fiber-reinforced composite according to the present invention can be produced up to three times the thickness of one layer of continuous fiber composite.
  • the reinforcement layer is made of a random directional long fiber composite material
  • the thickness constraint is relatively small, so that a thin thickness can be realized.
  • the continuous fiber composite thickness is 0.25mm
  • the unidirectional long fiber composite may be manufactured to 0.25 mm or less, but the random directional long fiber composite may be manufactured to a relatively thick thickness of about 1.0 mm.
  • the fiber-reinforced composites according to the invention can be produced in thin thicknesses, and as a result can provide a custom thickness to the desired part thickness.
  • Composites comprising continuous fibers or long fibers can be produced by melt impregnation methods such as in-mold impregnation, roll impregnation, belt impregnation, and the like.
  • a long fiber composite it can be manufactured by the following method, for example.
  • the composite including the continuous fiber or the long fiber may be manufactured in the form of a sheet by melt extruding the extruded long fiber and the thermoplastic resin, pressing, and cutting.
  • the long fiber may be manufactured by arranging and pressing long fibers in one direction on a thermoplastic resin sheet.
  • the long fiber composite shown in Figures 2 and 3 in addition to the above-described method it can be produced by a variety of known methods.
  • a continuous fiber composite for example, it can be produced by the following method.
  • the thermoplastic resin is introduced into an extruder and melted at a temperature of 200 ° C. or more, and the continuous fiber is taken out of the thread of the fiber wound in the roving form and put into a mold.
  • the thermoplastic resin melted through the extruder is introduced into the mold to be impregnated into the continuous fiber.
  • pressing it and cutting it to an appropriate size it is possible to produce a continuous fiber composite in the form of a sheet.
  • a calendar calendar
  • the thermoplastic resin serves as a matrix in the continuous fiber composite or the long fiber composite, and may be a polypropylene resin, an aromatic vinyl resin, a rubber modified aromatic vinyl resin, a polyphenylene ether resin, a polycarbonate resin, a polyester resin, It may include one or more of methacrylate resin, polyarylene sulfide resin, polyamide resin and polyvinyl chloride resin.
  • the thermoplastic resin may include a polypropylene resin
  • the polypropylene resin may be a propylene-ethylene copolymer resin, a propylene-butene copolymer resin, and an ethylene-propylene-butene copolymer resin as the polypropylene copolymer resin. It may include.
  • the continuous fiber or long fiber may include, for example, one or more of glass fiber, carbon fiber, aramid fiber and natural fiber.
  • a continuous fiber composite material or a long fiber composite material it is preferable that 20-70 weight part is preferable with respect to 100 weight part of thermoplastic resin, and, as for continuous fiber or long fiber composite, it is more preferable that 20-60 weight part is included. If the content of the continuous fiber or long fiber is less than 20 parts by weight, it is difficult to expect the mechanical strength, and if the content of the continuous fiber or long fiber exceeds 70 parts by weight, the content of the continuous fiber or long fiber is too high to reduce the light weight and formability of the composite material .
  • long fiber refers to a fiber having a length of 2 mm or more
  • continuous fiber refers to a fiber that is present in a continuous form without breaking in the alignment direction inside the sheet.
  • the distinction between the long fibers and the continuous fibers is not dependent on the length, but on whether the fibers are broken in the alignment direction or continuous. That is, in the present invention, the fiber form cut in the orientation direction inside the sheet is a long fiber, and the fiber form present in a continuous form without breaking in the orientation direction is a continuous fiber.
  • long fibers it is advantageous in formability, and in the case of continuous fibers, the bending of the fibers is small, so that the strength in the fiber orientation direction can be increased, and the structurally excellent strength and rigidity can be exhibited.
  • FIG. 4 shows an example of laminating continuous fiber composites oriented in a first direction.
  • the fiber-reinforced composite shown in FIG. 4 has excellent strength because the one-way continuous fiber composites have a fiber shape oriented only in the first direction, but the formability is not good, and the widthwise division problem is difficult to solve.
  • the fiber reinforced composite shown in FIG. 5 shows an example in which the continuous fiber composite oriented in the second direction is interposed between the continuous fiber composites oriented in the first direction.
  • the fiber reinforced composite shown in FIG. 5 is composed of only one-way continuous fiber composites as in the fiber reinforced composite shown in FIG. 4.
  • the continuous fiber composites on both sides in the thickness direction have a fiber shape oriented in the first direction, while the continuous fiber composites inserted in the middle are oriented in the second direction.
  • the problem of widthwise cracking can be solved, but it has a disadvantage in that moldability is poor because it is composed of only continuous fiber composites.
  • FIG. 6 illustrates an example in which a long fiber composite oriented in a random direction is interposed between continuous fiber composites oriented in a first direction.
  • continuous fiber composite materials oriented in the first direction are disposed on both sides in the thickness direction, and long fiber composite materials oriented in a random direction are disposed in the center.
  • both the widthwise cracking and the moldability can exhibit excellent characteristics.
  • the thickness of the unidirectional long fiber composites is higher than that of the unidirectional long fiber composites, which makes it difficult to manufacture thin-walled components. It is somewhat lower than the problem.
  • FIG. 7 illustrates an example in which a long fiber composite oriented in a second direction is interposed between continuous fiber composites oriented in a first direction according to the present invention.
  • continuous fiber composites oriented in the first direction are disposed on both sides in the thickness direction, and long fiber composites oriented in the second direction are disposed in the center.
  • the long-fiber composite material oriented in the second direction can not only solve the problem of the splitting in the width direction, but also improve the formability and the second direction physical properties, and by applying the long-fiber excellent fluidity compared to the continuous fiber Can improve design freedom.
  • the fiber reinforced composite manufacturing method includes a lower first direction continuous fiber composite disposition step, a second direction long fiber composite disposition step, an upper first direction continuous fiber composite disposition step and a laminating step.
  • the lower first direction continuous fiber composite in which the continuous fibers are oriented in the first direction is disposed.
  • the second direction long fiber composite disposing step the second direction long fiber composite oriented in the second direction in which the long fibers cross the first direction is disposed on the lower first direction continuous fiber composite.
  • the upper first direction continuous fiber composite in which the continuous fibers are oriented in the first direction is disposed on the second direction long fiber composite.
  • two second direction long fiber composites may be a five-layer structure alternately stacked, and may be a seven-layer structure and the like. Furthermore, it may be a four-layer structure in which two first direction continuous fiber composites and two second direction long fiber composites are alternately stacked, and may be a six-layer or an eight-layer structure.
  • the lower first direction continuous fiber composite, the second direction long fiber composite and the upper first direction continuous fiber composite are laminated.
  • Laminating can use the thermal laminating method.
  • the lower one-way continuous fiber composite material is disposed so that the fiber direction is the first direction
  • the one-way long fiber composite material is disposed on the lower one-way continuous fiber composite material so that the fiber direction is the second direction, and the fiber direction is first formed on the one-way long fiber composite material.
  • the upper one-way continuous fiber composite was placed so as to be in one direction. It was then laminated through a thermal laminating process.
  • the lower one-way continuous fiber composite, the middle one-way continuous fiber composite and the upper one-way continuous fiber composite were sequentially arranged so that the fiber directions were the first direction, and then laminated through a thermal laminating process.
  • the lower one-way continuous fiber composite material is disposed so that the fiber direction is the first direction, and the one-way continuous fiber composite material is disposed on the lower one-way continuous fiber composite material so that the fiber direction is the second direction, and the fiber direction is made on the one-way continuous fiber composite material.
  • the upper one-way continuous fiber composite was placed so as to be in one direction. It was then laminated through a thermal laminating process.
  • the lower one direction continuous fiber composite material is disposed so that the fiber direction is the first direction, the random direction long fiber composite material is disposed on the lower one direction continuous fiber composite material, and the upper one direction the fiber direction is the first direction on the random direction long fiber composite material.
  • Continuous fiber composites were placed. It was then laminated through a thermal laminating process.
  • Formability is good (O) if the specimen is bent to a depth of at least half the depth of the U-shaped groove by applying a force to the specimen with the same force with a U-shaped bending tester having a U-shaped groove; It was made.
  • Example 1 using the second direction long-fiber composite as a reinforcing material layer, the crack in the width direction did not occur, and the formability was superior to the specimens according to Comparative Examples 1 and 2.
  • Example 1 it showed slightly better flexural properties than that of Comparative Example 3.
  • the thickness of the reinforcement layer of Example 1 is only 0.25mm
  • the thickness of the reinforcement layer of Comparative Example 3 is 1.00mm, not only more suitable for Example 1 to implement a thin thickness, but also to implement the flexural properties It was found to be good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Disclosed is a fiber-reinforced plastic having excellent transverse properties, comprising unidirectional continuous fiber composites. The fiber-reinforced plastic according to the present invention comprises: unidirectional continuous fiber composites in which continuous fibers are oriented in a first direction; and a reinforcement layer disposed between the unidirectional continuous fiber composites, wherein the reinforcement layer comprises a long fiber composite in which long fibers are oriented in a second direction crossing the first direction.

Description

섬유강화 복합재 및 그 제조 방법Fiber Reinforced Composites and Manufacturing Method Thereof
본 발명은 섬유강화 복합재에 관한 것으로, 보다 상세하게는 단일방향으로 배향된 일방향 연속섬유 복합재의 폭방향 물성 보강할 수 있고, 또한 단일방향으로 배향된 일방향 연속섬유 복합재의 폭방향 갈라짐 문제를 해결할 수 있는 복합재 및 그 제조 방법에 관한 것이다. The present invention relates to a fiber-reinforced composite, and more particularly, to reinforce the widthwise properties of a unidirectional continuous fiber composite unidirectionally oriented, and also to solve the problem of widthwise splitting of a unidirectional continuous fiber composite unidirectionally oriented. The present invention relates to a composite material and a method of manufacturing the same.
골프채와 같은 스포츠 레저용 구조물, 전신주와 같은 구조물, 자동차 부품, 항공기 등의 여러 분야에서 경량화 및 고강도의 섬유강화 복합재료가 사용되고 있다.Lightweight and high strength fiber-reinforced composite materials are used in many fields, such as sports leisure structures such as golf clubs, structures such as telephone poles, automobile parts, and aircraft.
섬유강화 복합재(Fiber Reinforced Plastics; FRP)는 고분자 매트릭스에 섬유를 강화재로 적용한 복합재를 의미한다. 널리 사용되는 섬유 복합재로는 섬유 종류에 따라, 유리섬유 복합재, 탄소섬유 복합재 등이 있다. Fiber Reinforced Plastics (FRP) refers to composites in which fibers are applied as a reinforcing material in a polymer matrix. Fiber composites that are widely used include glass fiber composites, carbon fiber composites, and the like, depending on the type of fiber.
섬유는 길이, 형태에 따라 단섬유, 장섬유, 연속섬유 등으로 구분된다. 일반적으로, 단섬유는 2mm 미만의 길이를 갖는 섬유를 의미하고, 장섬유는 2mm 이상의 길이를 가지는 섬유를 의미하는데 장섬유는 대체로 50mm 이하의 길이를 갖는다. 연속섬유는 시트의 최종 크기에 의존하며, 일반적으로 장섬유보다 긴 길이를 가지지만 길이가 얼마인지 보다는 시트 내부에서 적어도 배향 방향으로 끊어지지 않고 연속적인 형태로 존재하는 섬유를 의미한다. Fibers are classified into short fibers, long fibers, and continuous fibers according to their length and shape. In general, short fiber refers to a fiber having a length of less than 2mm, long fiber refers to a fiber having a length of 2mm or more, the long fiber generally has a length of 50mm or less. Continuous fibers depend on the final size of the sheet and generally refer to fibers which have a longer length than the long fibers but which are present in a continuous form without breaking at least in the orientation direction within the sheet rather than how long.
연속섬유를 이용한 연속섬유 복합재는 섬유 배향 방향에 따라 일방향 연속섬유 복합재, 2방향 연속섬유 복합재, 랜덤방향 연속섬유 복합재 등으로 구분된다. Continuous fiber composites using continuous fibers are classified into one-way continuous fiber composites, two-way continuous fiber composites, random direction continuous fiber composites, etc. according to the fiber orientation direction.
이 중, 단일 방향으로 배향된 일방향 연속섬유 복합재는 강성, 강도 물성이 우수한 장점이 있다. 그러나, 일방향 연속섬유 복합재는 폭 방향 물성의 취약으로 인하여 갈라짐 문제가 종종 발생한다. 따라서, 일방향 연속섬유 복합재의 갈라짐 문제를 개선하여 폭 방향 물성이 우수하며, 폭방향 갈라짐 문제가 해결될 수 있는 섬유강화 복합재가 요구된다.Of these, the unidirectional continuous fiber composite material oriented in a single direction has the advantage of excellent rigidity, strength properties. However, unidirectional continuous fiber composites often cause cracking problems due to their weakness in the width direction. Therefore, there is a need for a fiber-reinforced composite material that can improve the cracking problem of the unidirectional continuous fiber composite material and has excellent widthwise physical properties and can solve the cracking problem in the widthwise direction.
일방향 연속섬유 복합재의 폭 방향 물성 개선을 위하여, 제1 방향으로 배향된 연속섬유 복합재와 제1 방향과 교차하는 제2 방향으로 배향된 연속섬유 복합재를 교대로 반복하여 적층하는 방법, 랜덤 방향으로 배향된 장섬유 복합재를 제1방향으로 배향된 연속섬유 복합재들 사이에 배치하는 방법 등이 제시되었다. 그러나, 이러한 방법들은 성형성 확보가 어려운 문제점이 있다. 나아가 랜덤 방향으로 배향된 장섬유 복합재의 경우, 상대적으로 두꺼운 관계로 얇은 두께의 부품 제조가 어려워질 수 있다.In order to improve the widthwise physical properties of the unidirectional continuous fiber composites, a method of alternately repeating the continuous fiber composites oriented in the first direction and the continuous fiber composites oriented in the second direction crossing the first direction, alternately in a random direction And a method of disposing the long filament composite between the continuous fiber composites oriented in the first direction. However, these methods have a problem that it is difficult to secure the formability. Furthermore, in the case of long fiber composites oriented in a random direction, it may be difficult to manufacture a thin part in a relatively thick relationship.
본 발명에 관련된 배경기술로는 대한민국 공개특허공보 제 10-2016-0054661호(2016.05.17.)가 있으며, 상기 문헌에는 일방향 연속섬유강화 열가소성 복합재 제조장치 및 방법이 개시되어 있다.Background art related to the present invention is Republic of Korea Patent Publication No. 10-2016-0054661 (2016.05.17.), The document discloses a one-way continuous fiber-reinforced thermoplastic composite manufacturing apparatus and method.
본 발명의 하나의 목적은 일방향 연속섬유 복합재를 기반으로, 폭 방향 물성이 우수하며, 또한 폭방향 갈라짐 문제를 해결할 수 있는 섬유강화 복합재를 제공하는 것이다.One object of the present invention is to provide a fiber-reinforced composite material which is excellent in the widthwise physical properties and solves the widthwise cracking problem based on the unidirectional continuous fiber composite material.
본 발명의 다른 목적은 상기의 폭 방향 물성이 우수한 섬유강화 복합재 제조 방법을 제조하는 방법을 제공하는 것이다. Another object of the present invention is to provide a method for producing a fiber-reinforced composite manufacturing method excellent in the widthwise physical properties.
상기 하나의 목적을 달성하기 위한 본 발명에 따른 섬유강화 복합재는 연속섬유가 제1 방향으로 배향된 일방향 연속섬유 복합재들; 및 상기 일방향 연속섬유 복합재들 사이에 배치되어 있는 보강재층;을 포함하고, 상기 보강재층은 장섬유가 상기 제1 방향과 교차하는 제2 방향으로 배향된 장섬유 복합재를 포함하는 것을 특징으로 한다.Fiber-reinforced composite material according to the present invention for achieving the above object is one direction continuous fiber composites in which the continuous fibers are oriented in the first direction; And a reinforcement layer disposed between the one-way continuous fiber composites, wherein the reinforcement layer comprises a long fiber composite oriented in a second direction in which the long fibers intersect the first direction.
이때, 상기 보강재층은 시트 형태로 형성될 수 있다. 다른 예로, 상기 보강재층은 서로 이격된 복수의 조각 형태로 형성될 수 있다. In this case, the reinforcement layer may be formed in a sheet form. As another example, the reinforcement layer may be formed in a plurality of pieces spaced apart from each other.
또한, 상기 보강재층의 두께는 연속섬유 복합재의 두께와 같거나 연속섬유 복합재의 두께보다 작을 수 있다. In addition, the thickness of the reinforcing material layer may be the same as the thickness of the continuous fiber composite or less than the thickness of the continuous fiber composite.
상기 일방향 연속섬유 복합재들은 열가소성 수지 100중량부에 대하여, 연속섬유 20~70중량부를 포함할 수 있다. The one-way continuous fiber composites may include 20 to 70 parts by weight of continuous fiber, based on 100 parts by weight of thermoplastic resin.
또한, 상기 장섬유 복합재는 열가소성 수지 100중량부에 대하여, 길이가 2mm 이상인 장섬유 20~70중량부를 포함할 수 있다.In addition, the long fiber composite material may include 20 to 70 parts by weight of long fibers having a length of 2 mm or more with respect to 100 parts by weight of a thermoplastic resin.
또한, 상기 연속섬유 및 장섬유 각각은 유리 섬유, 탄소 섬유, 아라미드 섬유 및 천연 섬유 중 1종 이상을 포함할 수 있다. In addition, each of the continuous fibers and long fibers may include one or more of glass fibers, carbon fibers, aramid fibers and natural fibers.
상기 다른 목적을 달성하기 위한 본 발명에 따른 섬유강화 복합재 제조 방법은 연속섬유가 제1 방향으로 배향된 일방향 연속섬유 복합재 상에, 장섬유가 상기 제1 방향과 교차하는 제2 방향으로 배향된 장섬유 복합재를 배치하는 단계; 상기 보강재층 상에, 연속섬유가 상기 제1 방향으로 배향된 연속섬유 복합재를 배치하는 단계; 및 라미네이션을 수행하는 단계;를 포함하는 것을 특징으로 한다.Fiber-reinforced composite manufacturing method according to the present invention for achieving the above another object is a sheet in which a long fiber is oriented in a second direction intersecting the first direction, on a one-way continuous fiber composite material is a continuous fiber is oriented in a first direction Placing the fiber composite; Disposing a continuous fiber composite material on which the continuous fibers are oriented in the first direction; And performing lamination.
본 발명에 따른 섬유강화 복합재료는 제1 방향으로 배향된 연속섬유 복합재들 사이에 제2 방향, 즉 폭 방향으로 배향된 장섬유 복합재를 삽입한 결과, 폭 방향의 성형성을 유지함과 동시에 폭 방향 갈라짐 문제를 해소하고, 또한 폭 방향으로의 물성 향상이 가능하다.In the fiber reinforced composite material according to the present invention, as a result of inserting the long fiber composite oriented in the second direction, that is, the width direction, between the continuous fiber composites oriented in the first direction, while maintaining the formability in the width direction, It is possible to solve the cracking problem and to improve the physical properties in the width direction.
아울러, 랜덤 방향으로 배향된 장섬유 복합재에 비하여 일방향(제2 방향)으로 배향된 장섬유 복합재의 경우, 일방향 연속섬유 복합재 두께와 동등 이하로 제조가 가능하다. 따라서, 상기의 우수한 폭 방향 물성과 더불어 얇은 두께의 부품을 제조할 수 있다. In addition, in the case of the long fiber composites oriented in one direction (second direction) as compared to the long fiber composites oriented in the random direction, it is possible to manufacture less than or equal to the thickness of the unidirectional continuous fiber composites. Therefore, a thin part can be manufactured in addition to the excellent width direction properties.
도 1은 본 발명에 이용되는 일방향 연속섬유 복합재를 개략적으로 나타낸 것이다. Figure 1 schematically shows a one-way continuous fiber composite material used in the present invention.
도 2는 랜덤 방향으로 배향된 장섬유 복합재를 개략적으로 나타낸 것이다.2 schematically illustrates a long fiber composite oriented in a random direction.
도 3은 일방향으로 배향된 장섬유 복합재를 개략적으로 나타낸 것이다. 3 schematically shows a long fiber composite oriented in one direction.
도 4는 제1 방향으로 배향된 연속섬유 복합재들을 적층한 예를 나타낸 것이다.4 shows an example of laminating continuous fiber composites oriented in a first direction.
도 5는 제1 방향으로 배향된 연속섬유 복합재들 사이에 제2 방향으로 배향된 연속섬유 복합재가 개재된 예를 나타낸 것이다.5 shows an example in which the continuous fiber composite oriented in the second direction is interposed between the continuous fiber composites oriented in the first direction.
도 6은 제1 방향으로 배향된 연속섬유 복합재들 사이에 랜덤 방향으로 배향된 장섬유 복합재가 개재된 예를 나타낸 것이다.6 illustrates an example in which a long fiber composite oriented in a random direction is interposed between continuous fiber composites oriented in a first direction.
도 7은 본 발명에 따라, 제1 방향으로 배향된 연속섬유 복합재들 사이에 제2 방향으로 배향된 장섬유 복합재가 개재된 예를 나타낸 것이다.7 illustrates an example in which a long fiber composite oriented in a second direction is interposed between continuous fiber composites oriented in a first direction according to the present invention.
[부호의 설명][Description of the code]
100 : 일방향 연속섬유 복합재100: one-way continuous fiber composite
110 : 수지110: resin
120 : 섬유120: fiber
130 : 랜덤방향 장섬유130: random direction long fiber
140 : 일방향 장섬유140: unidirectional long fiber
200 : 랜덤방향 장섬유 복합재200: random long fiber composite
300 : 일방향 장섬유 복합재300: unidirectional long fiber composite
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 섬유강화 복합재 및 그 제조 방법에 관하여 상세히 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings, a fiber reinforced composite according to a preferred embodiment of the present invention and a manufacturing method thereof will be described in detail.
본 발명에 따른 섬유강화 복합재는 일방향 연속섬유 복합재 및 보강재층을 포함한다.The fiber reinforced composite according to the present invention comprises a unidirectional continuous fiber composite and a reinforcement layer.
일방향 연속섬유 복합재는 연속섬유가 제1 방향으로 배향된 복합재이다. One-way continuous fiber composites are composites in which the continuous fibers are oriented in a first direction.
이때, 일 방향이라 함은, 소정의 두 연속섬유가 이루는 각도가 10˚이하, 구체적으로는 5˚이하인 경우를 포함하고, 상호간 완전하게 평행한 상태뿐만 아니라, 육안으로 봤을 때 식별하기 어려운 정도의 오차 범위는 포함하는 것으로 이해되어야 할 것이다.At this time, the one direction, including the case where the predetermined two continuous fibers are 10 degrees or less, specifically 5 degrees or less, and not only completely parallel to each other, but also difficult to identify with the naked eye. Error ranges should be understood to include.
도 1은 본 발명에 이용되는 일방향 연속섬유 복합재를 개략적으로 나타낸 것이다. Figure 1 schematically shows a one-way continuous fiber composite material used in the present invention.
도 1을 참조하면, 일방향 연속섬유 복합재(100)는 열가소성 수지를 포함하는 모재(110)에 일방향을 배향된 연속섬유(120)가 함침된 구조를 갖는다. Referring to FIG. 1, the unidirectional continuous fiber composite material 100 has a structure in which a continuous fiber 120 oriented in one direction is impregnated into a base material 110 including a thermoplastic resin.
연속섬유 복합재(100)는 대략 0.1~10mm 두께로 형성될 수 있으나, 이에 제한되는 것은 아니다.Continuous fiber composite material 100 may be formed to a thickness of approximately 0.1 ~ 10mm, but is not limited thereto.
본 발명에서 보강재층은 일방향 연속섬유 복합재들 사이에 배치되어 있다.In the present invention, the reinforcement layer is disposed between the unidirectional continuous fiber composites.
도 2는 랜덤 방향으로 배향된 장섬유(130)를 포함하는 랜덤 방향 장섬유 복합재를 개략적으로 나타낸 것이다. 도 3은 일방향으로 배향된 장섬유 복합재를 개략적으로 나타낸 것이다. 2 schematically illustrates a random directional long fiber composite comprising long fibers 130 oriented in a random direction. 3 schematically shows a long fiber composite oriented in one direction.
도 2에 도시된 장섬유 복합재에 포함되는 장섬유의 경우, 주로 압출 공정에 의해 얻어지며, 섬유 길이가 약 2~50mm 정도이다. 반면, 도 3에 도시된 장섬유 복합재에 포함되는 장섬유의 경우, 연속 섬유를 절단하여 일방향의 장섬유로 얻어질 수 있으며, 섬유 길이는 약 2~50mm 정도일 수 있으나 이에 제한되지 않고 필요에 따라 50mm 이상의 길이를 가질 수 있다. 또한, 도 2에 도시된 장섬유 복합재에서 장섬유의 함량은 중량%로 약 40%가 한계이나, 도 3에 도시된 장섬유 복합재에서 장섬유의 함량은 약 70%까지 가능하다. 즉, 도 2 도시된 장섬유 복합재에 포함되는 장섬유와 도 3에 도시된 장섬유 복합재에 포함되는 장섬유는 제작 공정, 길이 및 함량 범위에 의해서 다른 종류의 섬유에 해당한다. In the case of the long fiber included in the long fiber composite material shown in Figure 2, it is mainly obtained by the extrusion process, the fiber length is about 2 ~ 50mm. On the other hand, in the case of the long fiber included in the long fiber composite material shown in Figure 3, it can be obtained as a long fiber in one direction by cutting the continuous fiber, the fiber length may be about 2 to 50mm, but is not limited thereto and as needed It may have a length of 50mm or more. In addition, the long fiber content in the long fiber composite shown in FIG. 2 is limited to about 40% by weight, but the long fiber content in the long fiber composite shown in FIG. 3 may be up to about 70%. That is, the long fibers included in the long fiber composite shown in FIG. 2 and the long fibers included in the long fiber composite shown in FIG. 3 correspond to different types of fibers depending on the manufacturing process, length, and content range.
장섬유 복합재는 장섬유의 배향 방향에 따라 일방향 장섬유 복합재와 랜덤 방향 장섬유 복합재로 구분된다. 도 2에 도시된 예와 같은 랜덤 방향 장섬유 복합재는 장섬유가 특정한 방향의 배향을 가지지 않은 경우이다. 다만, 이러한 랜덤 방향 장섬유 복합재의 경우 얇은 두께로 제조가 어렵다. 도 3에 도시된 예와 같은 일방향 장섬유 복합재는 장섬유가 특정한 방향으로 배향된 복합재로서, 성형성 및 가공성이 우수한 장점이 있다. The long fiber composite is classified into a unidirectional long fiber composite and a random direction long fiber composite according to the orientation direction of the long fiber. The random long fiber composite as in the example shown in FIG. 2 is a case where the long fibers do not have a specific orientation. However, such a random direction long fiber composite is difficult to manufacture in a thin thickness. One-way long fiber composites such as the example shown in Figure 3 is a composite material in which the long fibers are oriented in a specific direction, there is an advantage in excellent formability and processability.
본 발명에서는 보강재층으로 장섬유 복합재 또는 이를 포함하는 것을 이용하는데, 이때, 장섬유 복합재는 일방향 장섬유 복합재이다. 즉, 본 발명에서, 장섬유 복합재(100)는 도 3에 도시된 예와 같이, 열가소성 수지를 포함하는 모재(110)에 일방향을 배향된 장섬유(140)가 함침된 구조를 가지며, 장섬유는 제1 방향과 교차하는 제2 방향으로 배향되어 있다. In the present invention, the reinforcing material layer using a long fiber composite or a material containing the same, wherein the long fiber composite is a unidirectional long fiber composite. That is, in the present invention, the long fiber composite material 100 has a structure in which the long fiber 140 oriented in one direction is impregnated in the base material 110 including the thermoplastic resin, as shown in FIG. Is oriented in a second direction crossing the first direction.
보강재층은 도 3에 도시된 예와 같이, 시트 형태로 형성될 수 있다. 다른 예로, 상기 보강재층은 서로 이격된 복수의 조각 형태로 형성될 수 있는데, 이는 제1 방향으로 배향된 연속섬유 복합재가 제2 방향으로 절단됨으로써, 섬유의 길이가 약 50mm 이하로 된 형태가 될 수 있다. 전술한 바와 같이, 도 3에 도시된 예에서, 장섬유의 섬유 길이는 50mm 이상이 될 수도 있다.The reinforcement layer may be formed in the form of a sheet, as shown in FIG. 3. As another example, the reinforcement layer may be formed in a plurality of pieces spaced apart from each other, which is a continuous fiber composite oriented in the first direction is cut in the second direction, so that the length of the fiber is about 50mm or less Can be. As described above, in the example shown in FIG. 3, the fiber length of the long fibers may be 50 mm or more.
보강재층의 두께는 연속섬유 복합재 한 층의 두께와 동일하거나, 연속섬유 복합재 한 층의 두께보다 더 작을 수 있다. 이에 따라, 본 발명에 따른 섬유강화 복합재는 연속섬유 복합재 한 층의 두께의 3배 이하로도 제조될 수 있다. 보강재층이 랜덤 방향 장섬유 복합재로 이루어진 경우, 두께 제약이 많으나, 일방향 장섬유 복합재로 이루어진 경우에는 두께 제약이 상대적으로 작아, 얇은 두께의 구현이 가능하다. 예를 들어, 연속섬유 복합재 두께가 0.25mm인 경우, 일방향 장섬유 복합재는 0.25mm 또는 그 이하로 제조가 가능하나, 랜덤방향 장섬유 복합재는 약 1.0mm 정도로 상대적으로 두꺼운 두께로만 제조가 가능하다. 결과적으로 본 발명에 따른 섬유강화 복합재는 얇은 두께로 제조될 수 있고, 그 결과 원하는 부품 두께에 맞춤형 두께를 제공할 수 있다. The thickness of the reinforcement layer may be the same as the thickness of one layer of continuous fiber composite or less than the thickness of one layer of continuous fiber composite. Accordingly, the fiber-reinforced composite according to the present invention can be produced up to three times the thickness of one layer of continuous fiber composite. When the reinforcement layer is made of a random directional long fiber composite material, there are many thickness constraints. However, when the reinforcement layer is made of a unidirectional long fiber composite material, the thickness constraint is relatively small, so that a thin thickness can be realized. For example, when the continuous fiber composite thickness is 0.25mm, the unidirectional long fiber composite may be manufactured to 0.25 mm or less, but the random directional long fiber composite may be manufactured to a relatively thick thickness of about 1.0 mm. As a result, the fiber-reinforced composites according to the invention can be produced in thin thicknesses, and as a result can provide a custom thickness to the desired part thickness.
연속섬유 또는 장섬유를 포함하는 복합재는 금형 내 함침, 롤 함침, 벨트 함침 등의 용융 함침법에 의해 제조될 수 있다. Composites comprising continuous fibers or long fibers can be produced by melt impregnation methods such as in-mold impregnation, roll impregnation, belt impregnation, and the like.
장섬유 복합재의 경우, 예를 들어, 다음과 같은 방법으로 제조할 수 있다. 도 2에 도시된 장섬유 복합재의 경우, 압출된 장섬유와 열가소성 수지와 용융 압출하고, 프레스(press)하여 절단함으로써 연속섬유 또는 장섬유를 포함하는 복합재를 시트 형태로 제조할 수 있다. 도 3에 도시된 장섬유 복합재의 경우, 열가소성 수지 시트 상에 일 방향으로 장섬유를 배열하고, 프레스하는 방법으로 제조할 수 있다. 도 2 및 도 3에 도시된 장섬유 복합재의 경우, 상기 예시된 방법 이외에도 공지된 다양한 방법으로 제조할 수 있다.In the case of a long fiber composite, it can be manufactured by the following method, for example. In the case of the long fiber composite material shown in FIG. 2, the composite including the continuous fiber or the long fiber may be manufactured in the form of a sheet by melt extruding the extruded long fiber and the thermoplastic resin, pressing, and cutting. In the case of the long fiber composite material illustrated in FIG. 3, the long fiber may be manufactured by arranging and pressing long fibers in one direction on a thermoplastic resin sheet. In the case of the long fiber composite shown in Figures 2 and 3, in addition to the above-described method it can be produced by a variety of known methods.
연속섬유 복합재의 경우, 예를 들어, 다음과 같은 방법으로 제조할 수 있다. 열가소성 수지를 압출기에 투입하여 200℃ 이상의 온도에서 용융시키고, 연속섬유는 로빙 형태로 감겨있는 섬유의 실타래로부터 뽑아져 나와 금형에 투입된다. 압출기를 통해 용융된 열가소성 수지가 금형 내에 투입되어 상기 연속섬유에 함침되도록 한다. 다음으로, 이를 프레스(press)하여 적절한 크기로 절단함으로써, 시트 형태의 연속섬유 복합재를 제조할 수 있다. 구체적으로는, 카렌다(calendar) 공정을 이용하여 프레스함으로써 연속섬유의 단일 배향성을 조절하고 표면 물성이 우수한 연속섬유 복합재를 제조할 수 있다.In the case of a continuous fiber composite, for example, it can be produced by the following method. The thermoplastic resin is introduced into an extruder and melted at a temperature of 200 ° C. or more, and the continuous fiber is taken out of the thread of the fiber wound in the roving form and put into a mold. The thermoplastic resin melted through the extruder is introduced into the mold to be impregnated into the continuous fiber. Next, by pressing it and cutting it to an appropriate size, it is possible to produce a continuous fiber composite in the form of a sheet. Specifically, by pressing using a calendar (calendar) process, it is possible to manufacture a continuous fiber composite having excellent surface properties by controlling the single orientation of the continuous fiber.
열가소성 수지는 연속섬유 복합재 또는 장섬유 복합재에서 매트릭스 역할을 하며, 폴리프로필렌계 수지, 방향족 비닐계 수지, 고무변성 방향족 비닐계 수지, 폴리페닐렌에테르계 수지, 폴리카보네이트계 수지, 폴리에스테르계 수지, 메타크릴레이트계 수지, 폴리아릴렌설파이드계 수지, 폴리아미드계 수지 및 폴리염화비닐계 수지 중 1종 이상을 포함할 수 있다.The thermoplastic resin serves as a matrix in the continuous fiber composite or the long fiber composite, and may be a polypropylene resin, an aromatic vinyl resin, a rubber modified aromatic vinyl resin, a polyphenylene ether resin, a polycarbonate resin, a polyester resin, It may include one or more of methacrylate resin, polyarylene sulfide resin, polyamide resin and polyvinyl chloride resin.
예를 들어, 상기 열가소성 수지는 폴리프로필렌계 수지를 포함할 수 있고, 상기 폴리프로필렌계 수지는 폴리프로필렌계 공중합 수지로서 프로필렌-에틸렌 공중합 수지, 프로필렌-부텐 공중합 수지 및 에틸렌-프로필렌-부텐 공중합 수지를 포함할 수 있다. For example, the thermoplastic resin may include a polypropylene resin, and the polypropylene resin may be a propylene-ethylene copolymer resin, a propylene-butene copolymer resin, and an ethylene-propylene-butene copolymer resin as the polypropylene copolymer resin. It may include.
상기 연속섬유 또는 장섬유는 예를 들어, 유리 섬유, 탄소 섬유, 아라미드 섬유 및 천연 섬유 중 1종 이상을 포함할 수 있다.The continuous fiber or long fiber may include, for example, one or more of glass fiber, carbon fiber, aramid fiber and natural fiber.
한편, 연속섬유 복합재 또는 장섬유 복합재에서, 연속섬유 또는 장섬유는 열가소성 수지 100중량부에 대하여, 20~70중량부를 포함되는 것이 바람직하고, 20~60중량부를 포함되는 것이 보다 바람직하다. 연속섬유 또는 장섬유의 함량이 20중량부 미만인 경우, 기계적 강도를 기대하기 어렵고, 70중량부를 초과하는 경우, 연속섬유 또는 장섬유의 함량이 지나치게 높아져 복합재료의 경량화 및 성형성이 저하될 수 있다.On the other hand, in a continuous fiber composite material or a long fiber composite material, it is preferable that 20-70 weight part is preferable with respect to 100 weight part of thermoplastic resin, and, as for continuous fiber or long fiber composite, it is more preferable that 20-60 weight part is included. If the content of the continuous fiber or long fiber is less than 20 parts by weight, it is difficult to expect the mechanical strength, and if the content of the continuous fiber or long fiber exceeds 70 parts by weight, the content of the continuous fiber or long fiber is too high to reduce the light weight and formability of the composite material .
전술한 바와 같이, 장섬유는 2mm 이상의 길이를 가지는 섬유를 의미하며, 연속섬유는 시트 내부에서 배향 방향으로 끊어지지 않고 연속적인 형태로 존재하는 섬유를 의미한다. 본 발명에서 장섬유와 연속섬유의 구별은 길이에 의하지 않고, 시트 내부에서 배향 방향으로 끊어져 있는지 아니면 연속되어 있는지 여부에 의한다. 즉, 본 발명에서, 시트 내부에서 배향 방향으로 끊어져 있는 섬유 형태가 장섬유이고, 배향방향으로 끊어지지 않고 연속적인 형태로 존재하는 섬유 형태가 연속섬유이다. 장섬유의 경우, 성형성에 유리하고, 연속섬유의 경우, 섬유의 구부러짐이 적어 섬유 배향 방향의 강도를 높일 수 있으며, 구조적으로 우수한 강도 및 강성을 나타낼 수 있다.As described above, long fiber refers to a fiber having a length of 2 mm or more, and continuous fiber refers to a fiber that is present in a continuous form without breaking in the alignment direction inside the sheet. In the present invention, the distinction between the long fibers and the continuous fibers is not dependent on the length, but on whether the fibers are broken in the alignment direction or continuous. That is, in the present invention, the fiber form cut in the orientation direction inside the sheet is a long fiber, and the fiber form present in a continuous form without breaking in the orientation direction is a continuous fiber. In the case of long fibers, it is advantageous in formability, and in the case of continuous fibers, the bending of the fibers is small, so that the strength in the fiber orientation direction can be increased, and the structurally excellent strength and rigidity can be exhibited.
도 4는 제1 방향으로 배향된 연속섬유 복합재들을 적층한 예를 나타낸 것이다. 도 4에 도시된 섬유강화 복합재는 일방향 연속섬유 복합재들이 제1 방향으로만 배향된 섬유 형태를 갖기 때문에 강도는 우수하나, 성형성이 좋지 못하며, 또한 폭 방향 갈라짐 문제 해결이 어려운 구조이다. 4 shows an example of laminating continuous fiber composites oriented in a first direction. The fiber-reinforced composite shown in FIG. 4 has excellent strength because the one-way continuous fiber composites have a fiber shape oriented only in the first direction, but the formability is not good, and the widthwise division problem is difficult to solve.
도 5는 제1 방향으로 배향된 연속섬유 복합재들 사이에 제2 방향으로 배향된 연속섬유 복합재가 개재된 예를 나타낸 것이다. 도 5에 도시된 섬유강화 복합재는 도 4에 도시된 섬유강화 복합재와 마찬가지로 일방향 연속섬유 복합재들로만 구성되어 있다. 그러나, 도 5에 도시된 섬유강화 복합재의 경우, 두께 방향으로 양측의 연속섬유 복합재들은 제1 방향으로 배향된 섬유 형태를 가지지만, 가운데 삽입된 연속섬유 복합재들은 제2 방향으로 배향되어 있다. 이 경우, 폭 방향 갈라짐 문제는 해결할 수 있으나, 연속섬유 복합재들만으로 구성되어 성형성이 좋지 못한 단점이 있다.5 shows an example in which the continuous fiber composite oriented in the second direction is interposed between the continuous fiber composites oriented in the first direction. The fiber reinforced composite shown in FIG. 5 is composed of only one-way continuous fiber composites as in the fiber reinforced composite shown in FIG. 4. However, in the case of the fiber-reinforced composite shown in Fig. 5, the continuous fiber composites on both sides in the thickness direction have a fiber shape oriented in the first direction, while the continuous fiber composites inserted in the middle are oriented in the second direction. In this case, the problem of widthwise cracking can be solved, but it has a disadvantage in that moldability is poor because it is composed of only continuous fiber composites.
도 6은 제1 방향으로 배향된 연속섬유 복합재들 사이에 랜덤 방향으로 배향된 장섬유 복합재가 개재된 예를 나타낸 것이다. 도 6에 도시된 섬유강화 복합재는 두께 방향 양측에 제1 방향으로 배향된 연속섬유 복합재가 배치되어 있고, 가운데에 랜덤 방향으로 배향된 장섬유 복합재가 배치되어 있다. 이 경우, 폭 방향 갈라짐 및 성형성 모두 우수한 특성을 나타낼 수 있다. 그러나, 랜덤 방향 장섬유 복합재의 경우 일방향 장섬유 복합재에 비하여 두께가 두껍기 때문에 얇은 두께 부품 제조가 어렵게 되며, 이를 적용한 섬유강화 복합재는 길이 방향 및 폭 방향 굴곡강도가 일방향 장섬유 복합재를 적용한 섬유강화 복합재에 비하여 다소 낮은 문제점이 있다. 6 illustrates an example in which a long fiber composite oriented in a random direction is interposed between continuous fiber composites oriented in a first direction. In the fiber-reinforced composite material shown in FIG. 6, continuous fiber composite materials oriented in the first direction are disposed on both sides in the thickness direction, and long fiber composite materials oriented in a random direction are disposed in the center. In this case, both the widthwise cracking and the moldability can exhibit excellent characteristics. However, in the case of random oriented long fiber composites, the thickness of the unidirectional long fiber composites is higher than that of the unidirectional long fiber composites, which makes it difficult to manufacture thin-walled components. It is somewhat lower than the problem.
도 7은 본 발명에 따라, 제1 방향으로 배향된 연속섬유 복합재들 사이에 제2 방향으로 배향된 장섬유 복합재가 개재된 예를 나타낸 것이다. 도 7에 도시된 섬유강화 복합재는 두께 방향 양측에 제1 방향으로 배향된 연속섬유 복합재가 배치되어 있고, 가운데에 제2 방향으로 배향된 장섬유 복합재가 배치되어 있다. 이에 의하면, 제2 방향으로 배향된 장섬유 복합재를 통하여 폭 방향 갈라짐 문제를 해소할 수 있을 뿐만 아니라 성형성 및 제2 방향 물성을 향상시킬 수 있으며, 연속섬유에 비하여 유동성이 우수한 장섬유를 적용함으로써 디자인 자유도 향상을 추구할 수 있다. 7 illustrates an example in which a long fiber composite oriented in a second direction is interposed between continuous fiber composites oriented in a first direction according to the present invention. In the fiber-reinforced composite shown in FIG. 7, continuous fiber composites oriented in the first direction are disposed on both sides in the thickness direction, and long fiber composites oriented in the second direction are disposed in the center. According to this, the long-fiber composite material oriented in the second direction can not only solve the problem of the splitting in the width direction, but also improve the formability and the second direction physical properties, and by applying the long-fiber excellent fluidity compared to the continuous fiber Can improve design freedom.
본 발명에 따른 섬유강화 복합재 제조 방법은 하부 제1 방향 연속섬유 복합재 배치 단계, 제2 방향 장섬유 복합재 배치 단계, 상부 제1 방향 연속섬유 복합재 배치 단계 및 라미네이팅 단계를 포함한다.The fiber reinforced composite manufacturing method according to the present invention includes a lower first direction continuous fiber composite disposition step, a second direction long fiber composite disposition step, an upper first direction continuous fiber composite disposition step and a laminating step.
하부 제1 방향 연속섬유 복합재 배치 단계에서는 연속섬유가 제1 방향으로 배향된 하부 제1 방향 연속섬유 복합재를 배치한다.In the step of arranging the lower first direction continuous fiber composite, the lower first direction continuous fiber composite in which the continuous fibers are oriented in the first direction is disposed.
제2 방향 장섬유 복합재 배치 단계에서는 장섬유가 제1 방향과 교차하는 제2 방향으로 배향된 제2 방향 장섬유 복합재를, 하부 제1 방향 연속섬유 복합재 상에 배치한다.In the second direction long fiber composite disposing step, the second direction long fiber composite oriented in the second direction in which the long fibers cross the first direction is disposed on the lower first direction continuous fiber composite.
상부 제1 방향 연속섬유 복합재 배치 단계에서는 제2 방향 장섬유 복합재 상에 연속섬유가 상기 제1 방향으로 배향된 상부 제1 방향 연속섬유 복합재를 배치한다.In the step of arranging the upper first direction continuous fiber composite, the upper first direction continuous fiber composite in which the continuous fibers are oriented in the first direction is disposed on the second direction long fiber composite.
이상에서는 2개의 제1 방향 연속섬유 복합재 사이에 제2 방향 장섬유 복합재가 배치된 3층 구조의 섬유강화 복합재의 예를 설명하였으나, 본 발명은 이에 제한되지 않고, 3개의 제1 방향 연속섬유 복합재와 2개의 제2 방향 장섬유 복합재가 교대 적층된 5층 구조도 될 수 있고, 7층 구조 등도 될 수 있다. 나아가, 2개의 제1 방향 연속섬유 복합재와 2개의 제2 방향 장섬유 복합재가 교대 적층된 4층 구조도 될 수 있고, 6층, 8층 구조도 될 수 있다.In the above, the example of the three-layer fiber reinforced composite having the second direction long fiber composite disposed between the two first direction continuous fiber composites has been described, but the present invention is not limited thereto, and the three first direction continuous fiber composites are provided. And two second direction long fiber composites may be a five-layer structure alternately stacked, and may be a seven-layer structure and the like. Furthermore, it may be a four-layer structure in which two first direction continuous fiber composites and two second direction long fiber composites are alternately stacked, and may be a six-layer or an eight-layer structure.
라미네이팅 단계에서는 하부 제1 방향 연속섬유 복합재, 제2 방향 장섬유 복합재 및 상부 제1 방향 연속섬유 복합재를 라미네이팅한다. 라미네이팅은 열 라미네이팅법을 이용할 수 있다. In the laminating step, the lower first direction continuous fiber composite, the second direction long fiber composite and the upper first direction continuous fiber composite are laminated. Laminating can use the thermal laminating method.
실시예Example
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다. Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.
1. 연속섬유 복합재 및 장섬유 복합재의 제조1. Preparation of continuous fiber composites and long fiber composites
폴리프로필렌 수지 100중량부에 대하여, 유리섬유(평균 길이 10mm) 35중량부를 포함하는 0.25mm 두께의 일방향 장섬유 복합재를 마련하였다. 또한, 폴리프로필렌 수지 100중량부에 대하여, 유리섬유(평균 길이 10mm) 35중량부를 포함하는 1.00 mm 두께의 랜덤 방향 장섬유 복합재를 마련하였다.A unidirectional long fiber composite material having a thickness of 0.25 mm, including 35 parts by weight of glass fiber (average length 10 mm), was prepared based on 100 parts by weight of polypropylene resin. Moreover, the 1.00-mm-thick random direction long fiber composite material containing 35 weight part of glass fibers (average length 10 mm) was prepared with respect to 100 weight part of polypropylene resins.
폴리프로필렌 수지 100중량부에 대하여, 유리섬유(평균 길이 50mm) 35중량부를 포함하는 0.25mm 두께의 일방향 연속섬유 복합재를 마련하였다. To 100 parts by weight of polypropylene resin, a 0.25 mm thick one-way continuous fiber composite including 35 parts by weight of glass fibers (average length 50 mm) was prepared.
2. 시편의 제조2. Preparation of Specimen
실시예 1Example 1
섬유 방향이 제1 방향이 되도록 하부 일방향 연속섬유 복합재를 배치하고, 하부 일방향 연속섬유 복합재 상에 섬유 방향이 제2 방향이 되도록 일방향 장섬유 복합재를 배치하고, 일방향 장섬유 복합재 상에 섬유 방향이 제1 방향이 되도록 상부 일방향 연속섬유 복합재를 배치하였다. 이후 열 라미네이팅 공정을 통하여 합지하였다. The lower one-way continuous fiber composite material is disposed so that the fiber direction is the first direction, and the one-way long fiber composite material is disposed on the lower one-way continuous fiber composite material so that the fiber direction is the second direction, and the fiber direction is first formed on the one-way long fiber composite material. The upper one-way continuous fiber composite was placed so as to be in one direction. It was then laminated through a thermal laminating process.
비교예 1Comparative Example 1
섬유 방향이 각각 제1 방향이 되도록, 하부 일방향 연속섬유 복합재, 중간 일방향 연속섬유 복합재 및 상부 일방향 연속섬유 복합재를 순차 배치한 후, 열 라미네이팅 공정을 통하여 합지하였다.The lower one-way continuous fiber composite, the middle one-way continuous fiber composite and the upper one-way continuous fiber composite were sequentially arranged so that the fiber directions were the first direction, and then laminated through a thermal laminating process.
비교예 2Comparative Example 2
섬유 방향이 제1 방향이 되도록 하부 일방향 연속섬유 복합재를 배치하고, 하부 일방향 연속섬유 복합재 상에 섬유 방향이 제2 방향이 되도록 일방향 연속섬유 복합재를 배치하고, 일방향 연속섬유 복합재 상에 섬유 방향이 제1 방향이 되도록 상부 일방향 연속섬유 복합재를 배치하였다. 이후 열 라미네이팅 공정을 통하여 합지하였다.The lower one-way continuous fiber composite material is disposed so that the fiber direction is the first direction, and the one-way continuous fiber composite material is disposed on the lower one-way continuous fiber composite material so that the fiber direction is the second direction, and the fiber direction is made on the one-way continuous fiber composite material. The upper one-way continuous fiber composite was placed so as to be in one direction. It was then laminated through a thermal laminating process.
비교예 3Comparative Example 3
섬유 방향이 제1 방향이 되도록 하부 일방향 연속섬유 복합재를 배치하고, 하부 일방향 연속섬유 복합재 상에 랜덤방향 장섬유 복합재를 배치하고, 랜덤방향 장섬유 복합재 상에 섬유 방향이 제1 방향이 되도록 상부 일방향 연속섬유 복합재를 배치하였다. 이후 열 라미네이팅 공정을 통하여 합지하였다.The lower one direction continuous fiber composite material is disposed so that the fiber direction is the first direction, the random direction long fiber composite material is disposed on the lower one direction continuous fiber composite material, and the upper one direction the fiber direction is the first direction on the random direction long fiber composite material. Continuous fiber composites were placed. It was then laminated through a thermal laminating process.
3. 물성 평가3. Property evaluation
실시예 1 및 비교예 1~3에 따른 시편들에 대하여 폭 방향 갈라짐 및 성형성 테스트를 수행하여 그 결과를 표 1에 나타내었다.The widthwise cracking and formability tests were performed on the specimens according to Example 1 and Comparative Examples 1 to 3, and the results are shown in Table 1.
폭 방향 갈라짐 테스트는 동일함 힘으로 폭 방향으로 힘을 가하였을 때, 갈라짐이 발생하였는지를 육안으로 확인하여, 갈라짐이 발생한 경우(O), 갈라짐이 발생하지 않은 경우(X)로 나타내었다.In the widthwise splitting test, when the force was applied in the widthwise direction with the same force, visually confirmed whether cracking occurred, and it was shown as a case where cracking occurred (O) or a case where cracking did not occur (X).
성형성은 U자형 홈을 갖는 U자형 굽힘가공 시험기로 동일한 힘으로 시편에 힘을 가하여, U자형 홈의 깊이의 절반 이상의 깊이로 굽혀진 경우를 양호(O)로, 그렇지 않은 경우를 불량(X)으로 하였다.Formability is good (O) if the specimen is bent to a depth of at least half the depth of the U-shaped groove by applying a force to the specimen with the same force with a U-shaped bending tester having a U-shaped groove; It was made.
굴곡물성은 ASTM D790에 의해 굴국강도(MPa)를 측정하였다. Flexural properties were measured for flexural strength (MPa) by ASTM D790.
[표 1]TABLE 1
Figure PCTKR2018002263-appb-I000001
Figure PCTKR2018002263-appb-I000001
표 1을 참조하면, 제2 방향 장섬유 복합재를 보강재층으로 이용한 실시예 1의 경우, 폭 방향 갈라짐 현상이 발생하지 않았고, 성형성도 비교예 1 및 비교예 2에 따른 시편에 비하여 우수하였다. Referring to Table 1, in Example 1 using the second direction long-fiber composite as a reinforcing material layer, the crack in the width direction did not occur, and the formability was superior to the specimens according to Comparative Examples 1 and 2.
나아가, 실시예 1의 경우, 비교예 3의 경우보다 약간 더 우수한 굴곡물성을 나타내었다. 이때, 실시예 1의 보강재층의 두께는 0.25mm에 불과한 반면, 비교예 3의 보강재층의 두께는 1.00mm인 바, 얇은 두께 구현에 실시예 1에 더 적합할 뿐만 아니라, 굴곡 물성 구현에도 더 양호함을 알 수 있었다. Furthermore, in the case of Example 1, it showed slightly better flexural properties than that of Comparative Example 3. At this time, while the thickness of the reinforcement layer of Example 1 is only 0.25mm, the thickness of the reinforcement layer of Comparative Example 3 is 1.00mm, not only more suitable for Example 1 to implement a thin thickness, but also to implement the flexural properties It was found to be good.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to the above embodiments and can be manufactured in various forms, and having ordinary skill in the art to which the present invention pertains. It will be understood by those skilled in the art that the present invention may be embodied in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (9)

  1. 연속섬유가 제1 방향으로 배향된 일방향 연속섬유 복합재들; 및One-way continuous fiber composites in which the continuous fiber is oriented in a first direction; And
    상기 일방향 연속섬유 복합재들 사이에 배치되어 있는 보강재층;을 포함하고,And a reinforcement layer disposed between the one-way continuous fiber composites.
    상기 보강재층은 장섬유가 상기 제1 방향과 교차하는 제2 방향으로 배향된 장섬유 복합재를 포함하는 것을 특징으로 하는, 섬유강화 복합재.And the reinforcement layer comprises a long fiber composite oriented in a second direction in which the long fibers intersect the first direction.
  2. 제1항에 있어서, The method of claim 1,
    상기 보강재층은 시트 형태로 형성된 것을 특징으로 하는, 섬유강화 복합재.The reinforcement layer is characterized in that formed in the form of a sheet, fiber reinforced composite material.
  3. 제1항에 있어서, The method of claim 1,
    상기 보강재층은 서로 이격된 복수의 조각 형태로 형성된 것을 특징으로 하는, 섬유강화 복합재.The reinforcement layer is characterized in that formed in a plurality of pieces spaced apart from each other, fiber-reinforced composite material.
  4. 제1항에 있어서,The method of claim 1,
    상기 보강재층의 두께는 연속섬유 복합재 한 층의 두께와 같거나 이보다 작은 것을 특징으로 하는 섬유강화 복합재. The thickness of the reinforcing material layer is fiber reinforced composite, characterized in that less than or equal to the thickness of one layer of continuous fiber composite.
  5. 제1항에 있어서,The method of claim 1,
    상기 섬유강화 복합재는 연속섬유 복합재 한 층의 두께의 3배 이하인 것을 특징으로 하는, 섬유강화 복합재.The fiber reinforced composite is characterized in that less than three times the thickness of one layer of continuous fiber composite, fiber reinforced composite.
  6. 제1항에 있어서,The method of claim 1,
    상기 일방향 연속섬유 복합재들은 열가소성 수지 100중량부에 대하여, 연속섬유 20~70중량부를 포함하는 것을 특징으로 하는 섬유강화 복합재.The one-way continuous fiber composites are fiber reinforced composites, characterized in that it comprises 20 to 70 parts by weight of continuous fibers, based on 100 parts by weight of thermoplastic resin.
  7. 제1항에 있어서,The method of claim 1,
    상기 장섬유 복합재는 열가소성 수지 100중량부에 대하여, 길이가 2mm 이상인 장섬유 20~70중량부를 포함하는 것을 특징으로 하는 섬유강화 복합재.The long fiber composite material is a fiber-reinforced composite material, characterized in that it comprises 20 to 70 parts by weight of long fibers having a length of 2mm or more with respect to 100 parts by weight of a thermoplastic resin.
  8. 제1항에 있어서,The method of claim 1,
    상기 연속섬유 및 장섬유 각각은 유리 섬유, 탄소 섬유, 아라미드 섬유 및 천연 섬유 중 1종 이상을 포함하는 것을 특징으로 하는 섬유강화 복합재.The continuous fiber and the long fiber, each fiber-reinforced composite, characterized in that it comprises at least one of glass fiber, carbon fiber, aramid fiber and natural fiber.
  9. 연속섬유가 제1 방향으로 배향된 일방향 연속섬유 복합재 상에, 장섬유가 상기 제1 방향과 교차하는 제2 방향으로 배향된 장섬유 복합재를 배치하는 단계;Disposing a long fiber composite oriented in a second direction in which the long fibers cross the first direction, on the one direction continuous fiber composite in which the continuous fibers are oriented in the first direction;
    상기 보강재층 상에, 연속섬유가 상기 제1 방향으로 배향된 연속섬유 복합재를 배치하는 단계; 및Disposing a continuous fiber composite material on which the continuous fibers are oriented in the first direction; And
    라미네이션을 수행하는 단계;를 포함하는 것을 특징으로 하는 섬유강화 복합재 제조 방법.Performing lamination; Fiber-reinforced composite manufacturing method comprising a.
PCT/KR2018/002263 2017-05-19 2018-02-23 Fiber-reinforced plastic and manufacturing method therefor WO2018212432A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170062560A KR102253104B1 (en) 2017-05-19 2017-05-19 Fiber reinforced composite material and method of manufacturing the same
KR10-2017-0062560 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018212432A1 true WO2018212432A1 (en) 2018-11-22

Family

ID=64273918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002263 WO2018212432A1 (en) 2017-05-19 2018-02-23 Fiber-reinforced plastic and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102253104B1 (en)
WO (1) WO2018212432A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044659A1 (en) * 2005-12-15 2008-02-21 Polystrand, Inc. Composite laminate and method of manufacture
US20080047657A1 (en) * 2006-08-25 2008-02-28 Jander Michael H System for forming reinforcement layers having cross-directionally oriented fibers
KR20130088034A (en) * 2010-06-22 2013-08-07 티코나 엘엘씨 Thermoplastic prepreg containing continuous and long fibers
KR20160034400A (en) * 2013-09-10 2016-03-29 미쯔비시 레이온 가부시끼가이샤 Thermoplastic prepreg and laminate
US20170081504A1 (en) * 2014-05-15 2017-03-23 Lg Hausys, Ltd. Long fiber reinforced plastic composite material and method for manufacturing long fiber reinforced plastic composite material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309773A (en) * 1992-05-14 1993-11-22 Mitsubishi Rayon Co Ltd Extremely thin resin sheet reinforced with carbon fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044659A1 (en) * 2005-12-15 2008-02-21 Polystrand, Inc. Composite laminate and method of manufacture
US20080047657A1 (en) * 2006-08-25 2008-02-28 Jander Michael H System for forming reinforcement layers having cross-directionally oriented fibers
KR20130088034A (en) * 2010-06-22 2013-08-07 티코나 엘엘씨 Thermoplastic prepreg containing continuous and long fibers
KR20160034400A (en) * 2013-09-10 2016-03-29 미쯔비시 레이온 가부시끼가이샤 Thermoplastic prepreg and laminate
US20170081504A1 (en) * 2014-05-15 2017-03-23 Lg Hausys, Ltd. Long fiber reinforced plastic composite material and method for manufacturing long fiber reinforced plastic composite material

Also Published As

Publication number Publication date
KR102253104B1 (en) 2021-05-14
KR20180127122A (en) 2018-11-28

Similar Documents

Publication Publication Date Title
CA2026113C (en) Prepreg, composite molded body, and method of manufacture of the composite molded body
WO2015174758A1 (en) Long fiber reinforced plastic composite material and method for manufacturing long fiber reinforced plastic composite material
WO2010047526A9 (en) Method for producing thermoplastic/continuous fiber hybrid complex
WO2015016518A1 (en) Continuous fiber reinforced resin composite material and molded article thereof
US4443507A (en) Heat-moldable laminate and process for molding said laminated structures
EP2864109B1 (en) Hybrid self-reinforced composite material
WO2014054868A1 (en) Functional film for improving impregnation properties of composite material and method for manufacturing composite material using same
WO2018194287A1 (en) Vehicle back beam and vehicle including same
WO2018056723A1 (en) Reinforced composite material and article including same
CA1325089C (en) Fiber-reinforced thermoplastic composites from flexible thin-layered prepegs
WO2019107991A1 (en) Continuous fiber reinforced thermoplastic resin composite material and method for producing same
WO2012096506A2 (en) Apparatus for manufacturing a high-strength composite sheet having superior embeddability, and method for manufacturing a high-strength composite sheet using same
WO2017204558A1 (en) Reinforced composite and product including same
WO2017183798A1 (en) Continuous fiber reinforced composite material
WO2013154256A1 (en) Eco-friendly and high-strength resin composite material
KR20180126762A (en) Hybrid type fiber reinforced composite material
WO2018212432A1 (en) Fiber-reinforced plastic and manufacturing method therefor
WO2018044007A1 (en) Fiber-reinforced composite material and automobile interior/exterior material employing same
KR102284616B1 (en) Hybrid fiber reinforced composite material for car parts
WO2015093722A1 (en) Bulletproof vest using unidirectional aramid sheet and polyethylene film and method for manufacturing same
WO2017111441A1 (en) Composition for fiber-reinforced composite, fiber-reinforced composite, and method of manufacturing fiber-reinforced composite
WO2017115929A1 (en) Polyethylene tarpaulin having high strength characteristics and preparation method therefor
WO2015178662A1 (en) Continuous fiber reinforced composite and manufacturing method therefor
WO2017135575A1 (en) Prepreg preparation device and prepreg preparation method using same
WO2016175538A1 (en) Fiber-reinforced composite and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/04/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18802677

Country of ref document: EP

Kind code of ref document: A1