WO2017148582A1 - Wasserstofffreie kohlenstoffbeschichtung mit zirkonium haftschicht - Google Patents

Wasserstofffreie kohlenstoffbeschichtung mit zirkonium haftschicht Download PDF

Info

Publication number
WO2017148582A1
WO2017148582A1 PCT/EP2017/000270 EP2017000270W WO2017148582A1 WO 2017148582 A1 WO2017148582 A1 WO 2017148582A1 EP 2017000270 W EP2017000270 W EP 2017000270W WO 2017148582 A1 WO2017148582 A1 WO 2017148582A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
zirconium
carbon
layers
hydrogen
Prior art date
Application number
PCT/EP2017/000270
Other languages
English (en)
French (fr)
Inventor
Joerg Vetter
Original Assignee
Oerlikon Surface Solutions Ag, Pfäffikon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Surface Solutions Ag, Pfäffikon filed Critical Oerlikon Surface Solutions Ag, Pfäffikon
Priority to EP17709580.9A priority Critical patent/EP3423609A1/de
Priority to CN201780018330.5A priority patent/CN108884550B/zh
Priority to US16/080,401 priority patent/US10844493B2/en
Priority to JP2018545811A priority patent/JP7106194B2/ja
Priority to KR1020187028078A priority patent/KR20180123508A/ko
Publication of WO2017148582A1 publication Critical patent/WO2017148582A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/027Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a hydrogen-free carbon coating, with a zirconium adhesive layer for substrate surfaces, in particular for tool and component surfaces for tribological applications, the carbon coating a hard carbon layer with a hydrogen-free, amorphous carbon structure depending on the CC sp 3 bond content as aC or as ta -C, and may contain other elements, and is associated with the group of DLC layers, and the zirconium adhesive layer is zirconium, with the zirconium adhesive layer applied between the substrate surface and the hard carbon layer, such that atomic bonds are interposed between the substrate Carbon atoms of the carbon layer and zirconium atoms form the zirconium layer.
  • zirconium is to be understood as meaning the chemical element with the element symbol Zr.
  • a Zn-x Cx is abbreviated to Zr-Cx for the sake of convenience.
  • the adhesive layer is a pure zirconium layer.
  • the range is preferably 10 at% ⁇ X ⁇ 50at%.
  • a carbon layer is to be understood as meaning a layer which has an amorphous state carbon matrix detectable by means of volumetric measurement and which can be detected by means of Raman spectroscopy or other suitable measuring methods.
  • This zirconium layer serves for bonding between the substrate and the hydrogen-free carbon layer. Due to the process, atomic bonds form between the carbon atoms of the hydrogen-free layer and atoms of the zirconium layer. Under certain process conditions, depending on
  • CONFIRMATION COPY Process temperature and the energy of the impinging carbon atoms it may lead to the formation of a thin Zr-Cx layer between the existing zirconium layer and the hydrogen-free, amorphous carbon layer, Furthermore, it is possible targeted zirconium monocarbide form by the simultaneous deposition of zirconium and carbon, wherein the layer of ZrC optionally, the zirconium monocarbide comprising layer is applied directly to the zirconium existing adhesive layer.
  • the transition to the pure carbon layer can also be a multi-layered or graded hydrogen-free aC: Zr layer or ta-C: Zr layer, which is distinguished from the stoichiometric zirconium carbide by a larger atomic proportion of carbon atoms compared to the zirconium atoms.
  • Amorphous, carbon-based hard material layers also called DLC layers
  • DLC layers are known from the prior art.
  • these types of layers do not always have sufficient adhesion to the substrate, especially if they are hard hydrogen-free layers of the type a-C or ta-C. This is due to the high residual stress state of the layers, which makes it difficult to deposit process-stable adherent layers of this type with excellent functionality.
  • Kabushiki teaches that when a nitride or carbonitride is used for the interlayer, the adhesion of the amorphous carbon layer (also called DLC, using DLC as the abbreviation of Diamond like Carbon) even at high temperature or can be improved in a high load area. Therefore, Kabushiki proposes adhesion between the substrate and the amorphous carbon (DLC) layer by depositing a multilayered film system between the substrate and the DLC amorphous carbon film. According to the teachings of Kabushiki, this way can the adhesion between substrate and DLC layer can be improved even at high temperature and in a high load area.
  • DLC amorphous carbon
  • the multi-layer coating system according to Kabushiki comprises:
  • a base layer formed on the substrate comprising a nitride or a carbonitride of an element M and having a composition of the formula Mi-x- y CxN y , wherein x ⁇ 0.5, y 0.03 and 1-xy are greater than zero, and wherein M is at least one element selected from Groups 4A, 5A, 6A of the Periodic Table, Al and Si, and wherein the element M comprises Ti, Zr, V, Nb, Ta, Cr, Mo, W, Al and Si, and preferably M comprises the elements W, Mo and Ta, and
  • a layer of an element formed between the substrate and the base layer which element may be selected from among a Group 4A element in the Periodic Table, a Group 5A element, a Group 6A, Al and Si element.
  • the layer structure described above is complex and therefore requires a complicated reactive coating process, which is mostly used in industrial production, e.g. in large-scale production is not desirable because the complexity of the process steps represents a higher risk in terms of a sufficient coating result.
  • Hard material coating which comprises a hard hydrogen-free amorphous carbon-based layer, wherein the hard coating a possible simple Layer structure and a very good adhesion to the substrate, even in applications in areas with high loads, has.
  • the carbon coating comprises a hard carbon layer and a zirconium adhesive layer, wherein the carbon layer has a hard, hydrogen-free, amorphous carbon structure and the zirconium adhesive layer is zirconium, and the zirconium adhesive layer is applied between the substrate surface and the hard carbon layer such that process-related atomic bonds between carbon atoms of the hard carbon layer and zirconium atoms of the zirconium adhesive layer, thereby forming a zirconia-carbon Zr-Cx layer having a layer thickness of a few atomic layers or up to several nanometers.
  • Figure 1 b shows the photograph of a Rockwell C impression in a carbon coating according to the present invention.
  • Figure 2 shows a carbon coating according to the invention with supporting layer.
  • the Zr-Cx layer is exclusively formed by process-related atomic bonds between carbon atoms of the hard, hydrogen-free, amorphous carbon layer and zirconium atoms of the Zirconium adhesive layer formed such that this Zr-Cx layer has a layer thickness in the atomic region range.
  • the layer thickness of the Zr-Cx layer can be, for example, 2 to 10 atomic layers in this embodiment.
  • the process conditions are selected such that after deposition of the zirconium adhesive layer, in particular the process temperature and the energy of the carbon atoms impinging on the surface of the zirconium adhesive layer, formation of atomic bonds between carbon atoms of the hard, hydrogen-free , amorphous carbon layer and zirconium atoms promote the zirconium adhesive layer so that in this way the necessary conditions for forming a Zr-Cx layer having a layer thickness of at least 2 atomic layers to about 100 nm are given.
  • a process is carried out such that a ZrC layer comprising zirconium monocarbide is formed between the zirconium adhesive layer and the hard, hydrogen-free, amorphous carbon layer.
  • the zirconium monocarbide-containing ZrC layer can be formed by simultaneously depositing zirconium and carbon.
  • the layer thickness of the zirconium monocarbide-containing ZrC layer is, for example, 5 nm to 500 nm in this embodiment.
  • the hydrogen-free, amorphous carbon layer is an a-C or ta-C layer.
  • the hydrogen-free carbon layers which the person skilled in the art designates as aC layers or ta-C layers, can be produced, for example, by the Are method (unfiltered or filtered) or else by sputtering methods (DC, pulsed DC, RF, HiPIMS), preferably in the case of aC- Layers are deposited.
  • AC layers are referred to when the relative proportion of the sp 3 - bonding moieties of the CC bonds is equal to or smaller than the proportion of the sp 2 - bonding moieties of the CC bonds in the layers. These layers then have hardnesses below 50 GPa. If the proportion of sp 3 bond portions exceeds that of the sp 2 bond portions, mention is made of ta-C layers (tetrahedral hydrogen-free amorphous carbon layers) which typically cure above of 50 GPa. It goes without saying that methods known to those skilled in the art for measuring the hardness of thin layers are used.
  • the zirconium adhesive layer can be deposited, for example, by means of the Are method (unfiltered or filtered) or else by sputtering methods (DC, pulsed DC, RF, HiPIMS).
  • a peculiarity of ion-cleaning processes based on accelerated metal ions ie, metal ion-cleaning processes, usually with an applied bias of 500V to 1500V
  • metal ion-cleaning processes usually with an applied bias of 500V to 1500V
  • zirconium is that such process parameters are selectable, so that a thin zirconium layer in the thickness range of a few nm to several 10 nm forms, which forms the zirconium adhesive layer.
  • substrates of, for example, steel, hard metal, aluminum alloys, Cu alloys, ceramics, cermet, or other metallic alloys can be coated. Since the coating temperature for producing the carbon coatings according to the present invention is down to 100 ° C, extremely temperature-sensitive substrates can be coated in terms of substrate materials or other properties.
  • cutting tools and forming tools can be coated.
  • Component components such as valve parts, vane pumps, or automotive parts such as piston pin, piston rings, finger followers, bucket tappets, or household appliances such as cutting blades, scissors, razor blades or medical parts such as implants and surgical instruments, or decorative parts such as watch case can u.a. also be coated with a carbon coating according to the present invention.
  • zirconium layers As sources of evaporation for the deposition of the zirconium layers, both Are sources with filters and without filters can be used. Likewise, suitable zirconium layers may be sputtered, such as RF, DC; pulsed DC or HiPIMS are deposited. Also, vapor deposition methods such as electron beam evaporation, low-voltage arc evaporation or
  • Hollow cathode arc evaporation is suitable for depositing the zirconium adhesive layer for the carbon coatings of the present invention.
  • a-C and ta-C layers it is also possible to prepare a-C: Me layers or Ta-C: Me layers in a targeted manner. These layers contain at least one metal as a doping element and have compared to the a-C and ta-C layers without doping element changed property profiles, for example, the electrical conductivity is greater. This may thus be advantageous in certain applications.
  • the adhesive layer should be made of zirconium according to the present invention, it would be advantageous to use zirconium as the Me method.
  • the simplest process management results if the zirconium evaporation is carried out simultaneously with the operation of the carbon evaporation by means of Are.
  • Another method is the use of carbon targets in which zirconium has been added.
  • Another embodiment according to the present invention are hydrogen-free, amorphous a-C: X layers or ta-C: X layers.
  • non-metallic elements In addition to metallic elements (commonly referred to as Me) which are added to the layers and thus lead to the a-C: Me layers, it is also possible to add other non-metallic elements (generally designated X) as doping elements for layer optimization, depending on the application. These non-metallic elements may be nitrogen, boron, silicon, fluorine or others. For example, doping with N or Si leads to stress reduction and F leads to a change in the wetting properties (higher wetting angle), as is generally known to the person skilled in the art.
  • the hydrogen-free, amorphous layer is designed as a multilayered layer, wherein the multilayered layer structure comprises alternately arranged individual layers of a type A and a type B, the individual layers of the type A consisting of aC or ta-C and the individual layers of the type B from Me or from aC: Me or ta- C: Me are.
  • zirconium may be used as Me, for example, such that a multilayer coating of the type aC / Zr or ta-C / Zr or aC / aC: Zr or ta-C / ta-C: Zr and also further combinations such as ta- C / aC: Zr or aC / ta-C: Zr is formed.
  • the same process is driven as in the embodiment from the phase of deposition of the metallic layer, the layer thickness limited to about 500 nm and then driven the same process many times, for example 6 times, so that in addition to the zirconium adhesive layers further 5 intermediate layers and a Total layer thickness of more than 3 pm arise. This leads to a higher load capacity and wear resistance.
  • the hydrogen-free, amorphous layer is designed as a multilayer layer, wherein the multilayered layer structure comprises alternately arranged individual layers of a type A and a type B, wherein the individual layers of the type A are degraded from aC or ta-C and the individual layers of type B from aC: X or from ta-C: X are.
  • the multilayered layer structure comprises alternately arranged individual layers of a type A and a type B, wherein the individual layers of the type A are degraded from aC or ta-C and the individual layers of type B from aC: X or from ta-C: X are.
  • silicon or nitrogen can be used as X.
  • Additional arc evaporators may be used to deposit such layers which evaporate the X-element alloyed graphite cathodes, or other suitable PVD methods could be used, e.g. Sputtering method with which the element X is sputtered.
  • the thickness of the single layers of the type A is not more than 2000 nm and not less than 5 nm.
  • the thickness of the single layers of the type B is not more than 2000 nm and not less than 5 nm.
  • An advantage of this embodiment is also the possibility of a higher layer thickness combined with an optimized stress ratio within the same coating.
  • the Zr layer is applied to the substrate to be coated by means of a metal-ion-cleaning method.
  • the hydrogen-free, amorphous layer is a layer of a nanocomposite material which comprises a matrix material and a material embedded in the matrix material, wherein the matrix material is preferably aC or ta-C and the embedded material is metallic carbides with dimensions in the nanometer range, eg with metal-doped amorphous carbon layers, depending on the metal, eg tungsten carbide (WC) or chromium carbides (Cr23C6, Cr3C2) or other carbides of the metallic elements, preferably made of ZrC.
  • WC tungsten carbide
  • Cr23C6, Cr3C2 chromium carbides
  • Hard material layers according to the present invention may also include support layers between the substrate and the zirconium adhesive layer on which the hydrogen-free, amorphous carbon layer is deposited, as shown in FIG. Shown is a substrate 205 on which only a support layer 207, then a Zr-Cx layer 209 and then a hydrogen-free amorphous carbon layer is provided.
  • This support layer increases the mechanical strength of the surface. It preferably consists of a material which has a higher toughness than the hydrogen-free, amorphous carbon layers.
  • this support layer may consist of ZrN.
  • nitridic e.g., CrN, AITiN
  • carbonitridic e.g., TiCN, ZrNC
  • carbidic e.g., TiC, CrC
  • oxynitridic e.g., CrNO
  • these layers are deposited by means of arcs or sputtering.
  • Hard coatings according to the present invention may also be deposited to include one or more further metallic adhesive layers between the substrate and the zirconia adhesive layer.
  • the one further metallic adhesion layer may be a Cr adhesion layer produced by means of metal ion cleaning with Cr ions, onto which the zirconium adhesion layer is then deposited.
  • Hard material layers according to the present invention can also be produced according to the invention with the aid of HiPIMS technology.
  • the hydrogen-free, amorphous layer and / or the support layer and / or the zirconium adhesive layer and / or the one or more intermediate layers can be deposited by means of a HiPIMS method.
  • only the a-C layer is deposited by HiPIMS.
  • both the Zr adhesion layer and the a-C layer are both deposited with HIPIMS.
  • An advantage of these embodiments is the formation of particularly smooth a-C layers.
  • Hard material layers according to the present invention can also be produced according to the invention by means of a hybrid technology which combines the HiPIMS and the Are technology.
  • the hydrogen-free amorphous layer and / or the supporting layer may be deposited by a hybrid Arc / HiPIMS method and the zirconium adhesive layer deposited using a Zr ion metal ion-cleaning process based on the HiPIMS process.
  • a deposition of a thicker Zr adhesive layer can also be carried out directly with the HiPIMS method.
  • the hydrogen-free, amorphous layer can be deposited by means of a hybrid Are process
  • the support layer can be deposited by means of a HiPIMS or a hybrid Arc / HiPIMS process
  • the Zr adhesion layer can be deposited by means of a Zr ion metal ion cleaning process.
  • the layer deposits of a-C (hardness of about 40 GPa) and ta-C layers (hardness of about 55 GPa) were realized in a commercial coating plant equipped with arc evaporators.
  • the coating steps were initially pumped to high vacuum (0.001 Pa), then a heating step taking into account compliance with a maximum substrate temperature temperature of about 150 ° C. Subsequently, an ion cleaning by means of the AEGD method, then the arc evaporator were ignited with Cr or Zr to deposit the metallic adhesive layer of about 120 +/- 40 nm. For this purpose, appropriate breaks were taken in order not to exceed a maximum temperature of about 150 ° C. In the transition phase for the deposition of the pure carbon layer, the arc evaporators were ignited with suitable graphite cathodes and a voltage of at least 500 V was applied to the substrates, resulting in bombardment with C ions of the metallic intermediate layer.
  • FIG. 1 a shows the photograph of a Rockwell C impression in a carbon coating with chromium adhesive layer
  • zirconium adhesive layers according to the present invention will not form a more brittle phase but rather a more "ductile" phase, which under some circumstances may comprise zirconium monocarbide (ZrC) of one or more inert process gases (eg, helium, neon, or argon) and / or metals and acceleration of these onto the substrate surface may produce a sputtering or implantation effect on the surface, when these ion cleaning processes are primarily intended for impurities such as native Oxides or even organic impurities, it is often sufficient to work only with inert gas ions.
  • ZrC zirconium monocarbide
  • inert process gases eg, helium, neon, or argon
  • AEGD arc enhanced glow discharge
  • a metal ion cleaning method (or called metal ion etching) another etching method.
  • metal ion cleaning method one or more metal sources of, for example, chromium or zirconium are operated, which have the effect of accelerating ionized metals onto the substrate surface.
  • the energy and amount of vaporized (eg in Arc processes) or sputtered (eg sputtering or HIPIMS processes) material can be adjusted specifically.
  • hydrogen-free amorphous carbon layers are understood as meaning all carbon layers whose hydrogen content is ⁇ 5 at.%, Preferably ⁇ 2 at.%, Whereby any impurities are not taken into consideration.
  • suitable characterization methods such as elastic recoil detection analysis (ERDA), rutherford backscattering (RBS) or secondary ion mass spectroscopy (SIMS) for determining the chemical composition of the layers according to the invention are known to the person skilled in the art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

Die vorliegende Erfindung betrifft ein beschichtetes Substrat mit einer Hartstoffbeschichtung, welche eine harte Kohlenstoffschicht der Sorte wasserstofffreie, amorphe Kohlenstoffschicht umfasst, wobei die Beschichtung eine Schicht zwischen des Substrats und der wasserstofffreien, amorphen Kohlenstoffschicht umfasst, welche aus Zirkonium besteht, und wobei zwischen der aus Zirkonium bestehende Schicht und der wasserstofffreien, amorphen Kohlenstoffschicht eine aus Zr-Cx bestehende Schicht gebaut sein kann, in der ein Zirkonium-Monocarbid ausgebildet ist, und wobei die aus Zr-Cx bestehende und Zirkonium-Monocarbid umfassende Schicht direkt auf der Zirkonium bestehende Haftschicht aufgebracht ist.

Description

Wasserstofffreie Kohlenstoffbeschichtung mit Zirkonium Haftschicht
Die vorliegende Erfindung betrifft eine wasserstofffreie Kohlenstoffbeschichtung, mit einer Zirkonium Haftschicht für Substratoberflächen, insbesondere für Werkzeug- und Bauteiloberflächen für tribologische Anwendungen, wobei die Kohlenstoffbeschichtung eine harte Kohlenstoffschicht mit einer wasserstofffreien, amorphen Kohlenstoffstruktur die je nach C-C sp3-Bindungsgehalt als a-C oder als ta-C bezeichnet wird, und weitere Elemente enthalten können, und der Gruppe der DLC-Schichten zugehörig ist, und die Zirkonium Haftschicht aus Zirkonium besteht, wobei die Zirkonium Haftschicht zwischen der Substratoberfläche und der harten Kohlenstoffschicht aufgebracht ist, dergestalt dass sich atomare Bindungen zwischen den Kohlenstoffatomen der Kohlenstoffschicht und Zirkonium Atomen der Zirkonium Schicht ausbilden.
Als„Zirkonium" ist im Kontext der vorliegenden Erfindung das chemische Element mit dem Elementsymbol Zr zu verstehen.
Im Folgenden wird eine Zn-xCx der Einfachheit halber verkürzend Zr-Cx genannt. X gibt dabei at% und es gilt: 0 at% < X < 50at%, sowie Zr (at%) + C(at%) = 100 at%, ohne Berücksichtigung von Verunreinigungen. Im Falle X = 0 at% ist die Haftschicht eine reine Zirkoniumschicht. Bevorzugt ist jedoch der Bereich 10 at% < X < 50at%. Als Kohlenstoffschicht im Sinne der vorliegenden Beschreibung ist eine Schicht zu verstehen, die eine mittels volumetrischer Messung nachweisbare Kohlenstoffmatrix im amorphen Zustand aufweist welcher mittels Ramanspektroskopie oder anderer geeigneter Messverfahren nachgewiesen werden kann.
Diese Zirkonium Schicht dient der Haftvermittlung zwischen dem Substrat und der wasserstofffreien Kohlenstoffschicht. Prozessbedingt bilden sich atomare Bindungen zwischen den Kohlenstoffatomen der wasserstofffreien Schicht und Atomen der Zirkonium Schicht aus. Unter bestimmten Prozessbedingungen, je nach
l
BESTÄTIGUNGSKOPIE Prozesstemperatur und der Energie der auftreffenden Kohlenstoffatome, kann es zur Ausbildung einer dünnen Zr-Cx Schicht zwischen der aus Zirkonium bestehenden Schicht und der wasserstofffreien, amorphen Kohlenstoffschicht kommen, Weiterhin ist es möglich gezielt Zirkonium-Monocarbid durch das zeitgleiche Abscheiden von Zirkonium und Kohlenstoff auszubilden, wobei die aus ZrC bestehende Schicht gegebenenfalls die Zirkonium-Monocarbid umfassende Schicht direkt auf die Zirkonium bestehende Haftschicht aufgebracht wird. In einer weiteren Ausprägung kann der Übergang zur reinen Kohlenstoffschicht auch eine mehrlagige oder gradierte wasserstofffreie a-C:Zr-Schicht oder ta-C:Zr-Schicht sein, die sich vom stöchiometrischen Zirkoniumkarbid durch einen größeren atomaren Anteil von Kohlenstoffatomen gegenüber den Zirkoniumatomen auszeichnet.
Stand der Technik Amorphe, kohlenstoffbasierte Hartstoffschichten, auch DLC Schichten genannt, sind aus dem Stand der Technik bekannt. Diese Art von Schichten weisst jedoch nicht immer eine ausreichende Haftung zum Substrat, insbesondere wenn diese harte wasserstofffreie Schichten des Typs a-C oder ta-C sind. Dies ist durch den hohen Eigenspannungszustand der Schichten bedingt, wodurch es schwierig ist prozessstabil haftfeste Schichten diesen Typs mit exzellenter Funktionalität abzuscheiden.
In diesem Zusammenhang lehrt Kabushiki beispielweise in DE102007010595B4, dass wenn ein Nitrid oder Carbonitrid für die Zwischenschicht verwendet wird, die Haftung der Schicht aus amorphem Kohlenstoff (auch DLC genannt, wobei DLC als Abkürzung der englichen Bezeichnung Diamond Like Carbon verwendet wird) sogar bei hoher Temperatur oder in einem Bereich mit hoher Belastung verbessert werden kann. Deshalb schlägt Kabushiki die Haftung zwischen dem Substrat und der Schicht aus amorphem Kohlenstoff (DLC) durch die Abscheidung eines mehrlagigen Schichtsystems zwischen des Substrats und der DLC-Schicht aus amorphen Kohlenstoff vor. Gemäss der Lehre von Kabushiki, kann auf diese Weise die Haftung zwischen Substrat und DLC-Schicht sogar bei hoher Temperatur und in einem Bereich mit hoher Belastung verbessert werden.
Das mehrlagige Schichtsystem nach Kabushiki umfasst:
- eine auf dem Substrat gebildete Grundschicht, welche ein Nitrid oder ein Carbonitrid eines Elements M umfasst, und eine Zusammensetzung gemäss der Formel Mi-x-yCxNy aufweist, worin x < 0.5, y 0.03 und 1-x-y grösser Null ist, und wobei M mindestens ein Element, ausgewählt aus den Gruppen 4A, 5A, 6A des Periodensystems, AI und Si ist, und worin das Element M Ti, Zr, V, Nb, Ta, Cr, Mo, W, AI und Si umfasst, und bevorzugt M die Elemente W, Mo und Ta umfasst, Und
- eine auf der Grundschicht gebildete Gradientenschicht, welche M, Stickstoff und Kohlenstoff enthält, wobei von der Grundschicht zu einer sich auf der Gradientenschicht befindenden amorphen Kohlenstoffschicht die Anteile des Elements M und des Stickstoffs abnehmen und der Kohlenstoffanteil zunimmt, und
- eine auf der Gradientenschicht gebildete Oberflächenschicht, die eine amorphe Kohlenstoffschicht umfasst, welche aus Kohlenstoff besteht oder aus 50 Atomprozent oder mehr Kohlenstoff besteht, wobei der Rest aus dem Element M besteht, und fakultativ zusätzlich auch
- eine Schicht eines Elements, welche zwischen dem Substrat und der Grundschicht gebildet ist, wobei das Element einschliesslich aus einem Element der Gruppe 4A in dem Periodensystem, einem Element der Gruppe 5A, einem Element der Gruppe 6A, AI und Si ausgewählt werden kann.
Der oben beschriebene Schichtaufbau ist jedoch komplex und erfordert daher ein aufwendiges reaktives Beschichtungsverfahren, was meist in der industriellen Produktion, e.g. in der Grossserienproduktion nicht erwünscht ist, weil durch die Komplexität der Prozessschritte ein höheres Risiko hinsichtlich eines hinreichenden Beschichtungsergebnisses darstellt.
Aufgabe der Erfindung
Es ist Aufgabe der vorliegenden Erfindung die Bereitstellung einer
Hartstoffbeschichtung, welche eine harte wasserstofffreie amorphe Kohlenstoff basierte Schicht umfasst, wobei die Hartstoffbeschichtung einen möglich einfachen Schichtaufbau und eine sehr gute Haftung zum Substrat, sogar bei Anwendungen in Bereichen mit hohen Belastungen, aufweist.
Es ist eine weitere Aufgabe der vorliegenden Erfindung ein Beschichtungsverfahren bereitzustellen, welches die Herstellung der Beschichtung in einer einfachen Weise und mit einer erhöhten Prozessstabilität ermöglicht.
Lösung der Aufgabe gemäss der vorliegenden Erfindung
Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass eine Kohlenstoffbeschichtung, wie im Anspruch 1 , bereitgestellt wird.
Die Kohlenstoffbeschichtung umfasst eine harte Kohlenstoffschicht und eine Zirkonium Haftschicht, wobei die Kohlenstoffschicht eine harte, wasserstofffreie, amorphe Kohlenstoffstruktur aufweist und die Zirkonium Haftschicht aus Zirkonium besteht, und die Zirkonium Haftschicht zwischen der Substratoberfläche und der harten Kohlenstoffschicht dergestalt aufgebracht wird, dass sich prozessbedingt atomare Bindungen zwischen Kohlenstoffatomen der harten Kohlenstoffschicht und Zirkonium Atomen der Zirkonium Haftschicht ausbilden, und dabei sich eine dünne Zirkonium und Kohlenstoff enthaltende Zr-Cx Schicht mit einer Schichtdicke weniger Atomlagen oder bis zu einigen Nanometern ausbildet.
Detaillierte Beschreibung der vorliegenden Erfindung und deren bevorzugten Ausführungsformen Abbildung 1 a) zeigt das Lichtbild eines Rockwell C Eindrucks in einer Kohlenstoffbeschichtung mit Chrom Haftschicht.
Abbildung 1 b) zeigt das Lichtbild eines Rockwell C Eindrucks in einer Kohlenstoffbeschichtung gemäss der vorliegenden Erfindung.
Abbildung 2 zeigt eine erfindungsgemässe Kohlenstoffbeschichtung mit Stützschicht.
In einer ersten Ausführungsform der Kohlenstoffbeschichtung gemäss der vorliegenden Erfindung wird die Zr-Cx Schicht ausschliesslich durch prozessbedingt ausgebildete atomare Bindungen zwischen Kohlenstoffatomen der harten, wasserstofffreien, amorphen Kohlenstoffschicht und Zirkonium Atomen der Zirkonium Haftschicht gebildet, dergestalt dass diese Zr-Cx Schicht eine Schichtdicke im Atomlagen Bereich. Die Schichtdicke der Zr-Cx Schicht kann in dieser Ausführungsform beispielweise 2 bis 10 Atomlagen betragen.
In einer weiteren Ausführungsform der Kohlenstoffbeschichtung gemäss der vorliegenden Erfindung werden die Prozessbedingungen dergestalt ausgewählt, dass nach der Abscheidung der Zirkonium Haftschicht, insbesondere die Prozesstemperatur und die Energie der auf die Oberfläche der Zirkonium Haftschicht auftreffenden Kohlenstoffatome die Ausbildung von atomaren Bindungen zwischen Kohlenstoffatomen der harten, wasserstofffreien, amorphen Kohlenstoffschicht und Zirkonium Atomen der Zirkonium Haftschicht fördern, so dass auf diese Weise die erforderlichen Bedingungen zur Bildung einer Zr-Cx Schicht mit einer Schichtdicke von mindestens 2 Atomlagen bis etwa 100 nm gegeben werden.
In noch einer weiteren Ausführungsform der Kohlenstoffbeschichtung gemäss der vorliegenden Erfindung wird ein Prozess derart ausgeführt, so dass sich zwischen der Zirkonium Haftschicht und der harten, wasserstofffreien, amorphen Kohlenstoffschicht eine ZrC Schicht ausbildet, welche Zirkonium-Monocarbid aufweist. Die Zirkonium-Monocarbid enthaltende ZrC Schicht kann durch das zeitgleiche Abscheiden von Zirkonium und Kohlenstoff ausgebildet werden. Die Schichtdicke der Zirkonium-Monocarbid enthaltenden ZrC Schicht beträgt beispielweise in dieser Ausführungsform 5 nm bis 500 nm.
Gemäss einer bevorzugten Ausführungsform der vorliegenden Erfindung ist die wasserstofffreie, amorphe Kohlenstoffschicht eine a-C oder ta-C Schicht.
Die wasserstofffreien Kohlenstoffschichten, die der Fachmann als a-C-Schichten oder ta-C-Schichten bezeichnet, können beispielweise mittels Are-Verfahren (ungefiltert oder gefiltert) oder auch mit Sputterverfahren (DC, gepulste DC, RF, HiPIMS) vorzugsweise im Falle von a-C-Schichten abgeschieden werden.
Von a-C-Schichten wird gesprochen, wenn der relative Anteil der sp3- Bindungsanteile der C-C-Bindungen gleich oder kleiner als der Anteil der sp2- Bindungsanteile der C-C-Bindungen in den Schichten ist. Diese Schichten weisen dann Härten unterhalb 50 GPa auf. Übersteigt der Anteil der sp3-Bindungsanteile die der sp2-Bindungsanteile wird von ta-C-Schichten (tetraedrische wasserstofffreie amorphe Kohlenstoffschichten) gesprochen, die typischerweise Härten oberhalb von 50 GPa aufweisen. Es versteht sich, dass dabei dem Fachmann bekannte Verfahren zur Messung der Härte von dünnen Schichten zur Anwendung kommen.
Die Zirkonium-Haftschicht kann beispielweise mittels Are-Verfahren (ungefiltert oder gefiltert) oder auch mit Sputterverfahren (DC, gepulste DC, RF, HiPIMS) abgeschieden werden.
Eine Besonderheit von lonenreinigungsverfahren, die auf beschleunigten Metallionen (also Metall-Ionenreinigungsverfahren mit zumeist einer angelegten Vorspannung von 500V bis 1500V), die typischerweise aus nicht 100% ionisierten Metalldämpfen extrahiert werden, beruhen, im vorliegenden Fall Zirkonium; ist, dass derartige Prozessparameter wählbar sind, so dass sich eine dünne Zirkoniumschicht im Dickenbereich einiger nm bis einiger 10 nm ausbildet, die die Zirkonium-Haftschicht bildet.
Mit Kohlenstoffbeschichtungen gemäss der vorliegenden Erfindung können Substrate aus beispielweise Stahl, Hartmetall, Aluminium-Legierungen, Cu- Legierungen, Keramik, Cermet, oder sonstigen metallischen Legierungen beschichtet werden. Da die Beschichtungstemperatur zur Herstellung der Kohlenstoffbeschichtungen gemäss der vorliegenden Erfindung bis hinab zu 100 °C beträgt, können äußerst temperaturempfindliche Substrate hinsichtlich der Substratmaterialien oder sonstiger Eigenschaften beschichtet werden.
Insbesondere können beispielsweise Zerspanungswerkzeuge und Umformwerkzeuge beschichtet werden.
Bauteilkomponenten wie beispielweise Ventilteile, Flügelpumpen, oder Automobile Teile wie beispielweise Kolbenbolzen, Kolbenringe, Schlepphebel, Tassenstößel, oder Haushaltsgeräte wie beispielsweise Schneidmesser, Scheren, Rasierklingen oder medizintechnische Teile wie beispielweise Implantate und chirurgische Instrumente, oder auch Dekorative Teile, wie beispielsweise Uhrengehäuse können u.a. auch mit einer Kohlenstoffbeschichtung gemäss der vorliegenden Erfindung beschichtet werden.
Als Verdampfungsquelle zur Abscheidung der Zirkonium Schichten können sowohl Are-Quellen mit Filtern als auch ohne Filtern verwendet werden. Gleichermaßen können geeignete Zrikonium Schichten mittels Sputterverfahren, wie RF, DC; gepulste DC oder HiPIMS abgeschieden werden. Auch Aufdampfungsverfahren wie Elektronenstrahl-Verdampfung, Niedervoltbogen-Verdampfung oder
Hohlkathodenbogen-Verdampfung sind zur Abscheidung der Zirkonium-Haftschicht für die Kohlenstoffbeschichtungen gemäss der vorliegenden Erfindung geeignet. Neben a-C und ta-C-Schichten können auch gezielt a-C:Me-Schichten oder ta- C:Me-Schichten hergestellt werden. Diese Schichten enthalten mindestens ein Metall als Dotierungselement und weisen gegenüber den a-C und ta-C Schichten ohne Dotierungselement geänderte Eigenschaftsprofile auf, beispielsweise ist die elektrische Leitfähigkeit grösser. Dies kann somit in bestimmten Anwendungsfällen von Vorteil sein. Da die Haftschicht gemäss der vorliegenden Erfindung aus Zirkon bestehen soll, wäre prozessmässig von Vorteil Zirkonium als Me zu verwenden.
Die einfachste Prozessführung ergibt sich, wenn zeitgleich zum Betreiben der Kohlenstoffverdampfung mittels Are auch die Zirkonium-Verdampfung durchgeführt wird. Eine weitere Methode ist die Verwendung von Kohlenstofftargets in die Zirkonium beigemischt wurde.
Eine weitere Ausführungsform gemäß der vorliegenden Erfindung sind wasserstofffreie, amorphe a-C:X-Schichten oder ta-C:X-Schichten.
Neben metallischen Elementen (allgemein als Me bezeichnet) die den Schichten beigefügt werden und so zu den a-C:Me-Schichten führen, können auch weitere nichtmetallische Elemente (allgemein mit X bezeichnet) als Dotierungselemente zur Schichtoptimierung je nach Applikation beigefügt werden. Diese nichtmetallischen Elemente können Stickstoff, Bor, Silizium, Fluor oder andere sein. Beispielsweise führt die Dotierung mit N oder Si zum Stressabbau und F zur Änderung der Benetzungseigenschaften (höherer Benetzungswinkel), wie dem Fachmann allgemein bekannt ist.
Gemäss einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung ist die wasserstofffreie, amorphe Schicht als eine mehrlagige Schicht ausgelegt, wobei die mehrlagige Schichtstruktur abwechselnd angeordnete Einzellagen eines Typs A und eines Typs B umfasst, wobei die Einzellagen des Typs A aus a-C oder ta-C bestehen und die Einzellagen des Typs B aus Me oder aus a-C:Me bzw. ta- C:Me sind. In diesem Zusammenhang kann beispielweise Zirkonium als Me verwendet werden, dergestalt dass eine mehrlagige Schicht des Typs a-C/Zr bzw. ta-C/Zr oder a-C/a-C:Zr bzw. ta-C/ta-C:Zr und auch weitere Kombinationen wie ta- C/a-C:Zr oder a-C/ta-C:Zr ausgebildet wird.
Mit dieser Methode lassen sich dickere Schichten herstellen, weil die Gesamt- Eigenspannungen in den Schichten abgebaut werden. Beispielsweise wird der gleiche Prozess gefahren wie im Ausführungsbeispiel ab der Phase der Abscheidung der metallischen Schicht, die Schichtdicke auf ca. 500 nm begrenzt und dann vielfach der gleiche Prozess gefahren, beispielsweise 6 mal, so dass neben der Zirkonium Haftschichten weitere 5 Zwischenschichten entstehen und eine Gesamtschichtdicke von mehr als 3 pm entstehen. Dies führt zu einer höheren Belastbarkeit und Verschleißbeständigkeit.
Gemäss einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung ist die wasserstofffreie, amorphe Schicht als eine mehrlagige Schicht ausgelegt, wobei die mehrlagige Schichtstruktur abwechselnd angeordnete Einzellagen eines Typs A und eines Typs B umfasst, wobei die Einzellagen des Typs A aus a-C oder ta-C abgebaut sind und die Einzellagen des Typs B aus a-C:X oder aus ta-C:X sind. In diesem Zusammenhang kann beispielweise Silizium oder Stickstoff als X verwendet werden.
Man kann zur Abscheidung solcher Schichten zusätzliche Arc-Verdampfer einsetzen, die die mit dem X-Element legierten Graphitkathoden verdampfen, oder man könnte auch andere geeignete PVD-Verfahren verwenden, z.B. Sputterverfahren mit denen das Element X abgesputtert wird.
Vorzugsweise beträgt die Dicke der Einzellagen des Typs A nicht mehr als 2000 nm und nicht weniger als 5 nm. Auch vorzugsweise beträgt die Dicke der Einzellagen des Typs B nicht mehr als 2000 nm und nicht weniger als 5 nm.
Vorteilhaft an dieser Ausführungsform ist auch die Möglichkeit einer höheren Schichtdicke mit gleichzeitig einem optimierten Spannungsverhältnis innerhalb derselben Beschichtung zu kombinieren.
Gemäss einer weiteren Ausführungsform der vorliegenden Erfindung wird die Zr- Schicht mittels eines Metall-Ionenreinigung-Verfahren auf das zu beschichtende Substrat aufgebracht.
Bei der Metallionen-Bombardement mittels Zirkonium Ionen im ungefilterten Bogen kann es bei der Verwendung von einer Biasspannung am Substrat, beispielweise von oder unterhalb von - 700 V, gleichzeitig zu einem Aufwachsen einer dünnen Zirkonium Schicht kommen. Diese kann dann als erfindungsgemäße Zirkonium Haftschicht dienen. In diesem Fall werden Schichtdicken von 5 bis einigen 10 nm angestrebt. Gemäss einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung besteht die wasserstofffreie, amorphe Schicht als eine Schicht aus einem Nanocomposite Material, welches ein Matrixmaterial und ein im Matrixmaterial eingebettetes Material umfasst, wobei das Matrixmaterial vorzugsweise aus a-C oder ta-C und das eingebettete Material aus metallischen Karbiden mit Dimensionen in Nanometerbereich, z.B. bei metalldotieren amorphen Kohlenstoffschichten je nach Metall z.B. Wolframkarbid (WC) oder Chromkarbide (Cr23C6, Cr3C2) oder andere Karbide der metallischen Elemente, vorzugsweise aus ZrC besteht.
Hartstoffschichten gemäss der vorliegenden Erfindung, können auch Stützschichten zwischen dem Substrat und der Zirkonium Haftschicht auf die die wasserstofffreie, amorphe Kohlenstoffschicht abgeschieden wird umfassen, wie in Abbildung 2 gezeigt. Gezeigt ist ein Substrat 205 auf dem erst eine Stützschicht 207, dann eine Zr-Cx Schicht 209 und anschliessend eine wasserstofffreie amorphe Kohlenstoffschicht vorgesehen ist. Diese Stützschicht erhöht die mechanische Belastbarkeit der Oberfläche. Sie besteht vorzugsweise aus einem Material, welches eine höhere Zähigkeit als die wasserstofffreie, amorphe Kohlenstoffschichten aufweist. Beispielsweise kann diese Stützschicht aus ZrN bestehen. Weitere nitridische (z.B. CrN, AITiN), karbonitridische (z.B. TiCN, ZrNC) oder karbidische (z.B. TiC, CrC) oder oxynitridische (z.B. CrNO) können als Stützschicht für die a-C oder ta-C-Schicht dienen. Bevorzugt werden diese Schichten mittels Are oder Sputtern abgeschieden.
Hartstoffschichten gemäss der vorliegenden Erfindung, können auch so abgeschieden werden, dass sie eine oder mehrere weitere metallische Haftschichten zwischen dem Substrat und der aus Zirkonium bestehenden Haftschicht umfassen. Beispielsweise kann die eine weitere metallische Haftschicht eine mittels Metall-Ionenreinigung mit Cr-Ionen hergestellte Cr-Haftschicht sein, auf die dann die Zirkonium-Haftschicht abgeschieden wird. Hartstoffschichten gemäss der vorliegenden Erfindung können auch erfindungsgemäss mit Hilfe der HiPIMS Technologie hergestellt werden. Beispielweise können die wasserstofffreie, amorphe Schicht und/oder die Stützschicht und/oder die Zirkonium-Haftschicht und/oder die eine oder mehrere Zwischenschichten mittels eines HiPIMS Verfahrens abgeschieden werden.
Gemäss einer Ausführungsvariante wird nur die a-C Schicht mittels HiPIMS abgeschieden.
Gemäss einer weiteren Ausführungsvariante werden sowohl die Zr-Haftschicht als auch die a-C Schicht beide mit HIPIMS abgeschieden.
Vorteilhaft von diesen Ausführungsvarianten ist die Ausbildung von besonders glatten a-C-Schichten.
Hartstoffschichten gemäss der vorliegenden Erfindung können auch erfindungsgemäss mit Hilfe einer hybriden Technology hergestellt werden, welche die HiPIMS- und die Are-Technologie kombiniert.
Beispielweise kann die wasserstofffreie, amorphe Schicht und/oder die Stützschicht mittels eines hybriden Arc/HiPIMS-Verfahrens abgeschieden werden und die Zirkon Haftschicht mittels eines Metall-Ionenreinigungsverfahrens mit Zr-Ionen basierend auf dem HiPIMS-Prozess abgeschieden werden. Weiterhin kann auch eine Abscheidung einer dickeren Zr-Haftschicht direkt mit dem HiPIMS- Verfahren erfolgen.
Auch beispielweise kann die wasserstofffreie, amorphe Schicht mittels eines hybriden Are-Verfahrens abgeschieden, die Stützschicht mittels eines HiPIMS oder eines hybriden Arc/HiPIMS-Verfahrens abgeschieden werden und die Zr- Haftschicht mittels eines Metall-Ionenreinigungsverfahrens mit Zr-Ionen abgeschieden werden.
Diese Verfahrenskombinationen sollen als Beispiele von erfinderischen Methoden zur Herstellung der erfindungsgemässen Hartstoffbeschichtungen betrachtet werden und nicht als eine Abgrenzung der möglichen Methoden zur Herstellung der erfindungsgemässen Hartstoffschichten. Vergleich zwischen erfindungsgemäss mit einer Zirkonium Haftschicht ausgeführten Beschichtungen und dem Stand der Technik entsprechenden Beschichtungen mit einer Chrom Haftschicht:
Die Schichtabscheidungen von a-C (Härte von ca. 40 GPa) und ta-C-Schichten (Härten ca. 55 GPa) wurden in einer kommerziellen Beschichtungsanlage realisiert, die mit Arc-Verdampfern ausgerüstet ist.
Es wurden zwei Beschichtungsserien, mit je 6 verschiedenen Prozessen, je Einzelprozess wurden identische Parametersätze hinsichtlich aller Prozessschritte durchgeführt. Je nach Beschichtungsserie wurden unterschiedliche Haftschichten auf Probekörper aus Stahl, die eine Rockwellhärte von 60 HRC aufwiesen, abgeschieden. In der Beschichtungsserie, die dem Stand der Technik entspricht, wurden die Probekörper mit Chrom-Haftschichten mittels der Are-Verdampfung vor der Abscheidung der Kohlenstoffschichten aufgebracht, jedoch in der erfindungsgemäßen Beschichtungsserie wurden Zirkonium-Haftschichten mittels der Are-Verdampfung aufgebracht. Im Falle der Zirkon Haftschichten erfolgte auch eine Abscheidung mittels mechanischer Dropletfilterung, entweder mit vorgesetztem Schild, oder mittels eines Jalousinenanordnung.
Die Beschichtungschritte, wie dem Fachmann bekannt sind waren, zunächst das Abpumpen auf Hochvakuum (0,001 Pa), dann erfolgte ein Heizschritt unter Berücksichtigung der Einhaltung einer maximalen Substrattemperatur Temperatur von ca. 150 °C. Anschließend erfolgte eine lonenreinigung mittels des AEGD- Verfahrens, dannach wurden die Arc-Verdampfer mit Cr oder Zr gezündet, um die metallische Haftschicht von ca. 120 +/- 40 nm abzuscheiden. Dazu wurden entsprechende Pausen eingelegt, um eine maximale Temperatur von ca. 150 °C nicht zu überschreiten. In der Übergangsphase zur Abscheidung der reinen Kohlenstoffschicht wurden die Arc-Verdampfer mit geeigneten Graphitkathoden gezündet und eine Spannung von mindestens 500 V an die Substrate gelegt, so dass es zu einem Bombardement mit C-Ionen der metallischen Zwischenschicht kommt. Anschließend wurden verschiedene Parameter eingestellt, um die a-C, ta- C Schichten darzustellen, so wurden verschiedene Übergänge zur reinen Beschichtungsphase hinsichtlich eines Biasgradienten, d.h. der Absenkung der angelegten Substratspannung auf niedrigere Werte, typischerweise unter 100 V, sowie verschiedene Pausenzeiten zur Einstellung einer maximalen Beschichtungstemperatur und verschiedene Substratspannungen während der Beschichtung gewählt. Es wurde eine Schichtdicke von ca. 1 pm auf die Probekörper abgeschieden. Durch eine geeignete Kombination von angelegter negativer Bias und effektiver Beschichtungstemperatur, deren Prozessfelder dem Fachmann bekannt sind, (die Verwendung höherer Vorspannungen bis zu 100 V liefert die höheren Härten gegenüber niedrigerer Vorspannungen bei gleicher Temperatur, und umgekehrt bewirken höhere Beschichtungstemperaturen niedrigere Härten bei konstanter Vorspannung) wurden die verschiedenen Härten in den Schichten eingestellt. Die Ergebnisse von 6 unterschiedlichen Beschichtungsprozessen hinsichtlich der Parameter mit den Chrom Haftschichten und Zirkonium Haftschichten wurden hinsichtlich der Nanohärte als auch der Qualität des HRC-Eindruckes beurteilt. Die wasserstofffreien amorphen Kohlenstoffschichten zeigten die gleiche Schichthärte sowohl bei Cr-Haftschichten als auch bei Zr-Haftschichten.
Überraschenderweise zeigte sich trotzt identischen Prozessabläufen in allen der zahlreichen Wiederholungsversuchen mit jeweils Chrom Arc-Verdampfern und Zirkonium Arc-Verdampfern, dass die Haftfestigkeit der Kohlenstoffbeschichtungen, welche eine Zirkonium Haftschicht gemäss der vorliegenden Erfindung umfassten viel höher im Vergleich mit den Kohlenstoffbeschichtungen, welche eine Chrom Haftschicht gemäss dem Stand der Technik umfassten. Die Haftklasse nach dem Rockwell C Verfahren (HRC-Verfahren) von beiden Beschichtungen wurde gemessen und wird exemplarisch in der Abbildung 1. Abb. 1 a) zeigt das Lichtbild eines Rockwell C Eindrucks in einer Kohlenstoffbeschichtung mit Chrom Haftschicht und Abb. 1 b) zeigt das Lichtbild eines Rockwell C Eindrucks in einer Kohlenstoffbeschichtung auf einem Stahlbauteil Härte ca. 60 HRC, mit Zirkonium Haftschicht gemäss der vorliegenden Erfindung abgeschieden bei identischen Prozessbedingungen. Die Zr-Haftschicht lieferte unabhängig von der Prozessführung und Lage in der Beschichtungskammer eine exzellente Haftklasse HF1 bis HF2, während bei Cr-Haftschichten die Haftklassen HF2 bis HF4 betrugen. Eine mögliche Erklärung der besseren Haftsicherheit bei den erfinderischen Beschichtungen mit Zirkonium Haftschichten, bestimmt mittels des HRC- Verfahrens, könnte sein, dass die Abscheidung der Kohlenstoffschichten auf die Chrom Haftschichten in der Ausbildung von mehreren Karbiden resultieren kann und somit spröde Cr-C Phasen ausgebildet werden können. Ganz im Gegenteil wird bei der Verwendung von Zirkonium Haftschichten gemäss der vorliegenden Erfindung keine sprödere Phase sondern eher eine„duktilere" Phase ausbilden, die unter bestimmten Umständen Zirkonium Monokarbid (ZrC) umfassen kann. Als lonenreinigungsverfahren sind demnach sämtliche Ätzverfahren zu verstehen, welche durch Ionisation eines oder mehrerer inerter Prozessgase (z.B. Helium, Neon, oder Argon) und/oder von Metallen und Beschleunigung dieser auf die Substratoberfläche einen Sputter- oder auch Implantationseffekt an der Oberfläche erzielen. Wenn diese lonenreinigungsverfahren dazu gedacht sind in erster Linie Verunreinigungen, wie etwa native Oxide oder aber auch organische Verunreinigungen, zu entfernen reicht es oftmals aus lediglich mit Inertgasionen zu arbeiten. Diese Prozesse, wie auch der genannte arc enhanced glow discharge (AEGD) Prozess sind dem Fachmann bekannt. Wird dabei das lonenreinigunsverfahren mit ausreichend hoher Intensität (einstellbar bspw. Über die Höhe der Bias-Spannung) und/oder Dauer durchgeführt, werden ausreichend Atome aus der Substratoberfläche herausgeschlagen, um für eine gute Schichthaftung bei dem im Anschluss an das lonenreinigungsverfahren stattfindenden Metall-Ionenreiniungsverfahren oder der Beschichtung zu sorgen.
Analog zum lonenreinigungsverfahren dieser Anmeldung bei dem zusätzlich zu dem Prozessgas, oder aber auch ausschliesslich, Metallionen verwendet werden, wird als Metall-Ionenreinigungsverfahren (oder auch Metal Ion Etching genannt) eine weitere Ätzmethode verstanden. Beim Metall-Ionenreinigungsverfahren werden eine oder mehrere Metallquellen aus z.B. Chrom oder Zirkon, betrieben, welche den Effekt haben dass ionisierte Metalle auf die Substratoberfläche beschleunigt werden. Vorrangig abhängig von der Höhe der angelegten Bias- Spannung und der an der Metallquelle angelegten Strommenge kann die Energie und Menge des verdampften (z.B. bei Arcprozessen) oder auch gesputterten (z.B. bei Sputter- oder HIPIMS-Prozessen) Materials gezielt eingestellt werden. Damit ist es dem Fachmann möglich bei neben einer Reinigung der Substratoberfläche mittels der oben genannten Metallionen einen Nettoauftrag mittels Metallionen- Bombardement auf dem Substrat zu erzielen. Bei konstanter Verdampfungsmenge entscheidet vorrangig die Höhe der angelegten Bias-Spannung ob es zu einem Materialauftrag der verwendeten Metalle auf dem Substrat kommt. Werden noch höhere Bias-Spannungen verwendet (ab etwa 700 V) erfolgt neben der Reinigung der Substratoberfläche sogar die Implantation der verwendeten Metallionen in die Substratoberfläche, welche einige 10 nm tief erfolgen kann. Es kann jedoch materialabhängig bei gleichen Prozessparametern zu einem Nettoauftrag von wenigen 10 nm kommen. Dem Fachmann sind diese Verfahren hinlänglich bekannt, weshalb die in dieser Anmeldung erwähnten Ausführungsbeispiele nicht als einschränkend für die Erfindung verstanden werden sollten.
Im Kontext dieser Erfindung werden als wasserstofffreie amorphe Kohlenstoffschichten alle Kohlenstofffschichten verstanden deren Wasserstoffgehalt <5 at.%, vorzugsweise <2 at.%, liegt wobei etwaige Verunreinigungen nicht in Betracht gezogen werden. Geeignete Charakterisierungsmethoden, wie etwa elastic recoil detection analysis (ERDA), rutherford backscattering (RBS) oder secondary ion mass spectroscopy (SIMS) zur Bestimmung der chemischen Zusammensetzung der erfindungsgemässen Schichten sind dem Fachmann jedoch bekannt.

Claims

Ansprüche
1. Kohlenstoffbeschichtung auf einer Substratoberfläche, wobei die Beschichtung eine harte Kohlenstoffschicht und eine Zirkonium Haftschicht umfasst, und wobei die Kohlenstoffschicht eine harte, wasserstofffreie, amorphe Kohlenstoffstruktur aufweist und die Zirkonium Haftschicht aus Zirkonium besteht, und die Zirkonium Haftschicht zwischen der Substratoberfläche und der harten Kohlenstoffschicht aufgebracht ist, und zwischen der Zirkonium Haftschicht und der harten Kohlenstoffschicht eine Zr-Cx Schicht ausgebildet ist, welche atomare Bindungen zwischen Kohlenstoffatomen der harten Kohlenstoffschicht und Zirkonium Atomen der Zirkonium Haftschicht umfasst und eine Schichtdicke von 2 Atomlagen bis 500 nm aufweist.
2. Schichtsystem nach Anspruch 1 , dadurch gekennzeichnet, dass zwischen dem Substrat und der Zirkonium-Haftschicht eine Stützschicht abgeschieden ist.
3. Schichtsystem nach Anspruch 2, dadurch gekennzeichnet, dass die Stützschicht aus Nitriden und/oder Karbiden und/oder Oxiden besteht mit mindestens einem Element der Gruppe umfasst die durch die dritte, vierte, fünfte oder sechste Gruppe des Periodensystem sowie AI, Si, B und die Gruppe der Lanthanoiden gebildet wird.
4. Kohlenstoffbeschichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Schichtdicke der Zr-Cx Schicht 2 Atomlagen bis 30 nm beträgt.
5. Kohlenstoffbeschichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Zr-Cx Schicht Zirkonium Monocarbid enthält und eine Schichtdicke von 5 nm bis 500 nm aufweist. Kohlenstoffbeschichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die wasserstofffreie, amorphe Kohlenstoffschicht eine a-C oder ta-C Schicht umfasst oder aus einer a-C und/oder ta-C Schicht besteht.
Kohlenstoffbeschichtung nach einem der vorangehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die wasserstofffreie, amorphe Kohlenstoffschicht eine a-C:Me oder ta-C:Me Schicht umfasst und/oder aus einer a-C: Me oder ta-C: Me Schicht besteht, wobei Me ein metallisches Element oder eine Kombination von metallischen Elementen ist.
Kohlenstoffbeschichtung nach einem der vorangehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die wasserstofffreie, amorphe Kohlenstoffschicht eine a-C:X oder ta-C:X Schicht umfasst und/oder aus einer a-C:X oder ta-C:X Schicht besteht, wobei X ein nichtmetallisches Element oder eine Kombination von metallischen Elementen ist.
Kohlenstoffbeschichtung nach einem der vorangehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die wasserstofffreie, amorphe Kohlenstoffschicht als eine mehrlagige Schicht ausgelegt ist, wobei die mehrlagige Schichtstruktur abwechselnd abgeschiedene Einzellagen eines Typs A und eines Typs B umfasst, und die Einzellagen des Typs A a-C oder ta-C Schichten sind.
Kohlenstoffbeschichtung nach Anspruch 9, dadurch gekennzeichnet, dass die die Einzellagen des Typs B a-C:Me oder ta-C:Me oder metallische, aus Me bestehende Schichten sind.
Kohlenstoffbeschichtung nach Anspruch 9, dadurch gekennzeichnet, dass die die Einzellagen des Typs B a-C:X oder ta-C:X Schichten sind.
Kohlenstoffbeschichtung nach einem der vorangehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die wasserstofffreie, amorphe Kohlenstoffschicht als eine mehrlagige Schicht ausgelegt ist, wobei die mehrlagige Schichtstruktur abwechselnd abgeschiedene Einzellagen eines Typs A und eines Typs B umfasst, und die Einzellagen des Typs A a-C:Me oder ta-C:Me oder a-C:X oder ta-C:X Schichten und die Einzellagen des Typs B metallische, aus Me bestehende Schichten sind.
Methode zur Abscheidung einer Kohlenstoffbeschichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die wasserstofffreie, amorphe Kohlenstoffschicht mittels eines Arc- Verdampfungs- und/oder gefiltertes Arc-Verdampfungs- und/oder eines Sputterverfahrens, insbesondere eines HiPIMS-Verfahren abgeschieden wird.
Methode zur Abscheidung einer Kohlenstoffbeschichtung nach einem der vorangehenden Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Zirkon Haftschicht mittels eines lonenreinigungsverfahrens mit Zr-Ionen oder mittels eines gefilterten Arc-Verdampfungs- und/oder eines Sputter- und/oder eines HiPIMS-Verfahren abgeschieden wird.
Methode zur Abscheidung einer Kohlenstoffbeschichtung nach Anspruch 5, dadurch gekennzeichnet, dass das Zirkon Monokarbid in der Zr-C Schicht durch gleichzeitiges Abscheiden von Zirkon und Kohlenstoff auf die Zirkon Haftschicht ausgebildet wird.
PCT/EP2017/000270 2016-03-01 2017-02-28 Wasserstofffreie kohlenstoffbeschichtung mit zirkonium haftschicht WO2017148582A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17709580.9A EP3423609A1 (de) 2016-03-01 2017-02-28 Wasserstofffreie kohlenstoffbeschichtung mit zirkonium haftschicht
CN201780018330.5A CN108884550B (zh) 2016-03-01 2017-02-28 具有锆附着层的无氢碳涂层
US16/080,401 US10844493B2 (en) 2016-03-01 2017-02-28 Hydrogen-free carbon coating having zirconium adhesive layer
JP2018545811A JP7106194B2 (ja) 2016-03-01 2017-02-28 ジルコニウム接着膜を備えた水素フリー炭素被覆部
KR1020187028078A KR20180123508A (ko) 2016-03-01 2017-02-28 지르코늄 접착층을 갖는 무수소 탄소 코팅

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662301656P 2016-03-01 2016-03-01
US62/301,656 2016-03-01

Publications (1)

Publication Number Publication Date
WO2017148582A1 true WO2017148582A1 (de) 2017-09-08

Family

ID=58264461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/000270 WO2017148582A1 (de) 2016-03-01 2017-02-28 Wasserstofffreie kohlenstoffbeschichtung mit zirkonium haftschicht

Country Status (6)

Country Link
US (1) US10844493B2 (de)
EP (1) EP3423609A1 (de)
JP (1) JP7106194B2 (de)
KR (1) KR20180123508A (de)
CN (1) CN108884550B (de)
WO (1) WO2017148582A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019082241A (ja) * 2017-10-31 2019-05-30 日本ピストンリング株式会社 ピストンリング
WO2019161981A1 (de) * 2018-02-26 2019-08-29 Robert Bosch Gmbh VERSCHLEIßSCHUTZBESCHICHTETES METALLISCHES BAUTEIL INSBESONDERE FÜR EIN KUGELVENTIL UND VERFAHREN ZUM AUFBRINGEN EINER MEHRSCHICHTIGEN VERSCHLEIßSCHUTZSCHICHT ZUR ERZEUGUNG EINES SOLCHEN BAUTEILS
DE102018125631A1 (de) * 2018-10-16 2020-04-16 Schaeffler Technologies AG & Co. KG Schichtsystem, Rollelement und Verfahren
WO2021053072A1 (de) 2019-09-19 2021-03-25 Oerlikon Surface Solutions Ag, Pfäffikon Substrat mit einem molydännitrid schichtsystem, sowie beschichtungsverfahren zur herstellung eines schichtsystems
JP2022514400A (ja) * 2018-12-21 2022-02-10 ナノフィルム テクノロジーズ インターナショナル リミテッド 耐食性カーボンコーティング

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018208574A1 (de) * 2018-05-30 2019-12-05 KSB SE & Co. KGaA Wellendichtungsanordnung
CN114207178B (zh) * 2019-07-31 2024-06-04 欧瑞康表面处理解决方案股份公司普费菲孔 涂覆于基材上的梯级无氢碳基硬材料层
KR102188432B1 (ko) * 2020-03-20 2020-12-08 (주)제이 앤 엘 테크 전극시트 압연 롤러 및 그 제조 방법
CN112647040B (zh) * 2021-01-04 2022-06-21 中国科学院兰州化学物理研究所 一种ta-c基多层耐磨刀具涂层及其制备方法
KR102583763B1 (ko) * 2021-05-28 2023-09-26 주식회사 현대케피코 연료 인젝터용 부품과 그 코팅 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1266979A2 (de) * 2001-06-13 2002-12-18 Sumitomo Electric Industries, Ltd. Mit amorphem Kohlenstoff beschichtetes Werkzeug und Verfahren zu seiner Herstellung
DE102012007796A1 (de) * 2012-04-20 2013-10-24 Amg Coating Technologies Gmbh Beschichtung enthaltend Si-DLC, DLC und Me-DLC und Verfahren zur Herstellung von Beschichtungen
US20150017468A1 (en) * 2013-07-15 2015-01-15 GM Global Technology Operations LLC Coated tool and methods of making and using the coated tool
US20150018254A1 (en) * 2012-02-16 2015-01-15 Mahle-Metal Leve S/A Sliding element for use in internal combustion engine
EP2851451A1 (de) * 2013-09-24 2015-03-25 Union Tool Co. Beschichtung mit amorphem Kohlenstoff

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474816A (en) * 1993-04-16 1995-12-12 The Regents Of The University Of California Fabrication of amorphous diamond films
EP0985150A4 (de) * 1997-03-21 2002-08-21 Atairgin Technologies Inc Erkennungsverfahren für mit veränderten lysophospholipidkonzentrationen einhergehendem krebs
US6726993B2 (en) * 1997-12-02 2004-04-27 Teer Coatings Limited Carbon coatings, method and apparatus for applying them, and articles bearing such coatings
JP4560964B2 (ja) 2000-02-25 2010-10-13 住友電気工業株式会社 非晶質炭素被覆部材
JP3718664B2 (ja) 2001-06-13 2005-11-24 住友電気工業株式会社 非晶質カーボン被覆工具およびその製造方法
JP2004137541A (ja) * 2002-10-17 2004-05-13 Tigold Co Ltd Dlc傾斜構造硬質被膜及びその製造方法
CN101365824B (zh) * 2005-08-18 2010-09-01 贝卡尔特股份有限公司 用包含四面体碳涂层的多层结构涂覆的基底
JP4704950B2 (ja) 2006-04-27 2011-06-22 株式会社神戸製鋼所 非晶質炭素系硬質多層膜及びこの膜を表面に備えた硬質表面部材
EP2587518B1 (de) 2011-10-31 2018-12-19 IHI Hauzer Techno Coating B.V. Vorrichtung und Verfahren zur Abscheidung wasserstofffreier ta-C-Schichten auf Werkstücken und Werkstück
DE102012219930A1 (de) * 2012-10-31 2014-04-30 Federal-Mogul Burscheid Gmbh Gleitelement, insbesondere Kolbenring, mit einer Beschichtung
CN104988459A (zh) * 2015-07-27 2015-10-21 武汉苏泊尔炊具有限公司 带有镀膜的刀具及其制作方法
US10552303B2 (en) 2016-07-18 2020-02-04 International Business Machines Corporation Segmented accessibility testing in web-based applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1266979A2 (de) * 2001-06-13 2002-12-18 Sumitomo Electric Industries, Ltd. Mit amorphem Kohlenstoff beschichtetes Werkzeug und Verfahren zu seiner Herstellung
US20150018254A1 (en) * 2012-02-16 2015-01-15 Mahle-Metal Leve S/A Sliding element for use in internal combustion engine
DE102012007796A1 (de) * 2012-04-20 2013-10-24 Amg Coating Technologies Gmbh Beschichtung enthaltend Si-DLC, DLC und Me-DLC und Verfahren zur Herstellung von Beschichtungen
US20150017468A1 (en) * 2013-07-15 2015-01-15 GM Global Technology Operations LLC Coated tool and methods of making and using the coated tool
EP2851451A1 (de) * 2013-09-24 2015-03-25 Union Tool Co. Beschichtung mit amorphem Kohlenstoff

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M.-D. JEAN: "Optimisation of tribological performance of sputtering Zr/ZrC coatings", SURFACE ENGINEERING., vol. 31, no. 2, 30 December 2014 (2014-12-30), GB, pages 103 - 113, XP055377637, ISSN: 0267-0844, DOI: 10.1179/1743294414Y.0000000306 *
XIN CHUN CHEN ET AL: "Cr-Doped DLC Multilayered Thin Films Deposited Using Cathodic Vacuum Arc- and DC Magnetron-Assisted Ion Beam Sputtering", ADVANCED MATERIALS RESEARCH, vol. 105-106, 1 April 2010 (2010-04-01), pages 429 - 431, XP055373533, DOI: 10.4028/www.scientific.net/AMR.105-106.429 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7094739B2 (ja) 2017-10-31 2022-07-04 日本ピストンリング株式会社 ピストンリング
JP2019082241A (ja) * 2017-10-31 2019-05-30 日本ピストンリング株式会社 ピストンリング
JP7298083B2 (ja) 2017-10-31 2023-06-27 日本ピストンリング株式会社 ピストンリング及びその製造方法
JP2022109260A (ja) * 2017-10-31 2022-07-27 日本ピストンリング株式会社 ピストンリング及びその製造方法
WO2019161981A1 (de) * 2018-02-26 2019-08-29 Robert Bosch Gmbh VERSCHLEIßSCHUTZBESCHICHTETES METALLISCHES BAUTEIL INSBESONDERE FÜR EIN KUGELVENTIL UND VERFAHREN ZUM AUFBRINGEN EINER MEHRSCHICHTIGEN VERSCHLEIßSCHUTZSCHICHT ZUR ERZEUGUNG EINES SOLCHEN BAUTEILS
US11753728B2 (en) 2018-02-26 2023-09-12 Robert Bosch Gmbh Antiwear-coated metal component, in particular for a ball valve, and method for applying a multi-layer antiwear coating in order to produce a component of this type
WO2020078505A1 (de) 2018-10-16 2020-04-23 Schaeffler Technologies AG & Co. KG Bauteil, insbesondere für ein ventiltriebsystem, und verfahren zur herstellung eines solchen bauteils
CN112534084A (zh) * 2018-10-16 2021-03-19 舍弗勒技术股份两合公司 特别是用于配气机构系统的部件以及生产这种部件的方法
US11739426B2 (en) 2018-10-16 2023-08-29 Schaeffler Technologies AG & Co. KG Component, in particular for a valve train system, and method for producing a component of this type
DE102018125631A1 (de) * 2018-10-16 2020-04-16 Schaeffler Technologies AG & Co. KG Schichtsystem, Rollelement und Verfahren
JP2022514400A (ja) * 2018-12-21 2022-02-10 ナノフィルム テクノロジーズ インターナショナル リミテッド 耐食性カーボンコーティング
JP7507766B2 (ja) 2018-12-21 2024-06-28 ナノフィルム テクノロジーズ インターナショナル リミテッド 耐食性カーボンコーティング
WO2021053072A1 (de) 2019-09-19 2021-03-25 Oerlikon Surface Solutions Ag, Pfäffikon Substrat mit einem molydännitrid schichtsystem, sowie beschichtungsverfahren zur herstellung eines schichtsystems

Also Published As

Publication number Publication date
CN108884550A (zh) 2018-11-23
JP2019512597A (ja) 2019-05-16
US20190249310A1 (en) 2019-08-15
JP7106194B2 (ja) 2022-07-26
EP3423609A1 (de) 2019-01-09
CN108884550B (zh) 2022-08-30
US10844493B2 (en) 2020-11-24
KR20180123508A (ko) 2018-11-16

Similar Documents

Publication Publication Date Title
WO2017148582A1 (de) Wasserstofffreie kohlenstoffbeschichtung mit zirkonium haftschicht
DE102005004402B4 (de) Hartstoff-Schichtsystem und Verfahren zu dessen Bildung
EP2010691B1 (de) Beschichteter körper
EP1362931B2 (de) Verfahren und Vorrichtung zur Herstellung eines DLC-Schichtsystems
EP0744473B1 (de) Vakuumbeschichteter Verbundkörper und Verfahren zu seiner Herstellung
EP2653583B1 (de) Beschichtungsverfahren zur Abscheidung eines Schichtsystems auf einem Substrat
EP2893053B1 (de) Verfahren zur herstellung einer metallborocarbidschicht auf einem substrat
EP2912206B1 (de) Bauteil mit einer beschichtung und verfahren zu seiner herstellung
EP2912207B1 (de) Bauteil mit einer beschichtung und verfahren zu seiner herstellung
EP1120473A2 (de) Zerspanungswerkzeug mit Carbonitrid-Beschichtung
EP3929325A1 (de) Verfahren zur herstellung einer beschichtungsquelle zur physikalischen gasphasenabscheidung von crtan, sowie dadurch hergestellte crta beschichtungsquelle
DE102012007796A1 (de) Beschichtung enthaltend Si-DLC, DLC und Me-DLC und Verfahren zur Herstellung von Beschichtungen
WO1995023879A1 (de) Verfahren zur herstellung von schichten aus kubischem bornitrid
DE102008026358A1 (de) Werkzeug mit Metalloxidbeschichtung
DE102010052971A1 (de) Werkstück mit Si-DLC Beschichtung und Verfahren zur Herstellung von Beschichtungen
DE102014104672A1 (de) Beschichtetes Schneidwerkzeug und Verfahren zu seiner Herstellung
DE3752183T2 (de) Bildung harter beschichtungen auf schneidrändern
EP0430872B1 (de) Werkzeug oder Instrument mit einer verschleissresistenten Hartschicht zum Be- oder Verarbeiten von organischem Material
WO2011113927A1 (de) Beschichtung auf nial2o4 basis in spinellstruktur
WO2011086186A1 (de) Plasma- bzw. ionengestütztes system zur herstellung haftfester beschichtungen auf fluorpolymeren
EP2286643A1 (de) Vorrichtung und verfahren zum hochleistungs-puls-gasfluss-sputtern
WO2002097157A2 (de) Modifizierter dlc-schichtaufbau
EP4256102A1 (de) Al-Si KORROSIONSSCHUTZSCHICHTEN
DE102022125083A1 (de) Verfahren zur Beschichtung eines Werkzeugteils eines spanabhebenden Werkzeugs

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545811

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187028078

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017709580

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017709580

Country of ref document: EP

Effective date: 20181001

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17709580

Country of ref document: EP

Kind code of ref document: A1