WO2018092758A1 - タッチセンサ付き液晶表示装置およびその駆動方法 - Google Patents
タッチセンサ付き液晶表示装置およびその駆動方法 Download PDFInfo
- Publication number
- WO2018092758A1 WO2018092758A1 PCT/JP2017/040901 JP2017040901W WO2018092758A1 WO 2018092758 A1 WO2018092758 A1 WO 2018092758A1 JP 2017040901 W JP2017040901 W JP 2017040901W WO 2018092758 A1 WO2018092758 A1 WO 2018092758A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- touch
- liquid crystal
- common electrode
- scan
- substrate
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/13338—Input devices, e.g. touch panels
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136286—Wiring, e.g. gate line, drain line
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1368—Active matrix addressed cells in which the switching element is a three-electrode device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/04166—Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0445—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
- G09G3/3666—Control of matrices with row and column drivers using an active matrix with the matrix divided into sections
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134372—Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134381—Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0421—Structural details of the set of electrodes
- G09G2300/0426—Layout of electrodes and connections
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0202—Addressing of scan or signal lines
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/06—Details of flat display driving waveforms
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/08—Details of timing specific for flat panels, other than clock recovery
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0233—Improving the luminance or brightness uniformity across the screen
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2354/00—Aspects of interface with display user
Definitions
- the present invention relates to a liquid crystal display device with a touch sensor and a driving method thereof, and more particularly to a liquid crystal display device including a capacitive touch sensor and a driving method thereof.
- touch panels display devices equipped with touch sensors
- touch sensors such as a resistive film type, a capacitance type, and an optical type are known.
- touch scan electrode a drive electrode
- touch detection electrode a touch detection electrode that are disposed to face each other with a dielectric layer interposed therebetween.
- the capacitance formed between the touch scan electrode and the touch detection electrode varies depending on whether or not an object (for example, a finger) is in contact. Therefore, the presence or absence of contact can be detected by forming a detection signal corresponding to the change in capacitance.
- the built-in touch panel includes an on-cell touch panel and an in-cell touch panel.
- the cell refers to a display cell (hereinafter referred to as a “display panel”).
- a liquid crystal display panel includes a pair of substrates (for example, a TFT substrate and a counter substrate) facing each other with a liquid crystal layer interposed therebetween. Contains a polarizing plate.
- In-cell type refers to a display panel having a layer responsible for a touch panel function.
- the “on-cell type” means a layer in which a touch panel function is disposed between a display panel and a polarizing plate (for example, between a counter substrate and a polarizing plate).
- a “hybrid type” in which the layers responsible for the touch panel function are arranged in the display panel and between the display panel and the polarizing plate.
- this “hybrid type” also assumes the touch panel function. From the point that at least a part of the layer is disposed between the display panel and the polarizing plate, it is referred to as “on-cell type”.
- the built-in touch panel is more advantageous in reducing the thickness and weight than the external touch panel, and has an advantage that the light transmittance can be increased.
- Patent Documents 1 and 2 disclose that a common electrode provided on a TFT substrate is used as a touch scan electrode in a built-in touch panel using a horizontal electric field mode liquid crystal display panel. As a result, a touch sensor that is not easily affected by the potential of the user (finger) can be obtained.
- Patent Document 2 discloses an in-cell type and an on-cell type touch panel using a fringe field switching (FFS) mode liquid crystal display panel.
- a positive liquid crystal material is used for the liquid crystal layer (see FIG. 10 of Patent Document 2).
- the common electrode formed on the TFT substrate is used as a touch scan electrode, and the touch detection electrode is formed on the liquid crystal layer side of the counter substrate (FIG. 13, Patent Document 2). FIG. 14 etc.).
- the common electrode formed on the TFT substrate is used as a touch scan electrode, and the touch detection electrode is formed on the observer side of the counter substrate (between the counter substrate and the polarizing plate) (patent) FIG. 9 of literature 2).
- Embodiments of the present invention have been made in view of the above circumstances, and an object thereof is to provide a liquid crystal display device with a touch sensor capable of improving light transmittance and display quality.
- a liquid crystal display device with a touch sensor includes a display area including a plurality of pixels that are two-dimensionally arranged in a first direction and a second direction intersecting the first direction, and a periphery of the display area
- a liquid crystal display device with a touch sensor having a peripheral region located on the first substrate, a second substrate disposed to face the first substrate, the first substrate, and the second substrate;
- a plurality of first electrodes and a plurality of second electrodes wherein one of the plurality of first electrodes and the plurality of second electrodes is a plurality of touch detection electrodes, and the other is a plurality of touch scan electrodes
- the display area has multiple touch detection units Each of the plurality of touch detection units is a portion where one of the plurality of touch detection electrodes intersects with one of the plurality of
- the plurality of pixel electrodes disposed on the liquid crystal layer side of the first transparent substrate, and the plurality of pixel electrodes and the insulating layer disposed on the liquid crystal layer side of the first transparent substrate.
- a first common electrode, and the second substrate includes a second transparent substrate and a second common electrode formed on the liquid crystal layer side of the second transparent substrate.
- the common electrode includes a plurality of first common electrode portions, and the plurality of first common electrodes
- the pole portion also serves as the plurality of first electrodes for the touch sensor
- the second common electrode includes a plurality of second common electrode portions, and the plurality of second common electrode portions are for the touch sensor. Also serving as the plurality of second electrodes.
- the second substrate is disposed on an observer side of the first substrate, the plurality of first common electrode portions also serve as the plurality of touch scan electrodes, The two common electrode portions also serve as the plurality of touch detection electrodes.
- the first substrate further includes a scan driver connected to the plurality of first common electrode portions, and a semiconductor chip mounting region on which a semiconductor chip is mounted,
- the scan driver is disposed between the semiconductor chip mounting area or the semiconductor chip mounting area and the display area.
- the first substrate further includes a plurality of scan wirings that connect the plurality of first common electrode portions and the scan driver, and each of the plurality of scan wirings is within the display region. It has a part to be located.
- two or more scan wirings are provided for each of the plurality of first common electrode portions.
- each of the plurality of first common electrode portions extends through the display area in the first direction, and each of the plurality of second common electrode portions extends through the display area in the second direction. Extending across.
- each of the plurality of first common electrode portions extends across the display region in the second direction, and each of the plurality of second common electrode portions extends through the display region. It extends across one direction.
- the first substrate is disposed on an observer side of the second substrate, and the plurality of first common electrode portions also serve as the plurality of touch detection electrodes, The two common electrode portions also serve as the plurality of touch scan electrodes.
- each of the plurality of first common electrode portions extends across the display region in the second direction, and each of the plurality of second common electrode portions extends through the display region. It extends across one direction.
- each of the plurality of first common electrode portions extends across the display region in the first direction, and each of the plurality of second common electrode portions extends through the display region. It extends across two directions.
- each of the second common electrode portions extends across the display region to the peripheral region, and a portion of each of the second common electrode portions positioned in the peripheral region is The first substrate is electrically connected to the first substrate through a contact pillar disposed between the first substrate and the second substrate.
- the second substrate further includes a color filter layer, and the second common electrode is disposed between the color filter layer and the second transparent substrate.
- the second substrate further includes a color filter layer, and the second common electrode is disposed between the color filter layer and the liquid crystal layer.
- the pixel electrode is disposed between the first common electrode and the liquid crystal layer.
- the first common electrode is disposed between the pixel electrode and the liquid crystal layer.
- the liquid crystal display device with a touch sensor is connected to the gate driver connected to the plurality of gate lines, the source driver connected to the plurality of source lines, and the plurality of touch scan electrodes.
- Each of the display areas extends in the first direction, the display area has a plurality of sub-areas obtained by dividing the display area in the first direction, and the control circuit selects the selected sub-area.
- a driving method of a liquid crystal display device with a touch sensor is the above-described driving method of a liquid crystal display device with a touch sensor, and each of the plurality of touch scan electrodes has the display area as the The display area has a plurality of sub-areas obtained by dividing the display area in the first direction, and each of the plurality of sub-areas is one of the plurality of touch detection units.
- the drive method corresponds to two or more touch detection units, and the driving method performs (A) a touch detection operation in a state where pixel writing operation is stopped in a selected sub-region of the plurality of sub-regions.
- a touch detection step wherein a scan signal is input to a selected touch scan electrode arranged in the selected sub-region of the plurality of touch scan electrodes
- a touch detection step including a step of inputting a common signal to a plurality of touch detection electrodes and reading a change in potential of a selected touch detection electrode arranged in the selected sub-region among the plurality of touch detection electrodes as a detection signal.
- a pixel writing step in which a touch detection operation is stopped and a pixel writing operation is performed for the selected sub-region, and a common signal is applied to the plurality of touch scan electrodes and the plurality of touch detection electrodes. Including the pixel writing step, and the steps (A) and (B) are repeated for all the sub-regions.
- a common signal is input to non-selected touch scan electrodes other than the selected touch scan electrode among the plurality of touch scan electrodes, or the non-selected touch scan electrode is Floating state.
- a gate signal having the same phase and the same amplitude as the scan signal is supplied to a selection gate line arranged in the selected sub-region among the plurality of gate lines.
- a gate-off voltage Vgl is supplied to a non-selected gate line other than the selected gate line among the plurality of gate lines, or the non-selected gate line is in a floating state. is there.
- a liquid crystal display device with a touch sensor capable of improving the light transmittance and the display quality is provided.
- FIG. 1 is an enlarged plan view showing a part of the display area 80 of the first substrate 10, and (b) is a cross-sectional view showing the structure of a single pixel in the touch panel 101.
- (A) And (b) is sectional drawing which illustrates the modification of the touchscreen 101, respectively.
- 4 is a schematic plan view for explaining a structure of a peripheral region 90 in the first substrate 10 of the touch panel 101.
- FIG. 4 is a schematic diagram for explaining a touch detection method on the touch panel 101.
- FIG. (A) And (b) is sectional drawing for demonstrating the electrostatic capacitance which arises in the touch detection unit TU.
- FIG. (A) And (b) is a figure which illustrates the waveform of the scanning signal input into touch scan electrode TD, and the detection signal output from touch detection electrode TS, respectively.
- (A) is sectional drawing for demonstrating the liquid crystal orientation at the time of touch detection in the touch panel 101
- (b) is sectional drawing which shows the liquid crystal orientation of the touch panel 1001 of the comparative example 1 using a positive type liquid crystal material.
- It is. 4 is a plan view for explaining the number of touch scan wirings TDL on the touch panel 101.
- FIG. (A) And (b) is a figure for demonstrating the sectional drawing of the touch panel 1002 of the comparative example 2, and the number of touch scan wiring TDL.
- (A) And (b) is a top view which shows the example of a connection of the touch scan electrode TD and the touch scan wiring TDL in the 1st board
- (A) is a top view which shows the other touch panel 102 of 1st Embodiment
- (b) is sectional drawing which shows the pixel structure in the touch panel 102.
- FIG. It is sectional drawing which shows the pixel structure in the further another touch panel 103 of 1st Embodiment.
- FIG. It is a top view which illustrates other touch panels 202 of a 2nd embodiment. It is a top view which illustrates other touch panels 203 of a 2nd embodiment.
- (A) And (b) is the top view and sectional drawing which illustrate other touch panels 204 of 2nd Embodiment, respectively.
- (A) to (d) are schematic plan views for explaining a driving method. It is a figure which shows an example of the signal waveform of the touch scan electrode TD and the touch detection electrode TS in a touch detection process and a pixel writing process. It is a figure which shows an example of the signal waveform of the gate line GL in a touch detection process and a pixel writing process.
- the conventional in-cell type touch panel has the following problems.
- the built-in touch panel disclosed in Patent Document 2 uses a positive liquid crystal material having a positive dielectric anisotropy, and the liquid crystal molecules have a property that the major axis direction is aligned with the electric field direction. Therefore, when electric lines of force are generated between the touch detection electrode and the TFT substrate side electrode, the liquid crystal molecules are aligned so as to be parallel to the electric lines of force, and the liquid crystal molecules are aligned in the vertical direction (the thickness direction of the liquid crystal layer). It will turn. As a result, the light transmittance may be greatly reduced. For example, at the time of touch detection, when the touch scan electrode is operated (that is, the potential of the touch scan electrode is changed), the vertical electric lines of force generated between the touch detection electrode and the touch scan electrode change. For this reason, striped display unevenness corresponding to the pattern of the touch scan electrode may occur.
- the touch detection electrode is disposed on the liquid crystal layer side of the transparent substrate (for example, glass substrate) in the counter substrate, and the electrodes (pixel electrode and touch scan electrode) disposed on the TFT substrate through the liquid crystal layer.
- TFT substrate side electrode the electrodes (pixel electrode and touch scan electrode) disposed on the TFT substrate through the liquid crystal layer.
- TFT substrate side electrode the electric lines of force generated between the touch detection electrode and the TFT substrate side electrode are compared with the on-cell type touch panel in which the touch detection electrode and the TFT substrate side electrode are opposed to each other with the glass substrate interposed therebetween. This increases the effect on the display and tends to cause display unevenness.
- the present inventor has studied a configuration in which a negative liquid crystal material having a negative dielectric anisotropy is used for the liquid crystal layer.
- Negative-type liquid crystal materials have the property that the minor axis direction of the liquid crystal molecules is aligned with the electric field direction. For this reason, even if an electric force line is generated between the touch detection electrode and the TFT substrate side electrode, the liquid crystal molecules are aligned in the horizontal direction so as to be perpendicular to the electric force line and do not change in the vertical direction. Therefore, compared to the case of using a positive liquid crystal material, it is possible to suppress the decrease in transmittance and the occurrence of display unevenness due to the lines of electric force between the electrodes.
- an electric field component in the lateral direction may be generated on the counter substrate side, for example, when an object (such as a charged person) contacts the counter substrate side.
- an electric field component in the lateral direction (parallel to the substrate)
- the liquid crystal molecules rotate in an attempt to align in the vertical direction.
- Such disturbance of the liquid crystal alignment causes display unevenness.
- the present inventor has adopted a configuration in which an electrode for a touch sensor provided on the counter substrate is used as a common electrode.
- the common electrode provided on the TFT substrate is referred to as a “first common electrode”
- the common electrode provided on the counter substrate is referred to as a “second common electrode”.
- a common signal is supplied to the first and second common electrodes.
- the touch sensor electrode and the second common electrode are also used, it is not necessary to separately form a conductive layer on the counter substrate. Accordingly, it is possible to suppress a decrease in display quality due to the disorder of the liquid crystal alignment while suppressing an increase in the thickness and manufacturing cost of the touch panel.
- touch panel liquid crystal display device with a touch sensor
- touch panel a liquid crystal display device with a touch sensor
- the touch panel according to the embodiment of the present invention is not limited to the touch panel described below.
- components having substantially the same function are denoted by common reference numerals, and description thereof may be omitted.
- the touch panel according to the first embodiment of the present invention is an in-cell touch panel using a horizontal electric field mode (for example, FFS mode) liquid crystal display panel.
- a horizontal electric field mode for example, FFS mode
- FIG. 1A and 1B are a top view and a cross-sectional view of the touch panel 101 according to the first embodiment, respectively.
- FIG. 1B shows a cross section taken along the line II ′ in FIG.
- the touch panel 101 has a display area 80 and a peripheral area 90 located around the display area 80.
- the display area 80 includes a plurality of gate lines extending substantially parallel to the x direction (first direction) and a plurality of sources extending substantially parallel to the y direction (second direction).
- the y direction is a direction that intersects the x direction, and may be orthogonal to the x direction.
- the display area 80 further includes a plurality of touch detection units TU arranged in two dimensions.
- the touch detection units TU are two-dimensionally arranged in the x direction and the y direction.
- Each touch detection unit TU may be arranged corresponding to two or more pixels, for example.
- the peripheral area 90 is provided with a peripheral circuit including a drive circuit, a terminal portion, and the like.
- the semiconductor chip 16 including part or all of the drive circuits may be mounted on the peripheral region 90.
- the drive circuit includes a gate driver, a source driver, a scan driver, and a detection driver. These drive circuits are provided, for example, on the first substrate 10 (mounted or integrally formed).
- the region adjacent to the display region 80 in the gate line extending direction (x direction) is defined as the first peripheral region 90 x
- the source line extending direction (y A region adjacent to (direction) is referred to as a second peripheral region 90y.
- portions of the peripheral region 90 located on the right and left sides of the display region 80 are first peripheral regions 90x, and portions located on the lower and upper sides of the display region 80 are second peripheral regions 90y.
- the semiconductor chip 16 including a source driver, a scan driver, and a detection driver may be mounted on the second peripheral region 90y, and a gate driver may be integrally (monolithically) formed on the first peripheral region 90x.
- the touch panel 101 includes a TFT substrate (hereinafter referred to as “first substrate”) 10, a counter substrate (hereinafter referred to as “second substrate”) 20 disposed to face the first substrate 10, a first substrate 10, And the liquid crystal layer 8 provided between the two substrates 20.
- first substrate TFT substrate
- second substrate counter substrate
- the liquid crystal layer 8 is a horizontal alignment type liquid crystal layer containing a (negative type) nematic liquid crystal material having negative dielectric anisotropy.
- a negative type liquid crystal material As will be described in detail later, it is possible to suppress a decrease in light transmittance and display unevenness during a touch detection operation.
- the negative liquid crystal material is sealed between the first substrate 10 and the second substrate 20 by the sealing material 12.
- the touch panel 101 has a pair of electrodes for applying a voltage to the liquid crystal layer 8 and a pair of electrodes for a touch sensor.
- a plurality of pixel electrodes 2 and a first common electrode 4 are provided on the first substrate 10 as electrodes for applying a voltage to the liquid crystal layer 8.
- As electrodes for the touch sensor a first electrode is provided on the first substrate 10 and a second electrode is provided on the second substrate 20.
- One of the first electrode and the second electrode is a touch detection electrode TS that is a reception side electrode of the touch sensor, and the other is a touch scan electrode TD that is a transmission side electrode of the touch sensor.
- the electrode of the substrate disposed on the viewer side is the touch detection electrode TS
- the electrode of the substrate disposed on the non-observer side is the touch scan electrode TD.
- the second substrate 20 is arranged on the viewer side of the first substrate 10, the first electrode is the touch detection electrode TS, and the second electrode is the touch detection electrode TS.
- the first substrate 10 includes a first transparent substrate (for example, a glass substrate) 11, a first common electrode 4 and a plurality of pixel electrodes 2 formed on the liquid crystal layer 8 side of the first transparent substrate 11.
- the pixel electrode 2 and the first common electrode 4 are disposed via an insulating layer.
- the pixel electrode 2 is disposed on the liquid crystal layer 8 side of the first common electrode 4, but may be disposed on the first transparent substrate 11 side of the first common electrode 4.
- the pixel electrode 2 is electrically independent for each pixel.
- the first common electrode 4 includes a plurality of first common electrode portions 4p arranged at intervals of 4g. In this example, the first common electrode portions 4p extending in the x direction are arranged in the y direction with an interval of 4g.
- Each first common electrode portion 4p also serves as a touch scan electrode TD.
- the first common electrode portion 4p may be arranged corresponding to a plurality of pixels.
- Each first common electrode portion 4p is connected to a scan driver (not shown) via a touch scan wiring TDL.
- the scan driver may be arranged on the semiconductor chip 16, for example.
- the second substrate 20 includes a second transparent substrate (for example, a glass substrate) 21 and a second common electrode 9 formed on the liquid crystal layer 8 side of the second transparent substrate 21.
- the second substrate 20 may further include a color filter layer.
- the second common electrode 9 includes a plurality of second common electrode portions 9p arranged at intervals of 9g. In this example, the second common electrode portions 9p extending in the y direction are arranged in the x direction with an interval of 9g. Each second common electrode portion 9p also serves as the touch detection electrode TS.
- the second common electrode portion 9p may be arranged corresponding to a plurality of pixels.
- Each second common electrode portion 9p is connected to a detection driver via a touch detection wiring TSL.
- the detection driver may be disposed, for example, on the semiconductor chip 16.
- Each second common electrode portion 9p is electrically connected to the first substrate 10 side in the peripheral region 90 via the contact pillar 14 disposed between the first substrate 10 and the second substrate 20.
- a columnar conductive member can be used as the contact column 14, in this example, a sealing material provided with conductivity (for example, a sealing material including a resin containing spherical conductive particles) is used as the sealing material 12.
- a part of the sealing material 12 is used as the contact pillar 14. In this manner, the detection driver can be provided on the first substrate 10 by connecting the second common electrode portion 9p to the first substrate 10 side via the contact pillar 14.
- the thickness of the touch panel 101 can be significantly reduced as compared with a case where a touch sensor driving circuit is separately mounted on the second substrate 20.
- the scan driver may be arranged in the second peripheral area 90y.
- the scan driver may be arranged in the semiconductor chip mounting area (including on the semiconductor chip 16) or between the semiconductor chip mounting area and the display area 80 in the second peripheral area 90y.
- the touch scan wiring TDL may be extended from the second peripheral region 90y to the display region 80 and may extend in the y direction to the corresponding first common electrode portion 4p in the display region 80.
- the peripheral area 90 has a larger area. The area can be reduced.
- the arrangement of the touch detection units TU is not particularly limited, but is preferably arranged in a matrix in the x direction and the y direction.
- a plurality of touch detection units TU arranged in the x direction are referred to as “touch detection unit rows”, and a plurality of touch detection units TU arranged in the y direction are referred to as “touch detection unit columns”.
- One separated touch detection electrode TS (or touch scan electrode TD) is arranged for each touch detection unit row, and one separated touch scan electrode TD (or touch detection electrode TS) is arranged for each touch detection unit column. May be. According to the above configuration, the touch scan electrode TD and the touch detection electrode TS having a sufficient width can be formed.
- the touch scan electrode TD and the touch detection electrode TS are formed of only a transparent conductive film, for example, the electric resistance is sufficient. Can be lowered. Therefore, the touch detection operation can be performed without assisting these electrodes with a low-resistance metal film, and the increase in the number of stacked layers can be suppressed.
- each of the first common electrode portions 4p corresponds to one touch detection unit row and extends in the x direction.
- Each of the second common electrode portions 9p corresponds to one touch detection unit column and extends in the y direction. As will be described later, each first common electrode portion 4p may extend in the y direction, and each second common electrode portion 9p may extend in the x direction.
- the first common electrode portion 4p is 1
- the second common electrode portion 9p may be arranged corresponding to one or two or more pixel columns (or pixel rows), corresponding to two or more pixel rows (or pixel columns).
- the touch sensor array area may be at least partially overlapped with the display area 80.
- it may be larger or smaller than the display area 80.
- FIG. 2A is an enlarged plan view showing a part of the display area 80 of the first substrate 10 and shows two pixels.
- the display area 80 of the first substrate 10 includes gate lines GL extending in the x direction, source lines SL extending in the y direction, and a plurality of pixel areas Pix arranged in a matrix in the x direction and the y direction.
- the pixel area Pix is an area corresponding to the pixel in the touch panel 101.
- each pixel region Pix is defined by a gate line GL and a source line SL.
- Each pixel region Pix includes a TFT 30 supported on a first transparent substrate, a pixel electrode 2, and a first common electrode (not shown).
- the pixel electrode 2 has at least one slit or notch for each pixel.
- the TFT 30 is not particularly limited, but is, for example, a bottom gate type TFT.
- the TFT 30 includes a gate electrode 32, a semiconductor layer 34, a gate insulating layer disposed between the gate electrode 32 and the semiconductor layer 34, a source electrode 36 and a drain electrode 38 electrically connected to the semiconductor layer 34.
- Have The gate electrode 32 is electrically connected to the corresponding gate line GL
- the source electrode 36 is electrically connected to the corresponding source line SL.
- the gate electrode 32 may be formed in the same layer (gate metal layer) as the gate line GL, and the source electrode 36 and the drain electrode 38 may be formed in the same layer (source metal layer) as the source line SL.
- the drain electrode 38 is electrically connected to the pixel electrode 2.
- a connection portion between the drain electrode 38 and the pixel electrode 2 is referred to as a “pixel contact portion”.
- the drain electrode 38 and the pixel electrode 2 are connected in an opening portion (hereinafter referred to as “pixel contact hole”) CH1 provided in an insulating layer located between them.
- a plurality of touch scan wirings TDL are also arranged.
- the touch scan wiring TDL only needs to be provided for each first common electrode portion, and may not be arranged in all the pixel regions Pix.
- the touch scan wiring TDL may extend to the corresponding first common electrode portion, for example, in the y direction. In this example, when viewed from the normal direction of the first substrate 10, the touch scan wiring TDL extends so as to overlap the source line SL.
- the touch scan wiring TDL is electrically connected to the corresponding first common electrode portion.
- a connection portion between the touch scan wiring TDL and the first common electrode portion is referred to as a “touch scan electrode contact portion”.
- the touch scan wiring TDL and the first common electrode portion are openings provided in an insulating layer located between them (hereinafter referred to as “touch scan electrode contact hole”). Connected within CH2. It is sufficient that at least one touch scan electrode contact portion is provided for one first common electrode portion.
- each touch scan wiring TDL may include a first portion having a first width and a second portion having a second width larger than the first width.
- the width of the second portion (second width) may be larger than the width of the source line SL.
- Both the first portion and the second portion are preferably disposed in a light shielding region that is shielded by a black matrix disposed on the counter substrate.
- the second portion having a large width can be disposed in the light shielding region by disposing the second portion in the vicinity of the intersection between the gate line GL and the source line SL. .
- each touch scan wiring TDL extends in the y direction so as to overlap the source line SL, and a portion of each touch scan wiring TDL that intersects the gate line GL has a second width. A portion located between two adjacent second portions is a first portion having a first width.
- the touch scan electrode contact hole CH2 is preferably arranged so as to overlap the second portion of the touch scan wiring TDL. Thereby, the size of the touch scan electrode contact hole CH2 can be increased, and a contact portion with lower resistance can be formed.
- FIG. 2B is a cross-sectional view showing the structure of a single pixel in the touch panel 101, and shows a cross section taken along the line II-II ′ of FIG.
- Each pixel includes a first substrate 10, a second substrate 20, and a liquid crystal layer 8 disposed therebetween.
- a polarizing plate 41 is disposed outside the first substrate 10 (on the side opposite to the liquid crystal layer 8), and a polarizing plate 42 is disposed outside the second substrate 20 (on the side opposite to the liquid crystal layer 8).
- the first substrate 10 includes a first transparent substrate 11, an active matrix layer 43 disposed on the liquid crystal layer 8 side of the first transparent substrate 11, and a first insulating layer 50 disposed on the active matrix layer 43.
- the active matrix layer 43 is a layer including a TFT, and includes a gate metal layer including a gate line GL and a gate electrode, a gate insulating layer 33, a semiconductor layer, a source metal layer including a source line SL and a source / drain electrode, including.
- the first insulating layer 50 includes an inorganic insulating layer (passivation layer) 50a that covers the TFT.
- the first insulating layer 50 may have a laminated structure including an inorganic insulating layer 50a and an organic insulating layer 50b formed thereon.
- a scan wiring layer 48 including the touch scan wiring TDL may be further formed on the second insulating layer 52.
- the second insulating layer 52 is disposed on the first common electrode 4, and the touch scan wiring TDL and the pixel electrode 2 are disposed on the second insulating layer 52.
- the first substrate 10 may further include an alignment film.
- the touch scan wiring TDL is separate from the pixel electrode layer 46, the first common electrode layer 44, the source metal layer, and the gate metal layer. It is preferably formed in a layer (in other words, formed using a conductive film different from the pixel electrode 2, the source line SL, the gate line GL, and the first common electrode 4).
- the second substrate 20 has a second transparent substrate 21, a color filter layer 60, and a second common electrode layer 62 including the second common electrode 9.
- the second common electrode layer 62 is disposed closer to the liquid crystal layer 8 than the color filter layer 60.
- An overcoat layer 64 is provided between the second common electrode layer 62 and the color filter layer 60.
- stacking order of the first substrate 10 and the second substrate 20 is not limited to the example shown in FIG.
- the touch scan wiring TDL may be disposed closer to the first transparent substrate 11 than the first common electrode 4.
- the touch scan wiring TDL, the third insulating layer 54 covering the touch scan wiring TDL, the first common electrode 4, the second insulating layer 52, and the pixel electrode are formed on the first insulating layer 50. 2 may be arranged in this order.
- the touch scan electrode contact hole CH ⁇ b> 2 is provided in the third insulating layer 54.
- the second common electrode 9 is preferably disposed closer to the liquid crystal layer 8 than the second transparent substrate 21.
- the second common electrode 9 can be connected to the first substrate 10 side via the contact pillar 14. It is. For this reason, since all the drivers (scan driver and detection driver) for touch sensors can be provided in the 1st substrate 10, a touch panel with few members can be realized.
- the second common electrode 9 may be disposed between the color filter layer 60 and the second transparent substrate 21.
- a source driver drives the source line SL
- the gate driver drives the gate line GL
- the scan driver drives the touch scan electrode TD and the touch scan wiring.
- the detection driver detects a signal from the touch detection electrode TS.
- the source driver and the gate driver are typically mounted on the first substrate 10 or formed monolithically.
- the scan driver is also mounted on the first substrate 10 or formed monolithically.
- the thickness of the entire touch panel 101 can be made smaller than when the scan driver is mounted on the second substrate 20 side.
- another drive circuit such as a source driver and a scan driver may be provided on the same semiconductor chip.
- the detection driver is also preferably provided on the first substrate 10 side, and may be disposed on the semiconductor chip.
- a source driver, a scan driver, and a detection driver are mounted on the first substrate 10 by a COG (Chip On Glass) mounting method, and a gate driver is formed monolithically on the first substrate 10 will be described.
- COG Chip On Glass
- FIG. 4 is a schematic plan view for explaining the structure of the peripheral region 90 in the first substrate 10 of the touch panel 101.
- the first substrate 10 includes a display area 80 including a plurality of pixel areas Pix and a touch detection unit TU, and a peripheral area 90 located around the display area 80.
- a gate driver 71, a source driver 72, a scan driver 73, and a detection driver 74 are provided in the peripheral region 90.
- the gate driver 71 is connected to a plurality of gate lines GL
- the source driver 72 is connected to a plurality of source lines SL.
- the scan driver 73 is connected to the plurality of touch scan electrodes TD via the touch scan wiring TDL.
- the detection driver 74 is connected to the plurality of touch detection electrodes TS via the touch detection wiring TSL.
- the gate driver 71 is integrally (monolithically) formed in each of the first peripheral regions 90x located on the right and left sides of the display region 80.
- the semiconductor chip 16 is mounted on the second peripheral region 90y located below the display region 80.
- the semiconductor chip 16 includes a source driver 72, a scan driver 73, and a detection driver 74.
- two detection drivers 74 and two scan drivers 73 are arranged on both sides of the source driver 72, but the number and arrangement order of these drive circuits on the semiconductor chip 16 are not limited to this example.
- the first substrate 10 further includes a control unit.
- the control unit includes a control circuit 76 for controlling the operations of the drivers 71 to 74 described above.
- Each driver 71 to 74 is connected to a printed circuit board on which a control circuit 76 is formed, for example, via an FPC.
- the control circuit 76 includes, for example, a timing controller, and controls the operation of these circuits by supplying control signals to the drivers 71 to 74 based on video signals supplied from the outside.
- the gate driver 71 is monolithically formed here, but the gate driver 71 may be mounted. Further, some or all of the other drivers 72 to 74 may be formed monolithically. For example, as described later, the scan driver 73 may be formed monolithically in the peripheral region 90.
- the touch sensor includes a touch scan electrode TD provided on the first substrate 10 and a touch detection electrode TS provided on the second substrate 20.
- the first substrate 10 is provided with a plurality of touch scan electrodes TD extending in the x direction (left and right direction in the figure).
- a drive signal (scan signal) is sequentially supplied from the scan driver to each touch scan electrode TD, and the scan drive is sequentially performed in a time division manner.
- Each of the plurality of touch detection electrodes TS extends in the y direction and is connected to a detection driver. Capacitance is formed at a portion (touch detection unit) where the touch scan electrode TD and the touch detection electrode TS intersect each other.
- the electrode patterns intersecting each other constitute a touch detection unit TU (capacitance type touch sensor) in a matrix, and by scanning over the entire touch detection surface, the presence or absence of touch and the coordinates of the touch position are detected. Can be specified.
- 6 (a) and 6 (b) are cross-sectional views for explaining the capacitance generated in the touch detection unit TU.
- the illustration of the lower portion of the first substrate 10 than the first common electrode portion 4p is omitted.
- 6A shows a state where an object (for example, a finger) is not in contact with the surface of the second substrate 20 on the viewer side
- FIG. 6B shows a state where the object is in contact.
- FIG. 7A and 7B are diagrams illustrating the waveforms of the scan signal input to the touch scan electrode TD and the detection signal output from the touch detection electrode TS, respectively.
- a scan signal is sequentially input to the touch scan electrode TD to perform AC driving.
- the scan signal using the AC rectangular wave (Vcom ⁇ V M).
- the first capacitor C1 is a capacitor according to the overlapping area of the touch scan electrode TD and the touch detection electrode TS, the thickness of the dielectric located between these electrodes, and the dielectric constant.
- the common potential Vcom is always input to the touch detection electrode TS, but the touch detection electrode TS is pushed up and down by the influence of the scan signal. Therefore, a detection signal having a waveform as shown in FIG. 7B is obtained.
- the driving method of the touch panel 101 is not particularly limited.
- One frame may be time-divided into a touch detection time and a pixel writing time.
- the touch detection operation may be performed by sequentially driving all the touch scan electrodes TD, and then the pixel writing operation may be performed by sequentially driving all the gate lines GL.
- the display area 80 can be divided into a plurality of sub-areas, and touch detection and pixel writing operations can be performed for each sub-area.
- FIG. 8A is a cross-sectional view for explaining liquid crystal alignment at the time of touch detection in the touch panel 101 of the present embodiment.
- FIG. 8B shows the liquid crystal alignment of the touch panel 1001 of Comparative Example 1 using a positive liquid crystal material.
- the liquid crystal molecules 112 maintain the same alignment direction (horizontal direction) as that in the state where no voltage is applied to the liquid crystal layer 8. For this reason, since the change of the brightness
- the touch panel 101 includes a touch scan wiring TDL and a touch detection wiring TSL as signal wirings for the touch sensor.
- the touch scan wiring TDL may also be used as a common wiring.
- the touch scan wiring TDL inputs a common signal Vcom to the first common electrode portion 4p at the time of pixel writing, and inputs a touch sensor drive signal (scan signal) to the first common electrode portion 4p at the time of touch detection. It may be configured.
- the common signal Vcom may also be used as a scan signal.
- the touch detection wiring TSL may also be used as a common wiring.
- the common signal Vcom may be input to the second common electrode portion 9p during pixel writing, and the detection signal may be output from the second common electrode portion 9p during touch detection.
- One or two or more touch scan wirings TDL may be connected to each touch scan electrode TD.
- one or more touch detection wirings TSL may be connected to each touch detection electrode TS.
- FIG. 9 is a plan view for explaining the number of touch scan wirings TDL in the touch panel 101.
- FIGS. 10A and 10B are cross-sectional views of the touch panel 1002 of Comparative Example 2 and diagrams for explaining the number of touch scan wirings TDL.
- the touch panel 1002 of Comparative Example 2 is a touch panel in which only one electrode layer for a touch sensor is formed (having only a touch detection electrode and no touch scan electrode).
- the first substrate 10 has touch detection electrodes TS separated for each touch detection unit.
- the common electrode 4 may also serve as the touch detection electrode TS.
- Each touch detection electrode TS is connected to the signal wiring TL.
- the signal wiring TL is provided for each touch detection unit TU. For example, when the touch detection units TU are arranged in a matrix in M rows and N columns, M ⁇ N touch detection electrodes TS and signal wirings TL are required.
- the intersection of the touch scan electrode TD and the touch detection electrode TS is used as the touch detection unit TU.
- the number of signal wirings can be reduced rather than the number of touch detection units TU.
- a touch scan electrode TD (or touch detection electrode TS) is arranged for each row, and for each column.
- the touch detection electrode TS (or touch scan electrode TD) is disposed on the surface.
- the number of necessary signal lines (the total number of the signal lines TDL connected to the touch scan electrodes TD and the signal lines TSL connected to the touch detection electrodes TS) is M + N. Therefore, the number of signal wirings can be greatly reduced and the degree of freedom of layout is increased as compared with the touch panel 1002 of Comparative Example 2.
- the number of signal lines may be larger than the necessary number (M + N) of signal lines described above.
- two or more signal wirings may be connected to one touch scan electrode TD or touch detection electrode TS.
- a plurality of (here, two) touch scan wirings TDL are connected to each first common electrode portion 4p functioning as the touch scan electrode TD on the first substrate 10. It is a top view which shows the example to do.
- a plurality (here, five) of touch scan electrodes TD (1) to TD (5) are arranged in the y direction in the display region 80.
- a scan driver 73 is arranged in an area 90 y located below the display area 80 in the peripheral area 90.
- the touch scan electrodes TD (1) to TD (5) are connected to the corresponding two touch scan lines TDL (1) to TDL (5) in the touch scan electrode contact portion 18, respectively, and the touch scan lines TDL (1) ) To TDL (5) and electrically connected to the scan driver 73.
- five touch scan electrodes are illustrated here, but the number of touch scan electrodes is not limited thereto.
- the delay of the common signal and the scan signal can be improved by connecting a plurality of touch scan wirings TDL to each touch scan electrode TD. As a result, it is possible to further increase touch detection sensitivity. Further, greenishness and striped unevenness are suppressed, and display quality can be improved. “Greenish” is a colored phenomenon caused by a difference in voltage applied to a liquid crystal layer of a specific pixel due to a dullness of a common signal.
- the touch scan wirings TDL (1) to TDL (5) may be arranged so that the difference in length is as small as possible. Thereby, since the difference in time (delay time) for the common signal and the scan signal to be transmitted to each touch scan electrode TD can be reduced, it is possible to suppress deterioration in display characteristics and touch detection characteristics. For example, as shown in FIG. 11A, when the scan driver 73 is disposed near the center of the width in the x direction of the second peripheral region 90y, the touch scan lines TDL (1) to TDL (5) are In the display region 80, the touch scan wiring TDL connected to the farther touch scan electrode TD may be arranged on the center side.
- two scan drivers 73a and 73b may be arranged one by one at both ends of the second peripheral area 90y.
- the touch scan wirings TDLa (1) to TDLa (5) and TDLb (1) to TDL (5) are closer to the touch scan electrode in the display region 80 so that the difference in length is as small as possible.
- the touch scan wirings TDLa and TDLb connected to the TD may be arranged closer to the center.
- the plurality of touch scan electrode contact portions 18 are formed along lines 19 that cross the display region 80 in the y direction.
- the distance between the two touch scan electrode contact portions 18 and the line 19 in each touch scan electrode TD (n) is preferably equal to each other.
- the line 19 may be a center line that bisects the display region 80 in the y direction. This increases the distance from the scan driver 73 to the touch scan electrodes TD (1) to TD (5) without increasing the size of the second peripheral region 90y (particularly the distance between the display region 80 and the scan driver 73). The resistance difference can be suppressed by approaching uniformly.
- FIG. 12A is a plan view showing another touch panel 102 of the present embodiment
- FIG. 12B is a cross-sectional view showing a pixel structure in the touch panel 102.
- the first common electrode portion 4p formed on the first substrate 10 also serves as the touch scan electrode TD, and the second common electrode portion 9p formed on the second substrate 20 is used. Also serves as the touch detection electrode TS.
- the touch panel 101 differs from the touch panel 101 in that the first common electrode portion 4p extends in the y direction and the second common electrode portion 9p extends in the x direction.
- Each first common electrode portion 4p extends across the display region 80 in the y direction, and is connected to the touch scan wiring TDL in the second peripheral region 90y.
- the touch scan wiring TDL is connected to, for example, a scan driver on the semiconductor chip 16.
- the touch scan wiring TDL connects the scan driver and the end on the scan driver side of the first common electrode portion 4p in the peripheral region 90 (here, the second peripheral region 90y).
- the touch scan wiring TDL is disposed only in the peripheral region 90 and is not located in the display region 80 (in the pixel). Therefore, the pixel aperture ratio can be made higher than when a part of each touch scan wiring TDL is arranged in the pixel.
- the second common electrode portion 9p extends across the display region 80 in the x direction, and is formed on the first substrate 10 via the contact pillars 14 in the first peripheral region 90x on both sides of the display region 80.
- the touch detection wiring TSL is connected to a detection driver.
- the touch detection wiring TSL extends in the first peripheral region 90x and is connected to, for example, a detection driver disposed on the semiconductor chip 16 in the second peripheral region 90y.
- FIG. 13 is a cross-sectional view showing a pixel structure in still another touch panel 103 of the present embodiment.
- the touch panel 103 is different from the touch panel 101 in that an overcoat layer 64 is disposed on the liquid crystal layer 8 side of the second common electrode 9 on the second substrate 20.
- Another overcoat layer may be further provided between the color filter layer 60 and the second common electrode 9.
- the overcoat layer 64 is located between the touch detection electrode TS and the touch scan electrode TD. For this reason, since the scan voltage applied between the touch detection electrode TS and the touch scan electrode TD is also applied to the overcoat layer 64, the voltage applied to the liquid crystal layer 8 can be reduced. Therefore, the influence of the touch scan electrode TD on the AC-driven liquid crystal can be reduced, so that display defects (for example, striped display unevenness) at the time of touch detection can be improved more effectively.
- FIG. 14 is a cross-sectional view showing a pixel structure in still another touch panel 104 of the present embodiment.
- the touch panel 104 is different from the touch panel 101 in that the first common electrode 4 is disposed between the pixel electrode 2 and the liquid crystal layer 8 on the first substrate 10.
- the pixel electrode 2 and the touch scan wiring TDL are formed on the first insulating layer 50.
- a first common electrode 4 is formed on the pixel electrode 2 and the touch scan wiring TDL via a second insulating layer 52.
- the first common electrode 4 is separated for each touch detection unit and functions as the touch scan electrode TD.
- the first common electrode 4 is provided with a slit or notch for each pixel.
- the pixel electrode 2 only needs to be separated for each pixel, and a slit or the like may not be formed.
- the touch scan electrode TD can be disposed closer to the touch detection electrode TS (second common electrode 9). For this reason, since the space
- FIG. 15 is a plan view of still another touch panel 105 of the present embodiment.
- the touch panel 105 is different from the touch panel 101 in that the scan driver 73 is monolithically formed on the first substrate 10.
- the cost of the semiconductor chip 16 can be reduced as compared with the case where the scan driver 73 is disposed on the semiconductor chip 16. Further, the number of signal lines 78 (for example, clock lines, start signal lines and constant potential lines) necessary for driving the scan driver 73 can be smaller than the number of touch scan lines TDL. Therefore, the number of wirings from the semiconductor chip 16 can be reduced, and the peripheral region 90 can be made narrower.
- the number of signal lines 78 for example, clock lines, start signal lines and constant potential lines
- scan driver 73 In the touch panel 105, two scan drivers 73a and 73b (hereinafter may be collectively referred to as “scan driver 73”) are arranged in the second peripheral area 90y with a space therebetween.
- the number of scan drivers 73 may be one or three or more.
- the scan driver 73 is preferably arranged between the display area 80 and the semiconductor chip 16. In this example, when the first substrate 10 is viewed from the normal direction, the scan driver 73 is disposed in an area surrounded by the sealing material 12 and located below the display area 80. Yes.
- the scan drivers 73a and 73b may be arranged on both sides of the source signal lead line connecting the source driver and the source line SL in the second peripheral region 90y.
- the scan drivers 73a and 73b are connected to the touch scan electrodes TD via the touch scan wirings TDLa and TDLb.
- Each of the touch scan wirings TDLa and TDLb may have a portion located in the display region 80 (in the pixel) and extending across the pixel column.
- the gate driver (not shown) is monolithically formed in the first peripheral region 90x, and the source driver and the detection drivers 74a and 74b are provided in the semiconductor chip 16. Also good.
- the TFT substrate is positioned closer to the observer than the counter substrate, and the touch surface is disposed on the TFT substrate side. Therefore, the second embodiment is different from the first embodiment in that the detection electrode is disposed on the TFT substrate side and the scan electrode is disposed on the counter substrate side.
- the potential change of the detection electrode is smaller than that of the scan electrode (see FIG. 7).
- the detection electrode since the detection electrode is disposed on the TFT substrate, the coupling capacity between the detection electrode and the pixel electrode is larger than that when the scan electrode is disposed on the TFT substrate. The potential difference becomes smaller. Therefore, the influence on the display quality is reduced.
- FIG. 16A is a plan view illustrating the touch panel 201 of the second embodiment
- FIG. 16B is a cross-sectional view taken along the line III-III ′ in FIG.
- FIG. 16C is a cross-sectional view illustrating a pixel structure in the touch panel 201.
- the same components as those of the touch panel 101 are denoted by the same reference numerals.
- differences from the touch panel 101 will be mainly described, and redundant description will be omitted.
- the first substrate 10 is positioned closer to the viewer than the second substrate 20 that is the counter substrate, and the first substrate 10 side is the touch surface.
- the first common electrode 4 on the first substrate 10 is separated into a plurality of first common electrode portions 4p and also serves as the touch detection electrode TS.
- the second common electrode 9 on the second substrate 20 is separated into a plurality of second common electrode portions 9p and also serves as the touch scan electrode TD.
- Each of the first common electrode portions 4p may extend across the display region 80 in the y direction.
- the first common electrode portion 4p is electrically connected to, for example, a detection driver disposed in the second peripheral region 90y via the touch detection wiring TSL.
- the touch detection wiring TSL can be arranged only in the peripheral region 90, it is possible to suppress a decrease in the aperture ratio due to the signal wiring of the touch panel being located in the pixel.
- each of the second common electrode portions 9p may extend across the display region 80 in the x direction.
- the second common electrode portion 9p may be connected to the touch scan wiring TDL on the first substrate 10 via the contact pillar 14 in the first peripheral region 90x.
- the touch scan wiring TDL may extend from the first peripheral region 90x to the second peripheral region 90y and be electrically connected to a scan driver disposed in the second peripheral region 90y.
- the touch panel 102 may include two scan drivers 73a and 73b, and each first common electrode portion 4p may be connected to both of the two scan drivers 73a and 73b.
- each first common electrode portion 4p is connected to the scan driver 73a via the touch scan line TDLa
- the right end is connected to the scan driver 73b via the touch scan line TDLb.
- the delay of the common signal and the scan signal can be improved as described above with reference to FIG.
- FIGS. 17 and 18 are plan views illustrating other touch panels 202 and 203 in the second embodiment, respectively.
- the scan driver 73 is monolithically arranged on the first substrate 10. Thereby, the cost of the semiconductor chip 16 can be reduced. Further, since the number of wirings from the semiconductor chip 16 can be reduced, the peripheral region 90 can be made narrower.
- scan driver 73 In the touch panel 202 shown in FIG. 17, two scan drivers 73a and 73b (hereinafter may be collectively referred to as “scan driver 73”) are monolithically formed in the second peripheral area 90y.
- the number of scan drivers 73 may be one or three or more.
- the scan driver 73 may be disposed between the display region 80 and the semiconductor chip 16 in the second peripheral region 90y.
- the scan drivers 73a and 73b are arranged at intervals.
- the scan drivers 73a and 73b may be disposed on both sides of the source signal lead line connecting the source driver 72 and the source line SL in the second peripheral region 90y.
- the scan drivers 73a and 73b are disposed near the right and left edges of the second peripheral region 90y (for example, below the first peripheral region 90x), respectively. It is preferable. Thereby, the length of the touch scan wiring TDL can be shortened.
- the positions of the scan drivers 73a and 73b are not particularly limited, but it is preferable that the entirety of the scan drivers 73a and 73b is disposed inside the sealing material 12.
- the scan drivers 73 a and 73 b may be disposed outside the sealing material 12. Alternatively, only a part of the scan drivers 73a and 73b may be disposed inside the sealing material 12. In this case, the scan drivers 73 a and 73 b may overlap with the sealing material 12. As illustrated, the scan drivers 73a and 73b may extend to the outside of the sealing material 12 across the sealing material 12 in the x direction.
- the second common electrode portion 9p (touch scan electrode TD) formed on the second substrate 20 extends in the x direction, and touches the first substrate 10 via the contact pillar 14 in the first peripheral region 90x.
- the scan lines TDLa and TDLb are connected.
- the touch scan wirings TDLa and TDLb extend in the first peripheral region 90x toward the second peripheral region 90y and are connected to the scan drivers 73a and 73b.
- Each of the second common electrode portions 9p may be connected to both of the two scan drivers 73a and 73b.
- the left end of each second common electrode portion 9p is connected to the scan driver 73a via the touch scan line TDLa, and the right end is connected to the scan driver 73b via the touch scan line TDLb. Good.
- the scan driver 73 is monolithically formed in the first peripheral region 90x.
- two scan drivers 73a and 73b may be disposed in the first peripheral area 90x located on the right and left sides of the display area 80, respectively.
- the second common electrode portion 9p formed on the second substrate 20 extends to the first peripheral region 90x in the x direction.
- the contact pillar 14 and the touch scan wirings TDLa and TDLb are interposed.
- the scan drivers 73a and 73b are connected to the scan drivers 73a and 73b.
- each second common electrode portion 9p may be connected to both of the two scan drivers 73a and 73b.
- the structure of the touch panel of the present embodiment is not limited to the examples shown in FIGS. If the first common electrode 4 is changed to serve as the touch detection electrode TS and the second common electrode 9 is also used as the touch scan electrode TD, various variations described in the first embodiment can be applied.
- the stacking order of the first substrate 10 and the second substrate 20 may be changed, and the extending direction of the touch detection electrode TS and the touch scan electrode TD may be changed as illustrated in FIG.
- the touch panel of the third embodiment is configured to divide the display area 80 into a plurality of sub-areas and perform touch detection and pixel writing operations for each sub-area.
- the structure of the touch panel of this embodiment may be the same as the touch panels 101 to 105 and 201 to 203 of the first and second embodiments described above. However, in this embodiment, it is preferable that the touch scan electrode TD extends in the same direction (x direction) as the gate line GL, as illustrated in FIGS.
- the control circuit 76 controls the operation of each driver, and performs the following drive during one screen writing time (also referred to as one vertical scanning period or one frame).
- the display area is divided into a plurality of sub-areas, and the touch detection operation is performed on the selected sub-area while the pixel potential writing operation (hereinafter referred to as “pixel writing operation”) is stopped. Thereafter, the touch detection operation is stopped and the pixel writing operation is performed. Subsequently, the next sub-region is selected, and similarly, the touch detection operation and the pixel writing operation are performed. In this manner, the touch detection operation and the pixel writing operation are sequentially performed on the plurality of sub-regions.
- the pixel writing operation is performed after the touch detection operation is performed on the selected sub-region, the liquid crystal alignment is disturbed due to a potential change at the time of touch detection (in this case, stripes may be generated in the horizontal direction in units of sub-regions). It becomes difficult to be done. Therefore, higher display characteristics can be obtained.
- the touch detection operation it is preferable to perform the pixel writing operation with as little time as possible (for example, within 1 ⁇ sec).
- 20 (a) to 20 (d) are schematic plan views for explaining the driving method.
- the display area 80 is divided into a plurality of sub-areas B in the x direction.
- Each sub-region B includes one or more touch detection units.
- the display area 80 is divided into n sub-areas B1 to Bn.
- the sub-regions B1 to Bn are arranged in the y direction from the top.
- each sub-region B is arranged corresponding to one touch scan electrode TD (that is, one touch detection unit row).
- Each sub-region B may correspond to two or more touch detection unit rows.
- one sub-region B (here, sub-region B1) among the plurality of sub-regions B is selected.
- the selected sub-region B is referred to as a selected sub-region B (Y).
- a touch detection operation is performed for the selected sub-region B (Y) with the pixel writing operation stopped (touch detection step).
- the selected sub area B (Y) is a touch signal detection area.
- sub-region B2 When the pixel writing in the selected sub-region B (Y) is completed, the next sub-region B is selected (here, sub-region B2).
- the touch detection process similar to the above is performed in a state where the scanning of the gate line is stopped immediately before the next selected sub-region B (Y) and the pixel writing operation is stopped. Do. Subsequently, as shown in FIG. 20D, a pixel writing process similar to the above is performed for the selected sub-region B (Y).
- the touch detection process and the pixel writing process are sequentially repeated for all the sub-regions B.
- the pixel writing process of the last sub-region B (n) is finished, the writing of one screen is finished.
- FIG. 21 is a diagram illustrating an example of signal waveforms of the touch scan electrode TD and the touch detection electrode TS in the touch detection process and the pixel writing process.
- FIG. 22 is a diagram illustrating an example of a signal waveform of the gate line GL in the touch detection process and the pixel writing process.
- a scan signal is input to a touch scan electrode (hereinafter referred to as “selective touch scan electrode”) arranged in the selected sub-region B (Y), and AC driving is performed.
- the common signal Vcom is input to the touch detection electrodes (hereinafter referred to as “selection touch detection electrodes”) arranged in the selected sub-region B (Y). Since the selection touch detection electrode TS is pushed up and down by the influence of the scan signal, the waveform of the selection touch detection electrode TS has a wave shape reflecting the scan signal. As described above, the waveform of the selected touch detection electrode TS changes depending on the presence or absence of a touch. Therefore, the presence or absence of a touch can be detected by reading the change in potential of the selected touch detection electrode TS as a detection signal.
- the common signal Vcom may be input to the non-selected touch detection electrode TS and the touch scan electrode TD arranged in the non-selected sub-region B.
- the non-selected touch scan electrode TD may be in a floating state.
- the pixel potential is held in all the sub-regions B. That is, the TFT provided in each pixel is off. All source lines may be in a floating state.
- gate signals having substantially the same phase and amplitude as the scan signals are applied to a plurality of gate lines (hereinafter referred to as “selection gate lines”) arranged in the selection sub-region B (Y). May be supplied. Thereby, the delay of a scan signal can be suppressed and the noise which arises in a detection signal can be reduced. Note that the selection gate line may be in a floating state.
- the gate-off voltage Vgl may be supplied to the gate line (non-selected gate line) arranged in the non-selected subregion B.
- the gate-off voltage Vgl is supplied to the gate line and is a voltage for turning off the TFT of the pixel.
- the unselected gate line may be in a floating state.
- a plurality of selection gate lines arranged in the selection sub-region B (Y) are sequentially driven (a gate-on voltage Vgh is applied).
- the gate-on voltage Vgh is supplied to the gate line and is a voltage for turning on the TFT of the pixel.
- a voltage corresponding to the video signal is applied from the source line SL to the pixel in which the TFT is turned on. In this manner, writing is performed on pixels in one row connected to the driven selection gate line in the selection sub-region B (Y).
- Table 1 summarizes the voltages of the gate line GL, the source line SL, the touch scan electrode TD, and the touch detection electrode TS in the touch detection process and the pixel writing process.
- V M in the table represents the voltage amplitude of the touch scan signal.
- the liquid crystal material used for the liquid crystal display generally has dielectric dispersion
- the driving time of one AC cycle is preferably 10 ⁇ sec or less, and more preferably 0.01 ⁇ sec or more and 1 ⁇ sec or less.
- the liquid crystal display device with a touch sensor according to the embodiment of the present invention is particularly useful in the field of various electronic devices.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Human Computer Interaction (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Liquid Crystal (AREA)
- Position Input By Displaying (AREA)
Abstract
タッチセンサ付き液晶表示装置(101)は、第1基板(10)と、第2基板(20)と、第1基板と第2基板との間に設けられた液晶層(8)と、液晶層に電圧を印加するための複数の画素電極2および第1の共通電極(4)と、タッチセンサ用の複数の第1電極および複数の第2電極とを備え、液晶層は負の誘電率異方性を有する液晶を含み、第1基板は、複数の画素電極(2)と、複数の画素電極と絶縁層を介して配置された第1の共通電極(4)とを有し、第2基板は、第2透明基板(21)と、第2透明基板の液晶層側に形成された第2の共通電極(9)とを有し、第1の共通電極(4)は、タッチセンサ用の複数の第1電極を兼ねた複数の第1の共通電極部分(4p)を含み、第2の共通電極(9)は、タッチセンサ用の複数の第2電極を兼ねた複数の第2の共通電極部分(9p)を含む。
Description
本発明は、タッチセンサ付き液晶表示装置およびその駆動方法に関し、特に静電容量方式のタッチセンサを備えた液晶表示装置およびその駆動方法に関する。
近年、タッチセンサを備えた表示装置(以下、「タッチパネル」という)は、スマートフォン、タブレット型携帯端末等に広く利用されている。タッチセンサには、抵抗膜式、静電容量式、光学式など、種々の方式のものが知られている。これらの内、多点タッチに対応することが可能で、精度の高いタッチ位置検出が可能な、投影型静電容量方式のタッチセンサの利用が広がっている。静電容量方式のタッチセンサは、誘電体層を挟んで互いに対向配置された駆動電極(以下、「タッチスキャン電極」と呼ぶ)およびタッチ検出電極を有する。タッチスキャン電極とタッチ検出電極との間に形成される静電容量は、物体(例えば指)の接触の有無によって変化する。従って、静電容量の変化に応じた検出信号を形成することで、接触の有無を検出できる。
タッチパネルには、外付け型(観察者側に配置された偏光板のさらに観察者側にタッチセンサを配置したもの)と、内蔵型とがある。内蔵型タッチパネルには、オンセル型タッチパネルとインセル型タッチパネルとがある。ここで、セルは表示セル(以下では、「表示パネル」という。)を指し、例えば、液晶表示パネルは、液晶層を間に介して互いに対向する一対の基板(例えばTFT基板と対向基板)を含み、偏光板を含まない。「インセル型」は、表示パネル内にタッチパネル機能を担う層を有するものをいう。一方、「オンセル型」は、タッチパネル機能を担う層が、表示パネルと偏光板との間(例えば対向基板と偏光板との間)に配置されているものをいう。また、タッチパネル機能を担う層を、表示パネル内と、表示パネルと偏光板との間とのそれぞれに配置した「ハイブリッド型」もあるが、ここでは、この「ハイブリッド型」も、タッチパネル機能を担う層の少なくとも一部が表示パネルと偏光板との間に配置されている点から「オンセル型」と呼ぶことにする。内蔵型タッチパネルは、外付け型タッチパネルよりも薄型化、軽量化などに有利であり、光の透過率の高められるという利点を有している。
特許文献1および2は、横電界モードの液晶表示パネルを用いた内蔵型タッチパネルにおいて、TFT基板に設けられた共通電極を、タッチスキャン電極として利用することを開示している。これにより、利用者(指)の電位に影響を受けにくいタッチセンサが得られる。
例えば、特許文献2には、Fringe Field Switching(FFS)モードの液晶表示パネルを用いたインセル型およびオンセル型のタッチパネルが開示されている。液晶層にはポジ型液晶材料が用いられている(特許文献2の図10参照)。特許文献2のインセル型タッチパネルでは、TFT基板に形成された共通電極をタッチスキャン電極として利用し、かつ、タッチ検出電極を対向基板の液晶層側に形成している(特許文献2の図13、図14等)。オンセル型タッチパネルでは、TFT基板に形成された共通電極をタッチスキャン電極として利用し、かつ、タッチ検出電極を対向基板の観察者側(対向基板と偏光板との間)に形成している(特許文献2の図9等)。このオンセル型タッチパネルでは、対向基板の透明基板(ガラス基板)における、カラーフィルタ層などが形成される液晶層側表面とは反対側の表面にタッチ検出電極を形成する必要があり、インセル型タッチパネルと比べて、製造コストが高い、ガラス基板の薄板化が難しいなどの問題がある。
しかしながら、本発明者が検討したところ、特許文献2に開示されているインセル型タッチパネルでは、タッチ検出動作時に、タッチスキャン電極への駆動信号の印加に伴い、光の透過率の低下、表示ムラの発生などの問題が生じ得ることを見出した。また、液晶表示動作(画素電極への書き込み動作)時に、液晶配向の乱れによって、高い表示品位が得られない場合があることが分かった。詳細は後述する。
本発明の実施形態は、上記事情を鑑みてなされたものであり、その目的は、光透過率および表示品位を高めることの可能な、タッチセンサ付き液晶表示装置を提供することにある。
本発明の一実施形態のタッチセンサ付き液晶表示装置は、第1方向および前記第1方向と交差する第2方向に2次元に配列された複数の画素を含む表示領域と、前記表示領域の周辺に位置する周辺領域とを有するタッチセンサ付き液晶表示装置であって、第1基板と、前記第1基板に対向するように配置された第2基板と、前記第1基板と前記第2基板との間に設けられた液晶層と、前記液晶層に電圧を印加するための複数の画素電極および第1の共通電極と、タッチセンサ用の複数の第1電極および複数の第2電極であって、前記複数の第1電極および複数の第2電極の一方は複数のタッチ検出電極であり、他方は複数のタッチスキャン電極である、複数の第1電極および複数の第2電極とを備え、前記表示領域は複数のタッチ検出単位を含み、前記複数のタッチ検出単位のそれぞれは、前記複数のタッチ検出電極の1つと前記複数のタッチスキャン電極の1つとが交差した部分であり、前記液晶層は、負の誘電率異方性を有する液晶を含み、前記第1基板は、第1透明基板と、それぞれが前記第1方向に延設された複数のゲート線と、それぞれが前記第2方向に延設された複数のソース線と、前記第1透明基板の前記液晶層側に配置された、前記複数の画素電極と、前記第1透明基板の前記液晶層側に、前記複数の画素電極と絶縁層を介して配置された前記第1の共通電極とを有し、前記第2基板は、第2透明基板と、前記第2透明基板の前記液晶層側に形成された第2の共通電極とを有し、前記第1の共通電極は、複数の第1の共通電極部分を含み、前記複数の第1の共通電極部分はタッチセンサ用の前記複数の第1電極を兼ねており、前記第2の共通電極は、複数の第2の共通電極部分を含み、前記複数の第2の共通電極部分はタッチセンサ用の前記複数の第2電極を兼ねている。
ある実施形態において、前記第2基板は、前記第1基板の観察者側に配置されており、前記複数の第1の共通電極部分は前記複数のタッチスキャン電極を兼ねており、前記複数の第2の共通電極部分は前記複数のタッチ検出電極を兼ねている。
ある実施形態において、前記周辺領域において、前記第1基板は、前記複数の第1の共通電極部分に接続されたスキャンドライバと、半導体チップが搭載された半導体チップ搭載領域とをさらに有し、前記スキャンドライバは、前記半導体チップ搭載領域または前記半導体チップ搭載領域と前記表示領域との間に配置されている。
ある実施形態において、前記第1基板は、前記複数の第1の共通電極部分と前記スキャンドライバとを接続する複数のスキャン配線をさらに備え、前記複数のスキャン配線のそれぞれは、前記表示領域内に位置する部分を有する。
ある実施形態において、前記複数の第1の共通電極部分のそれぞれに対して2以上の前記スキャン配線が設けられている。
ある実施形態において、前記複数の第1の共通電極部分のそれぞれは、前記表示領域を前記第1方向に延び、前記複数の第2の共通電極部分のそれぞれは、前記表示領域を前記第2方向に横切って延びている。
ある実施形態において、記複数の第1の共通電極部分のそれぞれは、前記表示領域を前記第2方向に横切って延び、前記複数の第2の共通電極部分のそれぞれは、前記表示領域を前記第1方向に横切って延びている。
ある実施形態において、前記第1基板は、前記第2基板の観察者側に配置されており、前記複数の第1の共通電極部分は前記複数のタッチ検出電極を兼ねており、前記複数の第2の共通電極部分は前記複数のタッチスキャン電極を兼ねている。
ある実施形態において、前記複数の第1の共通電極部分のそれぞれは、前記表示領域を前記第2方向に横切って延び、前記複数の第2の共通電極部分のそれぞれは、前記表示領域を前記第1方向に横切って延びている。
ある実施形態において、前記複数の第1の共通電極部分のそれぞれは、前記表示領域を前記第1方向に横切って延び、前記複数の第2の共通電極部分のそれぞれは、前記表示領域を前記第2方向に横切って延びている。
ある実施形態において、前記第2の共通電極部分のそれぞれは、前記表示領域を横切って、前記周辺領域まで延びており、前記第2の共通電極部分のそれぞれにおける前記周辺領域に位置する部分は、前記第1基板と前記第2基板との間に配置されたコンタクト柱を介して、前記第1基板側に電気的に接続されている。
ある実施形態において、前記第2基板は、カラーフィルタ層をさらに備え、前記第2の共通電極は前記カラーフィルタ層と前記第2透明基板との間に配置されている。
ある実施形態において、前記第2基板は、カラーフィルタ層をさらに備え、前記第2の共通電極は前記カラーフィルタ層と前記液晶層との間に配置されている。
ある実施形態において、前記画素電極は、前記第1の共通電極と前記液晶層との間に配置されている。
ある実施形態において、前記第1の共通電極は、前記画素電極と前記液晶層との間に配置されている。
ある実施形態において、上記タッチセンサ付き液晶表示装置は、前記複数のゲート線に接続されたゲートドライバと、前記複数のソース線に接続されたソースドライバと、前記複数のタッチスキャン電極に接続されたスキャンドライバと、前記複数のタッチ検出電極に接続された検出ドライバと、前記ゲートドライバ、前記ソースドライバ、前記スキャンドライバおよび前記検出ドライバの制御を行う制御回路とをさらに備え、前記複数のタッチスキャン電極のそれぞれは、前記表示領域を前記第1方向に延びており、前記表示領域は、前記表示領域を前記第1方向に分割した複数のサブ領域を有し、前記制御回路は、選択したサブ領域に対するタッチ検出動作および画素の書き込み動作が終了した後で、次のサブ領域に対するタッチ検出動作および画素の書き込み動作を行い、かつ、各サブ領域に対して、画素の書き込み動作を停止した状態でタッチ検出動作を行った後、タッチ検出動作を停止した状態で画素の書き込み動作を行うように、前記制御を行う。
本発明の一実施形態のタッチセンサ付き液晶表示装置の駆動方法は、上記に記載のタッチセンサ付き液晶表示装置の駆動方法であって、前記複数のタッチスキャン電極のそれぞれは、前記表示領域を前記第1方向に延びており、前記表示領域は、前記表示領域を前記第1方向に分割した複数のサブ領域を有し、前記複数のサブ領域のそれぞれは、前記複数のタッチ検出単位における1つまたは2以上のタッチ検出単位に対応しており、前記駆動方法は、(A)前記複数のサブ領域のうちの選択されたあるサブ領域について、画素書き込み動作を停止した状態で、タッチ検出動作を行うタッチ検出工程であって、前記複数のタッチスキャン電極のうち前記選択されたサブ領域に配置された選択タッチスキャン電極にスキャン信号を入力し、前記複数のタッチ検出電極に共通信号を入力し、前記複数のタッチ検出電極のうち前記選択されたサブ領域に配置された選択タッチ検出電極の電位の変化を検出信号として読み取る工程を含む、タッチ検出工程と、(B)前記選択されたサブ領域について、タッチ検出動作を停止して、画素書き込み動作を行う画素書き込み工程であって、前記複数のタッチスキャン電極および前記複数のタッチ検出電極には共通信号を入力する、画素書き込み工程とを包含し、全てのサブ領域について前記工程(A)および(B)を繰り返す。
ある実施形態において、前記工程(A)では、前記複数のタッチスキャン電極のうち前記選択タッチスキャン電極以外の非選択タッチスキャン電極には共通信号が入力されているか、または前記非選択タッチスキャン電極はフローティング状態である。
ある実施形態において、前記工程(A)では、前記複数のゲート線のうち前記選択されたサブ領域に配置された選択ゲート線に、前記スキャン信号と同相かつ同振幅のゲート信号を供給する。
ある実施形態において、前記工程(B)では、前記複数のゲート線のうち前記選択ゲート線以外の非選択ゲート線にはゲートオフ電圧Vglが供給されているか、または前記非選択ゲート線はフローティング状態である。
本発明の実施形態によると、光透過率および表示品位を高めることの可能な、タッチセンサ付き液晶表示装置が提供される。
従来のインセル型タッチパネルには次のような問題がある。
特許文献2に開示された内蔵型タッチパネルは、誘電率異方性が正であるポジ型液晶材料を用いており、液晶分子は、その長軸方向が電界方向に揃おうとする性質を有する。従って、タッチ検出電極とTFT基板側電極とで電気力線が生じると、液晶分子は電気力線に対して平行になるように配向し、液晶分子が縦方向(液晶層の厚さ方向)を向いてしまう。この結果、光の透過率が大きく低下するおそれがある。例えば、タッチ検出時には、タッチスキャン電極を動作させる(すなわちタッチスキャン電極の電位を変える)ときに、タッチ検出電極とタッチスキャン電極との間に生じる垂直方向の電気力線が変化する。このため、タッチスキャン電極のパターンに応じた縞状の表示ムラが生じる場合がある。
特にインセル型タッチパネルでは、タッチ検出電極は、対向基板における透明基板(例えばガラス基板)よりも液晶層側に配置され、液晶層を介して、TFT基板に配置された電極(画素電極およびタッチスキャン電極、以下、「TFT基板側電極」と呼ぶ)と対向している。このため、ガラス基板を間に介してタッチ検出電極とTFT基板側電極とが対向配置されるオンセル型タッチパネルと比べて、タッチ検出電極とTFT基板側電極との間で生じる電気力線が液晶層に与える影響が大きくなり、表示ムラが生じやすくなる。
そこで、本発明者は、誘電率異方性が負であるネガ型液晶材料を液晶層に用いる構成を検討した。ネガ型液晶材料は、液晶分子の短軸方向が電界方向に揃おうとする性質を有する。このため、タッチ検出電極とTFT基板側電極とで電気力線が生じても、液晶分子は電気力線に対して垂直になるように横方向に配向し、縦方向には変化しない。従って、ポジ型液晶材料を用いる場合と比べて、電極間の電気力線に起因する透過率の低下や表示ムラの発生を抑制できる。
しかしながら、ネガ型液晶材料を用いても、例えば対向基板側に物体(帯電した人など)が接触した場合などに、対向基板側に横方向(基板と平行)の電界成分が生じることがある。横方向の電界成分が生じると、液晶分子は縦方向に配向しようとして回転してしまう。このような液晶配向の乱れは、表示ムラの要因となる。
これに対し、本発明者は、対向基板に設けられたタッチセンサ用の電極を、共通電極として利用する構成を採用した。本明細書では、TFT基板に設けられた共通電極を「第1の共通電極」、対向基板に設けられた共通電極を「第2の共通電極」と呼ぶ。画素電極への電位書き込み動作時には、第1および第2の共通電極には共通信号が供給される。第2の共通電極を設けることで、対向基板側への物体の接触等によって電荷が発生しても、その電気力線は第2の共通電極に吸収され、液晶配向に影響を及ぼさない。このため、第1の共通電極と第2の共通電極との間で、液晶の配向をより安定化させることができる。また、タッチセンサ用の電極と第2の共通電極とを兼用させることで、対向基板に別途導電層を形成する必要がない。従って、タッチパネルの厚さや製造コストの増大を抑えつつ、液晶配向の乱れに起因する表示品位の低下を抑制できる。
以下、本発明の実施形態によるタッチセンサ付き液晶表示装置(以下、「タッチパネル」)をより具体的に説明する。本発明の実施形態によるタッチパネルは、以下に説明するタッチパネルに限られない。また、以下の図面において、実質的に同じ機能を有する構成要素は、共通の参照符号で示し、その説明を省略することがある。
(第1の実施形態)
本発明による第1の実施形態のタッチパネルは、横電界モード(例えばFFSモード)の液晶表示パネルを用いたインセル型タッチパネルである。
本発明による第1の実施形態のタッチパネルは、横電界モード(例えばFFSモード)の液晶表示パネルを用いたインセル型タッチパネルである。
<タッチパネル101の全体構造>
図1(a)および(b)は、それぞれ、第1の実施形態のタッチパネル101の上面図および断面図である。図1(b)は、図1(a)におけるI-I’線に沿った断面を示す。
図1(a)および(b)は、それぞれ、第1の実施形態のタッチパネル101の上面図および断面図である。図1(b)は、図1(a)におけるI-I’線に沿った断面を示す。
タッチパネル101は、表示領域80と、表示領域80の周辺に位置する周辺領域90とを有する。図示していないが、表示領域80は、x方向(第1方向)に略平行に延設された複数のゲート線と、y方向(第2方向)に略平行に延設された複数のソース線と、x方向およびy方向に2次元に配列された複数の画素とを含む。y方向は、x方向と交差する方向であり、x方向と直交していてもよい。
表示領域80は、さらに、2次元に配列された複数のタッチ検出単位TUを含む。図示する例では、タッチ検出単位TUはx方向およびy方向に2次元に配列されている。各タッチ検出単位TUは、例えば、2以上の画素に対応して配置されていてもよい。
一方、周辺領域90には、駆動回路を含む周辺回路、端子部などが設けられる。周辺領域90に、一部または全部の駆動回路を含む半導体チップ16が搭載されていてもよい。図示していないが、駆動回路は、ゲートドライバ、ソースドライバ、スキャンドライバおよび検出ドライバを含む。これらの駆動回路は、例えば第1基板10に設けられている(実装または一体的に形成されている)。本明細書では、周辺領域90のうち、表示領域80に対してゲート線の延びる方向(x方向)に隣接する領域を第1周辺領域90x、表示領域80に対してソース線の延びる方向(y方向)に隣接する領域を第2周辺領域90yと呼ぶ。図1(a)では、周辺領域90のうち表示領域80の右側および左側に位置する部分が第1周辺領域90xであり、表示領域80の下側および上側に位置する部分が第2周辺領域90yである。一例として、第2周辺領域90yに、ソースドライバ、スキャンドライバおよび検出ドライバを含む半導体チップ16が搭載され、第1周辺領域90xにゲートドライバが一体的(モノリシック)に形成されていてもよい。
タッチパネル101は、TFT基板(以下、「第1基板」)10と、第1基板10に対向するように配置された対向基板(以下、「第2基板」)20と、第1基板10と第2基板20との間に設けられた液晶層8とを有する。
液晶層8は、負の誘電異方性を有する(ネガ型)ネマチック液晶材料を含む水平配向型液晶層である。ネガ型液晶材料を用いることにより、後で詳述するように、タッチ検出動作時の光透過率の低下や表示ムラを抑制できる。ネガ型液晶材料は、第1基板10と第2基板20との間にシール材12によって封入されている。
タッチパネル101は、液晶層8に電圧を印加するための一対の電極と、タッチセンサ用の一対の電極とを有する。液晶層8に電圧を印加するための電極として、第1基板10に、複数の画素電極2および第1の共通電極4が設けられている。タッチセンサ用の電極として、第1基板10に第1電極、第2基板20に第2電極が設けられている。第1電極および第2電極の一方は、タッチセンサの受信側電極であるタッチ検出電極TSであり、他方がタッチセンサの送信側電極であるタッチスキャン電極TDである。典型的には、第1基板10および第2基板20のうち観察者側に配置された基板の電極がタッチ検出電極TS、非観察者側に配置された基板の電極がタッチスキャン電極TDである。タッチパネル101の法線方向から見たとき、タッチスキャン電極TD(ここでは第1の共通電極部分4p)およびタッチ検出電極TS(ここでは第2の共通電極部分9p)が交差する部分が、それぞれ、タッチ検出単位TUとなる。ここでは、第2基板20が、第1基板10の観察者側に配置されており、第1電極がタッチ検出電極TS、第2電極がタッチ検出電極TSである例を説明する。
第1基板10は、第1透明基板(例えばガラス基板)11と、第1透明基板11の液晶層8側に形成された第1の共通電極4および複数の画素電極2とを有する。画素電極2と第1の共通電極4とは絶縁層を介して配置されている。図1では、画素電極2は第1の共通電極4の液晶層8側に配置されているが、第1の共通電極4の第1透明基板11側に配置されていてもよい。画素電極2は、画素ごとに電気的に独立である。第1の共通電極4は、間隔4gを空けて配列された複数の第1の共通電極部分4pを含んでいる。この例では、x方向に延びる第1の共通電極部分4pが、間隔4gを空けてy方向に配列されている。各第1の共通電極部分4pは、タッチスキャン電極TDを兼ねている。第1の共通電極部分4pは、複数の画素に対応して配置されてもよい。各第1の共通電極部分4pは、タッチスキャン配線TDLを介して、不図示のスキャンドライバに接続されている。スキャンドライバは、例えば半導体チップ16に配置されていてもよい。
第2基板20は、第2透明基板(例えばガラス基板)21と、第2透明基板21の液晶層8側に形成された第2の共通電極9とを有する。図示していないが、第2基板20は、カラーフィルタ層をさらに有していてもよい。第2の共通電極9は、間隔9gを空けて配列された複数の第2の共通電極部分9pを含んでいる。この例では、y方向に延びる第2の共通電極部分9pが、間隔9gを空けてx方向に配列されている。各第2の共通電極部分9pは、タッチ検出電極TSを兼ねている。第2の共通電極部分9pは、複数の画素に対応して配置されてもよい。各第2の共通電極部分9pは、タッチ検出配線TSLを介して検出ドライバに接続されている。検出ドライバは、例えば半導体チップ16に配置されていてもよい。
各第2の共通電極部分9pは、周辺領域90において、第1基板10と第2基板20との間に配置されたコンタクト柱14を介して、第1基板10側に電気的に接続されていてもよい。コンタクト柱14としては柱状の導電性部材が使用できるが、この例では、シール材12として、導電性が付与されたシール材(例えば球状の導電性粒子を含有する樹脂を含むシール材)を用い、シール材12の一部をコンタクト柱14として利用している。このように、第2の共通電極部分9pをコンタクト柱14を介して第1基板10側に接続させることにより、検出ドライバを第1基板10に設けることが可能になる。この結果、第1基板10側からの信号入力のみでタッチセンサ用の2つの電極を駆動させることが可能になり、第2基板20にタッチセンサ用の駆動回路を別途実装する必要がない。従って、第2基板20に別途タッチセンサ用の駆動回路を実装する場合と比べて、タッチパネル101の厚さを大幅に低減できる。
スキャンドライバは、第2周辺領域90yに配置されていてもよい。例えば、スキャンドライバは、第2周辺領域90yにおいて、半導体チップ搭載領域内(半導体チップ16上を含む)、または半導体チップ搭載領域と表示領域80との間に配置されていてもよい。この場合、タッチスキャン配線TDLは、第2周辺領域90yから表示領域80に延設され、かつ、表示領域80において、対応する第1の共通電極部分4pまでy方向に延びていてもよい。このように、各タッチスキャン配線TDLの一部を表示領域80内(画素内)に配置することにより、各タッチスキャン配線TDLの全体を周辺領域90に配置する場合と比べて、周辺領域90の面積を縮小できる。
タッチ検出単位TUの配置は特に限定しないが、好ましくは、x方向およびy方向にマトリクス状に配列される。本明細書では、x方向に配列された複数のタッチ検出単位TUを「タッチ検出単位行」、y方向に配列された複数のタッチ検出単位TUを「タッチ検出単位列」と呼ぶ。タッチ検出単位行ごとに1つの分離されたタッチ検出電極TS(またはタッチスキャン電極TD)が配置され、タッチ検出単位列ごとに1つの分離されたタッチスキャン電極TD(またはタッチ検出電極TS)が配置されていてもよい。上記構成によると、十分な幅を有するタッチスキャン電極TDおよびタッチ検出電極TSを形成できるので、タッチスキャン電極TDおよびタッチ検出電極TSを例えば透明導電膜のみで形成しても、電気抵抗を十分に低くできる。従って、これらの電極を低抵抗な金属膜でアシストしなくても、タッチ検出動作を行うことが可能であり、積層数の増大を抑制できる。
図1に示す例では、第1の共通電極部分4pのそれぞれは、1つのタッチ検出単位行に対応し、x方向に延びている。第2の共通電極部分9pのそれぞれは、1つのタッチ検出単位列に対応し、y方向に延びている。なお、後述するように、各第1の共通電極部分4pはy方向に延び、各第2の共通電極部分9pはx方向に延びていてもよい。また、x方向に一行に配置された画素からなる行を「画素行」、y方向に一列に配置された画素からなる列を「画素列」とすると、第1の共通電極部分4pは、1または2以上の画素行(または画素列)に対応して配置され、第2の共通電極部分9pは、1または2以上の画素列(または画素行)に対応して配置されていてもよい。
なお、上記では、タッチ検出単位TUが配列された領域(タッチセンサアレイ領域)と表示領域80とが略同じとして説明したが、タッチセンサアレイ領域は表示領域80と少なくとも部分的に重なっていればよく、例えば表示領域80よりも大きくてもよいし、小さくてもよい。
<タッチパネル101の各画素の構造>
次いで、タッチパネル101における各画素の構造をより詳しく説明する。
次いで、タッチパネル101における各画素の構造をより詳しく説明する。
図2(a)は、第1基板10の表示領域80の一部を示す拡大平面図であり、2つ分の画素を示している。
第1基板10の表示領域80は、x方向に延びるゲート線GLと、y方向に延びるソース線SLと、x方向およびy方向にマトリクス状に配列された複数の画素領域Pixとを有している。画素領域Pixはタッチパネル101における画素に対応する領域である。この例では、各画素領域Pixは、ゲート線GLおよびソース線SLによって画定されている。
各画素領域Pixは、第1透明基板に支持されたTFT30と、画素電極2と、第1の共通電極(不図示)とを備える。画素電極2は、画素ごとに少なくとも1つのスリットまたは切り欠き部を有している。TFT30は、特に限定しないが、例えばボトムゲート型のTFTである。TFT30は、ゲート電極32と、半導体層34と、ゲート電極32と半導体層34との間に配置されたゲート絶縁層と、半導体層34に電気的に接続されたソース電極36およびドレイン電極38とを有する。ゲート電極32は対応するゲート線GLに電気的に接続され、ソース電極36は対応するソース線SLに電気的に接続されている。ゲート電極32はゲート線GLと同一の層(ゲートメタル層)内に形成され、ソース電極36およびドレイン電極38はソース線SLと同一の層(ソースメタル層)内に形成されていてもよい。ドレイン電極38は画素電極2に電気的に接続されている。本明細書では、ドレイン電極38と画素電極2との接続部を「画素コンタクト部」と呼ぶ。この例では、画素コンタクト部において、ドレイン電極38と画素電極2とは、これらの間に位置する絶縁層に設けられた開口部(以下、「画素コンタクトホール」)CH1内で接続されている。
表示領域80には、また、複数のタッチスキャン配線TDLが配置されている。タッチスキャン配線TDLは、各第1の共通電極部分に対して少なくとも1つ設けられていればよく、全ての画素領域Pixに配置されていなくてもよい。
タッチスキャン配線TDLは、対応する第1の共通電極部分まで、例えばy方向に延びていてもよい。この例では、第1基板10の法線方向から見て、タッチスキャン配線TDLはソース線SLと重なるように延びている。タッチスキャン配線TDLは、対応する第1の共通電極部分に電気的に接続されている。本明細書では、タッチスキャン配線TDLと第1の共通電極部分との接続部を「タッチスキャン電極コンタクト部」と呼ぶ。この例では、タッチスキャン電極コンタクト部において、タッチスキャン配線TDLと第1の共通電極部分とは、これらの間に位置する絶縁層に設けられた開口部(以下、「タッチスキャン電極コンタクトホール」)CH2内で接続されている。タッチスキャン電極コンタクト部は、1つの第1の共通電極部分に対して少なくとも1つ設けられていればよい。
図示するように、各タッチスキャン配線TDLは、第1の幅を有する第1部分と、第1の幅よりも大きい第2の幅を有する第2部分とを含んでいてもよい。第2部分の幅(第2の幅)はソース線SLの幅よりも大きくてもよい。第1部分および第2部分は、いずれも、対向基板に配置されたブラックマトリクスによって遮光される遮光領域内に配置されることが好ましい。例えば、第1基板10の法線方向から見たとき、ゲート線GLとソース線SLとの交差部近傍に第2部分を配置することにより、幅の大きい第2部分も遮光領域内に配置できる。図示する例では、各タッチスキャン配線TDLは、ソース線SLと重なるようにy方向に延びており、各タッチスキャン配線TDLのうちゲート線GLと交差する部分が第2の幅を有する第2部分、隣接する2つの第2部分の間に位置する部分が第1の幅を有する第1部分である。タッチスキャン電極コンタクトホールCH2は、タッチスキャン配線TDLの第2部分と重なるように配置されることが好ましい。これにより、タッチスキャン電極コンタクトホールCH2のサイズを大きくでき、より低抵抗なコンタクト部を形成できる。
図2(b)は、タッチパネル101における単一の画素の構造を示す断面図であり、図2(a)のII-II’線に沿った断面を示している。
各画素は、第1基板10と、第2基板20と、これらの間に配置された液晶層8とを備える。第1基板10の外側(液晶層8と反対側)には偏光板41、第2基板20の外側(液晶層8と反対側)には偏光板42が配置されている。
第1基板10は、第1透明基板11と、第1透明基板11の液晶層8側に配置されたアクティブマトリクス層43と、アクティブマトリクス層43上に配置された第1絶縁層50とを有する。アクティブマトリクス層43は、TFTを含む層であり、ゲート線GLおよびゲート電極を含むゲートメタル層と、ゲート絶縁層33と、半導体層と、ソース線SLおよびソース/ドレイン電極を含むソースメタル層とを含む。第1絶縁層50は、TFTを覆う無機絶縁層(パッシベーション層)50aを含む。第1絶縁層50は、無機絶縁層50aとその上に形成された有機絶縁層50bとを含む積層構造を有していてもよい。
第1絶縁層50上には、第1の共通電極4を含む第1共通電極層44と、画素電極2を含む画素電極層46と、第1共通電極層44と画素電極層46との間に位置する第2絶縁層52とが形成されている。第2絶縁層52上に、タッチスキャン配線TDLを含むスキャン配線層48がさらに形成されていてもよい。この例では、第1の共通電極4上に第2絶縁層52が配置され、第2絶縁層52上にタッチスキャン配線TDLおよび画素電極2が配置されている。図示していないが、第1基板10は、配向膜をさらに有していてもよい。
各タッチスキャン配線TDLの一部を表示領域80内(画素内)に配置する場合、タッチスキャン配線TDLは、画素電極層46、第1共通電極層44、ソースメタル層およびゲートメタル層とは別層に形成される(言い換えると、画素電極2、ソース線SL、ゲート線GL、第1の共通電極4とは異なる導電膜を用いて形成される)ことが好ましい。
第2基板20は、第2透明基板21と、カラーフィルタ層60と、第2の共通電極9を含む第2共通電極層62とを有している。この例では、第2共通電極層62は、カラーフィルタ層60よりも液晶層8側に配置されている。また、第2共通電極層62とカラーフィルタ層60との間に、オーバーコート層64が設けられている。
なお、第1基板10および第2基板20における積層順序は、図2(b)に示す例に限定されない。
第1基板10において、タッチスキャン配線TDLは、第1の共通電極4よりも第1透明基板11側に配置されてもよい。例えば図3(a)に示すように、第1絶縁層50上にタッチスキャン配線TDL、タッチスキャン配線TDLを覆う第3絶縁層54、第1の共通電極4、第2絶縁層52および画素電極2がこの順に配置されていてもよい。この例では、タッチスキャン電極コンタクトホールCH2は第3絶縁層54に設けられる。タッチスキャン配線TDLを第1の共通電極4よりも第1透明基板11側に配置することにより、図2(b)に示す例と比べて、タッチスキャン配線TDLの液晶配向への影響を抑えることが可能である。
第2基板20において、第2の共通電極9は第2透明基板21よりも液晶層8側に配置されていることが好ましい。第2の共通電極9が第2透明基板21よりも液晶層8側に配置されていると、コンタクト柱14を介して、第2の共通電極9を第1基板10側に接続することが可能である。このため、タッチセンサ用のドライバ(スキャンドライバおよび検出ドライバ)をいずれも第1基板10に設けることができるので、部材点数のより少ないタッチパネルを実現できる。例えば図3(b)に例示するように、第2の共通電極9は、カラーフィルタ層60と第2透明基板21との間に配置されていてもよい。
<タッチパネル101の周辺領域90の構造>
周辺領域90には、駆動回路として、ソースドライバ、ゲートドライバ、スキャンドライバおよび検出ドライバが設けられる。ソースドライバはソース線SL、ゲートドライバはゲート線GL、スキャンドライバはタッチスキャン電極TDおよびタッチスキャン配線を駆動する。検出ドライバはタッチ検出電極TSからの信号を検出する。
周辺領域90には、駆動回路として、ソースドライバ、ゲートドライバ、スキャンドライバおよび検出ドライバが設けられる。ソースドライバはソース線SL、ゲートドライバはゲート線GL、スキャンドライバはタッチスキャン電極TDおよびタッチスキャン配線を駆動する。検出ドライバはタッチ検出電極TSからの信号を検出する。
ソースドライバおよびゲートドライバは、典型的には、第1基板10に実装されるか、モノリシックに形成される。好ましくは、スキャンドライバも第1基板10に実装されるか、モノリシックに形成される。これにより、スキャンドライバを第2基板20側に実装する場合よりも、タッチパネル101全体の厚さを小さくできる。また、同一の半導体チップ上に、ソースドライバなどの他の駆動回路とスキャンドライバとを設けてもよい。これにより、部材点数の増加を抑えることができる。同様に、検出ドライバも、第1基板10側に設けられることが好ましく、半導体チップ上に配置されてもよい。
以下、COG(Chip On Glass)実装方式によりソースドライバ、スキャンドライバおよび検出ドライバが第1基板10に搭載され、かつ、ゲートドライバが第1基板10にモノリシックに形成された例を説明する。
図4は、タッチパネル101の第1基板10における周辺領域90の構造を説明するための模式的な平面図である。
第1基板10は、複数の画素領域Pixおよびタッチ検出単位TUを含む表示領域80と、表示領域80の周辺に位置する周辺領域90とを有する。周辺領域90には、ゲートドライバ71、ソースドライバ72、スキャンドライバ73および検出ドライバ74が設けられている。ゲートドライバ71は複数のゲート線GLに接続されており、ソースドライバ72は複数のソース線SLに接続されている。スキャンドライバ73は、タッチスキャン配線TDLを介して複数のタッチスキャン電極TDに接続されている。検出ドライバ74は、タッチ検出配線TSLを介して複数のタッチ検出電極TSに接続されている。
この例では、表示領域80の右側および左側に位置する第1周辺領域90xのそれぞれに、ゲートドライバ71が一体的(モノリシック)に形成されている。また、表示領域80の下側に位置する第2周辺領域90yに半導体チップ16が実装されている。半導体チップ16は、ソースドライバ72、スキャンドライバ73および検出ドライバ74を含む。図4では、ソースドライバ72の両側に検出ドライバ74およびスキャンドライバ73が2つずつ配置されているが、半導体チップ16上のこれらの駆動回路の個数や配列順序はこの例に限定されない。
第1基板10は、また、制御部をさらに備える。制御部は、上記のドライバ71~74の動作を制御する制御回路76を含む。各ドライバ71~74は、例えば、FPCを介して、制御回路76が形成されたプリント基板に接続されている。制御回路76は、例えばタイミングコントローラを含み、外部から供給された映像信号に基づいて、ドライバ71~74にそれぞれ制御信号を供給することで、これらの回路の動作を制御する。
なお、ここでは、ゲートドライバ71をモノリシックに形成しているが、ゲートドライバ71を実装しても構わない。また、他のドライバ72~74の一部または全部をモノリシックに形成しても構わない。例えば、後述するように、スキャンドライバ73を周辺領域90にモノリシックに形成してもよい。
<タッチパネル101のタッチ検出動作>
次に、図5を参照して、タッチパネル101におけるタッチ検出方法を説明する。
次に、図5を参照して、タッチパネル101におけるタッチ検出方法を説明する。
タッチセンサは、第1基板10に設けられたタッチスキャン電極TDと、第2基板20に設けられたタッチ検出電極TSとを有する。この例では、第1基板10には、x方向(図の左右方向)に延びる複数のタッチスキャン電極TDが設けられている。タッチ検出動作を行う場合、各タッチスキャン電極TDには、スキャンドライバから駆動信号(スキャン信号)が順次供給され、時分割的に順次走査駆動が行われる。複数のタッチ検出電極TSはそれぞれy方向に延びており、検出ドライバに接続されている。タッチスキャン電極TDとタッチ検出電極TSとが互いに交差した部分(タッチ検出単位)には静電容量が形成される。
スキャンドライバがタッチスキャン電極TDにスキャン信号を供給することにより、タッチ検出電極TSから検出ドライバに検出信号が出力され、タッチ検出が行われる。互いに交差した電極パターンは、タッチ検出単位TU(静電容量式タッチセンサ)をマトリクス状に構成しており、タッチ検出面全体に亘って走査することにより、タッチの有無の検出およびタッチ位置の座標の特定が可能となっている。
図6(a)および(b)は、タッチ検出単位TUに生じる静電容量を説明するための断面図である。第1基板10における第1の共通電極部分4pよりも下側の部分の図示を省略している。図6(a)は、第2基板20の観察者側の表面に物体(例えば指)が接触していない状態、図6(b)は、物体が接触している状態をそれぞれ示す。
また、図7(a)および(b)は、それぞれ、タッチスキャン電極TDに入力するスキャン信号、およびタッチ検出電極TSから出力される検出信号の波形を例示する図である。
タッチ検出時には、図7(a)に示すように、タッチスキャン電極TDに順次スキャン信号を入力してAC駆動させる。ここでは、スキャン信号として、交流矩形波(Vcom±VM)を用いる。
図6(a)に示すように、物体の接触がない状態では、タッチスキャン電極TDである第1の共通電極部分4pと、タッチ検出電極TSである第2の共通電極部分9pとの間には、第1の容量C1が生じる。第1の容量C1は、タッチスキャン電極TDとタッチ検出電極TSとの重なり面積、これらの電極間に位置する誘電体の厚さおよび誘電率に応じた容量である。
この状態では、タッチ検出電極TSには常に共通電位Vcomが入力されるが、スキャン信号の影響で突き上げおよび突き下げを受ける。このため、図7(b)に示すような波形を有する検出信号が得られる。
タッチ検出単位TUに、指などの導電体が接触または近接すると、図6(b)に示すように、物体とタッチ検出電極TSとの間に、第2の容量C2が生じる。このため、当該タッチ検出単位TUに生じる容量値が変化する。この結果、図7(b)に示すように、タッチ検出電極TSの信号波形が変わる。従って、タッチ検出電極TSからの検出信号を読み取ることで、接触の有無を検出することが可能である。
タッチパネル101の駆動方法は特に限定されない。1フレームをタッチ検出時間と画素書き込み時間とに時分割してもよい。例えば、全タッチスキャン電極TDを順次駆動させてタッチ検出動作を行った後、全ゲート線GLを順次駆動させて画素書き込み動作を行ってもよい。あるいは、後述するように、表示領域80を複数のサブ領域に分け、サブ領域ごとにタッチ検出および画素書き込み動作を行うことも可能である。
次いで、タッチ検出動作の液晶配向への影響を説明する。
図8(a)は、本実施形態のタッチパネル101における、タッチ検出時の液晶配向を説明するための断面図である。比較のため、ポジ型液晶材料を用いた比較例1のタッチパネル1001の液晶配向を図8(b)に示す。
タッチ検出動作において、タッチスキャン電極TDにスキャン信号が供給されると、液晶層8の厚さ方向に電気力線111が発生する。このとき、ポジ型液晶材料を用いた比較例1のタッチパネル1001では、図8(b)に示すように、液晶分子112は電気力線111に平行になるように配向するため、液晶層8の屈折率異方性がなくなる。このため、スキャン信号の有無で輝度差が生じ、表示ムラの要因となる。これに対し、ネガ型液晶材料を用いたタッチパネル101では、図8(a)に示すように、液晶分子112は電気力線111に垂直になるように配向する。つまり、液晶分子112は、液晶層8に電圧が印加されていない状態と同じ配向方向(水平方向)を保つ。このため、ポジ型液晶を用いた場合よりも、電気力線111による輝度の変化を抑制できるので、高い表示品位が得られる。
<タッチセンサ用の信号配線の数および配置>
タッチパネル101は、タッチセンサ用の信号配線として、タッチスキャン配線TDLおよびタッチ検出配線TSLを有する。タッチスキャン配線TDLは、共通配線を兼用していてもよい。例えば、タッチスキャン配線TDLは、画素書き込み時には第1の共通電極部分4pに共通信号Vcomを入力し、タッチ検出時には第1の共通電極部分4pにタッチセンサの駆動信号(スキャン信号)を入力するように構成されていてもよい。共通信号Vcomは、スキャン信号を兼用していてもよい。タッチ検出配線TSLも、共通配線を兼用していてもよい。例えば、画素書き込み時には第2の共通電極部分9pに共通信号Vcomを入力し、タッチ検出時には第2の共通電極部分9pから検出信号を出力するように構成されていてもよい。
タッチパネル101は、タッチセンサ用の信号配線として、タッチスキャン配線TDLおよびタッチ検出配線TSLを有する。タッチスキャン配線TDLは、共通配線を兼用していてもよい。例えば、タッチスキャン配線TDLは、画素書き込み時には第1の共通電極部分4pに共通信号Vcomを入力し、タッチ検出時には第1の共通電極部分4pにタッチセンサの駆動信号(スキャン信号)を入力するように構成されていてもよい。共通信号Vcomは、スキャン信号を兼用していてもよい。タッチ検出配線TSLも、共通配線を兼用していてもよい。例えば、画素書き込み時には第2の共通電極部分9pに共通信号Vcomを入力し、タッチ検出時には第2の共通電極部分9pから検出信号を出力するように構成されていてもよい。
各タッチスキャン電極TDに、1または2以上のタッチスキャン配線TDLが接続されていてもよい。同様に、各タッチ検出電極TSに、1または2以上のタッチ検出配線TSLが接続されていてもよい。
図9は、タッチパネル101におけるタッチスキャン配線TDLの数を説明するための平面図である。図10(a)および(b)は、比較例2のタッチパネル1002の断面図およびタッチスキャン配線TDLの数を説明するための図である。
比較例2のタッチパネル1002は、タッチセンサ用の電極層が1層のみ形成されている(タッチ検出電極のみを有し、タッチスキャン電極を有していない)タッチパネルである。比較例2のタッチパネルでは、図10(a)および(b)に例示するように、第1基板10に、タッチ検出単位ごと分離されたタッチ検出電極TSを有している。共通電極4がタッチ検出電極TSを兼用していてもよい。各タッチ検出電極TSは信号配線TLに接続されている。この構成では、信号配線TLは、タッチ検出単位TUごとに設けられる。例えば、タッチ検出単位TUがM行およびN列にマトリクス状に配列されていると、M×Nのタッチ検出電極TSおよび信号配線TLが必要になる。
これに対し、本実施形態では、タッチスキャン電極TDおよびタッチ検出電極TSの交差部をタッチ検出単位TUとして利用する。これにより、タッチ検出単位TUの数よりも信号配線の数を低減できる。
一例として、複数のタッチ検出単位TUをM行およびN列にマトリクス状に配列する場合、図9に示すように、行ごとにタッチスキャン電極TD(またはタッチ検出電極TS)を配置し、列ごとにタッチ検出電極TS(またはタッチスキャン電極TD)を配置する。そうすると、必要となる信号配線の数(タッチスキャン電極TDに接続する信号配線TDLとタッチ検出電極TSに接続する信号配線TSLとの合計数)はM+Nとなる。従って、比較例2のタッチパネル1002よりも、信号配線数を大幅に低減でき、レイアウトの自由度が大きくなる。
なお、信号配線の数は、上述した信号配線の必要数(M+N)よりも多くてもよい。例えば、1つのタッチスキャン電極TDまたはタッチ検出電極TSに対して2以上の信号配線を接続してもよい。
図11(a)および(b)は、それぞれ、第1基板10において、タッチスキャン電極TDとして機能する各第1の共通電極部分4pに、複数(ここでは2つ)のタッチスキャン配線TDLを接続する例を示す平面図である。
第1基板10の法線方向から見て、表示領域80には、複数(ここでは5つ)のタッチスキャン電極TD(1)~TD(5)が、y方向に配列されている。周辺領域90のうち表示領域80の下側に位置する領域90yには、スキャンドライバ73が配置されている。タッチスキャン電極TD(1)~TD(5)は、それぞれ、タッチスキャン電極コンタクト部18において、対応する2つのタッチスキャン配線TDL(1)~TDL(5)に接続され、タッチスキャン配線TDL(1)~TDL(5)を介してスキャンドライバ73と電気的に接続されている。なお、簡単のため、ここでは5つのタッチスキャン電極を図示しているが、タッチスキャン電極の数はこれに限定されない。
各タッチスキャン電極TDに複数のタッチスキャン配線TDLを接続させることで、共通信号およびスキャン信号の遅延を改善できる。この結果、タッチ検出感度をさらに高めることが可能になる。また、グリーニッシュ(Greenish)や縞状のムラが抑制され、表示品位を高めることができる。「グリーニッシュ」とは、共通信号の鈍りなどに起因して、特定の画素の液晶層に印加される電圧が異なることによって生じる色付き現象である。
タッチスキャン配線TDL(1)~TDL(5)は、その長さの差ができるだけ小さくなるように配置されてもよい。これにより、共通信号およびスキャン信号が各タッチスキャン電極TDに伝わる時間(遅延時間)の差を小さくできるので、表示特性およびタッチ検出特性の低下を抑制できる。例えば、図11(a)に示すように、第2周辺領域90yのx方向の幅の中央部近傍にスキャンドライバ73が配置されている場合、タッチスキャン配線TDL(1)~TDL(5)は、表示領域80において、より遠いタッチスキャン電極TDに接続されるタッチスキャン配線TDLがより中央部側になるように配置されていてもよい。
また、図11(b)に示すように、2つのスキャンドライバ73a、73bが、それぞれ、第2周辺領域90yの両端部に1つずつ配置されていてもよい。この場合、1つのタッチスキャン電極TD(n)(n:1~5)に対し、スキャンドライバ73aに接続するタッチスキャン配線TDLa(n)と、スキャンドライバ73bに接続するタッチスキャン配線TDLb(n)とを設けてもよい。この例でも、タッチスキャン配線TDLa(1)~TDLa(5)、TDLb(1)~TDL(5)は、その長さの差ができるだけ小さくなるように、表示領域80において、より近いタッチスキャン電極TDに接続されるタッチスキャン配線TDLa、TDLbがより中央部側に配置されていてもよい。
さらに、図11(a)および(b)に示すように、第1基板10の法線方向から見たとき、複数のタッチスキャン電極コンタクト部18は、表示領域80をy方向に横切る線19に対して、略線対称に配置されていることが好ましい。つまり、各タッチスキャン電極TD(n)における2つのタッチスキャン電極コンタクト部18と線19との距離は互いに等しいことが好ましい。線19は、例えば表示領域80をy方向に2等分する中心線であってもよい。これにより、第2周辺領域90yのサイズ(特に表示領域80とスキャンドライバ73との間隔)を増大させることなく、スキャンドライバ73からタッチスキャン電極TD(1)~TD(5)までの距離をより均一に近づけて抵抗差を抑えることができる。
<変形例>
次いで、本実施形態のタッチパネルの変形例を説明する。以下では、各変形例について、タッチパネル101と異なる点を主に説明し、タッチパネル101と重複する説明を省略する。
次いで、本実施形態のタッチパネルの変形例を説明する。以下では、各変形例について、タッチパネル101と異なる点を主に説明し、タッチパネル101と重複する説明を省略する。
図12(a)は、本実施形態の他のタッチパネル102を示す平面図であり、図12(b)はタッチパネル102における画素構造を示す断面図である。
タッチパネル102では、前述したタッチパネル101と同様に、第1基板10に形成された第1の共通電極部分4pがタッチスキャン電極TDを兼ね、第2基板20に形成された第2の共通電極部分9pがタッチ検出電極TSを兼ねている。ただし、第1の共通電極部分4pがy方向に延び、第2の共通電極部分9pがx方向に延びている点でタッチパネル101と異なる。
各第1の共通電極部分4pは、表示領域80内をy方向に横切って延びて、第2周辺領域90yでタッチスキャン配線TDLに接続される。タッチスキャン配線TDLは、例えば半導体チップ16上のスキャンドライバに接続されている。タッチスキャン配線TDLは、周辺領域90(ここでは第2周辺領域90y)において、スキャンドライバと第1の共通電極部分4pのスキャンドライバ側の端部とを接続する。このように、タッチパネル102では、タッチスキャン配線TDLは周辺領域90にのみ配置され、表示領域80内(画素内)に位置しない。従って、各タッチスキャン配線TDLの一部を画素内に配置する場合よりも画素開口率を高くできる。
一方、第2の共通電極部分9pは、表示領域80をx方向に横切って延び、表示領域80の両側にある第1周辺領域90xで、コンタクト柱14を介して、第1基板10に形成されたタッチ検出配線TSLに接続されている。タッチ検出配線TSLは、検出ドライバに接続されている。この例では、タッチ検出配線TSLは第1周辺領域90x内を延びて、例えば第2周辺領域90yの半導体チップ16に配置された検出ドライバに接続されている。
図13は、本実施形態のさらに他のタッチパネル103における画素構造を示す断面図である。
タッチパネル103は、第2基板20において、第2の共通電極9の液晶層8側にオーバーコート層64を配置する点で、タッチパネル101と異なる。なお、カラーフィルタ層60と第2の共通電極9との間に、他のオーバーコート層をさらに設けてもよい。
タッチパネル103では、タッチ検出電極TSとタッチスキャン電極TDとの間にオーバーコート層64が位置している。このため、タッチ検出電極TSとタッチスキャン電極TDとの間にかかるスキャン電圧が、オーバーコート層64にもかかるため、液晶層8にかかる電圧を小さくできる。従って、タッチスキャン電極TDによるAC駆動の液晶への影響を小さくできるので、タッチ検出時の表示不良(例えば縞状の表示ムラ)をより効果的に改善できる。
図14は、本実施形態のさらに他のタッチパネル104における画素構造を示す断面図である。
タッチパネル104は、第1基板10において、第1の共通電極4を画素電極2と液晶層8との間に配置する点で、タッチパネル101と異なる。この例では、第1絶縁層50上に画素電極2およびタッチスキャン配線TDLが形成されている。画素電極2およびタッチスキャン配線TDL上には、第2絶縁層52を介して第1の共通電極4が形成されている。第1の共通電極4は、タッチ検出単位ごとに分離され、タッチスキャン電極TDとして機能する。これに加えて、第1の共通電極4には、画素ごとにスリットまたは切り欠き部が設けられる。一方、画素電極2は、画素ごとに分離されていればよく、スリット等が形成されていなくてもよい。
タッチパネル104では、タッチパネル101と比べて、タッチスキャン電極TDをタッチ検出電極TS(第2の共通電極9)により近づけて配置することができる。このため、タッチスキャン電極TDとタッチ検出電極TSとの間隔をより小さくできるので、スキャン信号をよりダイレクトにタッチ検出電極TSに伝えることが可能になる。従って、タッチ検出感度をより高めることができる。
図15は、本実施形態のさらに他のタッチパネル105の平面図である。
タッチパネル105は、第1基板10にスキャンドライバ73をモノリシックに形成している点で、タッチパネル101と異なる。
スキャンドライバ73をモノリシックに形成することにより、半導体チップ16に配置する場合と比べて、半導体チップ16のコストを削減できる。また、スキャンドライバ73を駆動させるために必要な信号配線78(例えばクロック配線、開始信号線や定電位配線)の本数は、タッチスキャン配線TDLの本数より少なくてすむ。そのため、半導体チップ16からの配線の数を削減できるので、周辺領域90をより狭くできる。
タッチパネル105では、第2周辺領域90yに、2つのスキャンドライバ73a、73b(以下、「スキャンドライバ73」と総称する場合がある)が間隔を空けて配置されている。なお、スキャンドライバ73の数は1つでもよいし、3以上でもよい。
スキャンドライバ73は、好ましくは表示領域80と半導体チップ16との間に配置され得る。この例では、第1基板10を法線方向から見たとき、スキャンドライバ73は、シール材12で包囲された領域であって、かつ、表示領域80の下側に位置する領域に配置されている。
図示するように、スキャンドライバ73a、73bは、第2周辺領域90yにおいて、ソースドライバとソース線SLとを接続するソース信号引き出し線の両側にそれぞれ配置されていてもよい。スキャンドライバ73a、73bは、タッチスキャン配線TDLa、TDLbを介して各タッチスキャン電極TDに接続されている。タッチスキャン配線TDLa、TDLbのそれぞれは、表示領域80内(画素内)に位置し、画素列を横切って延びる部分を有していてもよい。
なお、他のドライバの配置は特に限定しないが、例えば、ゲートドライバ(不図示)は第1周辺領域90xにモノリシックに形成され、ソースドライバおよび検出ドライバ74a、74bは半導体チップ16に設けられていてもよい。
(第2の実施形態)
第2の実施形態のタッチパネルは、TFT基板が対向基板よりも観察者側に位置し、TFT基板側にタッチ表面が配置される。従って、TFT基板側に検出電極、対向基板側にスキャン電極が配置される点で、第1の実施形態と異なる。
第2の実施形態のタッチパネルは、TFT基板が対向基板よりも観察者側に位置し、TFT基板側にタッチ表面が配置される。従って、TFT基板側に検出電極、対向基板側にスキャン電極が配置される点で、第1の実施形態と異なる。
検出電極の電位変化は、スキャン電極の電位変化よりも小さい(図7参照)。本実施形態によると、TFT基板に検出電極を配置するので、TFT基板にスキャン電極を配置するよりも、検出電極と画素電極との結合容量が大きいため、タッチ検出時の検出電極と画素電極との電位差が小さくなる。そのため、表示品位への影響が少なくなる。
図16(a)は、第2の実施形態のタッチパネル201を例示する平面図であり、図16(b)は、図16(a)におけるIII-III’線に沿った断面図である。また、図16(c)は、タッチパネル201における画素構造を示す断面図である。図16では、タッチパネル101と同様の構成要素には同じ参照符号を付している。以下、タッチパネル101と異なる点を主に説明し、重複する説明は省略する。
タッチパネル201では、第1基板10は、対向基板である第2基板20よりも観察者側に位置し、第1基板10側がタッチ表面となる。第1基板10における第1の共通電極4は、複数の第1の共通電極部分4pに分離されてタッチ検出電極TSを兼ねている。また、第2基板20における第2の共通電極9は、複数の第2の共通電極部分9pに分離されてタッチスキャン電極TDを兼ねている。
第1の共通電極部分4pのそれぞれは、表示領域80をy方向に横切って延びていてもよい。この場合、第1の共通電極部分4pは、タッチ検出配線TSLを介して、例えば第2周辺領域90yに配置された検出ドライバに電気的に接続される。これにより、タッチ検出配線TSLを周辺領域90内にのみ配置できるので、タッチパネルの信号配線が画素内に位置することによる開口率の低下を抑制できる。
一方、第2の共通電極部分9pのそれぞれは、表示領域80をx方向に横切って延びていてもよい。この場合、第2の共通電極部分9pは、第1周辺領域90xにおいて、コンタクト柱14を介して第1基板10上のタッチスキャン配線TDLに接続されてもよい。タッチスキャン配線TDLは、例えば第1周辺領域90xから第2周辺領域90yに延びて、第2周辺領域90yに配置されたスキャンドライバに電気的に接続されてもよい。
図示するように、タッチパネル102は2つのスキャンドライバ73a、73bを有し、各第1の共通電極部分4pは2つのスキャンドライバ73a、73bの両方と接続されていてもよい。例えば、各第1の共通電極部分4pの左側の端部はタッチスキャン配線TDLaを介してスキャンドライバ73aに接続され、右側の端部はタッチスキャン配線TDLbを介してスキャンドライバ73bに接続されてもよい。これにより、図11を参照しながら前述したように、共通信号およびスキャン信号の遅延を改善できる。
図17および図18は、それぞれ、第2の実施形態の他のタッチパネル202、203を例示する平面図である。これらの例では、スキャンドライバ73を第1基板10にモノリシックに配置している。これにより、半導体チップ16のコストを削減できる。また、半導体チップ16からの配線の数を削減できるので、周辺領域90をより狭くできる。
図17に示すタッチパネル202では、第2周辺領域90yに、2つのスキャンドライバ73a、73b(以下、「スキャンドライバ73」と総称する場合がある)がモノリシックに形成されている。なお、スキャンドライバ73の数は1つでもよいし、3以上でもよい。スキャンドライバ73は、第2周辺領域90yにおいて、表示領域80と半導体チップ16との間に配置されていてもよい。
この例では、スキャンドライバ73a、73bが、間隔を空けて配置されている。スキャンドライバ73a、73bは、第2周辺領域90yにおいて、ソースドライバ72とソース線SLとを接続するソース信号引き出し線の両側にそれぞれ配置されていてもよい。第1基板10の法線方向から見たとき、スキャンドライバ73a、73bは、それぞれ、第2周辺領域90yの右側および左側の縁部近傍(例えば第1周辺領域90xの下方)に配置されていることが好ましい。これにより、タッチスキャン配線TDLの長さを短縮できる。スキャンドライバ73a、73bの位置は特に限定しないが、その全体が、シール材12の内側に配置されることが好ましい。これにより、スキャンドライバ73a、73bを構成するTFTが、外部からの異物や電荷等による影響を受けることを抑制できるので、より高い信頼性を確保できる。なお、スキャンドライバ73a、73bは、シール材12の外側に配置されてもよい。あるいは、スキャンドライバ73a、73bの一部のみがシール材12の内側に配置されていてもよい。この場合、スキャンドライバ73a、73bは、シール材12と重なっていてもよい。図示するように、スキャンドライバ73a、73bは、シール材12をx方向に横切って、シール材12の外側まで延びていてもよい。
この例では、第2基板20に形成された第2の共通電極部分9p(タッチスキャン電極TD)は、x方向に延び、第1周辺領域90xでコンタクト柱14を介して第1基板10のタッチスキャン配線TDLa、TDLbに接続されている。タッチスキャン配線TDLa、TDLbは、第1周辺領域90x内を第2周辺領域90yに向かって延び、スキャンドライバ73a、73bに接続されている。第2の共通電極部分9pのそれぞれは、2つのスキャンドライバ73a、73bの両方に接続されていてもよい。例えば、各第2の共通電極部分9pの左側の端部はタッチスキャン配線TDLaを介してスキャンドライバ73aに接続され、右側の端部はタッチスキャン配線TDLbを介してスキャンドライバ73bに接続されてもよい。
図18に示すタッチパネル203では、スキャンドライバ73は、第1周辺領域90xにモノリシックに形成されている。例えば2つのスキャンドライバ73a、73bが表示領域80の右側および左側に位置する第1周辺領域90xにそれぞれ配置されていてもよい。
タッチパネル203では、第2基板20に形成された第2の共通電極部分9pはx方向に第1周辺領域90xまで延び、第1周辺領域90xにおいて、コンタクト柱14およびタッチスキャン配線TDLa、TDLbを介して、スキャンドライバ73a、73bに接続されている。このため、コンタクト柱14とスキャンドライバ73とをより近接して配置できるので、タッチスキャン配線TDLを形成するための領域を縮小できる。従って、第1周辺領域90xをより狭小化できる。この例でも、各第2の共通電極部分9pは、2つのスキャンドライバ73a、73bの両方に接続されていてもよい。
本実施形態のタッチパネルの構造は、図16~図18に示す例に限定されない。第1の共通電極4がタッチ検出電極TS、第2の共通電極9がタッチスキャン電極TDを兼ねるように変更すれば、第1の実施形態で説明した種々のバリエーションを適用できる。第1基板10および第2基板20における積層順序を変更してもよいし、図19に例示するように、タッチ検出電極TSおよびタッチスキャン電極TDの延びる方向を変更してもよい。
(第3の実施形態)
第3の実施形態のタッチパネルは、表示領域80を複数のサブ領域に分け、サブ領域ごとにタッチ検出および画素書き込み動作を行うように構成されている。
第3の実施形態のタッチパネルは、表示領域80を複数のサブ領域に分け、サブ領域ごとにタッチ検出および画素書き込み動作を行うように構成されている。
本実施形態のタッチパネルの構造は、前述した第1および第2の実施形態のタッチパネル101~105、201~203と同様であってもよい。ただし、本実施形態では、図1、図16等に例示するように、タッチスキャン電極TDがゲート線GLと同じ方向(x方向)に延びていることが好ましい。
本実施形態では、制御回路76が各ドライバの動作を制御して、1画面書き込み時間(1垂直走査期間または1フレームともいう)の間に、次のような駆動を行う。表示領域を複数のサブ領域に分け、選択した1つのサブ領域に対し、画素電位の書き込み動作(以下、「画素書き込み動作」)を停止した状態でタッチ検出動作を行う。この後、タッチ検出動作を停止して画素の書き込み動作を行う。続いて、次のサブ領域を選択し、同様に、タッチ検出動作および画素の書き込み動作を行う。このようにして、複数のサブ領域について、順次、タッチ検出動作および画素の書き込み動作を行う。
選択したサブ領域に対して、タッチ検出動作を行った後に画素書き込み動作を行うので、タッチ検出時の電位変化による液晶配向の乱れ(ここではサブ領域単位で横方向に縞が生じ得る)が視認され難くなる。従って、より高い表示特性が得られる。タッチ検出動作の後、なるべく時間をおかずに(例えば1μsec以内)画素書き込み動作を行うことが好ましい。
以下、図面を参照しながら、本実施形態の駆動方法をより具体的に説明する。
図20(a)~(d)は、それぞれ、駆動方法を説明するための模式的な平面図である。
図示するように、表示領域80を、x方向に複数のサブ領域Bに分割する。各サブ領域Bは、1つまたは2以上のタッチ検出単位を含む。ここでは、表示領域80をn個のサブ領域B1~Bnに分割する。サブ領域B1~Bnは、上からy方向に配列されている。各サブ領域Bは、例えば、1つのタッチスキャン電極TD(すなわち1つのタッチ検出単位行)に対応して配置されている。なお、各サブ領域Bは、2以上のタッチ検出単位行に対応していてもよい。
本実施形態の駆動方法では、まず、複数のサブ領域Bのうちの1つのサブ領域B(ここではサブ領域B1)が選択される。本明細書では、選択されたサブ領域Bを、選択サブ領域B(Y)と呼ぶ。
次いで、図20(a)に示すように、選択サブ領域B(Y)について、画素書き込み動作を停止した状態で、タッチ検出動作を行う(タッチ検出工程)。選択サブ領域B(Y)がタッチ信号検出領域となる。
続いて、選択サブ領域B(Y)のタッチ検出工程が終了すると、図20(b)に示すように、選択サブ領域B(Y)について、タッチ検出動作を停止して、画素書き込み動作を行う(画素書き込み工程)。この工程では、選択サブ領域B(Y)に位置する複数のゲート線をスキャン方向に沿って順次駆動させる。従って、図示するように、画素書き込み領域は選択サブ領域B(Y)をスキャン方向に沿って移動する。
選択サブ領域B(Y)の画素書き込みが終了すると、次のサブ領域Bが選択される(ここではサブ領域B2)。
この後、図20(c)に示すように、次の選択サブ領域B(Y)の直前でゲート線のスキャンを停止し、画素書き込み動作が停止した状態で、上記と同様のタッチ検出工程を行う。続いて、図20(d)に示すように、選択サブ領域B(Y)について上記と同様の画素書き込み工程を行う。
このようにして、全てのサブ領域Bについて、順次、タッチ検出工程および画素書き込み工程を繰り返す。最後のサブ領域B(n)の画素書き込み工程が終了すると、一画面の書き込みは終了する。
図21は、タッチ検出工程および画素書き込み工程におけるタッチスキャン電極TDおよびタッチ検出電極TSの信号波形の一例を示す図である。図22は、タッチ検出工程および画素書き込み工程におけるゲート線GLの信号波形の一例を示す図である。
<タッチ検出工程>
図21に示すように、タッチ検出工程では、選択サブ領域B(Y)に配置されたタッチスキャン電極(以下、「選択タッチスキャン電極」と呼ぶ)にスキャン信号を入力し、AC駆動させる。一方、選択サブ領域B(Y)に配置されたタッチ検出電極(以下、「選択タッチ検出電極」)に共通信号Vcomを入力する。選択タッチ検出電極TSは、スキャン信号の影響で、突き上げおよび突き下げを受けるので、選択タッチ検出電極TSの波形は、スキャン信号を反映した波型になる。前述したように、タッチの有無で選択タッチ検出電極TSの波形が変化する。従って、選択タッチ検出電極TSの電位の変化を検出信号として読み取ることにより、タッチの有無を検出できる。
図21に示すように、タッチ検出工程では、選択サブ領域B(Y)に配置されたタッチスキャン電極(以下、「選択タッチスキャン電極」と呼ぶ)にスキャン信号を入力し、AC駆動させる。一方、選択サブ領域B(Y)に配置されたタッチ検出電極(以下、「選択タッチ検出電極」)に共通信号Vcomを入力する。選択タッチ検出電極TSは、スキャン信号の影響で、突き上げおよび突き下げを受けるので、選択タッチ検出電極TSの波形は、スキャン信号を反映した波型になる。前述したように、タッチの有無で選択タッチ検出電極TSの波形が変化する。従って、選択タッチ検出電極TSの電位の変化を検出信号として読み取ることにより、タッチの有無を検出できる。
非選択のサブ領域Bに配置された非選択のタッチ検出電極TSおよびタッチスキャン電極TDに、共通信号Vcomを入力してもよい。なお、非選択のタッチスキャン電極TDはフローティング状態であってもよい。
タッチ検出工程では、全てのサブ領域Bで画素電位が保持されている。すなわち、各画素に設けられたTFTはオフである。全てのソース線はフローティング状態であってもよい。
図22に示すように、タッチ検出工程において、選択サブ領域B(Y)に配置された複数のゲート線(以下、「選択ゲート線」)に、スキャン信号とほぼ同相かつほぼ同振幅のゲート信号を供給してもよい。これにより、スキャン信号の遅延を抑制し、検出信号に生じるノイズを低減できる。なお、選択ゲート線はフローティング状態でもよい。
非選択のサブ領域Bに配置されたゲート線(非選択ゲート線)にはゲートオフ電圧Vglが供給されていてもよい。ゲートオフ電圧Vglは、ゲート線に供給され、画素のTFTをオフにするための電圧である。なお、非選択ゲート線はフローティング状態であってもよい。
<画素書き込み工程>
図21に示すように、画素書き込み工程では、選択および非選択のタッチ検出電極TSおよびタッチスキャン電極TDに共通信号Vcomを入力する。
図21に示すように、画素書き込み工程では、選択および非選択のタッチ検出電極TSおよびタッチスキャン電極TDに共通信号Vcomを入力する。
また、図22に示すように、選択サブ領域B(Y)に配置された複数の選択ゲート線を順次駆動(ゲートオン電圧Vghを印加)する。ゲートオン電圧Vghは、ゲート線に供給され、画素のTFTをオンにするための電圧である。TFTがオンとなった画素に、ソース線SLから映像信号に応じた電圧が印加される。このようにして、選択サブ領域B(Y)内の、駆動された選択ゲート線に接続された1行分の画素に書き込みが行われる。
タッチ検出工程および画素書き込み工程におけるゲート線GL、ソース線SL、タッチスキャン電極TDおよびタッチ検出電極TSの電圧を表1にまとめて示す。表中の「VM」は、タッチスキャン信号の電圧振幅を表す。
液晶ディスプレイに使用される液晶材料は、一般に誘電分散を有するので、周波数が高くなると(例えば数10kHz以上)、徐々に応答が悪くなる。例えば周波数が106~108Hz以上では、応答しなくなる場合がある。そのため、AC一周期の駆動時間は、10μsec以下が好ましく、0.01μsec以上1μsec以下がより好ましい。
本発明による実施形態のタッチセンサ付き液晶表示装置は、各種電子機器の分野において特に有用である。
2 画素電極
4 第1の共通電極
4p 第1の共通電極部分
8 液晶層
9 第2の共通電極
9p 第2の共通電極部分
10 第1基板
11 第1透明基板
12 シール材
14 コンタクト柱
16 半導体チップ
18 タッチスキャン電極コンタクト部
20 第2基板
21 第2透明基板
32 ゲート電極
33 ゲート絶縁層
34 半導体層
36 ソース電極
38 ドレイン電極
41、42 偏光板
43 アクティブマトリクス層
44 第1共通電極層
46 画素電極層
48 タッチスキャン配線層
50 第1絶縁層
50a 無機絶縁層
50b 有機絶縁層
52 第2絶縁層
54 第3絶縁層
60 カラーフィルタ層
62 第2共通電極層
64 オーバーコート層
71 ゲートドライバ
72 ソースドライバ
73、73a、73b スキャンドライバ
74、74a、74b 検出ドライバ
76 制御回路
80 表示領域
90 周辺領域
90x 第1周辺領域
90y 第2周辺領域
101、102、103、104、105、201、202、203、204 タッチセンサ付き液晶表示装置(タッチパネル)
1001、1002 比較例のタッチパネル
GL ゲート線
SL ソース線
TD タッチスキャン電極
TDL、TDLa、TDLb タッチスキャン配線
TS タッチ検出電極
TSL タッチ検出配線
TU タッチ検出単位
4 第1の共通電極
4p 第1の共通電極部分
8 液晶層
9 第2の共通電極
9p 第2の共通電極部分
10 第1基板
11 第1透明基板
12 シール材
14 コンタクト柱
16 半導体チップ
18 タッチスキャン電極コンタクト部
20 第2基板
21 第2透明基板
32 ゲート電極
33 ゲート絶縁層
34 半導体層
36 ソース電極
38 ドレイン電極
41、42 偏光板
43 アクティブマトリクス層
44 第1共通電極層
46 画素電極層
48 タッチスキャン配線層
50 第1絶縁層
50a 無機絶縁層
50b 有機絶縁層
52 第2絶縁層
54 第3絶縁層
60 カラーフィルタ層
62 第2共通電極層
64 オーバーコート層
71 ゲートドライバ
72 ソースドライバ
73、73a、73b スキャンドライバ
74、74a、74b 検出ドライバ
76 制御回路
80 表示領域
90 周辺領域
90x 第1周辺領域
90y 第2周辺領域
101、102、103、104、105、201、202、203、204 タッチセンサ付き液晶表示装置(タッチパネル)
1001、1002 比較例のタッチパネル
GL ゲート線
SL ソース線
TD タッチスキャン電極
TDL、TDLa、TDLb タッチスキャン配線
TS タッチ検出電極
TSL タッチ検出配線
TU タッチ検出単位
Claims (20)
- 第1方向および前記第1方向と交差する第2方向に2次元に配列された複数の画素を含む表示領域と、前記表示領域の周辺に位置する周辺領域とを有するタッチセンサ付き液晶表示装置であって、
第1基板と、
前記第1基板に対向するように配置された第2基板と、
前記第1基板と前記第2基板との間に設けられた液晶層と、
前記液晶層に電圧を印加するための複数の画素電極および第1の共通電極と、
タッチセンサ用の複数の第1電極および複数の第2電極であって、前記複数の第1電極および複数の第2電極の一方は複数のタッチ検出電極であり、他方は複数のタッチスキャン電極である、複数の第1電極および複数の第2電極と
を備え、
前記表示領域は複数のタッチ検出単位を含み、前記複数のタッチ検出単位のそれぞれは、前記複数のタッチ検出電極の1つと前記複数のタッチスキャン電極の1つとが交差した部分であり、
前記液晶層は、負の誘電率異方性を有する液晶を含み、
前記第1基板は、
第1透明基板と、
それぞれが前記第1方向に延設された複数のゲート線と、
それぞれが前記第2方向に延設された複数のソース線と、
前記第1透明基板の前記液晶層側に配置された、前記複数の画素電極と、
前記第1透明基板の前記液晶層側に、前記複数の画素電極と絶縁層を介して配置された前記第1の共通電極と
を有し、
前記第2基板は、
第2透明基板と、
前記第2透明基板の前記液晶層側に形成された第2の共通電極と
を有し、
前記第1の共通電極は、複数の第1の共通電極部分を含み、前記複数の第1の共通電極部分はタッチセンサ用の前記複数の第1電極を兼ねており、
前記第2の共通電極は、複数の第2の共通電極部分を含み、前記複数の第2の共通電極部分はタッチセンサ用の前記複数の第2電極を兼ねている、タッチセンサ付き液晶表示装置。 - 前記第2基板は、前記第1基板の観察者側に配置されており、
前記複数の第1の共通電極部分は前記複数のタッチスキャン電極を兼ねており、前記複数の第2の共通電極部分は前記複数のタッチ検出電極を兼ねている、請求項1に記載のタッチセンサ付き液晶表示装置。 - 前記周辺領域において、前記第1基板は、
前記複数の第1の共通電極部分に接続されたスキャンドライバと、
半導体チップが搭載された半導体チップ搭載領域と
をさらに有し、
前記スキャンドライバは、前記半導体チップ搭載領域または前記半導体チップ搭載領域と前記表示領域との間に配置されている、請求項2に記載のタッチセンサ付き液晶表示装置。 - 前記第1基板は、前記複数の第1の共通電極部分と前記スキャンドライバとを接続する複数のスキャン配線をさらに備え、
前記複数のスキャン配線のそれぞれは、前記表示領域内に位置する部分を有する、請求項3に記載のタッチセンサ付き液晶表示装置。 - 前記複数の第1の共通電極部分のそれぞれに対して2以上の前記スキャン配線が設けられている、請求項4に記載のタッチセンサ付き液晶表示装置。
- 前記複数の第1の共通電極部分のそれぞれは、前記表示領域を前記第1方向に延び、前記複数の第2の共通電極部分のそれぞれは、前記表示領域を前記第2方向に横切って延びている、請求項2から5のいずれかに記載のタッチセンサ付き液晶表示装置。
- 前記複数の第1の共通電極部分のそれぞれは、前記表示領域を前記第2方向に横切って延び、前記複数の第2の共通電極部分のそれぞれは、前記表示領域を前記第1方向に横切って延びている、請求項2または3に記載のタッチセンサ付き液晶表示装置。
- 前記第1基板は、前記第2基板の観察者側に配置されており、
前記複数の第1の共通電極部分は前記複数のタッチ検出電極を兼ねており、前記複数の第2の共通電極部分は前記複数のタッチスキャン電極を兼ねている、請求項1に記載のタッチセンサ付き液晶表示装置。 - 前記複数の第1の共通電極部分のそれぞれは、前記表示領域を前記第2方向に横切って延び、前記複数の第2の共通電極部分のそれぞれは、前記表示領域を前記第1方向に横切って延びている、請求項8に記載のタッチセンサ付き液晶表示装置。
- 前記複数の第1の共通電極部分のそれぞれは、前記表示領域を前記第1方向に横切って延び、前記複数の第2の共通電極部分のそれぞれは、前記表示領域を前記第2方向に横切って延びている、請求項8に記載のタッチセンサ付き液晶表示装置。
- 前記第2の共通電極部分のそれぞれは、前記表示領域を横切って、前記周辺領域まで延びており、
前記第2の共通電極部分のそれぞれにおける前記周辺領域に位置する部分は、前記第1基板と前記第2基板との間に配置されたコンタクト柱を介して、前記第1基板側に電気的に接続されている、請求項1から10のいずれかに記載のタッチセンサ付き液晶表示装置。 - 前記第2基板は、カラーフィルタ層をさらに備え、前記第2の共通電極は前記カラーフィルタ層と前記第2透明基板との間に配置されている、請求項1から11のいずれかに記載のタッチセンサ付き液晶表示装置。
- 前記第2基板は、カラーフィルタ層をさらに備え、前記第2の共通電極は前記カラーフィルタ層と前記液晶層との間に配置されている、請求項1から11のいずれかに記載のタッチセンサ付き液晶表示装置。
- 前記画素電極は、前記第1の共通電極と前記液晶層との間に配置されている、請求項1から13のいずれかに記載のタッチセンサ付き液晶表示装置。
- 前記第1の共通電極は、前記画素電極と前記液晶層との間に配置されている、請求項1から13のいずれかに記載のタッチセンサ付き液晶表示装置。
- 前記複数のゲート線に接続されたゲートドライバと、
前記複数のソース線に接続されたソースドライバと、
前記複数のタッチスキャン電極に接続されたスキャンドライバと、
前記複数のタッチ検出電極に接続された検出ドライバと、
前記ゲートドライバ、前記ソースドライバ、前記スキャンドライバおよび前記検出ドライバの制御を行う制御回路と
をさらに備え、
前記複数のタッチスキャン電極のそれぞれは、前記表示領域を前記第1方向に延びており、
前記表示領域は、前記表示領域を前記第1方向に分割した複数のサブ領域を有し、
前記制御回路は、選択したサブ領域に対するタッチ検出動作および画素の書き込み動作が終了した後で、次のサブ領域に対するタッチ検出動作および画素の書き込み動作を行い、かつ、各サブ領域に対して、画素の書き込み動作を停止した状態でタッチ検出動作を行った後、タッチ検出動作を停止した状態で画素の書き込み動作を行うように、前記制御を行う請求項1に記載のタッチセンサ付き液晶表示装置。 - 請求項1に記載のタッチセンサ付き液晶表示装置の駆動方法であって、
前記複数のタッチスキャン電極のそれぞれは、前記表示領域を前記第1方向に延びており、
前記表示領域は、前記表示領域を前記第1方向に分割した複数のサブ領域を有し、前記複数のサブ領域のそれぞれは、前記複数のタッチ検出単位における1つまたは2以上のタッチ検出単位に対応しており、
前記駆動方法は、
(A)前記複数のサブ領域のうちの選択されたあるサブ領域について、画素書き込み動作を停止した状態で、タッチ検出動作を行うタッチ検出工程であって、前記複数のタッチスキャン電極のうち前記選択されたサブ領域に配置された選択タッチスキャン電極にスキャン信号を入力し、前記複数のタッチ検出電極に共通信号を入力し、前記複数のタッチ検出電極のうち前記選択されたサブ領域に配置された選択タッチ検出電極の電位の変化を検出信号として読み取る工程を含む、タッチ検出工程と、
(B)前記選択されたサブ領域について、タッチ検出動作を停止して、画素書き込み動作を行う画素書き込み工程であって、前記複数のタッチスキャン電極および前記複数のタッチ検出電極には共通信号を入力する、画素書き込み工程と
を包含し、全てのサブ領域について前記工程(A)および(B)を繰り返す、タッチセンサ付き液晶表示装置の駆動方法。 - 前記工程(A)では、前記複数のタッチスキャン電極のうち前記選択タッチスキャン電極以外の非選択タッチスキャン電極には共通信号が入力されているか、または前記非選択タッチスキャン電極はフローティング状態である、請求項17に記載の駆動方法。
- 前記工程(A)では、前記複数のゲート線のうち前記選択されたサブ領域に配置された選択ゲート線に、前記スキャン信号と同相かつ同振幅のゲート信号を供給する、請求項17または18に記載の駆動方法。
- 前記工程(B)では、前記複数のゲート線のうち前記選択ゲート線以外の非選択ゲート線にはゲートオフ電圧Vglが供給されているか、または前記非選択ゲート線はフローティング状態である、請求項19に記載の駆動方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780071768.XA CN110023887B (zh) | 2016-11-21 | 2017-11-14 | 带触摸传感器的液晶显示装置及其驱动方法 |
US16/462,270 US10866449B2 (en) | 2016-11-21 | 2017-11-14 | Liquid crystal display apparatus with touch sensor and method for driving same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-225873 | 2016-11-21 | ||
JP2016225873 | 2016-11-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018092758A1 true WO2018092758A1 (ja) | 2018-05-24 |
Family
ID=62146158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/040901 WO2018092758A1 (ja) | 2016-11-21 | 2017-11-14 | タッチセンサ付き液晶表示装置およびその駆動方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10866449B2 (ja) |
CN (1) | CN110023887B (ja) |
WO (1) | WO2018092758A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11079636B2 (en) | 2019-10-25 | 2021-08-03 | Sharp Kabushiki Kaisha | Active matrix substrate, liquid crystal display device with touch sensor using active matrix substrate, and method for manufacturing active matrix substrate |
US11156888B2 (en) | 2019-12-26 | 2021-10-26 | Sharp Kabushiki Kaisha | Active matrix substrate, in-cell touch panel liquid crystal display device provided with active matrix substrate, and manufacturing method of active matrix substrate |
US11475859B2 (en) | 2018-09-28 | 2022-10-18 | Japan Display Inc. | Display device |
US11557679B2 (en) | 2020-03-02 | 2023-01-17 | Sharp Kabushiki Kaisha | Active matrix substrate and display device |
US11637132B2 (en) | 2020-02-07 | 2023-04-25 | Sharp Kabushiki Kaisha | Active matrix substrate and method for manufacturing same |
US11927860B2 (en) | 2021-04-23 | 2024-03-12 | Sharp Display Technology Corporation | Active matrix substrate, method for manufacturing active matrix substrate, and liquid crystal display device with touch sensor using active matrix substrate |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108469927B (zh) * | 2018-04-28 | 2021-02-09 | 上海天马微电子有限公司 | 触控显示面板及其驱动方法、触控显示装置 |
US11054948B2 (en) * | 2018-10-05 | 2021-07-06 | Apple Inc. | Light transmissivity-controlled touch sensor panel design |
TWI843928B (zh) * | 2019-12-30 | 2024-06-01 | 薩摩亞商明世知識產權集團有限公司 | 觸控偵測電路 |
JP2022181558A (ja) * | 2021-05-26 | 2022-12-08 | シャープディスプレイテクノロジー株式会社 | インセルタッチパネル |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014041603A (ja) * | 2012-07-24 | 2014-03-06 | Japan Display Inc | タッチセンサ付き液晶表示装置、及び電子機器 |
JP2014109904A (ja) * | 2012-11-30 | 2014-06-12 | Japan Display Inc | タッチ検出機能付き表示装置及び電子機器 |
JP2014115647A (ja) * | 2012-12-09 | 2014-06-26 | Lg Display Co Ltd | ディスプレイ装置及びディスプレイ装置のタッチ認識方法 |
JP2014199605A (ja) * | 2013-03-29 | 2014-10-23 | 株式会社ジャパンディスプレイ | タッチ検出機能付き表示装置及び電子機器 |
WO2015059995A1 (ja) * | 2013-10-22 | 2015-04-30 | シャープ株式会社 | タッチセンサ付き表示装置 |
JP2015122057A (ja) * | 2013-12-20 | 2015-07-02 | エルジー ディスプレイ カンパニー リミテッド | タッチスクリーンパネル一体型表示装置及びその駆動方法 |
WO2017013844A1 (ja) * | 2015-07-17 | 2017-01-26 | パナソニック液晶ディスプレイ株式会社 | タッチ検出機能付表示装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2956652B2 (ja) | 1997-05-20 | 1999-10-04 | 日本電気株式会社 | アクティブマトリクス型液晶表示装置 |
JP4816668B2 (ja) | 2008-03-28 | 2011-11-16 | ソニー株式会社 | タッチセンサ付き表示装置 |
JP5519349B2 (ja) * | 2009-05-19 | 2014-06-11 | 株式会社ジャパンディスプレイ | 表示装置および接触検出装置 |
JPWO2014045602A1 (ja) * | 2012-09-24 | 2016-08-18 | パナソニックIpマネジメント株式会社 | 表示装置 |
US9746706B2 (en) | 2012-10-26 | 2017-08-29 | Japan Display Inc. | Display device and electronic apparatus |
JP2014199492A (ja) | 2013-03-29 | 2014-10-23 | 株式会社ジャパンディスプレイ | 電子機器および電子機器の制御方法 |
US9098161B2 (en) | 2013-12-20 | 2015-08-04 | Lg Display Co., Ltd. | Display device integrated with touch screen panel and method of driving the same |
JP2015135622A (ja) | 2014-01-17 | 2015-07-27 | 株式会社ジャパンディスプレイ | タッチ検出装置、タッチ検出機能付き表示装置及び電子機器 |
CN106062618B (zh) * | 2014-02-28 | 2019-04-16 | 凸版印刷株式会社 | 液晶显示装置 |
WO2015166899A1 (ja) * | 2014-04-28 | 2015-11-05 | シャープ株式会社 | センサ付き表示装置 |
JP6606345B2 (ja) | 2014-05-16 | 2019-11-13 | 株式会社ジャパンディスプレイ | タッチ検出機能付き表示装置及び電子機器 |
US10025410B2 (en) * | 2015-12-28 | 2018-07-17 | Lg Display Co., Ltd. | Display device with touch sensor |
US10444877B2 (en) * | 2015-12-27 | 2019-10-15 | Lg Display Co., Ltd. | Display device with touch sensor |
US10067586B2 (en) * | 2015-12-28 | 2018-09-04 | Lg Display Co., Ltd. | Display device with bypass line |
US10067585B2 (en) * | 2015-12-28 | 2018-09-04 | Lg Display Co., Ltd. | Display device with multilayered capacitor |
US10241609B2 (en) * | 2015-12-30 | 2019-03-26 | Lg Display Co., Ltd. | Display device with touch sensor |
JP6868069B2 (ja) * | 2018-09-19 | 2021-05-12 | シャープ株式会社 | アクティブマトリクス基板およびアクティブマトリクス基板を用いたタッチセンサ付き液晶表示装置 |
-
2017
- 2017-11-14 CN CN201780071768.XA patent/CN110023887B/zh not_active Expired - Fee Related
- 2017-11-14 WO PCT/JP2017/040901 patent/WO2018092758A1/ja active Application Filing
- 2017-11-14 US US16/462,270 patent/US10866449B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014041603A (ja) * | 2012-07-24 | 2014-03-06 | Japan Display Inc | タッチセンサ付き液晶表示装置、及び電子機器 |
JP2014109904A (ja) * | 2012-11-30 | 2014-06-12 | Japan Display Inc | タッチ検出機能付き表示装置及び電子機器 |
JP2014115647A (ja) * | 2012-12-09 | 2014-06-26 | Lg Display Co Ltd | ディスプレイ装置及びディスプレイ装置のタッチ認識方法 |
JP2014199605A (ja) * | 2013-03-29 | 2014-10-23 | 株式会社ジャパンディスプレイ | タッチ検出機能付き表示装置及び電子機器 |
WO2015059995A1 (ja) * | 2013-10-22 | 2015-04-30 | シャープ株式会社 | タッチセンサ付き表示装置 |
JP2015122057A (ja) * | 2013-12-20 | 2015-07-02 | エルジー ディスプレイ カンパニー リミテッド | タッチスクリーンパネル一体型表示装置及びその駆動方法 |
WO2017013844A1 (ja) * | 2015-07-17 | 2017-01-26 | パナソニック液晶ディスプレイ株式会社 | タッチ検出機能付表示装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11475859B2 (en) | 2018-09-28 | 2022-10-18 | Japan Display Inc. | Display device |
US11756496B2 (en) | 2018-09-28 | 2023-09-12 | Japan Display Inc. | Display device |
US12100367B2 (en) | 2018-09-28 | 2024-09-24 | Japan Display Inc. | Display device |
US11079636B2 (en) | 2019-10-25 | 2021-08-03 | Sharp Kabushiki Kaisha | Active matrix substrate, liquid crystal display device with touch sensor using active matrix substrate, and method for manufacturing active matrix substrate |
US11156888B2 (en) | 2019-12-26 | 2021-10-26 | Sharp Kabushiki Kaisha | Active matrix substrate, in-cell touch panel liquid crystal display device provided with active matrix substrate, and manufacturing method of active matrix substrate |
US11637132B2 (en) | 2020-02-07 | 2023-04-25 | Sharp Kabushiki Kaisha | Active matrix substrate and method for manufacturing same |
US11557679B2 (en) | 2020-03-02 | 2023-01-17 | Sharp Kabushiki Kaisha | Active matrix substrate and display device |
US11927860B2 (en) | 2021-04-23 | 2024-03-12 | Sharp Display Technology Corporation | Active matrix substrate, method for manufacturing active matrix substrate, and liquid crystal display device with touch sensor using active matrix substrate |
Also Published As
Publication number | Publication date |
---|---|
US20190339557A1 (en) | 2019-11-07 |
CN110023887B (zh) | 2022-05-27 |
US10866449B2 (en) | 2020-12-15 |
CN110023887A (zh) | 2019-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018092758A1 (ja) | タッチセンサ付き液晶表示装置およびその駆動方法 | |
US11163391B2 (en) | Display panel with touch detection function | |
KR102594555B1 (ko) | 터치 디스플레이 장치 | |
US11157123B2 (en) | Touch sensor integrated display device | |
US10795514B2 (en) | Display device having touch detection function | |
US9092097B2 (en) | Touch panel including each touch controller for each divided region and liquid crystal display device using the same | |
US10409416B2 (en) | Array substrate, color filter substrate, touch control display device and methods for driving the same | |
CN102841716B (zh) | 一种电容式内嵌触摸屏及显示装置 | |
US9626027B2 (en) | Touch sensor integrated type display device | |
JP5912015B2 (ja) | タッチスクリーンパネル内蔵型液晶表示装置 | |
US10365754B2 (en) | Display panel, display device and driving method | |
US9772723B2 (en) | Capacitive in-cell touch panel and display device | |
US9063607B2 (en) | Dual mode touch sensing module and dual mode touch sensing display | |
US9864457B2 (en) | Display device with touch sensor | |
US20160041665A1 (en) | Touch sensor integrated type display device | |
JP2012103658A (ja) | タッチスクリーンパネル一体型液晶表示装置 | |
JP5177024B2 (ja) | タッチセンサ機能付き表示装置 | |
CN202711227U (zh) | 一种电容式内嵌触摸屏及显示装置 | |
KR20100074820A (ko) | 진동 터치 스크린 패널과 그 제조 방법 | |
KR101825686B1 (ko) | 터치 스크린의 내장된 액정표시장치 | |
WO2014045600A1 (ja) | 液晶表示装置 | |
KR20140008107A (ko) | 터치 및 입체 영상 표시 기능을 갖는 액정표시장치 및 그의 구동 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17871952 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17871952 Country of ref document: EP Kind code of ref document: A1 |