WO2018154728A1 - Display device - Google Patents
Display device Download PDFInfo
- Publication number
- WO2018154728A1 WO2018154728A1 PCT/JP2017/007188 JP2017007188W WO2018154728A1 WO 2018154728 A1 WO2018154728 A1 WO 2018154728A1 JP 2017007188 W JP2017007188 W JP 2017007188W WO 2018154728 A1 WO2018154728 A1 WO 2018154728A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pixel
- gradation
- frame
- data
- integrated value
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3607—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0209—Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0233—Improving the luminance or brightness uniformity across the screen
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0257—Reduction of after-image effects
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0271—Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/16—Determination of a pixel data signal depending on the signal applied in the previous frame
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2360/00—Aspects of the architecture of display systems
- G09G2360/12—Frame memory handling
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2360/00—Aspects of the architecture of display systems
- G09G2360/16—Calculation or use of calculated indices related to luminance levels in display data
Definitions
- the present invention relates to a display device such as a liquid crystal display device.
- a phenomenon called vertical shadow is known as one of the phenomena that deteriorates the image quality of images displayed on a liquid crystal display device.
- Patent Document 1 discloses an active matrix display device for the purpose of preventing vertical shadows.
- predetermined data is obtained based on data in each column included in input image data, and a vertical blanking period after an effective period of image display using the image data is obtained based on the obtained data.
- the voltage driving of the data signal line (source line) to which the display element (pixel) is connected is performed.
- the voltage held in each display element is adjusted in a lump within the vertical blanking period after the image data is supplied, thereby suppressing the vertical shadow.
- Csd parasitic capacitance between a pixel and a source line in a display device.
- the Csd parasitic capacitance also causes problems such as gradation inclination in the image displayed on the display device.
- An object of the present invention is to provide a display device capable of suppressing the influence of Csd parasitic capacitance when displaying an image on the display device.
- the display device includes a plurality of pixels, a plurality of gate lines, a plurality of source lines, and a control unit.
- the plurality of pixels are arranged in a matrix.
- the plurality of gate lines are connected to pixel groups arranged in the row direction of the pixel matrix, and sequentially select the pixel groups in each row at a predetermined frame period.
- the plurality of source lines are connected to a pixel group arranged in the column direction of the pixel matrix, and supply a voltage corresponding to a predetermined gradation to the pixel group in the selected row.
- the control unit controls the timing for sequentially displaying the gradation for one row in the video on the pixel group of each row based on the gradation data indicating the gradation included in the video of one frame.
- the control unit is configured to integrate a voltage applied to a source line connected to the pixel in a period for one frame with respect to a pixel to be displayed as a reference, or the same source line as the pixel in a period for one frame in the future.
- the gradation data indicating the gradation to be displayed on the pixel is corrected.
- the gradation data for the pixel is corrected according to the integration of the voltage of the source line in one future frame, with the pixel to be displayed as a reference.
- the influence of the Csd parasitic capacitance when displaying an image on the display device can be suppressed.
- FIG. 11 is a diagram showing a structure of a pixel in a display panel of a display device
- the block diagram which shows the structure of the control circuit in a display apparatus 1 is a block diagram illustrating a configuration of a data correction unit according to a first embodiment.
- FIG. 3 is a block diagram illustrating a configuration example of a Csd correction circuit according to the first embodiment.
- the figure for demonstrating the vertical shadow in a display panel The figure for demonstrating the calculation method of Csd correction
- FIG. FIG. 9 is a block diagram illustrating a configuration example of a data correction unit according to the second embodiment.
- FIG. 3 is a block diagram illustrating a configuration example of a Csd correction circuit according to a second embodiment.
- FIG. 1 is a diagram illustrating a configuration of a display device 1 according to the present embodiment.
- the display device 1 constitutes a liquid crystal display device such as a liquid crystal television. As shown in FIG. 1, the display device 1 includes a display panel 10, a gate driver 11, a source driver 12, and a control circuit 2.
- the display panel 10 is an active matrix liquid crystal panel having a predetermined specification such as 8K, 4K, or 2K. As shown in FIG. 1, the display panel 10 includes a plurality of pixels 3, a plurality of gate lines GL, and a plurality of source lines SL.
- the display panel 10 includes, for example, a TFT (thin film transistor) substrate having a pixel electrode, a CF (color filter) substrate having a counter electrode, a liquid crystal layer sealed between both substrates, a polarizing plate, and the like.
- the display panel 10 displays, for example, one color gradation of R, G, and B per pixel 3.
- the plurality of pixels 3 are arranged in a matrix.
- the row direction of the matrix of the pixels 3 is referred to as a “horizontal direction” and is represented by a horizontal coordinate x.
- the column direction of the matrix of the pixels 3 is defined as “vertical direction” and is represented by the vertical coordinate y.
- the positive side in the vertical direction is referred to as the lower side, and the negative side is referred to as the upper side.
- the plurality of pixels 3 are provided with active element TFTs and the like.
- the gate is connected to the gate line GL
- the source is connected to the source line SL (see FIG. 2). Details of the configuration of the pixel 3 will be described later.
- Each gate line GL extends in the horizontal direction of the display panel 10 and is connected to one row of pixels 3 in the pixel 3 matrix.
- the plurality of gate lines GL are arranged side by side in the vertical direction of the display panel 10 corresponding to the vertical coordinate y of the connected pixel 3.
- the gate line GL is a signal line for selecting a pixel group having a common vertical coordinate y.
- Each source line SL extends in the vertical direction of the display panel 10 and is connected to one column of pixels 3 in the pixel 3 matrix.
- the plurality of source lines SL are arranged side by side in the horizontal direction of the display panel 10 corresponding to the horizontal coordinate x of the connected pixel 3.
- the source line SL is a signal line that sequentially supplies a predetermined voltage to a pixel group having a common horizontal coordinate x.
- the gate driving unit 11 includes an IC or the like to which a plurality of gate lines GL are connected. Under the control of the control circuit 2, the gate driving unit 11 outputs a signal for sequentially selecting a pixel group for one row corresponding to each vertical coordinate y in a predetermined frame period (for example, 1/60 seconds). To supply.
- the source driver 12 is composed of an IC or the like to which a plurality of source lines SL are connected.
- the source driver 12 supplies a voltage corresponding to the gradation to be displayed to the pixel group in the selected row via the source line SL in synchronization with the operation of the gate driver 11 under the control of the control circuit 2. .
- the control circuit 2 is composed of one or a plurality of semiconductor integrated circuits such as LSIs.
- the control circuit 2 generates various signals for controlling the operation timing of each part of the display device 1 as a timing controller.
- the control circuit 2 may control the overall operation of the display device 1.
- control circuit 2 For example, based on a video signal input from the outside, the control circuit 2 sequentially displays the gray level for one row in the frame unit video indicated by the video signal on the pixel group of each row so as to be displayed. And a control signal for the source driver 12 is generated. In addition to the control of the operation timings of the gate driving unit 11 and the source driving unit 12, the control circuit 2 performs predetermined video signal processing and the like. Details of the configuration of the control circuit 2 will be described later.
- FIG. 2 is a diagram illustrating a configuration of the pixel 3 in the display panel 10 of the display device 1.
- FIG. 2 shows the configuration of the pixel 3 having specific coordinates (x, y) on the display panel 10.
- the vertical coordinate y is in the range of 1 to 2160.
- the pixel 3 includes a TFT 31 and a liquid crystal capacitor Clc as shown in FIG.
- the gate is connected to the gate line GL (y) corresponding to the vertical coordinate y
- the source is connected to the source line SL (x) corresponding to the horizontal coordinate x
- the drain Is connected to one end (pixel electrode) of the liquid crystal capacitor Clc.
- the other end of the liquid crystal capacitor Clc is connected to a counter electrode in the display panel 10, for example.
- the TFT 31 is turned on when the voltage applied to the gate based on a signal from the gate line GL (y) is equal to or higher than a predetermined threshold voltage, and turned off when the voltage is lower than the threshold voltage.
- the threshold voltage of the TFT 31 is, for example, 2 to 3V.
- the TFT 31 is an example of an active element connected to the gate line GL (y).
- the liquid crystal capacitor Clc is composed of a pixel electrode, a counter electrode, and a liquid crystal layer, and changes the alignment state of the liquid crystal layer according to the charged voltage.
- the liquid crystal capacitor Clc charges or discharges charges based on the voltage of a signal input from the source signal line SL while the TFT 31 is on.
- the liquid crystal capacitor Clc holds a charging voltage obtained by charging / discharging before the TFT 31 is turned off while the TFT 31 is off.
- the pixel 3 has a parasitic capacitance Csd1 between the connected source line SL (x) and the pixel electrode, that is, between the source and drain of the TFT 31.
- the pixel 3 has a parasitic capacitance Csd2 between the adjacent source line SL (x + 1) and the pixel electrode.
- Each parasitic capacitance Csd is an example of a Csd parasitic capacitance between the source lines SL (x) and SL (x + 1) and the pixel 3, respectively.
- the pixel 3 may be provided with a CRE (Capacity Reduction Electrode) structure.
- CRE Capacity Reduction Electrode
- the liquid crystal capacitor Clc can be charged and discharged, and the pixel 3 is selected.
- the charging voltage for displaying the gradation of the corresponding pixel in the video is charged / discharged according to the voltage of the signal input from the source line SL (x) to the selected pixel 3.
- FIG. 3 is a block diagram showing a configuration of the control circuit 2 in the display device 1.
- the control circuit 2 includes a reception unit 21, a gamma conversion unit 22, an overdrive conversion unit 23, a data correction unit 24, a dither processing unit 25, and a transmission unit 26.
- the control circuit 2 is an example of a control unit of the display device 1 in the present embodiment.
- the receiving unit 21 is an input interface circuit according to a predetermined communication standard.
- the receiving unit 21 receives a video signal input from the outside.
- the external video signal includes video data indicating video for each frame, various synchronization signals, and the like.
- the gamma conversion unit 22 executes gamma conversion processing for performing gamma correction on the video data in the received video signal.
- the overdrive conversion unit 23 performs an overdrive conversion process on the video data after the gamma conversion process, for example.
- the overdrive conversion process is a process for converting the current video data with reference to the past video data in order to overshoot the pixels 3 of the display panel 10.
- the data correction unit 24 performs arithmetic correction (Csd correction) for suppressing the influence of the Csd parasitic capacitance in the display panel 10 on the video data after the overdrive conversion processing, for example.
- Csd correction arithmetic correction
- the dither processing unit 25 performs dither processing for performing dithering on the video data corrected by the data correction unit 24 according to the number of colors that can be generated on the display panel 10.
- the transmission unit 26 is an output interface circuit that conforms to a predetermined communication standard.
- the transmission unit 26 transmits the video data of the above various processing results to the source driving unit 12 of the display panel 10.
- the transmission unit 26 also outputs a control signal for the source driving unit 12, a control signal for the gate driving unit 11, a synchronization signal for synchronizing the operation timing of each unit, and the like.
- the control circuit 2 includes hardware such as a dedicated electronic circuit and a reconfigurable electronic circuit designed to realize predetermined functions such as the gamma conversion unit 22, the overdrive conversion unit 23, the data correction unit 24, and the like. It may be a circuit. Further, the control circuit 2 may include a CPU or the like that realizes the various functions described above in cooperation with software.
- the control circuit 2 may be composed of various semiconductor integrated circuits such as a CPU, MPU, microcomputer, DSP, FPGA, and ASIC.
- FIG. 4 is a block diagram showing the configuration of the data correction unit 24 in the present embodiment.
- the data correction unit 24 includes a frame memory 40 and a Csd correction circuit 4 as shown in FIG.
- the video data D (n) input to the Csd correction circuit 4 after being delayed by one frame via the frame memory 40 in the data correction unit 24 is handled as the current video data.
- the video data D (n + 1) input to the Csd correction circuit 4 without going through the frame memory 40 is relatively referred to as future video data for one frame.
- the frame memory 40 stores one frame of video data D (n) without being particularly compressed. Thereby, the calculation correction in the data correction unit 24 can be performed without impairing the display quality of the video data D (n) handled as the current frame (current frame).
- the Csd correction circuit 4 reads the video data D (n) of the current frame from the frame memory 40, refers to the video data D (n + 1) of the next frame, and performs arithmetic correction on the video data D (n) of the current frame. Execute. Thus, the data correction unit 24 outputs the corrected video data O (n) of the current frame from the Csd correction circuit 4.
- FIG. 5 shows a configuration example of the Csd correction circuit 4 in this embodiment.
- the Csd correction circuit 4 illustrated in FIG. 5 includes a coefficient multipliers 41 and 42, adders 43, 51, and 52, a subtractor 44, a line memory 45, a clear determination unit 46, and flip-flops 47 and 48. And function calculation units 49 and 50.
- the Csd correction circuit 4 inputs one frame of video data D (n) for each gradation data D (x, y, n).
- the gradation data D (x, y, n) is data indicating the gradation for each pixel in the video indicated by the video data D (n), and the pixel at the corresponding coordinate (x, y) on the display panel 10.
- the voltage supplied to 3 is specified.
- the gradation data D (x, y, n) can be set to a positive value and a negative value (absolute values are gradation values) according to a driving method such as frame inversion.
- the gradation data D (x, y, n) is a vertical coordinate corresponding to the outside of the display panel 10 in order to define the voltage of the source line SL (x) during a vertical blanking period (described later), for example. You may have y (refer FIG. 7).
- the Csd correction circuit 4 uses the horizontal direction (x) as the main scanning direction and the vertical direction (x) in a predetermined number of gradation data ⁇ D (x, y, n) ⁇ included in one frame of video data D (n). Each gradation data D (x, y, n) is input so that y) is two-dimensionally scanned in the sub-scanning direction. Further, the Csd correction circuit 4 inputs the current frame gradation data D (x, y, n) and the next frame gradation data D (x, y, n + 1) in synchronization with a predetermined synchronization signal or the like. To do.
- the coefficient multipliers 41 and 42 include LUTs for calculating later-described coefficients f1 and f2 (or multiplication values of the coefficients f1 and f2 and the gradation data).
- the coefficient multiplication unit 41 refers to the LUT based on the gradation data D (x, y, n) of the current frame and outputs a multiplication value f1 ⁇ D (x, y, n).
- the coefficient multiplier 42 outputs a multiplication value f2 ⁇ D (x, y, n + 1) based on the gradation data D (x, y, n + 1) of the next frame.
- the coefficient multipliers 41 and 42 output the multiplication value “0” based on the input value “0”.
- the adder 43 adds the multiplication value f2 ⁇ D (x, y, n + 1) of the coefficient multiplier 42 to the read value R (x) from the line memory 45.
- the subtracter 44 subtracts the multiplication value f1 ⁇ D (x, y, n) of the coefficient multiplier 41 from the output value of the adder 42.
- the calculation result (output value of the subtractor 44) corresponds to an integrated value A (x, y, n) described later.
- the Csd correction circuit 4 writes the integrated value A (x, y, n) as the calculation result in the line memory 45 as the write value W (x).
- the line memory 45 stores a write value ⁇ W (x)
- x 1 to X ⁇ corresponding to one horizontal line of the pixel 3 in the display panel 10 (X is the maximum value of the horizontal coordinate x).
- Each write value W (x) is read as a read value R (x) as appropriate.
- the clear determination unit 46 generates a clear signal for erasing information stored in the line memory 45 based on, for example, a trigger signal at the time of power activation.
- the flip-flop 47 holds the integrated value A (x, y, n) of the calculation result.
- the flip-flop 48 holds the gradation data D (x, y, n) of the current frame.
- Each of the flip-flops 47 and 48 delays each data by one operation cycle (corresponding to the difference “1” of the horizontal coordinate x).
- the function calculators 49 and 50 include an LUT for calculating functions f3 and f4 described later.
- the function calculation unit 49 outputs the calculation value of the function f3 based on the delayed gradation data D (x-1, y, n) and the integrated value A (x-1, y, n).
- the function calculation unit f4 outputs the calculation value of the function f4 based on the delayed gradation data D (x-1, y, n) and the integrated value A (x, y, n) without delay. For example, when the input data is “0”, the function calculation units 49 and 50 are set so that the calculation values of the functions f3 and f4 are “0”.
- the adders 51 and 52 add the calculated value of the function f3 and the calculated value of the function f4 to the delayed gradation data D (x-1, y, n), and the gradation data D (x-1,
- the corrected gradation data O (x-1, y, n) for y, n) is output.
- FIG. 6 is a diagram for explaining vertical shadows in the display panel.
- FIG. 6A illustrates one frame of video data D (n).
- FIG. 6B shows a display example of the display panel when a vertical shadow occurs in the video display based on the video data D (n) of FIG.
- the video data D (n) in FIG. 6A includes a background area Rb having a predetermined gradation and an object area Ra surrounded by the background area Rb.
- the object area Ra has a gradation different from that of the background area Rb.
- the pixel 3 (FIG. 1) in the regions Rb1 and Rb2 and the pixel 3 in the object region Ra are connected to the same source line SL. This is caused by Csd parasitic capacitance.
- Csd parasitic capacitance In order to suppress the vertical shadow, for example, if a CRE structure that sufficiently reduces the capacitance values of the parasitic capacitances Csd1 and Csd2 (FIG. 2) is provided in each pixel 3, the transmittance of the pixel 3 decreases, Image quality can be degraded. For example, in the case of an 8K specification display panel, the size of the pixel 3 is small, and a decrease in transmittance may be a serious problem.
- the data correction unit 24 in the control circuit 2 of the display device 1 performs calculation correction (that is, Csd correction) on the video data D (n) so as to suppress the influence of the Csd parasitic capacitance.
- Csd correction calculation correction
- FIG. 7 is a diagram for explaining a calculation method of Csd correction by the data correction unit 24.
- FIG. 7 illustrates the operation timing of video display by the display device 1 for the video data D (n) and D (n + 1) of two consecutive frames.
- the frame period T1 for displaying one frame of video includes a vertical display period T2 and a vertical blanking period T3.
- the vertical display period T2 is a period during which one frame of video is displayed by selecting pixel groups in all rows on the display panel 10 (FIG. 1).
- the vertical blanking period T3 is a period in which a predetermined interval is provided between the end of the vertical display period T2 of the current frame and the start of the next frame.
- the vertical display period T2 includes 2160 rows of charging periods for one row of pixel groups.
- the vertical blanking period T3 corresponds to a charging period for 90 rows, for example.
- the display device 1 starts displaying an image using the video data D (n) of the nth frame from time t ⁇ b> 1 under the control of the control circuit 2 (FIG. 1).
- the control circuit 2 performs gradation data D (1, y, n) to D (X, y, n) for each row in the video data D (n) of the nth frame.
- Each pixel 3 displays the gradation indicated by the gradation data D (x, y, n) by holding the charging voltage corresponding to the gradation data D (x, y, n).
- the pixel 3 at the point P (x, y) having the coordinates (x, y) on the display panel 10 (FIG. 1) is the video data of the nth frame at time t2 within the vertical display period T2 from time t1.
- Charging is performed based on the corresponding gradation data D (x, y, n) in D (n).
- the pixel 3 at the charged point P (x, y) is in the period Tp for one frame until the time t3 when the next (n + 1) frame gradation data D (x, y, n + 1) is charged.
- the charging voltage is held so as to display the gradation indicated by the gradation data D (x, y, n) of the nth frame.
- the source line SL (x) to which the pixel 3 at the point P (x, y) is connected in the period Tp corresponds to the video data D (n) and D (n + 1) of the nth frame or the (n + 1) th frame.
- a voltage based on the gradation data of the column to be applied is sequentially applied.
- parasitic capacitances Csd1 and Csd2 FIG. 2 between the source line SL (x) and the adjacent source line SL (x + 1) and the pixel 3 at the point P (x, y) are connected to each source line SL (x).
- SL (x + 1) the charging voltage of the pixel 3 can be varied depending on the voltage applied to it.
- the present inventor shows that the influence of the Csd parasitic capacitance on the charging voltage of the pixel 3 is applied to the source line SL (x) corresponding to the gradation data D (x, y, n) of each column. It was thought that it can be estimated by integrating the applied voltage during Tp. Therefore, in the present embodiment, an integrated value (A (x, y) indicating the integration of the voltages to be sequentially applied to the common source line SL (x) during a period Tp for one future frame after the present time. , N)) is obtained and used for Csd correction of the current gradation data D (x, y, n).
- the point P (x, y) in FIG. 7 corresponds to the time point at which the integrated value A (x, y, n) is to be calculated.
- the integrated value A (x, y, n) in this embodiment is a floor for one frame having a horizontal coordinate x in common with the point P (x, y) between two consecutive frames. It is obtained by integrating key data D (x, y + 1, n) to D (x, y-1, n + 1).
- the first term A1 represents the integral amount of the voltage applied to the source line SL (x) after charging the pixel 3 at the point P (x, y) in the current frame (n frame).
- the sum is calculated by weighted addition.
- the coefficient f1 is, for example, a function of the coordinates (x, y) and / or coordinates (x, y1) of the point P (x, y), and represents a variation in the display surface of the display panel 10.
- the coefficient f1 includes a component that converts gradation data into a voltage.
- the second term A2 represents the integral amount of the voltage applied to the source line SL (x) before the start of charging the pixel 3 at the point P (x, y) in the next frame ((n + 1) frame).
- the integration of the second term A2 is performed on the coefficient f2 for the gradation data ⁇ D (x, y2, n + 1)
- y2 1 to y ⁇ 1 ⁇ within a range smaller than the vertical coordinate y of the point P (x, y). Calculated by weighted addition based on.
- the coefficient f2 is a function similar to the coefficient f1, for example.
- the corrected gradation data O (x, y, n) is corrected to the gradation data D (x, y, n) (before correction) by the correction amount ⁇ D (x, y, n). determined by adding n).
- Formula (3) is a formula for calculating the correction amount ⁇ D (x, y, n) based on the above integrated value A (x, y, n).
- the correction amount ⁇ D (x, y, n) for the gradation data D (x, y, n) at the point P (x, y) is the sum of the first term and the second term on the right side of Equation (3). Calculated.
- the first term of the equation (3) is the gradation data D (x, y, n) of the point P (x, y) and the integrated value A (x, y, n) of the point P (x, y). It is expressed by a function f3 having an effective value A (x, y, n) / (Y-1) as an argument.
- the function f3 is parasitic on the liquid crystal capacitance Clc of the pixel 3 in order to correct the influence of the parasitic capacitance Csd1 (FIG. 2) due to the source line SL (x) connected to the pixel 3 itself at the point P (x, y). It is set according to the ratio with the capacitance Csd1.
- the function f3 includes a component that converts voltage into gradation data.
- the second term of the expression (3) includes the gradation value of the gradation data D (x, y, n) at the point P (x, y) and the point P ′ (x + 1) adjacent to the point P (x, y).
- Y is represented by a function f4 having an effective value A (x + 1, y, n) / (Y-1) of an integrated value A (x + 1, y, n) as an argument.
- the function f4 has a ratio between the liquid crystal capacitance Clc and the parasitic capacitance Csd2 of the pixel 3 in order to correct the influence of the parasitic capacitance Csd2 due to the source line SL (x + 1) adjacent to the pixel 3 at the point P (x, y). Set accordingly.
- the function f4 includes a component that converts a voltage into gradation data.
- the functions f3 and f4 of the first and second terms in the expression (3) are set independently so as to correct the influences of the separate parasitic capacitances Csd1 and Csd2, respectively.
- Each function f3, f4 may be a function depending on coordinates (x, y) in consideration of variations in the display surface of the display panel 10 and the like, similar to the above-described coefficients f1, f2.
- the functions f3 and f4 are represented by gradation data D (x, y, n) that defines the charging voltage of the liquid crystal capacitance Clc. It depends.
- the influence of the Csd parasitic capacitance varies even when the video displayed in the vertical display period T2 is the same when the length of the vertical blanking period T3 is different. Therefore, in consideration of the influence of the length of the vertical blanking period T3, the effective value A (x, y1, t) / (Y ⁇ ) obtained by dividing the integrated value A (x, y1, t) by (Y ⁇ 1). 1) is used as an argument of the functions f3 and f4. Thereby, for example, even when the length (Y value) of the vertical blanking period T3 differs between a 60 Hz video signal and a 50 Hz video signal, the influence of the Csd parasitic capacitance is corrected substantially in the same manner. can do.
- the data correction unit 24 calculates the integrated value A (x, y, n) for the future for one frame from the charging time of each pixel 3, and calculates the floor of each pixel 3.
- the tone data D (x, y, n) is corrected sequentially.
- the calculation for summing up the grayscale data D (x, y + 1, n) to D (x, y-1, n + 1) for one column as in the theoretical formula (1) is independent for all the pixels 3.
- the circuit scale can be enormous. Therefore, in this embodiment, a recurrence formula as shown in formulas (4) and (5) is adopted in order to obtain each integrated value A (x, y).
- Equation (4) is an equation obtained by equivalently transforming Equation (1) into a recurrence form when y> 1.
- the coefficient f1 and the coefficient f2 are set to have the same function form in order to prevent divergence of the recurrence formula repeated calculation.
- the right side of the equation (4) is the integrated value A (x, y ⁇ 1) of the point P ′′ (x, y ⁇ 1) where the horizontal coordinate x is the same as the point P (x, y) and the vertical coordinate y is smaller by 1. , N). Since the pixel 3 at the point P ′′ (x, y ⁇ 1) is charged one row before (past) the pixel 3 at the point P (x, y), the point P ( When calculating the integrated value A (x, y, n) of x, y), the integrated value A (x, y-1, n) of the point P ′′ (x, y ⁇ 1) can be used.
- the data correction unit 24 applies the second value of Expression (4) to the integrated value A (x, y ⁇ 1, n) of the point P ′′ (x, y ⁇ 1).
- the term f1 ⁇ D (x, y, n) is subtracted and the third term f2 ⁇ D (x, y ⁇ 1, n + 1) is added, and the second term f1 ⁇ D (x, y, n) is This is the contribution of the gradation data D (x, y, n) of the point P (x, y) of the current frame in the integrated value A (x, y-1, n) (see A1 in the equation (1)).
- the third term f2 ⁇ D (x, y ⁇ 1, n + 1) is a contribution of the gradation data D (x, y ⁇ 1, n + 1) of the point P ′′ (x, y ⁇ 1) of the next frame (formula ( 1) A2).
- the integrated value A (x, 1, n) can be calculated in the same manner as described above (see equation (5), FIG. 7).
- the integrated values A (1, y ⁇ 1, n) to A (X, y ⁇ 1, n) for one row are stored in the line memory 45 (FIG. 5).
- the clear determination unit 46 (FIG. 5) in the Csd correction circuit 4 generates a clear signal and erases the information stored in the line memory 45.
- An initial value “0” is set in the line memory 45.
- the control circuit 2 (FIG. 1) operates in the initial display mode for a predetermined period (for example, one frame or more) from when the power is turned on. In the initial display mode, the control circuit 2 generates video data in which all grayscale data has a grayscale value “0” regardless of the video signal from the outside, and inputs the video data to the data correction unit 24.
- the coefficient multipliers 41 and 42 (FIG. 5) in the data correction unit 24 output data of the output value “0” based on the input value “0”.
- Each of the function calculators 49 and 50 also outputs an output value “0” based on the input value “0”.
- the gradation data output from the data correction unit 24 during the continuation of the initial display mode has the gradation value “0”, and a black screen image is displayed on the display device 1.
- the control circuit 2 When the initial display mode is canceled, the control circuit 2 operates in the normal display mode, and inputs video data corresponding to the video signal from the outside to the data correction unit 24.
- video data D (1) with n 1.
- the calculation correction according to the equations (2) to (5) is executed.
- the integrated value A (x, 1,1) corresponding to the gradation data D (x, 1,1) in the first row is calculated by the following equation (11).
- a (x, 1,1) A (x, Y, 0) -f1 ⁇ D (x, 1,1) + f2 ⁇ D (x, Y, 1) (11)
- the integrated value A (x, 2, 1) corresponding to the gradation data D (x, 2, 1) in the second row is calculated by the following equation (12).
- a (x, 2,1) A (x, 1,1) ⁇ f1 ⁇ D (x, 2,1) + f2 ⁇ D (x, 1,2) (12)
- the Csd correction circuit 4 obtains the correction amount ⁇ D (x, 2, 1) based on the calculation result of the integrated value A (x, 2, 1) as described above, and the corrected gradation data O (x, 2, 1). 1) is calculated.
- the display device 1 includes the plurality of pixels 3, the plurality of gate lines GL, the plurality of source lines SL, and the control circuit 2.
- the plurality of pixels 3 are arranged in a matrix.
- the plurality of gate lines GL are connected to a group of pixels 3 arranged in the row direction of the matrix of pixels 3, and sequentially select the group of pixels 3 in each row at a predetermined frame period T1.
- the plurality of source lines SL are connected to a group of pixels 3 arranged in the column direction of the matrix of pixels 3 and supply a voltage corresponding to a predetermined gradation to the group of pixels 3 in a selected row.
- the control circuit 2 Based on the gradation data D (x, y, n) indicating the gradation included in one frame of video, the control circuit 2 sequentially displays the gradation for one row in the video on the group of pixels 3 in each row. Control the timing.
- the control circuit 2 uses the source line SL (connected to the pixel 3 in the period Tp for one future frame with reference to the pixel 3 to be displayed (point P (x, y)) as a reference.
- the gradation data D (x, y, n) indicating the gradation to be displayed on the pixel 3 is corrected.
- the control circuit 2 is connected to the same source line as the pixel 3 in a period of one future frame with the pixel 3 to be displayed (point P (x, y)) as a reference. Based on the integrated value A (x, y, n) indicating the total sum of the gradation data indicating the gradation to be displayed on the other pixel 3, the gradation data D (x, y) indicating the gradation to be displayed on the pixel 3 is displayed. , N) may be corrected.
- the coefficient f1 and the coefficient f2 in the Csd correction circuit 4 do not include a component that converts gradation data into voltage
- the function f3 and the function f4 do not include a component that converts voltage into gradation data.
- the output values of the coefficient multipliers 41 and 42 that is, the multiplication value f1 ⁇ D (x, y, n) and the multiplication value f2 ⁇ D (x, y, n + 1) are displayed on the display panel 10, for example.
- the gradation data is multiplied by a coefficient for taking into account in-plane variation (specifically, a difference in time constant at each position in the display surface).
- the gradation data D (x, y, n) for the pixel 3 is the source line SL (x ) Is integrated according to the voltage integration or the sum of the gradation data.
- the control circuit 2 (the data correction unit 24 thereof) has gradation data D (showing gradation to be displayed on another pixel 3 connected to the same source line SL (x) as the pixel 3 to be displayed.
- gradation data D shown gradation to be displayed on another pixel 3 connected to the same source line SL (x) as the pixel 3 to be displayed.
- an integrated value A (x, y, n) is calculated (formula (1)).
- the integrated value A (x, y, n) for suppressing the influence of the Csd parasitic capacitance is obtained based on the gradation data D (x, y + 1, n) to D (x, y-1, n + 1). Can do.
- the control circuit 2 uses the calculation result of the integrated value A (x, y ⁇ 1, n) for the pixel 3 obtained by correcting the gradation data D (x, y ⁇ 1, n). Based on the recurrence formulas (4) and (5), an integrated value A (x, y, n) relating to the pixel 3 in the next row connected to the same source line SL (x) as the pixel 3 is calculated. Thereby, the integrated value A (x, y, n) can be calculated efficiently, and Csd correction can be easily realized.
- the data correction unit 24 of the control circuit 2 has gradation data D (x, y + 1, n) to D (x, x) indicating gradations in the video of the nth frame and the (n + 1) th frame.
- An integrated value A (x, y, n) based on y ⁇ 1, n + 1) is calculated, and the calculated integrated value A (x, y, n) is gradation data D indicating the gradation in the image of the nth frame.
- Used to correct (x, y, n) (Equations (3) to (5)). Thereby, the integrated value A (x, y, n) based on the future video data is obtained, and the corrected gradation data O (x, y, n) can be obtained as a complete solution.
- the control circuit 2 includes an integrated value A (x + 1, indicating integration of a voltage applied to the source line SL (x + 1) adjacent to the pixel 3 to be displayed in a period Tp for one future frame.
- the gradation data D (x, y, n) is corrected using y, n) (see f4 in equation (3)).
- the frame cycle T1 includes a predetermined vertical blanking period T3.
- the control circuit 2 Based on the effective value A (x, y, n) / (Y ⁇ 1) of the integrated value in the period Tp for one frame including the vertical blanking period T3, the control circuit 2 performs gradation data D (x, y, n) is corrected (formula (3)). Thereby, Csd correction can be appropriately performed according to the setting of the vertical blanking period T3.
- FIG. 8 is a diagram for explaining the outline of the data correction unit 24A of the display device 1 according to the second embodiment.
- FIG. 8A shows an implementation example of the data correction unit 24 of the first embodiment.
- FIG. 8B shows an example of the data correction unit 24A (including the overdrive conversion unit 23) in the second embodiment.
- the data correction unit 24 is mounted, for example, at the subsequent stage of the overdrive conversion unit 23.
- the overdrive conversion unit 23 includes a frame memory 60 that stores one frame of video data D (n ⁇ 1), and an overdrive conversion circuit 6 that performs overdrive conversion.
- overdrive conversion for the video data D (n) of the current frame is executed with reference to the past video data D (n-1) for one frame via the frame memory 60. .
- the Csd correction in the data correction unit 24 of the first embodiment treats the video data D (n ⁇ 1) that has passed through the frame memory 40 as the current video data, and the future video for one frame that does not pass through the frame memory 40. It is executed with reference to data D (n). For this reason, in the data correction unit 24 and the overdrive conversion unit 23 of the first embodiment, the video data to be referenced is a separate frame, and separate frame memories 40 and 60 are required. Further, since the data correction unit 24 of the first embodiment handles the video data D (n ⁇ 1) that has passed through the frame memory 40 as the current video data, a frame delay of video display occurs.
- the Csd correction circuit 4A of the data correction unit 24A in the present embodiment the Csd correction similar to that in the first embodiment is performed approximately using the past video data D (n ⁇ 1).
- the frame memory 60 can be shared by the Csd correction circuit 4A and the overdrive conversion circuit 6, and the circuit scale can be reduced. Further, it is possible to avoid frame delay in the video display of the display device 1.
- the data correction unit 24A in the present embodiment includes an overdrive conversion unit 23 together with the Csd correction circuit 4A. Details of the data correction unit 24A in the present embodiment will be described below.
- FIG. 9 is a block diagram illustrating a configuration example of the data correction unit 24A in the present embodiment.
- the data correction unit 24A includes a Csd correction circuit 4A, an overdrive conversion circuit 6 corresponding to the above-described overdrive conversion unit 23, a frame memory 60, compressors 61 and 63, and decompressors 62 and 64. including.
- the Csd correction circuit 4A and the overdrive conversion circuit 6 share the frame memory 60.
- the video data D (n) is compressed and expanded as a more practical example.
- the compressor 61 compresses the video data D (n) with a predetermined calculation formula and records it in the frame memory 60.
- the decompressor 62 reads out the video data compressed and recorded in the frame memory 60, expands it with a calculation formula corresponding to the above calculation formula, and exceeds the obtained past video data D ′ (n ⁇ 1). Output to the drive conversion circuit 6. Thereby, the circuit scale of the frame memory 60 can be reduced.
- the compressor 63 compresses the video data D (n) of the current frame with the same calculation formula as the compressor 61, for example.
- the decompressor 64 expands the compressed video data D (n) of the current frame, for example, with the same calculation formula as the decompressor 62, and converts the obtained current video data D ′ (n) to the overdrive conversion circuit 6. Output to.
- the overdrive conversion circuit 6 refers to the video data D ′ (n) and D ′ (n ⁇ 1) after compression and decompression of each frame, and the video data D (n) of the current frame that is not particularly compressed. Perform overdrive conversion for. Thereby, in overdrive conversion, it is possible to suppress deterioration in display quality due to data compression.
- the Csd correction circuit 4A refers to the video data D ′ (n) and D ′ (n ⁇ 1) after compression and decompression of each frame in the same manner as the overdrive conversion circuit 6 described above. Csd correction of the video data D (n) of the frame is executed. Thereby, also in Csd correction
- FIG. 10 is a block diagram showing a configuration example of the Csd correction circuit 4A in the present embodiment.
- the Csd correction circuit 4A illustrated in FIG. 10 has the same configuration as that of the Csd correction circuit 4 (FIG. 5) of the first embodiment, and uses the past gradation data D ′ (x, y, n ⁇ 1) as a coefficient multiplier 41A. And the current gradation data D ′ (x, y, n) is input to the coefficient multiplier 42A.
- the gradation data D ′ (x, y, n ⁇ 1) and D ′ (x, y, n) are included in the compressed and decompressed video data D ′ (n ⁇ 1) and D ′ (n), respectively. .
- Expression (21) is a calculation expression of the correction amount ⁇ D (x, y, n) in the present embodiment.
- Expressions (22) and (23) are recurrence expressions for obtaining the integrated value A ′ (x, y, n ⁇ 1) in the present embodiment.
- the correction amount ⁇ D (x, y, n) in the first embodiment is obtained by integrating the future gradation data D (x, y, n) after the present time into the arguments of the functions f3 and f4 as shown in the equation (3).
- the value A (x, y, n) was used.
- the correction amount ⁇ D (x, y, n) in the present embodiment is an integrated value from the time point one frame before, instead of the above integrated value A (x, y, n), as shown in equation (21).
- a ′ (x, y, n ⁇ 1) is used.
- the integrated value A ′ (x, y, n ⁇ 1) in the present embodiment is the gradation data D ′ (x, y, n ⁇ 1), D ′ (x, y, n) after compression and decompression. Is obtained by integrating in the same manner as in the first embodiment (see formula (1)). Although the frame number n is shifted in the equations (22) and (23), the recurrence formula of the integrated value A ′ (x, y, n ⁇ 1) is the same as that in the first embodiment (equation ( 4) and (5)).
- the initial display mode can be used as in the first embodiment.
- the integrated value A ′ (x, y, n ⁇ 1) from the time point one frame before is used as the voltage applied to the source line SL during the period of one frame in the future.
- Csd correction of each gradation data D (x, y, n) is performed using it as an approximate value of an integrated value indicating integration. That is, an error may occur that the correction amount ⁇ D (x, y, n) is delayed by one frame compared to the first embodiment.
- an error is not particularly problematic from the following viewpoint. it is conceivable that.
- the data correction unit 24A of the control circuit 2 performs the gradation data D () indicating the gradation in the video of the (n ⁇ 1) th frame and the nth frame. x, y + 1, n ⁇ 1) to D (x, y ⁇ 1, n) based on the integrated value A (x, y, n ⁇ 1) are calculated, and the calculated integrated value A (x, y, n ⁇ 1) is calculated. ) Is used to correct the gradation data D (x, y, n) indicating the gradation in the image of the nth frame (formulas (21) to (23)).
- the display device 1 further includes a frame memory 60 that stores the video data D (n ⁇ 1) of the (n ⁇ 1) th frame.
- the control circuit 2 refers to the video data D (n-1) stored in the frame memory 60 and performs predetermined overdrive conversion on the video data D (n) of the nth frame.
- the control circuit 2 refers to the video data D (n ⁇ 1) stored in the frame memory 60 to calculate the integrated value A (x, y, n ⁇ 1), and calculates the calculated integrated value.
- a (x, y, n-1) is used for correction of the gradation data D (x, y, n).
- the frame memory 60 can be shared by overdrive conversion and Csd correction, and an increase in circuit area for Csd correction can be suppressed.
- the frame memory 60 stores the compressed video data D (n ⁇ 1).
- the control circuit 2 includes data D ′ (n ⁇ 1) obtained by developing the video data stored in the frame memory 60, and data D ′ (n) obtained by compressing and developing the video data D (n) of the nth frame.
- the integrated value A ′ (x, y, n ⁇ 1) is calculated based on the above, and the calculated integrated value A ′ (x, y, n ⁇ 1) is used for correcting the gradation data D (x, y, n). .
- the influence of the Csd parasitic capacitance can be suppressed with high accuracy while reducing the circuit scale of the frame memory 60.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
A display device (1) comprises a plurality of pixels (3), a plurality of gate lines (GL), a plurality of source lines (SL), and a control unit (2). The plurality of pixels are arranged in a matrix pattern. The gate lines are each connected to a group of pixels arrayed in a row direction and select the pixel groups of the rows at a prescribed interval. The source lines are each connected to a group of pixels arrayed in a column direction and supply a voltage corresponding to a prescribed gradation to the group of pixels of a selected row. The control unit, on the basis of gradation data (D(x, y, n)) representing gradations included in an image of one frame, controls the timing at which the gradations of each row within the image are displayed in sequence by the group of pixels of the corresponding row. Referring to a pixel that is to be displayed, the control unit corrects gradation data representing the gradation to be displayed by the pixel on the basis of an integrated value (A(x, y, n)) representing the integral of a voltage to be applied to the source line connected to the pixel in an upcoming one frame period (Tp).
Description
本発明は、液晶表示装置などの表示装置に関する。
The present invention relates to a display device such as a liquid crystal display device.
液晶表示装置に表示する映像の画質を低下させる現象の一つとして、縦シャドーと呼ばれる現象が知られている。
A phenomenon called vertical shadow is known as one of the phenomena that deteriorates the image quality of images displayed on a liquid crystal display device.
特許文献1は、縦シャドーを防止することを目的とするアクティブマトリクス型の表示装置を開示している。特許文献1の表示装置では、入力された画像データに含まれる各列のデータに基づき所定のデータを求め、求めたデータに基づいて、当該画像データによる画像表示の有効期間後の垂直帰線期間内に、表示素子(画素)が接続されたデータ信号線(ソース線)の電圧駆動を行っている。これにより、画像データを供給した後の垂直帰線期間内に一括して各表示素子に保持された電圧を調整し、縦シャドーの抑制を図っている。
Patent Document 1 discloses an active matrix display device for the purpose of preventing vertical shadows. In the display device disclosed in Patent Document 1, predetermined data is obtained based on data in each column included in input image data, and a vertical blanking period after an effective period of image display using the image data is obtained based on the obtained data. The voltage driving of the data signal line (source line) to which the display element (pixel) is connected is performed. Thus, the voltage held in each display element is adjusted in a lump within the vertical blanking period after the image data is supplied, thereby suppressing the vertical shadow.
縦シャドーは、表示装置における画素とソース線間のCsd寄生容量に起因して生じる。Csd寄生容量は、表示装置における表示される映像において階調傾斜などの問題も招来してしまう。
Vertical shadow is caused by a Csd parasitic capacitance between a pixel and a source line in a display device. The Csd parasitic capacitance also causes problems such as gradation inclination in the image displayed on the display device.
本発明の目的は、表示装置に映像を表示する際のCsd寄生容量の影響を抑制することができる表示装置を提供することである。
An object of the present invention is to provide a display device capable of suppressing the influence of Csd parasitic capacitance when displaying an image on the display device.
本発明に係る表示装置は、複数の画素と、複数のゲート線と、複数のソース線と、制御部とを備える。複数の画素は、マトリクス状に配置される。複数のゲート線は、画素のマトリクスの行方向に並ぶ画素群に接続され、所定のフレーム周期で各行の画素群を順番に選択する。複数のソース線は、画素のマトリクスの列方向に並ぶ画素群に接続され、選択された行の画素群に所定の階調に応じた電圧を供給する。制御部は、1フレームの映像に含まれる階調を示す階調データに基づいて、映像中の1行分の階調を順次、各行の画素群に表示させるタイミングを制御する。制御部は、表示対象の画素を基準として、将来の1フレーム分の期間において当該画素に接続されたソース線に印加される電圧の積分又は将来の1フレーム分の期間において当該画素と同じソース線に接続された他の画素に表示させる階調を示す階調データの総和を示す積算値に基づいて、当該画素に表示させる階調を示す階調データを補正する。
The display device according to the present invention includes a plurality of pixels, a plurality of gate lines, a plurality of source lines, and a control unit. The plurality of pixels are arranged in a matrix. The plurality of gate lines are connected to pixel groups arranged in the row direction of the pixel matrix, and sequentially select the pixel groups in each row at a predetermined frame period. The plurality of source lines are connected to a pixel group arranged in the column direction of the pixel matrix, and supply a voltage corresponding to a predetermined gradation to the pixel group in the selected row. The control unit controls the timing for sequentially displaying the gradation for one row in the video on the pixel group of each row based on the gradation data indicating the gradation included in the video of one frame. The control unit is configured to integrate a voltage applied to a source line connected to the pixel in a period for one frame with respect to a pixel to be displayed as a reference, or the same source line as the pixel in a period for one frame in the future. On the basis of the integrated value indicating the total sum of the gradation data indicating the gradation to be displayed on the other pixels connected to, the gradation data indicating the gradation to be displayed on the pixel is corrected.
本発明に係る表示装置によると、表示対象の画素を基準として、当該画素に対する階調データが将来の1フレーム分におけるソース線の電圧の積分等に応じて補正される。これにより、表示装置に映像を表示する際のCsd寄生容量の影響を抑制することができる。
According to the display device of the present invention, the gradation data for the pixel is corrected according to the integration of the voltage of the source line in one future frame, with the pixel to be displayed as a reference. Thereby, the influence of the Csd parasitic capacitance when displaying an image on the display device can be suppressed.
以下、添付の図面を参照して本発明に係る表示装置の実施の形態を説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。
Hereinafter, an embodiment of a display device according to the present invention will be described with reference to the accompanying drawings. In addition, in each following embodiment, the same code | symbol is attached | subjected about the same component.
(実施形態1)
1.構成
実施形態1に係る表示装置の構成を以下に説明する。 (Embodiment 1)
1. Configuration The configuration of the display device according to the first embodiment will be described below.
1.構成
実施形態1に係る表示装置の構成を以下に説明する。 (Embodiment 1)
1. Configuration The configuration of the display device according to the first embodiment will be described below.
実施形態1に係る表示装置の構成について、図1を用いて説明する。図1は、本実施形態に係る表示装置1の構成を示す図である。
The configuration of the display device according to Embodiment 1 will be described with reference to FIG. FIG. 1 is a diagram illustrating a configuration of a display device 1 according to the present embodiment.
本実施形態に係る表示装置1は、例えば液晶テレビなどの液晶表示装置を構成する。表示装置1は、図1に示すように、表示パネル10と、ゲート駆動部11と、ソース駆動部12と、コントロール回路2とを備える。
The display device 1 according to the present embodiment constitutes a liquid crystal display device such as a liquid crystal television. As shown in FIG. 1, the display device 1 includes a display panel 10, a gate driver 11, a source driver 12, and a control circuit 2.
表示パネル10は、例えば8K或いは4K、2Kなどの所定仕様を有するアクティブマトリクス方式の液晶パネルである。表示パネル10は、図1に示すように、複数の画素3と、複数のゲート線GLと、複数のソース線SLとを備える。また、表示パネル10は、例えば、画素電極を有するTFT(薄膜トランジスタ)基板、対向電極を有するCF(カラーフィルタ)基板、両基板間に封入された液晶層、及び偏光板などを含む。
The display panel 10 is an active matrix liquid crystal panel having a predetermined specification such as 8K, 4K, or 2K. As shown in FIG. 1, the display panel 10 includes a plurality of pixels 3, a plurality of gate lines GL, and a plurality of source lines SL. The display panel 10 includes, for example, a TFT (thin film transistor) substrate having a pixel electrode, a CF (color filter) substrate having a counter electrode, a liquid crystal layer sealed between both substrates, a polarizing plate, and the like.
表示パネル10は、1つの画素3当たりに、例えばR,G,Bの内の1色の階調を表示する。表示パネル10において、複数の画素3は、マトリクス状に配置される。以下、画素3のマトリクスの行方向を「水平方向」とし、水平座標xで表す。また、画素3のマトリクスの列方向を「垂直方向」とし、垂直座標yで表す。また、垂直方向の正の側を下側といい、負の側を上側という場合がある。
The display panel 10 displays, for example, one color gradation of R, G, and B per pixel 3. In the display panel 10, the plurality of pixels 3 are arranged in a matrix. Hereinafter, the row direction of the matrix of the pixels 3 is referred to as a “horizontal direction” and is represented by a horizontal coordinate x. In addition, the column direction of the matrix of the pixels 3 is defined as “vertical direction” and is represented by the vertical coordinate y. In some cases, the positive side in the vertical direction is referred to as the lower side, and the negative side is referred to as the upper side.
複数の画素3は、アクティブ素子のTFT等を備える。各画素3のTFTにおいては、ゲートがゲート線GLに接続され、ソースがソース線SLに接続される(図2参照)。画素3の構成の詳細については後述する。
The plurality of pixels 3 are provided with active element TFTs and the like. In the TFT of each pixel 3, the gate is connected to the gate line GL, and the source is connected to the source line SL (see FIG. 2). Details of the configuration of the pixel 3 will be described later.
各ゲート線GLは、表示パネル10の水平方向に延在し、画素3のマトリクスにおける1行分の画素3にそれぞれ接続される。複数のゲート線GLは、接続された画素3の垂直座標yに対応して、表示パネル10の垂直方向に並んで配置される。ゲート線GLは、共通の垂直座標yを有する画素群を選択する信号線である。
Each gate line GL extends in the horizontal direction of the display panel 10 and is connected to one row of pixels 3 in the pixel 3 matrix. The plurality of gate lines GL are arranged side by side in the vertical direction of the display panel 10 corresponding to the vertical coordinate y of the connected pixel 3. The gate line GL is a signal line for selecting a pixel group having a common vertical coordinate y.
各ソース線SLは、表示パネル10の垂直方向に延在し、画素3のマトリクスにおける1列分の画素3にそれぞれ接続される。複数のソース線SLは、接続された画素3の水平座標xに対応して、表示パネル10の水平方向に並んで配置される。ソース線SLは、共通の水平座標xを有する画素群に順次、所定の電圧を供給する信号線である。
Each source line SL extends in the vertical direction of the display panel 10 and is connected to one column of pixels 3 in the pixel 3 matrix. The plurality of source lines SL are arranged side by side in the horizontal direction of the display panel 10 corresponding to the horizontal coordinate x of the connected pixel 3. The source line SL is a signal line that sequentially supplies a predetermined voltage to a pixel group having a common horizontal coordinate x.
ゲート駆動部11は、複数のゲート線GLが接続されたIC等で構成される。ゲート駆動部11は、コントロール回路2の制御により、所定のフレーム周期(例えば1/60秒)で各垂直座標yに対応する1行分の画素群を順次、選択するための信号をゲート線GLに供給する。
The gate driving unit 11 includes an IC or the like to which a plurality of gate lines GL are connected. Under the control of the control circuit 2, the gate driving unit 11 outputs a signal for sequentially selecting a pixel group for one row corresponding to each vertical coordinate y in a predetermined frame period (for example, 1/60 seconds). To supply.
ソース駆動部12は、複数のソース線SLが接続されたIC等で構成される。ソース駆動部12は、コントロール回路2による制御により、ゲート駆動部11の動作に同期して、ソース線SLを介して選択された行の画素群に、表示する階調に応じた電圧を供給する。
The source driver 12 is composed of an IC or the like to which a plurality of source lines SL are connected. The source driver 12 supplies a voltage corresponding to the gradation to be displayed to the pixel group in the selected row via the source line SL in synchronization with the operation of the gate driver 11 under the control of the control circuit 2. .
コントロール回路2は、例えばLSIなどの一つ又は複数の半導体集積回路で構成される。コントロール回路2は、タイミングコントローラとして、表示装置1の各部の動作タイミングを制御するための種々の信号を生成する。コントロール回路2は、表示装置1の全体動作を制御してもよい。
The control circuit 2 is composed of one or a plurality of semiconductor integrated circuits such as LSIs. The control circuit 2 generates various signals for controlling the operation timing of each part of the display device 1 as a timing controller. The control circuit 2 may control the overall operation of the display device 1.
例えば、コントロール回路2は、外部から入力される映像信号に基づいて、映像信号が示すフレーム単位の映像における1行分の階調を順次、各行の画素群に表示させるように、ゲート駆動部11及びソース駆動部12の制御信号を生成する。また、コントロール回路2は、このようなゲート駆動部11及びソース駆動部12の動作タイミングの制御に加えて、所定の映像信号処理なども行う。コントロール回路2の構成の詳細については後述する。
For example, based on a video signal input from the outside, the control circuit 2 sequentially displays the gray level for one row in the frame unit video indicated by the video signal on the pixel group of each row so as to be displayed. And a control signal for the source driver 12 is generated. In addition to the control of the operation timings of the gate driving unit 11 and the source driving unit 12, the control circuit 2 performs predetermined video signal processing and the like. Details of the configuration of the control circuit 2 will be described later.
1-1.表示パネルの画素構造
表示装置1の表示パネル10における画素3の構成の詳細について、図2を参照して説明する。図2は、表示装置1の表示パネル10における画素3の構成を示す図である。 1-1. Pixel Structure of Display Panel Details of the configuration of thepixel 3 in the display panel 10 of the display device 1 will be described with reference to FIG. FIG. 2 is a diagram illustrating a configuration of the pixel 3 in the display panel 10 of the display device 1.
表示装置1の表示パネル10における画素3の構成の詳細について、図2を参照して説明する。図2は、表示装置1の表示パネル10における画素3の構成を示す図である。 1-1. Pixel Structure of Display Panel Details of the configuration of the
図2では、表示パネル10上の特定の座標(x,y)を有する画素3の構成を示している。例えば4K,2K仕様のRGBパネルにおいて、画素3の水平座標xは1~11520(=3840×3)の範囲内であり、垂直座標yは、1~2160の範囲内である。
FIG. 2 shows the configuration of the pixel 3 having specific coordinates (x, y) on the display panel 10. For example, in a 4K, 2K RGB panel, the horizontal coordinate x of the pixel 3 is in the range of 1 to 11520 (= 3840 × 3), and the vertical coordinate y is in the range of 1 to 2160.
画素3は、図2に示すように、TFT31と、液晶容量Clcとを備える。座標(x,y)の画素3のTFT31において、ゲートは垂直座標yに対応するゲート線GL(y)に接続され、ソースは水平座標xに対応するソース線SL(x)に接続され、ドレインは液晶容量Clcの一端(画素電極)に接続される。液晶容量Clcの他端は、例えば表示パネル10における対向電極に接続される。
The pixel 3 includes a TFT 31 and a liquid crystal capacitor Clc as shown in FIG. In the TFT 31 of the pixel 3 at the coordinate (x, y), the gate is connected to the gate line GL (y) corresponding to the vertical coordinate y, the source is connected to the source line SL (x) corresponding to the horizontal coordinate x, and the drain. Is connected to one end (pixel electrode) of the liquid crystal capacitor Clc. The other end of the liquid crystal capacitor Clc is connected to a counter electrode in the display panel 10, for example.
TFT31は、ゲート線GL(y)からの信号に基づきゲートに印加される電圧が所定のしきい値電圧以上であるときにオンし、しきい値電圧未満であるときにオフする。TFT31のしきい値電圧は、例えば2~3Vである。TFT31は、ゲート線GL(y)に接続されたアクティブ素子の一例である。
The TFT 31 is turned on when the voltage applied to the gate based on a signal from the gate line GL (y) is equal to or higher than a predetermined threshold voltage, and turned off when the voltage is lower than the threshold voltage. The threshold voltage of the TFT 31 is, for example, 2 to 3V. The TFT 31 is an example of an active element connected to the gate line GL (y).
液晶容量Clcは、画素電極、対向電極、及び液晶層で構成され、充電される電圧に応じて液晶層の配向状態を変化させる。液晶容量Clcは、TFT31がオンの期間中にソース信号線SLから入力される信号の電圧に基づき電荷を充電又は放電する。液晶容量Clcは、TFT31がオフの期間中には、TFT31がオフに切り替わる前の充放電によって得られた充電電圧を保持する。
The liquid crystal capacitor Clc is composed of a pixel electrode, a counter electrode, and a liquid crystal layer, and changes the alignment state of the liquid crystal layer according to the charged voltage. The liquid crystal capacitor Clc charges or discharges charges based on the voltage of a signal input from the source signal line SL while the TFT 31 is on. The liquid crystal capacitor Clc holds a charging voltage obtained by charging / discharging before the TFT 31 is turned off while the TFT 31 is off.
図2に示すように、画素3は、接続されたソース線SL(x)と画素電極間、即ちTFT31のソースとドレイン間の寄生容量Csd1を有する。また、画素3は、隣接するソース線SL(x+1)と画素電極間の寄生容量Csd2を有する。各寄生容量Csdは、それぞれソース線SL(x),SL(x+1)と画素3間のCsd寄生容量の一例である。このようなCsd寄生容量の容量値を低減するため、画素3には、CRE(Capacity Reduction Electrode)構造が設けられてもよい。
As shown in FIG. 2, the pixel 3 has a parasitic capacitance Csd1 between the connected source line SL (x) and the pixel electrode, that is, between the source and drain of the TFT 31. In addition, the pixel 3 has a parasitic capacitance Csd2 between the adjacent source line SL (x + 1) and the pixel electrode. Each parasitic capacitance Csd is an example of a Csd parasitic capacitance between the source lines SL (x) and SL (x + 1) and the pixel 3, respectively. In order to reduce the capacitance value of such Csd parasitic capacitance, the pixel 3 may be provided with a CRE (Capacity Reduction Electrode) structure.
以上のように構成される画素3によると、TFT31のしきい値電圧以上の電圧がゲート線GL(y)から印加されたとき、液晶容量Clcの充放電が可能になり、画素3が選択される。ソース線SL(x)から選択中の画素3に入力される信号の電圧に応じて、映像中で対応する画素の階調を表示するための充電電圧が充放電される。
According to the pixel 3 configured as described above, when a voltage equal to or higher than the threshold voltage of the TFT 31 is applied from the gate line GL (y), the liquid crystal capacitor Clc can be charged and discharged, and the pixel 3 is selected. The The charging voltage for displaying the gradation of the corresponding pixel in the video is charged / discharged according to the voltage of the signal input from the source line SL (x) to the selected pixel 3.
1-2.コントロール回路の構成
コントロール回路2の構成の詳細について、図3を参照して説明する。図3は、表示装置1におけるコントロール回路2の構成を示すブロック図である。 1-2. Configuration of Control Circuit Details of the configuration of the control circuit 2 will be described with reference to FIG. FIG. 3 is a block diagram showing a configuration of the control circuit 2 in thedisplay device 1.
コントロール回路2の構成の詳細について、図3を参照して説明する。図3は、表示装置1におけるコントロール回路2の構成を示すブロック図である。 1-2. Configuration of Control Circuit Details of the configuration of the control circuit 2 will be described with reference to FIG. FIG. 3 is a block diagram showing a configuration of the control circuit 2 in the
コントロール回路2は、図3に示すように、受信部21と、ガンマ変換部22と、オーバドライブ変換部23と、データ補正部24と、ディザ処理部25と、送信部26とを備える。コントロール回路2は、本実施形態における表示装置1の制御部の一例である。
As shown in FIG. 3, the control circuit 2 includes a reception unit 21, a gamma conversion unit 22, an overdrive conversion unit 23, a data correction unit 24, a dither processing unit 25, and a transmission unit 26. The control circuit 2 is an example of a control unit of the display device 1 in the present embodiment.
受信部21は、所定の通信規格に従う入力インタフェース回路である。受信部21は、外部から入力される映像信号を受信する。外部からの映像信号には、フレーム毎の映像を示す映像データ、及び各種同期信号などが含まれる。
The receiving unit 21 is an input interface circuit according to a predetermined communication standard. The receiving unit 21 receives a video signal input from the outside. The external video signal includes video data indicating video for each frame, various synchronization signals, and the like.
ガンマ変換部22は、受信した映像信号における映像データに対して、ガンマ補正を施すガンマ変換処理を実行する。
The gamma conversion unit 22 executes gamma conversion processing for performing gamma correction on the video data in the received video signal.
オーバドライブ変換部23は、例えばガンマ変換処理後の映像データに対して、オーバドライブ変換処理を行う。オーバドライブ変換処理は、表示パネル10の画素3をオーバシュート駆動するために、過去の映像データを参照して、現在の映像データに変換を施す処理である。
The overdrive conversion unit 23 performs an overdrive conversion process on the video data after the gamma conversion process, for example. The overdrive conversion process is a process for converting the current video data with reference to the past video data in order to overshoot the pixels 3 of the display panel 10.
データ補正部24は、例えばオーバドライブ変換処理後の映像データに対して、表示パネル10におけるCsd寄生容量の影響を抑制するための演算補正(Csd補正)を行う。本実施形態におけるデータ補正部24の構成については後述する。
The data correction unit 24 performs arithmetic correction (Csd correction) for suppressing the influence of the Csd parasitic capacitance in the display panel 10 on the video data after the overdrive conversion processing, for example. The configuration of the data correction unit 24 in this embodiment will be described later.
ディザ処理部25は、データ補正部24によって補正された映像データに対して、表示パネル10の発色可能な色数等に応じたディザリングを施すディザ処理を行う。
The dither processing unit 25 performs dither processing for performing dithering on the video data corrected by the data correction unit 24 according to the number of colors that can be generated on the display panel 10.
送信部26は、所定の通信規格に従う出力インタフェース回路である。送信部26は、上記の各種処理結果の映像データを表示パネル10のソース駆動部12に送信する。また、送信部26は、ソース駆動部12の制御信号やゲート駆動部11の制御信号、各部の動作タイミングを同期させる同期信号なども出力する。
The transmission unit 26 is an output interface circuit that conforms to a predetermined communication standard. The transmission unit 26 transmits the video data of the above various processing results to the source driving unit 12 of the display panel 10. The transmission unit 26 also outputs a control signal for the source driving unit 12, a control signal for the gate driving unit 11, a synchronization signal for synchronizing the operation timing of each unit, and the like.
コントロール回路2は、上記のガンマ変換部22、オーバドライブ変換部23及びデータ補正部24等の所定の機能を実現するように設計された専用の電子回路や再構成可能な電子回路などのハードウェア回路であってもよい。また、コントロール回路2は、上記のような各種機能をソフトウェアと協働して実現するCPU等を含んでもよい。コントロール回路2は、CPU、MPU、マイコン、DSP、FPGA、ASIC等の種々の半導体集積回路で構成されてもよい。
The control circuit 2 includes hardware such as a dedicated electronic circuit and a reconfigurable electronic circuit designed to realize predetermined functions such as the gamma conversion unit 22, the overdrive conversion unit 23, the data correction unit 24, and the like. It may be a circuit. Further, the control circuit 2 may include a CPU or the like that realizes the various functions described above in cooperation with software. The control circuit 2 may be composed of various semiconductor integrated circuits such as a CPU, MPU, microcomputer, DSP, FPGA, and ASIC.
1-3.データ補正部について
本実施形態におけるデータ補正部24の構成について、図4,5を参照して説明する。 1-3. Data Correction Unit The configuration of thedata correction unit 24 in this embodiment will be described with reference to FIGS.
本実施形態におけるデータ補正部24の構成について、図4,5を参照して説明する。 1-3. Data Correction Unit The configuration of the
図4は、本実施形態におけるデータ補正部24の構成を示すブロック図である。データ補正部24は、図4に示すように、フレームメモリ40と、Csd補正回路4とを備える。
FIG. 4 is a block diagram showing the configuration of the data correction unit 24 in the present embodiment. The data correction unit 24 includes a frame memory 40 and a Csd correction circuit 4 as shown in FIG.
本実施形態では、データ補正部24においてフレームメモリ40を経由し、1フレーム分遅延させてCsd補正回路4に入力する映像データD(n)を、現在の映像データとして扱う。また、フレームメモリ40を経由せずにCsd補正回路4に入力する映像データD(n+1)は、相対的に1フレーム分、未来の映像データとして参照される。
In this embodiment, the video data D (n) input to the Csd correction circuit 4 after being delayed by one frame via the frame memory 40 in the data correction unit 24 is handled as the current video data. The video data D (n + 1) input to the Csd correction circuit 4 without going through the frame memory 40 is relatively referred to as future video data for one frame.
フレームメモリ40は、本実施形態では、特に圧縮等することなく1フレームの映像データD(n)を記憶する。これにより、現在のフレーム(現フレーム)として扱う映像データD(n)の表示品位を損なわずに、データ補正部24における演算補正を行える。
In the present embodiment, the frame memory 40 stores one frame of video data D (n) without being particularly compressed. Thereby, the calculation correction in the data correction unit 24 can be performed without impairing the display quality of the video data D (n) handled as the current frame (current frame).
Csd補正回路4は、フレームメモリ40から現フレームの映像データD(n)を読み出し、次のフレームの映像データD(n+1)を参照して、現フレームの映像データD(n)に対する演算補正を実行する。これにより、データ補正部24はCsd補正回路4から、現フレームの補正後の映像データO(n)を出力する。図5に、本実施形態におけるCsd補正回路4の構成例を示す。
The Csd correction circuit 4 reads the video data D (n) of the current frame from the frame memory 40, refers to the video data D (n + 1) of the next frame, and performs arithmetic correction on the video data D (n) of the current frame. Execute. Thus, the data correction unit 24 outputs the corrected video data O (n) of the current frame from the Csd correction circuit 4. FIG. 5 shows a configuration example of the Csd correction circuit 4 in this embodiment.
図5に例示するCsd補正回路4は、係数乗算部41,42と、加算器43,51,52と、減算器44と、ラインメモリ45と、クリア判定部46と、フリップフロップ47,48と、関数演算部49,50とを備える。
The Csd correction circuit 4 illustrated in FIG. 5 includes a coefficient multipliers 41 and 42, adders 43, 51, and 52, a subtractor 44, a line memory 45, a clear determination unit 46, and flip- flops 47 and 48. And function calculation units 49 and 50.
Csd補正回路4は、1フレームの映像データD(n)を階調データD(x,y,n)毎に入力する。階調データD(x,y,n)は、映像データD(n)が示す映像中の画素毎の階調を示すデータであり、表示パネル10上で対応する座標(x,y)の画素3に供給される電圧を規定する。階調データD(x,y,n)は、フレーム反転等の駆動方式に応じて、(絶対値が階調値の)正値及び負値を設定可能である。また、階調データD(x,y,n)は、例えば垂直帰線期間(後述)中のソース線SL(x)の電圧を規定するため、表示パネル10の外部に対応するような垂直座標yを有してもよい(図7参照)。
The Csd correction circuit 4 inputs one frame of video data D (n) for each gradation data D (x, y, n). The gradation data D (x, y, n) is data indicating the gradation for each pixel in the video indicated by the video data D (n), and the pixel at the corresponding coordinate (x, y) on the display panel 10. The voltage supplied to 3 is specified. The gradation data D (x, y, n) can be set to a positive value and a negative value (absolute values are gradation values) according to a driving method such as frame inversion. The gradation data D (x, y, n) is a vertical coordinate corresponding to the outside of the display panel 10 in order to define the voltage of the source line SL (x) during a vertical blanking period (described later), for example. You may have y (refer FIG. 7).
Csd補正回路4は、1フレームの映像データD(n)に含まれる所定数の階調データ{D(x,y,n)}において、水平方向(x)を主走査方向とし、垂直方向(y)を副走査方向として二次元走査するように、各階調データD(x,y,n)を入力する。また、Csd補正回路4は、所定の同期信号等により、現フレームの階調データD(x,y,n)と次フレームの階調データD(x,y,n+1)とを同期して入力する。
The Csd correction circuit 4 uses the horizontal direction (x) as the main scanning direction and the vertical direction (x) in a predetermined number of gradation data {D (x, y, n)} included in one frame of video data D (n). Each gradation data D (x, y, n) is input so that y) is two-dimensionally scanned in the sub-scanning direction. Further, the Csd correction circuit 4 inputs the current frame gradation data D (x, y, n) and the next frame gradation data D (x, y, n + 1) in synchronization with a predetermined synchronization signal or the like. To do.
係数乗算部41,42は、後述する係数f1,f2(或いは係数f1,f2と階調データとの乗算値)を計算するためのLUT等を含む。係数乗算部41は、現フレームの階調データD(x,y,n)に基づきLUTを参照して、乗算値f1・D(x,y,n)を出力する。同様に、係数乗算部42は、次フレームの階調データD(x,y,n+1)に基づいて乗算値f2・D(x,y,n+1)を出力する。例えば、各係数乗算部41,42は、入力値「0」に基づき乗算値「0」を出力する。
The coefficient multipliers 41 and 42 include LUTs for calculating later-described coefficients f1 and f2 (or multiplication values of the coefficients f1 and f2 and the gradation data). The coefficient multiplication unit 41 refers to the LUT based on the gradation data D (x, y, n) of the current frame and outputs a multiplication value f1 · D (x, y, n). Similarly, the coefficient multiplier 42 outputs a multiplication value f2 · D (x, y, n + 1) based on the gradation data D (x, y, n + 1) of the next frame. For example, the coefficient multipliers 41 and 42 output the multiplication value “0” based on the input value “0”.
加算器43は、ラインメモリ45からの読出し値R(x)に対して、係数乗算部42の乗算値f2・D(x,y,n+1)を加算する。減算器44は、加算器42の出力値に対して、係数乗算部41の乗算値f1・D(x,y,n)を減算する。当該演算結果(減算器44の出力値)は、後述する積算値A(x,y,n)に相当する。Csd補正回路4は、演算結果の積算値A(x,y,n)をラインメモリ45に書込み値W(x)として書き込む。
The adder 43 adds the multiplication value f2 · D (x, y, n + 1) of the coefficient multiplier 42 to the read value R (x) from the line memory 45. The subtracter 44 subtracts the multiplication value f1 · D (x, y, n) of the coefficient multiplier 41 from the output value of the adder 42. The calculation result (output value of the subtractor 44) corresponds to an integrated value A (x, y, n) described later. The Csd correction circuit 4 writes the integrated value A (x, y, n) as the calculation result in the line memory 45 as the write value W (x).
ラインメモリ45は、表示パネル10における画素3の水平方向1行分に相当する書込み値{W(x)|x=1~X}を記憶する(Xは水平座標xの最大値)。各書込み値W(x)は適宜、読出し値R(x)として読み出される。クリア判定部46は、例えば電源起動時のトリガ信号等に基づき、ラインメモリ45に記憶された情報を消去するためのクリア信号を生成する。
The line memory 45 stores a write value {W (x) | x = 1 to X} corresponding to one horizontal line of the pixel 3 in the display panel 10 (X is the maximum value of the horizontal coordinate x). Each write value W (x) is read as a read value R (x) as appropriate. The clear determination unit 46 generates a clear signal for erasing information stored in the line memory 45 based on, for example, a trigger signal at the time of power activation.
フリップフロップ47は、上記演算結果の積算値A(x,y,n)を保持する。フリップフロップ48は、現フレームの階調データD(x,y,n)を保持する。各フリップフロップ47,48は、1動作周期分(水平座標xの差分「1」に相当)、各データを遅延させる。
The flip-flop 47 holds the integrated value A (x, y, n) of the calculation result. The flip-flop 48 holds the gradation data D (x, y, n) of the current frame. Each of the flip- flops 47 and 48 delays each data by one operation cycle (corresponding to the difference “1” of the horizontal coordinate x).
関数演算部49,50は、後述する関数f3,f4を計算するためのLUT等を含む。関数演算部49は、それぞれ遅延した階調データD(x-1,y,n)及び積算値A(x-1,y,n)に基づき、関数f3の演算値を出力する。関数演算部f4は、遅延した階調データD(x-1,y,n)及び遅延のない積算値A(x,y,n)に基づき、関数f4の演算値を出力する。各関数演算部49,50は、例えば入力される各データが「0」の場合に関数f3,f4の演算値を「0」とするように設定される。
The function calculators 49 and 50 include an LUT for calculating functions f3 and f4 described later. The function calculation unit 49 outputs the calculation value of the function f3 based on the delayed gradation data D (x-1, y, n) and the integrated value A (x-1, y, n). The function calculation unit f4 outputs the calculation value of the function f4 based on the delayed gradation data D (x-1, y, n) and the integrated value A (x, y, n) without delay. For example, when the input data is “0”, the function calculation units 49 and 50 are set so that the calculation values of the functions f3 and f4 are “0”.
加算器51,52は、遅延した階調データD(x-1,y,n)に、関数f3の演算値と関数f4の演算値とを加算し、同階調データD(x-1,y,n)に対する補正後の階調データO(x-1,y,n)を出力する。
The adders 51 and 52 add the calculated value of the function f3 and the calculated value of the function f4 to the delayed gradation data D (x-1, y, n), and the gradation data D (x-1, The corrected gradation data O (x-1, y, n) for y, n) is output.
以上のように構成されるCsd補正回路4によると、後述する式(2)~(5)の計算が実行され、階調データD(x,y,n)の演算補正が実現される。
According to the Csd correction circuit 4 configured as described above, calculations of equations (2) to (5) described later are executed, and calculation correction of the gradation data D (x, y, n) is realized.
2.動作
以上のように構成される表示装置1の動作について、以下説明する。 2. Operation The operation of thedisplay device 1 configured as described above will be described below.
以上のように構成される表示装置1の動作について、以下説明する。 2. Operation The operation of the
2-1.縦シャドーについて
まず、表示装置において発生し得る縦シャドーについて、図6を参照して説明する。図6は、表示パネルにおける縦シャドーを説明するための図である。 2-1. Vertical Shadow First, vertical shadow that may occur in the display device will be described with reference to FIG. FIG. 6 is a diagram for explaining vertical shadows in the display panel.
まず、表示装置において発生し得る縦シャドーについて、図6を参照して説明する。図6は、表示パネルにおける縦シャドーを説明するための図である。 2-1. Vertical Shadow First, vertical shadow that may occur in the display device will be described with reference to FIG. FIG. 6 is a diagram for explaining vertical shadows in the display panel.
図6(a)は、1フレームの映像データD(n)を例示している。図6(b)は、図6(a)の映像データD(n)に基づく映像表示において縦シャドーが生じた場合の表示パネルの表示例を示す。
FIG. 6A illustrates one frame of video data D (n). FIG. 6B shows a display example of the display panel when a vertical shadow occurs in the video display based on the video data D (n) of FIG.
図6(a)の映像データD(n)は、所定の階調を有する背景領域Rbと、背景領域Rbに囲まれたオブジェクト領域Raとを含んでいる。オブジェクト領域Raは、背景領域Rbの階調とは異なる階調を有する。このような映像データD(n)を表示パネルに入力した場合、図6(b)に示すように、オブジェクト領域Raの垂直方向上側及び下側において背景領域Rbからずれた階調(或いは色)を有する領域Rb1,Rb2、即ち「縦シャドー」が現れる場合がある。
The video data D (n) in FIG. 6A includes a background area Rb having a predetermined gradation and an object area Ra surrounded by the background area Rb. The object area Ra has a gradation different from that of the background area Rb. When such video data D (n) is input to the display panel, as shown in FIG. 6B, the gradation (or color) shifted from the background region Rb on the upper and lower sides in the vertical direction of the object region Ra. In some cases, regions Rb1 and Rb2, that is, “vertical shadows” appear.
上記のような縦シャドーは、領域Rb1,Rb2中の画素3(図1)とオブジェクト領域Ra中の画素3とが同じソース線SLに接続されていることから、ソース線SLと画素3間のCsd寄生容量に起因して生じる。縦シャドーを抑制するために、例えば各画素3に寄生容量Csd1,Csd2(図2)の容量値を充分に小さくするようなCRE構造を配設すると、画素3の透過率が減少し、映像の画質が低下し得る。例えば8K仕様の表示パネルの場合、画素3のサイズが小さく、透過率の減少が深刻な問題になることが考えられる。
In the vertical shadow as described above, the pixel 3 (FIG. 1) in the regions Rb1 and Rb2 and the pixel 3 in the object region Ra are connected to the same source line SL. This is caused by Csd parasitic capacitance. In order to suppress the vertical shadow, for example, if a CRE structure that sufficiently reduces the capacitance values of the parasitic capacitances Csd1 and Csd2 (FIG. 2) is provided in each pixel 3, the transmittance of the pixel 3 decreases, Image quality can be degraded. For example, in the case of an 8K specification display panel, the size of the pixel 3 is small, and a decrease in transmittance may be a serious problem.
そこで、本実施形態では、表示装置1のコントロール回路2におけるデータ補正部24において、Csd寄生容量の影響を抑制するように映像データD(n)の演算補正(即ちCsd補正)を行う。以下、本実施形態に係る表示装置1の動作の詳細を説明する。
Therefore, in the present embodiment, the data correction unit 24 in the control circuit 2 of the display device 1 performs calculation correction (that is, Csd correction) on the video data D (n) so as to suppress the influence of the Csd parasitic capacitance. Hereinafter, details of the operation of the display device 1 according to the present embodiment will be described.
2-2.Csd補正について
本実施形態に係る表示装置1のデータ補正部24によるCsd補正の演算手法について、図7を用いて説明する。図7は、データ補正部24によるCsd補正の演算手法を説明するための図である。 2-2. Regarding Csd Correction A calculation method of Csd correction by thedata correction unit 24 of the display device 1 according to the present embodiment will be described with reference to FIG. FIG. 7 is a diagram for explaining a calculation method of Csd correction by the data correction unit 24.
本実施形態に係る表示装置1のデータ補正部24によるCsd補正の演算手法について、図7を用いて説明する。図7は、データ補正部24によるCsd補正の演算手法を説明するための図である。 2-2. Regarding Csd Correction A calculation method of Csd correction by the
図7は、連続する2フレームの映像データD(n),D(n+1)についての表示装置1による映像表示の動作タイミングを例示している。図7に示すように、1フレームの映像を表示するためのフレーム周期T1は、垂直表示期間T2と、垂直帰線期間T3とを含む。
FIG. 7 illustrates the operation timing of video display by the display device 1 for the video data D (n) and D (n + 1) of two consecutive frames. As shown in FIG. 7, the frame period T1 for displaying one frame of video includes a vertical display period T2 and a vertical blanking period T3.
垂直表示期間T2は、表示パネル10(図1)において全ての行の画素群を選択して、1フレームの映像を表示させる期間である。垂直帰線期間T3は、現在のフレームの垂直表示期間T2の終端と次のフレームの始端との間に所定間隔をあける期間である。例えば垂直表示期間T2は、1行の画素群の充電期間を2160行分、含む。垂直帰線期間T3は、例えば90行分の充電期間に相当する。
The vertical display period T2 is a period during which one frame of video is displayed by selecting pixel groups in all rows on the display panel 10 (FIG. 1). The vertical blanking period T3 is a period in which a predetermined interval is provided between the end of the vertical display period T2 of the current frame and the start of the next frame. For example, the vertical display period T2 includes 2160 rows of charging periods for one row of pixel groups. The vertical blanking period T3 corresponds to a charging period for 90 rows, for example.
表示装置1はコントロール回路2(図1)の制御により、図7の例では時刻t1からnフレーム目の映像データD(n)による映像の表示を開始する。時刻t1からの垂直表示期間T2中に、コントロール回路2は、nフレーム目の映像データD(n)における行毎の階調データD(1,y,n)~D(X,y,n)に基づいて、y=1から順番に対応する各行の画素3(の液晶容量Clc)を充電させる。各画素3は、階調データD(x,y,n)に応じた充電電圧を保持することによって、階調データD(x,y,n)が示す階調を表示する。
In the example of FIG. 7, the display device 1 starts displaying an image using the video data D (n) of the nth frame from time t <b> 1 under the control of the control circuit 2 (FIG. 1). During the vertical display period T2 from time t1, the control circuit 2 performs gradation data D (1, y, n) to D (X, y, n) for each row in the video data D (n) of the nth frame. Based on the above, the pixels 3 (liquid crystal capacitors Clc) in the corresponding rows in order from y = 1 are charged. Each pixel 3 displays the gradation indicated by the gradation data D (x, y, n) by holding the charging voltage corresponding to the gradation data D (x, y, n).
例えば、表示パネル10(図1)において座標(x,y)を有する点P(x,y)の画素3は、時刻t1からの垂直表示期間T2内の時刻t2に、nフレーム目の映像データD(n)において対応する階調データD(x,y,n)に基づき充電される。充電された点P(x,y)の画素3は、次の(n+1)フレーム目の階調データD(x,y,n+1)による充電が行われる時刻t3までの1フレーム分の期間Tp中、nフレーム目の階調データD(x,y,n)が示す階調を表示するように、充電電圧を保持する。
For example, the pixel 3 at the point P (x, y) having the coordinates (x, y) on the display panel 10 (FIG. 1) is the video data of the nth frame at time t2 within the vertical display period T2 from time t1. Charging is performed based on the corresponding gradation data D (x, y, n) in D (n). The pixel 3 at the charged point P (x, y) is in the period Tp for one frame until the time t3 when the next (n + 1) frame gradation data D (x, y, n + 1) is charged. The charging voltage is held so as to display the gradation indicated by the gradation data D (x, y, n) of the nth frame.
上記の期間Tpにおいて点P(x,y)の画素3が接続したソース線SL(x)には、nフレーム目又は(n+1)フレーム目の映像データD(n),D(n+1)において対応する列の階調データに基づく電圧が順次、印加される。この際、同ソース線SL(x)及び隣接するソース線SL(x+1)と点P(x,y)の画素3間の寄生容量Csd1,Csd2(図2)は、各ソース線SL(x),SL(x+1)に印加される電圧に依存して、当該画素3の充電電圧を変動させ得る。
The source line SL (x) to which the pixel 3 at the point P (x, y) is connected in the period Tp corresponds to the video data D (n) and D (n + 1) of the nth frame or the (n + 1) th frame. A voltage based on the gradation data of the column to be applied is sequentially applied. At this time, parasitic capacitances Csd1 and Csd2 (FIG. 2) between the source line SL (x) and the adjacent source line SL (x + 1) and the pixel 3 at the point P (x, y) are connected to each source line SL (x). , SL (x + 1), the charging voltage of the pixel 3 can be varied depending on the voltage applied to it.
以上のことから、本発明者は、画素3の充電電圧に対するCsd寄生容量の影響は、各列の階調データD(x,y,n)に応じて対応するソース線SL(x)に期間Tp中、印加される電圧の積分で推定できると考えた。そこで、本実施形態では、現時点以降の将来の1フレーム分の期間Tp中に共通のソース線SL(x)に順次、印加されることとなる電圧の積分を示す積算値(A(x,y,n))を求め、現時点の階調データD(x,y,n)のCsd補正に用いている。
From the above, the present inventor shows that the influence of the Csd parasitic capacitance on the charging voltage of the pixel 3 is applied to the source line SL (x) corresponding to the gradation data D (x, y, n) of each column. It was thought that it can be estimated by integrating the applied voltage during Tp. Therefore, in the present embodiment, an integrated value (A (x, y) indicating the integration of the voltages to be sequentially applied to the common source line SL (x) during a period Tp for one future frame after the present time. , N)) is obtained and used for Csd correction of the current gradation data D (x, y, n).
2-2-1.積算値の理論式について
以下に、本実施形態において採用する積算値A(x,y,n)の理論式(1)を示す。 2-2-1. About the theoretical formula of the integrated value The theoretical formula (1) of the integrated value A (x, y, n) employed in the present embodiment is shown below.
以下に、本実施形態において採用する積算値A(x,y,n)の理論式(1)を示す。 2-2-1. About the theoretical formula of the integrated value The theoretical formula (1) of the integrated value A (x, y, n) employed in the present embodiment is shown below.
式(1)において、第1項A1は、現フレーム(nフレーム)において点P(x,y)の画素3の充電後にソース線SL(x)に印加される電圧の積分量を表す。第1項A1の積算は、点P(x,y)の垂直座標yよりも大きい範囲内の階調データ{D(x,y1,n)|y1=y+1~Y}に、係数f1を乗算して総和を取る重み付け加算によって演算される。総和の上限値Yは、垂直帰線期間T3の終端に対応しており、例えばY=2250(=2160+90)である。係数f1は、例えば点P(x,y)の座標(x,y)及び/又は座標(x,y1)の関数であり、表示パネル10の表示面内のばらつきを表す。係数f1は、階調データを電圧に変換する成分を含む。
In Equation (1), the first term A1 represents the integral amount of the voltage applied to the source line SL (x) after charging the pixel 3 at the point P (x, y) in the current frame (n frame). For the integration of the first term A1, the gradation data {D (x, y1, n) | y1 = y + 1 to Y} within a range larger than the vertical coordinate y of the point P (x, y) is multiplied by the coefficient f1. Thus, the sum is calculated by weighted addition. The upper limit value Y of the sum corresponds to the end of the vertical blanking period T3, and is Y = 2250 (= 2160 + 90), for example. The coefficient f1 is, for example, a function of the coordinates (x, y) and / or coordinates (x, y1) of the point P (x, y), and represents a variation in the display surface of the display panel 10. The coefficient f1 includes a component that converts gradation data into a voltage.
第2項A2は、次フレーム((n+1)フレーム)において点P(x,y)の画素3の充電開始前にソース線SL(x)に印加される電圧の積分量を表す。第2項A2の積算は、点P(x,y)の垂直座標yよりも小さい範囲内の階調データ{D(x,y2,n+1)|y2=1~y-1}に対する係数f2に基づく重み付け加算によって演算される。係数f2は、例えば係数f1と同様の関数である。
The second term A2 represents the integral amount of the voltage applied to the source line SL (x) before the start of charging the pixel 3 at the point P (x, y) in the next frame ((n + 1) frame). The integration of the second term A2 is performed on the coefficient f2 for the gradation data {D (x, y2, n + 1) | y2 = 1 to y−1} within a range smaller than the vertical coordinate y of the point P (x, y). Calculated by weighted addition based on. The coefficient f2 is a function similar to the coefficient f1, for example.
例えば、y=1の場合の積算値A(x,1,n)は、次フレームの開始時に点P(x,y)の画素3が充電されることからA2=0となり、第1項A1によって算出される。同様に、y=Yの場合の積算値A(x,Y,n)は、A1=0となり第2項A2によって算出される。なお、点P(x,y)の画素3自体の充電中に同画素3はCsd寄生容量の影響を受けないと考えられることから、式(1)の積算値A(x,y,n)では、点P(x,y)の階調データD(x,y,n)を積算の対象に含めていない。
For example, the integrated value A (x, 1, n) when y = 1 is A2 = 0 because the pixel 3 at the point P (x, y) is charged at the start of the next frame, and the first term A1 Is calculated by Similarly, the integrated value A (x, Y, n) when y = Y is A1 = 0 and is calculated by the second term A2. Since it is considered that the pixel 3 is not affected by the Csd parasitic capacitance during the charging of the pixel 3 itself at the point P (x, y), the integrated value A (x, y, n) of Expression (1) Then, the gradation data D (x, y, n) of the point P (x, y) is not included in the integration target.
2-2-2.Csd補正の計算式について
以上のような積算値A(x,y,n)を用いて、本実施形態に係る表示装置1のデータ補正部24は、画素3毎に階調データD(x,y,n)を演算補正する。データ補正部24によるCsd補正の計算式を以下に示す。 2-2-2. About the calculation formula of Csd correction Using the integrated value A (x, y, n) as described above, thedata correction unit 24 of the display device 1 according to the present embodiment uses the gradation data D (x, y, n) is corrected. A calculation formula for Csd correction by the data correction unit 24 is shown below.
以上のような積算値A(x,y,n)を用いて、本実施形態に係る表示装置1のデータ補正部24は、画素3毎に階調データD(x,y,n)を演算補正する。データ補正部24によるCsd補正の計算式を以下に示す。 2-2-2. About the calculation formula of Csd correction Using the integrated value A (x, y, n) as described above, the
式(3)の第1項は、点P(x,y)の階調データD(x,y,n)と、点P(x,y)の積算値A(x,y,n)の実効値A(x,y,n)/(Y-1)とを引数とする関数f3で表される。関数f3は、点P(x,y)の画素3自体に接続されたソース線SL(x)による寄生容量Csd1(図2)の影響を補正するために、同画素3の液晶容量Clcと寄生容量Csd1との比に応じて設定される。関数f3は、電圧を階調データに変換する成分を含む。
The first term of the equation (3) is the gradation data D (x, y, n) of the point P (x, y) and the integrated value A (x, y, n) of the point P (x, y). It is expressed by a function f3 having an effective value A (x, y, n) / (Y-1) as an argument. The function f3 is parasitic on the liquid crystal capacitance Clc of the pixel 3 in order to correct the influence of the parasitic capacitance Csd1 (FIG. 2) due to the source line SL (x) connected to the pixel 3 itself at the point P (x, y). It is set according to the ratio with the capacitance Csd1. The function f3 includes a component that converts voltage into gradation data.
式(3)の第2項は、点P(x,y)の階調データD(x,y,n)の階調値と、点P(x,y)の隣の点P’(x+1,y)の積算値A(x+1,y,n)の実効値A(x+1,y,n)/(Y-1)とを引数とする関数f4で表される。関数f4は、点P(x,y)の画素3に隣接するソース線SL(x+1)による寄生容量Csd2の影響を補正するために、同画素3の液晶容量Clcと寄生容量Csd2との比に応じて設定される。関数f4は、電圧を階調データに変換する成分を含む。
The second term of the expression (3) includes the gradation value of the gradation data D (x, y, n) at the point P (x, y) and the point P ′ (x + 1) adjacent to the point P (x, y). , Y) is represented by a function f4 having an effective value A (x + 1, y, n) / (Y-1) of an integrated value A (x + 1, y, n) as an argument. The function f4 has a ratio between the liquid crystal capacitance Clc and the parasitic capacitance Csd2 of the pixel 3 in order to correct the influence of the parasitic capacitance Csd2 due to the source line SL (x + 1) adjacent to the pixel 3 at the point P (x, y). Set accordingly. The function f4 includes a component that converts a voltage into gradation data.
式(3)の第1及び第2項の関数f3,f4は、別々の寄生容量Csd1,Csd2による影響をそれぞれ補正するように、独立に設定される。各関数f3,f4は、上述の係数f1,f2と同様に、表示パネル10の表示面内のばらつき等を考慮して、座標(x,y)に依存する関数であってもよい。
The functions f3 and f4 of the first and second terms in the expression (3) are set independently so as to correct the influences of the separate parasitic capacitances Csd1 and Csd2, respectively. Each function f3, f4 may be a function depending on coordinates (x, y) in consideration of variations in the display surface of the display panel 10 and the like, similar to the above-described coefficients f1, f2.
また、画素3における液晶容量Clcは充電電圧に応じて容量値が変動することから、各関数f3,f4は、液晶容量Clcの充電電圧を規定する階調データD(x,y,n)に依存している。
Further, since the capacitance value of the liquid crystal capacitance Clc in the pixel 3 varies according to the charging voltage, the functions f3 and f4 are represented by gradation data D (x, y, n) that defines the charging voltage of the liquid crystal capacitance Clc. It depends.
また、Csd寄生容量の影響は、垂直表示期間T2に表示される映像が同一であっても、垂直帰線期間T3の長さが異なる場合には変動する。そこで、垂直帰線期間T3の長さによる影響を考慮して、(Y-1)で積算値A(x,y1,t)を除算した実効値A(x,y1,t)/(Y-1)を関数f3,f4の引数に用いている。これにより、例えば60Hz系の映像信号と50Hz系の映像信号とで垂直帰線期間T3の長さ(Yの値)が異なるような場合においても、Csd寄生容量の影響を実質的に同様に補正することができる。
Further, the influence of the Csd parasitic capacitance varies even when the video displayed in the vertical display period T2 is the same when the length of the vertical blanking period T3 is different. Therefore, in consideration of the influence of the length of the vertical blanking period T3, the effective value A (x, y1, t) / (Y−) obtained by dividing the integrated value A (x, y1, t) by (Y−1). 1) is used as an argument of the functions f3 and f4. Thereby, for example, even when the length (Y value) of the vertical blanking period T3 differs between a 60 Hz video signal and a 50 Hz video signal, the influence of the Csd parasitic capacitance is corrected substantially in the same manner. can do.
以上のような補正量ΔD(x,y,n)を画素3毎に求める際に、本実施形態では、式(4),(5)に示すような漸化式を用いて積算値A(x,y,n)を算出する。以下、積算値A(x,y,n)の漸化式について説明する。
When the correction amount ΔD (x, y, n) as described above is obtained for each pixel 3, in this embodiment, the integrated value A (() is obtained using a recurrence formula as shown in equations (4) and (5). x, y, n) is calculated. Hereinafter, the recurrence formula of the integrated value A (x, y, n) will be described.
2-2-3.積算値の漸化式について
本実施形態において、データ補正部24は、画素3毎の充電時から1フレーム分の将来にわたる積算値A(x,y,n)を算出し、各画素3の階調データD(x,y,n)を順次、補正する。この際、理論式(1)のような1列分の階調データD(x,y+1,n)~D(x,y-1,n+1)の総和を取る演算を全画素3に対して独立に実行するような演算方式では、回路規模が膨大になり得る。そこで、本実施形態では、それぞれの積算値A(x,y)を求めるために、式(4),(5)に示すような漸化式を採用する。 2-2-3. Regarding the recurrence formula of the integrated value In this embodiment, thedata correction unit 24 calculates the integrated value A (x, y, n) for the future for one frame from the charging time of each pixel 3, and calculates the floor of each pixel 3. The tone data D (x, y, n) is corrected sequentially. At this time, the calculation for summing up the grayscale data D (x, y + 1, n) to D (x, y-1, n + 1) for one column as in the theoretical formula (1) is independent for all the pixels 3. In such a calculation method, the circuit scale can be enormous. Therefore, in this embodiment, a recurrence formula as shown in formulas (4) and (5) is adopted in order to obtain each integrated value A (x, y).
本実施形態において、データ補正部24は、画素3毎の充電時から1フレーム分の将来にわたる積算値A(x,y,n)を算出し、各画素3の階調データD(x,y,n)を順次、補正する。この際、理論式(1)のような1列分の階調データD(x,y+1,n)~D(x,y-1,n+1)の総和を取る演算を全画素3に対して独立に実行するような演算方式では、回路規模が膨大になり得る。そこで、本実施形態では、それぞれの積算値A(x,y)を求めるために、式(4),(5)に示すような漸化式を採用する。 2-2-3. Regarding the recurrence formula of the integrated value In this embodiment, the
式(4)は、y>1の場合において式(1)を漸化式形に等価変形した式である。式(5)は、y=1の場合において式(4)と同様に式(1)を等価変形した式である。式(4),(5)を採用する場合、漸化式の繰り返し計算の発散を防止するため、係数f1と係数f2とが同一の関数形に設定されることとする。
Equation (4) is an equation obtained by equivalently transforming Equation (1) into a recurrence form when y> 1. Equation (5) is an equation obtained by equivalently modifying Equation (1) in the same manner as Equation (4) when y = 1. When the equations (4) and (5) are employed, the coefficient f1 and the coefficient f2 are set to have the same function form in order to prevent divergence of the recurrence formula repeated calculation.
式(4)の右辺は、点P(x,y)と水平座標xが同じで且つ垂直座標yが1だけ小さい点P”(x,y-1)の積算値A(x,y-1,n)を含んでいる。点P”(x,y-1)の画素3は点P(x,y)の画素3よりも1行分前(過去)に充電されるので、点P(x,y)の積算値A(x,y,n)の算出時に、点P”(x,y-1)の積算値A(x,y-1,n)を用いることができる。
The right side of the equation (4) is the integrated value A (x, y−1) of the point P ″ (x, y−1) where the horizontal coordinate x is the same as the point P (x, y) and the vertical coordinate y is smaller by 1. , N). Since the pixel 3 at the point P ″ (x, y−1) is charged one row before (past) the pixel 3 at the point P (x, y), the point P ( When calculating the integrated value A (x, y, n) of x, y), the integrated value A (x, y-1, n) of the point P ″ (x, y−1) can be used.
具体的に、データ補正部24は、y>1の場合、点P”(x,y-1)の積算値A(x,y-1,n)に対して、式(4)の第2項f1・D(x,y,n)を減算すると共に、第3項f2・D(x,y-1,n+1)を加算する。第2項f1・D(x,y,n)は、積算値A(x,y-1,n)における現フレームの点P(x,y)の階調データD(x,y,n)の寄与である(式(1)のA1参照)。第3項f2・D(x,y-1,n+1)は、次フレームの点P”(x,y-1)の階調データD(x,y-1,n+1)の寄与である(式(1)のA2参照)。
Specifically, when y> 1, the data correction unit 24 applies the second value of Expression (4) to the integrated value A (x, y−1, n) of the point P ″ (x, y−1). The term f1 · D (x, y, n) is subtracted and the third term f2 · D (x, y−1, n + 1) is added, and the second term f1 · D (x, y, n) is This is the contribution of the gradation data D (x, y, n) of the point P (x, y) of the current frame in the integrated value A (x, y-1, n) (see A1 in the equation (1)). The third term f2 · D (x, y−1, n + 1) is a contribution of the gradation data D (x, y−1, n + 1) of the point P ″ (x, y−1) of the next frame (formula ( 1) A2).
また、y=1の場合には、点P”(x,y-1)の積算値A(x,y-1,n)の代わりに、1フレーム前のy=Yにおける積算値A(x,Y,n-1)を用いることで、上記と同様に積算値A(x,1,n)を算出できる(式(5),図7参照)。
When y = 1, instead of the integrated value A (x, y−1, n) at the point P ″ (x, y−1), the integrated value A (x at y = Y one frame before) , Y, n−1), the integrated value A (x, 1, n) can be calculated in the same manner as described above (see equation (5), FIG. 7).
以上のような式(4),(5)によると、1行分の積算値A(1,y-1,n)~A(X,y-1,n)をラインメモリ45(図5)に記憶しておくことにより、y=1から逐次、積算値A(x,y,n)を簡単な演算で算出でき、回路面積の増大を抑制できる。
According to the equations (4) and (5) as described above, the integrated values A (1, y−1, n) to A (X, y−1, n) for one row are stored in the line memory 45 (FIG. 5). Thus, the integrated value A (x, y, n) can be calculated sequentially from y = 1 by a simple calculation, and an increase in circuit area can be suppressed.
2-2-4.初期表示モードについて
以上のような漸化式の初期値を求め易くするため、本実施形態では、表示装置1においてコントロール回路2が電源投入時から所定期間(例えば1フレーム以上)中、全画素3が階調値「0」となる黒画面の映像を表示させる初期表示モードを用いる。以下、表示装置1における初期表示モードを用いた動作について説明する。 2-2-4. Initial Display Mode In order to make it easy to obtain the initial value of the recurrence formula as described above, in this embodiment, all thepixels 3 are displayed in the display device 1 during a predetermined period (for example, one frame or more) after the control circuit 2 is turned on. An initial display mode for displaying a black screen image having a gradation value of “0” is used. Hereinafter, an operation using the initial display mode in the display device 1 will be described.
以上のような漸化式の初期値を求め易くするため、本実施形態では、表示装置1においてコントロール回路2が電源投入時から所定期間(例えば1フレーム以上)中、全画素3が階調値「0」となる黒画面の映像を表示させる初期表示モードを用いる。以下、表示装置1における初期表示モードを用いた動作について説明する。 2-2-4. Initial Display Mode In order to make it easy to obtain the initial value of the recurrence formula as described above, in this embodiment, all the
表示装置1の起動時において、Csd補正回路4におけるクリア判定部46(図5)はクリア信号を生成して、ラインメモリ45に記憶された情報を消去する。ラインメモリ45には、初期値「0」が設定される。
When the display device 1 is activated, the clear determination unit 46 (FIG. 5) in the Csd correction circuit 4 generates a clear signal and erases the information stored in the line memory 45. An initial value “0” is set in the line memory 45.
表示装置1において、コントロール回路2(図1)は、電源投入時から所定期間(例えば1フレーム以上)、初期表示モードで動作する。初期表示モードにおいて、コントロール回路2は、外部からの映像信号に拘らず、全ての階調データが階調値「0」を有する映像データを生成して、データ補正部24に入力する。
In the display device 1, the control circuit 2 (FIG. 1) operates in the initial display mode for a predetermined period (for example, one frame or more) from when the power is turned on. In the initial display mode, the control circuit 2 generates video data in which all grayscale data has a grayscale value “0” regardless of the video signal from the outside, and inputs the video data to the data correction unit 24.
本実施形態において、データ補正部24における各係数乗算部41,42(図5)は、入力値「0」に基づいて出力値「0」のデータを出力する。また、各関数演算部49,50も、入力値「0」に基づいて出力値「0」を出力する。以上より、初期表示モードの継続中にデータ補正部24が出力する階調データは階調値「0」となり、表示装置1において黒画面の映像が表示される。
In this embodiment, the coefficient multipliers 41 and 42 (FIG. 5) in the data correction unit 24 output data of the output value “0” based on the input value “0”. Each of the function calculators 49 and 50 also outputs an output value “0” based on the input value “0”. As described above, the gradation data output from the data correction unit 24 during the continuation of the initial display mode has the gradation value “0”, and a black screen image is displayed on the display device 1.
初期表示モードが解除されると、コントロール回路2は、通常の表示モードで動作し、外部からの映像信号に応じた映像データをデータ補正部24に入力する。以下、初期表示モードを解除する際の最後の1フレームの黒画面を示す映像データを、n=1の映像データD(1)とする。この場合、n=1の階調データD(x,y,1)は全て階調値「0」であり、n=2の階調データD(x,y,2)は映像信号に応じた階調値を有する。
When the initial display mode is canceled, the control circuit 2 operates in the normal display mode, and inputs video data corresponding to the video signal from the outside to the data correction unit 24. Hereinafter, the video data indicating the black screen of the last one frame when the initial display mode is canceled is referred to as video data D (1) with n = 1. In this case, the gradation data D (x, y, 1) with n = 1 all have gradation values “0”, and the gradation data D (x, y, 2) with n = 2 corresponds to the video signal. It has a gradation value.
データ補正部24において、Csd補正回路4(図5)は、n=1の映像データD(1)における1行目(y=1)の階調データD(x,1,1)から順番に、式(2)~(5)に従う演算補正を実行する。式(5)によると、1行目の階調データD(x,1,1)に対応する積算値A(x,1,1)は、次式(11)で算出される。
In the data correction unit 24, the Csd correction circuit 4 (FIG. 5) sequentially starts from the gradation data D (x, 1, 1) of the first row (y = 1) in the video data D (1) of n = 1. The calculation correction according to the equations (2) to (5) is executed. According to the equation (5), the integrated value A (x, 1,1) corresponding to the gradation data D (x, 1,1) in the first row is calculated by the following equation (11).
A(x,1,1)
=A(x,Y,0)-f1・D(x,1,1)+f2・D(x,Y,1) …(11)
上式(11)において、右辺の第1項A(x,Y,0)はn=1の各階調データD(x,y,1)の積算値であり(図7のA2参照)、ラインメモリ45の初期値「0」に一致する。また、右辺の第2項及び第3項も「0」となるため、n=1,y=1において積算値A(x,1,1)=0となる。この場合、補正量ΔD(x,1,1)=0であり、補正後の階調データO(x,1,1)=0となる。ラインメモリ45では、積算値A(x,Y,0)(=0)が読み出された後に、新たな積算値A(x,1,1)(=0)の書き込みが行われる。 A (x, 1,1)
= A (x, Y, 0) -f1 · D (x, 1,1) + f2 · D (x, Y, 1) (11)
In the above equation (11), the first term A (x, Y, 0) on the right side is an integrated value of each gradation data D (x, y, 1) with n = 1 (see A2 in FIG. 7), and the line It matches the initial value “0” of thememory 45. Since the second term and the third term on the right side are also “0”, the integrated value A (x, 1, 1) = 0 when n = 1 and y = 1. In this case, the correction amount ΔD (x, 1,1) = 0, and the corrected gradation data O (x, 1,1) = 0. In the line memory 45, after the integrated value A (x, Y, 0) (= 0) is read, a new integrated value A (x, 1, 1) (= 0) is written.
=A(x,Y,0)-f1・D(x,1,1)+f2・D(x,Y,1) …(11)
上式(11)において、右辺の第1項A(x,Y,0)はn=1の各階調データD(x,y,1)の積算値であり(図7のA2参照)、ラインメモリ45の初期値「0」に一致する。また、右辺の第2項及び第3項も「0」となるため、n=1,y=1において積算値A(x,1,1)=0となる。この場合、補正量ΔD(x,1,1)=0であり、補正後の階調データO(x,1,1)=0となる。ラインメモリ45では、積算値A(x,Y,0)(=0)が読み出された後に、新たな積算値A(x,1,1)(=0)の書き込みが行われる。 A (x, 1,1)
= A (x, Y, 0) -f1 · D (x, 1,1) + f2 · D (x, Y, 1) (11)
In the above equation (11), the first term A (x, Y, 0) on the right side is an integrated value of each gradation data D (x, y, 1) with n = 1 (see A2 in FIG. 7), and the line It matches the initial value “0” of the
次に、Csd補正回路4は、n=1の映像データD(1)における2行目(y=2)の階調データD(x,2,1)の補正演算を実行する。式(4)によると、2行目の階調データD(x,2,1)に対応する積算値A(x,2,1)は次式(12)で算出される。
Next, the Csd correction circuit 4 executes a correction operation on the second row (y = 2) gradation data D (x, 2, 1) in the video data D (1) with n = 1. According to the equation (4), the integrated value A (x, 2, 1) corresponding to the gradation data D (x, 2, 1) in the second row is calculated by the following equation (12).
A(x,2,1)
=A(x,1,1)-f1・D(x,2,1)+f2・D(x,1,2) …(12)
上式(12)において、右辺の第1項及び第2項は、1行目の場合と同様に「0」である一方、上式(12)の第3項は、通常の表示モードにおける階調データD(x,1,2)に基づく値を有する。よって、n=1,y=2の積算値A(x,2,1)は、上式(12)の第3項の演算によって容易に算出される。 A (x, 2,1)
= A (x, 1,1) −f1 · D (x, 2,1) + f2 · D (x, 1,2) (12)
In the above equation (12), the first and second terms on the right side are “0” as in the case of the first row, while the third term in the above equation (12) is the floor in the normal display mode. It has a value based on the key data D (x, 1, 2). Therefore, the integrated value A (x, 2, 1) where n = 1 and y = 2 is easily calculated by the calculation of the third term of the above equation (12).
=A(x,1,1)-f1・D(x,2,1)+f2・D(x,1,2) …(12)
上式(12)において、右辺の第1項及び第2項は、1行目の場合と同様に「0」である一方、上式(12)の第3項は、通常の表示モードにおける階調データD(x,1,2)に基づく値を有する。よって、n=1,y=2の積算値A(x,2,1)は、上式(12)の第3項の演算によって容易に算出される。 A (x, 2,1)
= A (x, 1,1) −f1 · D (x, 2,1) + f2 · D (x, 1,2) (12)
In the above equation (12), the first and second terms on the right side are “0” as in the case of the first row, while the third term in the above equation (12) is the floor in the normal display mode. It has a value based on the key data D (x, 1, 2). Therefore, the integrated value A (x, 2, 1) where n = 1 and y = 2 is easily calculated by the calculation of the third term of the above equation (12).
Csd補正回路4は、以上のような積算値A(x,2,1)の算出結果に基づき補正量ΔD(x,2,1)を求め、補正後の階調データO(x,2,1)を算出する。ラインメモリ45では、積算値A(x,1,1)(=0)が読み出された後に、新たな積算値A(x,2,1)が書き込まれる。書き込まれた積算値A(x,2,1)は、y=3の階調データD(x,3,1)の補正演算に用いられる。y=3以降、及び続くフレームにおける補正演算も逐次、上記と同様に実行される。
The Csd correction circuit 4 obtains the correction amount ΔD (x, 2, 1) based on the calculation result of the integrated value A (x, 2, 1) as described above, and the corrected gradation data O (x, 2, 1). 1) is calculated. In the line memory 45, after the integrated value A (x, 1, 1) (= 0) is read, a new integrated value A (x, 2, 1) is written. The written integrated value A (x, 2, 1) is used for correction calculation of the gradation data D (x, 3, 1) with y = 3. The correction calculation in y = 3 and subsequent frames and subsequent frames is sequentially executed in the same manner as described above.
3.まとめ
以上のように、本実施形態に係る表示装置1は、複数の画素3と、複数のゲート線GLと、複数のソース線SLと、コントロール回路2とを備える。複数の画素3は、マトリクス状に配置される。複数のゲート線GLは、画素3のマトリクスの行方向に並ぶ画素3群に接続され、所定のフレーム周期T1で各行の画素3群を順番に選択する。複数のソース線SLは、画素3のマトリクスの列方向に並ぶ画素3群に接続され、選択された行の画素3群に所定の階調に応じた電圧を供給する。コントロール回路2は、1フレームの映像に含まれる階調を示す階調データD(x,y,n)に基づいて、映像中の1行分の階調を順次、各行の画素3群に表示させるタイミングを制御する。コントロール回路2は、データ補正部24において、表示対象(点P(x,y))の画素3を基準として、将来の1フレーム分の期間Tpおいて当該画素3に接続されたソース線SL(x)に印加される電圧の積分を示す積算値A(x,y,n)に基づいて、当該画素3に表示させる階調を示す階調データD(x,y,n)を補正する。 3. Summary As described above, thedisplay device 1 according to the present embodiment includes the plurality of pixels 3, the plurality of gate lines GL, the plurality of source lines SL, and the control circuit 2. The plurality of pixels 3 are arranged in a matrix. The plurality of gate lines GL are connected to a group of pixels 3 arranged in the row direction of the matrix of pixels 3, and sequentially select the group of pixels 3 in each row at a predetermined frame period T1. The plurality of source lines SL are connected to a group of pixels 3 arranged in the column direction of the matrix of pixels 3 and supply a voltage corresponding to a predetermined gradation to the group of pixels 3 in a selected row. Based on the gradation data D (x, y, n) indicating the gradation included in one frame of video, the control circuit 2 sequentially displays the gradation for one row in the video on the group of pixels 3 in each row. Control the timing. In the data correction unit 24, the control circuit 2 uses the source line SL (connected to the pixel 3 in the period Tp for one future frame with reference to the pixel 3 to be displayed (point P (x, y)) as a reference. Based on the integrated value A (x, y, n) indicating the integration of the voltage applied to x), the gradation data D (x, y, n) indicating the gradation to be displayed on the pixel 3 is corrected.
以上のように、本実施形態に係る表示装置1は、複数の画素3と、複数のゲート線GLと、複数のソース線SLと、コントロール回路2とを備える。複数の画素3は、マトリクス状に配置される。複数のゲート線GLは、画素3のマトリクスの行方向に並ぶ画素3群に接続され、所定のフレーム周期T1で各行の画素3群を順番に選択する。複数のソース線SLは、画素3のマトリクスの列方向に並ぶ画素3群に接続され、選択された行の画素3群に所定の階調に応じた電圧を供給する。コントロール回路2は、1フレームの映像に含まれる階調を示す階調データD(x,y,n)に基づいて、映像中の1行分の階調を順次、各行の画素3群に表示させるタイミングを制御する。コントロール回路2は、データ補正部24において、表示対象(点P(x,y))の画素3を基準として、将来の1フレーム分の期間Tpおいて当該画素3に接続されたソース線SL(x)に印加される電圧の積分を示す積算値A(x,y,n)に基づいて、当該画素3に表示させる階調を示す階調データD(x,y,n)を補正する。 3. Summary As described above, the
なお、コントロール回路2は、データ補正部24において、表示対象(点P(x,y))の画素3を基準として、将来の1フレーム分の期間において当該画素3と同じソース線に接続された他の画素3に表示させる階調を示す階調データの総和を示す積算値A(x,y,n)に基づいて、当該画素3に表示させる階調を示す階調データD(x,y,n)を補正してもよい。この場合、Csd補正回路4における係数f1及び係数f2は、階調データを電圧に変換する成分を含まず、関数f3及び関数f4は、電圧を階調データに変換する成分を含まない。係数乗算部41,42(図5参照)の出力値、すなわち乗算値f1・D(x,y,n)及び乗算値f2・D(x,y,n+1)は、例えば、表示パネル10の表示面内のばらつき(具体的には、表示面内の各位置での時定数の違い)を考慮するための係数が乗算された階調データとなる。
In the data correction unit 24, the control circuit 2 is connected to the same source line as the pixel 3 in a period of one future frame with the pixel 3 to be displayed (point P (x, y)) as a reference. Based on the integrated value A (x, y, n) indicating the total sum of the gradation data indicating the gradation to be displayed on the other pixel 3, the gradation data D (x, y) indicating the gradation to be displayed on the pixel 3 is displayed. , N) may be corrected. In this case, the coefficient f1 and the coefficient f2 in the Csd correction circuit 4 do not include a component that converts gradation data into voltage, and the function f3 and the function f4 do not include a component that converts voltage into gradation data. The output values of the coefficient multipliers 41 and 42 (see FIG. 5), that is, the multiplication value f1 · D (x, y, n) and the multiplication value f2 · D (x, y, n + 1) are displayed on the display panel 10, for example. The gradation data is multiplied by a coefficient for taking into account in-plane variation (specifically, a difference in time constant at each position in the display surface).
以上の表示装置1によると、点P(x,y)の画素3を基準として、当該画素3に対する階調データD(x,y,n)が、将来の1フレーム分におけるソース線SL(x)の電圧の積分又は階調データの総和に応じて補正される。これにより、表示装置1に映像を表示する際の、縦シャドーや階調傾斜などのCsd寄生容量の影響を抑制することができる。
According to the display device 1 described above, with reference to the pixel 3 at the point P (x, y), the gradation data D (x, y, n) for the pixel 3 is the source line SL (x ) Is integrated according to the voltage integration or the sum of the gradation data. Thereby, it is possible to suppress the influence of the Csd parasitic capacitance such as the vertical shadow and the gradation inclination when the video is displayed on the display device 1.
本実施形態において、コントロール回路2(のデータ補正部24)は、表示対象の画素3と同じソース線SL(x)に接続された他の画素3に表示させる階調を示す階調データD(x,y+1,n)~D(x,y-1,n+1)に基づいて、積算値A(x,y,n)を算出する(式(1))。これにより、階調データD(x,y+1,n)~D(x,y-1,n+1)に基づきCsd寄生容量の影響を抑制するための積算値A(x,y,n)を求めることができる。
In the present embodiment, the control circuit 2 (the data correction unit 24 thereof) has gradation data D (showing gradation to be displayed on another pixel 3 connected to the same source line SL (x) as the pixel 3 to be displayed. Based on x, y + 1, n) to D (x, y-1, n + 1), an integrated value A (x, y, n) is calculated (formula (1)). Thus, the integrated value A (x, y, n) for suppressing the influence of the Csd parasitic capacitance is obtained based on the gradation data D (x, y + 1, n) to D (x, y-1, n + 1). Can do.
また、本実施形態において、コントロール回路2は、階調データD(x,y-1,n)を補正した画素3に関する積算値A(x,y-1,n)の算出結果を用いて、漸化式(4),(5)に基づき、当該画素3と同じソース線SL(x)に接続された次の行の画素3に関する積算値A(x,y,n)を算出する。これにより、積算値A(x,y,n)を効率良く計算し、Csd補正を実現し易くすることができる。
In the present embodiment, the control circuit 2 uses the calculation result of the integrated value A (x, y−1, n) for the pixel 3 obtained by correcting the gradation data D (x, y−1, n). Based on the recurrence formulas (4) and (5), an integrated value A (x, y, n) relating to the pixel 3 in the next row connected to the same source line SL (x) as the pixel 3 is calculated. Thereby, the integrated value A (x, y, n) can be calculated efficiently, and Csd correction can be easily realized.
また、本実施形態において、コントロール回路2のデータ補正部24は、nフレーム目及び(n+1)フレーム目の映像中の階調を示す階調データD(x,y+1,n)~D(x,y-1,n+1)に基づく積算値A(x,y,n)を算出し、算出した積算値A(x,y,n)をnフレーム目の映像中の階調を示す階調データD(x,y,n)の補正に用いる(式(3)~(5))。これにより、未来の映像データに基づく積算値A(x,y,n)を求めて、完全解として補正後の階調データO(x,y,n)を得ることができる。
Further, in the present embodiment, the data correction unit 24 of the control circuit 2 has gradation data D (x, y + 1, n) to D (x, x) indicating gradations in the video of the nth frame and the (n + 1) th frame. An integrated value A (x, y, n) based on y−1, n + 1) is calculated, and the calculated integrated value A (x, y, n) is gradation data D indicating the gradation in the image of the nth frame. Used to correct (x, y, n) (Equations (3) to (5)). Thereby, the integrated value A (x, y, n) based on the future video data is obtained, and the corrected gradation data O (x, y, n) can be obtained as a complete solution.
また、本実施形態において、コントロール回路2は、将来の1フレーム分の期間Tpにおいて表示対象の画素3に隣接するソース線SL(x+1)に印加される電圧の積分を示す積算値A(x+1,y,n)を用いて、階調データD(x,y,n)を補正する(式(3)のf4参照)。これにより、画素3近傍のソース線SL(x),SL(x+1)によるCsd寄生容量の影響を抑制することができる。
In the present embodiment, the control circuit 2 includes an integrated value A (x + 1, indicating integration of a voltage applied to the source line SL (x + 1) adjacent to the pixel 3 to be displayed in a period Tp for one future frame. The gradation data D (x, y, n) is corrected using y, n) (see f4 in equation (3)). Thereby, the influence of the Csd parasitic capacitance due to the source lines SL (x) and SL (x + 1) in the vicinity of the pixel 3 can be suppressed.
また、本実施形態において、フレーム周期T1は、所定の垂直帰線期間T3を含む。コントロール回路2は、垂直帰線期間T3を含めた1フレーム分の期間Tpにおける積算値の実効値A(x,y,n)/(Y-1)に基づいて、階調データD(x,y,n)を補正する(式(3))。これにより、垂直帰線期間T3の設定に応じて適切にCsd補正を行うことができる。
In this embodiment, the frame cycle T1 includes a predetermined vertical blanking period T3. Based on the effective value A (x, y, n) / (Y−1) of the integrated value in the period Tp for one frame including the vertical blanking period T3, the control circuit 2 performs gradation data D (x, y, n) is corrected (formula (3)). Thereby, Csd correction can be appropriately performed according to the setting of the vertical blanking period T3.
(実施形態2)
実施形態1では、未来の映像データに基づく積算値を求めてCsd補正を行った。実施形態2では、過去の映像データを用いて上記積算値を近似的に求めてCsd補正を行う表示装置について説明する。 (Embodiment 2)
In the first embodiment, the integrated value based on future video data is obtained and Csd correction is performed. In the second embodiment, a display device that performs Csd correction by approximately obtaining the integrated value using past video data will be described.
実施形態1では、未来の映像データに基づく積算値を求めてCsd補正を行った。実施形態2では、過去の映像データを用いて上記積算値を近似的に求めてCsd補正を行う表示装置について説明する。 (Embodiment 2)
In the first embodiment, the integrated value based on future video data is obtained and Csd correction is performed. In the second embodiment, a display device that performs Csd correction by approximately obtaining the integrated value using past video data will be described.
1.概要
本実施形態に係る表示装置の概要を、図8を用いて説明する。図8は、実施形態2に係る表示装置1のデータ補正部24Aの概要を説明するための図である。 1. Outline An outline of a display device according to the present embodiment will be described with reference to FIG. FIG. 8 is a diagram for explaining the outline of thedata correction unit 24A of the display device 1 according to the second embodiment.
本実施形態に係る表示装置の概要を、図8を用いて説明する。図8は、実施形態2に係る表示装置1のデータ補正部24Aの概要を説明するための図である。 1. Outline An outline of a display device according to the present embodiment will be described with reference to FIG. FIG. 8 is a diagram for explaining the outline of the
図8(a)は、実施形態1のデータ補正部24の実装例を示している。図8(b)は、実施形態2におけるデータ補正部24Aの(オーバドライブ変換部23を含む)一例を示している。
FIG. 8A shows an implementation example of the data correction unit 24 of the first embodiment. FIG. 8B shows an example of the data correction unit 24A (including the overdrive conversion unit 23) in the second embodiment.
図8(a)に示すように、実施形態1のデータ補正部24は、例えばオーバドライブ変換部23の後段に実装される。オーバドライブ変換部23は、1フレームの映像データD(n-1)を記憶するフレームメモリ60と、オーバドライブ変換を実行するオーバドライブ変換回路6とを備える。オーバドライブ変換部23においては、現フレームの映像データD(n)に対するオーバドライブ変換が、フレームメモリ60を経由した1フレーム分、過去の映像データD(n-1)を参照して実行される。
As shown in FIG. 8A, the data correction unit 24 according to the first embodiment is mounted, for example, at the subsequent stage of the overdrive conversion unit 23. The overdrive conversion unit 23 includes a frame memory 60 that stores one frame of video data D (n−1), and an overdrive conversion circuit 6 that performs overdrive conversion. In the overdrive conversion unit 23, overdrive conversion for the video data D (n) of the current frame is executed with reference to the past video data D (n-1) for one frame via the frame memory 60. .
一方、実施形態1のデータ補正部24におけるCsd補正は、フレームメモリ40を経由した映像データD(n-1)を現在の映像データとして扱い、フレームメモリ40を経由しない1フレーム分、未来の映像データD(n)を参照して実行される。このため、実施形態1のデータ補正部24とオーバドライブ変換部23とでは、参照する映像データが別のフレームになり、別々のフレームメモリ40,60が必要になる。また、実施形態1のデータ補正部24では、フレームメモリ40を経由した映像データD(n-1)を現在の映像データとして扱うことから、映像表示のフレーム遅延を生じることとなる。
On the other hand, the Csd correction in the data correction unit 24 of the first embodiment treats the video data D (n−1) that has passed through the frame memory 40 as the current video data, and the future video for one frame that does not pass through the frame memory 40. It is executed with reference to data D (n). For this reason, in the data correction unit 24 and the overdrive conversion unit 23 of the first embodiment, the video data to be referenced is a separate frame, and separate frame memories 40 and 60 are required. Further, since the data correction unit 24 of the first embodiment handles the video data D (n−1) that has passed through the frame memory 40 as the current video data, a frame delay of video display occurs.
そこで、本実施形態におけるデータ補正部24AのCsd補正回路4Aでは、実施形態1と同様のCsd補正を、近似的に過去の映像データD(n-1)を用いて行う。これにより、図8(b)に示すように、Csd補正回路4Aとオーバドライブ変換回路6とでフレームメモリ60を共用させ、回路規模を縮小することができる。また、表示装置1の映像表示におけるフレーム遅延を回避できる。本実施形態におけるデータ補正部24Aは、Csd補正回路4Aと共にオーバドライブ変換部23を含むこととする。以下、本実施形態におけるデータ補正部24Aの詳細を説明する。
Therefore, in the Csd correction circuit 4A of the data correction unit 24A in the present embodiment, the Csd correction similar to that in the first embodiment is performed approximately using the past video data D (n−1). As a result, as shown in FIG. 8B, the frame memory 60 can be shared by the Csd correction circuit 4A and the overdrive conversion circuit 6, and the circuit scale can be reduced. Further, it is possible to avoid frame delay in the video display of the display device 1. The data correction unit 24A in the present embodiment includes an overdrive conversion unit 23 together with the Csd correction circuit 4A. Details of the data correction unit 24A in the present embodiment will be described below.
2.詳細
図9は、本実施形態におけるデータ補正部24Aの構成例を示すブロック図である。本例では、データ補正部24Aは、Csd補正回路4Aと、上述のオーバドライブ変換部23に対応するオーバドライブ変換回路6と、フレームメモリ60と、コンプレッサ61,63と、デコンプレッサ62,64とを含む。本実施形態におけるデータ補正部24Aでは、上述のように、本実施形態におけるデータ補正部24Aでは、Csd補正回路4Aとオーバドライブ変換回路6とが、フレームメモリ60を共用する。また、図9の例では、より実用的な例として映像データD(n)の圧縮及び展開を行う。 2. Details FIG. 9 is a block diagram illustrating a configuration example of thedata correction unit 24A in the present embodiment. In this example, the data correction unit 24A includes a Csd correction circuit 4A, an overdrive conversion circuit 6 corresponding to the above-described overdrive conversion unit 23, a frame memory 60, compressors 61 and 63, and decompressors 62 and 64. including. In the data correction unit 24A in the present embodiment, as described above, in the data correction unit 24A in the present embodiment, the Csd correction circuit 4A and the overdrive conversion circuit 6 share the frame memory 60. In the example of FIG. 9, the video data D (n) is compressed and expanded as a more practical example.
図9は、本実施形態におけるデータ補正部24Aの構成例を示すブロック図である。本例では、データ補正部24Aは、Csd補正回路4Aと、上述のオーバドライブ変換部23に対応するオーバドライブ変換回路6と、フレームメモリ60と、コンプレッサ61,63と、デコンプレッサ62,64とを含む。本実施形態におけるデータ補正部24Aでは、上述のように、本実施形態におけるデータ補正部24Aでは、Csd補正回路4Aとオーバドライブ変換回路6とが、フレームメモリ60を共用する。また、図9の例では、より実用的な例として映像データD(n)の圧縮及び展開を行う。 2. Details FIG. 9 is a block diagram illustrating a configuration example of the
具体的に、コンプレッサ61は、所定の計算式で映像データD(n)を圧縮して、フレームメモリ60に記録する。デコンプレッサ62は、フレームメモリ60において圧縮して記録された映像データを読み出し、上記の計算式に対応する計算式で展開して、得られた過去の映像データD’(n-1)をオーバドライブ変換回路6に出力する。これにより、フレームメモリ60の回路規模を縮小できる。
Specifically, the compressor 61 compresses the video data D (n) with a predetermined calculation formula and records it in the frame memory 60. The decompressor 62 reads out the video data compressed and recorded in the frame memory 60, expands it with a calculation formula corresponding to the above calculation formula, and exceeds the obtained past video data D ′ (n−1). Output to the drive conversion circuit 6. Thereby, the circuit scale of the frame memory 60 can be reduced.
また、コンプレッサ63は、例えばコンプレッサ61と同じ計算式で、現フレームの映像データD(n)を圧縮する。デコンプレッサ64は、例えばデコンプレッサ62と同じ計算式で、圧縮された現フレームの映像データD(n)を展開して、得られた現在の映像データD’(n)をオーバドライブ変換回路6に出力する。
Further, the compressor 63 compresses the video data D (n) of the current frame with the same calculation formula as the compressor 61, for example. The decompressor 64 expands the compressed video data D (n) of the current frame, for example, with the same calculation formula as the decompressor 62, and converts the obtained current video data D ′ (n) to the overdrive conversion circuit 6. Output to.
オーバドライブ変換回路6は、各フレームの圧縮及び展開後の映像データD’(n),D’(n-1)を参照して、特に圧縮等していない現フレームの映像データD(n)に対するオーバドライブ変換を行う。これにより、オーバドライブ変換において、データ圧縮による表示品位の低下を抑制することができる。
The overdrive conversion circuit 6 refers to the video data D ′ (n) and D ′ (n−1) after compression and decompression of each frame, and the video data D (n) of the current frame that is not particularly compressed. Perform overdrive conversion for. Thereby, in overdrive conversion, it is possible to suppress deterioration in display quality due to data compression.
本実施形態におけるCsd補正回路4Aは、上記のオーバドライブ変換回路6と同様に、各フレームの圧縮及び展開後の映像データD’(n),D’(n-1)を参照して、現フレームの映像データD(n)のCsd補正を実行する。これにより、Csd補正においても、データ圧縮による表示品位の低下を抑制することができる。
In the present embodiment, the Csd correction circuit 4A refers to the video data D ′ (n) and D ′ (n−1) after compression and decompression of each frame in the same manner as the overdrive conversion circuit 6 described above. Csd correction of the video data D (n) of the frame is executed. Thereby, also in Csd correction | amendment, the fall of the display quality by data compression can be suppressed.
図10は、本実施形態におけるCsd補正回路4Aの構成例を示すブロック図である。
FIG. 10 is a block diagram showing a configuration example of the Csd correction circuit 4A in the present embodiment.
図10に例示するCsd補正回路4Aは、実施形態1のCsd補正回路4(図5)と同様の構成において、過去の階調データD’(x,y,n-1)を係数乗算部41Aに入力し、現時点の階調データD’(x,y,n)を係数乗算部42Aに入力する。各階調データD’(x,y,n-1),D’(x,y,n)は、それぞれ圧縮及び展開後の映像データD’(n-1),D’(n)に含まれる。
The Csd correction circuit 4A illustrated in FIG. 10 has the same configuration as that of the Csd correction circuit 4 (FIG. 5) of the first embodiment, and uses the past gradation data D ′ (x, y, n−1) as a coefficient multiplier 41A. And the current gradation data D ′ (x, y, n) is input to the coefficient multiplier 42A. The gradation data D ′ (x, y, n−1) and D ′ (x, y, n) are included in the compressed and decompressed video data D ′ (n−1) and D ′ (n), respectively. .
本例のCsd補正回路4Aによると、以下の式(21)~(23)に基づく演算補正が実現される。
According to the Csd correction circuit 4A of this example, calculation correction based on the following equations (21) to (23) is realized.
実施形態1における補正量ΔD(x,y,n)は、式(3)のように、関数f3,f4の引数に、現時点以降の将来の階調データD(x,y,n)の積算値A(x,y,n)を用いた。本実施形態における補正量ΔD(x,y,n)は、式(21)に示すように、上記の積算値A(x,y,n)の代わりに、1フレーム前の時点からの積算値A’(x,y,n-1)を用いる。
The correction amount ΔD (x, y, n) in the first embodiment is obtained by integrating the future gradation data D (x, y, n) after the present time into the arguments of the functions f3 and f4 as shown in the equation (3). The value A (x, y, n) was used. The correction amount ΔD (x, y, n) in the present embodiment is an integrated value from the time point one frame before, instead of the above integrated value A (x, y, n), as shown in equation (21). A ′ (x, y, n−1) is used.
また、本実施形態における積算値A’(x,y,n-1)は、圧縮及び展開後の階調データD’(x,y,n-1),D’(x,y,n)を実施形態1と同様に積算することによって得られる(式(1)参照)。なお、式(22),(23)ではフレーム番号nをシフトしているが、積算値A’(x,y,n-1)の漸化式形は実施形態1と同様である(式(4),(5)参照)。
Further, the integrated value A ′ (x, y, n−1) in the present embodiment is the gradation data D ′ (x, y, n−1), D ′ (x, y, n) after compression and decompression. Is obtained by integrating in the same manner as in the first embodiment (see formula (1)). Although the frame number n is shifted in the equations (22) and (23), the recurrence formula of the integrated value A ′ (x, y, n−1) is the same as that in the first embodiment (equation ( 4) and (5)).
また、式(22),(23)に基づきCsd補正回路4AにおいてCsd補正を開始する際には、例えば実施形態1と同様に初期表示モードを用いることができる。
Also, when Csd correction is started in the Csd correction circuit 4A based on the equations (22) and (23), for example, the initial display mode can be used as in the first embodiment.
以上のように、本実施形態では、1フレーム前の時点からの積算値A’(x,y,n-1)を、将来の1フレーム分の期間中にソース線SLに印加される電圧の積分を示す積算値の近似値として用いて、各階調データD(x,y,n)のCsd補正が行われる。つまり、補正量ΔD(x,y,n)が、実施形態1と比較して1フレーム分、遅れるような誤差が生じ得るが、以下の観点から、このような誤差は実用上、特に差し支えないと考えられる。
As described above, in this embodiment, the integrated value A ′ (x, y, n−1) from the time point one frame before is used as the voltage applied to the source line SL during the period of one frame in the future. Csd correction of each gradation data D (x, y, n) is performed using it as an approximate value of an integrated value indicating integration. That is, an error may occur that the correction amount ΔD (x, y, n) is delayed by one frame compared to the first embodiment. However, such an error is not particularly problematic from the following viewpoint. it is conceivable that.
すなわち、例えば表示装置1に静止画を表示する場合、上記のような誤差は生じず、各階調データD(x,y,n)のCsd補正を適切に行える。また、動画の場合であっても、画素3における液晶容量Clcの応答速度により、コントロール回路2から出力した階調の反映には時間が掛かる。また、一般的に人間の目は、静止画に比べて動画の場合には、輝度や色度の識別精度が荒くなる。Csd寄生容量の影響は、上記のような誤差を無視できる程度に小さいことが通常である。
That is, for example, when a still image is displayed on the display device 1, the above error does not occur, and Csd correction of each gradation data D (x, y, n) can be appropriately performed. Even in the case of a moving image, it takes time to reflect the gradation output from the control circuit 2 due to the response speed of the liquid crystal capacitance Clc in the pixel 3. Further, in general, the identification accuracy of luminance and chromaticity is rougher in the case of a moving image than in a still image. In general, the influence of the Csd parasitic capacitance is small enough to ignore the error as described above.
また、上記と同様の観点から、Csd補正において圧縮及び展開後の階調データD’(x,y,n-1),D’(x,y,n)を用いても、実用上、充分に精度良くCsd寄生容量の影響を抑制することができる。
From the same viewpoint as described above, it is practically sufficient to use the gradation data D ′ (x, y, n−1) and D ′ (x, y, n) after compression and decompression in the Csd correction. In addition, the influence of the Csd parasitic capacitance can be suppressed with high accuracy.
3.まとめ
以上のように、本実施形態に係る表示装置1において、コントロール回路2のデータ補正部24Aは、(n-1)フレーム目及びnフレーム目の映像中の階調を示す階調データD(x,y+1,n-1)~D(x,y-1,n)に基づく積算値A(x,y,n-1)を算出し、算出した積算値A(x,y,n-1)をnフレーム目の映像中の階調を示す階調データD(x,y,n)の補正に用いる(式(21)~(23))。これにより、Csd補正のための将来の積算値を、近似的に過去の階調データD(x,y+1,n)~D(x,y-1,n)から求めて、Csd補正によるフレーム遅延を回避することができる。 3. Summary As described above, in thedisplay device 1 according to the present embodiment, the data correction unit 24A of the control circuit 2 performs the gradation data D () indicating the gradation in the video of the (n−1) th frame and the nth frame. x, y + 1, n−1) to D (x, y−1, n) based on the integrated value A (x, y, n−1) are calculated, and the calculated integrated value A (x, y, n−1) is calculated. ) Is used to correct the gradation data D (x, y, n) indicating the gradation in the image of the nth frame (formulas (21) to (23)). As a result, a future integrated value for Csd correction is approximately obtained from past gradation data D (x, y + 1, n) to D (x, y-1, n), and the frame delay due to Csd correction is obtained. Can be avoided.
以上のように、本実施形態に係る表示装置1において、コントロール回路2のデータ補正部24Aは、(n-1)フレーム目及びnフレーム目の映像中の階調を示す階調データD(x,y+1,n-1)~D(x,y-1,n)に基づく積算値A(x,y,n-1)を算出し、算出した積算値A(x,y,n-1)をnフレーム目の映像中の階調を示す階調データD(x,y,n)の補正に用いる(式(21)~(23))。これにより、Csd補正のための将来の積算値を、近似的に過去の階調データD(x,y+1,n)~D(x,y-1,n)から求めて、Csd補正によるフレーム遅延を回避することができる。 3. Summary As described above, in the
本実施形態において、表示装置1は、(n-1)フレーム目の映像データD(n-1)を記憶するフレームメモリ60をさらに備える。コントロール回路2は、オーバドライブ変換回路6において、フレームメモリ60に記憶された映像データD(n-1)を参照して、nフレーム目の映像データD(n)に対する所定のオーバドライブ変換を行う。コントロール回路2は、Csd補正回路4Aにおいて、フレームメモリ60に記憶された映像データD(n-1)を参照して積算値A(x,y,n-1)を算出し、算出した積算値A(x,y,n-1)を階調データD(x,y,n)の補正に用いる。これにより、オーバドライブ変換とCsd補正とでフレームメモリ60を共有し、Csd補正のための回路面積増大を抑制することができる。
In the present embodiment, the display device 1 further includes a frame memory 60 that stores the video data D (n−1) of the (n−1) th frame. In the overdrive conversion circuit 6, the control circuit 2 refers to the video data D (n-1) stored in the frame memory 60 and performs predetermined overdrive conversion on the video data D (n) of the nth frame. . In the Csd correction circuit 4A, the control circuit 2 refers to the video data D (n−1) stored in the frame memory 60 to calculate the integrated value A (x, y, n−1), and calculates the calculated integrated value. A (x, y, n-1) is used for correction of the gradation data D (x, y, n). Thereby, the frame memory 60 can be shared by overdrive conversion and Csd correction, and an increase in circuit area for Csd correction can be suppressed.
また、本実施形態において、フレームメモリ60は、圧縮された映像データD(n-1)を記憶する。コントロール回路2は、フレームメモリ60に記憶された映像データを展開したデータD’(n-1)と、nフレーム目の映像データD(n)を圧縮して展開したデータD’(n)とに基づき積算値A’(x,y,n-1)を算出し、算出した積算値A’(x,y,n-1)を階調データD(x,y,n)の補正に用いる。これにより、フレームメモリ60の回路規模を削減しながら、精度良くCsd寄生容量の影響を抑制することができる。
Further, in the present embodiment, the frame memory 60 stores the compressed video data D (n−1). The control circuit 2 includes data D ′ (n−1) obtained by developing the video data stored in the frame memory 60, and data D ′ (n) obtained by compressing and developing the video data D (n) of the nth frame. The integrated value A ′ (x, y, n−1) is calculated based on the above, and the calculated integrated value A ′ (x, y, n−1) is used for correcting the gradation data D (x, y, n). . Thereby, the influence of the Csd parasitic capacitance can be suppressed with high accuracy while reducing the circuit scale of the frame memory 60.
以上のように、本発明の具体的な実施形態及び変形例について説明したが、本発明は上記形態に限定されるものではなく、本発明の範囲内で種々の変更を行って実施することができる。例えば、上記の個々の実施形態の内容を適宜組み合わせたものを本発明の一実施形態としてもよい。
As described above, specific embodiments and modifications of the present invention have been described. However, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention. it can. For example, a combination of the contents of the individual embodiments described above may be used as an embodiment of the present invention.
Claims (9)
- マトリクス状に配置された複数の画素と、
前記画素のマトリクスの行方向に並ぶ画素群に接続され、所定のフレーム周期で各行の画素群を順番に選択する複数のゲート線と、
前記画素のマトリクスの列方向に並ぶ画素群に接続され、前記選択された行の画素群に所定の階調に応じた電圧を供給する複数のソース線と、
1フレームの映像に含まれる階調を示す階調データに基づいて、前記映像中の1行分の階調を順次、各行の画素群に表示させるタイミングを制御する制御部と
を備え、
前記制御部は、表示対象の画素を基準として、将来の1フレーム分の期間において当該画素に接続されたソース線に印加される電圧の積分又は将来の1フレーム分の期間において当該画素と同じソース線に接続された他の画素に表示させる階調を示す階調データの総和を示す積算値に基づいて、当該画素に表示させる階調を示す階調データを補正する
表示装置。 A plurality of pixels arranged in a matrix;
A plurality of gate lines connected to a pixel group arranged in a row direction of the matrix of pixels, and sequentially selecting the pixel group of each row at a predetermined frame period;
A plurality of source lines connected to a pixel group arranged in a column direction of the pixel matrix and supplying a voltage corresponding to a predetermined gradation to the pixel group of the selected row;
A control unit for controlling the timing for sequentially displaying the gray levels for one row in the video on the pixel group of each row based on the gray level data indicating the gray level included in the video of one frame;
The control unit is configured to integrate a voltage applied to a source line connected to the pixel in a future one frame period with the display target pixel as a reference, or to supply the same source as the pixel in a future one frame period. A display device that corrects gradation data indicating a gradation to be displayed on a pixel based on an integrated value indicating a total sum of gradation data indicating a gradation to be displayed on another pixel connected to a line. - 前記制御部は、前記表示対象の画素と同じソース線に接続された他の画素に表示させる階調を示す階調データに基づいて、前記積算値を算出する
請求項1に記載の表示装置。 The display device according to claim 1, wherein the control unit calculates the integrated value based on gradation data indicating a gradation to be displayed on another pixel connected to the same source line as the pixel to be displayed. - 前記制御部は、前記階調データを補正した画素に関する積算値の算出結果を用いて、所定の漸化式に基づき、当該画素と同じソース線に接続された次の行の画素に関する積算値を算出する
請求項2に記載の表示装置。 The control unit uses the calculation result of the integrated value related to the pixel whose grayscale data is corrected to calculate the integrated value related to the pixel in the next row connected to the same source line as the pixel based on a predetermined recurrence formula. The display device according to claim 2 to calculate. - 前記制御部は、nフレーム目及び(n+1)フレーム目の映像中の階調を示す階調データに基づく積算値を算出して、nフレーム目の映像中の階調を示す階調データの補正に用いる
請求項2又は3に記載の表示装置。 The control unit calculates an integrated value based on gradation data indicating gradation in the video of the nth frame and the (n + 1) th frame, and corrects gradation data indicating gradation in the video of the nth frame. The display device according to claim 2 or 3, which is used for the display. - 前記制御部は、(n-1)フレーム目及びnフレーム目の映像中の階調を示す階調データに基づく積算値を算出して、nフレーム目の映像中の階調を示す階調データの補正に用いる
請求項2又は3に記載の表示装置。 The control unit calculates an integrated value based on gradation data indicating gradation in the video of the (n-1) th frame and the nth frame, and represents gradation data indicating gradation in the video of the nth frame. The display device according to claim 2, wherein the display device is used to correct the above. - (n-1)フレーム目の映像データを記憶するフレームメモリをさらに備え、
前記制御部は、
前記フレームメモリに記憶された映像データを参照して、nフレーム目の映像データに対する所定のオーバドライブ変換を行い、
前記フレームメモリに記憶された映像データを参照して、前記nフレーム目及び(n-1)フレーム目の映像中の階調を示す階調データに基づく積算値を算出して、前記階調データの補正に用いる
請求項5に記載の表示装置。 (N-1) further comprising a frame memory for storing the video data of the frame,
The controller is
With reference to the video data stored in the frame memory, a predetermined overdrive conversion is performed on the video data of the nth frame,
By referring to the video data stored in the frame memory, an integrated value is calculated based on gradation data indicating gradation in the video of the nth frame and the (n−1) th frame, and the gradation data The display device according to claim 5, wherein the display device is used for correction of an image. - 前記フレームメモリは、圧縮された映像データを記憶し、
前記制御部は、前記フレームメモリに記憶された映像データを展開したデータと前記nフレーム目の映像データを圧縮して展開したデータとに基づき前記積算値を算出して、前記階調データの補正に用いる
請求項6に記載の表示装置。 The frame memory stores compressed video data,
The control unit calculates the integrated value based on data obtained by decompressing the video data stored in the frame memory and data obtained by compressing and decompressing the video data of the nth frame, and corrects the gradation data The display device according to claim 6, which is used for the display. - 前記制御部は、前記将来の1フレーム分の期間において前記表示対象の画素に隣接するソース線に印加される電圧の積分を示す積算値を用いて、前記階調データを補正する請求項1~7のいずれか1項に記載の表示装置。 The control unit corrects the grayscale data using an integrated value indicating an integration of a voltage applied to a source line adjacent to the display target pixel in the future one frame period. 8. The display device according to any one of items 7.
- 前記フレーム周期は、所定の垂直帰線期間を含み、
前記制御部は、前記垂直帰線期間を含めた1フレーム分の期間における積算値の実効値に基づいて、前記階調データを補正する
請求項1~8のいずれか1項に記載の表示装置。 The frame period includes a predetermined vertical blanking period;
The display device according to claim 1, wherein the control unit corrects the gradation data based on an effective value of an integrated value in a period of one frame including the vertical blanking period. .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780086310.1A CN110291574B (en) | 2017-02-24 | 2017-02-24 | Display device |
PCT/JP2017/007188 WO2018154728A1 (en) | 2017-02-24 | 2017-02-24 | Display device |
US16/488,480 US10964278B2 (en) | 2017-02-24 | 2017-02-24 | Display apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/007188 WO2018154728A1 (en) | 2017-02-24 | 2017-02-24 | Display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018154728A1 true WO2018154728A1 (en) | 2018-08-30 |
Family
ID=63252939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/007188 WO2018154728A1 (en) | 2017-02-24 | 2017-02-24 | Display device |
Country Status (3)
Country | Link |
---|---|
US (1) | US10964278B2 (en) |
CN (1) | CN110291574B (en) |
WO (1) | WO2018154728A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113808550A (en) * | 2020-06-17 | 2021-12-17 | 奇景光电股份有限公司 | Device applicable to brightness enhancement in display module |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6682491B2 (en) * | 2017-10-27 | 2020-04-15 | シャープ株式会社 | Display control device, liquid crystal display device, and television receiver |
US20230114963A1 (en) * | 2021-10-12 | 2023-04-13 | Lx Semicon Co., Ltd. | Display apparatus and timing controller thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09508222A (en) * | 1994-11-24 | 1997-08-19 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | Active matrix liquid crystal display device and method of driving such device |
JP2002229530A (en) * | 2000-12-01 | 2002-08-16 | Seiko Epson Corp | Liquid crystal display device, image signal correction circuit, image signal correction method and electronic equipment |
JP2005202159A (en) * | 2004-01-15 | 2005-07-28 | Seiko Epson Corp | Electrooptical device and the driving circuit and method for driving the same, and electrooptical equipment |
JP2006023710A (en) * | 2004-05-13 | 2006-01-26 | Sharp Corp | Crosstalk-eliminating circuit, liquid crystal display and display control method |
JP2008040125A (en) * | 2006-08-07 | 2008-02-21 | Seiko Epson Corp | Electrooptical device, processing circuit for display data, processing method, and electronic apparatus |
WO2008062577A1 (en) * | 2006-11-24 | 2008-05-29 | Sharp Kabushiki Kaisha | Image display device |
WO2010079641A1 (en) * | 2009-01-09 | 2010-07-15 | シャープ株式会社 | Color display device |
WO2016171069A1 (en) * | 2015-04-24 | 2016-10-27 | シャープ株式会社 | Display control device, liquid crystal display device, display control program, and recording medium |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4907753B2 (en) * | 2000-01-17 | 2012-04-04 | エーユー オプトロニクス コーポレイション | Liquid crystal display |
JP3617498B2 (en) * | 2001-10-31 | 2005-02-02 | 三菱電機株式会社 | Image processing circuit for driving liquid crystal, liquid crystal display device using the same, and image processing method |
US7277076B2 (en) * | 2002-12-27 | 2007-10-02 | Sharp Kabushiki Kaisha | Method of driving a display, display, and computer program therefor |
JP2004317785A (en) * | 2003-04-16 | 2004-11-11 | Seiko Epson Corp | Method for driving electrooptical device, electrooptical device, and electronic device |
WO2007097173A1 (en) * | 2006-02-22 | 2007-08-30 | Sharp Kabushiki Kaisha | Display apparatus and method for driving the same |
JP4049192B2 (en) * | 2006-05-30 | 2008-02-20 | セイコーエプソン株式会社 | Electro-optical device driving method, electro-optical device, and electronic apparatus |
JP2008009383A (en) * | 2006-05-30 | 2008-01-17 | Toshiba Corp | Liquid crystal display device and driving method thereof |
JP2008058345A (en) | 2006-08-29 | 2008-03-13 | Sharp Corp | Active matrix type display apparatus |
CN101388176B (en) * | 2007-09-12 | 2010-10-27 | 立锜科技股份有限公司 | Display system with frame displacement backlight regulation and regulating method thereof |
JP5173342B2 (en) * | 2007-09-28 | 2013-04-03 | 株式会社ジャパンディスプレイイースト | Display device |
CN101425266B (en) * | 2007-11-02 | 2012-06-13 | 群康科技(深圳)有限公司 | Overdrive method and overdrive circuit |
TWI417851B (en) * | 2009-06-05 | 2013-12-01 | Chunghwa Picture Tubes Ltd | Driving apparatus and method of liquid crystal display |
JP5560962B2 (en) * | 2010-06-30 | 2014-07-30 | ソニー株式会社 | Liquid crystal display |
JP4964339B1 (en) * | 2011-03-08 | 2012-06-27 | 株式会社ナナオ | Liquid crystal display driving method and liquid crystal display device using the same |
KR101958738B1 (en) * | 2011-09-26 | 2019-03-19 | 삼성디스플레이 주식회사 | Liquid crystal display device |
JP5831875B2 (en) * | 2012-02-15 | 2015-12-09 | シャープ株式会社 | Liquid crystal display |
CN103310752B (en) * | 2013-06-05 | 2015-07-22 | 合肥京东方光电科技有限公司 | Gamma voltage adjusting method and gamma voltage adjusting system |
JP6324672B2 (en) * | 2013-06-24 | 2018-05-16 | パナソニック液晶ディスプレイ株式会社 | Display device |
WO2018104824A1 (en) * | 2016-12-07 | 2018-06-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, display system, and electronic device |
-
2017
- 2017-02-24 WO PCT/JP2017/007188 patent/WO2018154728A1/en active Application Filing
- 2017-02-24 CN CN201780086310.1A patent/CN110291574B/en active Active
- 2017-02-24 US US16/488,480 patent/US10964278B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09508222A (en) * | 1994-11-24 | 1997-08-19 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | Active matrix liquid crystal display device and method of driving such device |
JP2002229530A (en) * | 2000-12-01 | 2002-08-16 | Seiko Epson Corp | Liquid crystal display device, image signal correction circuit, image signal correction method and electronic equipment |
JP2005202159A (en) * | 2004-01-15 | 2005-07-28 | Seiko Epson Corp | Electrooptical device and the driving circuit and method for driving the same, and electrooptical equipment |
JP2006023710A (en) * | 2004-05-13 | 2006-01-26 | Sharp Corp | Crosstalk-eliminating circuit, liquid crystal display and display control method |
JP2008040125A (en) * | 2006-08-07 | 2008-02-21 | Seiko Epson Corp | Electrooptical device, processing circuit for display data, processing method, and electronic apparatus |
WO2008062577A1 (en) * | 2006-11-24 | 2008-05-29 | Sharp Kabushiki Kaisha | Image display device |
WO2010079641A1 (en) * | 2009-01-09 | 2010-07-15 | シャープ株式会社 | Color display device |
WO2016171069A1 (en) * | 2015-04-24 | 2016-10-27 | シャープ株式会社 | Display control device, liquid crystal display device, display control program, and recording medium |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113808550A (en) * | 2020-06-17 | 2021-12-17 | 奇景光电股份有限公司 | Device applicable to brightness enhancement in display module |
CN113808550B (en) * | 2020-06-17 | 2022-09-20 | 奇景光电股份有限公司 | Device applicable to brightness enhancement in display module |
Also Published As
Publication number | Publication date |
---|---|
US10964278B2 (en) | 2021-03-30 |
CN110291574A (en) | 2019-09-27 |
CN110291574B (en) | 2022-07-12 |
US20200234662A1 (en) | 2020-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6682491B2 (en) | Display control device, liquid crystal display device, and television receiver | |
CN110444152B (en) | Optical compensation method and device, display method and storage medium | |
JP4073949B2 (en) | Display device | |
US8063897B2 (en) | Display device | |
US11227566B2 (en) | Method for reducing brightness of images, a data-processing apparatus, and a display apparatus | |
US9837011B2 (en) | Optical compensation system for performing smear compensation of a display device and optical compensation method thereof | |
KR20190052195A (en) | Method of compensating for non-uniformity of luminance of a display panel and display device employing the same | |
CN110796979B (en) | Driving method and driving device of display panel | |
US20190182509A1 (en) | Method of correcting image data and display apparatus for performing the same | |
US10559244B2 (en) | Electronic apparatus, display driver and method for generating display data of display panel | |
US10360839B2 (en) | Apparatus and method of driving a variable rate display | |
US11151928B2 (en) | Flexible display device, and method of operating a flexible display device | |
KR100877915B1 (en) | Display device, display monitor, and television receiver | |
WO2017185957A1 (en) | Image processing method, image processing apparatus and display device | |
WO2018154728A1 (en) | Display device | |
KR100958324B1 (en) | Image data Processing Apparatus having function of adjusting luminance of backlight according to input image data, Liquid Crystal Display, and Method of driving the same | |
US20130135330A1 (en) | Display device and driving method thereof | |
US8125496B2 (en) | Apparatus and method of converting image signal for four-color display device | |
KR100870015B1 (en) | device and method for enhancing edge of digital image data, and digital display device using the same | |
US20240312436A1 (en) | System and method for variable area-based compensation of burn-in in display panels | |
KR102511039B1 (en) | Image processing method, image processing circuit and display device using the same | |
TWI485692B (en) | Source driver apparatus and method for driving display panel | |
KR100403698B1 (en) | Multi Gray Scale Image Display Method and Apparatus thereof | |
CN111009221A (en) | Display device | |
JP2005222327A (en) | Color signal processor and display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17897554 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17897554 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |