WO2018143540A1 - Method, device, and program for predicting prognosis of stomach cancer by using artificial neural network - Google Patents

Method, device, and program for predicting prognosis of stomach cancer by using artificial neural network Download PDF

Info

Publication number
WO2018143540A1
WO2018143540A1 PCT/KR2017/012068 KR2017012068W WO2018143540A1 WO 2018143540 A1 WO2018143540 A1 WO 2018143540A1 KR 2017012068 W KR2017012068 W KR 2017012068W WO 2018143540 A1 WO2018143540 A1 WO 2018143540A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
neural network
artificial neural
gastric cancer
learning
Prior art date
Application number
PCT/KR2017/012068
Other languages
French (fr)
Korean (ko)
Inventor
서성욱
이지연
Original Assignee
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사회복지법인 삼성생명공익재단 filed Critical 사회복지법인 삼성생명공익재단
Priority to KR1020197003924A priority Critical patent/KR102190299B1/en
Publication of WO2018143540A1 publication Critical patent/WO2018143540A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/086Learning methods using evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders

Definitions

  • the present invention relates to a method, apparatus and program for predicting prognosis of gastric cancer using an artificial neural network.
  • Stomach cancer is one of the most common cancers in Korea and the second most common cause of death.
  • Gastric cancer is determined according to the extent of tumor involvement of the surrounding structures, metastases to regional lymph nodes, and metastases to other organs, and thus the treatment and prognosis are different.
  • the prognosis gets worse and worse, especially in late stages (Stage 4), with a five-year survival rate of only 3%.
  • the prognosis may be heterogeneous in some people, due to various environmental and genetic causes. Therefore, a variety of methods are being developed to enable individuals to accurately predict the prognosis of cancer.
  • Korean Patent No. 10-1415257 discloses a method for diagnosing the prognosis of gastric cancer by measuring the level of overexpression of microRNA-196b RNA and HOXA10 (Homeobox A10) protein.
  • Korean Patent Registration No. 10-1504818 A system for predicting the prognosis of gastric cancer is disclosed by cluster analysis of several gene expression profiles.
  • the conventional gastric cancer prognosis prediction method merely divides the gastric cancer prognosis into a low risk group, a middle risk group, and a high risk group, and thus there is a problem in that it is impossible to accurately predict the survival rate of gastric cancer patients.
  • the present invention aims to provide a method, apparatus, and program for predicting the prognosis of gastric cancer using an artificial neural network.
  • a method for predicting prognosis of gastric cancer using an artificial neural network may include obtaining clinical data and survival time data after gastric cancer onset of a plurality of gastric cancer patients; Acquiring training input data and training output data from the clinical data and the survival data; Training an artificial neural network including an input layer, a hidden layer, and an output layer using the training input data and the training output data; And generating a model for predicting survival of gastric cancer patients using the learned artificial neural network.
  • the learning input data may include molecular genetic subtype data of the plurality of gastric cancer patients, and the subtype is a microsatellite instable (MS) subtype, an MSS / EMT subtype, an MSS / TP53 + subtype. , MSS / TP53- subtype.
  • MS microsatellite instable
  • the input layer may include four nodes into which the molecular genetic subtype data is input.
  • the training of the artificial neural network using the training input data and the training output data may include: embedding each variable of the training input data into a vector of two or more dimensions to calculate an embedding layer. It may include a step.
  • acquiring training input data and training output data from the clinical data and the survival data, respectively may include missing values using a k-nearest neighbor algorithm (knn). data, NaN) may be added.
  • knn k-nearest neighbor algorithm
  • the hidden layer of the artificial neural network may comprise at least one RNN layer.
  • an apparatus for predicting the prognosis of gastric cancer using an artificial neural network may include: a data acquisition unit configured to acquire clinical data and survival time data after gastric cancer onset of a plurality of gastric cancer patients; And an artificial neural network learning that obtains learning input data and learning output data from the clinical data and the survival period data, and trains an artificial neural network including an input layer, a hidden layer, and an output layer using the learning input data and the learning output data. part; And a survival prediction model generator for generating a model for predicting survival of gastric cancer patients using the learned artificial neural network.
  • the learning input data may comprise molecular genetic subtype data of the plurality of gastric cancer patients, the subtype is a microsatellite instable (MSI) subtype, MSS / EMT subtype, MSS / TP53 + subtype, MSS / TP53- subtype.
  • MSI microsatellite instable
  • the input layer may include four nodes into which the molecular genetic subtype data is input.
  • the neural network learner may calculate an embedding layer by embedding each variable of the training input data into a vector of two or more dimensions.
  • the neural network learning unit may add missing data (NAN) of the training input data using a k-nearest neighbor algorithm (knn).
  • NAN missing data
  • knn k-nearest neighbor algorithm
  • the hidden layer of the artificial neural network may comprise at least one RNN layer.
  • Another embodiment of the present invention discloses a computer program stored in a medium for executing the above-described prognostic method of gastric cancer using the artificial neural network using a computer.
  • the prognosis of the gastric cancer patient can be accurately predicted for each individual.
  • the prognosis of each treatment method can be simulated using the learned artificial neural network, so that the treatment method tailored to each patient can be determined.
  • the scope of the present invention is not limited by these effects.
  • FIG. 1 is a flowchart illustrating a prognostic method of gastric cancer using an artificial neural network according to an embodiment of the present invention.
  • Figure 2 is a graph showing the correlation of survival rate according to the microsatellite instable (MSI) subtype, MSS / EMT subtype, MSS / TP53 + subtype, and MSS / TP53- subtype in the gastric cancer patient population studied by the Asian Cancer Research Group (ACRG). .
  • MSI microsatellite instable
  • ACRG Asian Cancer Research Group
  • FIG. 3 is a simplified illustration of the topology (topology) of the artificial neural network according to an embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing a part of a heatmap graph of an artificial neural network according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a method of generating a model for predicting survival rate of a t-section of a gastric cancer patient according to a method for predicting prognosis of gastric cancer using an artificial neural network according to an embodiment of the present invention.
  • FIG. 6 is a diagram schematically showing a part of a heatmap graph of an artificial neural network trained sequentially by year according to an embodiment of the present invention.
  • FIG. 7 is a graph comparing the AUC values of the ROC graph of the yearly survival prediction model during training.
  • 9 is a graph comparing survival and actual survival rates predicted by the survival prediction model.
  • 10 to 14 are graphs showing decision curves of the survival rate prediction model after 1 year, 2 years, 3 years, 4 years, and 5 years, respectively.
  • 15 is a graph showing the learning effect of the artificial neural network and the comparison simple artificial neural network according to an embodiment of the present invention.
  • 16 is a schematic diagram of a method for re-learning the artificial neural network using other regional data.
  • FIG. 17 is a heat map graph comparing a model trained only with Singapore data and a model retrained by adding Singapore data to RSN (Recurrent Survival Network), a prognostic prediction model of gastric cancer using an artificial neural network, according to an embodiment of the present invention. to be.
  • RSN Recurrent Survival Network
  • 19 is a view schematically showing the configuration of the apparatus for predicting the prognosis of gastric cancer using an artificial neural network according to an embodiment of the present invention.
  • a 'node' means an object of abstract concept that can change a value with a specific algorithm and connect with another node.
  • the term 'input layer' is a set of one or more nodes having a particular variable assigned by the user
  • the term 'output layer' is one or more nodes having a result value of the procedure according to a specific procedure determined by the user.
  • "Hidden layer” means a set of one or more nodes that store interim results and temporary values that appear temporarily when performing a procedure set by a user.
  • the term 'prognosis' is a medical term indicating the prediction of survival, progression and recovery of a patient.
  • FIG. 1 is a flowchart illustrating a prognostic method of gastric cancer using an artificial neural network according to an embodiment of the present invention.
  • a method for predicting prognosis of gastric cancer using an artificial neural network may include obtaining clinical data and survival time data after gastric cancer onset of a plurality of gastric cancer patients; Acquiring training input data and training output data from the clinical data and the survival data; Training an artificial neural network including an input layer, a hidden layer, and an output layer using the training input data and the training output data; And generating a model for predicting survival of gastric cancer patients using the learned artificial neural network.
  • a step (S10) of obtaining clinical data and survival time data after the onset of gastric cancer patients is performed.
  • the clinical data includes physical personal information such as age and gender of the patient, surgical records after gastric cancer occurrence, pathological records related to stomach cancer such as recurrence, and the like.
  • Survival data after the onset of gastric cancer indicates that the period from the time of recognizing the occurrence of gastric cancer to death in the case of patients who have already died, from the time of recognizing the occurrence of gastric cancer in the case of surviving patients to the time of implementing the present invention It can mean a period.
  • Clinical data and survival data after onset of gastric cancer may be obtained from gastric cancer patients in one or more hospitals or regions.
  • Clinical data may be obtained from a medical image of a patient or may be obtained from a patient's specimen test result, but is not limited thereto.
  • the present inventors obtained clinical data and survival data from 1187 gastric cancer patients of Samsung Medical Center who were followed up for more than 5 years.
  • step (S20) of acquiring the learning input data and the learning output data from the clinical data and the survival period data is performed.
  • the training input data refers to data to be input to a node of the input layer in order to learn an artificial neural network to be described later.
  • Table 1 shows variables that can be included in the learning input data and their classification.
  • the molecular genetic subtypes of gastric cancer are epipithelial-to-mesenchymal for EMT (microsatellite instable), MSS (microsatellite stable) subtypes, and MSS subtypes, which are classified by measuring microsatellite instability of gastric cancer samples. It is classified into MSS / TP53 + and MSS / TP53- subtypes by measuring the activity of TP53 (Tumor Protein 53) for MSS / EMT subtypes, MSS / epithelial subtypes, and MSS / epithelial subtypes.
  • EMT microsatellite instable
  • MSS microsatellite stable subtypes
  • MSS subtypes which are classified by measuring microsatellite instability of gastric cancer samples. It is classified into MSS / TP53 + and MSS / TP53- subtypes by measuring the activity of TP53 (Tumor Protein 53) for MSS / EMT subtypes, MSS / epi
  • the learning input data includes molecular genetic subtype data of a plurality of gastric cancer patients, wherein the subtype is a microsatellite instable (MS) subtype, an MSS / EMT subtype, an MSS / TP53 + subtype, MSS / TP53- subtype.
  • MS microsatellite instable
  • gastric cancer samples may be classified into a microsatellite instable (MSI) subtype and a microsatellite stable (MSS) subtype according to the degree of microsatellite instability.
  • MSI microsatellite instable
  • MSS microsatellite stable
  • MSI subtypes In MSI subtypes, many gene mutations occur and cancer progresses relatively slowly. In addition, approximately 60% of MSI subtypes corresponded to stage 1 or 2 of cancer, with an average survival of 100.9 months, which is the longest in the Lauren classification.
  • MSS subtypes can be classified into MSS / EMT subtypes and MSS / epithelial subtypes by measuring epithelial-tomesenchymal transition (EMT). If it is determined to be similar to mesenchymal by EMT measurement, it is classified as MSS / EMT subtype.
  • EMT epithelial-tomesenchymal transition
  • the MSS / EMT subtype mainly contains diffuse tumors in the Lauren classification, shows little genetic mutation, and has a poor prognosis in gastric cancer patients. This subtype is also found at a lower age and has a faster cancer progression with the highest recurrence rate (63%).
  • the activity of TP53 can be measured and classified into MSS / TP53 + and MSS / TP53- subtypes. If the activity of TP53 high when MSS / TP53 + a subtype, a low activity is classified as MSS / TP53- subtypes.
  • the MSS / TP53 + and MSS / TP53- subtypes show moderate prognosis and recurrence rate among the four subtypes.
  • enteric gastric cancers In the MSS / TP53 + subtype, there are many enteric gastric cancers.
  • the MSS / TP53- subtype is the subtype of the most patients analyzed, and the prognosis of gastric cancer patients is worse than that of the MSS / TP53 + subtype due to loss of TP53 function.
  • Figure 2 is a graph showing the correlation of survival rate according to the microsatellite instable (MSI) subtype, MSS / EMT subtype, MSS / TP53 + subtype, and MSS / TP53- subtype in the gastric cancer patient population studied by the Asian Cancer Research Group (ACRG). .
  • MSI microsatellite instable
  • ACRG Asian Cancer Research Group
  • the survival rate of gastric cancer patients was confirmed to have the highest MSI subtype and the lowest MSS / EMT subtype, so the survival rate can be predicted according to the subtype analysis through genetic analysis. Therefore, when the artificial neural network is trained using the molecular genetic subtype of gastric cancer as an input value, the prediction accuracy of gastric cancer using the artificial neural network is increased.
  • variables that can be categorized into three or more such as WHO tumor types and molecular genetic subtypes can be converted into vectors using a one-hot encoding technique. If there are only two classifications, such as gender and cancer recurrence, the two classifications can be labeled with 0, 1 or 1, 2 and converted into a single value.
  • Quantitative variables, such as RAS signatures can be normalized and processed to one number. Through this, it is possible to mathematically process the input data for learning.
  • Table 2 describes only some of the variables shown in Table 1.
  • the input layer of the artificial neural network may include four nodes for inputting the above-described molecular genetic subtype data.
  • the weight of the link connected to the node can determine the effect of sex on the patient's survival rate, so it is not necessary to allocate two nodes.
  • the learning input data may include survival rate or mortality data of gastric cancer patients.
  • the training input data may be i + 2 data sets including the previous year survival rate data and the previous year mortality data of the gastric cancer patient. This will be described later.
  • the training output data means data to be input to a node of an output layer in order to learn an artificial neural network.
  • Such learning output data may include information on survival within a certain period after the onset of gastric cancer of the patient.
  • training the artificial neural network using the training input data and the training output data (FIG. 1, S30) is performed.
  • FIG 3 is a simplified illustration of the topology (topology) of the artificial neural network according to an embodiment of the present invention.
  • the neural network has an input layer with one or more nodes, one or more hidden layers and an output layer.
  • An artificial neural network (hereinafter referred to as RSN) according to an embodiment of the present invention has eight hidden layers, but the present invention is not limited thereto.
  • the input layer of the neural network has n in nodes.
  • n nodes of an input layer are illustrated, but the present invention is not limited thereto.
  • Each node is input with mathematically processed classification according to clinical variables of each gastric cancer patient.
  • the input layer has a form like an n in ⁇ 1 matrix.
  • the training of the artificial neural network using the training input data and the training output data may include calculating an embedding layer by embedding each variable of the training input data into a vector of two or more dimensions. Can be.
  • Each variable of the learning input data input to each node of the input layer has a one-dimensional real value, which may be embedded into a two-dimensional or higher vector.
  • 1, the value of the MSI node of the patient A in Table 2 above, can be converted into a 9-dimensional vector using a known embedding method as follows.
  • [MSI node embedding vector] [0.1 0.3 -0.1 -0.5 -0.7 0.2 0.3 0.3 -0.1]
  • each real variable is replaced with a 32-dimensional vector through embedding for each of 49 nodes, and thus an embedding layer having a matrix shape of 49 ⁇ 32 is calculated.
  • embedding is a concept designed to quantify words in the field of Natural Language Processing, but in the present invention, the numerical value of each real variable itself is also vectorized through embedding.
  • acquiring the learning input data and the learning output data from the clinical data and the survival data, respectively may include missing values using a k-nearest neighbor algorithm (knn). missing data (NaN).
  • knn k-nearest neighbor algorithm
  • NaN missing data
  • whether the clinical data of the patient C is closer to the patient A or the patient B may be determined based on, for example, the distance of the learning input data vector of each patient.
  • the distance of the learning input data vector of each patient In the example of Table 3, since the clinical data of patient C is closer to patient B than to patient A, 1 can be given to HER2 value of patient C.
  • the missing item may be added using the knn algorithm. Therefore, it is possible to retrain the artificial neural network by adding other regional data with missing data, which will be described later.
  • the output layer of the artificial neural network has n out nodes.
  • n out nodes In FIG. 3, two output nodes are illustrated, but embodiments of the present invention are not limited thereto.
  • the output layer may include nodes representing the patient's N + 1 year (or any time unit, such as half year, quarter, month, day, etc., where N is an integer greater than or equal to 0) survival and mortality.
  • N is an integer greater than or equal to 0
  • the artificial neural network is trained to predict survival rate of 2 years after the onset of gastric cancer in a gastric cancer patient, a value indicating whether survival of 2 years after the onset of gastric cancer of a specific patient may be input to a node of the output layer.
  • a treatment method capable of assigning scores by ranking them is proposed without treating [survival rate nodes, mortality nodes] when the patient dies with [0, 1].
  • the survival rate node, death rate node [p, 1-p] of the patient who died, where p may be assigned a non-zero score value.
  • the score can then be given in proportion to the survival of the deceased patient.
  • the input layer may include [N-year survival rate node, N-year death rate node].
  • the clinical input data including gastric cancer patients and N-year survival rate and N-year mortality information are input to the input layer, and the N + 1-year survival rate and mortality information is proportional to the survival period of the patient.
  • the neural network is trained by inputting the learning output data to the output layer.
  • Hidden layers are used to learn artificial neural networks.
  • the nodes of each hidden layer may be fully connected to each other with the nodes of other hidden layers.
  • the artificial neural network is trained using eight hidden layers including a recurrent neural network (RNN) layer using a long short term memory (LSTM) algorithm, but the number of hidden layers and types of algorithms are used. Is not limited to this.
  • a step S40 of generating a model for predicting survival rate of gastric cancer patients using the learned artificial neural network is performed.
  • the weight corresponding to each node is optimized for survival prediction, so the patient's survival rate is determined by inputting the input data from the clinical data of any gastric cancer patient into the input layer of the neural network. Can be predicted.
  • the optimized model was trained 30 times for each training data and the performance was evaluated using the test data.
  • FIG. 4 is a diagram schematically showing a part of a heatmap graph of an artificial neural network according to an embodiment of the present invention.
  • the graph 100 illustrates a state in which learning input data is input to the input layer.
  • the horizontal axis of the heatmap of graph 100 is the serial number of each gastric cancer patient, and the vertical axis corresponds to each node of the artificial neural network input layer.
  • the total number of nodes in the input layer is 49, including 47 nodes obtained from the clinical data shown in Table 1 and two survival rate and mortality nodes.
  • the value corresponding to each node is represented by the intensity of the color.
  • the data of each gastric cancer patient is represented as a matrix through the embedding process.
  • the data of gastric cancer patients are each represented by a 49 ⁇ 32 matrix.
  • the coefficients are then learned for each node.
  • the result of learning is labeled as survival or death, and finally expressed as a survival probability through a softmax function.
  • the first year survival rate of the plurality of gastric cancer patients was expressed as two nodes. That is, the 1-year survival prediction artificial neural network converges a total of 49 node values (shown in graph 110) into a total of 2 node values (shown in graph 130).
  • the hidden layer of the artificial neural network may include at least one RNN layer, and the RNN layer may use a long short term memory (LSTM) algorithm.
  • LSTM long short term memory
  • FIG. 5 is a diagram illustrating a method of generating a model for predicting survival rate of a t-section of a gastric cancer patient according to a method for predicting prognosis of gastric cancer using an artificial neural network according to an embodiment of the present invention.
  • generating the model for predicting the survival rate may include training the artificial neural network for each time interval.
  • the time interval may vary from year to year, half year, quarter, month, etc.
  • the year will be described as an example.
  • the neural network can be learned from clinical data of gastric cancer patients to predict the annual survival rate of gastric cancer patients, such as survival rates from 1 year to 5 years after onset.
  • 1, 2,... Survival rate is predicted for each t + t-th section (t: natural number).
  • the survival prediction result data for the t-th section is used to predict the survival rate in the t + 1th section. That is, the survival rate prediction for each section is made in an inductive and sequential manner.
  • a survival rate prediction model SM 1 after one year and a survival rate prediction model SM t after t years are illustrated.
  • the survival rate prediction model (SM 1 ) which is an input / output function capable of outputting the survival rate (S 1 ) after 1 year, is used for the artificial neural network. Generated by training.
  • the learning input data input to the input layer of the neural network includes initial clinical data (X 1 ) and an initial survival rate (S 0 ).
  • Initial clinical data (X 1 ) which is input to the survival prediction model after one year, may be clinical data at the first visit.
  • the survival rate initial value S 0 may be set to 1, for example.
  • the survival data after one year obtained from the survival period data of the patient is used. For example, if a patient D died 15 months after the onset of gastric cancer, the learning output data to be compared to the value to be output to the [survival rate node, mortality node] of the output layer becomes [1, 0] since the patient survived 1 year after the onset. .
  • the artificial neural network is trained to predict survival rate after one year of gastric cancer patients by using such learning input data and learning output data.
  • the survival rate prediction model after 2 years is an input / output function that can output survival rate (S 2 ) after 2 years.
  • (SM 2 ) is created by training the artificial neural network.
  • the learning input data input to the input layer of the artificial neural network includes clinical data (X 2 ) after 2 years and survival rate prediction result value (S 1 ) after 1 year.
  • survival data two years later obtained from the survival data of the patient is used as the learning output data. For example, if a patient D survived 15 months after the onset of gastric cancer, and died 2 years after the onset of cancer, the learning output data to be compared with the value to be output to the [survival rate node, mortality node] of the output layer is [0, 1]. Can be.
  • a treatment method for ranking a score is provided without processing the output data for learning as [0, 1] as described above when the patient dies.
  • generating the t-th section survival prediction model SM t may further include assigning a score according to the survival period to the t-th section survival period data. That is, in the present embodiment, the learning output data may be [p, 1-p], where p may be assigned a non-zero score value. According to one embodiment, the score may be given in proportion to the survival of the t-th section of the patient. In this case, the survival period may be divided into at least monthly units. For example, the score according to the survival period for each section of the patient D who survived for 1 year and 3 months is as shown in Table 4 below.
  • the survival rate is not counted as 0, and the ranked score is given as much as the survival period.
  • the number of significant data used to generate the survival prediction model can be increased, and as a result, the accuracy of the survival prediction is improved.
  • the artificial neural network may be re-learned to predict survival rate of two years after gastric cancer patients using the learning input data and the learning output data using the score.
  • a survival prediction model (SM t ) is generated by learning artificial neural networks.
  • the survival rate after t years is predicted by using the survival rate prediction result (S t - 1 ) after t-1 years reflecting the 'prognosis of the patient at the time point t-1 years'. Survival prediction performance improves as the artificial neural network is trained for each year.
  • a survival prediction model was generated using the LSTM algorithm.
  • the survival probability at the discrete time t is defined as in Equation 1 below, and the hazard ration function may be determined as in Equation 2.
  • the survival prediction model is to predict survival in the long term, especially through the information of the patient's gastric cancer detection (ie, information at the first visit of the hospital).
  • the present inventors therefore assumed that the patient's clinical data is constant during the observation time, but there is a latent feature that is dependent on the passage of time and indicative of the patient's condition at a particular time.
  • the latent factors and the risk function are defined as time-dependent values such as ⁇ Equation 3> and ⁇ Equation 4>.
  • the time dependent survival value is included in the clinical data (X) of the patient, and the final input data X t is time dependent data.
  • the time dependent survival value includes time (t) information and survival predicted value (S t ) information obtained by the gradient descent equation ⁇ S.
  • Equations 5 to 8 the gradient descent equation ⁇ S can be determined by Equations 5 to 8 below.
  • the weight corresponding to the connection of each node of the neural network is learned to optimize the survival rate. Therefore, by inputting the input data obtained from the clinical data of any gastric cancer patient to the input layer of the neural network can be predicted the survival rate of the patient through the value output to the output layer. That is, according to the method for predicting the prognosis of gastric cancer using the artificial neural network according to the present invention, the prognosis of the gastric cancer patient can be accurately predicted for each individual.
  • FIG. 6 is a diagram schematically showing a part of a heatmap graph of an artificial neural network trained sequentially by year according to an embodiment of the present invention.
  • the inventors sequentially trained the artificial neural network for each year as shown in FIG. 6 to generate a survival prediction model for each year, and then evaluated the performance of each model.
  • FIG. 7 is a graph comparing the AUC values of the ROC graph of the yearly survival prediction model during training.
  • the mean of AUC was 0.79 ⁇ 0.052 in 1 year survival prediction model, 0.839 ⁇ 0.045 in 2 years model, 0.89 ⁇ 0.049 in 3 years model and 0.915 ⁇ 0.05 in 5 years model 0.92 ⁇ 0.049 in the model.
  • FIG. 8 is a ROC graph verifying the survival prediction model for each year as separate test data.
  • the values of AUC were 0.858 in the survival prediction model after 1 year, 0.869 in the model after 2 years, 0.879 in the model after 3 years, 0.912 in the model after 4 years, and 0.923 in the model after 5 years. You can see that the performance improves.
  • 9 is a graph comparing survival and actual survival rates predicted by the survival prediction model. Kaplan-Meier survival analysis showed that the survival prediction result correlated with the 15% margin of error (dotted line) within the 95% confidence interval.
  • 10 to 14 are graphs showing decision curves of the survival rate prediction model after 1 year, 2 years, 3 years, 4 years, and 5 years, respectively.
  • the AUC simply evaluates the accuracy of the prediction, but the judgment curve reflects the clinical results to calculate and visualize each net benefit for the threshold probability that is the basis of clinical judgment.
  • judgment curves can be used to assess the value of predictive models in real clinical practice. Referring to FIGS. 10 to 14, it can be seen that the net benefit is positive at all threshold probabilities, in particular, the higher the annual, the higher the net benefit. That is, it can be seen that the survival rate prediction model of the present invention is useful for clinical judgment.
  • FIG. 15 is a graph showing the learning effect of the artificial neural network and the comparison simple artificial neural network according to an embodiment of the present invention.
  • an artificial neural network according to an embodiment of the present invention including an RNN layer is represented by RSN (Recurrent Survival Network), and a simple neural network for comparison is represented by Simple_NN.
  • FIG. 15A is a graph illustrating an error (cross_entropy) according to repetitive learning (nb_epoch).
  • nb_epoch repetitive learning
  • FIG. 15B is a graph showing cross validation during each learning. As shown in the graph, in the case of simple neural network (Simple_NN), even if iterative learning is performed, the reduction of validation loss is small and the deviation is large. On the other hand, the verification loss is very low and stable for RSN.
  • Simple_NN simple neural network
  • FIG. 15 (c) is a receiver operating characteristic (ROC) graph showing the accuracy of survival prediction
  • FIG. 15 (d) is a graph showing the AUC (area under curve) distribution result of the ROC graph.
  • the accuracy of survival prediction can be quantified by the area AUC below the ROC graph, and the closer the area is to 1, the higher the accuracy.
  • the average accuracy of the RSN was 0.95 or more
  • the accuracy of the simple neural network Simple_NN was about 0.70.
  • Statistical test was performed by Mann_Whitney test using MedCalc program. As a result, the accuracy of RNN was significantly higher than that of simple neural network (Simple_NN).
  • 16 is a schematic diagram of a method for re-learning the artificial neural network using other regional data.
  • the RSN artificial neural network is retrained using data from other regions or hospitals with databases of different clinical variables, a new neural network optimized for the regional data can be constructed.
  • the inventors divided the Singapore data into training data and test data, and compared the performance of the artificial neural network model retrained by RSN with the Singapore training data to the existing data and the local neural network model trained using only Singapore data.
  • FIG. 17 is a heat map graph comparing a model retrained by adding Singapore data to an RSN and a model trained using only Singapore data.
  • the number of variables learned only from Singapore data is 12, and 29 nodes are generated in the input layer using the classification thereof.
  • a part of Singapore data was added to the learning data of the learning RSN to generate 20 variables and 53 nodes to relearn the artificial neural network.
  • missing data (NaN) in the original data but not in the Singapore data was added through the knn algorithm described above.
  • the original model refers to the artificial neural network tested with the existing data using the existing data, and the adaptive training set re-learned from the existing data and the Singapore data
  • the Singapore model (Singapore training set) refers to the artificial neural network trained and tested using only Singapore data.
  • FIG. 18A illustrates the reduction of errors due to repetitive learning.
  • the learning speed is fast because the reduction of errors due to repetitive learning is large.
  • the error reduction due to the iterative learning is small.
  • FIG. 18B is a graph showing error reduction of the cross test result in each learning. As shown in this graph, the Singapore model shows less validation loss during repetitive learning, and the deviation is large. Therefore, the stability of the model decreases. However, the re-learning model has very low validation loss.
  • (C) of FIG. 18 is a ROC graph showing the accuracy of prediction.
  • the inventors adjusted the survival rate of test data in Singapore with an average probability of 0.95 for the re-learning model, but the accuracy was about 0.80 for the Singapore model.
  • Statistical test through the Mann Whitney test showed that p ⁇ 0.001 was significantly higher than the Singapore model.
  • the relearning model showed not much lower performance than the original model's accuracy. In other words, even when missing values are added by the knn algorithm, the prediction accuracy is not significantly lowered.
  • 19 is a view schematically showing the configuration of the apparatus for predicting the prognosis of gastric cancer using an artificial neural network according to an embodiment of the present invention.
  • the apparatus 10 for predicting prognosis of gastric cancer shown in FIG. 19 illustrates only components related to the present embodiment in order to prevent the features of the present embodiment from being blurred. Accordingly, it will be understood by those skilled in the art that other general purpose components may be further included in addition to the components illustrated in FIG. 19.
  • the apparatus 10 for predicting prognosis of gastric cancer may correspond to at least one processor or may include at least one processor. Accordingly, the prognostic predictive apparatus 10 of gastric cancer may be driven in a form included in another hardware device such as a microprocessor or a general purpose computer system.
  • the invention can be represented by functional block configurations and various processing steps. Such functional blocks may be implemented in various numbers of hardware or / and software configurations that perform particular functions.
  • the present invention is an integrated circuit configuration such as memory, processing, logic, look-up table, etc., capable of executing various functions by the control of one or more microprocessors or other control devices. You can employ them.
  • the present invention includes various algorithms implemented in data structures, processes, routines or other combinations of programming constructs, including C, C ++ It may be implemented in a programming or scripting language such as Java, an assembler, or the like.
  • the functional aspects may be implemented with an algorithm running on one or more processors.
  • the present invention may employ the prior art for electronic environment setting, signal processing, and / or data processing.
  • Terms such as “mechanism”, “element”, “means”, “configuration” may be used widely, and the components of the present invention are not limited to mechanical and physical configurations.
  • the term may include the meaning of a series of routines of software in conjunction with a processor or the like.
  • the prognosis predictor 10 of gastric cancer includes a data acquirer 11, an artificial neural network learner 12, and a survival rate prediction model generator 13.
  • the data acquisition unit 11 obtains medical data, such as clinical data, of a plurality of gastric cancer patients and survival period data after the onset of gastric cancer.
  • the clinical data may be obtained from a medical image of the patient or may be obtained from a patient's specimen test result, but is not limited thereto.
  • the artificial neural network learning unit 12 acquires learning input data and learning output data from clinical data and survival data of a plurality of gastric cancer patients, and includes an input layer, a hidden layer, and an output layer using the learning input data and the learning output data. Learning artificial neural network.
  • Survival prediction model generation unit 13 generates a model for predicting the survival rate of gastric cancer patients using the learned artificial neural network.
  • predicting the survival rate may mean that when the clinical information of the gastric cancer patient is input, the survival rate of the patient is calculated through a predetermined algorithm.
  • the training input data may include molecular genetic subtype data of a plurality of gastric cancer patients, wherein the subtype is a microsatellite instable (MSI) subtype, an MSS / EMT subtype, an MSS / TP53 + subtype, or an MSS. / TP53- subtype.
  • the input layer may include four nodes to which molecular genetic subtype data is input.
  • the neural network learner 12 may calculate the embedding layer by embedding each variable of the training input data into a vector of two or more dimensions.
  • the neural network learner 12 may add missing data (NaN) of training input data using a k-nearest neighbor algorithm (knn).
  • NaN missing data
  • knn k-nearest neighbor algorithm
  • the hidden layer of the artificial neural network may include at least one RNN layer.
  • the prognostic method for predicting gastric cancer using an artificial neural network may be written as a program that can be executed by a computer, and the program may be operated using a computer-readable recording medium.
  • the computer-readable recording medium may include a storage medium such as a magnetic storage medium (eg, a ROM, a floppy disk, a hard disk, etc.) and an optical reading medium (eg, a CD-ROM, a DVD, etc.).
  • the prognosis of the gastric cancer patient can be accurately predicted for each individual.
  • the prognosis of each treatment method can be simulated using the learned artificial neural network, so that the treatment method tailored to each patient can be determined.
  • the present invention relates to a method, apparatus and program for predicting the prognosis of gastric cancer using an artificial neural network, and may be used in the diagnostic and therapeutic device industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Physiology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A method for predicting a prognosis of stomach cancer by using an artificial neural network according to an embodiment of the present invention comprises the steps of: acquiring data on survival periods after the onset of stomach cancer and clinical data of a plurality of stomach cancer patients; acquiring learning input data and learning output data from the clinical data and the data on survival periods; causing an artificial neural network including an input layer, a hidden layer, and an output layer to perform learning using the learning input data and the learning output data; and generating a model for predicting a survival rate of a stomach cancer patient by using the learned artificial neural network.

Description

인공신경망을 이용한 위암의 예후 예측 방법, 장치 및 프로그램Prognostic Method, Apparatus and Program of Gastric Cancer Using Artificial Neural Network
본 발명은 인공신경망을 이용한 위암의 예후 예측 방법, 장치 및 프로그램에 관한 것이다.The present invention relates to a method, apparatus and program for predicting prognosis of gastric cancer using an artificial neural network.
위암은 우리나라 전체 암 중 발생 빈도 1위, 사망 원인 2위일 정도로 많이 발생하는 암이다. 위암은 종양의 주변 구조 침범 정도, 부위 림프절로의 전이, 다른 장기로의 전이 등 진행 정도에 따라 병기가 결정되는데, 이에 따라 치료법과 예후가 달라진다. 병기가 증가할수록 예후는 점점 나빠지고, 특히 말기(Stage 4)에서는 5년 생존율이 3%밖에 되지 않을 정도로 예후가 좋지 않다.Stomach cancer is one of the most common cancers in Korea and the second most common cause of death. Gastric cancer is determined according to the extent of tumor involvement of the surrounding structures, metastases to regional lymph nodes, and metastases to other organs, and thus the treatment and prognosis are different. As the staging increases, the prognosis gets worse and worse, especially in late stages (Stage 4), with a five-year survival rate of only 3%.
그러나 같은 병기를 가지더라도 사람에 따라 그 예후는 이질적일 수 있는데, 이는 다양한 환경적, 유전적 원인에서 비롯된다. 따라서 암의 예후를 개인별로 정확하게 예측할 수 있게 해주는 다양한 방법들이 개발되고 있다. However, even with the same staging, the prognosis may be heterogeneous in some people, due to various environmental and genetic causes. Therefore, a variety of methods are being developed to enable individuals to accurately predict the prognosis of cancer.
예컨대 한국등록특허 제10-1415257호에서는 microRNA-196b RNA 및 HOXA10(Homeobox A10) 단백질의 과발현 수준을 측정하여 위암의 예후를 진단하는 방법을 개시하고 있다. For example, Korean Patent No. 10-1415257 discloses a method for diagnosing the prognosis of gastric cancer by measuring the level of overexpression of microRNA-196b RNA and HOXA10 (Homeobox A10) protein.
한편, 한국등록특허 제10-1504818호에서는 여러 유전자 발현 프로파일을 클러스터 분석하여 위암의 예후를 예측하는 시스템을 개시하고 있다.On the other hand, in Korean Patent Registration No. 10-1504818 A system for predicting the prognosis of gastric cancer is disclosed by cluster analysis of several gene expression profiles.
단, 기존의 위암 예후 예측 방법은, 위암 예후를 단순히 저위험군, 중간위험군, 고위험군으로 나누는 것에 불과하여 위암 환자의 생존율 예측을 정확하게 수행할 수 없다는 문제가 있다.However, the conventional gastric cancer prognosis prediction method merely divides the gastric cancer prognosis into a low risk group, a middle risk group, and a high risk group, and thus there is a problem in that it is impossible to accurately predict the survival rate of gastric cancer patients.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점을 해결하기 위한 것으로써, 인공신경망을 이용하여 위암의 예후를 예측하는 방법, 장치 및 프로그램을 제공하는 것을 목적으로 한다. Disclosure of Invention The present invention aims to provide a method, apparatus, and program for predicting the prognosis of gastric cancer using an artificial neural network.
그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.However, these problems are exemplary, and the scope of the present invention is not limited thereby.
본 발명의 일 실시예에 따른 인공신경망을 이용한 위암의 예후 예측 방법은, 복수의 위암 환자들의 임상 데이터 및 위암 발병 후 생존 기간 데이터를 획득하는 단계; 상기 임상 데이터와 상기 생존 기간 데이터로부터 학습용 입력 데이터와 학습용 출력 데이터를 획득하는 단계; 상기 학습용 입력 데이터와 상기 학습용 출력 데이터를 이용하여 입력층, 은닉층, 출력층을 포함하는 인공신경망을 학습시키는 단계; 및 상기 학습된 인공신경망을 이용하여 위암 환자의 생존율을 예측하는 모델을 생성하는 단계;를 포함한다.According to an embodiment of the present invention, a method for predicting prognosis of gastric cancer using an artificial neural network may include obtaining clinical data and survival time data after gastric cancer onset of a plurality of gastric cancer patients; Acquiring training input data and training output data from the clinical data and the survival data; Training an artificial neural network including an input layer, a hidden layer, and an output layer using the training input data and the training output data; And generating a model for predicting survival of gastric cancer patients using the learned artificial neural network.
일 실시예에 있어서, 상기 학습용 입력 데이터는 상기 복수의 위암 환자들의 분자 유전학적 아형(subtype) 데이터를 포함할 수 있고, 상기 아형은 MSI(microsatellite instable) 아형, MSS/EMT 아형, MSS/TP53+ 아형, MSS/TP53- 아형을 포함한다. In one embodiment, the learning input data may include molecular genetic subtype data of the plurality of gastric cancer patients, and the subtype is a microsatellite instable (MS) subtype, an MSS / EMT subtype, an MSS / TP53 + subtype. , MSS / TP53- subtype.
일 실시예에 있어서, 상기 입력층은 상기 분자 유전학적 아형 데이터가 입력되는 4개의 노드를 포함할 수 있다. In one embodiment, the input layer may include four nodes into which the molecular genetic subtype data is input.
일 실시예에 있어서, 상기 학습용 입력 데이터와 상기 학습용 출력 데이터를 이용하여 상기 인공신경망을 학습시키는 단계는, 상기 학습용 입력 데이터의 각 변수를 2차원 이상의 벡터로 임베딩(embedding)하여 임베딩층을 산출하는 단계를 포함할 수 있다. The training of the artificial neural network using the training input data and the training output data may include: embedding each variable of the training input data into a vector of two or more dimensions to calculate an embedding layer. It may include a step.
일 실시예에 있어서, 상기 임상 데이터와 상기 생존 기간 데이터로부터 각각 학습용 입력 데이터와 학습용 출력 데이터를 획득하는 단계는, k-최근접 이웃 알고리즘(k-nearest neighbor algorithm: knn)을 이용하여 결측치(missing data, NaN)를 추가하는 단계를 포함할 수 있다. In one embodiment, acquiring training input data and training output data from the clinical data and the survival data, respectively, may include missing values using a k-nearest neighbor algorithm (knn). data, NaN) may be added.
일 실시예에 있어서, 상기 인공신경망의 상기 은닉층은 적어도 하나의 순환신경망(RNN) 층을 포함할 수 있다. In one embodiment, the hidden layer of the artificial neural network may comprise at least one RNN layer.
본 발명의 일 실시예에 따른 인공신경망을 이용한 위암의 예후 예측 장치는, 복수의 위암 환자들의 임상 데이터 및 위암 발병 후 생존 기간 데이터를 획득하는 데이터 획득부; 및 상기 임상 데이터와 상기 생존 기간 데이터로부터 학습용 입력 데이터와 학습용 출력 데이터를 획득하고, 상기 학습용 입력 데이터와 상기 학습용 출력 데이터를 이용하여 입력층, 은닉층, 출력층을 포함하는 인공신경망을 학습시키는 인공신경망 학습부; 및 상기 학습된 인공신경망을 이용하여 위암 환자의 생존율을 예측하는 모델을 생성하는 생존율 예측 모델 생성부;를 포함한다. According to an embodiment of the present invention, an apparatus for predicting the prognosis of gastric cancer using an artificial neural network may include: a data acquisition unit configured to acquire clinical data and survival time data after gastric cancer onset of a plurality of gastric cancer patients; And an artificial neural network learning that obtains learning input data and learning output data from the clinical data and the survival period data, and trains an artificial neural network including an input layer, a hidden layer, and an output layer using the learning input data and the learning output data. part; And a survival prediction model generator for generating a model for predicting survival of gastric cancer patients using the learned artificial neural network.
일 실시예에 있어서, 상기 학습용 입력 데이터는 상기 복수의 위암 환자들의 분자 유전학적 아형 데이터를 포함할 수 있고, 상기 아형은 MSI(microsatellite instable) 아형, MSS/EMT 아형, MSS/TP53+ 아형, MSS/TP53- 아형을 포함한다. In one embodiment, the learning input data may comprise molecular genetic subtype data of the plurality of gastric cancer patients, the subtype is a microsatellite instable (MSI) subtype, MSS / EMT subtype, MSS / TP53 + subtype, MSS / TP53- subtype.
일 실시예에 있어서, 상기 입력층은 상기 분자 유전학적 아형 데이터가 입력되는 4개의 노드를 포함할 수 있다. In one embodiment, the input layer may include four nodes into which the molecular genetic subtype data is input.
일 실시예에 있어서, 상기 인공신경망 학습부는 상기 학습용 입력 데이터의 각 변수를 2차원 이상의 벡터로 임베딩(embedding)하여 임베딩층을 산출할 수 있다. The neural network learner may calculate an embedding layer by embedding each variable of the training input data into a vector of two or more dimensions.
일 실시예에 있어서, 상기 인공신경망 학습부는, k-최근접 이웃 알고리즘(k-nearest neighbor algorithm: knn)을 이용하여 상기 학습용 입력 데이터의 결측치(missing data, NaN)를 추가할 수 있다. The neural network learning unit may add missing data (NAN) of the training input data using a k-nearest neighbor algorithm (knn).
일 실시예에 있어서, 상기 인공신경망의 상기 은닉층은 적어도 하나의 순환신경망(RNN) 층을 포함할 수 있다. In one embodiment, the hidden layer of the artificial neural network may comprise at least one RNN layer.
본 발명의 다른 실시예는 컴퓨터를 이용하여 전술한 인공신경망을 이용한 위암의 예후 예측 방법을 실행하기 위하여 매체에 저장된 컴퓨터 프로그램을 개시한다.Another embodiment of the present invention discloses a computer program stored in a medium for executing the above-described prognostic method of gastric cancer using the artificial neural network using a computer.
전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.Other aspects, features, and advantages other than those described above will become apparent from the following drawings, claims, and detailed description of the invention.
본 발명에 따른 인공신경망을 이용한 위암의 예후 예측 방법, 장치 및 프로그램에 따르면, 위암 환자의 예후를 개개인별로 정확하게 예측할 수 있다. 그뿐만 아니라, 학습된 인공신경망을 이용하여 각 치료 방법에 의한 예후를 시뮬레이션할 수 있으므로 환자별 맞춤형 치료 방법을 결정할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to the method, apparatus and program for predicting the prognosis of gastric cancer using the artificial neural network according to the present invention, the prognosis of the gastric cancer patient can be accurately predicted for each individual. In addition, the prognosis of each treatment method can be simulated using the learned artificial neural network, so that the treatment method tailored to each patient can be determined. Of course, the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일 실시예에 따른 인공신경망을 이용한 위암의 예후 예측 방법을 나타낸 순서도이다. 1 is a flowchart illustrating a prognostic method of gastric cancer using an artificial neural network according to an embodiment of the present invention.
도 2는 ACRG(Asian Cancer Research Group)에서 연구한 위암 환자 집단에서, MSI(microsatellite instable) 아형, MSS/EMT 아형, MSS/TP53+ 아형, MSS/TP53- 아형에 따른 생존율의 상관관계를 나타낸 그래프이다. Figure 2 is a graph showing the correlation of survival rate according to the microsatellite instable (MSI) subtype, MSS / EMT subtype, MSS / TP53 + subtype, and MSS / TP53- subtype in the gastric cancer patient population studied by the Asian Cancer Research Group (ACRG). .
도 3은 본 발명의 일 실시예에 의한 인공신경망의 토폴러지(topology)를 간략하게 나타낸 그림이다.Figure 3 is a simplified illustration of the topology (topology) of the artificial neural network according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 인공신경망의 히트맵(heatmap) 그래프의 일부를 개략적으로 나타낸 그림이다.4 is a diagram schematically showing a part of a heatmap graph of an artificial neural network according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 인공신경망을 이용한 위암의 예후 예측 방법에 따라 위암 환자의 t번째 구간 생존율을 예측하는 모델을 생성하는 방법을 예시한 그림이다. FIG. 5 is a diagram illustrating a method of generating a model for predicting survival rate of a t-section of a gastric cancer patient according to a method for predicting prognosis of gastric cancer using an artificial neural network according to an embodiment of the present invention.
도 6는 본 발명의 일 실시예에 따라 연도별로 순차적으로 학습시킨 인공신경망의 히트맵(heatmap) 그래프의 일부를 개략적으로 나타낸 그림이다.FIG. 6 is a diagram schematically showing a part of a heatmap graph of an artificial neural network trained sequentially by year according to an embodiment of the present invention.
도 7은 트레이닝 중 연도별 생존율 예측 모델의 ROC 그래프의 AUC값을 비교한 그래프이다.7 is a graph comparing the AUC values of the ROC graph of the yearly survival prediction model during training.
도 8은 별도의 테스트 데이터로 연도별 생존율 예측 모델을 검증한 ROC 그래프이다.8 is a ROC graph verifying the survival prediction model for each year as separate test data.
도 9는 생존율 예측 모델이 예측한 생존율과 실제 생존 비율을 비교한 그래프이다.9 is a graph comparing survival and actual survival rates predicted by the survival prediction model.
도 10 내지 도 14는 각각 1년, 2년, 3년, 4년, 5년 후 생존율 예측 모델의 판단 곡선(decision curve)을 나타낸 그래프이다.10 to 14 are graphs showing decision curves of the survival rate prediction model after 1 year, 2 years, 3 years, 4 years, and 5 years, respectively.
도 15는 본 발명의 일 실시예에 따른 인공신경망과 비교용 단순 인공신경망의 학습 효과를 나타낸 그래프이다.15 is a graph showing the learning effect of the artificial neural network and the comparison simple artificial neural network according to an embodiment of the present invention.
도 16은 타 지역 데이터를 이용하여 인공신경망을 재학습시키는 방법에 대한 모식도이다. 16 is a schematic diagram of a method for re-learning the artificial neural network using other regional data.
도 17은 본 발명의 일 실시예에 따른 인공신경망을 이용한 위암의 예후 예측 모델인 RSN(Recurrent Survival Network)에 싱가포르 데이터를 추가하여 재학습시킨 모델과 싱가포르 데이터만으로 학습된 모델을 비교한 히트맵 그래프이다. FIG. 17 is a heat map graph comparing a model trained only with Singapore data and a model retrained by adding Singapore data to RSN (Recurrent Survival Network), a prognostic prediction model of gastric cancer using an artificial neural network, according to an embodiment of the present invention. to be.
도 18은 원래의 모델, 싱가포르 데이터를 추가하여 재학습시킨 재학습 모델, 싱가포르 데이터만으로 학습시킨 싱가포르 모델의 효과를 비교한 그래프이다. 18 is a graph comparing the effects of the original model, the re-learning model retrained by adding Singapore data, and the Singapore model trained on Singapore data only.
도 19는 본 발명의 일 실시예에 따른 인공신경망을 이용한 위암의 예후 예측 장치의 구성을 개략적으로 나타낸 그림이다.19 is a view schematically showing the configuration of the apparatus for predicting the prognosis of gastric cancer using an artificial neural network according to an embodiment of the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail. Effects and features of the present invention, and methods of achieving them will be apparent with reference to the embodiments described below in detail together with the drawings. However, the present invention is not limited to the embodiments disclosed below but may be implemented in various forms.
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용된다.In the following embodiments, the terms first, second, etc. are used for the purpose of distinguishing one component from other components rather than having a limiting meaning.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In the following examples, the singular forms "a", "an" and "the" include plural forms unless the context clearly indicates otherwise.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.In the following examples, the terms including or having have meant that there is a feature or component described in the specification and does not preclude the possibility of adding one or more other features or components.
이하의 실시예에서, '노드'는 특정 값을 가지고 특정 알고리즘을 거쳐 그 값을 변화시킬 수 있으며, 다른 노드와 연결할 수 있는 추상적 개념의 객체를 의미한다. In the following embodiments, a 'node' means an object of abstract concept that can change a value with a specific algorithm and connect with another node.
이하의 실시예에서, 용어 '입력층'은 사용자가 부여한 특정 변수를 가지는 한 개 이상의 노드들의 집합이며, 용어 '출력층'은 사용자가 정한 특정한 절차에 따라서 그 절차의 결과값을 가지는 한 개 이상의 노드들의 집합이고, '은닉층'은 사용자가 정해준 절차를 수행할 때에 임시로 나타나는 중간 결과 및 임시값을 저장하는 한 개 이상의 노드들의 집합을 의미한다. In the following embodiments, the term 'input layer' is a set of one or more nodes having a particular variable assigned by the user, and the term 'output layer' is one or more nodes having a result value of the procedure according to a specific procedure determined by the user. "Hidden layer" means a set of one or more nodes that store interim results and temporary values that appear temporarily when performing a procedure set by a user.
입력층의 노드들과 은닉층의 노드들 사이, 그리고 은닉층의 노드들과 출력층의 노드들 사이에는 각각 링크들이 존재할 수 있으며, 이 링크들은 사용자가 정의한 절차에 의해 부여받는 특정한 가중치를 가질 수 있다.There may be links between the nodes of the input layer and the nodes of the hidden layer, and between the nodes of the hidden layer and the nodes of the output layer, respectively, which may have a specific weight given by a user defined procedure.
이하의 실시예에서 용어 '예후'는 환자의 생존율, 병세의 진행, 회복에 관한 예측을 나타내는 의학용어이다. In the following examples, the term 'prognosis' is a medical term indicating the prediction of survival, progression and recovery of a patient.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 같거나 대응하는 구성 요소는 같은 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and the same or corresponding components will be denoted by the same reference numerals, and redundant description thereof will be omitted. .
도 1은 본 발명의 일 실시예에 따른 인공신경망을 이용한 위암의 예후 예측 방법을 나타낸 순서도이다. 1 is a flowchart illustrating a prognostic method of gastric cancer using an artificial neural network according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 인공신경망을 이용한 위암의 예후 예측 방법은, 복수의 위암 환자들의 임상 데이터 및 위암 발병 후 생존 기간 데이터를 획득하는 단계; 상기 임상 데이터와 상기 생존 기간 데이터로부터 학습용 입력 데이터와 학습용 출력 데이터를 획득하는 단계; 상기 학습용 입력 데이터와 상기 학습용 출력 데이터를 이용하여 입력층, 은닉층, 출력층을 포함하는 인공신경망을 학습시키는 단계; 및 상기 학습된 인공신경망을 이용하여 위암 환자의 생존율을 예측하는 모델을 생성하는 단계;를 포함한다. According to an embodiment of the present invention, a method for predicting prognosis of gastric cancer using an artificial neural network may include obtaining clinical data and survival time data after gastric cancer onset of a plurality of gastric cancer patients; Acquiring training input data and training output data from the clinical data and the survival data; Training an artificial neural network including an input layer, a hidden layer, and an output layer using the training input data and the training output data; And generating a model for predicting survival of gastric cancer patients using the learned artificial neural network.
도 1을 참조하면, 복수의 위암 환자들의 임상 데이터 및 위암 발병 후 생존 기간 데이터를 획득하는 단계(S10)가 수행된다. Referring to FIG. 1, a step (S10) of obtaining clinical data and survival time data after the onset of gastric cancer patients is performed.
본 명세서에서 임상 데이터는, 환자의 나이, 성별 등의 신체적 개인정보와 위암 발생 후의 수술 기록, 재발 여부 등 위암에 관련된 병적 기록 등을 포함한다. 위암 발병 후 생존 기간 데이터는, 이미 사망한 환자의 경우에는 위암 발생을 인지한 시점부터 사망까지의 기간을, 생존하고 있는 환자의 경우에는 위암 발생을 인지한 시점부터 본 발명을 실시하는 시점까지의 기간을 의미할 수 있다. In the present specification, the clinical data includes physical personal information such as age and gender of the patient, surgical records after gastric cancer occurrence, pathological records related to stomach cancer such as recurrence, and the like. Survival data after the onset of gastric cancer indicates that the period from the time of recognizing the occurrence of gastric cancer to death in the case of patients who have already died, from the time of recognizing the occurrence of gastric cancer in the case of surviving patients to the time of implementing the present invention It can mean a period.
임상 데이터 및 위암 발병 후 생존 기간 데이터는 한 개 이상의 병원 또는 지역의 위암 환자들로부터 획득할 수 있다. 임상 데이터는 환자의 의료 영상으로부터 획득되거나, 환자의 검체 검사 결과로부터 획득될 수 있으나 이에 한정되지 않는다. 본 발명자들은 5년 이상 추시 관찰한 삼성서울병원의 1187명의 위암 환자들로부터 임상 데이터 및 생존 기간 데이터를 획득하였다Clinical data and survival data after onset of gastric cancer may be obtained from gastric cancer patients in one or more hospitals or regions. Clinical data may be obtained from a medical image of a patient or may be obtained from a patient's specimen test result, but is not limited thereto. The present inventors obtained clinical data and survival data from 1187 gastric cancer patients of Samsung Medical Center who were followed up for more than 5 years.
이후, 임상 데이터와 생존 기간 데이터로부터 각각 학습용 입력 데이터와 학습용 출력 데이터를 획득하는 단계(S20)가 수행된다. Thereafter, a step (S20) of acquiring the learning input data and the learning output data from the clinical data and the survival period data is performed.
학습용 입력 데이터는 후술할 인공신경망을 학습하기 위해 입력층의 노드에 입력될 데이터를 의미한다. [표 1]은 학습용 입력 데이터에 포함될 수 있는 변수 및 이의 분류를 나타낸다. The training input data refers to data to be input to a node of the input layer in order to learn an artificial neural network to be described later. Table 1 shows variables that can be included in the learning input data and their classification.
변수variable 분류Classification
분자 유전학적 아형Molecular Genetic Subtypes molecular subtype 1: MSImolecular subtype 1: MSI
molecular subtype 2: MSS/EMTmolecular subtype 2: MSS / EMT
molecular subtype 3: MSS/TP53+molecular subtype 3: MSS / TP53 +
molecular subtype 4: MSS/TP53-molecular subtype 4: MSS / TP53-
RAS 시그니처(RAS signature)RAS signature 실수값Real value
성별(sex)Sex 남자: 1, 여자: 2Male: 1, female: 2
나이age 실수값Real value
HER2HER2 0= negative; 1= positive0 = negative; 1 = positive
WHO 암 분류WHO Cancer Classification 1=w/d adeno1 = w / d adeno
2=m/d adeno2 = m / d adeno
3=p/d adeno3 = p / d adeno
4=signet ring4 = signet ring
5= mucinous5 = mucinous
6=papillary adeno6 = papillary adeno
7=adenosquamous7 = adenosquamous
8=undifferentiated ca8 = undifferentiated ca
9=hepatoid adenoca9 = hepatoid adenoca
10=tubular adenoca10 = tubular adenoca
11=others (text)11 = others (text)
LAUREN 병리적 분류LAUREN pathological classification 1=intestinal1 = intestinal
2=diffuse2 = diffuse
3=mixed3 = mixed
병리적 소견: 주변 신경 침범 여부 (perineural invasion)Pathological findings: Perineural invasion PNI 0=(-), 1=(+)PNI 0 = (-), 1 = (+)
병리적 소견: 림프관 침범 여부Pathological Findings: Lymphatic Involvement inv 0=(-), 1=(+)inv 0 = (-), 1 = (+)
TNM stageTNM stage TT
NN
MM
절제 림프절 개수Resected lymph node count # LN dissected: 정수값# LN dissected: integer value
암 침범 림프절 개수Cancer-involved lymph node count # of positive node (+): 정수값# of positive node (+): integer value
재수술 위치(revised location)Revised location CardiaCardia
BodyBody
AntrumAntrum
수술 방법 TG; total , ST: subtotalSurgical method TG; total, ST: subtotal 1=TG, 2=STG1 = TG, 2 = STG
보조적 요법 완수 여부Completion of Adjuvant Therapy 0=completed 1=not completed0 = completed 1 = not completed
보조 요법 종류(ADJ CTx. Description)Adjuvant Therapy Types (ADJ CTx.Description) CCRTCCRT
LF_RTLF_RT
XP_RTXP_RT
XPXP
OthersOther
재발 여부(recurrence)Recurrence no=0 yes=1 no = 0 yes = 1
재발 위치Recurrence position First site of recurrence_liver 0=(-), 1=(+)First site of recurrence_liver 0 = (-), 1 = (+)
First site of recurrence_peritoneal seeding 0=(-), 1=(+)First site of recurrence_peritoneal seeding 0 = (-), 1 = (+)
First site of recurrence_ascites (clinically significant) 0=(-), 1=(+)First site of recurrence_ascites (clinically significant) 0 = (-), 1 = (+)
First site of recurrence_intraabdominal_LN 0=(-), 1=(+)First site of recurrence_intraabdominal_LN 0 = (-), 1 = (+)
First site of recurrence_distant lymph node 0=(-), 1=(+)First site of recurrence_distant lymph node 0 = (-), 1 = (+)
First site of recurrence_bone 0=(-), 1=(+)First site of recurrence_bone 0 = (-), 1 = (+)
recurrence sites_others 0=(-), 1=(+)recurrence sites_others 0 = (-), 1 = (+)
위의 변수뿐 아니라 K-ras 돌연변이 여부, 수술 날짜, 재발 시기 등과 같은 다양한 임상적 변수 역시 학습용 입력 데이터에 포함될 수 있음은 자명하다. In addition to the above variables, it is obvious that various clinical variables such as K-ras mutation status, surgery date, and recurrence time can be included in the learning input data.
이 중, 위암의 분자유전학적 아형은 위암 시료의 마이크로세틀라이트 불안정성(microsatellite instability)을 측정하여 분류한 MSI(microsatellite instable) 아형과 MSS(microsatellite stable) 아형, MSS 아형에 대해 EMT(epithelial-to-mesenchymal transition)을 측정하여 분류한 MSS/EMT 아형과 MSS/epithelial 아형, MSS/epithelial 아형에 대해 TP53(Tumor Protein 53)의 활성을 측정하여 분류한 MSS/TP53+ 아형과 MSS/TP53- 아형으로 분류된다. Among these, the molecular genetic subtypes of gastric cancer are epipithelial-to-mesenchymal for EMT (microsatellite instable), MSS (microsatellite stable) subtypes, and MSS subtypes, which are classified by measuring microsatellite instability of gastric cancer samples. It is classified into MSS / TP53 + and MSS / TP53- subtypes by measuring the activity of TP53 (Tumor Protein 53) for MSS / EMT subtypes, MSS / epithelial subtypes, and MSS / epithelial subtypes.
본 발명의 일 실시예에 따르면, 학습용 입력 데이터는 복수의 위암 환자들의 분자 유전학적 아형(subtype) 데이터를 포함하고, 상기 아형은 MSI(microsatellite instable) 아형, MSS/EMT 아형, MSS/TP53+ 아형, MSS/TP53- 아형을 포함한다. According to an embodiment of the present invention, the learning input data includes molecular genetic subtype data of a plurality of gastric cancer patients, wherein the subtype is a microsatellite instable (MS) subtype, an MSS / EMT subtype, an MSS / TP53 + subtype, MSS / TP53- subtype.
상기와 같은 새로운 위암의 분자유전학적 아형을 분류하기 위해, 본 발명자들은 삼성병원(Samsung Medical Center, SMC)에서 위전절제술(total gastrectomy) 또는 위부분절제술(subtotal gastrectomy)을 받은 환자의 일차 종양 시료(n=300)를 입수하였다. In order to classify such molecular genetic subtypes of new gastric cancer, the inventors of the present invention used a primary tumor sample of a patient who underwent total gastrectomy or subtotal gastrectomy at Samsung Medical Center (SMC). n = 300).
먼저, 위암 시료는 마이크로세틀라이트 불안정성(microsatellite instability) 정도에 따라 MSI(microsatellite instable) 아형과 MSS(microsatellite stable) 아형으로 분류될 수 있다. First, gastric cancer samples may be classified into a microsatellite instable (MSI) subtype and a microsatellite stable (MSS) subtype according to the degree of microsatellite instability.
MSI 아형의 경우에는 유전자 돌연변이가 많이 발생하며, 상대적으로 암의 진행이 느린 편이다. 또한 MSI 아형 환자의 약 60%가 암 1기 또는 2기에 해당하였으며, 평균 생존기간은 100.9 개월로 가장 길게 나타나며 로렌(Lauren) 분류에서 장형(intestinal)이 많은 비율로 속해 있다. In MSI subtypes, many gene mutations occur and cancer progresses relatively slowly. In addition, approximately 60% of MSI subtypes corresponded to stage 1 or 2 of cancer, with an average survival of 100.9 months, which is the longest in the Lauren classification.
MSS 아형은, EMT(epithelial-tomesenchymal transition)을 측정하여 MSS/EMT 아형과 MSS/epithelial 아형으로 분류할 수 있다. EMT 측정으로 간엽(mesenchymal)과 유사한 것으로 측정되는 경우 이를 MSS/EMT 아형으로 분류하며, 상피(epithelial)와 유사한 것으로 측정되는 경우 이를 MSS/epithelial 아형으로 분류한다.MSS subtypes can be classified into MSS / EMT subtypes and MSS / epithelial subtypes by measuring epithelial-tomesenchymal transition (EMT). If it is determined to be similar to mesenchymal by EMT measurement, it is classified as MSS / EMT subtype.
MSS/EMT 아형은 로렌 분류에서 확산성(diffuse) 종양을 주로 포함하고, 유전자 돌연변이가 거의 나타나지 않으며, 위암 환자의 예후가 좋지 않다. 또한 이 아형은 낮은 연령에서 발견되며 암의 진행이 빠르고 가장 높은 재발률(63%)을 나타낸다. The MSS / EMT subtype mainly contains diffuse tumors in the Lauren classification, shows little genetic mutation, and has a poor prognosis in gastric cancer patients. This subtype is also found at a lower age and has a faster cancer progression with the highest recurrence rate (63%).
MSS/epithelial 아형의 경우에는 TP53(Tumor Protein 53)의 활성을 측정하여 MSS/TP53+ 아형과 MSS/TP53- 아형으로 분류할 수 있다. TP53의 활성도가 높은 경우 MSS/TP53+ 아형으로, 활성도가 낮은 경우 MSS/TP53- 아형으로 분류된다. MSS/TP53+ 아형 및 MSS/TP53- 아형은 4종류의 아형 중 중간 정도의 예후와 재발률을 나타낸다. 구체적으로, MSS/TP53+ 아형의 경우에는 장형 위암이 많다. MSS/TP53- 아형은 분석 대상자 중 가장 많은 환자가 갖는 아형이며, TP53의 기능이 소실되어 MSS/TP53+ 아형보다 위암 환자의 예후가 좋지 않다. In the case of MSS / epithelial subtype, the activity of TP53 (Tumor Protein 53) can be measured and classified into MSS / TP53 + and MSS / TP53- subtypes. If the activity of TP53 high when MSS / TP53 + a subtype, a low activity is classified as MSS / TP53- subtypes. The MSS / TP53 + and MSS / TP53- subtypes show moderate prognosis and recurrence rate among the four subtypes. Specifically, in the MSS / TP53 + subtype, there are many enteric gastric cancers. The MSS / TP53- subtype is the subtype of the most patients analyzed, and the prognosis of gastric cancer patients is worse than that of the MSS / TP53 + subtype due to loss of TP53 function.
도 2는 ACRG(Asian Cancer Research Group)에서 연구한 위암 환자 집단에서, MSI(microsatellite instable) 아형, MSS/EMT 아형, MSS/TP53+ 아형, MSS/TP53- 아형에 따른 생존율의 상관관계를 나타낸 그래프이다. Figure 2 is a graph showing the correlation of survival rate according to the microsatellite instable (MSI) subtype, MSS / EMT subtype, MSS / TP53 + subtype, and MSS / TP53- subtype in the gastric cancer patient population studied by the Asian Cancer Research Group (ACRG). .
도 2에서 보듯, MSI 아형이 가장 좋은 생존율을 보였고, 그 다음이 MSS/TP53+ 및 MSS/TP53- 이며 MSS/EMT 아형이 가장 좋지 않은 생존율을 보였다(log-rank, P = 0.0004). 즉 위암 환자의 생존율은 MSI 아형이 가장 높고 MSS/EMT 아형이 가장 낮은 것으로 확인되므로, 유전자 분석을 통한 아형 분석에 따라 생존율의 예측이 가능하다. 따라서, 위와 같은 위암의 분자유전학적 아형을 입력값으로 하여 인공신경망을 학습시키는 경우, 인공신경망을 이용한 위암의 예후 예측 정확도가 높아지게 된다. As shown in Figure 2, MSI subtypes showed the best survival rate, followed by MSS / TP53 + and MSS / TP53-, and MSS / EMT subtypes showed the poorest survival rate (log-rank, P = 0.0004). In other words, the survival rate of gastric cancer patients was confirmed to have the highest MSI subtype and the lowest MSS / EMT subtype, so the survival rate can be predicted according to the subtype analysis through genetic analysis. Therefore, when the artificial neural network is trained using the molecular genetic subtype of gastric cancer as an input value, the prediction accuracy of gastric cancer using the artificial neural network is increased.
[표 1]에 예시된 학습용 입력 데이터 중에서, WHO 종양 종류, 분자 유전학적 아형 등과 같이 3개 이상으로 카테고리화 할 수 있는 변수는 one-hot encoding 기법을 이용하여 벡터로 변환할 수 있다. 성별, 암 재발 여부와 같이 2개의 분류밖에 없는 경우에는, 두 개의 분류를 0, 1 또는 1, 2로 라벨링하여 하나의 값으로 변환시킬 수 있다. RAS 시그니처 등과 같은 정량적 변수는 정규화(normalization)한 후 가공하여 하나의 수로 변경시킬 수 있다. 이를 통해 학습용 입력 데이터를 수학적으로 처리할 수 있다. Among the input data for training illustrated in Table 1, variables that can be categorized into three or more such as WHO tumor types and molecular genetic subtypes can be converted into vectors using a one-hot encoding technique. If there are only two classifications, such as gender and cancer recurrence, the two classifications can be labeled with 0, 1 or 1, 2 and converted into a single value. Quantitative variables, such as RAS signatures, can be normalized and processed to one number. Through this, it is possible to mathematically process the input data for learning.
예컨대, 아래의 [표 2]와 같은 임상 데이터를 가지는 환자 A가 있다고 가정하자. [표 2]에서는 [표 1]에 나타난 변수 중 일부만을 기재하였다. For example, suppose that patient A has clinical data as shown in Table 2 below. Table 2 describes only some of the variables shown in Table 1.
Figure PCTKR2017012068-appb-T000001
Figure PCTKR2017012068-appb-T000001
이때 학습용 입력 데이터가 입력되는 인공신경망의 노드에 환자 A의 분자 유전학적 아형 정보를 입력할 때, 예컨대 [MSI 노드, MSS/EMT 노드, MSS/TP53+ 노드, MSS/TP53- 노드] = [1, 0, 0, 0] 과 같은 형태로 입력한다. 즉 인공신경망의 입력층은 상술한 분자 유전학적 아형 데이터를 입력하기 위한 4개의 노드를 포함할 수 있다. At this time, when the molecular genetic subtype information of the patient A is input to the node of the neural network into which the training input data is input, for example, [MSI node, MSS / EMT node, MSS / TP53 + node, MSS / TP53- node] = [1, 0, 0, 0]. That is, the input layer of the artificial neural network may include four nodes for inputting the above-described molecular genetic subtype data.
이와 달리, MSI = 1, MSS/EMT = 2, MSS/TP53+ = 3, MSS/TP53- = 4와 같이 라벨링하여 입력층의 [아형 노드] = [1]과 같이 입력하게 되면, 은닉층에서 각 분류에 대한 정보의 손실이 일어나게 된다. On the other hand, if MSI = 1, MSS / EMT = 2, MSS / TP53 + = 3, and MSS / TP53- = 4, and input as [subtype node] = [1] of the input layer, each classification in hidden layer Information loss occurs.
한편, 성별과 같이 두 개의 분류밖에 없는 경우에는, 성별 정보를 학습용 입력 데이터에 입력할 때 [성별 노드] = 0 또는 1과 같은 형태로 입력한다. 즉 두 개의 분류 밖에 없는 변수의 경우 하나의 노드를 할당한다. 이와 같은 경우에는 노드에 연결된 링크에서의 웨이트(weight)를 통해 성별이 환자의 생존율에 미치는 영향을 파악할 수 있으므로, 2개의 노드를 할당하지 않아도 무방하다. On the other hand, when there are only two classifications such as gender, when gender information is input into the learning input data, the gender information is input in the form of [gender node] = 0 or 1. In other words, for a variable with only two classifications, one node is allocated. In such a case, the weight of the link connected to the node can determine the effect of sex on the patient's survival rate, so it is not necessary to allocate two nodes.
한편, 본 발명의 일 실시예에 따르면, 학습용 입력 데이터는 위암 환자의 생존율 또는 사망률 데이터를 포함할 수 있다. 예컨대 각각의 위암 환자의 임상 데이터로부터 얻은 i개의 데이터가 있는 경우, 학습용 입력 데이터는 상기 위암 환자의 전년도 생존율 데이터 및 전년도 사망률 데이터를 포함한 i+2개의 데이터 세트일 수 있다. 이에 대하여는 후술한다. Meanwhile, according to one embodiment of the present invention, the learning input data may include survival rate or mortality data of gastric cancer patients. For example, if there are i data obtained from clinical data of each gastric cancer patient, the training input data may be i + 2 data sets including the previous year survival rate data and the previous year mortality data of the gastric cancer patient. This will be described later.
학습용 출력 데이터는 인공신경망을 학습하기 위해 출력층의 노드에 입력될 데이터를 의미한다. 이러한 학습용 출력 데이터는 환자의 위암 발병 후 어느 기간 이내의 생존 여부 정보를 포함할 수 있다. The training output data means data to be input to a node of an output layer in order to learn an artificial neural network. Such learning output data may include information on survival within a certain period after the onset of gastric cancer of the patient.
학습용 입력 데이터와 학습용 출력 데이터를 획득하는 단계 후에는, 학습용 입력 데이터와 학습용 출력 데이터를 이용하여 인공신경망을 학습시키는 단계(도 1, S30)가 수행된다. After acquiring the training input data and the training output data, training the artificial neural network using the training input data and the training output data (FIG. 1, S30) is performed.
도 3은 본 발명의 일 실시예에 의한 인공신경망의 토폴러지(topology)를 간략하게 나타낸 그림이다. 인공신경망은 여러 개의 노드를 가지는 입력층, 1개 이상의 은닉층과 출력층을 가진다. 본 발명의 일 실시예에 따른 인공신경망(Recurrent Survival Network, 이하 RSN으로도 명명한다)은 8개의 은닉층을 가지나 본 발명이 이에 제한되는 것은 아니다.Figure 3 is a simplified illustration of the topology (topology) of the artificial neural network according to an embodiment of the present invention. The neural network has an input layer with one or more nodes, one or more hidden layers and an output layer. An artificial neural network (hereinafter referred to as RSN) according to an embodiment of the present invention has eight hidden layers, but the present invention is not limited thereto.
인공신경망의 입력층은 nin개의 노드를 가진다. 도 3에서는 입력층의 노드가 49개인 것을 예시하였으나 이에 제한되는 것은 아니다. 각각의 노드에는 위암 환자 각각의 임상적 변수에 따른 분류를 수학적으로 처리한 값이 입력된다. 이때 입력층은 마치 nin×1 행렬과 같은 형태를 가지게 된다. The input layer of the neural network has n in nodes. In FIG. 3, 49 nodes of an input layer are illustrated, but the present invention is not limited thereto. Each node is input with mathematically processed classification according to clinical variables of each gastric cancer patient. At this time, the input layer has a form like an n in × 1 matrix.
일 실시예에 따르면, 학습용 입력 데이터와 학습용 출력 데이터를 이용하여 인공신경망을 학습시키는 단계는, 학습용 입력 데이터의 각 변수를 2차원 이상의 벡터로 임베딩(embedding)하여 임베딩층을 산출하는 단계를 포함할 수 있다. According to an embodiment of the present disclosure, the training of the artificial neural network using the training input data and the training output data may include calculating an embedding layer by embedding each variable of the training input data into a vector of two or more dimensions. Can be.
입력층의 각 노드에 입력되는 학습용 입력 데이터의 각 변수는 1차원 실수값을 가지는데, 이를 임베딩(embedding)하여 2차원 이상의 벡터로 만들 수 있다. 예를 들어 위의 [표 2]의 환자 A의 MSI 노드의 값인 1을 공지된 임베딩 방법을 이용하여 아래와 같이 9차원 벡터로 변환할 수 있다. Each variable of the learning input data input to each node of the input layer has a one-dimensional real value, which may be embedded into a two-dimensional or higher vector. For example, 1, the value of the MSI node of the patient A in Table 2 above, can be converted into a 9-dimensional vector using a known embedding method as follows.
[MSI 노드 임베딩 벡터] = [0.1 0.3 -0.1 -0.5 -0.7 0.2 0.3 0.3 -0.1][MSI node embedding vector] = [0.1 0.3 -0.1 -0.5 -0.7 0.2 0.3 0.3 -0.1]
이와 비슷하게 각각의 노드의 값을 9차원으로 임베딩하면, 예컨대 아래와 같은 행렬을 얻을 수 있다.Similarly, embedding the values of each node in 9 dimensions, for example, we get
Figure PCTKR2017012068-appb-I000001
Figure PCTKR2017012068-appb-I000001
상기 벡터 및 행렬의 차원 및 각 성분의 값은 본 발명의 이해를 돕기 위하여 예시적으로 정한 것일 뿐 본 발명의 권리범위를 제한하는 것은 아니다. Dimensions of the vectors and matrices and values of respective components are provided by way of example only for better understanding of the present invention, and do not limit the scope of the present invention.
본 발명의 실시예에서는 49개의 노드마다 임베딩을 통해 각 실변수(real variable)를 32차원의 벡터로 치환시켰고, 이에 따라 49×32의 행렬 형태의 임베딩층이 산출되었다. 원래 임베딩은 자연어 처리(Natural Language Processing) 분야에서 단어(word)를 수치화하기 위해 고안된 개념이나, 본 발명에서는 각 실변수(real variable)의 수치 그 자체 역시 임베딩을 통해 벡터화하였다. 각 환자의 학습용 입력 데이터를 임베딩하게 되면, 벡터 연산을 통해 각 환자 사이의 유사도를 측정할 수가 있고, 각 변수에 내재한 정보의 손실 없이 데이터를 통합적으로 처리할 수 있게 된다. In the embodiment of the present invention, each real variable is replaced with a 32-dimensional vector through embedding for each of 49 nodes, and thus an embedding layer having a matrix shape of 49 × 32 is calculated. Originally, embedding is a concept designed to quantify words in the field of Natural Language Processing, but in the present invention, the numerical value of each real variable itself is also vectorized through embedding. By embedding the learning input data of each patient, it is possible to measure the similarity between each patient through vector calculations, and to integrate the data without losing the information inherent in each variable.
본 발명의 일 실시예에 따르면, 임상 데이터와 생존 기간 데이터로부터 각각 학습용 입력 데이터와 학습용 출력 데이터를 획득하는 단계는, k-최근접 이웃 알고리즘(k-nearest neighbor algorithm: knn)을 이용하여 결측치(missing data, NaN)를 추가하는 단계를 포함할 수 있다. According to an embodiment of the present invention, acquiring the learning input data and the learning output data from the clinical data and the survival data, respectively, may include missing values using a k-nearest neighbor algorithm (knn). missing data (NaN).
예컨대, 아래의 [표 3]과 같은 임상 데이터를 가지는 환자 A, B, C가 있다고 가정하자. 환자 C의 경우에는 HER2 검사를 받지 않아, HER2에 해당하는 값이 결측된(missing, NaN) 상태이다. For example, suppose there are patients A, B, and C with clinical data as shown in Table 3 below. Patient C is not tested for HER2, and the value corresponding to HER2 is missing (NaN).
Figure PCTKR2017012068-appb-T000002
Figure PCTKR2017012068-appb-T000002
이때 환자 C의 임상 데이터가 환자 A와 환자 B 중 누구에게 더 가까운지는 예컨대 각 환자의 학습용 입력 데이터 벡터의 거리를 통해 판별할 수 있다. 예시한 [표 3]의 경우에는 환자 C의 임상 데이터가 환자 A보다는 환자 B에 가까우므로, 환자 C의 HER2 값에 1을 부여할 수 있다. In this case, whether the clinical data of the patient C is closer to the patient A or the patient B may be determined based on, for example, the distance of the learning input data vector of each patient. In the example of Table 3, since the clinical data of patient C is closer to patient B than to patient A, 1 can be given to HER2 value of patient C.
실제로는 비교해야 하는 환자의 수가 많으므로, 위의 예시는 knn 알고리즘을 설명하기 위해 상황을 단순화한 것에 불과할 뿐 반드시 실제의 상황을 반영하는 것은 아니다. 이때 공지된 다양한 knn 알고리즘이 있으므로 본 명세서에서는 자세한 기재를 생략한다.In practice, since the number of patients to be compared is large, the above example merely simplifies the situation to illustrate the knn algorithm and does not necessarily reflect the actual situation. In this case, since there are various known knn algorithms, detailed descriptions are omitted herein.
예컨대 본 발명의 인공신경망의 입력층에 입력되는 학습용 입력 데이터의 항목이 다른 지역 또는 병원의 임상 데이터에는 없는 경우, knn 알고리즘을 이용하여 결측된 항목을 추가할 수 있다. 따라서 결측된 데이터가 있는 타 지역 데이터를 추가시켜 인공신경망을 재학습시키는 것이 가능한데, 이에 대하여는 후술한다. For example, when the item of the learning input data inputted to the input layer of the artificial neural network of the present invention is not included in clinical data of another region or hospital, the missing item may be added using the knn algorithm. Therefore, it is possible to retrain the artificial neural network by adding other regional data with missing data, which will be described later.
한편, 인공신경망의 출력층은 nout개의 노드를 가진다. 도 3에서는 출력층의 노드가 2개인 것을 예시하였으나 이에 제한되는 것은 아니다. On the other hand, the output layer of the artificial neural network has n out nodes. In FIG. 3, two output nodes are illustrated, but embodiments of the present invention are not limited thereto.
출력층은 환자의 N+1년차 (또는 반기, 분기, 월, 일 등 임의의 시간 단위일 수 있으며, N은 0 이상의 정수) 생존율 및 사망률을 나타내는 노드를 포함할 수 있다. 예컨대 인공신경망이 위암 환자의 위암 발병 후 2년 후의 생존율을 예측하도록 학습되는 경우, 출력층의 노드에는 특정 환자의 위암 발병 후 2년 후의 생존 여부를 나타내는 값이 입력될 수 있다. 예컨대, 특정 환자가 위암 발병 후 2년 전에 사망한 경우, [생존율 노드, 사망률 노드] = [0, 1] 이 되고, 위암 발병 후 2년 후에 사망한 경우에는 [생존율 노드, 사망률 노드] = [1, 0] 이 된다. The output layer may include nodes representing the patient's N + 1 year (or any time unit, such as half year, quarter, month, day, etc., where N is an integer greater than or equal to 0) survival and mortality. For example, when the artificial neural network is trained to predict survival rate of 2 years after the onset of gastric cancer in a gastric cancer patient, a value indicating whether survival of 2 years after the onset of gastric cancer of a specific patient may be input to a node of the output layer. For example, if a patient died two years before the onset of gastric cancer, [survival rate node, mortality node] = [0, 1], and if died two years after the onset of gastric cancer, [survival rate node, mortality node] = [ 1, 0].
다만 본 발명의 일 실시예에 따르면, 환자가 사망한 경우의 [생존율 노드, 사망률 노드]를 [0, 1]로 처리하지 않고, 랭킹화하여 스코어를 부여할 수 있는 처리 방법이 제안된다. 본 발명의 일 실시예에서 사망한 환자의 [생존율 노드, 사망률 노드] = [p, 1-p]일 수 있고, 여기서 p에는 0이 아닌 스코어 값이 부여될 수 있다. 이때 스코어는 사망한 환자의 생존 기간에 비례하도록 부여될 수 있다. 여기서 생존 기간은, 적어도 월 단위로 구분될 수 있다. 예컨대, N+1년차에 3개월 생존한 환자의 경우 N+1년차 생존율 스코어는 3/12이고, [생존율 노드, 사망률 노드]의 값은 [3/12, 1-3/12]=[0.25, 0.75]일 수 있다. However, according to one embodiment of the present invention, a treatment method capable of assigning scores by ranking them is proposed without treating [survival rate nodes, mortality nodes] when the patient dies with [0, 1]. In one embodiment of the present invention, the survival rate node, death rate node = [p, 1-p] of the patient who died, where p may be assigned a non-zero score value. The score can then be given in proportion to the survival of the deceased patient. In this case, the survival period may be divided into at least monthly units. For example, for patients who survived for three months in N + 1 year, the N + 1 year survival rate score was 3/12, and the value of [survival rate node, mortality node] is [3/12, 1-3 / 12] = [0.25 , 0.75].
한편 이때, 입력층에는 [N년차 생존율 노드, N년차 사망률 노드]가 포함될 수 있다. 즉 본 발명에 따르면 위암 환자의 임상 데이터 정보 및 N년차 생존율 및 N년차 사망률 정보를 포함하는 학습용 입력 데이터를 입력층에 입력하고, 환자의 생존 기간에 비례하는 N+1년차 생존율 및 사망률 정보를 포함하는 학습용 출력 데이터를 출력층에 입력하여 인공신경망을 학습시키게 된다. In this case, the input layer may include [N-year survival rate node, N-year death rate node]. In other words, according to the present invention, the clinical input data including gastric cancer patients and N-year survival rate and N-year mortality information are input to the input layer, and the N + 1-year survival rate and mortality information is proportional to the survival period of the patient. The neural network is trained by inputting the learning output data to the output layer.
인공신경망의 학습시에는 은닉층(hidden layers)이 활용된다. 각각의 은닉층의 노드는 인접한 다른 은닉층의 노드와 서로 완전히 연결(fully connected) 될 수 있다. 본 발명의 일 실시예에서는, 한 층의 LSTM(Long Short Term Memory) 알고리즘을 이용한 RNN(Recurrent Neural Network)층을 포함하는 8개의 은닉층을 사용하여 인공신경망을 학습시키나 은닉층의 개수 및 알고리즘의 종류 등은 이에 제한되지 않는다. Hidden layers are used to learn artificial neural networks. The nodes of each hidden layer may be fully connected to each other with the nodes of other hidden layers. In an embodiment of the present invention, the artificial neural network is trained using eight hidden layers including a recurrent neural network (RNN) layer using a long short term memory (LSTM) algorithm, but the number of hidden layers and types of algorithms are used. Is not limited to this.
다시 도 1을 참조하면, 인공신경망 학습시키는 단계(S30) 후에는, 학습된 인공신경망을 이용하여 위암 환자의 생존율을 예측하는 모델을 생성하는 단계(S40)가 수행된다. 인공신경망이 학습된 후에는 각 노드에 대응하는 계수(weight)가 생존율 예측에 최적화되었으므로, 임의의 위암 환자의 임상 데이터로부터 얻은 입력 데이터를 인공신경망의 입력층에 입력하여 나온 출력값을 통해 환자의 생존율을 예측할 수 있다.Referring back to FIG. 1, after the step S30 of artificial neural network training, a step S40 of generating a model for predicting survival rate of gastric cancer patients using the learned artificial neural network is performed. After the neural network is trained, the weight corresponding to each node is optimized for survival prediction, so the patient's survival rate is determined by inputting the input data from the clinical data of any gastric cancer patient into the input layer of the neural network. Can be predicted.
<실시예 1><Example 1>
본 연구진은 삼성서울병원의 1187명의 환자에서 얻은 19개 이상의 임상 변수와 5년 이상의 추시 관찰 결과에 대한 데이터를 토대로 인공신경망을 구축하였다. 학습용 데이터는 총 데이터 중 85% (1009명)를, 테스트용 데이터는 나머지 15% (178명)를 사용하였고, 이는 100번에 걸쳐 임의로 재추출(resampling)되었다. 학습용 데이터 중 15%는 교차 검증(cross-validation)을 위해 다시 분류되었다. We constructed an artificial neural network based on data from more than 19 clinical variables and more than 5 years of follow-up data obtained from 1187 patients at Samsung Medical Center. The training data used 85% (1009) of the total data and the test data the remaining 15% (178), which was randomly resampled over 100 times. 15% of the training data was reclassified for cross-validation.
최적화된 모델은 각각의 학습 데이터마다 30번 학습되었고, 테스트 데이터를 통해 성능을 평가하였다.The optimized model was trained 30 times for each training data and the performance was evaluated using the test data.
도 4는 본 발명의 일 실시예에 따른 인공신경망의 히트맵(heatmap) 그래프의 일부를 개략적으로 나타낸 그림이다.4 is a diagram schematically showing a part of a heatmap graph of an artificial neural network according to an embodiment of the present invention.
그래프 100은 입력층에 학습용 입력 데이터가 입력된 상태를 나타낸다. 그래프 100의 히트맵(heatmap)의 가로축은 각 위암 환자의 일련번호이고, 세로축은 인공신경망 입력층의 각 노드에 해당한다. 일 실시예에서 입력층의 노드는 총 49개로, [표 1]에 나타난 임상 데이터로부터 얻은 47개의 노드 및 2개의 생존율, 사망률 노드를 포함한다. 각 노드에 해당하는 값은 색상의 농도로 표시된다. The graph 100 illustrates a state in which learning input data is input to the input layer. The horizontal axis of the heatmap of graph 100 is the serial number of each gastric cancer patient, and the vertical axis corresponds to each node of the artificial neural network input layer. In one embodiment, the total number of nodes in the input layer is 49, including 47 nodes obtained from the clinical data shown in Table 1 and two survival rate and mortality nodes. The value corresponding to each node is represented by the intensity of the color.
이후, 각 위암 환자의 데이터는 임베딩 과정을 통해 행렬로 표현된다. 일 실시예에서 위암 환자의 데이터는 49×32 형태의 행렬로 각각 표현된다. (그래프 101, 102, 103...) 이후, 각 노드에 대한 계수의 학습이 이루어진다. 학습의 결과는 생존 또는 사망으로 라벨링되며, 최종적으로는 소프트맥스(softmax) 함수를 통해 생존 확률로 표현된다. 이때 그래프 130을 참조하면 복수의 위암 환자들에 대한 1년차 생존율이 2개 노드로 표시되었다. 즉, 1년차 생존율 예측 인공신경망은 총 49개의 노드값(그래프 110에 도시)을 총 2개의 노드값(그래프 130에 도시)으로 수렴시킨다. Then, the data of each gastric cancer patient is represented as a matrix through the embedding process. In one embodiment, the data of gastric cancer patients are each represented by a 49 × 32 matrix. ( Graphs 101, 102, 103 ...), the coefficients are then learned for each node. The result of learning is labeled as survival or death, and finally expressed as a survival probability through a softmax function. Referring to graph 130, the first year survival rate of the plurality of gastric cancer patients was expressed as two nodes. That is, the 1-year survival prediction artificial neural network converges a total of 49 node values (shown in graph 110) into a total of 2 node values (shown in graph 130).
본 발명의 일 실시예에 따른 인공신경망의 은닉층은 적어도 하나의 순환신경망(RNN) 층을 포함할 수 있고, RNN층은 LSTM(Long short term memory) 알고리즘을 이용할 수 있다.The hidden layer of the artificial neural network according to an embodiment of the present invention may include at least one RNN layer, and the RNN layer may use a long short term memory (LSTM) algorithm.
도 5는 본 발명의 일 실시예에 따른 인공신경망을 이용한 위암의 예후 예측 방법에 따라 위암 환자의 t번째 구간 생존율을 예측하는 모델을 생성하는 방법을 예시한 그림이다. FIG. 5 is a diagram illustrating a method of generating a model for predicting survival rate of a t-section of a gastric cancer patient according to a method for predicting prognosis of gastric cancer using an artificial neural network according to an embodiment of the present invention.
본 발명의 일 실시예에 따르면, 생존율을 예측하는 모델을 생성하는 단계는 시간 구간(time interval) 별로 상기 인공신경망을 학습시키는 단계를 포함할 수 있다. 상기 시간 구간은 연, 반기, 분기, 월 등 다양할 수 있으나 이하에서는 연(year)을 예시로 설명한다. 예를 들어, 인공신경망은 위암 환자의 임상 데이터로부터 위암 환자의 연차 별 생존율, 예컨대 발병 후 1년부터 5년 후까지의 생존율을 예측하도록 학습될 수 있다. According to an embodiment of the present invention, generating the model for predicting the survival rate may include training the artificial neural network for each time interval. The time interval may vary from year to year, half year, quarter, month, etc. Hereinafter, the year will be described as an example. For example, the neural network can be learned from clinical data of gastric cancer patients to predict the annual survival rate of gastric cancer patients, such as survival rates from 1 year to 5 years after onset.
본 발명의 일 실시예에 따르면, 생존율을 예측하는 모델을 생성하는 단계는, 상기 임상 데이터 및 상기 복수의 위암 환자들의 t번째 구간 생존 기간 데이터를 이용하여 t번째 구간 생존율 예측 모델(SMt)을 생성하는 단계; 및 상기 t번째 구간 생존율 예측 모델로부터 얻은 t번째 구간 생존율 예측 데이터(St) 및 상기 복수의 위암 환자들의 t+1번째 구간 생존 기간 데이터를 이용하여 t+1번째 구간 생존율 예측 모델(SMt + 1)을 생성하는 단계를 포함할 수 있다.According to an embodiment of the present invention, generating the model for predicting the survival rate, the t-section survival prediction model (SM t ) by using the clinical data and the t-section survival time data of the plurality of gastric cancer patients Generating; And a t-th section survival prediction model (S t ) obtained from the t-th section survival prediction model and the t + 1-th section survival period data of the plurality of gastric cancer patients using the t + 1-th section survival prediction model (SM t + 1 ) may be generated.
본 발명의 일 실시예에 따르면 위암 환자의 1, 2, … , t, t+1번째 구간 별 생존율이 예측되는데(t: 자연수), 이때 t+1번째 구간에서의 생존율 예측을 위해 t번째 구간에서의 생존율 예측 결과 데이터가 이용된다. 즉, 각 구간 별 생존율 예측이 귀납적, 순차적인 방식으로 이루어지게 된다. According to one embodiment of the present invention, 1, 2,... Survival rate is predicted for each t + t-th section (t: natural number). At this time, the survival prediction result data for the t-th section is used to predict the survival rate in the t + 1th section. That is, the survival rate prediction for each section is made in an inductive and sequential manner.
도 5를 참조하면, 1년 후 생존율 예측 모델(SM1)과, t년 후 생존율 예측 모델(SMt)이 도시되었다. 이때 초기 임상 데이터(X1) 및 생존율 초기값(S0)을 입력하였을 때 1년 후 생존율(S1)을 출력할 수 있는 입출력함수인 1년 후 생존율 예측 모델(SM1)이 인공신경망을 학습시켜 생성된다. Referring to FIG. 5, a survival rate prediction model SM 1 after one year and a survival rate prediction model SM t after t years are illustrated. At this time, when the initial clinical data (X 1 ) and the initial survival rate (S 0 ) are input, the survival rate prediction model (SM 1 ), which is an input / output function capable of outputting the survival rate (S 1 ) after 1 year, is used for the artificial neural network. Generated by training.
이때 인공신경망의 입력층에 입력되는 학습용 입력 데이터는 초기 임상 데이터(X1) 및 생존율 초기값(S0)을 포함한다. 1년 후 생존율 예측 모델의 입력이 되는 초기 임상 데이터(X1)는 초진 시의 임상 데이터일 수 있다. 생존율 초기값(S0)은 예컨대 1로 설정될 수 있다. In this case, the learning input data input to the input layer of the neural network includes initial clinical data (X 1 ) and an initial survival rate (S 0 ). Initial clinical data (X 1 ), which is input to the survival prediction model after one year, may be clinical data at the first visit. The survival rate initial value S 0 may be set to 1, for example.
1년 후 생존율 예측을 위한 학습용 출력 데이터에는, 환자의 생존 기간 데이터로부터 얻은 1년 후 생존 여부 데이터가 이용된다. 예컨대 어떤 환자 D가 위암 발병 15개월 후 사망한 경우, 발병 후 1년 후 시점에는 생존하였으므로 출력층의 [생존율 노드, 사망률 노드]에 출력될 값과 비교될 학습용 출력 데이터는 [1, 0]이 된다. 인공신경망은 이러한 학습용 입력 데이터 및 학습용 출력 데이터를 이용하여, 위암 환자의 1년 후 생존율을 예측할 수 있도록 학습된다. For the learning output data for predicting the survival rate after one year, the survival data after one year obtained from the survival period data of the patient is used. For example, if a patient D died 15 months after the onset of gastric cancer, the learning output data to be compared to the value to be output to the [survival rate node, mortality node] of the output layer becomes [1, 0] since the patient survived 1 year after the onset. . The artificial neural network is trained to predict survival rate after one year of gastric cancer patients by using such learning input data and learning output data.
다음으로, 2년 후 임상 데이터(X2) 및 1년 후 생존율 예측 결과값(S1)을 입력하였을 때 2년 후 생존율(S2)을 출력할 수 있는 입출력함수인 2년 후 생존율 예측 모델(SM2)이 인공신경망을 학습시켜 생성된다. 이때 인공신경망의 입력층에 입력되는 학습용 입력 데이터는 2년 후 임상 데이터(X2) 및 1년 후 생존율 예측 결과값(S1)을 포함한다. Next, when inputting clinical data (X 2 ) and survival rate prediction result (S 1 ) after 2 years, the survival rate prediction model after 2 years is an input / output function that can output survival rate (S 2 ) after 2 years. (SM 2 ) is created by training the artificial neural network. At this time, the learning input data input to the input layer of the artificial neural network includes clinical data (X 2 ) after 2 years and survival rate prediction result value (S 1 ) after 1 year.
학습용 출력 데이터에는, 환자의 생존 기간 데이터로부터 얻은 2년 후 생존 여부 데이터가 이용된다. 예컨대 어떤 환자 D가 위암 발병 후 15개월 후 생존한 경우, 발병 후 2년 후 시점에는 사망하였으므로 출력층의 [생존율 노드, 사망률 노드]에 출력될 값과 비교될 학습용 출력 데이터는 [0, 1]이 될 수 있다. Survival data two years later obtained from the survival data of the patient is used as the learning output data. For example, if a patient D survived 15 months after the onset of gastric cancer, and died 2 years after the onset of cancer, the learning output data to be compared with the value to be output to the [survival rate node, mortality node] of the output layer is [0, 1]. Can be.
다만 본 발명의 일 실시예에 따르면, 환자가 사망한 경우 학습용 출력 데이터를 상기와 같이 [0, 1]로 처리하지 않고, 랭킹화하여 스코어를 부여할 수 있는 처리 방법이 제안된다. However, according to one embodiment of the present invention, a treatment method for ranking a score is provided without processing the output data for learning as [0, 1] as described above when the patient dies.
일 실시예에 따르면, t번째 구간 생존율 예측 모델(SMt)을 생성하는 단계는, 상기 t번째 구간 생존 기간 데이터에 대하여 생존 기간에 따른 스코어를 부여하는 단계를 더 포함할 수 있다. 즉 본 실시예에서 학습용 출력 데이터는 [p, 1-p]일 수 있고, 여기서 p에는 0이 아닌 스코어 값이 부여될 수 있다. 일 실시예에 따르면, 스코어는 환자의 t번째 구간의 생존 기간에 비례하도록 부여될 수 있다. 여기서 생존 기간은, 적어도 월 단위로 구분될 수 있다. 예컨대, 1년 3개월 생존한 환자 D의 구간 별 생존 기간에 따른 스코어는 아래의 [표 4]와 같게 된다. According to an embodiment, generating the t-th section survival prediction model SM t may further include assigning a score according to the survival period to the t-th section survival period data. That is, in the present embodiment, the learning output data may be [p, 1-p], where p may be assigned a non-zero score value. According to one embodiment, the score may be given in proportion to the survival of the t-th section of the patient. In this case, the survival period may be divided into at least monthly units. For example, the score according to the survival period for each section of the patient D who survived for 1 year and 3 months is as shown in Table 4 below.
N (년)N (years) 1One 22 33 44 55
구간별 스코어Interval Score 1One 3/123/12 00 00 00
따라서 이 경우 2년 후 생존율을 예측하는 인공신경망을 학습시킬 때, 출력층의 [생존율 노드, 사망률 노드]의 값과 비교될 학습용 출력 데이터는 [3/12, 1-3/12] = [0.75, 0.25]가 될 수 있다.Therefore, in this case, when training the artificial neural network predicting survival rate after 2 years, the output data for learning to be compared with the value of [survival node, mortality node] of the output layer is [3/12, 1-3 / 12] = [0.75, 0.25].
이와 같은 방법에 따르면, 사망 등의 이유로 추적 기간이 5년 미만인 환자의 데이터(중도 절단 데이터, right-censored case)의 경우라도 생존율이 0으로 카운트되지 않고 생존 기간만큼의 랭킹화된 스코어가 부여됨으로써, 생존율 예측 모델 생성에 사용되는 유의미한 데이터 수를 늘릴 수 있어, 결과적으로 생존율 예측의 정확도가 향상된다. According to this method, even in the case of data of patients whose follow-up period is less than 5 years due to death or the like (right-censored case), the survival rate is not counted as 0, and the ranked score is given as much as the survival period. In addition, the number of significant data used to generate the survival prediction model can be increased, and as a result, the accuracy of the survival prediction is improved.
인공신경망은 이러한 학습용 입력 데이터 및 스코어를 이용한 학습용 출력 데이터를 이용하여, 위암 환자의 2년 후 생존율을 예측할 수 있도록 다시 학습될 수 있다. The artificial neural network may be re-learned to predict survival rate of two years after gastric cancer patients using the learning input data and the learning output data using the score.
이와 같은 과정이 반복됨에 따라(t=t+1), t년 후 임상 데이터(Xt) 및 N-1년 후 생존율 예측 결과(St - 1)를 입력하였을 때 t년 후 생존율(St)을 출력할 수 있는 입출력함수인 t년 후 생존율 예측 모델(SMt)이 인공신경망을 학습시켜 생성된다. As this process is repeated (t = t + 1), the survival rate after t years (S t ) is entered when the clinical data after t years (X t ) and the survival rate prediction results after N-1 years (S t - 1 ) are entered. After t years, which is an input / output function that can output), a survival prediction model (SM t ) is generated by learning artificial neural networks.
본 발명의 일 실시예에 따르면, 't-1년 후 시점에서의 환자의 예후'를 반영하는 t-1년 후 생존율 예측 결과(St - 1)를 이용하여 t년 후의 생존율을 예측하므로, 각 연차별로 인공신경망을 학습시킬 때마다 생존율 예측 성능이 좋아지게 된다. According to an embodiment of the present invention, the survival rate after t years is predicted by using the survival rate prediction result (S t - 1 ) after t-1 years reflecting the 'prognosis of the patient at the time point t-1 years'. Survival prediction performance improves as the artificial neural network is trained for each year.
본 발명의 일 실시예에서는, LSTM 알고리즘을 이용하여 생존율 예측 모델을 생성하였다. 이때 단속적인(discrete) 시간 t에서의 생존율(survival probability)은 아래 <수학식 1>과 같이 정해지며, 위험 함수(hazard ration function)는 <수학식 2>와 같이 정해질 수 있다.In one embodiment of the present invention, a survival prediction model was generated using the LSTM algorithm. In this case, the survival probability at the discrete time t is defined as in Equation 1 below, and the hazard ration function may be determined as in Equation 2.
<수학식 1><Equation 1>
Figure PCTKR2017012068-appb-I000002
Figure PCTKR2017012068-appb-I000002
<수학식 2><Equation 2>
Figure PCTKR2017012068-appb-I000003
Figure PCTKR2017012068-appb-I000003
이때, 입력 변수 Xt 및 생존 데이터 Yt를 가지는 환자 그룹에서, 첫번째 시점 t에서 매개 변수 벡터 Wt = θ1X + θ2t가 최적화되면 LSTM 층은 Wt를 기억한다. 이후 생존율 모델은 다음 시점 t+1에서, 생존 데이터 Yt + 1에 대한 매개 변수 벡터 Wt+1을 산출하도록 다시 트레이닝된다. 예를 들어, 위암 발병 2년 후 환자 가 질병으로 사망한 경우, 생존율 모델은 첫 해에 생존 데이터 Y1 = 1을 학습하고 두 번째 해에는 생존 데이터 Y2 = 0을 학습한다. 이때 LSTM은 각 생존 데이터 값(Y)에 대해 매개 변수 W를 기억하고 최적화하기 때문에, RNN 기반의 생존율 예측 모델은 특정 시점에서의 생존율을 산출할 수 있다.At this time, in the patient group having the input variable X t and the survival data Y t , the LSTM layer remembers W t if the parameter vector W t = θ 1 X + θ 2 t is optimized at the first time point t. The survival model is then retrained to yield the parameter vector W t + 1 for the survival data Y t + 1 , at the next time point t + 1. For example, if the patient died of disease two years after the onset of gastric cancer, the survival model learns survival data Y 1 = 1 in the first year and survival data Y 2 = 0 in the second year. In this case, since the LSTM stores and optimizes the parameter W for each survival data value Y, the RNN-based survival prediction model can calculate the survival rate at a specific time point.
그런데 시간이 지날 때 마다 임상 데이터를 빠짐없이 수집하는 것은 어렵기 때문에, 환자의 임상 데이터 X는 모든 시점에서 업데이트될 수는 없다. 한편, 생존율 예측 모델의 목적은 특히 환자의 위암 발견 시의 정보 (즉, 병원 첫 방문 시의 정보)를 통해 장기적으로 생존율을 예측하는 것이다. 따라서 본 발명자들은, 환자의 임상 데이터는 관측 시간 동안 일정하나, 시간의 흐름에 의존하며(dependent) 특정 시간에서 환자의 상태를 나타내는 잠재 인자(latent feature)가 있는 것을 가정하였다. 이때 잠재인자 및 위험함수는 <수학식 3>, <수학식 4>와 같이 시간 의존적인 값으로 정의된다.However, since it is difficult to collect clinical data every time, the clinical data X of a patient cannot be updated at every time point. The purpose of the survival prediction model, on the other hand, is to predict survival in the long term, especially through the information of the patient's gastric cancer detection (ie, information at the first visit of the hospital). The present inventors therefore assumed that the patient's clinical data is constant during the observation time, but there is a latent feature that is dependent on the passage of time and indicative of the patient's condition at a particular time. At this time, the latent factors and the risk function are defined as time-dependent values such as <Equation 3> and <Equation 4>.
<수학식 3><Equation 3>
Figure PCTKR2017012068-appb-I000004
Figure PCTKR2017012068-appb-I000004
<수학식 4><Equation 4>
Figure PCTKR2017012068-appb-I000005
Figure PCTKR2017012068-appb-I000005
이때 시간 의존 생존값은 환자의 임상 데이터(X)에 포함되어, 최종 입력 데이터 Xt는 시간에 의존하는 데이터가 된다. 시간 의존 생존값은 시간(t) 정보와 경사 하강 방정식(gradient descent equation) ∂S 에 의해 얻은 생존율 예측값(St) 정보를 포함한다. At this time, the time dependent survival value is included in the clinical data (X) of the patient, and the final input data X t is time dependent data. The time dependent survival value includes time (t) information and survival predicted value (S t ) information obtained by the gradient descent equation ∂S.
한편, 경사 하강 방정식 ∂S 는 아래의 <수학식 5> 내지 <수학식 8>에 의해 정해질 수 있다.Meanwhile, the gradient descent equation ∂S can be determined by Equations 5 to 8 below.
<수학식 5><Equation 5>
Figure PCTKR2017012068-appb-I000006
Figure PCTKR2017012068-appb-I000006
<수학식 6><Equation 6>
Figure PCTKR2017012068-appb-I000007
Figure PCTKR2017012068-appb-I000007
<수학식 7><Equation 7>
Figure PCTKR2017012068-appb-I000008
Figure PCTKR2017012068-appb-I000008
<수학식 8><Equation 8>
Figure PCTKR2017012068-appb-I000009
Figure PCTKR2017012068-appb-I000009
상술한 알고리즘을 통해 위암 환자의 생존율을 예측하는 모델 생성이 완료되면, 인공신경망의 각 노드의 연결에 대응하는 계수(weight)가 생존율 예측에 최적화되도록 학습된 상태가 된다. 따라서 임의의 위암 환자의 임상 데이터로부터 얻은 입력 데이터를 인공신경망의 입력층에 입력하여 출력층에 출력된 값을 통해 환자의 생존율을 예측할 수 있다. 즉 본 발명에 따른 인공신경망을 이용한 위암의 예후 예측 방법에 따르면, 위암 환자의 예후를 개개인별로 정확하게 예측할 수 있다. When the model generation for predicting the survival rate of gastric cancer patients is completed through the above-described algorithm, the weight corresponding to the connection of each node of the neural network is learned to optimize the survival rate. Therefore, by inputting the input data obtained from the clinical data of any gastric cancer patient to the input layer of the neural network can be predicted the survival rate of the patient through the value output to the output layer. That is, according to the method for predicting the prognosis of gastric cancer using the artificial neural network according to the present invention, the prognosis of the gastric cancer patient can be accurately predicted for each individual.
도 6는 본 발명의 일 실시예에 따라 연도별로 순차적으로 학습시킨 인공신경망의 히트맵(heatmap) 그래프의 일부를 개략적으로 나타낸 그림이다. 본 발명자들은 일 실시예에서 도 6과 같이 인공신경망을 연도별로 순차적으로 학습시켜 연도별 생존율 예측 모델을 생성한 후, 각각의 모델의 성능을 평가하였다.FIG. 6 is a diagram schematically showing a part of a heatmap graph of an artificial neural network trained sequentially by year according to an embodiment of the present invention. In one embodiment, the inventors sequentially trained the artificial neural network for each year as shown in FIG. 6 to generate a survival prediction model for each year, and then evaluated the performance of each model.
도 7은 트레이닝 중 연도별 생존율 예측 모델의 ROC 그래프의 AUC값을 비교한 그래프이다. 100번의 트레이닝 동안, AUC의 평균은 1년 후 생존율 예측 모델에서 0.79±0.052, 2년 후 모델에서 0.839±0.045, 3년 후 모델에서 0.89±0.049, 4년 후 모델에서 0.915±0.05, 5년 후 모델에서 0.92±0.049이었다. 7 is a graph comparing the AUC values of the ROC graph of the yearly survival prediction model during training. During 100 training sessions, the mean of AUC was 0.79 ± 0.052 in 1 year survival prediction model, 0.839 ± 0.045 in 2 years model, 0.89 ± 0.049 in 3 years model and 0.915 ± 0.05 in 5 years model 0.92 ± 0.049 in the model.
도 8은 별도의 테스트 데이터로 연도별 생존율 예측 모델을 검증한 ROC 그래프이다. AUC의 값은 1년 후 생존율 예측 모델에서 0.858, 2년 후 모델에서, 0.869 , 3년 후 모델에서 0.879, 4년 후 모델에서 0.912, 5년 후 모델에서 0.923로 나타나, 시간이 지날수록 예측 모델의 성능이 좋아지는 것을 확인할 수 있다.8 is a ROC graph verifying the survival prediction model for each year as separate test data. The values of AUC were 0.858 in the survival prediction model after 1 year, 0.869 in the model after 2 years, 0.879 in the model after 3 years, 0.912 in the model after 4 years, and 0.923 in the model after 5 years. You can see that the performance improves.
도 9는 생존율 예측 모델이 예측한 생존율과 실제 생존 비율을 비교한 그래프이다. 카플란-마이어(Kaplan-Meier) 생존 분석 결과, 생존율 예측 결과와 실제 생존 비율은 95% 신뢰 구간 내에서 15% 오차 범위(점선)로 상관성이 있음을 확인하였다. 9 is a graph comparing survival and actual survival rates predicted by the survival prediction model. Kaplan-Meier survival analysis showed that the survival prediction result correlated with the 15% margin of error (dotted line) within the 95% confidence interval.
도 10 내지 도 14는 각각 1년, 2년, 3년, 4년, 5년 후 생존율 예측 모델의 판단 곡선(decision curve)을 나타낸 그래프이다. AUC는 단순히 예측의 정확도만을 평가하지만, 판단 곡선은 임상적 결과를 반영하여 임상적 판단의 기준이 되는 임계 확률(threshold probability)에 대한 각각의 순편익(net benefit)을 계산하고 가시화한다. 따라서 판단 곡선을 통해 예측 모델의 실제 임상에서의 가치를 평가할 수 있다. 도 10 내지 도 14을 참조하면 모든 임계 확률에서 순편익이 양의 값을 보이고, 특히 연차가 높아질수록 순편익이 높아지는 것을 확인할 수 있다. 즉 본 발명의 생존율 예측 모델이 임상 판단에 도움이 됨을 알 수 있다. 10 to 14 are graphs showing decision curves of the survival rate prediction model after 1 year, 2 years, 3 years, 4 years, and 5 years, respectively. The AUC simply evaluates the accuracy of the prediction, but the judgment curve reflects the clinical results to calculate and visualize each net benefit for the threshold probability that is the basis of clinical judgment. Thus, judgment curves can be used to assess the value of predictive models in real clinical practice. Referring to FIGS. 10 to 14, it can be seen that the net benefit is positive at all threshold probabilities, in particular, the higher the annual, the higher the net benefit. That is, it can be seen that the survival rate prediction model of the present invention is useful for clinical judgment.
도 15는 본 발명의 일 실시예에 따른 인공신경망과 비교용 단순 인공신경망의 학습 효과를 나타낸 그래프이다. 도 15에서는 RNN층을 포함하는 본 발명의 일 실시예에 따른 인공신경망을 RSN(Recurrent Survival Network)으로, 비교용 단순신경망은 Simple_NN으로 나타내었다. 15 is a graph showing the learning effect of the artificial neural network and the comparison simple artificial neural network according to an embodiment of the present invention. In FIG. 15, an artificial neural network according to an embodiment of the present invention including an RNN layer is represented by RSN (Recurrent Survival Network), and a simple neural network for comparison is represented by Simple_NN.
도 15의 (a)는 반복 학습(nb_epoch)에 따른 에러(cross_entropy)를 나타낸 그래프이다. 비교용 단순 신경망(Simple_NN)의 경우 에러의 절댓값이 크며 감소율 또한 작으나, 본 발명에 따른 인공신경망(RSN)의 경우 반복 학습에 따른 에러의 감소가 큼을 확인할 수 있다. FIG. 15A is a graph illustrating an error (cross_entropy) according to repetitive learning (nb_epoch). In the case of the comparison simple neural network (Simple_NN), the absolute value of the error is large and the reduction rate is also small, but in the case of the artificial neural network (RSN) according to the present invention, the decrease of the error due to repetitive learning is large.
도 15의 (b)는 각 학습 시의 교차 검증(cross validation)을 보여주는 그래프이다. 그래프에서 보듯, 단순 신경망(Simple_NN)의 경우에는 반복 학습을 하여도 검증 손실(validation loss)의 감소가 적고, 편차가 큰 것으로 보아 모델의 안정성이 떨어진다. 반면, RSN의 경우 검증 손실이 매우 낮고 안정적이다. FIG. 15B is a graph showing cross validation during each learning. As shown in the graph, in the case of simple neural network (Simple_NN), even if iterative learning is performed, the reduction of validation loss is small and the deviation is large. On the other hand, the verification loss is very low and stable for RSN.
도 15의 (c)는 생존율 예측의 정확도를 보여주는 ROC(receiver operating characteristic) 그래프이며, 도 15의 (d)는 ROC 그래프의 AUC(area under curve) 분포 결과를 나타낸 그래프이다. 생존율 예측의 정확도는 ROC 그래프 아래의 면적인 AUC로 정량화가 가능하며 면적이 1에 가까울수록 정확도가 높다. 본 발명자들이 100회 반복 시행한 결과, RSN의 경우에는 평균 0.95 이상의 정확도를 보였으며, 단순 신경망(Simple_NN)의 정확도는 약 0.70이었다. MedCalc program을 이용한 Mann_Whitney test를 통하여 통계적 검증을 시행한 결과 p<0.001로 RNN의 진단 정확도가 단순 신경망(Simple_NN)에 비하여 유의하게 높았다.15 (c) is a receiver operating characteristic (ROC) graph showing the accuracy of survival prediction, and FIG. 15 (d) is a graph showing the AUC (area under curve) distribution result of the ROC graph. The accuracy of survival prediction can be quantified by the area AUC below the ROC graph, and the closer the area is to 1, the higher the accuracy. As a result of 100 repeated experiments, the average accuracy of the RSN was 0.95 or more, and the accuracy of the simple neural network Simple_NN was about 0.70. Statistical test was performed by Mann_Whitney test using MedCalc program. As a result, the accuracy of RNN was significantly higher than that of simple neural network (Simple_NN).
<실시예 2><Example 2>
도 16은 타 지역 데이터를 이용하여 인공신경망을 재학습시키는 방법에 대한 모식도이다. 16 is a schematic diagram of a method for re-learning the artificial neural network using other regional data.
다른 임상 변수의 데이터베이스를 가진 타 지역 또는 타 병원의 데이터를 이용해 RSN 인공신경망을 재학습시킬 경우, 그 지역 데이터에 최적화된 인공신경망을 새롭게 구성할 수 있다. 이때 임상 데이터가 부족하거나 임상 데이터의 종류에서 차이가 있는 타 지역 데이터만으로 새로운 인공신경망을 학습시키는 것 보다는, 이미 학습된 RSN 모델에 타 지역 데이터를 추가시켜 RSN 모델을 재학습시킬 경우 생존 예측의 정확도가 더 높게 된다. If the RSN artificial neural network is retrained using data from other regions or hospitals with databases of different clinical variables, a new neural network optimized for the regional data can be constructed. The accuracy of survival prediction when retraining the RSN model by adding other regional data to the already trained RSN model, rather than learning a new artificial neural network using only other regional data that lacks clinical data or differs in the type of clinical data. Becomes higher.
본 연구에는 타 지역 데이터로 the Gastric Cancer Project Singapore cohort로부터 얻은 데이터(이하, '싱가포르 데이터')가 이용되었다. 싱가포르 데이터는 사용 가능한 변수의 개수가 12개로 (molecular subtype, sex, age, pstage, peritoneal cytology, met site, p_node, lauren, pathology type, Lymphovascular invasion, recurrence, 5_FU adjuvant), [표 1]의 19개의 변수를 포함하는 RSN 모델을 이용하기에는 부족한 정보를 가지고 있었다. In this study, data from the Gastric Cancer Project Singapore cohort (hereinafter referred to as 'Singapore data') was used as data for other regions. The Singapore data shows 12 variables available (molecular subtype, sex, age, pstage, peritoneal cytology, met site, p_node, lauren, pathology type, Lymphovascular invasion, recurrence, 5_FU adjuvant), and 19 in Table 1. There was not enough information to use the RSN model with variables.
본 발명자들은 싱가포르 데이터를 학습용 데이터와 테스트 데이터로 나누고, 싱가포르 학습용 데이터를 기존의 데이터에 추가하여 RSN으로 재학습시킨 인공신경망 모델과 싱가포르 데이터만으로 학습된 로컬 인공신경망 모델의 성능을 비교해 보았다.The inventors divided the Singapore data into training data and test data, and compared the performance of the artificial neural network model retrained by RSN with the Singapore training data to the existing data and the local neural network model trained using only Singapore data.
도 17은 RSN에 싱가포르 데이터를 추가하여 재학습시킨 모델과 싱가포르 데이터만으로 학습된 모델을 비교한 히트맵 그래프이다. FIG. 17 is a heat map graph comparing a model retrained by adding Singapore data to an RSN and a model trained using only Singapore data.
도 17의 (a)를 참조하면, 싱가포르 데이터만으로 학습된 변수의 개수는 12개이며, 이의 분류를 이용해 입력층에 29개의 노드를 생성하였다. 도 8의 (b)의 경우에는, 싱가포르 데이터의 일부를 학습용 RSN의 학습용 데이터에 추가시켜 20개 변수, 53개 노드를 생성하여 인공신경망을 재학습시켰다. 이때 본래 데이터에는 있고 싱가포르 데이터에는 없는 데이터(missing value, NaN)는 전술한 knn 알고리즘을 통해 추가되었다. Referring to FIG. 17A, the number of variables learned only from Singapore data is 12, and 29 nodes are generated in the input layer using the classification thereof. In the case of FIG. 8B, a part of Singapore data was added to the learning data of the learning RSN to generate 20 variables and 53 nodes to relearn the artificial neural network. At this time, missing data (NaN) in the original data but not in the Singapore data was added through the knn algorithm described above.
도 18는 원래의 모델, 싱가포르 데이터를 추가하여 재학습시킨 재학습 모델, 싱가포르 데이터만으로 학습시킨 싱가포르 모델의 효과를 비교한 그래프이다. 18 is a graph comparing the effects of the original model, the re-learning model retrained by adding Singapore data, and the Singapore model trained on Singapore data only.
원래의 모델(original)은 기존의 데이터를 이용하여 기존의 데이터로 테스트한 인공신경망을 의미하고, RSN으로 재학습시킨 모델(adaptive training set)은 기존의 데이터와 싱가포르 데이터를 통해 다시 재학습시키고 싱가포르 데이터로 테스트한 인공신경망을 의미하여, 싱가포르 모델(Singapore training set)은 싱가포르 데이터만을 이용하여 학습시키고 테스트한 인공신경망을 의미한다. The original model refers to the artificial neural network tested with the existing data using the existing data, and the adaptive training set re-learned from the existing data and the Singapore data By means of the data tested artificial neural network, the Singapore model (Singapore training set) refers to the artificial neural network trained and tested using only Singapore data.
도 18의 (a)는 반복 학습에 따른 에러의 감소를 나타내고 있다. 그림에서와 같이 재학습 모델의 경우, 반복 학습에 따른 에러의 감소 폭이 큰 것을 보아 학습 속도가 빠른 것을 확인할 수 있다. 반면, 싱가포르 모델의 경우 반복 학습에 따른 에러의 감소가 적다. FIG. 18A illustrates the reduction of errors due to repetitive learning. In the case of re-learning model as shown in the figure, it can be seen that the learning speed is fast because the reduction of errors due to repetitive learning is large. On the other hand, in the Singapore model, the error reduction due to the iterative learning is small.
도 18의 (b)는 각 학습 시의 교차 검정 결과의 에러 감소를 보여주는 그래프이다. 이 그래프에서 보듯이 싱가포르 모델의 경우 반복 학습에도 validation loss의 감소가 적고, 편차가 큰 것으로 보아 모델의 안정성이 떨어지나, 재학습 모델의 경우 validation loss가 매우 낮고 안정적이다. FIG. 18B is a graph showing error reduction of the cross test result in each learning. As shown in this graph, the Singapore model shows less validation loss during repetitive learning, and the deviation is large. Therefore, the stability of the model decreases. However, the re-learning model has very low validation loss.
한편, 도 18의 (a) 및 (b)에서, 재학습 모델은 이미 학습된 인공신경망을 이용하여 재학습하기 때문에, 처음부터 학습을 시작하는 원래의 모델보다도 학습 속도가 빠르다.Meanwhile, in FIGS. 18A and 18B, since the relearning model relearns using an already learned artificial neural network, the learning speed is faster than the original model that starts learning from the beginning.
도 18의 (c)는 예측의 정확도를 보여주는 ROC 그래프이다. 본 발명자들이 100회 반복 시행한 결과 재학습 모델의 경우 싱가포르의 테스트 데이터의 생존율을 평균 0.95의 확률로 맞추었으나, 싱가포르 모델의 경우 정확도가 0.80 내외였다. 맨-휘트니 검정(Mann Whitney test)을 통하여 통계적 검증을 시행한 결과 p<0.001로 재학습 모델의 생존율 예측 정확도가 싱가포르 모델보다 유의하게 높았다. 재학습 모델은 원래의 모델의 정확도에 비해서도 크게 낮지 않은 성능을 보여주었다. 즉 이때 knn 알고리즘에 의해 결측치를 추가시키더라도 예측 정확도가 크게 낮아지지 않음을 확인할 수 있다. (C) of FIG. 18 is a ROC graph showing the accuracy of prediction. As a result of 100 repeated experiments, the inventors adjusted the survival rate of test data in Singapore with an average probability of 0.95 for the re-learning model, but the accuracy was about 0.80 for the Singapore model. Statistical test through the Mann Whitney test showed that p <0.001 was significantly higher than the Singapore model. The relearning model showed not much lower performance than the original model's accuracy. In other words, even when missing values are added by the knn algorithm, the prediction accuracy is not significantly lowered.
도 19는 본 발명의 일 실시예에 따른 인공신경망을 이용한 위암의 예후 예측 장치의 구성을 개략적으로 나타낸 그림이다. 19 is a view schematically showing the configuration of the apparatus for predicting the prognosis of gastric cancer using an artificial neural network according to an embodiment of the present invention.
도 19에 도시된 위암의 예후 예측 장치(10)는 본 실시예의 특징이 흐려지는 것을 방지하기 위하여 본 실시예와 관련된 구성요소들만을 도시한 것이다. 따라서, 도 19에 도시된 구성요소들 외에 다른 범용적인 구성요소들이 더 포함될 수 있음을 본 실시예와 관련된 기술분야에서 통상의 지식을 가진 자라면 이해할 수 있다.The apparatus 10 for predicting prognosis of gastric cancer shown in FIG. 19 illustrates only components related to the present embodiment in order to prevent the features of the present embodiment from being blurred. Accordingly, it will be understood by those skilled in the art that other general purpose components may be further included in addition to the components illustrated in FIG. 19.
본 발명의 일 실시예에 따른 위암의 예후 예측 장치(10)는 적어도 하나 이상의 프로세서(processor)에 해당하거나, 적어도 하나 이상의 프로세서를 포함할 수 있다. 이에 따라, 위암의 예후 예측 장치(10)는 마이크로프로세서나 범용 컴퓨터 시스템과 같은 다른 하드웨어 장치에 포함된 형태로 구동될 수 있다.The apparatus 10 for predicting prognosis of gastric cancer according to an embodiment of the present invention may correspond to at least one processor or may include at least one processor. Accordingly, the prognostic predictive apparatus 10 of gastric cancer may be driven in a form included in another hardware device such as a microprocessor or a general purpose computer system.
본 발명은 기능적인 블록 구성들 및 다양한 처리 단계들로 나타내어질 수 있다. 이러한 기능 블록들은 특정 기능들을 실행하는 다양한 개수의 하드웨어 또는/및 소프트웨어 구성들로 구현될 수 있다. 예를 들어, 본 발명은 하나 이상의 마이크로프로세서들의 제어 또는 다른 제어 장치들에 의해서 다양한 기능들을 실행할 수 있는, 메모리, 프로세싱, 로직(logic), 룩 업 테이블(look-up table) 등과 같은 직접 회로 구성들을 채용할 수 있다. 본 발명에의 구성 요소들이 소프트웨어 프로그래밍 또는 소프트웨어 요소들로 실행될 수 있는 것과 유사하게, 본 발명은 데이터 구조, 프로세스들, 루틴들 또는 다른 프로그래밍 구성들의 조합으로 구현되는 다양한 알고리즘을 포함하여, C, C++, 자바(Java), 어셈블러(assembler) 등과 같은 프로그래밍 또는 스크립팅 언어로 구현될 수 있다. 기능적인 측면들은 하나 이상의 프로세서들에서 실행되는 알고리즘으로 구현될 수 있다. 또한, 본 발명은 전자적인 환경 설정, 신호 처리, 및/또는 데이터 처리 등을 위하여 종래 기술을 채용할 수 있다. "매커니즘", "요소", "수단", "구성"과 같은 용어는 넓게 사용될 수 있으며, 본 발명의 구성요소들이 기계적이고 물리적인 구성들로서 한정되는 것은 아니다. 상기 용어는 프로세서 등과 연계하여 소프트웨어의 일련의 처리들(routines)의 의미를 포함할 수 있다.The invention can be represented by functional block configurations and various processing steps. Such functional blocks may be implemented in various numbers of hardware or / and software configurations that perform particular functions. For example, the present invention is an integrated circuit configuration such as memory, processing, logic, look-up table, etc., capable of executing various functions by the control of one or more microprocessors or other control devices. You can employ them. Similar to the components in the present invention may be implemented in software programming or software elements, the present invention includes various algorithms implemented in data structures, processes, routines or other combinations of programming constructs, including C, C ++ It may be implemented in a programming or scripting language such as Java, an assembler, or the like. The functional aspects may be implemented with an algorithm running on one or more processors. In addition, the present invention may employ the prior art for electronic environment setting, signal processing, and / or data processing. Terms such as "mechanism", "element", "means", "configuration" may be used widely, and the components of the present invention are not limited to mechanical and physical configurations. The term may include the meaning of a series of routines of software in conjunction with a processor or the like.
도 19를 참조하면, 위암의 예후 예측 장치(10)는 데이터 획득부(11), 인공신경망 학습부(12) 및 생존율 예측 모델 생성부(13)를 포함한다.Referring to FIG. 19, the prognosis predictor 10 of gastric cancer includes a data acquirer 11, an artificial neural network learner 12, and a survival rate prediction model generator 13.
데이터 획득부(11)는 복수의 위암 환자들의 의료 데이터, 예컨대 임상 데이터를 획및 위암 발병 후 생존 기간 데이터를 획득한다. 임상 데이터는 환자의 의료 영상으로부터 획득되거나, 환자의 검체 검사 결과로부터 획득될 수 있으나, 이에 한정되지 않는다.The data acquisition unit 11 obtains medical data, such as clinical data, of a plurality of gastric cancer patients and survival period data after the onset of gastric cancer. The clinical data may be obtained from a medical image of the patient or may be obtained from a patient's specimen test result, but is not limited thereto.
인공신경망 학습부(12)는 복수의 위암 환자들의 임상 데이터와 생존 기간 데이터로부터 학습용 입력 데이터와 학습용 출력 데이터를 획득하고, 학습용 입력 데이터와 학습용 출력 데이터를 이용하여 입력층, 은닉층, 출력층을 포함하는 인공신경망을 학습시킨다. The artificial neural network learning unit 12 acquires learning input data and learning output data from clinical data and survival data of a plurality of gastric cancer patients, and includes an input layer, a hidden layer, and an output layer using the learning input data and the learning output data. Learning artificial neural network.
생존율 예측 모델 생성부(13)는 학습된 인공신경망을 이용하여 위암 환자의 생존율을 예측하는 모델을 생성한다. 이때 생존율을 예측한다는 것은 위암 환자의 임상 정보를 입력하면 소정의 알고리즘을 통해 상기 환자의 생존율을 산출한다는 것을 의미할 수 있다. Survival prediction model generation unit 13 generates a model for predicting the survival rate of gastric cancer patients using the learned artificial neural network. In this case, predicting the survival rate may mean that when the clinical information of the gastric cancer patient is input, the survival rate of the patient is calculated through a predetermined algorithm.
일 실시예에 따르면, 학습용 입력 데이터는 복수의 위암 환자들의 분자 유전학적 아형(subtype) 데이터를 포함할 수 있고, 상기 아형은 MSI(microsatellite instable) 아형, MSS/EMT 아형, MSS/TP53+ 아형, MSS/TP53- 아형을 포함한다. 이때 입력층은 분자 유전학적 아형 데이터가 입력되는 4개의 노드를 포함할 수 있다. According to one embodiment, the training input data may include molecular genetic subtype data of a plurality of gastric cancer patients, wherein the subtype is a microsatellite instable (MSI) subtype, an MSS / EMT subtype, an MSS / TP53 + subtype, or an MSS. / TP53- subtype. In this case, the input layer may include four nodes to which molecular genetic subtype data is input.
일 실시예에 따르면, 인공신경망 학습부(12)는 학습용 입력 데이터의 각 변수를 2차원 이상의 벡터로 임베딩(embedding)하여 임베딩층을 산출할 수 있다. According to an embodiment, the neural network learner 12 may calculate the embedding layer by embedding each variable of the training input data into a vector of two or more dimensions.
일 실시예에 따르면, 인공신경망 학습부(12)는, k-최근접 이웃 알고리즘(k-nearest neighbor algorithm: knn)을 이용하여 학습용 입력 데이터의 결측치(missing data, NaN)를 추가할 수 있다. According to an embodiment, the neural network learner 12 may add missing data (NaN) of training input data using a k-nearest neighbor algorithm (knn).
일 실시예에 따르면, 인공신경망의 은닉층은 적어도 하나의 순환신경망(RNN) 층을 포함할 수 있다. According to an embodiment, the hidden layer of the artificial neural network may include at least one RNN layer.
한편, 도 1에 도시된 본 발명의 일 실시예에 따른 인공신경망을 이용한 위암의 예후 예측 방법은 컴퓨터에서 실행될 수 있는 프로그램으로 작성할 수 있고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드 디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.Meanwhile, the prognostic method for predicting gastric cancer using an artificial neural network according to an embodiment of the present invention shown in FIG. 1 may be written as a program that can be executed by a computer, and the program may be operated using a computer-readable recording medium. Can be implemented in a general-purpose digital computer. The computer-readable recording medium may include a storage medium such as a magnetic storage medium (eg, a ROM, a floppy disk, a hard disk, etc.) and an optical reading medium (eg, a CD-ROM, a DVD, etc.).
본 발명에 따른 인공신경망을 이용한 위암의 예후 예측 방법, 장치 및 프로그램에 따르면, 위암 환자의 예후를 개개인별로 정확하게 예측할 수 있다. 그뿐만 아니라, 학습된 인공신경망을 이용하여 각 치료 방법에 의한 예후를 시뮬레이션할 수 있으므로 환자별 맞춤형 치료 방법을 결정할 수 있다.According to the method, apparatus and program for predicting the prognosis of gastric cancer using the artificial neural network according to the present invention, the prognosis of the gastric cancer patient can be accurately predicted for each individual. In addition, the prognosis of each treatment method can be simulated using the learned artificial neural network, so that the treatment method tailored to each patient can be determined.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
본 발명은 인공신경망을 이용한 위암의 예후 예측 방법, 장치 및 프로그램에 관한 것으로, 진단 및 치료 장치 산업에 이용될 수 있다.The present invention relates to a method, apparatus and program for predicting the prognosis of gastric cancer using an artificial neural network, and may be used in the diagnostic and therapeutic device industry.

Claims (13)

  1. 복수의 위암 환자들의 임상 데이터 및 위암 발병 후 생존 기간 데이터를 획득하는 단계;Acquiring clinical data of the plurality of gastric cancer patients and survival time data after the onset of gastric cancer;
    상기 임상 데이터와 상기 생존 기간 데이터로부터 학습용 입력 데이터와 학습용 출력 데이터를 획득하는 단계;Acquiring training input data and training output data from the clinical data and the survival data;
    상기 학습용 입력 데이터와 상기 학습용 출력 데이터를 이용하여 입력층, 은닉층, 출력층을 포함하는 인공신경망을 학습시키는 단계; 및Training an artificial neural network including an input layer, a hidden layer, and an output layer using the training input data and the training output data; And
    상기 학습된 인공신경망을 이용하여 위암 환자의 생존율을 예측하는 모델을 생성하는 단계;를 포함하는, 인공신경망을 이용한 위암의 예후 예측 방법. And generating a model for predicting survival rate of gastric cancer patients using the learned artificial neural network.
  2. 제1항에 있어서, The method of claim 1,
    상기 학습용 입력 데이터는 상기 복수의 위암 환자들의 분자 유전학적 아형(subtype) 데이터를 포함하고, 상기 아형은 MSI(microsatellite instable) 아형, MSS/EMT 아형, MSS/TP53+ 아형, MSS/TP53- 아형을 포함하는, 인공신경망을 이용한 위암의 예후 예측 방법.The learning input data includes molecular genetic subtype data of the plurality of gastric cancer patients, and the subtype includes a microsatellite instable (MS) subtype, an MSS / EMT subtype, an MSS / TP53 + subtype, and an MSS / TP53- subtype. Prognostic method of gastric cancer using artificial neural network.
  3. 제2항에 있어서, The method of claim 2,
    상기 입력층은 상기 분자 유전학적 아형 데이터가 입력되는 4개의 노드를 포함하는, 인공신경망을 이용한 위암의 예후 예측 방법.The input layer includes four nodes into which the molecular genetic subtype data is input. The method for predicting prognosis of gastric cancer using an artificial neural network.
  4. 제1항에 있어서, The method of claim 1,
    상기 학습용 입력 데이터와 상기 학습용 출력 데이터를 이용하여 상기 인공신경망을 학습시키는 단계는, Learning the artificial neural network using the training input data and the training output data,
    상기 학습용 입력 데이터의 각 변수를 2차원 이상의 벡터로 임베딩(embedding)하여 임베딩층을 산출하는 단계를 포함하는, 인공신경망을 이용한 위암의 예후 예측 방법. Comprising the step of embedding each variable of the learning input data in a two-dimensional or more (embedded) to calculate the embedding layer, Prognostic prediction method of gastric cancer using an artificial neural network.
  5. 제1항에 있어서,The method of claim 1,
    상기 임상 데이터와 상기 생존 기간 데이터로부터 각각 학습용 입력 데이터와 학습용 출력 데이터를 획득하는 단계는, Acquiring learning input data and learning output data from the clinical data and the survival period data, respectively.
    k-최근접 이웃 알고리즘(k-nearest neighbor algorithm: knn)을 이용하여 결측치(missing data, NaN)를 추가하는 단계를 포함하는, 인공신경망을 이용한 위암의 예후 예측 방법.A method for predicting prognosis of gastric cancer using an artificial neural network, comprising adding missing data (NaN) using a k-nearest neighbor algorithm (knn).
  6. 제1항에 있어서, The method of claim 1,
    상기 인공신경망의 상기 은닉층은 적어도 하나의 순환신경망(RNN) 층을 포함하는, 인공신경망을 이용한 위암의 예후 예측 방법. The hidden layer of the artificial neural network comprises at least one RNN layer, Prognostic prediction method of gastric cancer using an artificial neural network.
  7. 복수의 위암 환자들의 임상 데이터 및 위암 발병 후 생존 기간 데이터를 획득하는 데이터 획득부; A data acquisition unit for obtaining clinical data and survival time data after the onset of a plurality of gastric cancer patients;
    상기 임상 데이터와 상기 생존 기간 데이터로부터 학습용 입력 데이터와 학습용 출력 데이터를 획득하고, 상기 학습용 입력 데이터와 상기 학습용 출력 데이터를 이용하여 입력층, 은닉층, 출력층을 포함하는 인공신경망을 학습시키는 인공신경망 학습부; 및An artificial neural network learning unit which acquires learning input data and learning output data from the clinical data and the survival period data, and learns an artificial neural network including an input layer, a hidden layer, and an output layer by using the learning input data and the learning output data. ; And
    상기 학습된 인공신경망을 이용하여 위암 환자의 생존율을 예측하는 모델을 생성하는 생존율 예측 모델 생성부;를 포함하는, 인공신경망을 이용한 위암의 예후 예측 장치.Survival prediction model generation unit for generating a model for predicting the survival rate of gastric cancer patients using the learned artificial neural network; comprising, the apparatus for predicting the prognosis of gastric cancer using an artificial neural network.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 학습용 입력 데이터는 상기 복수의 위암 환자들의 분자 유전학적 아형 데이터를 포함하고, 상기 아형은 MSI(microsatellite instable) 아형, MSS/EMT 아형, MSS/TP53+ 아형, MSS/TP53- 아형을 포함하는, 인공신경망을 이용한 위암의 예후 예측 장치.The learning input data includes molecular genetic subtype data of the plurality of gastric cancer patients, and the subtypes include microsatellite instable (MSI) subtypes, MSS / EMT subtypes, MSS / TP53 + subtypes, and MSS / TP53- subtypes. Prognostic device for predicting gastric cancer using neural networks.
  9. 제8항에 있어서, The method of claim 8,
    상기 입력층은 상기 분자 유전학적 아형 데이터가 입력되는 4개의 노드를 포함하는, 인공신경망을 이용한 위암의 예후 예측 장치.The input layer includes four nodes into which the molecular genetic subtype data is input, The apparatus for predicting the prognosis of gastric cancer using an artificial neural network.
  10. 제7항에 있어서, The method of claim 7, wherein
    상기 인공신경망 학습부는, 상기 학습용 입력 데이터의 각 변수를 2차원 이상의 벡터로 임베딩(embedding)하여 임베딩층을 산출하는, 인공신경망을 이용한 위암의 예후 예측 장치. The artificial neural network learning unit, by embedding each variable of the learning input data into a two-dimensional or more vector (embedded) to calculate the embedding layer, prognostic prediction device for gastric cancer using an artificial neural network.
  11. 제7항에 있어서, The method of claim 7, wherein
    상기 인공신경망 학습부는, k-최근접 이웃 알고리즘(k-nearest neighbor algorithm: knn)을 이용하여 상기 학습용 입력 데이터의 결측치(missing data, NaN)를 추가하는, 인공신경망을 이용한 위암의 예후 예측 장치.The neural network learning unit adds missing data (NaN) of the training input data using a k-nearest neighbor algorithm (knn), wherein the apparatus for predicting gastric cancer using an artificial neural network.
  12. 제7항에 있어서, The method of claim 7, wherein
    상기 인공신경망의 상기 은닉층은 적어도 하나의 순환신경망(RNN) 층을 포함하는, 인공신경망을 이용한 위암의 예후 예측 장치.And said hidden layer of said artificial neural network comprises at least one RNN layer.
  13. 컴퓨터를 이용하여 제1항 내지 제6항 중 어느 한 항의 방법을 실행하기 위하여 매체에 저장된 컴퓨터 프로그램.A computer program stored in a medium for carrying out the method of any one of claims 1 to 6 using a computer.
PCT/KR2017/012068 2017-02-02 2017-10-30 Method, device, and program for predicting prognosis of stomach cancer by using artificial neural network WO2018143540A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020197003924A KR102190299B1 (en) 2017-02-02 2017-10-30 Method, device and program for predicting the prognosis of gastric cancer using artificial neural networks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0015128 2017-02-02
KR20170015128 2017-02-02

Publications (1)

Publication Number Publication Date
WO2018143540A1 true WO2018143540A1 (en) 2018-08-09

Family

ID=63040817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012068 WO2018143540A1 (en) 2017-02-02 2017-10-30 Method, device, and program for predicting prognosis of stomach cancer by using artificial neural network

Country Status (2)

Country Link
KR (1) KR102190299B1 (en)
WO (1) WO2018143540A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261299A (en) * 2020-01-14 2020-06-09 之江实验室 Multi-center collaborative cancer prognosis prediction system based on multi-source transfer learning
CN111387938A (en) * 2020-02-04 2020-07-10 华东理工大学 Patient heart failure death risk prediction system based on feature rearrangement one-dimensional convolutional neural network
WO2023241012A1 (en) * 2022-06-16 2023-12-21 南京医科大学 Method for establishing deep learning-based model for predicting functions after post-cerebral stroke early rehabilitation

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102310888B1 (en) * 2019-10-14 2021-10-08 연세대학교 산학협력단 Methods for providing information of mortality risk and devices for providing information of mortality risk using the same
KR102336311B1 (en) * 2019-11-15 2021-12-08 한국과학기술원 Model for Predicting Cancer Prognosis using Deep learning
WO2021137471A1 (en) * 2020-01-02 2021-07-08 주식회사 온코크로스 Disease prediction method, apparatus, and computer program
KR102541685B1 (en) * 2020-04-13 2023-06-09 한국과학기술원 Electronic device for prediction using recursive structure and operating method thereof
CN112017791B (en) * 2020-04-24 2022-10-11 首都医科大学附属北京地坛医院 System for determining prognosis condition of liver cancer patient based on artificial neural network model
KR102415806B1 (en) * 2020-09-15 2022-07-05 주식회사 뷰노 Machine learning method of neural network to predict medical events from electronic medical record
KR102251139B1 (en) 2020-10-13 2021-05-12 (주)비아이매트릭스 A missing value correction system using machine learning and data augmentation
KR102512674B1 (en) * 2020-10-28 2023-03-22 전남대학교산학협력단 Deep learning-based survival time prediction system and method
KR102579586B1 (en) 2020-11-04 2023-09-15 경희대학교 산학협력단 Method for predicting prognosis based on deep-learning and apparatus thereof
CN112820403B (en) * 2021-02-25 2024-03-29 中山大学 Deep learning method for predicting prognosis risk of cancer patient based on multiple sets of learning data
KR102565874B1 (en) * 2021-06-07 2023-08-09 주식회사 카카오헬스케어 Method for vectorizing medical data for machine learning, data transforming apparatus and data transforming program
KR20230166678A (en) * 2022-05-31 2023-12-07 고려대학교 산학협력단 Method and apparatus for acquiring cancer specific targets and cell surface protein panels

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040010481A1 (en) * 2001-12-07 2004-01-15 Whitehead Institute For Biomedical Research Time-dependent outcome prediction using neural networks
WO2004015608A2 (en) * 2002-08-02 2004-02-19 Europroteome Ag An expert system for clinical outcome prediction
US20060195269A1 (en) * 2004-02-25 2006-08-31 Yeatman Timothy J Methods and systems for predicting cancer outcome

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100835296B1 (en) * 2006-11-23 2008-06-09 한국생명공학연구원 Methods of Selecting Gene Set Predicting Cancer Phenotype

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040010481A1 (en) * 2001-12-07 2004-01-15 Whitehead Institute For Biomedical Research Time-dependent outcome prediction using neural networks
WO2004015608A2 (en) * 2002-08-02 2004-02-19 Europroteome Ag An expert system for clinical outcome prediction
US20060195269A1 (en) * 2004-02-25 2006-08-31 Yeatman Timothy J Methods and systems for predicting cancer outcome

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CRISTESCU, RAZVAN ET AL.: "Molecular Analysis of Gastric Cancer Identifies Subtypes Associated with Distinct Clinical Outcomes", NATURE MEDICINE, vol. 21, no. 5, 5 May 2015 (2015-05-05), pages 449 - 456, XP055531775, Retrieved from the Internet <URL:https://www.nature.com/articles/nm.3850> *
JANG, KYUNG HWAN ET AL.: "Comparison of Survival Prediction of Rats with Hemorrhagic Shocks Using Artificial Neural Network and Support Vector Machine", JOURNAL OF THE INSTITUTE OF ELECTRONICS ENGINEERS OF KOREA, vol. 48, no. 2, 2 March 2011 (2011-03-02), pages 47 - 55, XP055531778, Retrieved from the Internet <URL:https://www.dbpia.co.kr/Article/NODE01622360> *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261299A (en) * 2020-01-14 2020-06-09 之江实验室 Multi-center collaborative cancer prognosis prediction system based on multi-source transfer learning
WO2021143781A1 (en) * 2020-01-14 2021-07-22 之江实验室 Multi-center synergetic cancer prognosis prediction system based on multi-source migration learning
US11456078B2 (en) 2020-01-14 2022-09-27 Zhejiang Lab Multi-center synergetic cancer prognosis prediction system based on multi-source migration learning
CN111387938A (en) * 2020-02-04 2020-07-10 华东理工大学 Patient heart failure death risk prediction system based on feature rearrangement one-dimensional convolutional neural network
CN111387938B (en) * 2020-02-04 2023-06-23 华东理工大学 Patient heart failure death risk prediction system based on characteristic rearrangement one-dimensional convolutional neural network
WO2023241012A1 (en) * 2022-06-16 2023-12-21 南京医科大学 Method for establishing deep learning-based model for predicting functions after post-cerebral stroke early rehabilitation

Also Published As

Publication number Publication date
KR20190021471A (en) 2019-03-05
KR102190299B1 (en) 2020-12-11

Similar Documents

Publication Publication Date Title
WO2018143540A1 (en) Method, device, and program for predicting prognosis of stomach cancer by using artificial neural network
WO2018124854A1 (en) Device and method for predicting disease risk of chronic kidney disease
WO2021154060A1 (en) Method of predicting disease, gene or protein related to queried entity and prediction system built by using the same
WO2021060899A1 (en) Training method for specializing artificial intelligence model in institution for deployment, and apparatus for training artificial intelligence model
WO2019231105A1 (en) Method and apparatus for learning deep learning model for ordinal classification problem by using triplet loss function
WO2020045848A1 (en) System and method for diagnosing disease using neural network performing segmentation
WO2017014469A1 (en) Disease risk prediction method, and device for performing same
WO2021006522A1 (en) Image diagnosis apparatus using deep learning model and method therefor
WO2022045425A1 (en) Inverse reinforcement learning-based delivery means detection apparatus and method
WO2023033329A1 (en) Device and method for generating risk gene mutation information for each disease through disease-related gene mutation analysis
WO2021006596A1 (en) Machine learning model-based essential gene identification method and analysis apparatus
WO2019235828A1 (en) Two-face disease diagnosis system and method thereof
WO2016068391A1 (en) Method for analyzing individual characteristics of patient and apparatus therefor
WO2017116135A1 (en) System and method for analyzing genotype using genetic variation information on individual&#39;s genome
WO2022050719A1 (en) Method and device for determining dementia level of user
WO2024080783A1 (en) Apparatus and method for generating tcr information corresponding to pmhc using artificial intelligence technology
WO2023234730A1 (en) Patch level severity determination method, slide level severity determination method, and computing system for performing same
WO2022124724A1 (en) Machine-learning-based prognosis prediction method and device therefor
WO2021010671A9 (en) Disease diagnosis system and method for performing segmentation by using neural network and unlocalized block
WO2018169121A1 (en) Method, device, and program for predicting prognosis of synovial sarcoma by using artificial neural network
WO2022260380A1 (en) Lymph node metastasis prediction method using endoscopic resection sample image of early colon cancer, and analysis device
WO2022010168A1 (en) Method for predicting risk of dementia in parkinson&#39;s disease patient and device for predicting risk of dementia
WO2017116139A1 (en) System for analyzing bioactive variation using genetic variation information on individual&#39;s genome
WO2022260466A1 (en) Method and system for selecting individual- and lineage-specific classification variations and markers by using artificial intelligence
WO2023080586A1 (en) Method for diagnosing cancer by using sequence frequency and size at each position of cell-free nucleic acid fragment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197003924

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894681

Country of ref document: EP

Kind code of ref document: A1