WO2017073276A1 - 熱式流量計 - Google Patents

熱式流量計 Download PDF

Info

Publication number
WO2017073276A1
WO2017073276A1 PCT/JP2016/079567 JP2016079567W WO2017073276A1 WO 2017073276 A1 WO2017073276 A1 WO 2017073276A1 JP 2016079567 W JP2016079567 W JP 2016079567W WO 2017073276 A1 WO2017073276 A1 WO 2017073276A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
outlet
flow meter
passage
thermal flow
Prior art date
Application number
PCT/JP2016/079567
Other languages
English (en)
French (fr)
Inventor
毅 森野
忍 田代
暁 上ノ段
斉藤 友明
征史 深谷
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2017547702A priority Critical patent/JPWO2017073276A1/ja
Priority to CN201680058321.4A priority patent/CN108139247B/zh
Priority to DE112016004975.7T priority patent/DE112016004975B4/de
Priority to US15/765,939 priority patent/US10928231B2/en
Publication of WO2017073276A1 publication Critical patent/WO2017073276A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow

Definitions

  • the present invention relates to a thermal flow meter.
  • a housing is arranged in the main passage through which the gas to be measured flows, the gas to be measured is taken from the main passage into the sub passage provided in the housing, and the flow rate of the gas to be measured is measured by the flow rate detection unit arranged in the sub passage.
  • the sub-passage has a first passage along the flow direction of the main passage and a second passage that branches in the middle of the first passage, and a flow rate detector is disposed in the second passage, A structure is shown in which the gas to be measured that has passed through the flow rate detection unit joins the first passage again and is discharged from the outlet of the first passage.
  • the gas to be measured discharged from the outlet of the first passage interferes with the vortex generated downstream of the housing.
  • smooth discharge from the outlet of the gas to be measured may be hindered.
  • the change in the vortex intensity increases the flow velocity distribution difference between the steady state and the pulsation, and a pulsation error occurs.
  • the present invention has been made in view of the above points.
  • the object of the present invention is to make the vortex strength small and constant, ensure smooth discharge from the outlet of the gas to be measured, and generate pulsation errors. It is to obtain a thermal flow meter having a structure capable of suppressing the above.
  • a thermal flow meter of the present invention that solves the above problems is a thermal flow meter that includes a housing disposed in a main passage and a sub-passage provided in the housing, the housing being downstream of the housing. An outlet of the sub-passage is provided at the end, and an inclined surface is provided in the vicinity of the outlet.
  • the size of the vortex formed downstream of the discharge port and the main outlet can be reduced. Therefore, it is possible to prevent the discharge port and the main outlet from being shielded by the vortex at the time of transition, reduce the flow velocity distribution difference between the steady state and the pulsation, and suppress the occurrence of the pulsation error.
  • FIG. 1 is a system diagram showing an embodiment in which a thermal flow meter according to the present invention is used in an internal combustion engine control system.
  • the front view which shows the external appearance of the thermal type flow meter which concerns on this invention.
  • the left view which shows the external appearance of the thermal type flow meter which concerns on this invention.
  • the rear view which shows the external appearance of the thermal type flow meter which concerns on this invention.
  • the right view which shows the external appearance of the thermal type flow meter which concerns on this invention.
  • the front view which shows the state of the housing which removed the front cover and the back cover from the thermal type flow meter which concerns on this invention.
  • the rear view which shows the state of the housing which removed the front cover and the back cover from the thermal type flow meter which concerns on this invention.
  • FIG. 4B is a sectional view taken along line BB in FIG. 4A.
  • FIG. 5B is a sectional view taken along line BB in FIG. 5A.
  • 1 is an external perspective view of a thermal flow meter in Embodiment 1.
  • FIG. The figure which expands and shows the principal part of the thermal type flow meter in Example 1.
  • FIG. The figure which expands and shows the principal part of the thermal type flow meter in Example 1.
  • FIG. The conceptual diagram explaining the structure of a curved surface part The conceptual diagram explaining the structure of an inclined surface.
  • FIG. 4 is an external perspective view of a thermal flow meter in Embodiment 2.
  • FIG. 6 is an external perspective view of a thermal type flow meter in Example 3.
  • FIG. 6 is a bottom view of a thermal flow meter in Example 3.
  • the figure which expands and shows the principal part of the thermal type flow meter in Example 3. The figure which expands and shows the principal part of the thermal type flow meter in Example 3.
  • FIG. 1 is a system diagram showing an embodiment in which a thermal flow meter according to the present invention is used in an electronic fuel injection type internal combustion engine control system.
  • the internal combustion engine 110 including the engine cylinder 112 and the engine piston 114
  • intake air is sucked from the air cleaner 122 as the gas to be measured 30 and passes through the main passage 124 such as the intake pipe, the throttle body 126, and the intake manifold 128.
  • the flow rate of the gas 30 to be measured which is the intake air led to the combustion chamber, is measured by the thermal flow meter 300 according to the present invention, and fuel is supplied from the fuel injection valve 152 based on the measured flow rate.
  • the gas to be measured is introduced into the combustion chamber together with a certain gas 30 to be measured.
  • the fuel injection valve 152 is provided at the intake port of the internal combustion engine, and the fuel injected into the intake port forms an air-fuel mixture together with the measured gas 30 that is the intake air, and passes through the intake valve 116. It is guided to the combustion chamber and burns to generate mechanical energy.
  • the fuel and air guided to the combustion chamber are in a mixed state of fuel and air, and are ignited explosively by spark ignition of the spark plug 154 to generate mechanical energy.
  • the combusted gas is guided from the exhaust valve 118 to the exhaust pipe, and exhausted as exhaust 24 from the exhaust pipe to the outside of the vehicle.
  • the flow rate of the gas 30 to be measured which is the intake air led to the combustion chamber, is controlled by the throttle valve 132 whose opening degree changes based on the operation of the accelerator pedal.
  • the fuel supply amount is controlled based on the flow rate of the intake air guided to the combustion chamber, and the driver controls the flow rate of the intake air guided to the combustion chamber by controlling the opening degree of the throttle valve 132, thereby
  • the mechanical energy generated by the engine can be controlled.
  • the flow rate and temperature of the gas 30 to be measured which is intake air that is taken in from the air cleaner 122 and flows through the main passage 124, are measured by the thermal flow meter 300, and electrical signals representing the flow rate and temperature of the intake air are output from the thermal flow meter 300. Input to the control device 200. Further, the output of the throttle angle sensor 144 that measures the opening degree of the throttle valve 132 is input to the control device 200, and the positions and states of the engine piston 114, the intake valve 116, and the exhaust valve 118 of the internal combustion engine, and the rotation of the internal combustion engine. In order to measure the speed, the output of the rotation angle sensor 146 is input to the control device 200. The output of the oxygen sensor 148 is input to the control device 200 in order to measure the state of the mixture ratio between the fuel amount and the air amount from the state of the exhaust 24.
  • the control device 200 calculates the fuel injection amount and the ignition timing based on the flow rate of the intake air, which is the output of the thermal flow meter 300, and the rotational speed of the internal combustion engine measured based on the output of the rotation angle sensor 146. Based on these calculation results, the amount of fuel supplied from the fuel injection valve 152 and the ignition timing ignited by the spark plug 154 are controlled. The fuel supply amount and ignition timing are actually based on the intake air temperature and throttle angle change state measured by the thermal flow meter 300, the engine rotational speed change state, and the air-fuel ratio state measured by the oxygen sensor 148. It is finely controlled. The control device 200 further controls the amount of air that bypasses the throttle valve 132 by the idle air control valve 156 in the idle operation state of the internal combustion engine, thereby controlling the rotational speed of the internal combustion engine in the idle operation state.
  • FIG. 2 shows the appearance of the thermal flow meter 300.
  • 2A is a front view of the thermal flow meter 300
  • FIG. 2B is a left side view
  • FIG. 2C is a rear view
  • FIG. 2D is a right side view.
  • the thermal flow meter 300 includes a housing 302.
  • the housing 302 is inserted into the intake pipe from the side and disposed in the main passage 124 (see FIG. 1).
  • a flange 305 for fixing to the intake pipe and an external connection portion 306 exposed outside the intake pipe are provided.
  • the housing 302 is supported in a cantilever manner by fixing the flange 305 to the intake pipe, and is disposed so as to extend along a vertical direction intersecting the main flow direction of the gas to be measured flowing through the main passage 124. .
  • the housing 302 is provided with a sub-passage 307 (see FIGS. 3A and 3B) for taking in the gas under measurement 30 flowing through the main passage 124, and the flow rate of the gas under measurement 30 is detected in the sub-passage 307.
  • a flow rate detector 602 (see FIGS. 3A and 3B) is arranged.
  • An inlet 311 for taking a part of the measurement target gas 30 such as intake air into the sub-passage 307 is provided at the upstream end portion disposed on the front end side of the housing 302 and on the upstream side in the main flow direction.
  • the first end 312 (exhaust port) for returning the gas 30 to be measured from the sub-passage 307 to the main passage 124 is provided at the downstream end disposed on the distal end side of the housing 302 and on the downstream side in the main flow direction.
  • Two outlets, two outlets (main outlet) 313, are provided.
  • the first outlet 312 and the second outlet 313 are arranged side by side in the thickness direction of the housing 302 as shown in FIG. 2D. That is, the first outlet 312 and the second outlet 313 are arranged side by side in a direction perpendicular to the main flow direction.
  • the inlet 311 is provided on the front end side of the housing 302, a gas in a portion near the center portion away from the inner wall surface of the main passage can be taken into the sub-passage 307. Therefore, it becomes difficult to be influenced by the temperature of the inner wall surface of the main passage, and a decrease in measurement accuracy of the gas flow rate and temperature can be suppressed.
  • the fluid resistance is large and the flow velocity is lower than the average flow velocity of the main passage.
  • the thermal flow meter 300 of the present embodiment it extends from the flange 305 toward the center of the main passage. Since the inlet 311 is provided on the distal end side of the thin and long housing 302, the gas having a high flow velocity at the central portion of the main passage can be taken into the sub passage 307. Further, since the first outlet 312 and the second outlet 313 of the sub-passage 307 are also provided on the distal end side of the housing 302, the gas flowing in the sub-passage 307 can be returned to the central portion of the main passage having a high flow velocity.
  • the housing 302 has a substantially rectangular wide surface on the front side, but has a narrow side surface (thin thickness).
  • the front surface and the rear surface of the housing 302 are disposed along the main flow direction of the measurement target gas 30 flowing through the main passage, and the side surfaces are disposed so as to face the main flow direction.
  • the thermal flow meter 300 can be provided with a sufficiently long sub-passage 307 with a reduced fluid resistance with respect to the gas to be measured 30.
  • the shape of the housing projected on the orthogonal plane orthogonal to the flow direction of the gas 30 to be measured flowing through the main passage 124 is in the first direction 50 on the orthogonal plane.
  • the shape is smaller than the dimensions.
  • the housing 302 is provided with a temperature detection unit 452 for measuring the temperature of the measurement target gas 30.
  • the housing 302 has a shape that is recessed toward the downstream end at the center in the longitudinal direction and at the upstream end, and the temperature detector 452 is provided at the recessed position.
  • the temperature detection unit 452 has a shape that protrudes from the recessed portion of the housing 302 along the main flow direction.
  • FIG. 3 shows the state of the housing 302 with the front cover 303 and the back cover 304 removed from the thermal flow meter 300.
  • 3A is a front view of the housing 302
  • FIG. 3B is a rear view.
  • the upstream end portion 315 of the housing 302 has a base end portion 315a, an intermediate portion 315b, and a distal end portion 315c.
  • the base end portion 315a, the intermediate portion 315b, and the tip end portion 315c are each configured by a flat surface perpendicular to the main flow direction of the measurement target gas 30.
  • the hollow part recessed in the downstream end part 316 side is provided, and the temperature detection part 452 is arrange
  • An inlet 311 is provided at the tip 315c.
  • the downstream end portion 316 of the housing 302 has a base end portion 316a, an intermediate portion 316b, and a distal end portion 316c.
  • the proximal end portion 316 a, the intermediate portion 316 b, and the distal end portion 316 c are configured by flat surfaces perpendicular to the main flow direction of the measurement target gas 30.
  • a tapered surface 323 that becomes narrower in a direction approaching each other in the thickness width direction of the housing 302 as it moves from the upstream end portion 315 side toward the downstream end portion 316 side.
  • a first outlet 312 and a second outlet 313 are provided at the tip 315c.
  • the first outlet 312 and the second outlet 313 are arranged side by side in the thickness width direction of the housing 302. In the present embodiment, the first outlet 312 and the second outlet 313 are arranged at positions separated from each other in the thickness width direction center.
  • a flow rate detection unit 602 for measuring the flow rate of the measurement target gas 30 flowing through the main passage 124 and a temperature detection unit 452 for measuring the temperature of the measurement target gas 30 flowing through the main passage 124 are provided inside the housing 302.
  • the circuit package 400 provided is molded integrally.
  • a sub passage groove for forming the sub passage 307 is formed.
  • the sub-passage grooves are recessed on both the front and back surfaces of the housing 302, and the front and rear covers 303 and 304 are placed on the front and back surfaces of the housing 302, thereby completing the sub-passage 307.
  • the housing 302 is molded (resin molding process)
  • molds provided on both surfaces of the housing 302 are used, so that both the front side sub-passage groove 330 and the back side sub-passage groove 331 are part of the housing 302. All can be molded as a part.
  • the secondary passage groove is composed of a back side secondary passage groove 331 formed on the back surface of the housing 302 and a front side secondary passage groove 330 formed on the surface of the housing 302.
  • the back side auxiliary passage groove 331 has a first groove part 332 and a second groove part 333 that branches in the middle of the first groove part 332.
  • the first groove portion 332 extends in a straight line from the upstream end portion 315 to the downstream end portion 316 along the main flow direction of the measurement target gas 30 at the front end portion of the housing 302, and enters the inlet 311 of the housing 302. One end communicates and the other end communicates with the outlet 312 of the housing 302.
  • the first groove portion 332 includes a straight portion 332A that extends from the inlet 311 with a substantially constant cross-sectional shape, and a throttle portion 332B that gradually decreases in width as it moves from the straight portion 332A toward the outlet 312. .
  • a plurality of ridges 335 are provided on the bottom wall surface 332b of the straight part 332A of the first groove part 332.
  • a plurality of ridges 335 are provided at a predetermined interval in the groove width direction of the first groove part 332, and along the straight part 332A. It extends from the inlet 311 to the throttle part 332B.
  • the protruding portion 335 has a trapezoidal cross section, and the side surfaces on both sides are inclined obliquely.
  • the contact angle of the water droplet can be increased to reduce the height of the water droplet, the wettability can be increased, and the water can flow quickly from the upstream side toward the downstream side. Therefore, it is possible to effectively prevent water droplets from flowing into the second passage, and to quickly discharge the water droplets to the outside.
  • the second groove portion 333 branches from the straight portion 332A of the first groove portion 332 and proceeds toward the proximal end side of the housing 302 while curving, and enters the measurement flow path 341 provided in the longitudinal center portion of the housing 302. Communicate.
  • the second groove portion 333 communicates with the side wall surface 332 a positioned on the proximal end side of the housing 302, and the bottom wall surface 333 a is a straight line of the first groove portion 332. It is continuous with the bottom wall surface 332b of the portion 332A.
  • a recess 333e is provided on the side wall surface 333b on the inner peripheral side of the second groove portion 333.
  • the gas to be measured 30 When the gas 30 to be measured flowing through the main passage 124 collides with the thermal flow meter 300, the gas to be measured 30 receives the dynamic pressure by the outer wall surface facing the flow direction of the gas 30 to be measured, and the upstream side facing the outer wall surface. The pressure increases.
  • the gas to be measured 30 on the wall surface parallel or substantially parallel to the main flow direction of the gas to be measured 30 is peeled off from the wall surface in the upstream portion of the wall surface, and the peeling portion (periphery) has a negative pressure.
  • the gas 30 to be measured gradually changes into a flow along the wall surface of the thermal flow meter 300 as it goes downstream from the part where the separation occurs.
  • a drain hole 376 is provided at a position where the water stagnates in the vicinity of the second groove 333 and closes the recess 333e in the back cover 304, a peeling portion (periphery) of the thermal flow meter 300 is provided. Due to the negative pressure generated in the above, it can be discharged from the recess 333e in the sub-passage 307 to the outside of the sub-passage 307, that is, the main passage 124 via the drain hole 376.
  • the measurement flow path 341 is formed so as to penetrate the housing 302 in the thickness direction, and the flow path exposed portion 430 of the circuit package 400 is disposed so as to protrude.
  • the second groove 333 communicates with the measurement channel 341 on the upstream side of the sub-passage with respect to the channel exposure part 430 of the circuit package 400.
  • the second groove 333 has a shape in which the groove depth becomes deeper as it proceeds toward the measurement channel 341, and in particular, has a steeply inclined portion 333 d that becomes deeper in front of the measurement channel 341. Yes.
  • the steeply inclined portion 333d is configured such that, in the measurement flow channel 341, of the surface 431 and the back surface 432 included in the flow channel exposed portion 430 of the circuit package 400, the measured gas 30 is measured on the surface 431 side where the flow rate detection unit 602 is provided. Gas is allowed to pass, and foreign matter such as dust contained in the measurement target gas 30 is allowed to pass through the back surface 432 side.
  • the gas 30 to be measured gradually moves in the direction of the front side of the housing 302 (the back side in the drawing in FIG. 3B) as it flows in the back side sub-passage groove 331. Then, a part of the air having a small mass moves along the steeply inclined portion 333 d and flows in the measurement flow channel 341 toward the surface 431 of the flow channel exposed portion 430. On the other hand, a foreign substance having a large mass cannot easily flow along the steeply inclined portion 333d because it is difficult to change a course due to centrifugal force, and flows toward the back surface 432 of the flow channel exposed portion 430 in the measurement flow channel 341. .
  • the flow rate detection unit 602 is provided on the surface 431 of the flow path exposure unit 430 of the circuit package 400. In the flow rate detection unit 602, heat transfer is performed with the measurement target gas 30 that has flowed toward the surface 431 of the flow path exposure unit 430, and the flow rate is measured.
  • the measurement target gas 30 passes through the front surface 431 side and the back surface 432 side of the flow path exposed portion 430 of the circuit package 400, the measurement target gas 30 flows from the downstream side of the secondary passage of the measurement flow path 341 into the front side secondary passage groove 330. It flows through 330 and is discharged from the second outlet 313 to the main passage 124.
  • one end of the front side sub-passage groove 330 communicates with the downstream side of the sub-passage of the measurement flow path 341, and the other end of the outlet 313 formed in the downstream end 316 on the front end side of the housing 302. Communicate.
  • the front side sub-passage groove 330 curves so as to gradually advance toward the downstream end portion 316 as it moves from the measurement flow path 341 toward the front end side of the housing 302, and the main flow direction of the measurement target gas 30 at the front end portion of the housing 302
  • the groove extends in a straight line toward the downstream side, and the groove width gradually decreases toward the second outlet 313.
  • the flow path formed by the back side sub-passage groove 331 draws a curve from the front end side of the housing 302 toward the base end side that is the flange 305 side, and at the position closest to the flange 305, the sub-passage 307 is located.
  • the gas 30 to be measured flows in a direction opposite to the main flow direction of the main passage 124, and a back side sub-passage provided on the back side of the housing 302 is provided on the front side in the reverse flow portion. It leads to the front side auxiliary passage.
  • the measurement channel 341 is divided into a space on the front surface 431 side and a space on the back surface 432 side by the channel exposure part 430 of the circuit package 400, and is not divided by the housing 302. That is, the measurement flow path 341 is formed so as to penetrate the front surface and the back surface of the housing 302, and the circuit package 400 projects in a cantilever manner in this one space.
  • the sub-passage grooves can be formed on both the front and back surfaces of the housing 302 in a single resin molding step, and the structure connecting the sub-passage grooves on both sides can be formed together.
  • the circuit package 400 is fixed by being embedded in a fixing portion 351, 352, 353 of the housing 302 by a resin mold.
  • the circuit package 400 can be inserted into the housing 302 and mounted simultaneously with the resin molding of the housing 302.
  • the back side sub-passage groove 331 and the front side sub-passage groove 330 are configured such that either the upstream side of the passage upstream of the circuit package 400 or the downstream side of the downstream side of the circuit package 400 is penetrated in the width direction of the housing 302. It is also possible to form the sub-passage shape connecting the two in a single resin molding step.
  • the front side sub-passage of the housing 302 is formed by the close contact between the upper end of the pair of side wall surfaces constituting the front side sub-passage groove 330 on the upper side in the groove height direction and the facing surface of the front cover 303.
  • the rear side sub-passage of the housing 302 is formed by the close contact between the upper end of the side wall in the groove height direction of the pair of side wall surfaces constituting the back side sub-passage groove 331 and the opposing surface of the back cover 304.
  • a hollow portion 342 is formed in the housing 302 between the flange 305 and the portion where the sub-passage groove is formed.
  • the cavity 342 is formed by penetrating the housing 302 in the thickness direction.
  • the terminal connection portion 320 that connects the connection terminal 412 of the circuit package 400 and the inner end 306a of the external terminal of the external connection portion 306 is disposed so as to be exposed.
  • the connection terminal 412 and the inner end 306a are electrically connected by spot welding or laser welding.
  • the cavity 342 is closed by attaching the front cover 303 and the back cover 304 to the housing 302, and the periphery of the cavity 342 is sealed by laser welding with the front cover 303 and the back cover 304.
  • FIG. 4A is a view showing the back surface of the front cover
  • FIG. 4B is a cross-sectional view taken along the line BB of FIG. 4A
  • FIG. 5A is a diagram showing a back surface of the back cover
  • FIG. 5B is a diagram showing a side surface of the back cover.
  • the front cover 303 and the back cover 304 are thin plates and have a shape with a wide cooling surface. For this reason, the thermal flow meter 300 has an effect that air resistance is reduced, and further, the thermal flow meter 300 is easily cooled by the gas to be measured flowing through the main passage 124.
  • the front cover 303 has a size that covers the surface of the housing 302.
  • a fifth region 361 that closes the front side sub-passage groove 330 of the housing 302
  • a sixth region 362 that closes the front side of the measurement flow path 341 of the housing 302, and the front side of the cavity 342
  • a seventh region 363 that closes the surface is formed.
  • concave portions 361a into which the upper end portions of the side walls of the front side sub-passage grooves 330 of the housing 302 enter are provided on both sides in the width direction of the fifth region 361 and the sixth region 362, concave portions 361a into which the upper end portions of the side walls of the front side sub-passage grooves 330 of the housing 302 enter are provided.
  • a recess 363 a into which the outer peripheral end of the cavity 342 enters is formed around the seventh region 363.
  • a convex portion 364 is provided that is inserted into a gap between the tip of the flow channel exposed portion 430 of the circuit package 400 and the measurement flow channel 341 of the housing 302.
  • a metal plate 501 is provided by insert molding at a position facing the surface 431 of the flow path exposed portion 430 of the circuit package 400.
  • the back cover 304 has a size that covers the back surface of the housing 302. On the opposite surface of the back cover 304, a first region 371 A that closes the first groove portion 332 of the back side sub-passage groove 331 of the housing 302, a second region 371 B that closes the second groove portion 333, and the measurement flow of the housing 302 A third region 372 that closes the back side of the path 341 and a fourth region 373 that closes the back side of the cavity 342 are formed.
  • recessed portions 371a into which the upper end portions of the side walls of the rear side sub-passage grooves 331 of the housing 302 are recessed are provided. Further, around the fourth region 373, a recess 373a into which the rear outer peripheral end of the cavity 342 enters is provided.
  • a protruding line portion 377 is provided in the first region 371A of the back cover 304.
  • the ridges 377 are provided so as to extend along the longitudinal direction and to be arranged at a predetermined interval in the lateral direction.
  • the cross section of the protruding line portion 377 has a trapezoidal shape, and the side surfaces on both sides are inclined obliquely. Therefore, when water droplets adhere, the contact angle of the water droplets can be increased to reduce the height of the water droplets, the wettability can be increased, and the adhered water droplets can flow quickly from the upstream side toward the downstream side. Can do. Therefore, it is possible to effectively prevent water droplets from flowing into the second passage, and to quickly discharge the water droplets to the outside.
  • the back cover 304 has a drain hole 376 communicating with the sub passage 307.
  • the drain hole 376 is formed so as to penetrate a position where the recess 333e of the housing 302 is closed with the back cover 304 attached to the housing 302, and is taken into the recess 333e of the second groove 333 in the sub-passage 307. Water can be discharged to the outside.
  • a convex portion 374 is provided that is inserted into a gap between the tip of the channel exposed portion 430 of the circuit package 400 and the measurement channel 341 of the housing 302.
  • the convex portion 374 fills a gap between the tip of the flow channel exposed portion 430 of the circuit package 400 and the measurement flow channel 341 of the housing 302 in cooperation with the convex portion 364 of the front cover 303.
  • the front cover 303 and the back cover 304 are attached to the front and back surfaces of the housing 302, respectively, and form a secondary passage 307 in cooperation with the front side secondary passage groove 330 and the back side secondary passage groove 331.
  • FIG. 6 is an external perspective view of the thermal flow meter in the first embodiment
  • FIGS. 7A to 7C are enlarged views showing the main part of the thermal flow meter in the first embodiment
  • FIG. 7D is a configuration of the curved surface portion.
  • FIG. 7E is a conceptual diagram illustrating the configuration of the inclined surface.
  • a curved surface portion 317 is provided at the downstream end portion 316 of the housing 302.
  • the curved surface portion 317 is provided in the vicinity of the first outlet 312 and the second outlet 313, and is arranged at a position between the intermediate portion 316b and the distal end portion 316c of the downstream end portion 316 in the present embodiment.
  • the curved surface portion 317 has a curved surface shape whose axis is the longitudinal direction in which the housing 302 extends.
  • the curved surface portion 317 has a streamline shape whose cross section is a convex arc curve. As shown in FIG.
  • the curved surface portion 317 is an inclined surface in which an angle formed between the normal vector and the main flow direction of the measured gas 30 is in an angle range of 0 ° ⁇ ⁇ 90 °, and the measured gas 30 have curved surfaces 317R and 317L in which the angle formed between the normal vector and the main flow direction of the gas 30 to be measured gradually decreases as it moves from the upstream side to the downstream side in the main flow direction.
  • the curved surfaces 317R and 317L of the curved surface portion 317 have a shape in which at least one curved surface having a radius of curvature smoothly continues, and a substantially constant cross-sectional shape between the intermediate portion 316b and the tip portion 316c. have.
  • the downstream end is formed so as to be flush with the intermediate portion 316 b and the tip end portion 316 c of the downstream end portion 316 of the housing 302.
  • the curved surface portion 317 is disposed so that at least a part of the curved surface 317R on one side in the thickness width direction of the housing 302 is located within the range of the thickness width WR of the second outlet 313. At least a part of the curved surface 317L on the other side in the thickness direction of the housing 302 is disposed so as to be located within the range of the thickness width WL of the first outlet 312.
  • a vertical vortex having an axis parallel to the extending direction of the housing called a Karman vortex
  • a lateral vortex having an axis perpendicular to the extending direction of the housing called a tip vortex
  • these vortices interfere with the measurement target gas 30 discharged from the discharge port and the main outlet, and smooth discharge may be hindered.
  • these vortices change the strength of the vortex due to a transient phenomenon such as a pulsating flow in the intake passage, so the degree to which the outlet and the main outlet arranged at the downstream end of the housing are shielded by the vortex changes.
  • the flow velocity distribution difference between the steady state and the pulsation increases, and a pulsation error occurs.
  • a curved surface portion 317 having a curved surface whose axial center extends along the extending direction of the housing 302 is provided in the vicinity of the first outlet 312 and the second outlet 313.
  • the size of vortices generated downstream of the first outlet 312 and the second outlet 313 can be reduced, and in particular, the size of the vertical vortex (Kalman vortex) can be reduced. Therefore, the influence of the vortex on the measurement target gas 30 discharged from the first outlet 312 and the second outlet 313 can be reduced, and the difference in flow rate distribution between the pulsation and the steady state can be reduced to reduce the pulsation error. Generation can be suppressed and measurement accuracy can be improved.
  • the configuration in which the curved surface portion 317 is provided in the vicinity of the first outlet 312 and the second outlet 313 has been described as an example, but the vortex of the measurement target gas 30 formed around the housing 302 is the first. What is necessary is just to be able to make the magnitude
  • the curved surface portion 317 is described as an example in which the cross section is constant in the extending direction of the housing 302.
  • the configuration is not limited to such a configuration, and the cross section is extended in the extending direction.
  • the shape may change.
  • At least a part of the curved surface 317R of the curved surface portion 317 is disposed within the range of the thickness width WR of the second outlet 313, and at least a part of the curved surface 317L is the first outlet 312. Since it is arranged so as to be located within the range of the thickness width WL, the size of the vortex generated on the downstream side of the first outlet 312 and the second outlet 313 of the housing 302 is reduced, and the vortex generation position is set in the housing. It can be further separated further on the downstream side of 302. Therefore, the gas 30 to be measured discharged from the first outlet 312 and the second outlet 313 is less affected by the vortex, facilitates smooth discharge, and highly accurate flow rate detection can be performed.
  • FIG. 8 is an external perspective view of the thermal flow meter in the second embodiment
  • FIG. 9 is a bottom view of the thermal flow meter in the second embodiment
  • FIGS. 10A to 10C are main components of the thermal flow meter in the second embodiment. It is a figure which expands and shows a part. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a characteristic feature of this embodiment is that, in addition to the configuration of the first embodiment, a tip wing 336 is provided on the tip surface 314 on the tip side in the insertion direction of the housing 302.
  • the tip wing 336 is provided so as to protrude from the tip surface 314 and is disposed at a position displaced toward the downstream end of the housing 302.
  • the tip wing 336 is formed integrally with the housing 302, but may be provided separately and fixed later by a fixing means such as a screw or an adhesive.
  • the tip wing 336 has a substantially cylindrical shape with an elliptical cross section protruding from the tip surface 314, and the cross section gradually decreases so as to taper as it moves to the tip side.
  • a tapered cone-shaped outer peripheral surface 336a and a flat top surface 336b parallel to the distal end surface 314 are provided at the distal end portion.
  • the tip wing 336 is arranged so that the major axis of the cross-sectional ellipse extends from the upstream end side to the downstream end side of the housing 302, and the upstream arc has a smaller radius than the downstream arc. It has a line shape. As shown in FIGS. 10A and 10B, the upstream surface portion of the outer peripheral surface 336 a is formed obliquely so as to gradually move to the downstream side as it moves to the tip side of the tip wing 336.
  • the measurement target gas 30 flowing along the tip surface 314 in the main passage 124 is smoothly guided to the downstream side by the tip wing 336, and the first outlet of the housing 302 is provided.
  • the size of the lateral vortex can be particularly reduced. Therefore, in addition to the operational effects of the first embodiment, the influence of the vortex can be further reduced on the measurement target gas 30 discharged from the first outlet 312 and the second outlet 313, and the occurrence of pulsation error is effectively achieved. Therefore, the measurement accuracy can be greatly improved.
  • FIGS. 11, 12, 13A, 13B, and 13C are views of the thermal flow meter in the third embodiment.
  • FIGS. 13A to 13C are views of the thermal flow meter in the third embodiment. It is a figure which expands and shows a part.
  • the same components as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the curved surface portion 317 is extended to the distal end surface 314, and the first outlet 312 and the second outlet are connected to the curved surface portion 317. 313 is provided.
  • the curved surface portion 317 is provided from the intermediate portion 316 b of the downstream end portion 316 of the housing 302 to the distal end surface 314.
  • the first outlet 312 is formed on the curved surface 317L of the curved surface portion 317 and opens toward the downstream side in the main flow direction.
  • the 2nd exit 313 is formed in the curved surface 317R of the curved surface part 317, and is opened toward the main flow direction downstream.
  • the curved surface portion 317 is provided instead of the tip portion 316c having a flat surface, it is possible to further suppress the occurrence of vertical vortices around the first outlet 312 and the second outlet 313. . Therefore, compared with Example 2, the influence of the vortex can be further reduced, the occurrence of pulsation errors can be further effectively suppressed, and the measurement accuracy can be dramatically improved.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

過渡時に渦によって排出口及び主出口が遮蔽されるのを防ぎ、定常時と脈動時の流速分布差を小さくして脈動誤差を低減できる熱式流量計を得ること。 本発明の熱式流量計300は、主通路124に配置されるハウジング302と、ハウジング302に設けられた副通路307とを備える。そして、ハウジング302は、ハウジング302の下流端部316に副通路307の第1出口312と第2出口313とが設けられており、これらの第1出口312と第2出口313の近傍に湾曲面部317が設けられている。

Description

熱式流量計
 本発明は熱式流量計に関する。
 従来から、被計測気体が流れる主通路にハウジングが配置され、ハウジングに設けられた副通路に主通路から被計測気体を取り込み、副通路内に配置された流量検出部により被計測気体の流量を計測する熱式流量計が、種々提案されている。
 特許文献1には、副通路が主通路の流れ方向に沿った第1通路と、第1通路の途中で分岐する第2通路を有しており、第2通路に流量検出部が配置され、流量検出部を通過した被計測気体が再び第1通路に合流して、第1通路の出口から排出される構造が示されている。
US2013/061684
 特許文献1に示す構造のように、第1通路の出口が下流に向かって開口していると、第1通路の出口から排出された被計測気体と、ハウジングの下流に発生する渦とが干渉して、被計測気体の出口からの円滑な排出が阻害されるおそれがある。また、渦強度の変化によって定常時と脈動時の流速分布差が大きくなり脈動誤差が発生する。
 本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、渦強度を小さく且つ一定にして、被計測気体の出口からの円滑な排出を確保し、脈動誤差の発生を抑制できる構造の熱式流量計を得ることである。
 上記課題を解決する本発明の熱式流量計は、主通路に配置されるハウジングと、該ハウジングに設けられた副通路とを備える熱式流量計であって、前記ハウジングは、該ハウジングの下流端部に前記副通路の出口が設けられており、該出口の近傍に傾斜面が設けられていることを特徴とする。
 本発明によれば、排出口及び主出口の下流にできる渦の大きさを小さくすることができる。したがって、過渡時に渦によって排出口及び主出口が遮蔽されるのを防ぐことができ、定常時と脈動時の流速分布差を小さくし、脈動誤差の発生を抑制できる。
内燃機関制御システムに本発明に係る熱式流量計を使用した一実施例を示すシステム図である。 本発明に係る熱式流量計の外観を示す正面図。 本発明に係る熱式流量計の外観を示す左側面図。 本発明に係る熱式流量計の外観を示す背面図。 本発明に係る熱式流量計の外観を示す右側面図。 本発明に係る熱式流量計から表カバーおよび裏カバーを取り外したハウジングの状態を示す正面図。 本発明に係る熱式流量計から表カバーおよび裏カバーを取り外したハウジングの状態を示す背面図。 表カバーの背面図。 図4AのB-B線断面図。 裏カバーの背面図。 図5AのB-B線断面図。 実施例1における熱式流量計の外観斜視図。 実施例1における熱式流量計の要部を拡大して示す図。 実施例1における熱式流量計の要部を拡大して示す図。 実施例1における熱式流量計の要部を拡大して示す図。 湾曲面部の構成を説明する概念図。 傾斜面の構成を説明する概念図。 実施例2における熱式流量計の外観斜視図。 実施例2における熱式流量計の底面図。 実施例2における熱式流量計の要部を拡大して示す図。 実施例2における熱式流量計の要部を拡大して示す図。 実施例2における熱式流量計の要部を拡大して示す図。 実施例3における熱式流量計の外観斜視図。 実施例3における熱式流量計の底面図。 実施例3における熱式流量計の要部を拡大して示す図。 実施例3における熱式流量計の要部を拡大して示す図。 実施例3における熱式流量計の要部を拡大して示す図。
 次に、本発明の実施の形態について図面を用いて説明する。
<実施例1>
 図1は、電子燃料噴射方式の内燃機関制御システムに、本発明に係る熱式流量計を使用した一実施例を示すシステム図である。エンジンシリンダ112とエンジンピストン114を備える内燃機関110の動作に基づき、吸入空気が被計測気体30としてエアクリーナ122から吸入され、主通路124である例えば吸気管、スロットルボディ126、吸気マニホールド128を介してエンジンシリンダ112の燃焼室に導かれる。前記燃焼室に導かれる吸入空気である被計測気体30の流量は本発明に係る熱式流量計300で計測され、計測された流量に基づいて燃料噴射弁152より燃料が供給され、吸入空気である被計測気体30と共に混合気の状態で燃焼室に導かれる。なお、本実施例では、燃料噴射弁152は内燃機関の吸気ポートに設けられ、吸気ポートに噴射された燃料が吸入空気である被計測気体30と共に混合気を成形し、吸気弁116を介して燃焼室に導かれ、燃焼して機械エネルギを発生する。
 燃焼室に導かれた燃料および空気は、燃料と空気の混合状態を成しており、点火プラグ154の火花着火により、爆発的に燃焼し、機械エネルギを発生する。燃焼後の気体は排気弁118から排気管に導かれ、排気24として排気管から車外に排出される。前記燃焼室に導かれる吸入空気である被計測気体30の流量は、アクセルペダルの操作に基づいてその開度が変化するスロットルバルブ132により制御される。前記燃焼室に導かれる吸入空気の流量に基づいて燃料供給量が制御され、運転者はスロットルバルブ132の開度を制御して前記燃焼室に導かれる吸入空気の流量を制御することにより、内燃機関が発生する機械エネルギを制御することができる。
 エアクリーナ122から取り込まれ主通路124を流れる吸入空気である被計測気体30の流量および温度が、熱式流量計300により計測され、熱式流量計300から吸入空気の流量および温度を表す電気信号が制御装置200に入力される。また、スロットルバルブ132の開度を計測するスロットル角度センサ144の出力が制御装置200に入力され、さらに内燃機関のエンジンピストン114や吸気弁116や排気弁118の位置や状態、さらに内燃機関の回転速度を計測するために、回転角度センサ146の出力が、制御装置200に入力される。排気24の状態から燃料量と空気量との混合比の状態を計測するために、酸素センサ148の出力が制御装置200に入力される。
 制御装置200は、熱式流量計300の出力である吸入空気の流量、および回転角度センサ146の出力に基づき計測された内燃機関の回転速度、に基づいて燃料噴射量や点火時期を演算する。これら演算結果に基づいて、燃料噴射弁152から供給される燃料量、また点火プラグ154により点火される点火時期が制御される。燃料供給量や点火時期は、実際にはさらに熱式流量計300で計測される吸気温度やスロットル角度の変化状態、エンジン回転速度の変化状態、酸素センサ148で計測された空燃比の状態に基づいて、きめ細かく制御されている。制御装置200はさらに内燃機関のアイドル運転状態において、スロットルバルブ132をバイパスする空気量をアイドルエアコントロールバルブ156により制御し、アイドル運転状態での内燃機関の回転速度を制御する。
 図2は、熱式流量計300の外観を示している。図2Aは熱式流量計300の正面図、図2Bは左側面図、図2Cは背面図、図2Dは右側面図である。熱式流量計300は、ハウジング302を備えている。ハウジング302は、吸気管に側方から挿入されて主通路124(図1を参照)に配置される。ハウジング302の基端部には、吸気管に固定するためのフランジ305と、吸気管外部に露出する外部接続部306が設けられている。
 ハウジング302は、フランジ305を吸気管に固定することにより片持ち状に支持され、主通路124を流れる被計測気体の主流れ方向に交差する垂直な方向に沿って延在するように配置される。ハウジング302には、主通路124を流れる被計測気体30を取り込むための副通路307(図3A、図3Bを参照)が設けられており、その副通路307内に被計測気体30の流量を検出するための流量検出部602(図3A、図3Bを参照)が配置されている。
 ハウジング302の先端側でかつ主流れ方向上流側に配置される上流端部には、吸入空気などの被計測気体30の一部を副通路307に取り込むための入口311が設けられている。そして、ハウジング302の先端側でかつ主流れ方向下流側に配置される下流端部には、副通路307から被計測気体30を主通路124に戻すための第1出口312(排出口)と第2出口(主出口)313という、2つの出口が設けられている。第1出口312と第2出口313は、図2Dに示すように、ハウジング302の厚み方向に横並びに配置されている。すなわち、第1出口312と第2出口313は、主流れ方向に垂直な方向に並んで配置される。
 入口311が、ハウジング302の先端側に設けられることにより、主通路の内壁面から離れた中央部に近い部分の気体を副通路307に取り込むことができる。したがって、主通路の内壁面の温度の影響を受け難くなり、気体の流量や温度の計測精度の低下を抑制できる。
 主通路の内壁面近傍では流体抵抗が大きく、主通路の平均的な流速に比べ、流速が低くなるが、本実施例の熱式流量計300では、フランジ305から主通路の中央に向かって延びる薄くて長いハウジング302の先端側に入口311が設けられているので、主通路中央部の流速の速い気体を副通路307に取り込むことができる。また、副通路307の第1出口312と第2出口313もハウジング302の先端側に設けられているので、副通路307内を流れた気体を流速の速い主通路中央部に戻すことができる。
 ハウジング302は、正面に略長方形の幅広面を有するのに対して、側面が狭い(厚さが薄い)形状を成している。ハウジング302は、主通路を流れる被計測気体30の主流れ方向に沿って正面と背面が配置され、主流れ方向に対向するように側面が配置される。これにより、熱式流量計300は、被計測気体30に対しては流体抵抗を小さくして、十分な長さの副通路307を備えることができる。
 すなわち、本実施例の熱式流量計は、主通路124を流れる被計測気体30の流れ方向と直交する直交面に投影されるハウジングの形状が、前記の直交面上で第1の方向50に定義される長さ寸法と、前記の直交面上で第1の方向50(図2B参照)に対して垂直な第2の方向51に定義される厚み寸法とを有し、厚み寸法が長さ寸法よりも小さい形状を成している。
 ハウジング302には、被計測気体30の温度を計測するための温度検出部452が設けられている。ハウジング302は、長手方向中央部で且つ上流端部において、下流端部側に向かって窪んだ形状を有しており、温度検出部452は、その窪んだ位置に設けられている。温度検出部452は、ハウジング302の窪んだ部分から主流れ方向に沿って突出する形状を成している。
 図3は熱式流量計300から表カバー303および裏カバー304を取り外したハウジング302の状態を示している。図3Aはハウジング302の正面図、図3Bは背面図である。
 ハウジング302の上流端部315は、基端部315a、中間部315b、先端部315cを有している。基端部315aと中間部315bと先端部315cは、それぞれ被計測気体30の主流れ方向に対して垂直な平坦面により構成されている。基端部315aと中間部315bとの間には、上流端部315側から下流端部316側に向かって移行するにしたがってハウジング302の厚さ幅方向に互いに離間する方向に広がるテーパ面322が設けられている。そして、テーパ面322と中間部315bとの間には、下流端部316側に窪んだ窪み部が設けられており、温度検出部452が配置されている。そして、先端部315cには、入口311が設けられている。
 ハウジング302の下流端部316は、基端部316a、中間部316b、先端部316cを有している。基端部316aと中間部316bと先端部316cは、被計測気体30の主流れ方向に対して垂直な平坦面により構成されている。基端部316aと中間部316bとの間には、上流端部315側から下流端部316側に向かって移行するにしたがってハウジング302の厚さ幅方向に互いに接近する方向に狭くなるテーパ面323が設けられている。そして、先端部315cには、第1出口312と第2出口313が設けられている。第1出口312と第2出口313は、ハウジング302の厚さ幅方向に並んで配置されており、本実施例では、厚さ幅方向中央から互いに離間する位置に配置されている。
 ハウジング302の内部には、主通路124を流れる被計測気体30の流量を計測するための流量検出部602や、主通路124を流れる被計測気体30の温度を計測するための温度検出部452を備える回路パッケージ400が一体にモールド成形されている。
 そして、ハウジング302には、副通路307を成形するための副通路溝が形成されている。本実施例では、ハウジング302の表裏両面に副通路溝が凹設されており、表カバー303及び裏カバー304をハウジング302の表面及び裏面にかぶせることにより、副通路307が完成する構成になっている。かかる構造とすることで、ハウジング302の成形時(樹脂モールド工程)にハウジング302の両面に設けられる金型を使用して、表側副通路溝330と裏側副通路溝331の両方をハウジング302の一部として全てを成形することが可能となる。
 副通路溝は、ハウジング302の裏面に形成された裏側副通路溝331と、ハウジング302の表面に形成された表側副通路溝330とからなる。裏側副通路溝331は、第1溝部332と、第1溝部332の途中で分岐する第2溝部333を有している。
 第1溝部332は、ハウジング302の先端部で被計測気体30の主流れ方向に沿うように上流端部315から下流端部316に亘って一直線状に延在して、ハウジング302の入口311に一端が連通し、ハウジング302の出口312に他端が連通している。第1溝部332は、入口311から略一定の断面形状で延在する直線部332Aと、直線部332Aから出口312に向かって移行するに従って溝幅が漸次狭くなる絞り部332Bとを有している。
 第1溝部332の直線部332Aの底壁面332bには、複数の凸条部335が設けられている。凸条部335は、第1溝部332の直線部332Aの底壁面332bにおいて、第1溝部332の溝幅方向に所定間隔をおいて複数が並ぶように設けられており、直線部332Aに沿って入口311から絞り部332Bまでの間に亘って延在している。凸条部335は、断面が台形形状を有しており、両側の側面が斜めに傾いている。したがって、水滴が付着した場合に、水滴の接触角を大きくして水滴の高さを低くすることができ、濡れ性を高くして、上流側から下流側に向かって素早く流すことができる。したがって、水滴が第2通路に流れ込むのを効果的に防ぐことができ、外部に迅速に排出させることができる。
 第2溝部333は、第1溝部332の直線部332Aから分岐してカーブしながらハウジング302の基端側に向かって進み、ハウジング302の長手方向中央部に設けられている計測用流路341に連通する。第2溝部333は、第1溝部332を構成する一対の側壁面のうち、ハウジング302の基端側に位置する側壁面332aに入口が連通しており、底壁面333aが第1溝部332の直線部332Aの底壁面332bと面一に連続している。第2溝部333の内周側の側壁面333bには、凹部333eが設けられている。
 主通路124を流れる被計測気体30は、熱式流量計300に衝突すると、被計測気体30の流れ方向に対向して障害物となる外側壁面によって動圧を受け、外側壁面に対向する上流側の圧力が上昇する。一方、被計測気体30の主流れ方向と平行あるいは略平行な壁面における被計測気体30は、壁面の上流部分において壁面からの剥離を生じ、剥離部(周辺)は負圧となる。被計測気体30は、剥離を生じた部分から下流方向に向かうに従いやがて熱式流量計300壁面に沿う流れへと変化する。凹部333eには、第2溝部333近傍に水が停滞し、裏カバー304において凹部333eを閉塞する位置に穿設されている排水孔376を設置すると、熱式流量計300の剥離部(周辺)で生ずる負圧により、副通路307内の凹部333eから排水孔376を介して副通路307の外部、すなわち、主通路124に排出させることができる。
 計測用流路341は、ハウジング302を厚さ方向に貫通して形成されており、回路パッケージ400の流路露出部430が突出して配置されている。第2溝部333は、回路パッケージ400の流路露出部430よりも副通路上流側で計測用流路341に連通している。
 第2溝部333は、計測用流路341に向かって進むにつれて溝深さが深くなる形状を有しており、特に計測用流路341の手前で急激に深くなる急傾斜部333dを有している。急傾斜部333dは、計測用流路341において、回路パッケージ400の流路露出部430が有する表面431と裏面432のうち、流量検出部602が設けられている表面431側に被計測気体30の気体を通過させ、裏面432側には被計測気体30に含まれる塵埃などの異物を通過させる。
 被計測気体30は、裏側副通路溝331内を流れるにつれてハウジング302の表側(図3Bで図の奥側)の方向に徐々に移動する。そして、質量の小さい空気の一部は、急傾斜部333dに沿って移動し、計測用流路341において流路露出部430の表面431の方を流れる。一方、質量の大きい異物は遠心力によって急激な進路変更が困難なため、急傾斜部333dに沿って流れることができず、計測用流路341において流路露出部430の裏面432の方を流れる。
 流量検出部602は、回路パッケージ400の流路露出部430の表面431に設けられている。流量検出部602では、流路露出部430の表面431の方に流れた被計測気体30との間で熱伝達が行われ、流量が計測される。
 被計測気体30は、回路パッケージ400の流路露出部430の表面431側と裏面432側を通過すると、計測用流路341の副通路下流側から表側副通路溝330に流れ込み、表側副通路溝330内を流れて第2出口313から主通路124に排出される。
 表側副通路溝330は、図3Aに示すように、計測用流路341の副通路下流側に一端が連通し、ハウジング302の先端側の下流端部316に形成された出口313に他端が連通する。表側副通路溝330は、計測用流路341からハウジング302の先端側に移行するに従って漸次下流端部316に向かって進むようにカーブし、ハウジング302の先端部で被計測気体30の主流れ方向下流側に向かって直線上に延びて、第2出口313に向かって溝幅が漸次狭くなる形状を有している。
 この実施例では、裏側副通路溝331で構成される流路は曲線を描きながらハウジング302の先端側からフランジ305側である基端側に向かい、最もフランジ305に接近した位置では、副通路307を流れる被計測気体30は主通路124の主流れ方向に対して逆方向の流れとなり、この逆方向の流れの部分でハウジング302の裏面側に設けられた裏側副通路が、表面側に設けられた表側副通路につながる。
 計測用流路341は、回路パッケージ400の流路露出部430によって、表面431側の空間と裏面432側の空間に分けられており、ハウジング302によって分けられてはいない。即ち、計測用流路341は、ハウジング302の表面と裏面とを貫通して形成されており、この一つの空間に回路パッケージ400が片持ち状に突出して配置されている。このような構成とすることで、1回の樹脂モールド工程でハウジング302の表裏両面に副通路溝を成形でき、また両面の副通路溝を繋ぐ構造を合わせて成形することが可能となる。尚、回路パッケージ400はハウジング302の固定部351、352、353に樹脂モールドにより埋設して固定されている。
 また、上記した構成によれば、ハウジング302の樹脂モールド成形と同時に、回路パッケージ400をハウジング302にインサートして実装することができる。なお、回路パッケージ400よりも上流側の通路上流側と下流側の通路下流側のどちらか一方をハウジング302の幅方向に貫通した構成とすることで、裏側副通路溝331と表側副通路溝330とをつなぐ副通路形状を1回の樹脂モールド工程で成形することも可能である。
 ハウジング302の表側副通路は、表側副通路溝330を構成する一対の側壁面の溝高さ方向上側の側壁上端部と表カバー303の対向面とが密着することによって形成される。そして、ハウジング302の裏側副通路は、裏側副通路溝331を構成する一対の側壁面の溝高さ方向上側の側壁上端部と裏カバー304の対向面とが密着することによって形成される。
 図3A及び図3Bに示すように、ハウジング302には、フランジ305と副通路溝が形成された部分との間に空洞部342が形成されている。空洞部342は、ハウジング302を厚さ方向に貫通することによって形成されている。この空洞部342の中に、回路パッケージ400の接続端子412と外部接続部306の外部端子の内端306aとを接続する端子接続部320が露出して配置されている。接続端子412と内端306aとは、スポット溶接あるいはレーザ溶接などにより、電気的に接続される。空洞部342は、表カバー303と裏カバー304をハウジング302に取り付けることによって閉塞され、空洞部342の周囲が表カバー303と裏カバー304とレーザ溶接されて密封される。
 図4Aは、表カバーの裏面を示す図、図4Bは、図4AのB-B線断面図である。図5Aは、裏カバーの裏面を示す図、図5Bは、裏カバーの側面を示す図である。
 表カバー303と裏カバー304は、薄い板状であり、広い冷却面を備える形状を成している。このため熱式流量計300は、空気抵抗が低減され、さらに主通路124を流れる被計測気体により冷却されやすい効果を有している。
 表カバー303は、ハウジング302の表面を覆う大きさを有している。表カバー303の対向面には、ハウジング302の表側副通路溝330を閉塞する第5領域361と、ハウジング302の計測用流路341の表側を閉塞する第6領域362と、空洞部342の表側を閉塞する第7領域363が形成されている。そして、第5領域361と第6領域362の幅方向両側には、ハウジング302の表側副通路溝330の側壁上端部が入り込む凹部361aが凹設されている。また、第7領域363の周囲には、空洞部342の表側外周端部が入り込む凹部363aが凹設されている。
 そして、表カバー303の対向面には、回路パッケージ400の流路露出部430の先端とハウジング302の計測用流路341との間の隙間に挿入される凸部364が設けられている。また、回路パッケージ400の流路露出部430の表面431に対向する位置には、インサート成形により金属プレート501が設けられている。
 裏カバー304は、ハウジング302の裏面を覆う大きさを有している。裏カバー304の対向面には、ハウジング302の裏側副通路溝331の第1溝部332を閉塞する第1領域371Aと、第2溝部333を閉塞する第2領域371Bと、ハウジング302の計測用流路341の裏側を閉塞する第3領域372と、空洞部342の裏側を閉塞する第4領域373が形成されている。そして、第1領域371A、第2領域371B、第3領域372の幅方向両側には、ハウジング302の裏側副通路溝331の側壁上端部が入り込む凹部371aが凹設されている。また、第4領域373の周囲には、空洞部342の裏側外周端部が入り込む凹部373aが凹設されている。
 裏カバー304の第1領域371Aには、凸条部377が設けられている。凸条部377は、裏カバー304の第1領域371Aにおいて、長手方向に沿って延在し、短手方向に所定間隔をおいて複数が並ぶように設けられている。凸条部377は、断面が台形形状を有しており、両側の側面が斜めに傾いている。したがって、水滴が付着した場合に、水滴の接触角を大きくして水滴の高さを低くすることができ、濡れ性を高くして、付着した水滴を上流側から下流側に向かって素早く流すことができる。したがって、水滴が第2通路に流れ込むのを効果的に防ぐことができ、外部に迅速に排出させることができる。
 裏カバー304には、副通路307に連通する排水孔376が穿設されている。排水孔376は、ハウジング302に裏カバー304を取り付けた状態でハウジング302の凹部333eを閉塞する位置に貫通して形成されており、副通路307内で第2溝部333の凹部333eに取り込まれた水を外部に排出させることができる。
 裏カバー304の対向面には、回路パッケージ400の流路露出部430の先端とハウジング302の計測用流路341との間の隙間に挿入される凸部374が設けられている。凸部374は、表カバー303の凸部364と協働して、回路パッケージ400の流路露出部430の先端とハウジング302の計測用流路341との間の隙間を埋める。
 表カバー303と裏カバー304は、ハウジング302の表面と裏面にそれぞれ取り付けられて表側副通路溝330及び裏側副通路溝331との協働により副通路307を形成する。
 図6は、実施例1における熱式流量計の外観斜視図、図7Aから図7Cは、実施例1における熱式流量計の要部を拡大して示す図、図7Dは、湾曲面部の構成を説明する概念図、図7Eは、傾斜面の構成を説明する概念図である。
 図6に示すように、ハウジング302の下流端部316には、湾曲面部317が設けられている。湾曲面部317は、第1出口312と第2出口313の近傍に設けられており、本実施例では、下流端部316の中間部316bと先端部316cとの間の位置に配置されている。湾曲面部317は、ハウジング302が延在する長手方向を軸中心とする曲面形状を有しており、具体的には、断面が凸円弧曲線となる流線形状を有している。湾曲面部317は、図7Dに示すように、法線ベクトルと被計測気体30の主流れ方向とのなす角が0度<α<90度の角度範囲となる傾斜面であって、被計測気体30の主流れ方向上流側から下流側に移行するにしたがって法線ベクトルと被計測気体30の主流れ方向とのなす角が漸次減少する湾曲面317R、317Lを有する。
 湾曲面部317の湾曲面317R、317Lは、少なくとも1つ以上の曲率半径の曲面が円滑に連続する形状を有しており、中間部316bと先端部316cとの間に亘って略一定の断面形状を有している。そして、下流端がハウジング302の下流端部316の中間部316b及び先端部316cと面一となるように形成されている。
 湾曲面部317は、図7Bに示すように、ハウジング302の厚さ幅方向一方側の湾曲面317Rの少なくとも一部が第2出口313の厚さ幅WRの範囲内に位置するように配置され、ハウジング302の厚さ幅方向他方側の湾曲面317Lの少なくとも一部が第1出口312の厚さ幅WLの範囲内に位置するように配置されている。
 例えば、本実施例のように汚損物を排出するために副通路307の一部が分岐された構造を有する物理量測定装置の場合、流速及び排出効果を高めて測定精度を確保する必要がある。(a)排出口が主流れ方向下流側に向かって開口していないと、曲がり角に汚損物が溜まる可能性がある。(b)分岐通路は、極力大回りでないと流れが曲がりきれず、剥離渦が拡大して定常流と脈動流での流速分布差が大きくなるために脈動誤差が拡大する。(c)分岐部よりも主流れ方向上流側に主出口を配置すると、過渡的な流量変化時において流量検出部602周辺の流れはオーバーシュートもしくはアンダーシュートを起こし、正確な流量変化の測定が難しい。これら(a)、(b)、(c)の理由から、排出口(第1出口312に相当)と主出口(第2出口313に相当)は、分岐部よりも主流れ方向下流側でかつハウジングの下流端部に配置することが望ましい。
 しかしながら、ハウジングが吸気管(主通路)内に配置されることで、ハウジングの下流端部周辺には、カルマン渦と呼ばれるハウジングの延在方向に平行な軸を持つ縦渦が発生し、また、翼端渦と呼ばれるハウジングの延在方向に垂直な軸を持つ横渦も発生する。したがって、これらの渦が排出口と主出口から排出される被計測気体30と干渉して、円滑な排出が阻害されるおそれがある。また、これらの渦は、吸気通路内における脈動流等の過渡現象において渦強度が変化するため、ハウジングの下流端部に配置されている排出口と主出口が渦によって遮蔽される度合いが変化し、その変化の程度に応じて定常時と脈動時の流速分布差が大きくなり脈動誤差が発生する。
 これに対し、本実施例では第1出口312と第2出口313の近傍に、軸中心がハウジング302の延在方向に沿った湾曲面を有する湾曲面部317を設けているので、ハウジング302の第1出口312と第2出口313の下流側に発生する渦の大きさを小さくすることができ、特に縦渦(カルマン渦)の大きさを小さくすることができる。したがって、第1出口312と第2出口313から排出される被計測気体30に対して渦によって与えられる影響を小さくすることができ、脈動時と定常時の流速分布差を小さくして脈動誤差の発生を抑制し、測定精度を向上させることができる。
 なお、本実施例では、第1出口312と第2出口313の近傍に湾曲面部317を設けた構成を例に説明したが、ハウジング302の周囲に形成される被計測気体30の渦が第1出口312と第2出口313から排出される被計測気体30の排出を阻害しないように、渦の大きさを小さくすることができるものであればよい。したがって、例えば図7Eに示すように、被計測気体30の主流れ方向に対して一定の傾斜角度αを有する傾斜面318を下流端部316に設けてもよい。また、本実施例では、湾曲面部317は、断面がハウジング302の延在方向に一定である構成の場合を例に説明したが、かかる構成に限定されるものではなく、延在方向に断面が変化する形状としてもよい。
 本実施例では、湾曲面部317の湾曲面317Rの少なくとも一部が第2出口313の厚さ幅WRの範囲内に位置するように配置され、湾曲面317Lの少なくとも一部が第1出口312の厚さ幅WLの範囲内に位置するように配置されているので、ハウジング302の第1出口312と第2出口313の下流側に発生する渦の大きさを小さくしかつ渦の発生位置をハウジング302の下流側により大きく離間させることができる。したがって、第1出口312と第2出口313から排出される被計測気体30が渦の影響を受けにくくし、円滑な排出を促し、精度の高い流量検出を行うことができる。
<実施例2>
 次に、本発明の実施例2について図8、図9、図10A、図10B、及び図10Cを用いて以下に説明する。
 図8は、実施例2における熱式流量計の外観斜視図、図9は、実施例2における熱式流量計の底面図、図10Aから図10Cは、実施例2における熱式流量計の要部を拡大して示す図である。なお、実施例1と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
 本実施例において特徴的なことは、実施例1の構成に加えて、ハウジング302の挿入方向先端側の先端面314に先端翼336を設けたことである。先端翼336は、先端面314に突出して設けられており、ハウジング302の下流端部側に偏位した位置に配置されている。先端翼336は、ハウジング302に一体に形成されているが、別体に設けてねじや接着剤等の固定手段により後で固定してもよい。先端翼336は、図9に示すように、先端面314から突出する断面が楕円状の略円柱形状を有しており、先端側に移行するに応じて先細りとなるように漸次断面が小さくなるテーパーコーン状の外周面336aと、先端部分に先端面314と平行となる平坦な頭頂面336bを備えている。
 先端翼336は、断面楕円の長軸がハウジング302の上流端部側から下流端部側に沿うように配置されており、上流側の円弧の方が下流側の円弧よりも半径が小さい、流線形状を有している。そして、図10A、図10Bに示すように、外周面336aの上流面部は、先端翼336の先端側に移行するにしたがって漸次下流側に移行するように斜めに形成されている。
 上記構成を有する熱式流量計300によれば、主通路124内で先端面314に沿って流れてきた被計測気体30を先端翼336によって円滑に下流側に導いて、ハウジング302の第1出口312と第2出口313の下流側に発生する渦のうち、特に横渦(翼端渦)の大きさを小さくすることができる。したがって、実施例1の作用効果に加えて、第1出口312と第2出口313から排出される被計測気体30に対して渦の影響を更に小さくすることができ、脈動誤差の発生を効果的に抑制して、測定精度を飛躍的に向上させることができる。
<実施例3>
 次に、本発明の実施例3について図11、図12、図13A、図13B、及び図13Cを用いて以下に説明する。
 図11は、実施例3における熱式流量計の外観斜視図、図12は、実施例3における熱式流量計の底面図、図13Aから図13Cは、実施例3における熱式流量計の要部を拡大して示す図である。なお、実施例1、2と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
 本実施例において特徴的なことは、実施例2における下流端部316の先端部316cの代わりに、湾曲面部317を先端面314まで延長して、湾曲面部317に第1出口312と第2出口313を設けたことである。
 湾曲面部317は、ハウジング302の下流端部316の中間部316bから先端面314までの間に亘って設けられている。第1出口312は、湾曲面部317の湾曲面317Lに形成されており、主流れ方向下流側に向かって開口している。そして、第2出口313は、湾曲面部317の湾曲面317Rに形成されており、主流れ方向下流側に向かって開口している。
 本実施例では、平坦面を有する先端部316cの代わりに、湾曲面部317を設けているので、第1出口312と第2出口313の周辺に縦渦が発生するのを更に抑制することができる。したがって、実施例2と比較して、渦の影響を更に小さくすることができ、脈動誤差の発生を更に効果的に抑制して、測定精度を飛躍的に向上させることができる。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
300 熱式流量計
302 ハウジング
303 表カバー
304 裏カバー
307 副通路
312 第1出口(出口)
313 第2出口(出口)
317 湾曲面部
602 流量検出部

Claims (10)

  1.  主通路に配置されるハウジングと、該ハウジングに設けられた副通路とを備える熱式流量計であって、
     前記ハウジングは、該ハウジングの下流端部に前記副通路の出口が設けられており、該出口の近傍に傾斜面が設けられていることを特徴とする熱式流量計。
  2.  前記傾斜面は、該傾斜面の法線ベクトルと前記主通路を流れる被計測気体の主流れ方向とのなす角が0度<α<90度の角度範囲となることを特徴とする請求項1に記載の熱式流量計。
  3.  前記傾斜面は、前記被計測気体の主流れ方向上流側から下流側に移行するにしたがって前記法線ベクトルと前記被計測気体の主流れ方向とのなす角が漸次減少する湾曲面を有することを特徴とする請求項2に記載の熱式流量計。
  4.  前記ハウジングは、前記被計測気体の主流れ方向に交差する方向に延在し、
     前記副通路の出口は、前記ハウジングの厚さ幅方向に並んで配置された第1出口と第2出口を有し、
     前記湾曲面は、前記ハウジングの厚さ幅方向に対をなして設けられていることを特徴とする請求項3に記載の熱式流量計。
  5.  前記ハウジングの厚さ幅方向一方側の湾曲面の少なくとも一部が前記第2出口の厚さ幅の範囲内に位置し、前記ハウジングの厚さ幅方向他方側の湾曲面の少なくとも一部が前記第1出口の厚さ幅の範囲内に位置することを特徴とする請求項4に記載の熱式流量計。
  6.  前記ハウジングは、該ハウジングの下流端部の先端部に前記第1出口と前記第2出口が配置され、
     前記湾曲面を有する湾曲面部が前記ハウジングの先端部と中間部との間に設けられていることを特徴とする請求項5に記載の熱式流量計。
  7.  前記ハウジングの下流端部の先端部は平坦面を有し、前記第1出口と前記第2出口は前記平坦面に設けられていることを特徴とする請求項5に記載の熱式流量計。
  8.  前記湾曲面を有する湾曲面部に前記副通路の出口が設けられていることを特徴とする請求項3に記載の熱式流量計
  9.  前記ハウジングは、該ハウジングの先端面に先端翼が設けられていることを特徴とする請求項1から請求項8のいずれか一項に記載の熱式流量計。
  10.  前記先端翼は、基端から先端に移行するにしたがって先細りになる形状を有していることを特徴とする請求項9に記載の熱式流量計。
PCT/JP2016/079567 2015-10-28 2016-10-05 熱式流量計 WO2017073276A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017547702A JPWO2017073276A1 (ja) 2015-10-28 2016-10-05 熱式流量計
CN201680058321.4A CN108139247B (zh) 2015-10-28 2016-10-05 热式流量计
DE112016004975.7T DE112016004975B4 (de) 2015-10-28 2016-10-05 Thermischer Durchflussmesser
US15/765,939 US10928231B2 (en) 2015-10-28 2016-10-05 Thermal flow meter with housing surfaces that minimize vortex formation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-211399 2015-10-28
JP2015211399 2015-10-28

Publications (1)

Publication Number Publication Date
WO2017073276A1 true WO2017073276A1 (ja) 2017-05-04

Family

ID=58631425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079567 WO2017073276A1 (ja) 2015-10-28 2016-10-05 熱式流量計

Country Status (5)

Country Link
US (1) US10928231B2 (ja)
JP (2) JPWO2017073276A1 (ja)
CN (1) CN108139247B (ja)
DE (1) DE112016004975B4 (ja)
WO (1) WO2017073276A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031518A1 (ja) * 2018-08-08 2020-02-13 株式会社デンソー 流量計測装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020024152A (ja) 2018-08-08 2020-02-13 株式会社Soken 流量計測装置
JP7068095B2 (ja) 2018-08-14 2022-05-16 株式会社Soken 流量測定装置
JP2021039027A (ja) * 2019-09-04 2021-03-11 株式会社デンソー 空気流量測定装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307906A (ja) * 1993-04-28 1994-11-04 Hitachi Ltd 空気流量測定装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19815656A1 (de) * 1998-04-08 1999-10-14 Bosch Gmbh Robert Meßvorrichtung zum Messen der Masse eines strömenden Mediums
US6701781B1 (en) * 2000-11-22 2004-03-09 Visteon Global Technologies, Inc. Mass air flow sensor bypass housing
JP3709373B2 (ja) * 2001-12-19 2005-10-26 株式会社日立製作所 流量計測装置
JP3671399B2 (ja) * 2002-09-20 2005-07-13 三菱電機株式会社 流量センサ
JP4957081B2 (ja) 2005-09-15 2012-06-20 株式会社デンソー 流量測定装置
JP5073949B2 (ja) * 2006-02-02 2012-11-14 日立オートモティブシステムズ株式会社 流量測定装置
DE102006045656A1 (de) 2006-09-27 2008-04-03 Robert Bosch Gmbh Strömungsdynamisch verbesserter Steckfühler
JP4488031B2 (ja) 2007-06-14 2010-06-23 株式会社デンソー 空気流量測定装置
JP5273024B2 (ja) 2009-11-27 2013-08-28 株式会社デンソー 空気流量測定装置
DE102010020264A1 (de) 2010-05-28 2011-12-01 Continental Automotive Gmbh Luftmassenmesser
JP5338864B2 (ja) * 2011-07-07 2013-11-13 株式会社デンソー 空気流量測定装置
JP5397425B2 (ja) 2011-07-16 2014-01-22 株式会社デンソー 空気流量測定装置
JP5675705B2 (ja) * 2012-06-15 2015-02-25 日立オートモティブシステムズ株式会社 熱式流量計
JP5758850B2 (ja) * 2012-06-15 2015-08-05 日立オートモティブシステムズ株式会社 熱式流量計
CN103954326A (zh) * 2014-05-14 2014-07-30 威海市天罡仪表股份有限公司 双声道n形反射式超声波式流量传感器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307906A (ja) * 1993-04-28 1994-11-04 Hitachi Ltd 空気流量測定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031518A1 (ja) * 2018-08-08 2020-02-13 株式会社デンソー 流量計測装置
JP2020024151A (ja) * 2018-08-08 2020-02-13 株式会社Soken 流量計測装置
JP7204370B2 (ja) 2018-08-08 2023-01-16 株式会社Soken 流量計測装置

Also Published As

Publication number Publication date
JP6502573B2 (ja) 2019-04-17
US20190120674A1 (en) 2019-04-25
DE112016004975B4 (de) 2022-08-04
JP2019045515A (ja) 2019-03-22
CN108139247A (zh) 2018-06-08
CN108139247B (zh) 2020-02-07
DE112016004975T5 (de) 2018-07-19
JPWO2017073276A1 (ja) 2018-07-26
US10928231B2 (en) 2021-02-23

Similar Documents

Publication Publication Date Title
JP6502573B2 (ja) 熱式流量計
WO2015045435A1 (ja) 熱式流量計
JP6325679B2 (ja) 熱式流量計
JP6114673B2 (ja) 熱式流量計
JP6463245B2 (ja) 熱式流量計
JP6114674B2 (ja) 熱式流量計
US10670439B2 (en) Thermal flowmeter
JP6723075B2 (ja) 熱式流量計
JP6433408B2 (ja) 熱式流量計
JP6438707B2 (ja) 熱式流量計
JP2017083319A (ja) 熱式流量計
JP6686126B2 (ja) 熱式流量計
JP6641010B2 (ja) 熱式流量計
JP6654239B2 (ja) 熱式流量計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547702

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016004975

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859513

Country of ref document: EP

Kind code of ref document: A1