WO2017057022A1 - Biological state estimation device, biological state estimation method, and computer program - Google Patents
Biological state estimation device, biological state estimation method, and computer program Download PDFInfo
- Publication number
- WO2017057022A1 WO2017057022A1 PCT/JP2016/077274 JP2016077274W WO2017057022A1 WO 2017057022 A1 WO2017057022 A1 WO 2017057022A1 JP 2016077274 W JP2016077274 W JP 2016077274W WO 2017057022 A1 WO2017057022 A1 WO 2017057022A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- physical condition
- basic physical
- time
- biological
- estimation
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
- A61B5/18—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
Definitions
- the present invention relates to a biological state estimating device, a biological state estimating method, and a computer program for estimating a basic physical condition of a person based on a human biological signal measured by a biological signal measuring device.
- the present inventors have proposed a technique for detecting a vibration generated on the body surface of the back in a human upper body with a biological signal measuring device and analyzing a human state.
- Sound / vibration information detected from the heart and aorta motion detected from the upper back of a person is pressure vibration generated from the heart and aorta motion.
- Information on ventricular systole and diastole, circulation auxiliary pump, It includes elasticity information of the blood vessel wall and reflected wave information.
- the back body surface pulse wave (including Aortic Pulse Wave (APW)) around 1 Hz generated on the back surface from the motion of the heart and aorta, and the sound transmitted to the back side with the heartbeat (“pseudo heart sound” (this specification)
- the book includes information on the heart sound, which is a heart sound collected from the chest side, as a “pseudo heart sound”).
- the signal waveform associated with heart rate variability includes sympathetic nervous system and parasympathetic nervous system nerve activity information
- the signal waveform associated with aortic oscillation includes sympathetic nerve activity information.
- slide calculation is performed by applying a predetermined time width to a time series waveform of a back body surface pulse wave (APW) near 1 Hz extracted from a collected biological signal (sound / vibration information), and a frequency slope is calculated.
- a time-series waveform is obtained, and the biological state is estimated from the tendency of the change depending on, for example, whether the amplitude tends to be amplified or attenuated.
- the biological signal is subjected to frequency analysis, and the power spectrum of each frequency corresponding to the function adjustment signal, fatigue acceptance signal, and activity adjustment signal belonging to a predetermined ULF band (very low frequency band) to VLF band (very low frequency band). And determining the state of a person from the time series change of each power spectrum.
- the fatigue acceptance signal indicates the degree of progress of fatigue in the normal activity state, in addition to this, by comparing the degree of dominance of the power spectrum of the function adjustment signal and the activity adjustment signal, Status, parasympathetic dominant status, etc.).
- the distribution rate of each frequency component is obtained in a time series when the sum of the power spectrum values of the frequency components corresponding to these three signals is set to 100, and the human condition is obtained using the time series change of the distribution rate. Is also disclosed.
- Patent Document 2 proposes a technique for displaying a biological state as a physical condition map and a sensory map as a quantification method of the biological state. This is a frequency analysis of the APW described above, and for the analysis section to be analyzed, the analysis waveform is shown in a logarithmic axis display, the analysis waveform is divided into a low frequency band, a middle frequency band, and a high frequency band, and the divided analysis waveforms The analysis waveform is scored based on a certain standard from the slope and the shape of the entire analysis waveform, and plotted on the coordinate axes.
- the physical condition map is a state in which the state of control of the autonomic nervous system is viewed as a balance between the sympathetic nerve and the parasympathetic nerve, and the sensory map is obtained by superimposing the state of change of heartbeat variability on the physical condition map.
- Patent Documents 3 to 5 disclose means for determining the homeostasis maintenance function level.
- Consistency maintenance function level judgment means uses positive / negative of differential waveform of frequency gradient time series waveform, positive / negative of integral waveform integrating frequency gradient time series waveform, frequency gradient time series waveform using zero cross method and peak detection method The determination is made using at least one of the absolute values of the frequency gradient time series waveforms obtained by performing absolute value processing on the frequency gradient time series waveforms. Based on these combinations, the level of the homeostasis maintenance function is determined.
- the level of the homeostasis maintenance function is divided into, for example, 5 to 7 stages, from the case where the homeostasis maintenance function is excellent (when concentration is high, etc.) to the case where the homeostasis maintenance function is inferior (when overstressed, Decrease of concentration due to driving aside)
- the level of 5 to 7 levels is displayed in characters, or if it is higher than the intermediate level (normal state), it is judged that the homeostasis maintenance function is excellent at once. In other cases, it is determined that the homeostasis maintenance function is inferior collectively, and the monitor is set so that different color displays are made.
- Non-Patent Document 1 regarding fingertip plethysmogram information, a frequency gradient time series waveform of a power value reflecting sympathetic nerve information is obtained, and an integral value obtained by processing the absolute value is plotted as a fatigue level in time series.
- Non-Patent Document 2 discloses a technique for capturing muscle fatigue by computing a biological signal obtained from a human back using an air pack sensor and drawing a fatigue curve using a similar method. That is, the state of muscle fatigue can be grasped by using a frequency gradient time-series waveform of power values reflecting sympathetic information (in the case of APW, a frequency gradient time-series waveform by the zero cross method).
- Each of the above-described techniques is to determine each person's state by analyzing each element caused by fluctuations related to the bioregulatory function.
- the timing of the sign is determined, the degree of fatigue is determined, the change in the homeostasis maintenance function level is determined, and the purpose is determined.
- time-series changes of a plurality of indicators related to each element caused by fluctuations in the biological regulation function such as a sleep onset symptom phenomenon, an imminent sleep phenomenon, a low running state, a homeostasis maintenance function level, an initial fatigue state, and mood determination
- the time-series change of each index is individually determined.
- the present invention has been made in view of the above points, and a plurality of pieces of information on time-series changes of each element (bioregulatory function element) resulting from fluctuations for each bioregulatory function determined one after another in a relatively short time. Use and process this under specified conditions to output the basic physical condition of the person at the basic physical condition estimation time set for a longer time, making it easier for the driver to grasp the general physical condition It is an object to provide a biological state estimation device, a biological state estimation method, and a computer program.
- the distribution rate for each frequency takes the fluctuation method reflecting the fluctuation element of the brain wave ( ⁇ wave, ⁇ wave, ⁇ wave).
- fluctuation information such as which frequency band of the electroencephalogram is the dominant fluctuation can be captured.
- the frequency-slope time-series waveform by the zero-cross method is under the control of the autonomic nervous system, the frequency-sequential time-series waveform by the zero-cross method is frequency-analyzed.
- the function adjustment signal typified by 0.0017 Hz, the fatigue acceptance signal typified by 0.0035 Hz, and the activity spectrum signal typified by 0.0053 Hz are represented by power spectrum ratios of three frequency components.
- the distribution rate of the three frequency components representing the shape of the power spectrum obtained by frequency analysis can be considered as a site showing the expression of endocrine function rather than an autonomic nervous reaction.
- the frequency gradient time series waveform obtained by the zero cross method indicates the degree of sympathetic nerve expression by performing absolute value processing, and the frequency gradient time series waveform obtained by the peak detection method indicates the degree of parasympathetic nerve expression. Therefore, by using these, it is possible to capture the expression of the biological regulation function in more detail.
- an absolute value process is performed on a frequency gradient time series waveform obtained by the zero cross method, and by integrating this, a fatigue curve indicating the degree of human fatigue is obtained, and the state of muscle fatigue can be grasped. Further, by using at least one or more of positive / negative of the differential waveform of each frequency gradient time series waveform using the zero cross method, the absolute value of each frequency gradient time series waveform of the zero cross method or the peak detection method, etc. It is possible to capture changes in the maintenance function level.
- the time series waveform of the fatigue curve and the homeostasis maintenance function level is also derived from the frequency gradient time series waveform, and is an index reflecting information on fluctuations in the autonomic nervous system, brain function, and the like.
- indicators that are highly relevant to physical and mental fatigue (physical condition map, sensory map), and indicators that are highly relevant to sensation (attention level of homeostasis function level, frequency of the level equivalent to warning)
- the frequency at which a sense of fatigue or fatigue that is required as fatigue is required is also obtained.
- the biological state estimation device of the present invention is a biological state estimation device that analyzes a biological signal of a person measured by a biological signal measurement device and estimates a biological state, and analyzes the biological signal to obtain a brain function.
- a plurality of indicators indicating fluctuations in the state of the bioregulatory functional element including indicators caused by fluctuations that are highly related to autonomic nervous function, physical / mental fatigue, or sensation, for each predetermined determination time set in advance
- the biological adjustment functional element determination means for calculating and calculating the time series change
- Basic physical condition estimating means for estimating a basic physical condition of the person, and the level of the basic physical condition of the person estimated by the basic physical condition estimating means
- the predetermined basic physical condition estimation time Basic physical condition output means for outputting every time
- the basic physical condition estimation means presets each time series change relating to the state of each of the bioregulatory functional elements determined by the bio
- the basic physical condition estimating means includes a time series change of the bioregulatory functional element having a high priority among the time series changes related to each bioregulatory functional element determined by the bioregulatory functional element determining means, and a predetermined reference
- the first basic physical condition estimating means for estimating the basic physical condition of the person at the predetermined basic physical condition estimation time as a predetermined level, and an estimation target in the first basic physical condition estimating means If not, using the time-series change related to other bioregulatory function elements having a lower priority than the bioregulatory function elements used in the first basic physical condition estimating means, the basic physical condition of the person is determined in advance.
- Second basic physical condition estimating means for estimating a predetermined level classified based on the criteria of the basic physical condition output means, wherein the basic physical condition output means is the first basic physical condition estimating means or the second It is preferable to adopt a configuration for outputting the level of the person basic physical condition estimated by the foundation basis physical condition estimation means.
- the first basic physical condition estimating means includes an index highly relevant to the autonomic nerve function or the physical / mental fatigue among the plurality of biological adjustment functional elements determined by the biological adjustment functional element determination means. Using a time-series change of a highly relevant index, and when the time-series change satisfies a predetermined standard, the basic physical condition level of the person may be estimated as “good” or “bad” preferable.
- the first basic physical condition estimating means estimates the basic physical condition of the person as “bad” when a time-series change of an index highly relevant to the autonomic nervous function satisfies a predetermined criterion, Preferably, when the time series change of the index highly related to the physical / mental fatigue satisfies a predetermined standard, it is a means for estimating the basic physical condition of the person as “good”.
- the second basic physical condition estimation means includes a plurality of the biological adjustment functional elements determined by the biological adjustment functional element determination means when the first basic physical condition estimation means does not estimate "good” or "bad” Among them, from a time-series change of an index highly relevant to the sense, the basic physical condition level of the person is estimated as either “good”, “bad” or their “intermediate state”. Preferably there is.
- the biological state estimation method of the present invention is a biological state estimation method for estimating a biological state by analyzing a human biological signal measured by a biological signal measurement device using a computer, and analyzing the biological signal, Predetermined predetermined judgments for each of a plurality of indicators showing fluctuations in the state of the bioregulatory functional elements, including indicators caused by fluctuations that are highly related to brain function, autonomic nervous function, physical / mental fatigue, or sensation
- a basic physical condition estimation procedure for estimating the basic physical condition of the person, and a level of the basic physical condition of the person estimated by the basic physical condition estimation procedure, the predetermined basic physical condition A basic physical condition output procedure that outputs every time the estimated time of the physical condition elapses, and the basic physical condition estimation procedure is a time-series change related to the state of each of
- the basic physical condition estimation procedure of the biological condition estimation method includes: a time series of the biological regulation function element having a high priority among the time series changes related to each biological regulation function element obtained by the biological regulation function element determination procedure.
- the human basis is used by using the time-series change related to another bioregulatory function element having a lower priority than the bioregulatory function element used in the first basic physical condition estimation procedure.
- a second basic physical condition estimation procedure for estimating a physical condition as a predetermined level classified based on a predetermined criterion, wherein the basic physical condition output procedure includes the first basic physical condition It is preferred estimation procedure or a configuration of outputting the level of the person basic physical condition estimated by the second basic physical condition estimation procedure.
- the computer program of the present invention is a computer program that causes a computer as a biological state estimation device to execute a biological state estimation procedure for analyzing a biological signal of a person measured by a biological signal measurement device and estimating a biological state, As a biological state estimation procedure, the biological signal is analyzed, and fluctuations in the state of the biological regulatory functional element including an index caused by fluctuations highly related to brain function, autonomic nervous function, physical / mental fatigue, or sense are detected.
- a bioregulatory function element determination procedure for calculating a plurality of indicators shown at predetermined time intervals determined in advance and obtaining a time-series change thereof; and each determination of each bioregulatory function element in the biocontrol function element determination procedure
- a basic physical condition estimation procedure for estimating the basic physical condition of the person corresponding to the basic physical condition estimation time set longer than the time;
- a basic physical condition output procedure for outputting the basic physical condition level of the person estimated by the basic physical condition estimation procedure every time the predetermined basic physical condition estimation time elapses, and the basic physical condition estimation procedure Analyzing each time-series change regarding the state of each bioregulatory functional element obtained by the bioregulatory functional element determination procedure according to a preset priority, and in accordance with a predetermined standard, the predetermined basic physical condition It is a procedure for estimating the basic physical condition of the person at the estimated time.
- the basic physical condition estimation procedure of the computer program includes a time-series change of the bioregulatory function element having a high priority among the time-series changes of the bioregulatory function element obtained by the biocontrol function element determination procedure.
- the first basic physical condition estimation procedure of the computer program includes an index highly relevant to the autonomic nervous function among the plurality of biological regulatory function elements determined in the biological regulatory function element determination procedure, or the body A configuration that uses a time-series change of an index highly related to mental fatigue and estimates the basic physical condition level of the person as “good” or “bad” when the time-series change satisfies a predetermined standard It is preferable that When the second basic physical condition estimation procedure of the computer program is not estimated as “good” or “bad” in the first basic physical condition estimation procedure, Among the bioregulatory functional elements, from the time-series change of the index highly relevant to the sense, the level of the basic physical condition of the person is either “good”, “bad” or their “intermediate state”. A configuration to be estimated is preferable.
- each of a plurality of indicators indicating fluctuations in the state of the bioregulatory functional element including indicators caused by fluctuations highly related to brain function, autonomic nervous function, physical / mental fatigue, or sense
- Basic physical condition estimation time that is set longer than the determination time of each bioregulatory functional element by calculating for each set predetermined determination time, obtaining its time series change, and analyzing each time series change according to priority
- the physical condition can be obtained from the fluctuation performance that is the basis of the human adjustment system.
- the priority order is statistically determined for each fluctuation performance.
- the basic physical condition level at the basic physical condition estimation time for example, “good” or “bad” is estimated using the indicators of the bioregulatory functional elements according to the priority order, and further used for this estimation. If the basic physical condition cannot be classified by the bioregulatory function, the level of the basic physical condition corresponding to the disturbance of the regulation system, for example, ⁇ Estimate and output “good”, “bad”, and their “intermediate state”.
- the determination result of the biological regulation function element (biological regulation function element) involved according to the physical condition level is output separately, but also using the judgment result of each biological regulation function element, Aside from the determination result of each bioregulatory functional element, the basic physical condition is estimated and output from the homeostasis maintenance function with fluctuations, and the driver and the manager etc. have the basic in the past 30 minutes or 1 hour etc. At a glance. Therefore, by accumulating this information, the driver or the like can make a self-determination that it is better to take a break.
- FIG. 1A is an exploded view showing an example of a biological signal measuring apparatus for measuring a back body surface pulse wave used in one embodiment of the present invention
- FIG. FIG. FIG. 2 is a diagram schematically showing the configuration of the biological state estimation apparatus according to one embodiment of the present invention
- FIG. 3A is a diagram showing an example of a frequency slope time series waveform obtained by the zero cross method and the peak detection method obtained by the frequency slope time series waveform calculating means
- FIG. FIG. 3A shows a waveform obtained by performing the smoothing process.
- FIG. 4 is a diagram showing an example of a time-series waveform of the distribution rate obtained by the distribution rate calculating means.
- FIG. 5 is a diagram showing an example of a fatigue curve obtained by the fatigue curve calculation means.
- FIG. 6 is a diagram showing an example of a time series waveform of the homeostatic function level obtained by the homeostatic function level calculating means.
- FIG. 7A is a diagram showing an example of a physical condition map obtained by the physical condition map calculating means
- FIG. 7B is a diagram showing an example of a sensory map obtained by the sensory map calculating means.
- FIG. 8 is a flowchart for explaining a basic physical condition estimating step by the basic physical condition estimating means.
- FIGS. 9A and 9B are diagrams showing experimental results in a certain month of subjects A and B in Experimental Example 2.
- FIG. FIG. 10 is a diagram showing time-series data of the physical condition estimation result by the biological state estimation device on the 14th and 15th days of the subject B shown in FIG. 9B and the operation start time on the operation days before and after that.
- FIG. 11 is a distribution diagram in which the correlation between the subjective evaluation of all subjects in Experimental Example 2 and the proportion of “good” in the physical condition estimation by the biological state estimation
- the biological signal collected in the present invention examples include fingertip volume pulse wave, sound / vibration information collected from the back (hereinafter referred to as “back sound / vibration information”), and preferably back sound / vibration.
- the back sound / vibration information is sound / vibration information generated from the motion of the heart and aorta detected from the upper back of a person, and includes information on ventricular systole and diastole, blood circulation It includes elasticity information of the blood vessel wall serving as an auxiliary pump, elasticity information based on blood pressure, and reflected wave information, that is, back body surface wave (APW) and pseudo heart sound information.
- AW back body surface wave
- the signal waveform associated with heart rate variability includes sympathetic and parasympathetic nervous system activity information (parasympathetic activity information including the compensation of sympathetic nerves), and the signal waveform associated with aortic oscillation is sympathetic. Since it contains information on neural activity and information on the endocrine system, it is suitable for determining bioregulatory functional elements from different viewpoints.
- a fingertip plethysmograph can be used as a biological signal measuring device for collecting a biological signal as long as it is a fingertip plethysmogram.
- a pressure sensor can be used as long as it is back sound / vibration information.
- a signal measuring device 1 is used.
- FIG. 1 shows a schematic configuration of the biological signal measuring apparatus 1. This biological signal measuring apparatus 1 can be used by being incorporated in a driver's seat of a vehicle, and can collect a biological signal without restraining fingers.
- the biological signal measuring apparatus 1 will be briefly described. As shown in FIGS. 1A and 1B, the first layer 11, the second layer 12, and the third layer 13 are stacked in order from the upper layer side.
- the first layer 11 made of a layer structure and made of a three-dimensional solid knitted fabric or the like is used by being positioned on the human body side that is a detection target of a biological signal. Therefore, sound / vibration information of the heart / vascular system including biological signals from the back of the trunk of the human body, in particular, biological sounds generated by vibrations of the ventricle, the atrium, and the large blood vessels (direct trunk sound or bioacoustic signal). (Back body surface pulse wave (including APW)) is first propagated to the first layer 11 which is a biological signal input system.
- APW Back body surface pulse wave
- the second layer 12 functions as a resonance layer that emphasizes the biological signal propagated from the first layer 11, particularly the sound / vibration of the heart / vascular system by a resonance phenomenon or a beat phenomenon, and a casing 121 made of a bead foam or the like. And a three-dimensional solid knitted fabric 122 that functions as a natural vibrator, and a film 123 that generates membrane vibration.
- a microphone sensor 14 is provided in the second layer 12 to detect sound / vibration information.
- the third layer 13 is laminated on the opposite side of the first layer 11 via the second layer 12 to reduce external sound / vibration input.
- the biological state estimation device 100 includes a biological adjustment functional element determination unit 200, a basic physical condition estimation unit 300, and a basic physical condition output unit 400.
- the biological state estimation apparatus 100 is configured by a computer (including a microcomputer) and performs a biological state estimation procedure that functions as the biological adjustment functional element determination unit 200, the basic physical condition estimation unit 300, and the basic physical condition output unit 400.
- a computer program that causes a computer to execute a bioregulatory function element determination procedure, a basic physical condition estimation procedure, and a basic physical condition output procedure is set in the storage unit.
- the computer program may be stored in a recording medium. If this recording medium is used, the program can be installed in the computer, for example.
- the recording medium storing the program may be a non-transitory recording medium.
- the non-transitory recording medium is not particularly limited, and examples thereof include a recording medium such as a flexible disk, a hard disk, a CD-ROM, an MO (magneto-optical disk), a DVD-ROM, and a memory card. It is also possible to install the program by transmitting it to the computer through a communication line.
- the biological adjustment functional element determination unit 200 analyzes the back sound / vibration information, which is a biological signal measured by the biological signal measuring device 1 described above, and is used for estimation of a basic physical condition of a person. A plurality of types of indices related to the functional elements are calculated at predetermined time intervals that are set in advance, and their time series changes are obtained.
- the biological signal to be analyzed may be a fingertip volume pulse wave or the like, which is not excluded by the present invention, but the back sound / vibration information is preferable as described above.
- a plurality of types of bioregulatory function elements determined by the bioregulatory function element determining means 200 are not limited, but at least an index highly relevant to brain function and autonomic nerve function, and relation to physical / mental fatigue It is preferable that the index includes a highly sensitive index and an index highly related to sense. These are indicators that show fluctuations in EEG fluctuations that affect human homeostasis functions, or how bioregulatory functions represented by body temperature control functions work. This is because the influence is large.
- Examples of indices highly relevant to brain function and autonomic nerve function include time-series waveforms of frequency gradients obtained by processing collected biological signals, and the distribution ratios of the three signals described in the above section of the prior art. Examples include time-series waveforms, fatigue curves, and time-series fluctuations in the determination of the homeostasis maintenance function level.
- the time-series waveform of the frequency gradient shows fluctuations that are at the base of the regulation of the homeostatic function, and the fluctuations are well-balanced to balance the function of anti-trait, Relevance is particularly high. This is supported by statistical methods.
- the time-series waveform of each frequency band obtained from the distribution rate corresponds to the types of brain waves ( ⁇ waves, ⁇ waves, ⁇ waves) that are indirectly related to fluctuation rhythms, and functions in human brain function and autonomic nerve function. In addition, it is highly related to the regulatory function of the endocrine system. Since homeostasis is maintained by various regulatory systems such as the endocrine system and the autonomic nervous system, fluctuations in the level are deeply related to the regulatory performance due to fluctuations in the brain, autonomic nervous system and endocrine system.
- the bioregulatory function element determining means 200 is a frequency slope time series waveform computing means for obtaining a time series waveform of a frequency slope as a computing means for obtaining an index that captures how the fluctuations of the brain function, autonomic nervous function and endocrine system fluctuate. 210, a distribution rate calculating means 220 for obtaining a distribution rate, a fatigue curve calculating means 230 for obtaining a fatigue curve, and a constancy maintaining function level calculating means 240 for obtaining a constancy maintaining function level.
- the frequency gradient time series waveform calculation means 210 is a time series of frequencies from the time series waveform of the back body surface pulse wave (APW) near 1 Hz obtained by filtering the back sound / vibration information obtained from the sensor 14 of the biological signal measuring apparatus 1. After obtaining the waveform, the time-series waveform of the frequency is slid to calculate the frequency-gradient time-series waveform (see FIGS. 3A and 3B).
- the frequency gradient time series waveform calculation means 210 is a point (zero cross) that switches from positive to negative in the time series waveform of the back body surface pulse wave (APW) as disclosed in the above-mentioned Patent Document 1 by the present inventors.
- Point method zero-cross method
- AW back body surface pulse wave
- the zero cross point when the zero cross point is obtained, it is divided every 5 seconds, for example, and the reciprocal of the time interval between the zero cross points of the time series waveform included in the 5 second is obtained as the individual frequency f.
- the average value of the individual frequency f is adopted as the value of the frequency F for 5 seconds. Then, by plotting the frequency F obtained every 5 seconds in time series, a time series waveform of frequency fluctuation is obtained.
- the maximum value of the time series waveform of the back body surface pulse wave is obtained by, for example, the smoothing differential method using Savitzky and Golay.
- the local maximum value is divided every 5 seconds, the reciprocal of the time interval between the local maximum values of the time-series waveform included in the 5 seconds is obtained as the individual frequency f, and the average value of the individual frequency f in the 5 seconds is calculated This is adopted as the value of the frequency F for 5 seconds.
- a time series waveform of frequency fluctuation is obtained.
- the frequency gradient time-series waveform computing means 210 has a predetermined overlap time (for example, 18 seconds) and a predetermined time width (for example, 180 seconds) from a time-series waveform of frequency fluctuations obtained by the zero cross method or the peak detection method.
- a time window is set, a frequency gradient is obtained for each time window by the method of least squares, and a time series waveform of the gradient is output. This slide calculation is sequentially repeated to output the APW frequency gradient time-series change as a frequency gradient time-series waveform.
- the dorsal body surface wave is a biological signal mainly including the state of control of the heart, which is the central system, that is, the state of sympathetic innervation of the artery, and the appearance information of the sympathetic nervous system and the parasympathetic nervous system.
- the frequency-gradient time-series waveform obtained by the zero-cross method (the waveform indicated as “0x” in FIGS. 3A and 3B) is more related to the state of control of the heart, and the appearance of the sympathetic nerve
- the time-series waveform of the frequency gradient obtained by the peak detection method (the waveform indicated as “Peak” in FIGS. 3A and 3B) is more related to the heartbeat variability. Therefore, in order to grasp the state of the autonomic nervous function more clearly, it is preferable to use a frequency gradient time series waveform obtained by using the zero cross method.
- Sympathetic nerve activity affects vascular elasticity and diameter, and the influence of reflected waves from the vascular wall is simulated heart sound information (detected from the back) included in sound and vibration information detected from the human back. Therefore, between a pseudo I sound (corresponding to a heart sound I sound) and a pseudo II sound (corresponding to a heart sound II sound) detected by a muscle, skin, etc. between the heart and the back surface. It is superimposed on the waveform component. This is the reason why the width between the zero cross points in the zero cross method differs from the width between the peak points in the peak detection method, and the zero cross method has a period affected by the reflected wave. Therefore, it is possible to capture sympathetic nerve information by looking at the frequency gradient time-series waveform by the zero cross method.
- the peak value reflects the information of heart rate variability as described above, but the heart rate variability is mainly controlled by the parasympathetic nerve. Therefore, parasympathetic information can be captured by looking at the peak value.
- the frequency gradient time series waveform obtained by the zero-cross method obtained by the frequency gradient time series waveform calculation means 210 has an amplitude that increases with a temporary increase in sympathetic nerve activity that occurs as resistance to sleepiness at a predetermined timing before sleep. It is known that when the tendency to change is shown, it can be regarded as an index of the predictive sleep phenomenon (see Patent Document 4). In addition, after a waveform showing a sleep onset symptom appears, the waveform shows a tendency to converge, and after that, when the fluctuation fluctuation of a long period is larger, the point at which the fluctuation of the long period starts to show the imminent sleep immediately before falling asleep. It is known that it can be regarded as an index indicating a phenomenon.
- Distribution rate calculation means 220 first analyzes the frequency gradient time-series waveforms obtained from frequency gradient time-series waveform calculation means 210, respectively, and is lower than 0.0033 Hz, which is the frequency at which the characteristics of fluctuations in the cardiovascular system are switched.
- Each frequency component belonging to the VLF band is extracted from the ULF band corresponding to the frequency function adjustment signal, the fatigue acceptance signal having a frequency higher than the function adjustment signal, and the activity adjustment signal having a frequency higher than the fatigue acceptance signal.
- the distribution ratios of these frequency components are obtained in time series. That is, the ratio of each frequency component when the sum of the power spectrum values of the three frequency components is 1 is obtained as a distribution rate in time series (see FIG. 4).
- a frequency component of 0.0017 Hz is used as the function adjustment signal
- a frequency component of 0.0035 Hz is used as the fatigue acceptance signal
- a frequency component of 0.0053 Hz is used as the activity adjustment signal.
- the frequency at which the fluctuation characteristics of the heart and circulatory system are switched is said to be 0.0033 Hz.
- the frequency bands below 0.0033 Hz and below 0.0053 Hz are mainly related to body temperature regulation, and the frequency band from 0.01 to 0.04 Hz is said to be related to autonomic nerve control. Yes.
- the frequency component of each signal can be adjusted by individual differences and the like, the function adjustment signal is less than 0.0033 Hz, preferably 0.001 to 0.0027 Hz, and the fatigue acceptance signal is 0. In the range of 002 to 0.0052 Hz, the activity adjustment signal can be adjusted and used in the range of 0.004 to 0.007 Hz.
- the time series change of the distribution ratio obtained by the distribution ratio calculation means 220 is, for example, a rapid decrease in the distribution ratio of 0.0017 Hz and a rapid increase in the distribution ratio of 0.0053 Hz.
- the time point showing the change can be regarded as the present time point of the impending sleep phenomenon.
- the fatigue curve calculation means 230 is a means disclosed in Japanese Patent Application Laid-Open No. 2009-22610 by the present inventors, calculates an integral value by performing absolute value processing on a frequency gradient time series waveform obtained by the zero cross method, This integrated value is a means for obtaining the fatigue curve as shown in FIG. 5 by obtaining the integrated value as the degree of fatigue at every predetermined judgment time and plotting it corresponding to the time.
- the muscle activity is muscle contraction or relaxation
- the fatigue curve which is the integrated information of the frequency gradient time series waveform by the zero cross method reflecting the information of the sympathetic nerve, is highly correlated with the muscle activity (Non-patent Document 1). reference). Therefore, in the fatigue curve, the point where the slope fluctuates more than a predetermined value indicates a singular point, and each singular point corresponds to the increasing fatigue and the point indicating that muscle activity has occurred and the blood flow increased. Shows the point.
- the homeostasis maintenance function level determination unit 240 is based on the technique disclosed in Patent Document 3, and the positive / negative of the differential waveform of each frequency gradient time series waveform obtained by the frequency gradient time series waveform calculation unit 210 using the zero cross method. At the time of each frequency slope obtained by absolute value processing of the positive and negative of the integral waveform obtained by integrating the frequency slope time series waveform, the frequency slope time series waveform using the zero cross method and the frequency slope time series waveform using the peak detection method. The determination is made using at least one of the absolute values of the series waveform. Based on these combinations, the level of the homeostasis maintenance function is determined.
- the value is equal to or greater than a predetermined value, it is determined as “constancy maintaining function level 1”, or the differential value is equal to or less than a predetermined position and “ In the case of “peak advantage”, it can be set to be determined as “constancy maintaining function level 4”.
- the above conditions are variously combined to correlate with the human condition and judged as level 1 to 3, the normal to good condition is judged as level 4 to 6. Is determined to be necessary.
- an index such as levels 7 to 11 is assigned as a level that requires immediate warning depending on each state.
- the determination result by the homeostasis maintenance function level determination means 240 is set to be displayed as shown in FIG. 6, for example.
- the biological adjustment functional element determination unit 200 of the present embodiment further includes a physical condition map calculation unit 250 and a sensory map calculation unit 260.
- the back body surface pulse wave (APW) obtained from the back sound / vibration information acquired from the biological signal measuring apparatus 1 is frequency-analyzed, and the analysis waveform is displayed on the logarithmic axis display for the target analysis section. Divided into low frequency band, medium frequency band, and high frequency band, the analysis waveform is scored based on a certain standard from the slope of the analysis waveform and the overall shape of the analysis waveform, and plotted on the coordinate axis It is.
- AWA back body surface pulse wave
- the physical condition map is a state in which the state of control of the autonomic nervous system is viewed as a balance between the sympathetic nerve and the parasympathetic nerve, and the sensory map is obtained by superimposing the state of change of heartbeat variability on the physical condition map.
- the physical condition map calculation means 250 first obtains a regression line for each predetermined period region with respect to the analysis waveform obtained by frequency analysis of the back body surface pulse wave. Next, each regression line obtained for each periodic area is given a region score based on its slope, and the difference in power spectral density value between regression lines in the adjacent frequency domain and the difference in slope between regression lines Based on the above, the number of break points indicating the branching phenomenon in each regression line is obtained, a shape score based on the number of break points is given, and at least one of the area score and the shape score is used to determine a determination reference point for each analysis waveform. Ask.
- the slope of each regression line in each area is divided into three, approximately horizontal state, upward and downward, for example, increasing or decreasing the score in the upward direction and downward direction on the basis of the score in the approximately horizontal state To give a score.
- the shape score the smaller the number of break points, the higher the score.
- the first determination reference point is obtained using the frequency slope time series waveform obtained by the zero cross method
- the second judgment reference is obtained using the frequency slope time series waveform obtained by the peak detection method.
- the coordinate point is plotted with the index based on the first determination reference point on one axis and the index based on the second determination reference point on the other axis, and the physical condition map as illustrated in FIG. Is created.
- the coordinate time-series change line connecting the coordinate points is determined to be comfortable when it is determined that the change trend approximates the 1 / f slope, and is determined to be changing vertically. If it is determined that it is uncomfortable.
- a plurality of coordinate points are connected without being aligned with the coordinate origin, but when the change tendency of two points that are temporally different is viewed, the first point is aligned with the coordinate origin and the second point is When plotted in the fourth quadrant, this bioregulatory functional element is “good”, and determination becomes easier.
- the sensory map calculation means 260 performs a movement calculation to obtain an average value of the frequency for each predetermined time window set with a predetermined overlap time in the time series waveform of the frequency using the peak detection method related to the heartbeat fluctuation,
- the time series change of the average value of the frequency obtained for each time window is obtained as a frequency fluctuation time series waveform, and an index corresponding to the functional point obtained from the time series waveform of the frequency using the zero cross method is taken on one axis.
- an index corresponding to the amount of change in the predetermined time width of the frequency fluctuation time series waveform obtained by the peak detection method is taken on the other axis, and the time series change of the coordinates obtained from the functional point and the amount of change is obtained. It is a way to go.
- FIG. 7B is an example of the sensory map obtained in this way.
- a plurality of coordinate points are connected without being aligned with the coordinate origin.
- the first point is aligned with the coordinate origin and 2 points are obtained.
- the eyes are plotted, it becomes easy to determine the separation distance and the separation direction between the two.
- Functional point is between the determination reference points of the analysis waveform in the two time ranges before and after the comparison target:
- Functional point Judgment reference point for the later time range + (Judgment reference point for the later time range-Judgment reference point for the previous time range) x n (where n is a correction coefficient), Is required.
- the homeostatic function level determination unit 240 As an index highly relevant to the sense, among the time-series changes of the homeostatic function level determined by the homeostatic function level determination unit 240, for example, normal to good using a frequency slope and an integral value It can be determined by using the frequency of the frequency (levels 1 to 3 in the above example) and the level index requiring attention (levels 4 to 6 in the above example) using their frequency.
- the homeostasis maintenance function level is highly related to the state of autonomic nervous function as described above, but when sympathetic decompensation acts on fatigue due to physical condition, basic physical strength, or motivation, fatigue There are times when you feel a feeling and sometimes you don't feel it. Therefore, the sympathetic compensation effect on fatigue and the basic physical condition are highly related to the sense of feeling it as fatigue. In addition, the sense here is a sensation similar to feeling of loss accompanied by fatigue or hypoxia.
- the basic physical condition estimating unit 300 calculates the basic physical condition of the person to be analyzed based on a predetermined reference from each time series change regarding the fluctuation performance of each biological regulatory function element obtained by the biological regulatory function element determination unit 200. It is a means to estimate (basic physical condition).
- a plurality of types of time-series changes regarding the fluctuation performance of the biological adjustment functional elements are obtained. It is obtained every predetermined determination time.
- the frequency gradient time-series waveform calculation unit 210 takes several minutes after obtaining the data from the biological signal measuring apparatus 1 until the first calculation result is output, but thereafter, for example, is obtained every 18 seconds. As a result, a time series change is required.
- the distribution rate obtained by the distribution rate computation means 220, the fatigue degree obtained by the fatigue curve computation means 230, and the homeostasis maintenance function level obtained by the homeostasis maintenance function level computation means 240 are also numbers until the first computation result is output. It takes minutes, and is obtained every 18 seconds, for example, and a time series change is obtained for each.
- the calculation results obtained by the physical condition map calculation means 250 and the sensation map calculation means 260 each take 20 to 30 minutes at first, but the second point is obtained about ten minutes later, and the third and subsequent points are obtained every few minutes. .
- the basic physical condition estimation means 300 estimates the basic physical condition for a time (basic physical condition estimation time) that is longer than each determination time in each bioregulatory function element.
- the driver knows his / her physical condition, it is of course possible to display the determination results of the fluctuation performance of each bioregulatory functional element individually on the monitor, but in this case, the analysis of the driver who analyzes the data Variations are likely to occur depending on the ability and judgment ability. Therefore, it is preferable to estimate the basic physical condition by absorbing the variation by mechanically determining and statistically processing the combination of them in consideration of the contribution rate as necessary. That is, it is a method for estimating the current basic control ability (physical condition) of a living body by statistically combining data output every relatively short time.
- the basic physical condition estimation means 300 is configured to estimate the basic physical condition in the basic physical condition estimation time set to a longer time.
- the basic physical condition estimation time can be set arbitrarily, such as 15 minutes, 30 minutes, 60 minutes, etc., but if the frequency is too high and there are too many changes in the state, it will result in the driver's difficulty in grasping the physical condition.
- the time is preferably about 20 to 40 minutes.
- the basic physical condition estimation means 300 determines the basic physical condition using the determination result of each bioregulatory functional element. Specifically, the determination result of the bioregulatory function element that more reflects the physical condition in the basic physical condition estimation time set to a predetermined long time is preferentially used. Therefore, in this embodiment, the priority order using the determination result of each bioregulatory functional element is set in the basic physical condition estimation procedure which is a computer program that configures the basic physical condition estimation means 300. More specifically, as shown in FIG. 2, the basic physical condition estimating means 300 includes a first basic physical condition estimating means 310 and a second basic physical condition estimating means 320, which are shown in the flowchart of FIG. First, the basic physical condition is estimated by the first basic physical condition estimating means 310 (S110, S120), and then the basic physical condition is estimated by the second basic physical condition estimating means 320 (S130). Is set to
- the first basic physical condition estimating means 310 obtains whether or not the time-series change of the bioregulatory functional elements with higher priority among the bioregulatory functional elements with priority set satisfies a predetermined criterion, When the level is satisfied, the basic physical condition is estimated as the predetermined level.
- the second basic physical condition estimating means 320 is the first basic physical condition estimating means when the first basic physical condition estimating means is not subject to determination, that is, when the predetermined basic condition in the first basic physical condition estimating means 310 is not satisfied.
- a basic physical condition is estimated on the basis of a predetermined criterion by using a time-series change regarding another bioregulatory function element having a lower priority than the bioregulatory function element used in the means 310. Accordingly, since the second basic physical condition estimating means 320 is the final means for estimating the basic physical condition, the second basic physical condition estimating means 320 always classifies the data to be determined into any basic physical condition. It is set.
- each bioregulatory functional element obtained by the bioregulatory function element determining unit 200 to be estimated in the basic physical condition estimating unit 300 a number of cases are analyzed statistically as in the experimental examples described later, It is preferable to determine in consideration of the contribution ratio as necessary. Thereby, the estimation accuracy can be further improved.
- one of the priorities of an index highly related to autonomic nervous function or a time series change of an index highly related to physical / mental fatigue It is set to be high, and the next priority is set to be a time-series change of an index highly relevant to the senses.
- the index highly relevant to the physical / mental fatigue is determined. It is set so as to determine whether or not the time series change satisfies a predetermined condition.
- the basic physical condition is estimated to be “bad”, and the index is highly related to physical and mental fatigue.
- the series change satisfies a predetermined condition, the basic physical condition is set to be “good”.
- the above frequency gradient time series waveform, distribution rate, fatigue curve (fatigue level), and homeostasis maintenance function level which are indices related to homeostasis maintenance function based on fluctuations in brain function, autonomic nervous function or endocrine system regulation function are It is an index that makes it easy to discern signs that occur as a result of fatigue accumulation, such as sleep onset, imminent sleep, and low-level driving.
- fluctuations in the homeostatic function that is regulated by brain function vary depending on the frequency band, and the regulated system governed by the endocrine system, etc., but the distribution rate among these is the regulation system. It is an index that reflects well when there is sudden change, decay and increase.
- the basic physical condition is ⁇ bad '' Estimated.
- the physical condition map / sensory map which is an index highly related to physical / mental fatigue, can easily distinguish the index when feeling well and comfortable. Therefore, when this index is a condition that indicates smoothness and comfort, the basic physical condition is estimated as “good”.
- an index highly relevant to the brain function, the autonomic nervous function and the regulatory function of the endocrine system and an index highly relevant to physical / mental fatigue There is no restriction on which one to use preferentially, but because there is basically a relationship with autonomic nerves in the modulation of physical and mental fatigue, as in this embodiment, brain function, autonomic nerve function, etc. It is preferable to perform estimation using an index highly relevant to human health, and then to perform estimation using an index highly relevant to physical and mental fatigue.
- the brain function, the autonomic nervous function, and the endocrine function are highly relevant to the hormone secretion regulation function.
- the frequency gradient time series waveform, distribution rate, fatigue curve (fatigue degree), and constant There are four sex maintenance function levels. In one of these, it is possible to set the basic physical condition to be estimated as “bad” when a sign such as a sleep onset sign is detected above a predetermined level. In this case, it is preferable to estimate the basic physical condition as “bad” in order to increase the reliability.
- the first basic physical condition estimating unit 310 of the present embodiment includes a frequency gradient time-series waveform obtained from the frequency gradient time-series waveform computing unit 210, a time series waveform of the distribution rate obtained from the distribution rate computing unit 210, and a fatigue curve.
- a frequency gradient time-series waveform obtained from the frequency gradient time-series waveform computing unit 210
- a time series waveform of the distribution rate obtained from the distribution rate computing unit 210
- a fatigue curve When three or more indices satisfy a predetermined standard among the fatigue curve (time series waveform of fatigue level) obtained from the computing means 230 and the homeostasis maintenance function level obtained from the homeostasis maintenance function level computation means 240 ( When “Yes” is determined in S110 of FIG. 8), “bad” is estimated.
- the predetermined criterion for estimating “bad” is set as follows.
- B Index obtained from the distribution rate calculating means 220 In the time series change of the distribution rate of the frequency gradient time series waveform using the zero cross method, 0 in a predetermined time range (usually set in the range of 60 to 120 seconds).
- C Index obtained from fatigue curve calculation means 230 Fatigue curve using peak detection method (frequency gradient time series waveform using peak detection method) during a predetermined time (usually set in the range of 3 to 10 minutes) Where the slope of the absolute value integration time series waveform) changes more significantly than the slope of the fatigue curve using the zero-cross method (frequency slope time series waveform integration of the frequency slope time-series waveform using the zero-cross method) When the fatigue curve using the peak detection method reaches a predetermined value or more when a predetermined time elapses (an index that estimates that the parasympathetic nerve activity is extremely dominant) (D) Index obtained from homeostasis maintenance function level calculating means 240 Of the homeostasis maintenance function levels obtained every 18 seconds, a level lower than the normal level, in the above example
- the first basic physical condition estimating means 310 of the present embodiment provides data that is not estimated as “bad” in three or more of the indicators (a) to (d) (“No” in S110 of FIG. 8). With respect to (determined data), it is estimated whether or not it corresponds to “good” satisfying a predetermined criterion by using the indices of the physical condition map calculating means 250 and the sensory map calculating means 260 (S120 in FIG. 8).
- the time series change obtained from the physical condition map calculation unit 250 is The point at which the calculation result is output (as described above, the first point and the second point are output after a predetermined time has passed, but the third and subsequent points are output every few minutes) is aligned with the coordinate origin.
- the previous point is also more than a predetermined value in the X-axis direction. It is set to be estimated as “good” when plotted at a distance (in the case of “Yes” in S120 of FIG. 8).
- the criteria (a) to (d) for which the basic physical condition is estimated to be “bad” and the criterion (e) for which the basic physical condition is estimated to be “good” are statistics for a number of cases described later. It is based on a statistical analysis, but is not limited to this. For example, data may be accumulated for each individual, and the condition may be set statistically for each individual.
- the second basic physical condition estimating means 320 when the data to be estimated does not satisfy both the “bad” and “good” criteria in the first basic physical condition estimating means 310 (“No” in S110 of FIG. 8). And when “No” is determined in S120).
- the second basic physical condition estimating means 320 is an index of a level that can be said to be normal to good with sympathetic nerve activity among time series changes in the homeostasis maintenance function level obtained by the homeostasis maintenance function level determination means 240 (the above-mentioned In the example, the appearance frequency of the level near the boundary between the levels 1 to 3) and the index of the level where parasympathetic nerve activity is dominant and requires attention (levels 4 to 6 in the above example) is compared.
- the ratio of the appearance frequency of the level 2 index which is the central index among the three levels that can be said to be normal to good, is compared with the level 4 index that needs to be noted. Basically, it can be estimated as “good” when the frequency of appearance of level 2 showing superior state with high sympathetic nerve activity is high and the frequency of appearance of level 4 showing precaution state with low parasympathetic nerve activity is low, When the appearance frequency is opposite, it can be estimated as “bad”, but the data to be analyzed by the second basic physical condition estimating means 320 is clearly “good”, “ Since it was not estimated as “bad”, data that is difficult to classify is assumed.
- the basic physical condition output unit 400 satisfies the above-described condition of the first basic physical condition estimation unit 310 (when “Yes” is determined in S110 of FIG. 8 or “Yes” in S120).
- the basic physical condition level is output as “bad” (S111 in FIG. 8) or “good” (S121 in FIG. 8) as the estimation result.
- the condition of the first basic physical condition estimating means 310 is not satisfied (when “No” is determined in S110 of FIG. 8 and “No” is determined in S120), the second basic physical condition estimating means is used. “Good”, “bad”, and “intermediate state” of the estimation results 320 are output (S131 in FIG. 8).
- the basic physical condition output unit 400 outputs “good”, “bad”, or “intermediate state”, which is an estimation result of the basic physical condition, through a medium that can be recognized by a person.
- the in-vehicle monitor estimates the basic physical condition estimation time every time. Display the results.
- the display method may be characters or symbols. As a symbol, for example, the symbol “sunny” of the weather is used for “good”, and the symbol “rain” of the weather is used for “bad”. In the case of “intermediate state”, the symbol “cloudy” of weather can be used.
- a plurality of types of characters may be displayed, or these may be combined and displayed. It can also be output by voice via a vehicle-mounted speaker.
- the basic physical condition of the driver is determined for each predetermined basic physical condition estimation time. It can be estimated and output. Therefore, it is easy for the driver to be aware of the state in which he / she has been driving, for example, for the last 30 minutes. For example, if “bad” is continuously estimated as a basic physical condition, It is easy to encourage decisions such as taking a break.
- the vehicle state estimation device 100 mounted on the vehicle and the computer on the manager side via communication means not only the individual bioregulatory functional elements of the driver but also the basic physical condition in real time. Can be used to help managers make decisions.
- a biological signal estimation device 100 is mounted as a biological signal measurement device on a seat back of a driver's seat, and a biological state estimation device 100 which is a computer to which data of back sound and vibration information measured by the biological signal measurement device 1 is input is mounted.
- the subject was seated in a car that was being run.
- the biological state estimation device 100 uses a product name “Sleep Buster” manufactured by Delta Touring Co., Ltd.
- test subject was a healthy Japanese man in his 60's who performed continuous operation for about 40 minutes multiple times on different days.
- the subject self-reported his / her physical condition after driving. Self-assessment was made in five stages: “good”, “slightly good”, “normal”, “slightly bad”, and “bad”.
- the ambiguous cases of “slightly good”, “normal”, and “slightly bad” are excluded from self-reports, and the driving data of 55 cases that the subject has clearly determined as “good” and “bad”. Compared with the estimation results of basic physical condition by the method of.
- the condition (b) is that the distribution rate at 0.0017 Hz decreases by 20% or more in 90 seconds, In the meantime, it was set when the distribution rate of 0.0053 Hz increased by 20% or more, and a chi-square test was performed in comparison with the subjectivity of the subject.
- the condition (c) is a range of 6 minutes, and the slope of the fatigue curve using the peak detection method is There is one or more places that change to more than 1.5 times the slope of the fatigue curve using the zero cross method, and the fatigue curve using the peak detection method is greater than 0.03 after 30 minutes
- the chi-square test was performed in comparison with the subjectivity of the subjects.
- the condition (d) is determined as levels 4 to 6 in the above example in 6 minutes. It was set when the judgment of level 7 to 11 appeared 10 times or more, or chi-square test compared with the subjectivity of the subject.
- the physical condition map calculation means 250 obtains the first determination result from the start of measurement. It was examined whether or not the coordinate point of the second determination result was plotted in the fourth quadrant when the coordinate origin was set. Similarly, the coordinate point of the second determination result is set to a predetermined scale in the positive direction of the X axis when the first determination result from the start of measurement is matched with the coordinate origin by all of the 55 cases of travel data. Above (in this experiment example, since the separation distance of many cases (23 cases) out of 38 cases of subjective evaluation “good” was scale 5 or more, set the scale 5 or more) I investigated.
- the first basic physical condition estimation unit 310 has an estimation result that the basic physical condition is “good”.
- the first basic physical condition estimating means 310 first performs the above (a) to (d).
- second basic physical condition estimating means 320 Of the homeostatic function level calculated by the homeostatic function level calculating means 240 of the biological state estimating apparatus 100 the total number of appearances of levels 1 to 6 is set to 1.
- the appearance ratio of level 2 indicating a state in which sympathetic nerve activity is dominant and level 4 indicating a state in which parasympathetic nerve activity is dominant is obtained.
- the basic physical condition estimated by the second basic physical condition estimating means 320 using the probability table of Table 8 is as shown in the following table.
- the running data of all 55 cases are used to create a probability table.
- the basic physical condition is not estimated by the first basic physical condition estimating means 310, the physical condition is estimated. Accordingly, the following table shows the results of comparative examination of 29 cases excluding 26 cases estimated as “good” or “bad” by the first basic physical condition estimating means 310.
- the biological state estimation apparatus 100 first estimates the “bad” state in the first basic physical condition estimation unit 310 for the estimation target data (S110).
- the state of “good” is estimated (S120), and when neither of them is estimated, the second basic physical condition estimating means uses the Bayes estimation probability table shown in Table 8 Based on this, it is estimated whether it is “good”, “bad”, or “intermediate state” (indicated in the above table as “intermediate”) (S130). 55 cases evaluated as “good” or “bad” are used.
- the data finally estimated as “intermediate” in the biological state estimation device 100 does not match the subjective evaluation of the subject. Therefore, while excluding the “intermediate” data (11 cases), the first basic physical condition estimation means 310 estimates “bad” (failure: 7 cases), and excludes the “bad” data.
- the second basic physical condition estimating means except for the data estimated as “good” (good: 19 cases) and the data estimated as “bad” and “good” in the first basic physical condition estimating means 310.
- the data estimated as “bad” and “good” (bad: 7 cases, good: 11 cases) that is, the estimation results finally output by the basic physical condition output means 400 for the data without duplication.
- the table below summarizes the results of the subjective evaluation of the subjects.
- Example 2 a driver's truck's driver's seat is equipped with a sleep buster (registered trademark) manufactured by Delta Touring Co., Ltd. as a biological signal measuring device 1, and a biological signal of a professional driver is collected.
- the biological condition estimation apparatus 100 in which each estimation criterion shown in FIG. 1 is set, the analysis according to the flowchart shown in FIG. 8 is performed, and the physical condition of the subject every 30 minutes is expressed as “good”, “intermediate”, “ Estimated in three stages of “bad”.
- the subject professional drivers were seven men from their 20s to 50s, and the analysis was conducted on the total number of operations 71 times of all subjects.
- each subject reported his / her subjective physical condition on the day of operation in five stages from “abnormal” (level: 1) to “excellent” (level: 5) after the operation ended.
- the number of times of operation is one time (one operation) from the operation start time to the operation end time of the subject work day on each subject's work day (there may be a date on the calendar such as night shift). It counts and includes the continuous driving for several hours and the rest time between them.
- the estimation result by the biological state estimation apparatus 100 is output once every about 30 minutes. Therefore, when a continuous operation of one hour or more is included in one operation, the biological state estimation device 100 can obtain a plurality of estimation results.
- the subjective evaluation of each subject on the day of operation is a single declaration at the end of one operation.
- FIGS. 9A and 9B show the results for a certain month of subjects A and B, and the ratio (“good”) of the total number of physical condition estimations during one operation performed by the biological state estimation device 100 ( The vertical axis on the right side of each graph) and the subjective physical condition evaluation (the vertical axis on the left side of each graph) after the end of the five-day operation of the subject are plotted by time of operation and shown in time series.
- Table 12 shows the result of the physical condition estimation and subjective evaluation of the subject A in comparison with the previous day (previous operation), where the proportion of the physical condition estimation “good” has increased in comparison with the previous day.
- “+” indicates that the subjective evaluation is good
- “ ⁇ ” indicates that the percentage of the physical condition estimation “good” is decreasing and the subjective evaluation is poor, both of which are the previous day.
- “ ⁇ ” is displayed.
- the case where the increasing / decreasing tendency is indicated by a circle.
- Table 12 suggests that subjectivity and physical condition estimation tend to be similar except when the subjective evaluation is the same as the previous day.
- Table 13 summarizes the results of all subjects compared with the previous day (previous operation) similar to Table 12, and the coincidence rate of increase / decrease trend of all seven subjects is 0.71.
- p 0.032.
- a significant relationship was found between the increase and decrease in the proportion of “good” in the physical condition estimation by the biological state estimation device 100 and the subjective evaluation.
- the number of data for which the subjective evaluation was “bad” when the percentage of “good” in physical condition estimation was “increased” was significantly small, and the subjective evaluation was when the percentage of “good” in physical condition estimation was “decreased”
- the number of “bad” data was significantly larger.
- the number of responses that the subjective evaluation was the same as the previous day's operation was 32 out of 71 operations, and 38 responses were “normal (level: 3)” during 71 operations. It was also suggested that it is relatively difficult to be aware of exactly.
- FIG. 10 shows the time series data of the physical condition estimation result by the biological state estimation device 100 on the 14th and 15th day of the subject B and the operation start time from the 8th to the 16th.
- the operation on the 14th is 15:48 at the start of operation and the end of the operation is past 3:00 am on the 15th.
- the operation on the 15th is at 18:46 at the start of the operation and on the 16th in the morning. It was past 3 o'clock.
- the physical condition estimation result goes back and forth between “good” and “bad”, and “bad” estimation continues at the end.
- subject B since subject B responded that light sleepiness occurred at the end of the operation in the questionnaire after operation, it changed from early morning / day work until 11th to afternoon / night work after 14th.
- 12th and 13th were holidays, it was presumed that the body was not sufficiently adapted or switched to the work mode or night shift mode, and drowsiness or poor physical condition was felt.
- the 15th is almost “bad” in the first half, but “good” is also estimated in the second half. : Corresponds to the change to 2 (malfunction).
- the physical condition estimation result by the biological state estimation device 100 of the present embodiment estimates a state close to the subject's subjective evaluation, and is output once every about 30 minutes so that the subject can It is also suggested that changes in physical condition that are difficult to recognize can be reflected.
- FIG. 11 is a distribution diagram in which the correlation between the subjective evaluation of all subjects and the proportion of “good” in the physical condition estimation by the biological state estimation apparatus 100 is normalized, and a linear approximation of the distribution is obtained for each subject and shown by a thin line. Yes.
- the data located on the right side of the broken line obliquely drawn by 45 degrees indicates that the proportion of the physical condition estimation result “good” is higher than the subjective evaluation, and the data located on the left side of the broken line is compared with the subjective evaluation. This shows that the rate of physical condition estimation result “good” is low.
- the linear approximation line of each subject indicates that the closer the slope is to 45 degrees, the higher the positive correlation between the subjective evaluation and the physical condition estimation result, and the lower the slope is to 0 degrees, the lower the correlation is.
- a negative value indicates a high negative correlation. Since there are three levels of subjective evaluation, “good”, “intermediate”, and “bad”, the physical condition estimation results by the biological state estimation device 100 tend to spread in the horizontal direction with respect to the subjective evaluation. However, it shows a generally positive slope, and FIG. 11 also suggests that there is a certain degree of correlation between the physical condition estimation by the biological state estimation device 100 and the subjective evaluation.
- the analysis is performed using the computer program set in the biological state estimation device 100 which is an in-vehicle computer and the data stored in the storage unit.
- the analysis target data is transmitted from the in-vehicle biological state estimation apparatus 100 to the operation manager's computer via a communication line (wireless or the like) so that the operation manager's computer can also analyze the data in real time.
- the data stored in the in-vehicle biological state estimation device 100 may be taken out and analyzed afterward on the operation manager's computer. By collecting such data, the operation manager can grasp the situation at the time of driving for each driver, and can also use it to give advice for more appropriate driving.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Psychology (AREA)
- Psychiatry (AREA)
- Educational Technology (AREA)
- Hospice & Palliative Care (AREA)
- Social Psychology (AREA)
- Developmental Disabilities (AREA)
- Child & Adolescent Psychology (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
The present invention estimates the fundamental physical condition of a person. The present invention calculates, for each predetermined determination time set in advance, each of a plurality of indicators indicating changes in the state of a bioregulation functional element, including indicators caused by fluctuation highly correlated with brain function, autonomic nervous function, body/mind fatigue, or sensation, said bioregulation functional element obtained from a bioregulation functional element determination means 200, and ascertains a time series variation thereof. Each time series variation is analyzed in order of priority by a fundamental physical condition estimating means 300. The physical condition can thereby be ascertained from a basic fluctuation performance of a human regulation system corresponding to a fundamental physical condition estimation time which is set so as to be longer than the determination time of each bioregulation functional element.
Description
本発明は、生体信号測定装置により測定した人の生体信号に基づき、人の基礎的な体調を推定する生体状態推定装置、生体状態推定方法及びコンピュータプログラムに関する。
The present invention relates to a biological state estimating device, a biological state estimating method, and a computer program for estimating a basic physical condition of a person based on a human biological signal measured by a biological signal measuring device.
本発明者らは、特許文献1~5等において、人の上体の中で背部の体表面に生じる振動を生体信号測定装置により検出し、人の状態を解析する技術を提案している。人の上体背部から検出される心臓と大動脈の運動から生じる音・振動情報は、心臓と大動脈の運動から生じる圧力振動であり、心室の収縮期及び拡張期の情報と、循環の補助ポンプとなる血管壁の弾力情報及び反射波の情報を含んでいる。すなわち、心臓と大動脈の運動から背部表面に生じる1Hz近傍の背部体表脈波(Aortic Pulse Wave(APW))を含む)や、心拍に伴って背部側に伝わる音(「疑似心音」(本明細書では胸部側から採取される心臓の音である心音に対して、背部側で採取される心臓の音を「疑似心音」とする))の情報を含んでいる。そして、心拍変動に伴う信号波形は交感神経系及び副交感神経系の神経活動情報を含み、大動脈の揺動に伴う信号波形には交感神経活動の情報を含んでいる。
In the patent documents 1 to 5 and the like, the present inventors have proposed a technique for detecting a vibration generated on the body surface of the back in a human upper body with a biological signal measuring device and analyzing a human state. Sound / vibration information detected from the heart and aorta motion detected from the upper back of a person is pressure vibration generated from the heart and aorta motion. Information on ventricular systole and diastole, circulation auxiliary pump, It includes elasticity information of the blood vessel wall and reflected wave information. That is, the back body surface pulse wave (including Aortic Pulse Wave (APW)) around 1 Hz generated on the back surface from the motion of the heart and aorta, and the sound transmitted to the back side with the heartbeat (“pseudo heart sound” (this specification) The book includes information on the heart sound, which is a heart sound collected from the chest side, as a “pseudo heart sound”). The signal waveform associated with heart rate variability includes sympathetic nervous system and parasympathetic nervous system nerve activity information, and the signal waveform associated with aortic oscillation includes sympathetic nerve activity information.
特許文献1では、採取した生体信号(音・振動情報)から抽出した1Hz近傍の背部体表脈波(APW)の時系列波形に所定の時間幅を適用してスライド計算を行って周波数傾きの時系列波形を求め、その変化の傾向から、例えば、振幅が増幅傾向にあるか、減衰傾向にあるかなどによって生体状態の推定を行っている。また、生体信号を周波数解析し、予め定めたULF帯域(極低周波帯域)からVLF帯域(超低周波帯域)に属する機能調整信号、疲労受容信号及び活動調整信号に相当する各周波数のパワースペクトルを求め、各パワースペクトルの時系列変化から人の状態を判定することも開示している。疲労受容信号は、通常の活動状態における疲労の進行度合いを示すため、これに併せて、機能調整信号や活動調整信号のパワースペクトルの優勢度合いを比較することにより、人の状態(交感神経優位の状態、副交感神経優位の状態など)を判定することができる。また、これら3つの信号に相当する周波数成分のパワースペクトルの値の合計を100とした際の各周波成分の分布率を時系列に求め、その分布率の時系列変化を利用して人の状態を判定することも開示している。
In Patent Document 1, slide calculation is performed by applying a predetermined time width to a time series waveform of a back body surface pulse wave (APW) near 1 Hz extracted from a collected biological signal (sound / vibration information), and a frequency slope is calculated. A time-series waveform is obtained, and the biological state is estimated from the tendency of the change depending on, for example, whether the amplitude tends to be amplified or attenuated. In addition, the biological signal is subjected to frequency analysis, and the power spectrum of each frequency corresponding to the function adjustment signal, fatigue acceptance signal, and activity adjustment signal belonging to a predetermined ULF band (very low frequency band) to VLF band (very low frequency band). And determining the state of a person from the time series change of each power spectrum. Since the fatigue acceptance signal indicates the degree of progress of fatigue in the normal activity state, in addition to this, by comparing the degree of dominance of the power spectrum of the function adjustment signal and the activity adjustment signal, Status, parasympathetic dominant status, etc.). In addition, the distribution rate of each frequency component is obtained in a time series when the sum of the power spectrum values of the frequency components corresponding to these three signals is set to 100, and the human condition is obtained using the time series change of the distribution rate. Is also disclosed.
特許文献2では、生体状態の定量化手法として、生体状態を体調マップ及び感覚マップとして表示する技術を提案している。これは、上記したAPWを周波数分析し、対象となる解析区間について、解析波形を両対数軸表示に表し、その解析波形を低周波帯域、中周波帯域、高周波帯域に分け、区分けした解析波形の傾きと、全体の解析波形の形とから一定の基準に基づいて解析波形の点数化を行い、それを座標軸にプロットしたものである。体調マップは、自律神経系の制御の様子を交感神経と副交感神経のバランスとして見たものであり、感覚マップは、体調マップに心拍変動の変化の様子を重畳させたものである。
Patent Document 2 proposes a technique for displaying a biological state as a physical condition map and a sensory map as a quantification method of the biological state. This is a frequency analysis of the APW described above, and for the analysis section to be analyzed, the analysis waveform is shown in a logarithmic axis display, the analysis waveform is divided into a low frequency band, a middle frequency band, and a high frequency band, and the divided analysis waveforms The analysis waveform is scored based on a certain standard from the slope and the shape of the entire analysis waveform, and plotted on the coordinate axes. The physical condition map is a state in which the state of control of the autonomic nervous system is viewed as a balance between the sympathetic nerve and the parasympathetic nerve, and the sensory map is obtained by superimposing the state of change of heartbeat variability on the physical condition map.
特許文献3~5では、恒常性維持機能レベルを判定する手段を開示している。恒常性維持機能レベル判定する手段は、周波数傾き時系列波形の微分波形の正負、周波数傾き時系列波形を積分した積分波形の正負、ゼロクロス法を利用した周波数傾き時系列波形とピーク検出法を利用した周波数傾き時系列波形をそれぞれ絶対値処理して得られた各周波数傾き時系列波形の絶対値等のうち、少なくとも1つ以上を用いて判定する。これらの組み合わせにより、恒常性維持機能のレベルがいずれに該当するかを求める。例えば、周波数傾きと積分値を用いて、所定以上の場合に「恒常性維持機能レベル1」と判定し、あるいは、微分値が所定値以下であって、かつ、2つの絶対値のうちの「ピーク優位」の場合に「恒常性維持機能レベル4」と判定するように設定できる。これらの組み合わせ、判定の際の閾値等は多数の被験者のデータを統計処理して決定している。また、恒常性維持機能のレベルは、例えば、5~7段階に分け、恒常性維持機能の優れる場合(集中度合いの高い場合等)から、恒常性維持機能が劣る場合(過緊張状態の場合、脇見運転等による集中力の低下等)を判定する。モニタに表示するに当たっては、5~7段階のレベルを文字で表示したり、あるいは、中間レベル(普通の状態)以上の場合には、一括して恒常性維持機能が優れる場合と判定し、それよりも下の場合には一括して恒常性維持機能が劣る場合と判定し、それぞれについて、モニタに異なる色彩表示がなされるように設定したりすることも開示されている。
Patent Documents 3 to 5 disclose means for determining the homeostasis maintenance function level. Consistency maintenance function level judgment means uses positive / negative of differential waveform of frequency gradient time series waveform, positive / negative of integral waveform integrating frequency gradient time series waveform, frequency gradient time series waveform using zero cross method and peak detection method The determination is made using at least one of the absolute values of the frequency gradient time series waveforms obtained by performing absolute value processing on the frequency gradient time series waveforms. Based on these combinations, the level of the homeostasis maintenance function is determined. For example, using a frequency gradient and an integral value, it is determined as “constancy maintaining function level 1” when it is equal to or greater than a predetermined value, or the differential value is equal to or smaller than a predetermined value and “ In the case of “peak advantage”, it can be set to be determined as “constancy maintaining function level 4”. These combinations, threshold values for determination, and the like are determined by statistically processing data of a large number of subjects. In addition, the level of the homeostasis maintenance function is divided into, for example, 5 to 7 stages, from the case where the homeostasis maintenance function is excellent (when concentration is high, etc.) to the case where the homeostasis maintenance function is inferior (when overstressed, Decrease of concentration due to driving aside) When displaying on the monitor, the level of 5 to 7 levels is displayed in characters, or if it is higher than the intermediate level (normal state), it is judged that the homeostasis maintenance function is excellent at once. In other cases, it is determined that the homeostasis maintenance function is inferior collectively, and the monitor is set so that different color displays are made.
非特許文献1では、指尖容積脈波情報に関し、交感神経の情報を反映するパワー値の周波数傾き時系列波形を求め、それを絶対値処理した積分値を疲労度として時系列にプロットし、これにより疲労曲線を描き、筋疲労を捉える技術が開示されている。非特許文献2では、エアパックセンサを用いて人の背部から取得した生体信号を同様の手法で演算処理して疲労曲線を描き、筋疲労を捉える技術が開示されている。すなわち、交感神経の情報を反映したパワー値の周波数傾き時系列波形(APWの場合にはゼロクロス法による周波数傾き時系列波形)を用いることによって筋疲労の状態を把握することができる。
In Non-Patent Document 1, regarding fingertip plethysmogram information, a frequency gradient time series waveform of a power value reflecting sympathetic nerve information is obtained, and an integral value obtained by processing the absolute value is plotted as a fatigue level in time series. Thus, a technique for drawing a fatigue curve and capturing muscle fatigue is disclosed. Non-Patent Document 2 discloses a technique for capturing muscle fatigue by computing a biological signal obtained from a human back using an air pack sensor and drawing a fatigue curve using a similar method. That is, the state of muscle fatigue can be grasped by using a frequency gradient time-series waveform of power values reflecting sympathetic information (in the case of APW, a frequency gradient time-series waveform by the zero cross method).
上記した技術は、いずれも、生体調節機能に関してゆらぎに起因する各要素を分析して人の状態を判定するものであるが、生体信号に対する演算処理がそれぞれ異なり、出力される判定結果として、入眠予兆のタイミングを判定したり、疲労の度合いを判定したり、恒常性維持機能レベルの変化を判定したり、それぞれの目的に応じたものとなっている。しかし、これらは、いずれも別々に出力される。特許文献4では、入眠予兆現象、切迫睡眠現象、覚低走行状態、恒常性維持機能レベル、初期疲労状態、気分判定など、生体調節機能のゆらぎに起因する各要素に関する複数の指標の時系列変化を1台の装置で判定し、それらを1つのモニタに出力する技術も開示しているが、いずれにしても、各指標の時系列変化を個別に判定していることに変わりない。
Each of the above-described techniques is to determine each person's state by analyzing each element caused by fluctuations related to the bioregulatory function. The timing of the sign is determined, the degree of fatigue is determined, the change in the homeostasis maintenance function level is determined, and the purpose is determined. However, these are all output separately. In Patent Literature 4, time-series changes of a plurality of indicators related to each element caused by fluctuations in the biological regulation function, such as a sleep onset symptom phenomenon, an imminent sleep phenomenon, a low running state, a homeostasis maintenance function level, an initial fatigue state, and mood determination However, in any case, the time-series change of each index is individually determined.
特許文献4に開示の技術のように様々な指標を求めることは、人の状態、特に運転者の状態をより正確に把握するために非常に重要であることはもとよりであるが、上記従来の技術においては、自律神経系に関する指標を基本的に用いて、それに対応する人の状態をより正確に出力することに重点がおかれているため、判定対象となる生体信号の抽出時間(判定時間)が比較的短く、数十秒から数分に1回といった頻度で判定結果を出力している。しかし、例えば、運転中、運転者あるいはその情報を遠隔的に監視する管理者において、30分、1時間といったある程度長い時間に亘る基礎的な体調(その時間帯における支配的、代表的ないしは平均的な体調)を概略的に把握したいという要請もある。つまり、例えば、1時間運転したが、その間、基本的に、良好な体調のもとで運転していたと概略的に推定できるのか、体調不良の状態で恒常性を維持する生体調節機能に助けられて運転していたと概略的に推定できるのかといったことを、運転者自ら把握ができれば、早めに休憩をとるなどの自己判断を促すことができる。
Although obtaining various indexes as in the technique disclosed in Patent Document 4 is very important for more accurately grasping the state of a person, particularly the state of a driver, In technology, since the focus is on using indices related to the autonomic nervous system to more accurately output the state of the corresponding person, the extraction time (determination time) of the biological signal to be determined ) Is relatively short, and the determination result is output at a frequency of once every several tens of seconds to several minutes. However, for example, in driving, a driver or a manager who remotely monitors the information, a basic physical condition (dominant, representative or average in that time zone) over a relatively long time such as 30 minutes, 1 hour. There is also a request to get a general understanding of the physical condition. In other words, for example, it was driven for 1 hour, but during that time, it can basically be estimated that it was driven under good physical condition, or it can be helped by the bioregulatory function that maintains homeostasis in a poor physical condition If it is possible for the driver to grasp roughly whether he / she was driving, he / she can encourage self-determination such as taking a break early.
本発明は、上記した点に鑑みなされたものであり、比較的短時間で次々と判定される生体調節機能別のゆらぎに起因する各要素(生体調節機能要素)の時系列変化の情報を複数用いると共に、これを所定の条件下で処理し、より長時間に設定された基礎的体調推定時間における人の基礎的な体調を出力し、運転者等による概略的な体調把握を容易にすることができる生体状態推定装置、生体状態推定方法及びコンピュータプログラムを提供することを課題とする。
The present invention has been made in view of the above points, and a plurality of pieces of information on time-series changes of each element (bioregulatory function element) resulting from fluctuations for each bioregulatory function determined one after another in a relatively short time. Use and process this under specified conditions to output the basic physical condition of the person at the basic physical condition estimation time set for a longer time, making it easier for the driver to grasp the general physical condition It is an object to provide a biological state estimation device, a biological state estimation method, and a computer program.
上記課題を解決するため、本発明者が鋭意検討し、次の点に着目して本発明を完成するに至った。すなわち、人の上体背部から検出される心臓と大動脈の運動から生じる音・振動情報、特に、それらのうちの1Hz近傍の背部体表脈波(APW)は、血管の弾性情報や反射波の情報等を含んでいる。このため、背部体表脈波(APW)を解析して後述の周波数傾き時系列波形を求めることにより、生体調節機能要素である生体の総合的なゆらぎの情報を求めることができる。このゆらぎの情報の中で周波数毎の変動の様子を捉えると、周波数毎の分布率が脳波(θ波、α波、β波)のゆらぎの要素が反映された変動の仕方をとるため、その時系列波形を用いて解析することにより、脳波のどの周波数帯域が支配的なゆらぎなのかといったゆらぎの情報を捉えることができる。また、ゼロクロス法による周波数傾き時系列波形が、自律神経系の支配するところにある一方で、脳波のゆらぎを反映しているところは、ゼロクロス法による周波数傾き時系列波形を周波数解析し、その中で、0.0017Hzに代表される機能調整信号、0.0035Hzに代表される疲労受容信号、0.0053Hzに代表される活動調整信号の3点の周波数成分のパワースペクトル比で示されるものであり、いわば周波数解析したパワースペクトルの形を表す3点の周波数成分の分布率は、その急変する部位を自律神経反応というよりも内分泌系の機能の発現を示す部位として捉えられると考えられる。また、ゼロクロス法により求めた周波数傾き時系列波形は、絶対値処理することにより交感神経の発現の度合いを示し、ピーク検出法により求めた周波数傾き時系列波形は副交感神経の発現の度合いを示す。よって、これらを用いることで生体調節機能の発現の様子をより詳しく捉えることができる。例えば、ゼロクロス法により求めた周波数傾き時系列波形を絶対値処理し、これを積分することで人の疲労の度合いを示す疲労曲線が求められ、筋疲労の状態を把握できる。また、ゼロクロス法を用いた各周波数傾き時系列波形の微分波形の正負、ゼロクロス法又はピーク検出法の各周波数傾き時系列波形の絶対値等のうち、少なくとも1つ以上を用いることにより、恒常性維持機能レベルの変動の様子を捉えることができる。疲労曲線、恒常性維持機能レベルの時系列波形も、周波数傾き時系列波形から派生したものであり、自律神経系、脳機能等のゆらぎの情報を反映した指標となる。これに加え、肉体・精神疲労への関連性の高い指標(体調マップ、感覚マップ)、及び、感覚への関連性の高い指標(恒常性維持機能レベルの注意、警告に相当するレベルの頻度から求められる疲労として意識する感覚あるいは倦怠感等が生じている頻度)も求める。これらは、脳、自律神経系、内分泌系の各機能のゆらぎの様子を複数の観点から捉えているものであり、これらの複数種類のゆらぎの指標を後述のように統計的に処理することで、分析対象の人の基礎的な体調がどのような状態であるかを推定できると考えられる。
In order to solve the above-mentioned problems, the present inventor diligently studied and came to complete the present invention paying attention to the following points. That is, sound / vibration information generated from the motion of the heart and aorta detected from the upper back of a person, in particular, the back body surface pulse wave (APW) in the vicinity of 1 Hz among them is the elasticity information of the blood vessels and the reflected wave. Contains information. For this reason, by analyzing the back body surface pulse wave (APW) and obtaining a frequency gradient time-series waveform described later, it is possible to obtain information on the overall fluctuation of the living body which is a bioregulatory functional element. In this fluctuation information, if the state of fluctuation for each frequency is captured, the distribution rate for each frequency takes the fluctuation method reflecting the fluctuation element of the brain wave (θ wave, α wave, β wave). By analyzing using the series waveform, fluctuation information such as which frequency band of the electroencephalogram is the dominant fluctuation can be captured. In addition, while the frequency-slope time-series waveform by the zero-cross method is under the control of the autonomic nervous system, the frequency-sequential time-series waveform by the zero-cross method is frequency-analyzed. The function adjustment signal typified by 0.0017 Hz, the fatigue acceptance signal typified by 0.0035 Hz, and the activity spectrum signal typified by 0.0053 Hz are represented by power spectrum ratios of three frequency components. In other words, the distribution rate of the three frequency components representing the shape of the power spectrum obtained by frequency analysis can be considered as a site showing the expression of endocrine function rather than an autonomic nervous reaction. The frequency gradient time series waveform obtained by the zero cross method indicates the degree of sympathetic nerve expression by performing absolute value processing, and the frequency gradient time series waveform obtained by the peak detection method indicates the degree of parasympathetic nerve expression. Therefore, by using these, it is possible to capture the expression of the biological regulation function in more detail. For example, an absolute value process is performed on a frequency gradient time series waveform obtained by the zero cross method, and by integrating this, a fatigue curve indicating the degree of human fatigue is obtained, and the state of muscle fatigue can be grasped. Further, by using at least one or more of positive / negative of the differential waveform of each frequency gradient time series waveform using the zero cross method, the absolute value of each frequency gradient time series waveform of the zero cross method or the peak detection method, etc. It is possible to capture changes in the maintenance function level. The time series waveform of the fatigue curve and the homeostasis maintenance function level is also derived from the frequency gradient time series waveform, and is an index reflecting information on fluctuations in the autonomic nervous system, brain function, and the like. In addition to this, indicators that are highly relevant to physical and mental fatigue (physical condition map, sensory map), and indicators that are highly relevant to sensation (attention level of homeostasis function level, frequency of the level equivalent to warning) The frequency at which a sense of fatigue or fatigue that is required as fatigue is required is also obtained. These capture the fluctuations of each function of the brain, autonomic nervous system, and endocrine system from multiple viewpoints, and statistically process these multiple types of fluctuation indices as described below. It is considered that the basic physical condition of the person to be analyzed can be estimated.
すなわち、本発明の生体状態推定装置は、生体信号測定装置により測定した人の生体信号を分析し、生体状態を推定する生体状態推定装置であって、前記生体信号を分析して、脳機能、自律神経機能、肉体・精神疲労又は感覚との関連性の高いゆらぎに起因する指標を含む、生体調節機能要素の状態の変動を示す複数の指標を、それぞれ予め設定された所定の判定時間毎に算出してその時系列変化を求める生体調節機能要素判定手段と、前記生体調節機能要素判定手段における前記各生体調節機能要素の各判定時間よりも長く設定される基礎的体調推定時間に対応した、前記人の基礎的な体調を推定する基礎的体調推定手段と、前記基礎的体調推定手段によって推定される前記人の基礎的な体調のレベルを、前記所定の基礎的体調推定時間の経過毎に出力する基礎的体調出力手段とを有し、前記基礎的体調推定手段が、前記生体調節機能要素判定手段によって求められる前記各生体調節機能要素の状態に関する各時系列変化を、予め設定された優先順位に従って分析し、所定の基準に照らして、前記所定の基礎的体調推定時間における前記人の基礎的な体調を推定する手段であることを特徴とする。
That is, the biological state estimation device of the present invention is a biological state estimation device that analyzes a biological signal of a person measured by a biological signal measurement device and estimates a biological state, and analyzes the biological signal to obtain a brain function. A plurality of indicators indicating fluctuations in the state of the bioregulatory functional element, including indicators caused by fluctuations that are highly related to autonomic nervous function, physical / mental fatigue, or sensation, for each predetermined determination time set in advance Corresponding to a basic physical condition estimation time set longer than each determination time of each of the biological adjustment functional elements in the biological adjustment functional element determination means, the biological adjustment functional element determination means for calculating and calculating the time series change, Basic physical condition estimating means for estimating a basic physical condition of the person, and the level of the basic physical condition of the person estimated by the basic physical condition estimating means, the predetermined basic physical condition estimation time Basic physical condition output means for outputting every time, and the basic physical condition estimation means presets each time series change relating to the state of each of the bioregulatory functional elements determined by the bioregulatory functional element determination means And a means for estimating the basic physical condition of the person at the predetermined basic physical condition estimation time in accordance with a predetermined criterion.
前記基礎的体調推定手段は、前記生体調節機能要素判定手段により求められた前記各生体調節機能要素に関する各時系列変化うち、優先順位の高い前記生体調節機能要素の時系列変化が、所定の基準を満たす場合に、前記所定の基礎的体調推定時間における前記人の基礎的な体調を、所定のレベルと推定する第1基礎的体調推定手段と、前記第1基礎的体調推定手段における推定対象とならない場合に、前記第1基礎的体調推定手段において用いた前記生体調節機能要素よりも優先順位の低い他の生体調節機能要素に関する前記時系列変化を用い、前記人の基礎的な体調を、所定の基準に基づいて分類される所定のレベルと推定する第2基礎的体調推定手段とを有し、前記基礎的体調出力手段が、前記第1基礎的体調推定手段又は前記第2基礎的体調推定手段によって推定される前記人の基礎的な体調のレベルを出力する構成とすることが好ましい。
The basic physical condition estimating means includes a time series change of the bioregulatory functional element having a high priority among the time series changes related to each bioregulatory functional element determined by the bioregulatory functional element determining means, and a predetermined reference The first basic physical condition estimating means for estimating the basic physical condition of the person at the predetermined basic physical condition estimation time as a predetermined level, and an estimation target in the first basic physical condition estimating means If not, using the time-series change related to other bioregulatory function elements having a lower priority than the bioregulatory function elements used in the first basic physical condition estimating means, the basic physical condition of the person is determined in advance. Second basic physical condition estimating means for estimating a predetermined level classified based on the criteria of the basic physical condition output means, wherein the basic physical condition output means is the first basic physical condition estimating means or the second It is preferable to adopt a configuration for outputting the level of the person basic physical condition estimated by the foundation basis physical condition estimation means.
前記第1基礎的体調推定手段は、前記生体調節機能要素判定手段において判定された複数の前記生体調節機能要素のうち、前記自律神経機能への関連性の高い指標又は前記肉体・精神疲労への関連性の高い指標の時系列変化を用い、その時系列変化が所定の基準を満たす場合に、前記人の基礎的な体調のレベルを、「良好」又は「不良」と推定する構成とすることが好ましい。
前記第1基礎的体調推定手段は、前記自律神経機能への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、前記人の基礎的な体調を「不良」と推定し、前記肉体・精神疲労への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、前記人の基礎的な体調を「良好」と推定する手段であることが好ましい。 The first basic physical condition estimating means includes an index highly relevant to the autonomic nerve function or the physical / mental fatigue among the plurality of biological adjustment functional elements determined by the biological adjustment functional element determination means. Using a time-series change of a highly relevant index, and when the time-series change satisfies a predetermined standard, the basic physical condition level of the person may be estimated as “good” or “bad” preferable.
The first basic physical condition estimating means estimates the basic physical condition of the person as “bad” when a time-series change of an index highly relevant to the autonomic nervous function satisfies a predetermined criterion, Preferably, when the time series change of the index highly related to the physical / mental fatigue satisfies a predetermined standard, it is a means for estimating the basic physical condition of the person as “good”.
前記第1基礎的体調推定手段は、前記自律神経機能への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、前記人の基礎的な体調を「不良」と推定し、前記肉体・精神疲労への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、前記人の基礎的な体調を「良好」と推定する手段であることが好ましい。 The first basic physical condition estimating means includes an index highly relevant to the autonomic nerve function or the physical / mental fatigue among the plurality of biological adjustment functional elements determined by the biological adjustment functional element determination means. Using a time-series change of a highly relevant index, and when the time-series change satisfies a predetermined standard, the basic physical condition level of the person may be estimated as “good” or “bad” preferable.
The first basic physical condition estimating means estimates the basic physical condition of the person as “bad” when a time-series change of an index highly relevant to the autonomic nervous function satisfies a predetermined criterion, Preferably, when the time series change of the index highly related to the physical / mental fatigue satisfies a predetermined standard, it is a means for estimating the basic physical condition of the person as “good”.
前記第2基礎的体調推定手段は、前記第1基礎的体調推定手段において「良好」又は「不良」と推定されない場合に、前記生体調節機能要素判定手段において判定された複数の前記生体調節機能要素のうち、前記感覚への関連性の高い指標の時系列変化から、前記人の基礎的な体調のレベルを、「良好」、「不良」又はそれらの「中間状態」のいずれかと推定する構成であることが好ましい。
The second basic physical condition estimation means includes a plurality of the biological adjustment functional elements determined by the biological adjustment functional element determination means when the first basic physical condition estimation means does not estimate "good" or "bad" Among them, from a time-series change of an index highly relevant to the sense, the basic physical condition level of the person is estimated as either “good”, “bad” or their “intermediate state”. Preferably there is.
本発明の生体状態推定方法は、コンピュータを用いて、生体信号測定装置により測定した人の生体信号を分析し、生体状態を推定する生体状態推定方法であって、前記生体信号を分析して、脳機能、自律神経機能、肉体・精神疲労又は感覚との関連性の高いゆらぎに起因する指標を含む、生体調節機能要素の状態の変動を示す複数の指標を、それぞれ予め設定された所定の判定時間毎に算出してその時系列変化を求める生体調節機能要素判定手順と、前記生体調節機能要素判定手順における前記各生体調節機能要素の各判定時間よりも長く設定される基礎的体調推定時間に対応した、前記人の基礎的な体調を推定する基礎的体調推定手順と、前記基礎的体調推定手順によって推定される前記人の基礎的な体調のレベルを、前記所定の基礎的体調推定時間の経過毎に出力する基礎的体調出力手順とを有し、前記基礎的体調推定手順が、前記生体調節機能要素判定手順によって求められる前記各生体調節機能要素の状態に関する各時系列変化を、予め設定された優先順位に従って分析し、所定の基準に照らして、前記所定の基礎的体調推定時間における前記人の基礎的な体調を推定する手順であることを特徴とする。
The biological state estimation method of the present invention is a biological state estimation method for estimating a biological state by analyzing a human biological signal measured by a biological signal measurement device using a computer, and analyzing the biological signal, Predetermined predetermined judgments for each of a plurality of indicators showing fluctuations in the state of the bioregulatory functional elements, including indicators caused by fluctuations that are highly related to brain function, autonomic nervous function, physical / mental fatigue, or sensation Corresponding to the biological condition functional element determination procedure that calculates every time and obtains its time-series change, and the basic physical condition estimation time that is set longer than each determination time of each biological adjustment functional element in the biological adjustment function element determination procedure A basic physical condition estimation procedure for estimating the basic physical condition of the person, and a level of the basic physical condition of the person estimated by the basic physical condition estimation procedure, the predetermined basic physical condition A basic physical condition output procedure that outputs every time the estimated time of the physical condition elapses, and the basic physical condition estimation procedure is a time-series change related to the state of each of the bioregulatory function elements obtained by the bioregulatory function element determination procedure Is a procedure for analyzing the human body according to a preset priority order and estimating the basic physical condition of the person at the predetermined basic physical condition estimation time in accordance with a predetermined standard.
前記生体状態推定方法の前記基礎的体調推定手順は、前記生体調節機能要素判定手順により求められた前記各生体調節機能要素に関する各時系列変化うち、優先順位の高い前記生体調節機能要素の時系列変化が、所定の基準を満たす場合に、前記所定の基礎的体調推定時間における前記人の基礎的な体調を、所定のレベルと推定する第1基礎的体調推定手順と、前記第1基礎的体調推定手順における推定対象とならない場合に、前記第1基礎的体調推定手順において用いた前記生体調節機能要素よりも優先順位の低い他の生体調節機能要素に関する前記時系列変化を用い、前記人の基礎的な体調を、所定の基準に基づいて分類される所定のレベルと推定する第2基礎的体調推定手順とを有し、前記基礎的体調出力手順が、前記第1基礎的体調推定手順又は前記第2基礎的体調推定手順によって推定される前記人の基礎的な体調のレベルを出力する構成であることが好ましい。
The basic physical condition estimation procedure of the biological condition estimation method includes: a time series of the biological regulation function element having a high priority among the time series changes related to each biological regulation function element obtained by the biological regulation function element determination procedure. A first basic physical condition estimating procedure for estimating a basic physical condition of the person at the predetermined basic physical condition estimation time as a predetermined level when the change satisfies a predetermined standard; and the first basic physical condition When it is not an estimation target in the estimation procedure, the human basis is used by using the time-series change related to another bioregulatory function element having a lower priority than the bioregulatory function element used in the first basic physical condition estimation procedure. A second basic physical condition estimation procedure for estimating a physical condition as a predetermined level classified based on a predetermined criterion, wherein the basic physical condition output procedure includes the first basic physical condition It is preferred estimation procedure or a configuration of outputting the level of the person basic physical condition estimated by the second basic physical condition estimation procedure.
本発明のコンピュータプログラムは、生体状態推定装置としてのコンピュータに、生体信号測定装置により測定した人の生体信号を分析し、生体状態を推定する生体状態推定手順を実行させるコンピュータプログラムであって、前記生体状態推定手順として、前記生体信号を分析して、脳機能、自律神経機能、肉体・精神疲労又は感覚との関連性の高いゆらぎに起因する指標を含む、生体調節機能要素の状態の変動を示す複数の指標を、それぞれ予め設定された所定の判定時間毎に算出してその時系列変化を求める生体調節機能要素判定手順と、前記生体調節機能要素判定手順における前記各生体調節機能要素の各判定時間よりも長く設定される基礎的体調推定時間に対応した、前記人の基礎的な体調を推定する基礎的体調推定手順と、前記基礎的体調推定手順によって推定される前記人の基礎的な体調のレベルを、前記所定の基礎的体調推定時間の経過毎に出力する基礎的体調出力手順とを実行させ、前記基礎的体調推定手順が、前記生体調節機能要素判定手順によって求められる前記各生体調節機能要素の状態に関する各時系列変化を、予め設定された優先順位に従って分析し、所定の基準に照らして、前記所定の基礎的体調推定時間における前記人の基礎的な体調を推定する手順であることを特徴とする。
The computer program of the present invention is a computer program that causes a computer as a biological state estimation device to execute a biological state estimation procedure for analyzing a biological signal of a person measured by a biological signal measurement device and estimating a biological state, As a biological state estimation procedure, the biological signal is analyzed, and fluctuations in the state of the biological regulatory functional element including an index caused by fluctuations highly related to brain function, autonomic nervous function, physical / mental fatigue, or sense are detected. A bioregulatory function element determination procedure for calculating a plurality of indicators shown at predetermined time intervals determined in advance and obtaining a time-series change thereof; and each determination of each bioregulatory function element in the biocontrol function element determination procedure A basic physical condition estimation procedure for estimating the basic physical condition of the person corresponding to the basic physical condition estimation time set longer than the time; A basic physical condition output procedure for outputting the basic physical condition level of the person estimated by the basic physical condition estimation procedure every time the predetermined basic physical condition estimation time elapses, and the basic physical condition estimation procedure Analyzing each time-series change regarding the state of each bioregulatory functional element obtained by the bioregulatory functional element determination procedure according to a preset priority, and in accordance with a predetermined standard, the predetermined basic physical condition It is a procedure for estimating the basic physical condition of the person at the estimated time.
前記コンピュータプログラムの前記基礎的体調推定手順は、前記生体調節機能要素判定手順により求められた前記各生体調節機能要素に関する各時系列変化うち、優先順位の高い前記生体調節機能要素の時系列変化が、所定の基準を満たす場合に、前記所定の基礎的体調推定時間における前記人の基礎的な体調を、所定のレベルと推定する第1基礎的体調推定手順と、前記第1基礎的体調推定手順における推定対象とならない場合に、前記第1基礎的体調推定手順において用いた前記生体調節機能要素よりも優先順位の低い他の生体調節機能要素に関する前記時系列変化を用い、前記人の基礎的な体調を、所定の基準に基づいて分類される所定のレベルと推定する第2基礎的体調推定手順とを実行し、前記基礎的体調出力手順が、前記第1基礎的体調推定手順又は前記第2基礎的体調推定手順によって判定される前記人の基礎的な体調のレベルを出力する構成であることが好ましい。
The basic physical condition estimation procedure of the computer program includes a time-series change of the bioregulatory function element having a high priority among the time-series changes of the bioregulatory function element obtained by the biocontrol function element determination procedure. A first basic physical condition estimation procedure for estimating the basic physical condition of the person at the predetermined basic physical condition estimation time as a predetermined level when the predetermined standard is satisfied; and the first basic physical condition estimation procedure If the subject is not subject to estimation in the first basic physical condition estimation procedure, the time series change relating to the other bioregulatory function elements having lower priority than the bioregulatory function elements used in the first basic physical condition estimation procedure is used, Performing a second basic physical condition estimation procedure for estimating physical condition as a predetermined level classified based on a predetermined criterion, wherein the basic physical condition output procedure includes the first physical condition output procedure. It is preferable that the foundation basis physical condition estimation procedure or configured to output a level of the person basic physical condition as determined by the second basic physical condition estimation procedure.
前記コンピュータプログラムの前記第1基礎的体調推定手順は、前記生体調節機能要素判定手順において判定された複数の前記生体調節機能要素のうち、前記自律神経機能への関連性の高い指標又は前記肉体・精神疲労への関連性の高い指標の時系列変化を用い、その時系列変化が所定の基準を満たす場合に、前記人の基礎的な体調のレベルを、「良好」又は「不良」と推定する構成であることが好ましい。
前記コンピュータプログラムの前記第2基礎的体調推定手順は、前記第1基礎的体調推定手順において「良好」又は「不良」と推定されない場合に、前記生体調節機能要素判定手順において判定された複数の前記生体調節機能要素のうち、前記感覚への関連性の高い指標の時系列変化から、前記人の基礎的な体調のレベルを、「良好」、「不良」又はそれらの「中間状態」のいずれかと推定する構成であることが好ましい。 The first basic physical condition estimation procedure of the computer program includes an index highly relevant to the autonomic nervous function among the plurality of biological regulatory function elements determined in the biological regulatory function element determination procedure, or the body A configuration that uses a time-series change of an index highly related to mental fatigue and estimates the basic physical condition level of the person as “good” or “bad” when the time-series change satisfies a predetermined standard It is preferable that
When the second basic physical condition estimation procedure of the computer program is not estimated as “good” or “bad” in the first basic physical condition estimation procedure, Among the bioregulatory functional elements, from the time-series change of the index highly relevant to the sense, the level of the basic physical condition of the person is either “good”, “bad” or their “intermediate state”. A configuration to be estimated is preferable.
前記コンピュータプログラムの前記第2基礎的体調推定手順は、前記第1基礎的体調推定手順において「良好」又は「不良」と推定されない場合に、前記生体調節機能要素判定手順において判定された複数の前記生体調節機能要素のうち、前記感覚への関連性の高い指標の時系列変化から、前記人の基礎的な体調のレベルを、「良好」、「不良」又はそれらの「中間状態」のいずれかと推定する構成であることが好ましい。 The first basic physical condition estimation procedure of the computer program includes an index highly relevant to the autonomic nervous function among the plurality of biological regulatory function elements determined in the biological regulatory function element determination procedure, or the body A configuration that uses a time-series change of an index highly related to mental fatigue and estimates the basic physical condition level of the person as “good” or “bad” when the time-series change satisfies a predetermined standard It is preferable that
When the second basic physical condition estimation procedure of the computer program is not estimated as “good” or “bad” in the first basic physical condition estimation procedure, Among the bioregulatory functional elements, from the time-series change of the index highly relevant to the sense, the level of the basic physical condition of the person is either “good”, “bad” or their “intermediate state”. A configuration to be estimated is preferable.
本発明によれば、脳機能、自律神経機能、肉体・精神疲労又は感覚との関連性の高いゆらぎに起因する指標を含む、生体調節機能要素の状態の変動を示す複数の指標を、それぞれ予め設定された所定の判定時間毎に算出し、その時系列変化を求め、各時系列変化を優先順位に従って分析することで、各生体調節機能要素の判定時間よりも長く設定される基礎的体調推定時間に対応した人の調節システムの基本となるゆらぎ性能から体調を求めることができる。すなわち、所定の基礎的体調推定時間内において、二律背反性のある複数の生体調節機能要素毎に求められる時系列変化に基づき、基本的な体調を推定するため、ゆらぎ性能毎に優先順位を統計的に求め、その優先順位に従った生体調節機能要素の指標を用いて、基礎的体調推定時間における基礎的な体調のレベル、例えば「良好」、「不良」を推定し、さらに、この推定に使用した生体調節機能によって基礎的な体調の分類ができない場合に、優先順位の低い他の生体調節機能に関する時系列変化を用いて、調節システムの外乱に対応する基礎的な体調のレベル、例えば、「良好」、「不良」、それらの「中間状態」などを推定して出力する。
According to the present invention, each of a plurality of indicators indicating fluctuations in the state of the bioregulatory functional element, including indicators caused by fluctuations highly related to brain function, autonomic nervous function, physical / mental fatigue, or sense, Basic physical condition estimation time that is set longer than the determination time of each bioregulatory functional element by calculating for each set predetermined determination time, obtaining its time series change, and analyzing each time series change according to priority The physical condition can be obtained from the fluctuation performance that is the basis of the human adjustment system. In other words, in order to estimate the basic physical condition based on the time-series changes required for each of a plurality of bioregulatory functional elements having a contradictory nature within a predetermined basic physical condition estimation time, the priority order is statistically determined for each fluctuation performance. The basic physical condition level at the basic physical condition estimation time, for example, “good” or “bad” is estimated using the indicators of the bioregulatory functional elements according to the priority order, and further used for this estimation. If the basic physical condition cannot be classified by the bioregulatory function, the level of the basic physical condition corresponding to the disturbance of the regulation system, for example, `` Estimate and output “good”, “bad”, and their “intermediate state”.
従って、本発明では、体調レベルに応じて関与する生体の調節機能要素(生体調節機能要素)の判定結果が別々に出力されるだけでなく、各生体調節機能要素の判定結果を利用して、各生体調節機能要素の判定結果とは別に基礎的な体調をゆらぎの持つ恒常性維持機能から推定して出力しており、運転者や管理者等は、過去30分や1時間等における基礎的な体調を一見して把握することができる。そのため、この情報が積み重なることで、運転者等は自らが休憩をとった方がよいなどの自己判断を行うことが可能となる。もちろん、従来の個別の生体調節機能要素の判定結果に基づいた警告と併用ないしはそれらの警告を優先することが好ましいが、基礎的な体調を定期的に出力することで、休憩判断その他の必要な行為(管理者からの警告など)をより適切に行うことができる。
Therefore, in the present invention, not only the determination result of the biological regulation function element (biological regulation function element) involved according to the physical condition level is output separately, but also using the judgment result of each biological regulation function element, Aside from the determination result of each bioregulatory functional element, the basic physical condition is estimated and output from the homeostasis maintenance function with fluctuations, and the driver and the manager etc. have the basic in the past 30 minutes or 1 hour etc. At a glance. Therefore, by accumulating this information, the driver or the like can make a self-determination that it is better to take a break. Of course, it is preferable to use the warnings based on the judgment results of the individual individual bioregulatory functional elements or to give priority to those warnings. Acts (such as warnings from administrators) can be performed more appropriately.
以下、図面に示した本発明の実施形態に基づき、本発明をさらに詳細に説明する。本発明において採取する生体信号は、例えば、指尖容積脈波、背部から採取される音・振動情報(以下、「背部音・振動情報」)等が挙げられるが、好ましくは、背部音・振動情報である。背部音・振動情報には、上記のように、人の上体背部から検出される心臓と大動脈の運動から生じる音・振動情報であり、心室の収縮期及び拡張期の情報と、血液循環の補助ポンプとなる血管壁の弾性情報及び血圧による弾性情報並びに反射波の情報、すなわち、背部体表脈波(APW)や疑似心音情報を含んでいる。また、心拍変動に伴う信号波形は交感神経系及び副交感神経系の神経活動情報(交感神経の代償作用を含んだ副交感神経系の活動情報)を含み、大動脈の揺動に伴う信号波形には交感神経活動の情報や内分泌系の情報を含んでいるため、異なる観点から生体調節機能要素を判定するのに適している。
Hereinafter, the present invention will be described in more detail based on the embodiments of the present invention shown in the drawings. Examples of the biological signal collected in the present invention include fingertip volume pulse wave, sound / vibration information collected from the back (hereinafter referred to as “back sound / vibration information”), and preferably back sound / vibration. Information. As described above, the back sound / vibration information is sound / vibration information generated from the motion of the heart and aorta detected from the upper back of a person, and includes information on ventricular systole and diastole, blood circulation It includes elasticity information of the blood vessel wall serving as an auxiliary pump, elasticity information based on blood pressure, and reflected wave information, that is, back body surface wave (APW) and pseudo heart sound information. The signal waveform associated with heart rate variability includes sympathetic and parasympathetic nervous system activity information (parasympathetic activity information including the compensation of sympathetic nerves), and the signal waveform associated with aortic oscillation is sympathetic. Since it contains information on neural activity and information on the endocrine system, it is suitable for determining bioregulatory functional elements from different viewpoints.
生体信号を採取するための生体信号測定装置は、指尖容積脈波であれば指尖容積脈波計を用いることができる。背部音・振動情報であれば、例えば、圧力センサを用いることも可能であるが、好ましくは、(株)デルタツーリング製の居眠り運転警告装置(スリープバスター(登録商標))で使用されている生体信号測定装置1を用いる。図1は生体信号測定装置1の概略構成を示したものである。この生体信号測定装置1は、乗物の運転席に組み込んで使用することができ、手指を拘束することなく生体信号を採取できる。
A fingertip plethysmograph can be used as a biological signal measuring device for collecting a biological signal as long as it is a fingertip plethysmogram. For example, a pressure sensor can be used as long as it is back sound / vibration information. Preferably, a living body used in a drowsy driving warning device (Sleep Buster (registered trademark)) manufactured by Delta Touring Co., Ltd. A signal measuring device 1 is used. FIG. 1 shows a schematic configuration of the biological signal measuring apparatus 1. This biological signal measuring apparatus 1 can be used by being incorporated in a driver's seat of a vehicle, and can collect a biological signal without restraining fingers.
生体信号測定装置1を簡単に説明すると、図1(a),(b)に示したように、上層側から順に、第一層11、第二層12及び第三層13が積層された三層構造からなり、三次元立体編物等からなる第一層11を生体信号の検出対象である人体側に位置させて用いられる。従って、人体の体幹背部からの生体信号、特に、心室、心房、大血管の振動に伴って発生する生体音(体幹直接音ないしは生体音響信号)を含む心臓・血管系の音・振動情報(背部体表脈波(APWを含む))は、生体信号入力系である第一層11にまず伝播される。第二層12は、第一層11から伝播される生体信号、特に心臓・血管系の音・振動を共鳴現象又はうなり現象によって強調させる共鳴層として機能し、ビーズ発泡体等からなる筐体121、固有振動子の機能を果たす三次元立体編物122、膜振動を生じるフィルム123を有して構成される。第二層12内において、マイクロフォンセンサ14が配設され、音・振動情報を検出する。第三層13は、第二層12を介して第一層11の反対側に積層され、外部からの音・振動入力を低減する。
The biological signal measuring apparatus 1 will be briefly described. As shown in FIGS. 1A and 1B, the first layer 11, the second layer 12, and the third layer 13 are stacked in order from the upper layer side. The first layer 11 made of a layer structure and made of a three-dimensional solid knitted fabric or the like is used by being positioned on the human body side that is a detection target of a biological signal. Therefore, sound / vibration information of the heart / vascular system including biological signals from the back of the trunk of the human body, in particular, biological sounds generated by vibrations of the ventricle, the atrium, and the large blood vessels (direct trunk sound or bioacoustic signal). (Back body surface pulse wave (including APW)) is first propagated to the first layer 11 which is a biological signal input system. The second layer 12 functions as a resonance layer that emphasizes the biological signal propagated from the first layer 11, particularly the sound / vibration of the heart / vascular system by a resonance phenomenon or a beat phenomenon, and a casing 121 made of a bead foam or the like. And a three-dimensional solid knitted fabric 122 that functions as a natural vibrator, and a film 123 that generates membrane vibration. A microphone sensor 14 is provided in the second layer 12 to detect sound / vibration information. The third layer 13 is laminated on the opposite side of the first layer 11 via the second layer 12 to reduce external sound / vibration input.
次に、本実施形態の生体状態推定装置100の構成について図2に基づいて説明する。生体状態推定装置100は、生体調節機能要素判定手段200、基礎的体調推定手段300及び基礎的体調出力手段400を有して構成されている。生体状態推定装置100は、コンピュータ(マイクロコンピュータ等も含む)から構成され、生体調節機能要素判定手段200、基礎的体調推定手段300及び基礎的体調出力手段400として機能する、生体状態推定手順を実施する生体調節機能要素判定手順、基礎的体調推定手順及び基礎的体調出力手順をコンピュータに実行させるコンピュータプログラムが記憶部に設定されている。
Next, the configuration of the biological state estimating device 100 of the present embodiment will be described with reference to FIG. The biological state estimation device 100 includes a biological adjustment functional element determination unit 200, a basic physical condition estimation unit 300, and a basic physical condition output unit 400. The biological state estimation apparatus 100 is configured by a computer (including a microcomputer) and performs a biological state estimation procedure that functions as the biological adjustment functional element determination unit 200, the basic physical condition estimation unit 300, and the basic physical condition output unit 400. A computer program that causes a computer to execute a bioregulatory function element determination procedure, a basic physical condition estimation procedure, and a basic physical condition output procedure is set in the storage unit.
なお、コンピュータプログラムは、記録媒体に記憶させてもよい。この記録媒体を用いれば、例えば上記コンピュータに上記プログラムをインストールすることができる。ここで、上記プログラムを記憶した記録媒体は、非一過性の記録媒体であっても良い。非一過性の記録媒体は特に限定されないが、例えば フレキシブルディスク、ハードディスク、CD-ROM、MO(光磁気ディスク)、DVD-ROM、メモリカードなどの記録媒体が挙げられる。また、通信回線を通じて上記プログラムを上記コンピュータに伝送してインストールすることも可能である。
Note that the computer program may be stored in a recording medium. If this recording medium is used, the program can be installed in the computer, for example. Here, the recording medium storing the program may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited, and examples thereof include a recording medium such as a flexible disk, a hard disk, a CD-ROM, an MO (magneto-optical disk), a DVD-ROM, and a memory card. It is also possible to install the program by transmitting it to the computer through a communication line.
生体調節機能要素判定手段200は、本実施形態では、上記の生体信号測定装置1により測定された生体信号である背部音・振動情報を分析し、人の基礎的な体調の推定に用いる生体調節機能要素に関する複数種類の指標を、それぞれ予め設定された所定の判定時間毎に算出してその時系列変化を求める。なお、分析対象の生体信号は、指尖容積脈波等であってもよく、本発明がそれを排除するものではないが、背部音・振動情報が好ましいことは上記のとおりである。
In the present embodiment, the biological adjustment functional element determination unit 200 analyzes the back sound / vibration information, which is a biological signal measured by the biological signal measuring device 1 described above, and is used for estimation of a basic physical condition of a person. A plurality of types of indices related to the functional elements are calculated at predetermined time intervals that are set in advance, and their time series changes are obtained. Note that the biological signal to be analyzed may be a fingertip volume pulse wave or the like, which is not excluded by the present invention, but the back sound / vibration information is preferable as described above.
生体調節機能要素判定手段200において判定される複数種類の生体調節機能要素は限定されるものではないが、少なくとも、脳機能や自律神経機能への関連性の高い指標、肉体・精神疲労への関連性の高い指標、及び、感覚への関連性の高い指標を含むものであることが好ましい。これらは、人の恒常性維持機能に影響を与える脳波のゆらぎの変動の様子、あるいは、体温調節機能に代表される生体調節機能が仕事をする様子を示す指標であり、体調により各調節機能に与える影響が大きいためである。
A plurality of types of bioregulatory function elements determined by the bioregulatory function element determining means 200 are not limited, but at least an index highly relevant to brain function and autonomic nerve function, and relation to physical / mental fatigue It is preferable that the index includes a highly sensitive index and an index highly related to sense. These are indicators that show fluctuations in EEG fluctuations that affect human homeostasis functions, or how bioregulatory functions represented by body temperature control functions work. This is because the influence is large.
脳機能や自律神経機能への関連性の高い指標としては、例えば、採取した生体信号を処理して得られる周波数傾きの時系列波形、上記従来技術の項で説明した3つの信号の分布率の時系列波形、疲労曲線、恒常性維持機能レベルの判定の時系列の変動が挙げられる。周波数傾きの時系列波形は、恒常性維持機能の調節作用のベースにあるものはゆらぎを示すものであり、そのゆらぎは二律背反性のある機能のバランスをうまく調整し、人の自律神経機能との関連性を特に高く示している。これは統計的な手法による裏付けがなされていることである。分布率から求められた各周波数帯域の時系列波形は、ゆらぎのリズムに間接的に関与する脳波の種類(θ波、α波、β波)に対応し、人の脳機能及び自律神経機能に加え、内分泌系の調節機能との関連性を高く示している。恒常性は、内分泌系、自律神経系など様々な調節システムによって保たれるため、そのレベルの変動は、脳、自律神経系及び内分泌系のゆらぎによる調節性能とも深く関連している。
Examples of indices highly relevant to brain function and autonomic nerve function include time-series waveforms of frequency gradients obtained by processing collected biological signals, and the distribution ratios of the three signals described in the above section of the prior art. Examples include time-series waveforms, fatigue curves, and time-series fluctuations in the determination of the homeostasis maintenance function level. The time-series waveform of the frequency gradient shows fluctuations that are at the base of the regulation of the homeostatic function, and the fluctuations are well-balanced to balance the function of anti-trait, Relevance is particularly high. This is supported by statistical methods. The time-series waveform of each frequency band obtained from the distribution rate corresponds to the types of brain waves (θ waves, α waves, β waves) that are indirectly related to fluctuation rhythms, and functions in human brain function and autonomic nerve function. In addition, it is highly related to the regulatory function of the endocrine system. Since homeostasis is maintained by various regulatory systems such as the endocrine system and the autonomic nervous system, fluctuations in the level are deeply related to the regulatory performance due to fluctuations in the brain, autonomic nervous system and endocrine system.
生体調節機能要素判定手段200は、上記の脳機能、自律神経機能及び内分泌系のゆらぎの変動の仕方を捉える指標を求める演算手段として、周波数傾きの時系列波形を求める周波数傾き時系列波形演算手段210、分布率を求める分布率演算手段220、疲労曲線を求める疲労曲線演算手段230、及び恒常性維持機能レベルを求める恒常性維持機能レベル演算手段240とを有している。
The bioregulatory function element determining means 200 is a frequency slope time series waveform computing means for obtaining a time series waveform of a frequency slope as a computing means for obtaining an index that captures how the fluctuations of the brain function, autonomic nervous function and endocrine system fluctuate. 210, a distribution rate calculating means 220 for obtaining a distribution rate, a fatigue curve calculating means 230 for obtaining a fatigue curve, and a constancy maintaining function level calculating means 240 for obtaining a constancy maintaining function level.
周波数傾き時系列波形演算手段210は、生体信号測定装置1のセンサ14から得られる背部音・振動情報をフィルタリング処理した1Hz近傍の背部体表脈波(APW)の時系列波形から周波数の時系列波形を求めた後、周波数の時系列波形をスライド計算して周波数傾き時系列波形を求める(図3(a),(b)参照)。周波数傾き時系列波形演算手段210は、本発明者らによる上記特許文献1等に開示されているように、背部体表脈波(APW)の時系列波形において、正から負に切り替わる点(ゼロクロス点)を用いる手法(ゼロクロス法)と、背部体表脈波(APW)の時系列波形を平滑化微分して極大値(ピーク点)を用いて時系列波形を求める方法(ピーク検出法)の2つの方法がある。
The frequency gradient time series waveform calculation means 210 is a time series of frequencies from the time series waveform of the back body surface pulse wave (APW) near 1 Hz obtained by filtering the back sound / vibration information obtained from the sensor 14 of the biological signal measuring apparatus 1. After obtaining the waveform, the time-series waveform of the frequency is slid to calculate the frequency-gradient time-series waveform (see FIGS. 3A and 3B). The frequency gradient time series waveform calculation means 210 is a point (zero cross) that switches from positive to negative in the time series waveform of the back body surface pulse wave (APW) as disclosed in the above-mentioned Patent Document 1 by the present inventors. Point method) (zero-cross method) and a method of obtaining a time-series waveform using a maximum value (peak point) by smoothing and differentiating the time-series waveform of the back body surface pulse wave (APW) (peak detection method) There are two ways.
ゼロクロス法では、ゼロクロス点を求めたならば、それを例えば5秒毎に切り分け、その5秒間に含まれる時系列波形のゼロクロス点間の時間間隔の逆数を個別周波数fとして求め、その5秒間における個別周波数fの平均値を当該5秒間の周波数Fの値として採用する。そして、この5秒毎に得られる周波数Fを時系列にプロットすることにより、周波数の変動の時系列波形を求める。
In the zero cross method, when the zero cross point is obtained, it is divided every 5 seconds, for example, and the reciprocal of the time interval between the zero cross points of the time series waveform included in the 5 second is obtained as the individual frequency f. The average value of the individual frequency f is adopted as the value of the frequency F for 5 seconds. Then, by plotting the frequency F obtained every 5 seconds in time series, a time series waveform of frequency fluctuation is obtained.
ピーク検出法では、背部体表脈波(APW)の上記時系列波形を、例えば、SavitzkyとGolayによる平滑化微分法により極大値を求める。次に、例えば5秒ごとに極大値を切り分け、その5秒間に含まれる時系列波形の極大値間の時間間隔の逆数を個別周波数fとして求め、その5秒間における個別周波数fの平均値を当該5秒間の周波数Fの値として採用する。そして、この5秒毎に得られる周波数Fを時系列にプロットすることにより、周波数の変動の時系列波形を求める。
In the peak detection method, the maximum value of the time series waveform of the back body surface pulse wave (APW) is obtained by, for example, the smoothing differential method using Savitzky and Golay. Next, for example, the local maximum value is divided every 5 seconds, the reciprocal of the time interval between the local maximum values of the time-series waveform included in the 5 seconds is obtained as the individual frequency f, and the average value of the individual frequency f in the 5 seconds is calculated This is adopted as the value of the frequency F for 5 seconds. Then, by plotting the frequency F obtained every 5 seconds in time series, a time series waveform of frequency fluctuation is obtained.
周波数傾き時系列波形演算手段210は、ゼロクロス法又はピーク検出法により求められた周波数の変動の時系列波形から、所定のオーバーラップ時間(例えば18秒)で所定の時間幅(例えば180秒)の時間窓を設定し、時間窓毎に最小二乗法により周波数の傾きを求め、その傾きの時系列波形を出力する。このスライド計算を順次繰り返し、APWの周波数の傾きの時系列変化を周波数傾き時系列波形として出力する。
The frequency gradient time-series waveform computing means 210 has a predetermined overlap time (for example, 18 seconds) and a predetermined time width (for example, 180 seconds) from a time-series waveform of frequency fluctuations obtained by the zero cross method or the peak detection method. A time window is set, a frequency gradient is obtained for each time window by the method of least squares, and a time series waveform of the gradient is output. This slide calculation is sequentially repeated to output the APW frequency gradient time-series change as a frequency gradient time-series waveform.
背部体表脈波(APW)は、中枢系である心臓の制御の様子を主として含む生体信号、すなわち、動脈の交感神経支配の様子、並びに、交感神経系と副交感神経系の出現情報を含む生体信号であり、ゼロクロス法により求めた周波数傾き時系列波形(図3(a),(b)において「0x」と表示した波形)は、心臓の制御の状態により関連しており、交感神経の出現状態を反映しているが、ピーク検出法により求めた周波数傾き時系列波形(図3(a),(b)において「Peak」と表示した波形)は、心拍変動により関連している。従って、自律神経機能の状態をより明確に把握するためには、ゼロクロス法を用いて求めた周波数傾き時系列波形を用いることが好ましい。
The dorsal body surface wave (APW) is a biological signal mainly including the state of control of the heart, which is the central system, that is, the state of sympathetic innervation of the artery, and the appearance information of the sympathetic nervous system and the parasympathetic nervous system. The frequency-gradient time-series waveform obtained by the zero-cross method (the waveform indicated as “0x” in FIGS. 3A and 3B) is more related to the state of control of the heart, and the appearance of the sympathetic nerve Although reflecting the state, the time-series waveform of the frequency gradient obtained by the peak detection method (the waveform indicated as “Peak” in FIGS. 3A and 3B) is more related to the heartbeat variability. Therefore, in order to grasp the state of the autonomic nervous function more clearly, it is preferable to use a frequency gradient time series waveform obtained by using the zero cross method.
交感神経の活動は、血管弾性や血管径に影響を与え、さらに、血管壁からの反射波の影響が、人の背部から検出される音・振動情報に含まれる疑似心音情報(背部から検出されるため、心臓から背部表面までの間の筋肉、皮膚等により20Hz近傍の信号として検出される)の疑似I音(心音I音に相当)と疑似II音(心音II音に相当)の間の波形成分に重畳される。これが、ゼロクロス法におけるゼロクロス点間の幅と、ピーク検出法におけるピーク点間の幅とを異ならせる理由であり、ゼロクロス法では反射波の影響を受けた周期となっている。よって、ゼロクロス法による周波数傾き時系列波形を見ることで交感神経の情報を捉えることができる。
一方、ピーク値は上記のように心拍変動の情報を反映しているが、心拍変動は主に副交感神経によって制御されている。そのため、ピーク値を見ると副交感神経の情報を捉えることができる。 Sympathetic nerve activity affects vascular elasticity and diameter, and the influence of reflected waves from the vascular wall is simulated heart sound information (detected from the back) included in sound and vibration information detected from the human back. Therefore, between a pseudo I sound (corresponding to a heart sound I sound) and a pseudo II sound (corresponding to a heart sound II sound) detected by a muscle, skin, etc. between the heart and the back surface. It is superimposed on the waveform component. This is the reason why the width between the zero cross points in the zero cross method differs from the width between the peak points in the peak detection method, and the zero cross method has a period affected by the reflected wave. Therefore, it is possible to capture sympathetic nerve information by looking at the frequency gradient time-series waveform by the zero cross method.
On the other hand, the peak value reflects the information of heart rate variability as described above, but the heart rate variability is mainly controlled by the parasympathetic nerve. Therefore, parasympathetic information can be captured by looking at the peak value.
一方、ピーク値は上記のように心拍変動の情報を反映しているが、心拍変動は主に副交感神経によって制御されている。そのため、ピーク値を見ると副交感神経の情報を捉えることができる。 Sympathetic nerve activity affects vascular elasticity and diameter, and the influence of reflected waves from the vascular wall is simulated heart sound information (detected from the back) included in sound and vibration information detected from the human back. Therefore, between a pseudo I sound (corresponding to a heart sound I sound) and a pseudo II sound (corresponding to a heart sound II sound) detected by a muscle, skin, etc. between the heart and the back surface. It is superimposed on the waveform component. This is the reason why the width between the zero cross points in the zero cross method differs from the width between the peak points in the peak detection method, and the zero cross method has a period affected by the reflected wave. Therefore, it is possible to capture sympathetic nerve information by looking at the frequency gradient time-series waveform by the zero cross method.
On the other hand, the peak value reflects the information of heart rate variability as described above, but the heart rate variability is mainly controlled by the parasympathetic nerve. Therefore, parasympathetic information can be captured by looking at the peak value.
周波数傾き時系列波形演算手段210により得られるゼロクロス法による周波数傾き時系列波形は、睡眠前の所定のタイミングで眠気に対する抵抗として生じる交感神経活動の一時的亢進に伴って振幅が拡大し、長周期化する傾向を示した場合に、入眠予兆現象の指標と捉えられることが知られている(特許文献4参照)。また、入眠予兆現象を示す波形が出現した後、波形が収束傾向を示し、その後、より長周期の大きな変動ゆらぎを示すと、その長周期のゆらぎを示し始めたポイントが、入眠直前の切迫睡眠現象を示す指標と捉えられることが知られている。
The frequency gradient time series waveform obtained by the zero-cross method obtained by the frequency gradient time series waveform calculation means 210 has an amplitude that increases with a temporary increase in sympathetic nerve activity that occurs as resistance to sleepiness at a predetermined timing before sleep. It is known that when the tendency to change is shown, it can be regarded as an index of the predictive sleep phenomenon (see Patent Document 4). In addition, after a waveform showing a sleep onset symptom appears, the waveform shows a tendency to converge, and after that, when the fluctuation fluctuation of a long period is larger, the point at which the fluctuation of the long period starts to show the imminent sleep immediately before falling asleep. It is known that it can be regarded as an index indicating a phenomenon.
分布率演算手段220は、まず、周波数傾き時系列波形演算手段210から得られる周波数傾き時系列波形をそれぞれ周波数分析して、心循環系のゆらぎの特性が切り替わる周波数である0.0033Hzよりも低い周波数の機能調整信号、機能調整信号よりも高い周波数の疲労受容信号、及び疲労受容信号よりも高い周波数の活動調整信号に相当するULF帯域からVLF帯域に属する各周波数成分を抜き出す。次に、これらの周波数成分のそれぞれの分布率を時系列に求める。すなわち、3つの周波数成分のパワースペクトルの値の合計を1とした際の各周波数成分の割合を分布率として時系列に求める(図4参照)。
Distribution rate calculation means 220 first analyzes the frequency gradient time-series waveforms obtained from frequency gradient time-series waveform calculation means 210, respectively, and is lower than 0.0033 Hz, which is the frequency at which the characteristics of fluctuations in the cardiovascular system are switched. Each frequency component belonging to the VLF band is extracted from the ULF band corresponding to the frequency function adjustment signal, the fatigue acceptance signal having a frequency higher than the function adjustment signal, and the activity adjustment signal having a frequency higher than the fatigue acceptance signal. Next, the distribution ratios of these frequency components are obtained in time series. That is, the ratio of each frequency component when the sum of the power spectrum values of the three frequency components is 1 is obtained as a distribution rate in time series (see FIG. 4).
本実施形態では、図4に示したように、機能調整信号として0.0017Hzの周波数成分を用い、疲労受容信号として0.0035Hzの周波数成分を用い、活動調整信号として0.0053Hzの周波数成分を用いている。心疾患の一つである心房細動において、心・循環系のゆらぎの特性が切り替わる周波数は、0.0033Hzと言われており、0.0033Hz近傍のゆらぎの変化を捉えることで、自律神経の活動、恒常性維持に関する情報が得られる。また、0.0033Hz近傍以下と0.0053Hz近傍の周波数帯は、主に体温調節に関連するもので、0.01~0.04Hzの周波数帯は自律神経の制御に関連するものと言われている。そして、本発明者らが実際に、生体信号に内在するこれら低周波のゆらぎを算出する周波数傾き時系列波形を求め、それを周波数解析したところ、0.0033Hzよりも低周波の0.0017Hz、0.0033Hz近傍の0.0035Hzを中心とする周波数帯のゆらぎと、さらにこれら2つ以外に、0.0053Hzを中心とする周波数帯のゆらぎがあることが確認できた。但し、各信号の周波数成分は個人差等により調整することも可能であり、機能調整信号は0.0033Hz未満の範囲で好ましくは0.001~0.0027Hzの範囲で、疲労受容信号は0.002~0.0052Hzの範囲で、活動調整信号は0.004~0.007Hzの範囲で調整して用いることができる。
In the present embodiment, as shown in FIG. 4, a frequency component of 0.0017 Hz is used as the function adjustment signal, a frequency component of 0.0035 Hz is used as the fatigue acceptance signal, and a frequency component of 0.0053 Hz is used as the activity adjustment signal. Used. In atrial fibrillation, which is one of the heart diseases, the frequency at which the fluctuation characteristics of the heart and circulatory system are switched is said to be 0.0033 Hz. By capturing fluctuations in the vicinity of 0.0033 Hz, Information on activities and homeostasis can be obtained. The frequency bands below 0.0033 Hz and below 0.0053 Hz are mainly related to body temperature regulation, and the frequency band from 0.01 to 0.04 Hz is said to be related to autonomic nerve control. Yes. And when the inventors actually obtained a frequency gradient time-series waveform for calculating these low-frequency fluctuations inherent in the biological signal and analyzed it, 0.0017 Hz, which is a lower frequency than 0.0033 Hz, It was confirmed that there was a fluctuation in the frequency band centered at 0.0035 Hz in the vicinity of 0.0033 Hz and a fluctuation in the frequency band centered at 0.0053 Hz in addition to these two. However, the frequency component of each signal can be adjusted by individual differences and the like, the function adjustment signal is less than 0.0033 Hz, preferably 0.001 to 0.0027 Hz, and the fatigue acceptance signal is 0. In the range of 002 to 0.0052 Hz, the activity adjustment signal can be adjusted and used in the range of 0.004 to 0.007 Hz.
分布率演算手段220により求められる分布率の時系列変化は、特許文献2に示されているように、例えば、0.0017Hzの分布率が急低下し、かつ0.0053Hzの分布率が急上昇する変化を示す時点を切迫睡眠現象の出現時点と捉えることができる。
As shown in Patent Document 2, the time series change of the distribution ratio obtained by the distribution ratio calculation means 220 is, for example, a rapid decrease in the distribution ratio of 0.0017 Hz and a rapid increase in the distribution ratio of 0.0053 Hz. The time point showing the change can be regarded as the present time point of the impending sleep phenomenon.
疲労曲線演算手段230は、本発明者らの特開2009-22610号公報に開示されている手段であり、ゼロクロス法による求めた周波数傾き時系列波形を絶対値処理して積分値を算出し、この積分値を疲労度として所定の判定時間毎に求めて、時間に対応してプロットし、図5に示したような疲労曲線を求める手段である。筋活動は、筋肉の収縮又は弛緩であり、交感神経の情報を反映しているゼロクロス法による周波数傾き時系列波形の積分情報である疲労曲線は筋活動との相関性が高い(非特許文献1参照)。よって、疲労曲線では、その傾きが所定以上変動するポイントが特異点を示しており、各特異点は、増大する疲労に対応して、筋活動が生じたことを示すポイントや血流量が増大したポイントを示している。
The fatigue curve calculation means 230 is a means disclosed in Japanese Patent Application Laid-Open No. 2009-22610 by the present inventors, calculates an integral value by performing absolute value processing on a frequency gradient time series waveform obtained by the zero cross method, This integrated value is a means for obtaining the fatigue curve as shown in FIG. 5 by obtaining the integrated value as the degree of fatigue at every predetermined judgment time and plotting it corresponding to the time. The muscle activity is muscle contraction or relaxation, and the fatigue curve, which is the integrated information of the frequency gradient time series waveform by the zero cross method reflecting the information of the sympathetic nerve, is highly correlated with the muscle activity (Non-patent Document 1). reference). Therefore, in the fatigue curve, the point where the slope fluctuates more than a predetermined value indicates a singular point, and each singular point corresponds to the increasing fatigue and the point indicating that muscle activity has occurred and the blood flow increased. Shows the point.
恒常性維持機能レベル判定手段240は、特許文献3に開示の技術に基づくものであり、周波数傾き時系列波形演算手段210により得られるゼロクロス法を用いた各周波数傾き時系列波形の微分波形の正負、周波数傾き時系列波形を積分した積分波形の正負、ゼロクロス法を利用した周波数傾き時系列波形とピーク検出法を利用した周波数傾き時系列波形をそれぞれ絶対値処理して得られた各周波数傾き時系列波形の絶対値等のうち、少なくとも1つ以上を用いて判定する。これらの組み合わせにより、恒常性維持機能のレベルがいずれに該当するかを求める。例えば、周波数傾きと積分値を用いて、所定以上の場合に「恒常性維持機能レベル1」と判定し、あるいは、微分値が所定位置以下であって、かつ、2つの絶対値のうちの「ピーク優位」の場合に「恒常性維持機能レベル4」と判定するように設定できる。そして、例えば、上記の条件を様々に組み合わせ、人の状態との相関をとり、レベル1~3と判定される場合を、普通から良好な状態、レベル4~6と判定される場合を、注意の必要な状態と判定する。また、入眠予兆や切迫睡眠の兆候が生じているなどと判定された場合には、直ちに警告を要するレベルとして、それぞれの状態によりレベル7~11といった指標を付与する。株式会社デルタツーリング製、商品名「スリープバスター」では、恒常性維持機能レベル判定手段240による判定結果が、例えば、図6に示したように表示されるように設定されている。
The homeostasis maintenance function level determination unit 240 is based on the technique disclosed in Patent Document 3, and the positive / negative of the differential waveform of each frequency gradient time series waveform obtained by the frequency gradient time series waveform calculation unit 210 using the zero cross method. At the time of each frequency slope obtained by absolute value processing of the positive and negative of the integral waveform obtained by integrating the frequency slope time series waveform, the frequency slope time series waveform using the zero cross method and the frequency slope time series waveform using the peak detection method. The determination is made using at least one of the absolute values of the series waveform. Based on these combinations, the level of the homeostasis maintenance function is determined. For example, using a frequency gradient and an integral value, if the value is equal to or greater than a predetermined value, it is determined as “constancy maintaining function level 1”, or the differential value is equal to or less than a predetermined position and “ In the case of “peak advantage”, it can be set to be determined as “constancy maintaining function level 4”. And, for example, when the above conditions are variously combined to correlate with the human condition and judged as level 1 to 3, the normal to good condition is judged as level 4 to 6. Is determined to be necessary. Further, when it is determined that a sign of sleep onset or a sign of imminent sleep has occurred, an index such as levels 7 to 11 is assigned as a level that requires immediate warning depending on each state. In the product name “Sleep Buster” manufactured by Delta Touring Co., Ltd., the determination result by the homeostasis maintenance function level determination means 240 is set to be displayed as shown in FIG. 6, for example.
肉体・精神疲労への関連性の高い指標としては、特許文献2に開示された指標である体調マップ及び感覚マップを用いることができる。これらは、ゆらぎの変動の仕方をグラフ化したもので、人の肉体・精神疲労との関連性を高く示している。
As an index highly relevant to physical / mental fatigue, a physical condition map and a sensory map, which are indices disclosed in Patent Document 2, can be used. These are graphs showing how fluctuations fluctuate, and show high relevance to human physical and mental fatigue.
そのため、本実施形態の生体調節機能要素判定手段200は、さらに体調マップ演算手段250及び感覚マップ演算手段260を有している。生体信号測定装置1から取得した背部音・振動情報から得られる背部体表脈波(APW)を周波数分析し、対象となる解析区間について、解析波形を両対数軸表示に表し、その解析波形を低周波帯域、中周波帯域、高周波帯域に分け、区分けした解析波形の傾きと、解析波形の全体の形とから一定の基準に基づいて解析波形の点数化を行い、それを座標軸にプロットしたものである。体調マップは、自律神経系の制御の様子を交感神経と副交感神経のバランスとして見たものであり、感覚マップは、体調マップに心拍変動の変化の様子を重畳させたものである。
Therefore, the biological adjustment functional element determination unit 200 of the present embodiment further includes a physical condition map calculation unit 250 and a sensory map calculation unit 260. The back body surface pulse wave (APW) obtained from the back sound / vibration information acquired from the biological signal measuring apparatus 1 is frequency-analyzed, and the analysis waveform is displayed on the logarithmic axis display for the target analysis section. Divided into low frequency band, medium frequency band, and high frequency band, the analysis waveform is scored based on a certain standard from the slope of the analysis waveform and the overall shape of the analysis waveform, and plotted on the coordinate axis It is. The physical condition map is a state in which the state of control of the autonomic nervous system is viewed as a balance between the sympathetic nerve and the parasympathetic nerve, and the sensory map is obtained by superimposing the state of change of heartbeat variability on the physical condition map.
具体的には、体調マップ演算手段250は、背部体表脈波を周波数解析した解析波形について、所定周期領域毎に回帰直線をまず求める。次に、周期領域毎に求められる各回帰直線を、その傾きに基づいて領域得点を付与すると共に、隣接する周波数領域における回帰直線間のパワースペクトル密度の値の較差及び回帰直線間の傾きの違いに基づき、各回帰直線全体における分岐現象を示す折れ点数を求め、その折れ点数に基づいた形状得点を付与し、領域得点及び形状得点の少なくとも一方を用いて、各解析波形についての判定基準点を求める。領域得点としては、各領域における各回帰直線の傾きを略水平状態、上向き及び下向きの3つに分け、例えば略水平状態の得点を基準として、上向きの場合と下向きの場合とで得点を増減させて得点を付与する。形状得点としては、折れ点数が少ないほど高得点を付与する。
Specifically, the physical condition map calculation means 250 first obtains a regression line for each predetermined period region with respect to the analysis waveform obtained by frequency analysis of the back body surface pulse wave. Next, each regression line obtained for each periodic area is given a region score based on its slope, and the difference in power spectral density value between regression lines in the adjacent frequency domain and the difference in slope between regression lines Based on the above, the number of break points indicating the branching phenomenon in each regression line is obtained, a shape score based on the number of break points is given, and at least one of the area score and the shape score is used to determine a determination reference point for each analysis waveform. Ask. As the area score, the slope of each regression line in each area is divided into three, approximately horizontal state, upward and downward, for example, increasing or decreasing the score in the upward direction and downward direction on the basis of the score in the approximately horizontal state To give a score. As the shape score, the smaller the number of break points, the higher the score.
判定基準点を求める際には、ゼロクロス法により求めた周波数傾き時系列波形を用いて第1の判定基準点を求め、ピーク検出法により求めた周波数傾き時系列波形を用いて第2の判定基準点を求める。そして、第1の判定基準点に基づく指標を一方の軸に、第2の判定基準点に基づく指標を他方の軸にとって、座標点をプロットし、図7(a)に例示したような体調マップが作成される。体調マップでは、座標点同士を結んだ座標時系列変化線が、1/fの傾きに近似した変化傾向であると判定された場合には快適と判定され、上下方向に変化していると判定された場合には不快と判定される。図7(a)は、座標原点に合わせずに複数の座標点を結んでいるが、時間的に異なる2点の変化傾向を見る場合、1点目を座標原点に合わせて、2点目が第4象限にプロットされると、この生体調節機能要素に関しては「良好」ということになり、判断がより容易になる。
When obtaining the determination reference point, the first determination reference point is obtained using the frequency slope time series waveform obtained by the zero cross method, and the second judgment reference is obtained using the frequency slope time series waveform obtained by the peak detection method. Find a point. Then, the coordinate point is plotted with the index based on the first determination reference point on one axis and the index based on the second determination reference point on the other axis, and the physical condition map as illustrated in FIG. Is created. In the physical condition map, the coordinate time-series change line connecting the coordinate points is determined to be comfortable when it is determined that the change trend approximates the 1 / f slope, and is determined to be changing vertically. If it is determined that it is uncomfortable. In FIG. 7A, a plurality of coordinate points are connected without being aligned with the coordinate origin, but when the change tendency of two points that are temporally different is viewed, the first point is aligned with the coordinate origin and the second point is When plotted in the fourth quadrant, this bioregulatory functional element is “good”, and determination becomes easier.
感覚マップ演算手段260は、心拍変動に関連するピーク検出法を用いた周波数の時系列波形において、所定のオーバーラップ時間で設定した所定の時間窓毎に周波数の平均値を求める移動計算を行い、時間窓毎に得られる周波数の平均値の時系列変化を周波数変動時系列波形として求め、さらに、ゼロクロス法を用いた周波数の時系列波形から求められる機能点に対応する指標を一方の軸にとると共に、ピーク検出法により求められる上記の周波数変動時系列波形の所定の時間幅における変化量に対応する指標を他方の軸にとり、機能点と変化量とから求められる座標の時系列変化を求めていく手段である。図7(b)がこのようにして求めた感覚マップの一例である。図7(b)では、座標原点に合わせずに複数の座標点を結んだものであるが、時間的に異なる2点の変化傾向を見る場合、1点目を座標原点に合わせて、2点目をプロットすると、両者間の離隔距離及び離隔方向が判断しやすくなる。
The sensory map calculation means 260 performs a movement calculation to obtain an average value of the frequency for each predetermined time window set with a predetermined overlap time in the time series waveform of the frequency using the peak detection method related to the heartbeat fluctuation, The time series change of the average value of the frequency obtained for each time window is obtained as a frequency fluctuation time series waveform, and an index corresponding to the functional point obtained from the time series waveform of the frequency using the zero cross method is taken on one axis. In addition, an index corresponding to the amount of change in the predetermined time width of the frequency fluctuation time series waveform obtained by the peak detection method is taken on the other axis, and the time series change of the coordinates obtained from the functional point and the amount of change is obtained. It is a way to go. FIG. 7B is an example of the sensory map obtained in this way. In FIG. 7B, a plurality of coordinate points are connected without being aligned with the coordinate origin. However, when the change tendency of two points that are different in time is observed, the first point is aligned with the coordinate origin and 2 points are obtained. When the eyes are plotted, it becomes easy to determine the separation distance and the separation direction between the two.
なお、機能点は、比較対象の前後2つの時間範囲における解析波形の判定基準点間において、次式:
機能点=後時間範囲の判定基準点+(後時間範囲の判定基準点-前時間範囲の判定基準点)×n、(但し、nは補正係数)、
により求められる。 In addition, the functional point is between the determination reference points of the analysis waveform in the two time ranges before and after the comparison target:
Functional point = Judgment reference point for the later time range + (Judgment reference point for the later time range-Judgment reference point for the previous time range) x n (where n is a correction coefficient),
Is required.
機能点=後時間範囲の判定基準点+(後時間範囲の判定基準点-前時間範囲の判定基準点)×n、(但し、nは補正係数)、
により求められる。 In addition, the functional point is between the determination reference points of the analysis waveform in the two time ranges before and after the comparison target:
Functional point = Judgment reference point for the later time range + (Judgment reference point for the later time range-Judgment reference point for the previous time range) x n (where n is a correction coefficient),
Is required.
感覚への関連性の高い指標としては、上記の恒常性維持機能レベル判定手段240により求められる恒常性維持機能レベルの時系列変化のうち、例えば、周波数傾きと積分値を用いて、普通から良好といえるレベルの指標(上記の例では、レベル1~3)、注意を要するレベルの指標(上記の例では、レベル4~6)を用いてそれらの頻出頻度を用いて判定できる。恒常性維持機能レベルは、上記のように自律神経機能の状態と高く関連しているが、体調、基礎的な体力、あるいは動機付けにより、疲労に対して交感神経代償作用が発現した際、疲労感を感じるときと感じないときがある。従って、疲労に対する交感代償作用と基礎的な体調は、それを疲労として感じる感覚との関連性が高い。なお、ここでいう感覚とは、倦怠感あるいは覚低状態を伴う喪失感に似た感覚のことである。
As an index highly relevant to the sense, among the time-series changes of the homeostatic function level determined by the homeostatic function level determination unit 240, for example, normal to good using a frequency slope and an integral value It can be determined by using the frequency of the frequency (levels 1 to 3 in the above example) and the level index requiring attention (levels 4 to 6 in the above example) using their frequency. The homeostasis maintenance function level is highly related to the state of autonomic nervous function as described above, but when sympathetic decompensation acts on fatigue due to physical condition, basic physical strength, or motivation, fatigue There are times when you feel a feeling and sometimes you don't feel it. Therefore, the sympathetic compensation effect on fatigue and the basic physical condition are highly related to the sense of feeling it as fatigue. In addition, the sense here is a sensation similar to feeling of loss accompanied by fatigue or hypoxia.
基礎的体調推定手段300は、上記の生体調節機能要素判定手段200において求められる各生体調節機能要素のゆらぎ性能に関する各時系列変化から、所定の基準に照らして分析対象の人の基礎的な体調(基礎的体調)を推定する手段である。生体調節機能要素判定手段200においては、上記のように、生体調節機能要素のゆらぎ性能に関する時系列変化が複数種類得られるように設定されているが、この複数種類得られる各時系列変化は、所定の判定時間毎に得られる。例えば、周波数傾き時系列波形演算手段210は、生体信号測定装置1からのデータを取得した後、最初の演算結果が出力されるまで数分かかるが、その後は、例えば、18秒ごとに得られ、それにより時系列変化が求められる。分布率演算手段220により得られる分布率、疲労曲線演算手段230により得られる疲労度、及び恒常性維持機能レベル演算手段240により得られる恒常性維持機能レベルも最初の演算結果が出力されるまで数分かかり、その後、例えば18秒毎に得られ、それぞれ時系列変化が求められる。体調マップ演算手段250及び感覚マップ演算手段260によりそれぞれ得られる演算結果は、最初は20~30分かかるが、2点目はその約十数分後、3点目以降は数分毎に得られる。これに対し、基礎的体調推定手段300は、各生体調節機能要素におけるこれらの各判定時間よりも長い時間(基礎的体調推定時間)について、基礎的体調を推定する。
The basic physical condition estimating unit 300 calculates the basic physical condition of the person to be analyzed based on a predetermined reference from each time series change regarding the fluctuation performance of each biological regulatory function element obtained by the biological regulatory function element determination unit 200. It is a means to estimate (basic physical condition). In the biological adjustment functional element determination unit 200, as described above, a plurality of types of time-series changes regarding the fluctuation performance of the biological adjustment functional elements are obtained. It is obtained every predetermined determination time. For example, the frequency gradient time-series waveform calculation unit 210 takes several minutes after obtaining the data from the biological signal measuring apparatus 1 until the first calculation result is output, but thereafter, for example, is obtained every 18 seconds. As a result, a time series change is required. The distribution rate obtained by the distribution rate computation means 220, the fatigue degree obtained by the fatigue curve computation means 230, and the homeostasis maintenance function level obtained by the homeostasis maintenance function level computation means 240 are also numbers until the first computation result is output. It takes minutes, and is obtained every 18 seconds, for example, and a time series change is obtained for each. The calculation results obtained by the physical condition map calculation means 250 and the sensation map calculation means 260 each take 20 to 30 minutes at first, but the second point is obtained about ten minutes later, and the third and subsequent points are obtained every few minutes. . On the other hand, the basic physical condition estimation means 300 estimates the basic physical condition for a time (basic physical condition estimation time) that is longer than each determination time in each bioregulatory function element.
例えば、運転者が体調を把握する場合、各生体調節機能要素のゆらぎ性能の判定結果を個別にモニタに表示させることでももちろん可能であるが、この場合には、データを分析する運転者の分析能力、判定能力によりバラツキが生じやすい。従って、機械的に判定することによってバラツキを吸収し、それらの組み合わせを必要に応じて寄与率を考慮するなどして統計処理することにより、基礎的な体調を推定することが好ましい。すなわち、比較的短時間毎に出力されるデータを統計的に組み合わせることにより、現在の生体の基礎的な制御能(体調)を推定する方法である。各生体調節機能要素の判定結果は、逐次変化する運転者の最新の心身状態を把握するのに適しているが、運転という作業を行っている最中にこれらの判定結果を逐次出力されても、運転者自身がその状態を分析して基礎的な体調を自覚することは難しい場合がある。そこで、基礎的体調推定手段300は、より長い時間に設定された基礎的体調推定時間における基礎的体調を推定するようにしたものである。基礎的体調推定時間は、15分、30分、60分等、任意に設定できるが、頻度が多すぎ、状態の変化が多すぎると結果的に運転者が体調を把握しにくいことにつながるため、20~40分程度の時間とすることが好ましい。
For example, when the driver knows his / her physical condition, it is of course possible to display the determination results of the fluctuation performance of each bioregulatory functional element individually on the monitor, but in this case, the analysis of the driver who analyzes the data Variations are likely to occur depending on the ability and judgment ability. Therefore, it is preferable to estimate the basic physical condition by absorbing the variation by mechanically determining and statistically processing the combination of them in consideration of the contribution rate as necessary. That is, it is a method for estimating the current basic control ability (physical condition) of a living body by statistically combining data output every relatively short time. The determination results of each bioregulatory functional element are suitable for grasping the latest mental and physical state of the driver that changes sequentially, but even if these determination results are sequentially output during the operation of driving, In some cases, it is difficult for the driver himself to analyze the condition and become aware of the basic physical condition. Therefore, the basic physical condition estimation means 300 is configured to estimate the basic physical condition in the basic physical condition estimation time set to a longer time. The basic physical condition estimation time can be set arbitrarily, such as 15 minutes, 30 minutes, 60 minutes, etc., but if the frequency is too high and there are too many changes in the state, it will result in the driver's difficulty in grasping the physical condition. The time is preferably about 20 to 40 minutes.
基礎的体調推定手段300は、各生体調節機能要素の判定結果を用いて基礎的体調を判定する。具体的には、所定の長い時間に設定された基礎的体調推定時間における体調をより反映している生体調節機能要素の判定結果を優先して用いる。そのため、本実施形態では、基礎的体調推定手段300を構成させるコンピュータプログラムである基礎的体調推定手順に、各生体調節機能要素の判定結果を利用する優先順位が設定されている。基礎的体調推定手段300は、より詳細には、図2に示したように、第1基礎的体調推定手段310と第2基礎的体調推定手段320とを有し、図8のフローチャートに示したように、まず、第1基礎的体調推定手段310において基礎的体調の推定を行い(S110,S120)、次に、第2基礎的体調推定手段320における基礎的体調の推定(S130)を行うように設定されている。
The basic physical condition estimation means 300 determines the basic physical condition using the determination result of each bioregulatory functional element. Specifically, the determination result of the bioregulatory function element that more reflects the physical condition in the basic physical condition estimation time set to a predetermined long time is preferentially used. Therefore, in this embodiment, the priority order using the determination result of each bioregulatory functional element is set in the basic physical condition estimation procedure which is a computer program that configures the basic physical condition estimation means 300. More specifically, as shown in FIG. 2, the basic physical condition estimating means 300 includes a first basic physical condition estimating means 310 and a second basic physical condition estimating means 320, which are shown in the flowchart of FIG. First, the basic physical condition is estimated by the first basic physical condition estimating means 310 (S110, S120), and then the basic physical condition is estimated by the second basic physical condition estimating means 320 (S130). Is set to
第1基礎的体調推定手段310は、優先順位の設定された生体調節機能要素のうち、優先順位の高い生体調節機能要素の時系列変化が、所定の基準を満たすか否かを求め、所定のレベルを満たす場合に、基礎的体調を当該所定のレベルと推定する。第2基礎的体調推定手段320は、第1基礎的体調推定手段において判定対象とならない場合、すなわち、第1基礎的体調推定手段310における所定の基準を満たさない場合に、第1基礎的体調推定手段310において用いられた生体調節機能要素よりも優先順位の低い他の生体調節機能要素に関する時系列変化を用い、所定の基準に基づいて基礎的体調を推定する。従って、第2基礎的体調推定手段320が基礎的体調の推定の最終手段となるため、第2基礎的体調推定手段320は、判定対象のデータをいずれかの基礎的体調に必ず分類するように設定している。
The first basic physical condition estimating means 310 obtains whether or not the time-series change of the bioregulatory functional elements with higher priority among the bioregulatory functional elements with priority set satisfies a predetermined criterion, When the level is satisfied, the basic physical condition is estimated as the predetermined level. The second basic physical condition estimating means 320 is the first basic physical condition estimating means when the first basic physical condition estimating means is not subject to determination, that is, when the predetermined basic condition in the first basic physical condition estimating means 310 is not satisfied. A basic physical condition is estimated on the basis of a predetermined criterion by using a time-series change regarding another bioregulatory function element having a lower priority than the bioregulatory function element used in the means 310. Accordingly, since the second basic physical condition estimating means 320 is the final means for estimating the basic physical condition, the second basic physical condition estimating means 320 always classifies the data to be determined into any basic physical condition. It is set.
基礎的体調推定手段300において推定対象となる生体調節機能要素判定手段200によって得られる各生体調節機能要素の優先順位としては、後述の実験例のように多数の事例を分析して統計的に、必要に応じてそれらに寄与率も考慮して決定することが好ましい。それにより、より推定精度を向上できる。本実施形態においては、後述の実験例における統計処理に基づいて、自律神経機能への関連性の高い指標又は肉体・精神疲労への関連性の高い指標の時系列変化のいずれかの優先順位を高く設定し、次の優先順位に、感覚への関連性の高い指標の時系列変化となるように設定している。従って、第1基礎的体調推定手段310においては、自律神経機能への関連性の高い指標の時系列変化が、所定の条件を満たすか否か、肉体・精神疲労への関連性の高い指標の時系列変化が、所定の条件を満たすか否かを判別するように設定している。また、自律神経機能への関連性の高い指標の時系列変化が、所定の条件を満たす場合に、基礎的体調を「不良」と推定し、肉体・精神疲労への関連性の高い指標の時系列変化が、所定の条件を満たす場合に、基礎的体調を「良好」と推定するように設定している。
As the priority of each bioregulatory functional element obtained by the bioregulatory function element determining unit 200 to be estimated in the basic physical condition estimating unit 300, a number of cases are analyzed statistically as in the experimental examples described later, It is preferable to determine in consideration of the contribution ratio as necessary. Thereby, the estimation accuracy can be further improved. In this embodiment, based on statistical processing in an experimental example to be described later, one of the priorities of an index highly related to autonomic nervous function or a time series change of an index highly related to physical / mental fatigue. It is set to be high, and the next priority is set to be a time-series change of an index highly relevant to the senses. Therefore, in the first basic physical condition estimation means 310, whether or not the time series change of the index highly relevant to the autonomic nervous function satisfies a predetermined condition, the index highly relevant to the physical / mental fatigue is determined. It is set so as to determine whether or not the time series change satisfies a predetermined condition. In addition, when the time-series change of an index highly related to autonomic nervous function satisfies a predetermined condition, the basic physical condition is estimated to be “bad”, and the index is highly related to physical and mental fatigue. When the series change satisfies a predetermined condition, the basic physical condition is set to be “good”.
脳機能、自律神経機能あるいは内分泌系の調節機能のゆらぎに基づいた恒常性維持機能に関する指標である上記の周波数傾き時系列波形、分布率、疲労曲線(疲労度)、及び恒常性維持機能レベルは、入眠予兆、切迫睡眠、覚低走行状態など、疲労の蓄積の結果生じる兆候を判別しやすい指標である。また、脳機能によって調節されている恒常性維持機能のゆらぎは、その周波数帯域の差により、内分泌系など、支配される調節システムを異にするが、上記の中でも分布率は、これらの調節システムの急変時、減衰時、増大時がよく反映される指標である。そこで、これらを用いて運転等の作業を行う上で注意や警告を要する状況が基礎的体調推定時間において顕著に現れたり、その頻度が所定以上だったりする場合に、基礎的体調を「不良」と推定する。肉体・精神疲労への関連性の高い指標である体調マップ・感覚マップは、快調、快適に感じている場合の指標を顕著に判別しやすい。そこで、この指標が快調、快適を示す条件の場合に、基礎的体調を「良好」と推定する。第1基礎的体調推定手段310における基礎的体調の推定において、脳機能、自律神経機能及び内分泌系の調節機能への関連性の高い指標と、肉体・精神疲労への関連性の高い指標とのいずれを優先して用いるかは制限されるものではないが、肉体・精神疲労の変調も自律神経との関わりが基本的に存在するため、本実施形態のように、脳機能や自律神経機能等への関連性の高い指標を用いた推定を実施し、次に、肉体・精神疲労への関連性の高い指標を用いた推定を実施することが好ましい。
The above frequency gradient time series waveform, distribution rate, fatigue curve (fatigue level), and homeostasis maintenance function level, which are indices related to homeostasis maintenance function based on fluctuations in brain function, autonomic nervous function or endocrine system regulation function are It is an index that makes it easy to discern signs that occur as a result of fatigue accumulation, such as sleep onset, imminent sleep, and low-level driving. In addition, fluctuations in the homeostatic function that is regulated by brain function vary depending on the frequency band, and the regulated system governed by the endocrine system, etc., but the distribution rate among these is the regulation system. It is an index that reflects well when there is sudden change, decay and increase. Therefore, if the situation that requires caution or warning when performing operations such as driving using these appears prominently in the basic physical condition estimation time or the frequency is more than the predetermined, the basic physical condition is `` bad '' Estimated. The physical condition map / sensory map, which is an index highly related to physical / mental fatigue, can easily distinguish the index when feeling well and comfortable. Therefore, when this index is a condition that indicates smoothness and comfort, the basic physical condition is estimated as “good”. In the estimation of the basic physical condition in the first basic physical condition estimating means 310, an index highly relevant to the brain function, the autonomic nervous function and the regulatory function of the endocrine system and an index highly relevant to physical / mental fatigue There is no restriction on which one to use preferentially, but because there is basically a relationship with autonomic nerves in the modulation of physical and mental fatigue, as in this embodiment, brain function, autonomic nerve function, etc. It is preferable to perform estimation using an index highly relevant to human health, and then to perform estimation using an index highly relevant to physical and mental fatigue.
脳機能、自律神経機能及び内分泌系のホルモン分泌調節機能への関連性の高い指標は、本実施形態では上記のように、周波数傾き時系列波形、分布率、疲労曲線(疲労度)、及び恒常性維持機能レベルの4つある。このうち、一つにおいて、入眠予兆等の兆候を所定以上検出した場合に、基礎的体調を「不良」と推定するように設定することも可能であるが、複数の指標において所定の兆候を検出した場合に、基礎的体調を「不良」と推定することは信頼度を高めるため好ましい。
In the present embodiment, as described above, the brain function, the autonomic nervous function, and the endocrine function are highly relevant to the hormone secretion regulation function. As described above, the frequency gradient time series waveform, distribution rate, fatigue curve (fatigue degree), and constant There are four sex maintenance function levels. In one of these, it is possible to set the basic physical condition to be estimated as “bad” when a sign such as a sleep onset sign is detected above a predetermined level. In this case, it is preferable to estimate the basic physical condition as “bad” in order to increase the reliability.
そこで、本実施形態の第1基礎的体調推定手段310は、周波数傾き時系列波形演算手段210から求められる周波数傾き時系列波形、分布率演算手段210から求められる分布率の時系列波形、疲労曲線演算手段230から求められる疲労曲線(疲労度の時系列波形)、及び恒常性維持機能レベル演算手段240から求められる恒常性維持機能レベルのうち、3つ以上の指標が所定の基準を満たす場合(図8のS110で「Yes」と判定された場合)に「不良」と推定するように設定している。
Therefore, the first basic physical condition estimating unit 310 of the present embodiment includes a frequency gradient time-series waveform obtained from the frequency gradient time-series waveform computing unit 210, a time series waveform of the distribution rate obtained from the distribution rate computing unit 210, and a fatigue curve. When three or more indices satisfy a predetermined standard among the fatigue curve (time series waveform of fatigue level) obtained from the computing means 230 and the homeostasis maintenance function level obtained from the homeostasis maintenance function level computation means 240 ( When “Yes” is determined in S110 of FIG. 8), “bad” is estimated.
本実施形態において「不良」と推定する所定の基準は、次のように設定している。
(a)周波数傾き時系列波形演算手段210から求められる指標
ゼロクロス法を用いた周波数傾き時系列波形において、振幅変化を比較し、複数回(通常、2~4回の範囲で設定)連続で1つ前の振幅の9~6割未満に変化する収束箇所が生じた場合(交感神経活動が低下し、眠気に抵抗できない状態に陥ったことを推定する指標)
(b)分布率演算手段220から求められる指標
ゼロクロス法を用いた周波数傾き時系列波形の分布率の時系列変化において、所定時間の範囲(通常、60~120秒間の範囲で設定)で、0.0017Hzの分布率が急減(通常、減少率15%以上で設定)し、その間に0.0053Hzの分布率が急増(通常、増加率15%以上で設定)した場合(入眠予兆現象の出現を推定する指標)
(c)疲労曲線演算手段230から求められる指標
所定時間(通常、3~10分の範囲で設定)の間における、ピーク検出法を用いた疲労曲線(ピーク検出法を用いた周波数傾き時系列波形の絶対値の積算の時系列波形)の傾きが、ゼロクロス法を用いた疲労曲線(ゼロクロス法を用いた周波数傾き時系列波形の絶対値の積算の時系列波形)の傾きよりも大きく変化する箇所が1箇所以上存在し、かつ、所定時間経過時に、ピーク検出法を用いた疲労曲線が所定の値以上に至った場合(副交感神経活動が極端に優位な状態であることを推定する指標)
(d)恒常性維持機能レベル演算手段240から求められる指標
18秒毎に得られる恒常性維持機能レベルのうち、普通レベルよりは低いレベル、上記の例ではレベル4~6という注意判定が数回から十数回以上出現する場合(副交感神経活動が優位な状態と推定されるときに出現する指標)、あるいは、警告を要するレベル、上記の例ではレベル7~11の警告判定が数回以上出現する場合(交感神経活動の急激な亢進や極端な低下などが推定されるときに出現する指標) In the present embodiment, the predetermined criterion for estimating “bad” is set as follows.
(A) Index obtained from frequency gradient time series waveform calculation means 210 In the frequency gradient time series waveform using the zero cross method, the amplitude change is compared, and it is 1 in succession (usually set in the range of 2 to 4 times). When a converging point that changes to less than 90-60% of the previous amplitude occurs (an index that estimates that sympathetic nerve activity has fallen and cannot sleep well)
(B) Index obtained from the distribution rate calculating means 220 In the time series change of the distribution rate of the frequency gradient time series waveform using the zero cross method, 0 in a predetermined time range (usually set in the range of 60 to 120 seconds). When the distribution rate at .0017 Hz suddenly decreases (usually set at a reduction rate of 15% or more) and the distribution rate at 0.0053 Hz suddenly increases (usually set at an increase rate of 15% or more) during this period ( Estimated metrics)
(C) Index obtained from fatigue curve calculation means 230 Fatigue curve using peak detection method (frequency gradient time series waveform using peak detection method) during a predetermined time (usually set in the range of 3 to 10 minutes) Where the slope of the absolute value integration time series waveform) changes more significantly than the slope of the fatigue curve using the zero-cross method (frequency slope time series waveform integration of the frequency slope time-series waveform using the zero-cross method) When the fatigue curve using the peak detection method reaches a predetermined value or more when a predetermined time elapses (an index that estimates that the parasympathetic nerve activity is extremely dominant)
(D) Index obtained from homeostasis maintenance function level calculating means 240 Of the homeostasis maintenance function levels obtained every 18 seconds, a level lower than the normal level, in the above example, several times of caution judgments of levels 4-6 Appears more than a dozen times (an index that appears when parasympathetic activity is presumed to be dominant), or a level that requires a warning, in the above example, a warning judgment of levels 7 to 11 appears several times (An index that appears when a sudden increase or a drastic decrease in sympathetic nerve activity is estimated)
(a)周波数傾き時系列波形演算手段210から求められる指標
ゼロクロス法を用いた周波数傾き時系列波形において、振幅変化を比較し、複数回(通常、2~4回の範囲で設定)連続で1つ前の振幅の9~6割未満に変化する収束箇所が生じた場合(交感神経活動が低下し、眠気に抵抗できない状態に陥ったことを推定する指標)
(b)分布率演算手段220から求められる指標
ゼロクロス法を用いた周波数傾き時系列波形の分布率の時系列変化において、所定時間の範囲(通常、60~120秒間の範囲で設定)で、0.0017Hzの分布率が急減(通常、減少率15%以上で設定)し、その間に0.0053Hzの分布率が急増(通常、増加率15%以上で設定)した場合(入眠予兆現象の出現を推定する指標)
(c)疲労曲線演算手段230から求められる指標
所定時間(通常、3~10分の範囲で設定)の間における、ピーク検出法を用いた疲労曲線(ピーク検出法を用いた周波数傾き時系列波形の絶対値の積算の時系列波形)の傾きが、ゼロクロス法を用いた疲労曲線(ゼロクロス法を用いた周波数傾き時系列波形の絶対値の積算の時系列波形)の傾きよりも大きく変化する箇所が1箇所以上存在し、かつ、所定時間経過時に、ピーク検出法を用いた疲労曲線が所定の値以上に至った場合(副交感神経活動が極端に優位な状態であることを推定する指標)
(d)恒常性維持機能レベル演算手段240から求められる指標
18秒毎に得られる恒常性維持機能レベルのうち、普通レベルよりは低いレベル、上記の例ではレベル4~6という注意判定が数回から十数回以上出現する場合(副交感神経活動が優位な状態と推定されるときに出現する指標)、あるいは、警告を要するレベル、上記の例ではレベル7~11の警告判定が数回以上出現する場合(交感神経活動の急激な亢進や極端な低下などが推定されるときに出現する指標) In the present embodiment, the predetermined criterion for estimating “bad” is set as follows.
(A) Index obtained from frequency gradient time series waveform calculation means 210 In the frequency gradient time series waveform using the zero cross method, the amplitude change is compared, and it is 1 in succession (usually set in the range of 2 to 4 times). When a converging point that changes to less than 90-60% of the previous amplitude occurs (an index that estimates that sympathetic nerve activity has fallen and cannot sleep well)
(B) Index obtained from the distribution rate calculating means 220 In the time series change of the distribution rate of the frequency gradient time series waveform using the zero cross method, 0 in a predetermined time range (usually set in the range of 60 to 120 seconds). When the distribution rate at .0017 Hz suddenly decreases (usually set at a reduction rate of 15% or more) and the distribution rate at 0.0053 Hz suddenly increases (usually set at an increase rate of 15% or more) during this period ( Estimated metrics)
(C) Index obtained from fatigue curve calculation means 230 Fatigue curve using peak detection method (frequency gradient time series waveform using peak detection method) during a predetermined time (usually set in the range of 3 to 10 minutes) Where the slope of the absolute value integration time series waveform) changes more significantly than the slope of the fatigue curve using the zero-cross method (frequency slope time series waveform integration of the frequency slope time-series waveform using the zero-cross method) When the fatigue curve using the peak detection method reaches a predetermined value or more when a predetermined time elapses (an index that estimates that the parasympathetic nerve activity is extremely dominant)
(D) Index obtained from homeostasis maintenance function level calculating means 240 Of the homeostasis maintenance function levels obtained every 18 seconds, a level lower than the normal level, in the above example, several times of caution judgments of levels 4-6 Appears more than a dozen times (an index that appears when parasympathetic activity is presumed to be dominant), or a level that requires a warning, in the above example, a warning judgment of levels 7 to 11 appears several times (An index that appears when a sudden increase or a drastic decrease in sympathetic nerve activity is estimated)
また、本実施形態の第1基礎的体調推定手段310は、上記の(a)~(d)の指標のうち3つ以上において「不良」と推定されないデータ(図8のS110で「No」と判定されたデータ)に関し、体調マップ演算手段250及び感覚マップ演算手段260の指標を用いて所定の基準を満たす「良好」に相当するか否かを推定する(図8のS120)。
(e)基礎的体調「良好」と判定される場合の指標
基礎的体調「良好」に相当する基準として、本実施形態では、体調マップ演算手段250から求められる時系列変化が、一つ手前の演算結果が出力されるポイント(上記のように、1点目、2点目は所定の時間経過後に出力されるが、3点目以降は数分毎に出力される)を座標原点に合わせた際に、次のポイントが第4象限にプロットされ、かつ、感覚マップ演算手段260から求められる時系列変化が、同じく一つ手前のポイントを座標原点に合わせた際に、X軸方向に所定以上離隔してプロットされる場合に、「良好」と推定するように設定している(図8のS120で「Yes」の場合)。 Further, the first basic physical condition estimating means 310 of the present embodiment provides data that is not estimated as “bad” in three or more of the indicators (a) to (d) (“No” in S110 of FIG. 8). With respect to (determined data), it is estimated whether or not it corresponds to “good” satisfying a predetermined criterion by using the indices of the physical condition map calculating means 250 and the sensory map calculating means 260 (S120 in FIG. 8).
(E) Index when it is determined that the basic physical condition is “good” As a standard corresponding to the basic physical condition “good”, in this embodiment, the time series change obtained from the physical conditionmap calculation unit 250 is The point at which the calculation result is output (as described above, the first point and the second point are output after a predetermined time has passed, but the third and subsequent points are output every few minutes) is aligned with the coordinate origin. In this case, when the next point is plotted in the fourth quadrant and the time series change obtained from the sensory map calculation means 260 is set to the coordinate origin, the previous point is also more than a predetermined value in the X-axis direction. It is set to be estimated as “good” when plotted at a distance (in the case of “Yes” in S120 of FIG. 8).
(e)基礎的体調「良好」と判定される場合の指標
基礎的体調「良好」に相当する基準として、本実施形態では、体調マップ演算手段250から求められる時系列変化が、一つ手前の演算結果が出力されるポイント(上記のように、1点目、2点目は所定の時間経過後に出力されるが、3点目以降は数分毎に出力される)を座標原点に合わせた際に、次のポイントが第4象限にプロットされ、かつ、感覚マップ演算手段260から求められる時系列変化が、同じく一つ手前のポイントを座標原点に合わせた際に、X軸方向に所定以上離隔してプロットされる場合に、「良好」と推定するように設定している(図8のS120で「Yes」の場合)。 Further, the first basic physical condition estimating means 310 of the present embodiment provides data that is not estimated as “bad” in three or more of the indicators (a) to (d) (“No” in S110 of FIG. 8). With respect to (determined data), it is estimated whether or not it corresponds to “good” satisfying a predetermined criterion by using the indices of the physical condition map calculating means 250 and the sensory map calculating means 260 (S120 in FIG. 8).
(E) Index when it is determined that the basic physical condition is “good” As a standard corresponding to the basic physical condition “good”, in this embodiment, the time series change obtained from the physical condition
なお、基礎的体調が「不良」と推定される(a)~(d)の判定基準及び基礎的体調が「良好」と推定される(e)の判定基準は、後述の多数の事例の統計的分析に基づくものであるが、これに限定されるものではない。例えば、個人毎にデータを蓄積して、個人毎に統計的に条件を設定するようにしてもよい。
Note that the criteria (a) to (d) for which the basic physical condition is estimated to be “bad” and the criterion (e) for which the basic physical condition is estimated to be “good” are statistics for a number of cases described later. It is based on a statistical analysis, but is not limited to this. For example, data may be accumulated for each individual, and the condition may be set statistically for each individual.
第2基礎的体調推定手段320は、推定対象のデータが、第1基礎的体調推定手段310において「不良」、「良好」の各基準のいずれも満たさない場合(図8のS110で「No」と判定され、かつ、S120で「No」と判定された場合)に実行される。第2基礎的体調推定手段320は、恒常性維持機能レベル判定手段240により求められる恒常性維持機能レベルの時系列変化のうち、交感神経活動が優位で普通から良好といえるレベルの指標(上記の例では、レベル1~3)と、副交感神経活動が優位で注意を要するレベルの指標(上記の例では、レベル4~6)の境界付近のレベルの出現頻度を比較する。但し、レベルの1段階の違いでは、状態の違いは小さいため、2段階以上違うレベルで比較することが好ましい。本実施形態では、普通から良好といえる3段階のレベルのうちの中央の指標であるレベル2の指標と、注意し始める必要のあるレベル4の指標の出現頻度の割合を比較している。基本的には、交感神経活動が優位で良好状態を示すレベル2の出現頻度が高く、副交感神経活動が優位で注意状態を示すレベル4の出現頻度が低い場合には「良好」と推定でき、出現頻度が逆の関係の場合には「不良」と推定できるが、第2基礎的体調推定手段320の分析対象となるデータは、第1基礎的体調推定手段310において明確に「良好」、「不良」と推定されなかったものであるため、いずれにも分類しにくいデータも想定される。そこで、本発明では、後述の試験例において、多数の事例を分析し、ベイズ推定の手法により、「良好」、「不良」及びそれらの「中間状態」に分類する基準を設定している。詳細は後述する。
The second basic physical condition estimating means 320, when the data to be estimated does not satisfy both the “bad” and “good” criteria in the first basic physical condition estimating means 310 (“No” in S110 of FIG. 8). And when “No” is determined in S120). The second basic physical condition estimating means 320 is an index of a level that can be said to be normal to good with sympathetic nerve activity among time series changes in the homeostasis maintenance function level obtained by the homeostasis maintenance function level determination means 240 (the above-mentioned In the example, the appearance frequency of the level near the boundary between the levels 1 to 3) and the index of the level where parasympathetic nerve activity is dominant and requires attention (levels 4 to 6 in the above example) is compared. However, since the difference in state is small at one level difference, it is preferable to compare at two or more different levels. In the present embodiment, the ratio of the appearance frequency of the level 2 index, which is the central index among the three levels that can be said to be normal to good, is compared with the level 4 index that needs to be noted. Basically, it can be estimated as “good” when the frequency of appearance of level 2 showing superior state with high sympathetic nerve activity is high and the frequency of appearance of level 4 showing precaution state with low parasympathetic nerve activity is low, When the appearance frequency is opposite, it can be estimated as “bad”, but the data to be analyzed by the second basic physical condition estimating means 320 is clearly “good”, “ Since it was not estimated as “bad”, data that is difficult to classify is assumed. Therefore, in the present invention, in a test example to be described later, a large number of cases are analyzed, and a criterion for classifying them into “good”, “bad”, and “intermediate state” is set by a Bayesian estimation method. Details will be described later.
基礎的体調出力手段400は、本実施形態では、第1基礎的体調推定手段310の上記条件を満たす場合(図8のS110で「Yes」と判定された場合、又は、S120で「Yes」と判定された場合)、その推定結果として基礎的体調のレベルを「不良」(図8のS111)又は「良好」(図8のS121)と出力する。第1基礎的体調推定手段310の条件を満たさない場合(図8のS110で「No」と判定され、かつ、S120で「No」と判定された場合)には、第2基礎的体調推定手段320の推定結果である「良好」、「不良」それらの「中間状態」を出力する(図8のS131)。基礎的体調出力手段400は、基礎的体調の推定結果である「良好」、「不良」又は「中間状態」を、人が認識可能な媒体を通じて出力する。例えば、本実施形態の生体信号測定装置1及び生体状態推定装置100が、自動車に搭載され、運転者の状態を検知するものであれば、車載モニタに、基礎的体調推定時間の経過毎に推定結果を表示させる。表示方法は、文字でもよいし、図柄等であってもよい。図柄として、運転者が視認しやすいように、例えば、「良好」の場合には、天気の「晴れ」の記号を用い、「不良」の場合には天気の「雨」の記号を用い、「中間状態」の場合には天気の「曇」の記号を用いることができる。そのほか、複数種類のキャラクタで表示してもよいし、これらを併合して表示してもよい。また、車載スピーカを介して音声により出力したりすることもできる。
In this embodiment, the basic physical condition output unit 400 satisfies the above-described condition of the first basic physical condition estimation unit 310 (when “Yes” is determined in S110 of FIG. 8 or “Yes” in S120). When it is determined, the basic physical condition level is output as “bad” (S111 in FIG. 8) or “good” (S121 in FIG. 8) as the estimation result. When the condition of the first basic physical condition estimating means 310 is not satisfied (when “No” is determined in S110 of FIG. 8 and “No” is determined in S120), the second basic physical condition estimating means is used. “Good”, “bad”, and “intermediate state” of the estimation results 320 are output (S131 in FIG. 8). The basic physical condition output unit 400 outputs “good”, “bad”, or “intermediate state”, which is an estimation result of the basic physical condition, through a medium that can be recognized by a person. For example, if the biological signal measurement device 1 and the biological state estimation device 100 according to the present embodiment are mounted on an automobile and detect a driver's state, the in-vehicle monitor estimates the basic physical condition estimation time every time. Display the results. The display method may be characters or symbols. As a symbol, for example, the symbol “sunny” of the weather is used for “good”, and the symbol “rain” of the weather is used for “bad”. In the case of “intermediate state”, the symbol “cloudy” of weather can be used. In addition, a plurality of types of characters may be displayed, or these may be combined and displayed. It can also be output by voice via a vehicle-mounted speaker.
本実施形態によれば、例えば、運転者の状態を解析する場合、各生体調節機能要素の短時間毎の変化に加え、所定の基礎的体調推定時間毎に、運転者の基礎的な体調を推定して出力することができる。そのため、運転者は、自らが例えばここ30分間どのような状態で運転しているかを概略的に自覚しやすく、例えば基礎的体調として「不良」が連続して推定されるようであれば、速やかに休憩するなどの決断を促しやすい。また、車載されている生体状態推定装置100と管理者側のコンピュータとを通信手段を介してつなげておくことにより、運転者の個別の各生体調節機能要素だけでなく、基礎的な体調もリアルタイムで把握でき、管理者側の判断の助けになる。
According to the present embodiment, for example, when analyzing the driver's condition, in addition to the change of each bioregulatory functional element for each short time, the basic physical condition of the driver is determined for each predetermined basic physical condition estimation time. It can be estimated and output. Therefore, it is easy for the driver to be aware of the state in which he / she has been driving, for example, for the last 30 minutes. For example, if “bad” is continuously estimated as a basic physical condition, It is easy to encourage decisions such as taking a break. In addition, by connecting the vehicle state estimation device 100 mounted on the vehicle and the computer on the manager side via communication means, not only the individual bioregulatory functional elements of the driver but also the basic physical condition in real time. Can be used to help managers make decisions.
(実験例1)
次に、基礎的体調推定手段300を構成する第1基礎的体調推定手段310の推定基準、第2基礎的体調推定手段320の推定基準の設定に関する実験結果を説明する。 (Experimental example 1)
Next, experimental results regarding the setting of the estimation standard of the first basic physicalcondition estimation unit 310 and the estimation standard of the second basic physical condition estimation unit 320 constituting the basic physical condition estimation unit 300 will be described.
次に、基礎的体調推定手段300を構成する第1基礎的体調推定手段310の推定基準、第2基礎的体調推定手段320の推定基準の設定に関する実験結果を説明する。 (Experimental example 1)
Next, experimental results regarding the setting of the estimation standard of the first basic physical
(実験方法)
生体信号測定装置として生体信号測定装置1が運転席のシートバックに装着され、生体信号測定装置1により測定される背部音・振動情報のデータが入力されるコンピュータである生体状態推定装置100が搭載されている自動車に被験者を着座させて走行させた。なお、生体状態推定装置100は、株式会社デルタツーリング製、商品名「スリープバスター」を用いた。 (experimental method)
A biological signal estimation device 100 is mounted as a biological signal measurement device on a seat back of a driver's seat, and a biological state estimation device 100 which is a computer to which data of back sound and vibration information measured by the biologicalsignal measurement device 1 is input is mounted. The subject was seated in a car that was being run. The biological state estimation device 100 uses a product name “Sleep Buster” manufactured by Delta Touring Co., Ltd.
生体信号測定装置として生体信号測定装置1が運転席のシートバックに装着され、生体信号測定装置1により測定される背部音・振動情報のデータが入力されるコンピュータである生体状態推定装置100が搭載されている自動車に被験者を着座させて走行させた。なお、生体状態推定装置100は、株式会社デルタツーリング製、商品名「スリープバスター」を用いた。 (experimental method)
A biological signal estimation device 100 is mounted as a biological signal measurement device on a seat back of a driver's seat, and a biological state estimation device 100 which is a computer to which data of back sound and vibration information measured by the biological
被験者は60歳代の健康な日本人男性であり、約40分間の連続運転を異なる日に複数回実施した。被験者には、運転終了後、運転中の体調を自己申告させた。自己申告は、「良好」、「やや良好」、「普通」、「やや不良」、「不良」の5段階で行わせた。自己申告のうち、「やや良好」、「普通」、「やや不良」という曖昧なケースは除外し、被験者が明確に「良好」、「不良」と判定した55例の走行データについて、本実施形態の手法による基礎的体調の推定結果とを比較した。
The test subject was a healthy Japanese man in his 60's who performed continuous operation for about 40 minutes multiple times on different days. The subject self-reported his / her physical condition after driving. Self-assessment was made in five stages: “good”, “slightly good”, “normal”, “slightly bad”, and “bad”. In this embodiment, the ambiguous cases of “slightly good”, “normal”, and “slightly bad” are excluded from self-reports, and the driving data of 55 cases that the subject has clearly determined as “good” and “bad”. Compared with the estimation results of basic physical condition by the method of.
I.第1基礎的体調推定手段310による基礎的体調の推定
(1)周波数傾き時系列波形演算手段210から求められる指標が上記(a)の条件を満たすか否かの検討
(a)の条件は、2回連続で1つ前の振幅の9割未満に変化する波形の収束箇所が1回以上生じているか否かに設定し、被験者の主観と対比したカイ二乗検定を行った。2×2クロステーブルを次表に示すが、p=0.24、正答率は67%であった。 I. Estimation of basic physical condition by the first basic physical condition estimating means 310 (1) Examination of whether or not the index obtained from the frequency gradient time-series waveform calculating means 210 satisfies the above condition (a) The condition of (a) is: The chi-square test was performed by setting whether or not the convergence point of the waveform that changed to less than 90% of the previous amplitude in two successive occurrences occurred at least once and compared with the subjectivity of the subject. The 2 × 2 cross table is shown in the following table, p = 0.24, and the correct answer rate was 67%.
(1)周波数傾き時系列波形演算手段210から求められる指標が上記(a)の条件を満たすか否かの検討
(a)の条件は、2回連続で1つ前の振幅の9割未満に変化する波形の収束箇所が1回以上生じているか否かに設定し、被験者の主観と対比したカイ二乗検定を行った。2×2クロステーブルを次表に示すが、p=0.24、正答率は67%であった。 I. Estimation of basic physical condition by the first basic physical condition estimating means 310 (1) Examination of whether or not the index obtained from the frequency gradient time-series waveform calculating means 210 satisfies the above condition (a) The condition of (a) is: The chi-square test was performed by setting whether or not the convergence point of the waveform that changed to less than 90% of the previous amplitude in two successive occurrences occurred at least once and compared with the subjectivity of the subject. The 2 × 2 cross table is shown in the following table, p = 0.24, and the correct answer rate was 67%.
(2)分布率演算手段220から求められる指標が上記(b)の条件を満たすか否かの検討
(b)の条件は、90秒間で、0.0017Hzの分布率が20%以上減少し、その間に0.0053Hzの分布率が20%以上増加する場合に設定し、被験者の主観と対比したカイ二乗検定を行った。2×2クロステーブルを次表に示すが、p=0.11、正答率は69%であった。 (2) Examination of whether or not the index obtained from the distribution rate calculating means 220 satisfies the above condition (b) The condition (b) is that the distribution rate at 0.0017 Hz decreases by 20% or more in 90 seconds, In the meantime, it was set when the distribution rate of 0.0053 Hz increased by 20% or more, and a chi-square test was performed in comparison with the subjectivity of the subject. The 2 × 2 cross table is shown in the following table, but p = 0.11 and the correct answer rate was 69%.
(b)の条件は、90秒間で、0.0017Hzの分布率が20%以上減少し、その間に0.0053Hzの分布率が20%以上増加する場合に設定し、被験者の主観と対比したカイ二乗検定を行った。2×2クロステーブルを次表に示すが、p=0.11、正答率は69%であった。 (2) Examination of whether or not the index obtained from the distribution rate calculating means 220 satisfies the above condition (b) The condition (b) is that the distribution rate at 0.0017 Hz decreases by 20% or more in 90 seconds, In the meantime, it was set when the distribution rate of 0.0053 Hz increased by 20% or more, and a chi-square test was performed in comparison with the subjectivity of the subject. The 2 × 2 cross table is shown in the following table, but p = 0.11 and the correct answer rate was 69%.
(3)疲労曲線演算手段230から求められる指標が上記(c)の条件を満たすか否かの検討
(c)の条件は、6分間の範囲で、ピーク検出法を用いた疲労曲線の傾きが、ゼロクロス法を用いた疲労曲線の傾きの1.5倍以上に変化する箇所が1箇所以上存在し、かつ、ピーク検出法を用いた疲労曲線が30分経過時に0.03より大きくなっている場合に設定し、被験者の主観と対比したカイ二乗検定を行った。2×2クロステーブルを次表に示すが、p=0.19、正答率は64%であった。 (3) Examination of whether or not the index obtained from the fatigue curve calculation means 230 satisfies the above condition (c) The condition (c) is a range of 6 minutes, and the slope of the fatigue curve using the peak detection method is There is one or more places that change to more than 1.5 times the slope of the fatigue curve using the zero cross method, and the fatigue curve using the peak detection method is greater than 0.03 after 30 minutes The chi-square test was performed in comparison with the subjectivity of the subjects. The 2 × 2 cross table is shown in the following table, p = 0.19, and the correct answer rate was 64%.
(c)の条件は、6分間の範囲で、ピーク検出法を用いた疲労曲線の傾きが、ゼロクロス法を用いた疲労曲線の傾きの1.5倍以上に変化する箇所が1箇所以上存在し、かつ、ピーク検出法を用いた疲労曲線が30分経過時に0.03より大きくなっている場合に設定し、被験者の主観と対比したカイ二乗検定を行った。2×2クロステーブルを次表に示すが、p=0.19、正答率は64%であった。 (3) Examination of whether or not the index obtained from the fatigue curve calculation means 230 satisfies the above condition (c) The condition (c) is a range of 6 minutes, and the slope of the fatigue curve using the peak detection method is There is one or more places that change to more than 1.5 times the slope of the fatigue curve using the zero cross method, and the fatigue curve using the peak detection method is greater than 0.03 after 30 minutes The chi-square test was performed in comparison with the subjectivity of the subjects. The 2 × 2 cross table is shown in the following table, p = 0.19, and the correct answer rate was 64%.
(4)恒常性維持機能レベル演算手段240から求められる指標が上記(d)の条件を満たすか否かの検討
(d)の条件は、6分間で上記の例でレベル4~6という判定が10回以上、又は、レベル7~11の判定が7回以上出現する場合に設定し、被験者の主観と対比したカイ二乗検定を行った。2×2クロステーブルを次表に示すが、p=0.018、正答率は71%であった。 (4) Examination of whether or not the index obtained from the constancy maintaining function level calculating means 240 satisfies the above condition (d). The condition (d) is determined aslevels 4 to 6 in the above example in 6 minutes. It was set when the judgment of level 7 to 11 appeared 10 times or more, or chi-square test compared with the subjectivity of the subject. The 2 × 2 cross table is shown in the following table, p = 0.018, and the correct answer rate was 71%.
(d)の条件は、6分間で上記の例でレベル4~6という判定が10回以上、又は、レベル7~11の判定が7回以上出現する場合に設定し、被験者の主観と対比したカイ二乗検定を行った。2×2クロステーブルを次表に示すが、p=0.018、正答率は71%であった。 (4) Examination of whether or not the index obtained from the constancy maintaining function level calculating means 240 satisfies the above condition (d). The condition (d) is determined as
55例の走行データのうち、上記(a)~(d)の条件を満たす数をまとめると次表のとおりである。
The following table summarizes the numbers that satisfy the conditions (a) to (d) in the 55 cases of travel data.
表5から明らかなように、(a)~(d)の条件のうち3つ以上満たす場合の7例は、いずれも被験者の主観においても「不良」と評価されている。従って、第1基礎的体調推定手段310においては、周波数傾き時系列波形演算手段210から求められる周波数傾き時系列波形、分布率演算手段210から求められる分布率の時系列波形、疲労曲線演算手段230から求められる疲労曲線(疲労度の時系列波形)、及び恒常性維持機能レベル演算手段240から求められる恒常性維持機能レベルのうち、3つ以上の指標がそれぞれ上記の(a)~(d)の条件を満たす場合に「不良」と推定するように設定することが好ましい。
As is clear from Table 5, all seven cases where three or more of the conditions (a) to (d) are satisfied are evaluated as “bad” in the subjectivity of the subject. Therefore, in the first basic physical condition estimating means 310, the frequency slope time series waveform obtained from the frequency slope time series waveform computing means 210, the time series waveform of the distribution rate obtained from the distribution rate computing means 210, and the fatigue curve computing means 230. Among the fatigue curves (time series waveform of the fatigue level) obtained from the above and the homeostasis maintenance function level obtained from the homeostasis maintenance function level calculation means 240, three or more indicators are respectively the above (a) to (d) It is preferable to set so that it is estimated as “bad” when the above condition is satisfied.
(5)基礎的体調「良好」と判定される上記(e)の条件を満たすか否かの検討
55例の走行データの全てについて、体調マップ演算手段250により、測定開始から最初の判定結果を座標原点に合わせた際に2番目の判定結果の座標点が第4象限にプロットされるか否かを調べた。同じく、55例の走行データの全てについて、感覚マップ演算手段260により、測定開始から最初の判定結果を座標原点に合わせた際に2番目の判定結果の座標点がX軸の正方向に所定目盛り以上(本実験例では、主観評価「良好」の38例中多くの事例(23例)の離隔距離が目盛り5以上であったため、当該目盛り5以上に設定)離隔してプロットされるか否かを調べた。体調マップ演算手段250及び感覚マップ演算手段260の演算結果が、両方とも、上記条件を満たす場合が、第1基礎的体調推定手段310において基礎的体調「良好」という推定結果となるが、被験者の主観と対比したカイ二乗検定の結果は、次表のとおりである。p=0.095、正答率は56%であった。 (5) Examination of whether or not the above condition (e) is satisfied that the basic physical condition is determined to be “good” For all the 55 cases of travel data, the physical condition map calculation means 250 obtains the first determination result from the start of measurement. It was examined whether or not the coordinate point of the second determination result was plotted in the fourth quadrant when the coordinate origin was set. Similarly, the coordinate point of the second determination result is set to a predetermined scale in the positive direction of the X axis when the first determination result from the start of measurement is matched with the coordinate origin by all of the 55 cases of travel data. Above (in this experiment example, since the separation distance of many cases (23 cases) out of 38 cases of subjective evaluation “good” wasscale 5 or more, set the scale 5 or more) I investigated. When the calculation results of the physical condition map calculation unit 250 and the sensory map calculation unit 260 both satisfy the above condition, the first basic physical condition estimation unit 310 has an estimation result that the basic physical condition is “good”. The results of chi-square test compared with subjectivity are shown in the following table. p = 0.095 and the correct answer rate was 56%.
55例の走行データの全てについて、体調マップ演算手段250により、測定開始から最初の判定結果を座標原点に合わせた際に2番目の判定結果の座標点が第4象限にプロットされるか否かを調べた。同じく、55例の走行データの全てについて、感覚マップ演算手段260により、測定開始から最初の判定結果を座標原点に合わせた際に2番目の判定結果の座標点がX軸の正方向に所定目盛り以上(本実験例では、主観評価「良好」の38例中多くの事例(23例)の離隔距離が目盛り5以上であったため、当該目盛り5以上に設定)離隔してプロットされるか否かを調べた。体調マップ演算手段250及び感覚マップ演算手段260の演算結果が、両方とも、上記条件を満たす場合が、第1基礎的体調推定手段310において基礎的体調「良好」という推定結果となるが、被験者の主観と対比したカイ二乗検定の結果は、次表のとおりである。p=0.095、正答率は56%であった。 (5) Examination of whether or not the above condition (e) is satisfied that the basic physical condition is determined to be “good” For all the 55 cases of travel data, the physical condition map calculation means 250 obtains the first determination result from the start of measurement. It was examined whether or not the coordinate point of the second determination result was plotted in the fourth quadrant when the coordinate origin was set. Similarly, the coordinate point of the second determination result is set to a predetermined scale in the positive direction of the X axis when the first determination result from the start of measurement is matched with the coordinate origin by all of the 55 cases of travel data. Above (in this experiment example, since the separation distance of many cases (23 cases) out of 38 cases of subjective evaluation “good” was
上記表6の検討の際は、55例全ての走行データを用いているが、図8のフローチャートに示したように、第1基礎的体調推定手段310は、まず、上記(a)~(d)の条件のうち3つ以上を満足する場合について基礎的体調を「不良」と推定し(S110)、「不良」と推定されない場合について、体調マップ及び感覚マップによる「良好」に相当するか否かの判断を行う(S120)。そこで、上記(a)~(d)の条件のうち3つ以上を満足する7例を除いた48例についての比較検討したところ次の結果が得られた。この表より、7例を除いた場合には、p=0.032、正答率56%であった。p<0.05となっており、「不良」推定の条件を満たさない場合に、「良好」推定を行うことが好ましい。
In the examination of Table 6 above, the running data of all 55 cases are used. As shown in the flowchart of FIG. 8, the first basic physical condition estimating means 310 first performs the above (a) to (d The basic physical condition is estimated to be “bad” when three or more of the above conditions are satisfied (S110), and the case where it is not estimated to be “bad” corresponds to “good” based on the physical condition map and sensory map. Is determined (S120). Therefore, when 48 cases excluding 7 cases satisfying 3 or more of the above conditions (a) to (d) were compared, the following results were obtained. From this table, when 7 cases were excluded, p = 0.032 and the correct answer rate was 56%. It is preferable to perform “good” estimation when p <0.05 and the condition for “defective” estimation is not satisfied.
II.第2基礎的体調推定手段320による基礎的体調の推定
生体状態推定装置100の恒常性維持機能レベル演算手段240によって求められる恒常性維持機能レベルのうち、レベル1~6の合計出現数を1として、交感神経活動が優位な状態を示すレベル2及び副交感神経活動が優位な状態を示すレベル4の出現割合を求めた。これらを55例の全てについて行い、ベイズ推定を用いて次の確率表を作成した。 II. Estimation of basic physical condition by second basic physical condition estimating means 320 Of the homeostatic function level calculated by the homeostatic function level calculating means 240 of the biological state estimating apparatus 100, the total number of appearances oflevels 1 to 6 is set to 1. The appearance ratio of level 2 indicating a state in which sympathetic nerve activity is dominant and level 4 indicating a state in which parasympathetic nerve activity is dominant is obtained. These were performed for all 55 cases, and the following probability table was created using Bayesian estimation.
生体状態推定装置100の恒常性維持機能レベル演算手段240によって求められる恒常性維持機能レベルのうち、レベル1~6の合計出現数を1として、交感神経活動が優位な状態を示すレベル2及び副交感神経活動が優位な状態を示すレベル4の出現割合を求めた。これらを55例の全てについて行い、ベイズ推定を用いて次の確率表を作成した。 II. Estimation of basic physical condition by second basic physical condition estimating means 320 Of the homeostatic function level calculated by the homeostatic function level calculating means 240 of the biological state estimating apparatus 100, the total number of appearances of
表8の確率表を用いて第2基礎的体調推定手段320により推定される基礎的体調は、次表のとおりである。
The basic physical condition estimated by the second basic physical condition estimating means 320 using the probability table of Table 8 is as shown in the following table.
上記表8及び表9の検討の際は、確率表作成のため、55例全ての走行データを用いているが、図8のフローチャートに示したように、第2基礎的体調推定手段320は、第1基礎的体調推定手段310において基礎的体調が推定されない場合に体調推定を行う。そこで、第1基礎的体調推定手段310において「良好」又は「不良」と推定された26例を除いた29例について比較検討した結果が次表のとおりである。
When examining Table 8 and Table 9 above, the running data of all 55 cases are used to create a probability table. However, as shown in the flowchart of FIG. If the basic physical condition is not estimated by the first basic physical condition estimating means 310, the physical condition is estimated. Accordingly, the following table shows the results of comparative examination of 29 cases excluding 26 cases estimated as “good” or “bad” by the first basic physical condition estimating means 310.
本実施形態の生体状態推定装置100は、図8のフローチャートに示したように、推定対象のデータについて、第1基礎的体調推定手段310において、まず、「不良」の状態を推定し(S110)、「不良」と推定されない場合に、「良好」の状態を推定し(S120)、そのいずれとも推定されない場合に、第2基礎的体調推定手段において、表8に示したベイズ推定による確率表に基づき、「良好」、「不良」、それらの「中間状態」(上記表では「中間」と表示)のいずれかであるかを推定するが(S130)、本実験例では、被験者が明確に「良好」又は「不良」と評価した55例を用いている。
As shown in the flowchart of FIG. 8, the biological state estimation apparatus 100 according to the present embodiment first estimates the “bad” state in the first basic physical condition estimation unit 310 for the estimation target data (S110). When it is not estimated as “bad”, the state of “good” is estimated (S120), and when neither of them is estimated, the second basic physical condition estimating means uses the Bayes estimation probability table shown in Table 8 Based on this, it is estimated whether it is “good”, “bad”, or “intermediate state” (indicated in the above table as “intermediate”) (S130). 55 cases evaluated as “good” or “bad” are used.
従って、これら55例中、生体状態推定装置100において、最終的に「中間」と推定されたデータは、被験者の主観評価とは合致しない。そこで、この「中間」のデータ(11例)を除くと共に、第1基礎的体調推定手段310において「不良」と推定されたデータ(不良:7例)、その「不良」のデータを除いた中で、「良好」と推定されたデータ(良好:19例)、並びに、第1基礎的体調推定手段310において「不良」、「良好」と推定されたデータを除き、第2基礎的体調推定手段320において「不良」、「良好」と推定されたデータ(不良:7例、良好:11例)について、すなわち、重複のないデータについて最終的に基礎的体調出力手段400によって出力される推定結果を被験者の主観評価と比較してまとめると次表のとおりになった。
Therefore, in these 55 cases, the data finally estimated as “intermediate” in the biological state estimation device 100 does not match the subjective evaluation of the subject. Therefore, while excluding the “intermediate” data (11 cases), the first basic physical condition estimation means 310 estimates “bad” (failure: 7 cases), and excludes the “bad” data. The second basic physical condition estimating means except for the data estimated as “good” (good: 19 cases) and the data estimated as “bad” and “good” in the first basic physical condition estimating means 310. In 320, the data estimated as “bad” and “good” (bad: 7 cases, good: 11 cases), that is, the estimation results finally output by the basic physical condition output means 400 for the data without duplication. The table below summarizes the results of the subjective evaluation of the subjects.
表11によれば、p=1.58×10-7で、正答率91%であり、本実施形態の生体状態推定装置10による基礎的体調の推定結果が、高い確率で被験者の主観評価と一致し、本実施形態の基礎的体調の推定結果の信頼度が高いことがわかる。
According to Table 11, p = 1.58 × 10 −7 , the correct answer rate is 91%, and the estimation result of the basic physical condition by the biological state estimation device 10 of the present embodiment is high with the subject's subjective evaluation. It can be seen that the reliability of the estimation result of the basic physical condition of the present embodiment is high.
なお、55例中、第1基礎的体調推定手段310において「良好」又は「不良」と推定されたデータを除いて、第2基礎的体調推定手段320において「中間」と推定された11例のデータは、被験者の主観評価とは合致しないが、これは、被験者の基本的な体力や思考傾向によって左右されるものと考えられる。すなわち、本実施権例の被験者の場合、ポジティブ思考の傾向が強く、体力もあるため、11例中の多くは、主観的には「良好」と自己申告したものと考えられる。
Of the 55 cases, except for the data estimated as “good” or “bad” by the first basic physical condition estimating means 310, 11 cases estimated as “intermediate” by the second basic physical condition estimating means 320. The data does not match the subject's subjective assessment, but this is thought to depend on the subject's basic physical strength and tendency to think. That is, in the case of the subject of this license example, since there is a strong tendency of positive thinking and physical strength, most of the 11 cases are considered to be self-reported subjectively as “good”.
(実験例2)
次に、運輸事業者のトラックの運転席に、生体信号測定装置1として、(株)デルタツーリング製、スリープバスター(登録商標)を装着し、職業運転手の生体信号を採取して、実験例1で示した各推定基準が設定された生体状態推定装置100により、図8に示したフローチャートに従った分析を実施し、被験者の30分毎の体調を、「良」、「中間」、「不良」の3段階で推定した。被験者である職業運転手は、20歳代から50歳代までの男性7名で、全被験者の総運行回数71回を対象に分析を行った。また、各被験者には、運行当日の自身の主観的な体調を、運行終了後、「絶不調」(レベル:1)から「絶好調」(レベル:5)までの5段階で申告させた。 (Experimental example 2)
Next, a driver's truck's driver's seat is equipped with a sleep buster (registered trademark) manufactured by Delta Touring Co., Ltd. as a biologicalsignal measuring device 1, and a biological signal of a professional driver is collected. The biological condition estimation apparatus 100 in which each estimation criterion shown in FIG. 1 is set, the analysis according to the flowchart shown in FIG. 8 is performed, and the physical condition of the subject every 30 minutes is expressed as “good”, “intermediate”, “ Estimated in three stages of “bad”. The subject professional drivers were seven men from their 20s to 50s, and the analysis was conducted on the total number of operations 71 times of all subjects. In addition, each subject reported his / her subjective physical condition on the day of operation in five stages from “abnormal” (level: 1) to “excellent” (level: 5) after the operation ended.
次に、運輸事業者のトラックの運転席に、生体信号測定装置1として、(株)デルタツーリング製、スリープバスター(登録商標)を装着し、職業運転手の生体信号を採取して、実験例1で示した各推定基準が設定された生体状態推定装置100により、図8に示したフローチャートに従った分析を実施し、被験者の30分毎の体調を、「良」、「中間」、「不良」の3段階で推定した。被験者である職業運転手は、20歳代から50歳代までの男性7名で、全被験者の総運行回数71回を対象に分析を行った。また、各被験者には、運行当日の自身の主観的な体調を、運行終了後、「絶不調」(レベル:1)から「絶好調」(レベル:5)までの5段階で申告させた。 (Experimental example 2)
Next, a driver's truck's driver's seat is equipped with a sleep buster (registered trademark) manufactured by Delta Touring Co., Ltd. as a biological
なお、「運行回数」は、各被験者の勤務日1日(夜勤など、カレンダー上の日付を跨ぐ場合もある)における運行開始時点から当該勤務日の運行終了時点までを1回(一運行)とカウントし、その中には、数時間連続の運転やその間の休憩時間等も含んでいる。一方、生体状態推定装置100による推定結果は約30分に1回出力される。従って、一運行において、1時間以上の連続運転が含まれる場合には、生体状態推定装置100により複数回の推定結果が得られる。その一方、各被験者の運行当日の主観評価は、一運行終了時点における1回の申告である。
In addition, "the number of times of operation" is one time (one operation) from the operation start time to the operation end time of the subject work day on each subject's work day (there may be a date on the calendar such as night shift). It counts and includes the continuous driving for several hours and the rest time between them. On the other hand, the estimation result by the biological state estimation apparatus 100 is output once every about 30 minutes. Therefore, when a continuous operation of one hour or more is included in one operation, the biological state estimation device 100 can obtain a plurality of estimation results. On the other hand, the subjective evaluation of each subject on the day of operation is a single declaration at the end of one operation.
図9(a),(b)は被験者A及びBのある月の結果を示し、生体状態推定装置100による一運行中の体調推定の全判定数のうち、「良」と推定された割合(各グラフの右側縦軸)と、被験者の5段階の当日運行終了後の主観的な体調評価(各グラフの左側縦軸)を運行日別にプロットして時系列に示したものである。
FIGS. 9A and 9B show the results for a certain month of subjects A and B, and the ratio (“good”) of the total number of physical condition estimations during one operation performed by the biological state estimation device 100 ( The vertical axis on the right side of each graph) and the subjective physical condition evaluation (the vertical axis on the left side of each graph) after the end of the five-day operation of the subject are plotted by time of operation and shown in time series.
図9(a),(b)から、いずれの被験者のデータも、生体状態推定装置100により「良」と判定された割合の変化の増減傾向と、主観評価の変化の傾向とが近似していることがわかる。表12は、被験者Aの体調推定の結果及び主観評価を、前日(前回の運行)との比較で示したもので、前日との比較で、体調推定「良」の割合が増加している場合及び主観評価がよくなっている場合を「+」で表示し、体調推定「良」の割合が減少している場合及び主観評価が悪くなっている場合を「-」で表示し、いずれも前日と同じ場合には「±」で表示した。また、増減傾向が一致する場合を丸印で示した。
9 (a) and 9 (b), the data of any subject approximates the increase / decrease tendency of the ratio change determined to be “good” by the biological state estimation apparatus 100 and the tendency of the subjective evaluation change. I understand that. Table 12 shows the result of the physical condition estimation and subjective evaluation of the subject A in comparison with the previous day (previous operation), where the proportion of the physical condition estimation “good” has increased in comparison with the previous day. In addition, “+” indicates that the subjective evaluation is good, and “−” indicates that the percentage of the physical condition estimation “good” is decreasing and the subjective evaluation is poor, both of which are the previous day. In the same case, “±” is displayed. In addition, the case where the increasing / decreasing tendency is indicated by a circle.
表12によれば、主観評価が前日と同じ場合を除いて、主観と体調推定が近似した傾向になることが示唆される。
Table 12 suggests that subjectivity and physical condition estimation tend to be similar except when the subjective evaluation is the same as the previous day.
表13は、表12と同様の前日(前回の運行)との比較を行った全被験者の結果をまとめて示したものであり、7名の被験者全員の増減傾向の一致率は0.71で、フィッシャーの正確確率検定の結果、p=0.032となり、生体状態推定装置100による体調推定の「良」の割合の増減と主観評価には有意な関連が認められた。また、体調推定の「良」の割合が「増加」したときに主観評価が「悪い」となったデータ数は有意に少なく、体調推定「良」の割合が「減少」したときに主観評価が「悪い」となったデータ数は有意に多い結果となった。その一方、主観評価が、前日の運行と同一であるとした回答数が71運行中32件、「普通(レベル:3)」との回答が71運行中38件あり、日々の体調の変化を厳密に自覚することが比較的難しいことも示唆された。
Table 13 summarizes the results of all subjects compared with the previous day (previous operation) similar to Table 12, and the coincidence rate of increase / decrease trend of all seven subjects is 0.71. As a result of Fisher's exact test, p = 0.032. As a result, a significant relationship was found between the increase and decrease in the proportion of “good” in the physical condition estimation by the biological state estimation device 100 and the subjective evaluation. In addition, the number of data for which the subjective evaluation was “bad” when the percentage of “good” in physical condition estimation was “increased” was significantly small, and the subjective evaluation was when the percentage of “good” in physical condition estimation was “decreased” The number of “bad” data was significantly larger. On the other hand, the number of responses that the subjective evaluation was the same as the previous day's operation was 32 out of 71 operations, and 38 responses were “normal (level: 3)” during 71 operations. It was also suggested that it is relatively difficult to be aware of exactly.
ここで、図9(b)の被験者Bのデータにおいて、主観評価で1(絶不調)と回答した14日と15日の運行に着目する。図10は、被験者Bの14日と15日における生体状態推定装置100による体調推定結果の時系列データと、8日から16日までの運行開始時刻を示している。14日の運行は、運行開始時が15時48分で運行終了時が15日午前3時過ぎであり、15日の運行は、運行開始時が18時46分で運行終了時が16日午前3時過ぎであった。
Here, in the data of the subject B in FIG. 9B, pay attention to the operation on the 14th and 15th, when the subjective evaluation is 1 (abnormal). FIG. 10 shows the time series data of the physical condition estimation result by the biological state estimation device 100 on the 14th and 15th day of the subject B and the operation start time from the 8th to the 16th. The operation on the 14th is 15:48 at the start of operation and the end of the operation is past 3:00 am on the 15th. The operation on the 15th is at 18:46 at the start of the operation and on the 16th in the morning. It was past 3 o'clock.
14日は、体調推定結果が「良」と「不良」を行き来し、終盤には「不良」の推定が連続している。14日は、被験者Bの運行後のアンケートで軽い眠気が運行終盤に生じた旨を回答していることから、11日までの早朝・昼勤務から、14日以降、午後・夜勤務に変わったこと、並びに、12日、13日が休暇であったことにより、体の仕事モードや夜勤モードへの順応、切り替わりが十分ではなく、眠気や体調の不良を感じたものと推定される。15日は、前半においてほぼ「不良」との推定であるが、後半には「良」の推定も出ていることから、15日の主観評価が14日のレベル:1(絶不調)からレベル:2(不調)へと変化したことに対応している。従って、本実施形態の生体状態推定装置100による体調推定結果は、このように、被験者の主観評価に近い状態を推定していると言えると共に、約30分に1回出力することで、被験者が自覚しにくい体調の変化を反映できることも示唆される。
On the 14th, the physical condition estimation result goes back and forth between “good” and “bad”, and “bad” estimation continues at the end. On the 14th, since subject B responded that light sleepiness occurred at the end of the operation in the questionnaire after operation, it changed from early morning / day work until 11th to afternoon / night work after 14th. In addition, since the 12th and 13th were holidays, it was presumed that the body was not sufficiently adapted or switched to the work mode or night shift mode, and drowsiness or poor physical condition was felt. The 15th is almost “bad” in the first half, but “good” is also estimated in the second half. : Corresponds to the change to 2 (malfunction). Therefore, it can be said that the physical condition estimation result by the biological state estimation device 100 of the present embodiment estimates a state close to the subject's subjective evaluation, and is output once every about 30 minutes so that the subject can It is also suggested that changes in physical condition that are difficult to recognize can be reflected.
図11は、全被験者の主観評価と生体状態推定装置100による体調推定の「良」の割合との相関を正規化した分布図であり、被験者毎に分布の線形近似を求めて細線で示している。図11において45度斜めに引いた破線より右側に位置するデータは、主観評価に比べて体調推定結果「良」の割合が高いことを示し、破線より左側に位置するデータは、主観評価に比べて体調推定結果「良」の割合が低いことを示している。また、各被験者の線形近似の直線は、傾きが45度に近いほど主観評価と体調推定結果との間に正の相関が高く、傾き0度に近づくほど相関性が低いことを示し、傾きがマイナスの場合には負の相関が高いことを示す。主観評価が5段階に対し、生体状態推定装置100による体調推定が「良」、「中間」、「不良」の3つであることから、主観評価に対して体調推定結果が左右方向へ広がる傾向があるものの、概ね正の傾きを示しており、図11からも、生体状態推定装置100による体調推定と主観評価との間に一定程度の相関があることが示唆される。
FIG. 11 is a distribution diagram in which the correlation between the subjective evaluation of all subjects and the proportion of “good” in the physical condition estimation by the biological state estimation apparatus 100 is normalized, and a linear approximation of the distribution is obtained for each subject and shown by a thin line. Yes. In FIG. 11, the data located on the right side of the broken line obliquely drawn by 45 degrees indicates that the proportion of the physical condition estimation result “good” is higher than the subjective evaluation, and the data located on the left side of the broken line is compared with the subjective evaluation. This shows that the rate of physical condition estimation result “good” is low. In addition, the linear approximation line of each subject indicates that the closer the slope is to 45 degrees, the higher the positive correlation between the subjective evaluation and the physical condition estimation result, and the lower the slope is to 0 degrees, the lower the correlation is. A negative value indicates a high negative correlation. Since there are three levels of subjective evaluation, “good”, “intermediate”, and “bad”, the physical condition estimation results by the biological state estimation device 100 tend to spread in the horizontal direction with respect to the subjective evaluation. However, it shows a generally positive slope, and FIG. 11 also suggests that there is a certain degree of correlation between the physical condition estimation by the biological state estimation device 100 and the subjective evaluation.
なお、上記した実験例では、車載のコンピュータである生体状態推定装置100の設定されたコンピュータプログラム及びその記憶部に記憶されたデータを用いて解析を行っているが、これらのプログラムや各データは、運行管理者のコンピュータに設定し、上記と同様な解析を行うことができることはもちろんである。この場合、解析対象のデータを、車載の生体状態推定装置100から通信回線(無線等)を介して運行管理者のコンピュータに送信し、運行管理者のコンピュータにおいてもリアルタイムに解析できるようにしてもよいし、また、運転業務終了後に、車載の生体状態推定装置100に記憶されているデータを取り出し、運行管理者のコンピュータにおいて事後解析するようにしてもよい。運行管理者は、このようなデータを収集することで、運転者毎に、運転時の状況を把握できると共に、より適切な運転をするためのアドバイスの付与などにも活用できる。
In the experimental example described above, the analysis is performed using the computer program set in the biological state estimation device 100 which is an in-vehicle computer and the data stored in the storage unit. Of course, it is possible to set the operation manager's computer and perform the same analysis as described above. In this case, the analysis target data is transmitted from the in-vehicle biological state estimation apparatus 100 to the operation manager's computer via a communication line (wireless or the like) so that the operation manager's computer can also analyze the data in real time. Alternatively, after the end of the driving operation, the data stored in the in-vehicle biological state estimation device 100 may be taken out and analyzed afterward on the operation manager's computer. By collecting such data, the operation manager can grasp the situation at the time of driving for each driver, and can also use it to give advice for more appropriate driving.
1 生体信号測定装置
11 コアパッド
12 スペーサパッド
13 センサ
100 生体状態推定装置
200 生体調節機能要素判定手段
210 周波数傾き時系列波形演算手段
220 分布率演算手段
230 疲労曲線演算手段
240 恒常性維持機能レベル演算手段
250 体調マップ演算手段
260 感覚マップ演算手段
300 基礎的体調推定手段
310 第1基礎的体調推定手段
320 第2基礎的体調推定手段 DESCRIPTION OFSYMBOLS 1 Biosignal measuring apparatus 11 Core pad 12 Spacer pad 13 Sensor 100 Living body state estimation apparatus 200 Bioregulation function element determination means 210 Frequency inclination time series waveform calculation means 220 Distribution rate calculation means 230 Fatigue curve calculation means 240 Constancy maintenance function level calculation means 250 physical condition map calculating means 260 sensory map calculating means 300 basic physical condition estimating means 310 first basic physical condition estimating means 320 second basic physical condition estimating means
11 コアパッド
12 スペーサパッド
13 センサ
100 生体状態推定装置
200 生体調節機能要素判定手段
210 周波数傾き時系列波形演算手段
220 分布率演算手段
230 疲労曲線演算手段
240 恒常性維持機能レベル演算手段
250 体調マップ演算手段
260 感覚マップ演算手段
300 基礎的体調推定手段
310 第1基礎的体調推定手段
320 第2基礎的体調推定手段 DESCRIPTION OF
Claims (11)
- 生体信号測定装置により測定した人の生体信号を分析し、生体状態を推定する生体状態推定装置であって、
前記生体信号を分析して、脳機能、自律神経機能、肉体・精神疲労又は感覚との関連性の高いゆらぎに起因する指標を含む、生体調節機能要素の状態の変動を示す複数の指標を、それぞれ予め設定された所定の判定時間毎に算出してその時系列変化を求める生体調節機能要素判定手段と、
前記生体調節機能要素判定手段における前記各生体調節機能要素の各判定時間よりも長く設定される基礎的体調推定時間に対応した、前記人の基礎的な体調を推定する基礎的体調推定手段と、
前記基礎的体調推定手段によって推定される前記人の基礎的な体調のレベルを、前記所定の基礎的体調推定時間の経過毎に出力する基礎的体調出力手段と
を有し、
前記基礎的体調推定手段が、前記生体調節機能要素判定手段によって求められる前記各生体調節機能要素の状態に関する各時系列変化を、予め設定された優先順位に従って分析し、所定の基準に照らして、前記所定の基礎的体調推定時間における前記人の基礎的な体調を推定する手段であることを特徴とする生体状態推定装置。 A biological state estimation device for analyzing a biological signal of a person measured by a biological signal measurement device and estimating a biological state,
Analyzing the biological signal, a plurality of indicators showing fluctuations in the state of the bioregulatory functional element, including an indicator caused by fluctuations highly related to brain function, autonomic nervous function, physical / mental fatigue or sensation, A bioregulatory function element determining means for calculating a time-series change by calculating each predetermined determination time set in advance;
Basic physical condition estimation means for estimating the basic physical condition of the person corresponding to the basic physical condition estimation time set longer than each determination time of each of the biological adjustment functional elements in the biological adjustment functional element determination means;
Basic physical condition output means for outputting the basic physical condition level of the person estimated by the basic physical condition estimation means at every elapse of the predetermined basic physical condition estimation time;
The basic physical condition estimating means analyzes each time series change related to the state of each of the bioregulatory function elements obtained by the bioregulatory function element determining means according to a preset priority order, in light of a predetermined standard, The biological state estimating device, characterized in that it is means for estimating the basic physical condition of the person at the predetermined basic physical condition estimation time. - 前記基礎的体調推定手段は、
前記生体調節機能要素判定手段により求められた前記各生体調節機能要素に関する各時系列変化うち、優先順位の高い前記生体調節機能要素の時系列変化が、所定の基準を満たす場合に、前記所定の基礎的体調推定時間における前記人の基礎的な体調を、所定のレベルと推定する第1基礎的体調推定手段と、
前記第1基礎的体調推定手段における推定対象とならない場合に、前記第1基礎的体調推定手段において用いた前記生体調節機能要素よりも優先順位の低い他の生体調節機能要素に関する前記時系列変化を用い、前記人の基礎的な体調を、所定の基準に基づいて分類される所定のレベルと推定する第2基礎的体調推定手段と
を有し、
前記基礎的体調出力手段が、前記第1基礎的体調推定手段又は前記第2基礎的体調推定手段によって推定される前記人の基礎的な体調のレベルを出力する請求項1記載の生体状態推定装置。 The basic physical condition estimating means is:
Among the time-series changes related to each bioregulatory function element obtained by the bioregulatory function element determination means, the time-series change of the bioregulatory function element having a high priority satisfies a predetermined criterion. First basic physical condition estimating means for estimating the basic physical condition of the person at a basic physical condition estimation time as a predetermined level;
When the first basic physical condition estimating means is not an estimation target, the time series change relating to another biological regulatory function element having a lower priority than the biological regulatory function element used in the first basic physical condition estimating means is performed. Using a second basic physical condition estimating means for estimating the basic physical condition of the person as a predetermined level classified based on a predetermined standard;
The living body state estimation apparatus according to claim 1, wherein the basic physical condition output means outputs the level of the basic physical condition of the person estimated by the first basic physical condition estimation means or the second basic physical condition estimation means. . - 前記第1基礎的体調推定手段は、前記生体調節機能要素判定手段において判定された複数の前記生体調節機能要素のうち、前記自律神経機能への関連性の高い指標又は前記肉体・精神疲労への関連性の高い指標の時系列変化を用い、その時系列変化が所定の基準を満たす場合に、前記人の基礎的な体調のレベルを、「良好」又は「不良」と推定する請求項2記載の生体状態推定装置。 The first basic physical condition estimating means includes an index highly relevant to the autonomic nerve function or the physical / mental fatigue among the plurality of biological adjustment functional elements determined by the biological adjustment functional element determination means. The time series change of a highly relevant index is used, and when the time series change satisfies a predetermined standard, the basic physical condition level of the person is estimated as “good” or “bad”. Biological state estimation device.
- 前記第1基礎的体調推定手段は、前記自律神経機能への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、前記人の基礎的な体調を「不良」と推定し、前記肉体・精神疲労への関連性の高い指標の時系列変化が、所定の基準を満たす場合に、前記人の基礎的な体調を「良好」と推定する手段である請求項3記載の生体状態推定装置。 The first basic physical condition estimating means estimates the basic physical condition of the person as “bad” when a time-series change of an index highly relevant to the autonomic nervous function satisfies a predetermined criterion, The biological state according to claim 3, which is a means for estimating the basic physical condition of the person as "good" when a time-series change of the index highly related to physical and mental fatigue satisfies a predetermined standard. Estimating device.
- 前記第2基礎的体調推定手段は、前記第1基礎的体調推定手段において「良好」又は「不良」と推定されない場合に、前記生体調節機能要素判定手段において判定された複数の前記生体調節機能要素のうち、前記感覚への関連性の高い指標の時系列変化から、前記人の基礎的な体調のレベルを、「良好」、「不良」又はそれらの「中間状態」のいずれかと推定する請求項2~4のいずれか1に記載の生体状態推定装置。 The second basic physical condition estimation means includes a plurality of the biological adjustment functional elements determined by the biological adjustment functional element determination means when the first basic physical condition estimation means does not estimate "good" or "bad" The basic physical condition level of the person is estimated as either “good”, “bad”, or “intermediate state” based on a time-series change of an index highly relevant to the sense. The biological state estimation apparatus according to any one of 2 to 4.
- コンピュータを用いて、生体信号測定装置により測定した人の生体信号を分析し、生体状態を推定する生体状態推定方法であって、
前記生体信号を分析して、脳機能、自律神経機能、肉体・精神疲労又は感覚との関連性の高いゆらぎに起因する指標を含む、生体調節機能要素の状態の変動を示す複数の指標を、それぞれ予め設定された所定の判定時間毎に算出してその時系列変化を求める生体調節機能要素判定手順と、
前記生体調節機能要素判定手順における前記各生体調節機能要素の各判定時間よりも長く設定される基礎的体調推定時間に対応した、前記人の基礎的な体調を推定する基礎的体調推定手順と、
前記基礎的体調推定手順によって推定される前記人の基礎的な体調のレベルを、前記所定の基礎的体調推定時間の経過毎に出力する基礎的体調出力手順と
を有し、
前記基礎的体調推定手順が、前記生体調節機能要素判定手順によって求められる前記各生体調節機能要素の状態に関する各時系列変化を、予め設定された優先順位に従って分析し、所定の基準に照らして、前記所定の基礎的体調推定時間における前記人の基礎的な体調を推定する手順であることを特徴とする生体状態推定方法。 A biological state estimation method for analyzing a biological signal of a person measured by a biological signal measuring device using a computer and estimating a biological state,
Analyzing the biological signal, a plurality of indicators showing fluctuations in the state of the bioregulatory functional element, including an indicator caused by fluctuations highly related to brain function, autonomic nervous function, physical / mental fatigue or sensation, A bioregulatory functional element determination procedure for calculating a time-series change by calculating each predetermined determination time set in advance;
A basic physical condition estimation procedure for estimating a basic physical condition of the person corresponding to a basic physical condition estimation time set longer than each determination time of each of the biological adjustment functional elements in the biological adjustment functional element determination procedure;
A basic physical condition output procedure for outputting the basic physical condition level of the person estimated by the basic physical condition estimation procedure at every elapse of the predetermined basic physical condition estimation time;
The basic physical condition estimation procedure analyzes each time series change related to the state of each bioregulatory functional element obtained by the bioregulatory functional element determination procedure according to a preset priority, and in light of a predetermined standard, The biological state estimation method, which is a procedure for estimating the basic physical condition of the person at the predetermined basic physical condition estimation time. - 前記基礎的体調推定手順は、
前記生体調節機能要素判定手順により求められた前記各生体調節機能要素に関する各時系列変化うち、優先順位の高い前記生体調節機能要素の時系列変化が、所定の基準を満たす場合に、前記所定の基礎的体調推定時間における前記人の基礎的な体調を、所定のレベルと推定する第1基礎的体調推定手順と、
前記第1基礎的体調推定手順における推定対象とならない場合に、前記第1基礎的体調推定手順において用いた前記生体調節機能要素よりも優先順位の低い他の生体調節機能要素に関する前記時系列変化を用い、前記人の基礎的な体調を、所定の基準に基づいて分類される所定のレベルと推定する第2基礎的体調推定手順と
を有し、
前記基礎的体調出力手順が、前記第1基礎的体調推定手順又は前記第2基礎的体調推定手順によって推定される前記人の基礎的な体調のレベルを出力する請求項6記載の生体状態推定方法。 The basic physical condition estimation procedure includes:
Among the time-series changes related to each bioregulatory function element obtained by the bioregulatory function element determination procedure, when the time-series change of the bioregulatory function element having a high priority satisfies a predetermined criterion, the predetermined A first basic physical condition estimation procedure for estimating the basic physical condition of the person at a basic physical condition estimation time as a predetermined level;
When not subject to estimation in the first basic physical condition estimation procedure, the time-series change relating to another biological regulation function element having a lower priority than the biological regulation function element used in the first basic physical condition estimation procedure. Using a second basic physical condition estimation procedure to estimate the basic physical condition of the person as a predetermined level classified based on a predetermined criterion;
The biological condition estimation method according to claim 6, wherein the basic physical condition output procedure outputs a level of the basic physical condition of the person estimated by the first basic physical condition estimation procedure or the second basic physical condition estimation procedure. . - 生体状態推定装置としてのコンピュータに、
生体信号測定装置により測定した人の生体信号を分析し、生体状態を推定する生体状態推定手順を実行させるコンピュータプログラムであって、
前記生体状態推定手順として、
前記生体信号を分析して、脳機能、自律神経機能、肉体・精神疲労又は感覚との関連性の高いゆらぎに起因する指標を含む、生体調節機能要素の状態の変動を示す複数の指標を、それぞれ予め設定された所定の判定時間毎に算出してその時系列変化を求める生体調節機能要素判定手順と、
前記生体調節機能要素判定手順における前記各生体調節機能要素の各判定時間よりも長く設定される基礎的体調推定時間に対応した、前記人の基礎的な体調を推定する基礎的体調推定手順と、
前記基礎的体調推定手順によって推定される前記人の基礎的な体調のレベルを、前記所定の基礎的体調推定時間の経過毎に出力する基礎的体調出力手順と
を実行させ、
前記基礎的体調推定手順が、前記生体調節機能要素判定手順によって求められる前記各生体調節機能要素の状態に関する各時系列変化を、予め設定された優先順位に従って分析し、所定の基準に照らして、前記所定の基礎的体調推定時間における前記人の基礎的な体調を推定する手順であることを特徴とするコンピュータプログラム。 In a computer as a biological state estimation device,
A computer program for analyzing a biological signal of a person measured by a biological signal measuring device and executing a biological state estimation procedure for estimating a biological state,
As the biological state estimation procedure,
Analyzing the biological signal, a plurality of indicators showing fluctuations in the state of the bioregulatory functional element, including an indicator caused by fluctuations highly related to brain function, autonomic nervous function, physical / mental fatigue or sensation, A bioregulatory functional element determination procedure for calculating a time-series change by calculating each predetermined determination time set in advance;
A basic physical condition estimation procedure for estimating a basic physical condition of the person corresponding to a basic physical condition estimation time set longer than each determination time of each of the biological adjustment functional elements in the biological adjustment functional element determination procedure;
A basic physical condition output procedure for outputting the basic physical condition level of the person estimated by the basic physical condition estimation procedure for each elapse of the predetermined basic physical condition estimation time;
The basic physical condition estimation procedure analyzes each time series change related to the state of each bioregulatory functional element obtained by the bioregulatory functional element determination procedure according to a preset priority, and in light of a predetermined standard, A computer program which is a procedure for estimating a basic physical condition of the person at the predetermined basic physical condition estimation time. - 前記基礎的体調推定手順は、
前記生体調節機能要素判定手順により求められた前記各生体調節機能要素に関する各時系列変化うち、優先順位の高い前記生体調節機能要素の時系列変化が、所定の基準を満たす場合に、前記所定の基礎的体調推定時間における前記人の基礎的な体調を、所定のレベルと推定する第1基礎的体調推定手順と、
前記第1基礎的体調推定手順における推定対象とならない場合に、前記第1基礎的体調推定手順において用いた前記生体調節機能要素よりも優先順位の低い他の生体調節機能要素に関する前記時系列変化を用い、前記人の基礎的な体調を、所定の基準に基づいて分類される所定のレベルと推定する第2基礎的体調推定手順と
を実行し、
前記基礎的体調出力手順が、前記第1基礎的体調推定手順又は前記第2基礎的体調推定手順によって判定される前記人の基礎的な体調のレベルを出力する請求項8記載のコンピュータプログラム。 The basic physical condition estimation procedure includes:
Among the time-series changes related to each bioregulatory function element obtained by the bioregulatory function element determination procedure, when the time-series change of the bioregulatory function element having a high priority satisfies a predetermined criterion, the predetermined A first basic physical condition estimation procedure for estimating the basic physical condition of the person at a basic physical condition estimation time as a predetermined level;
When not subject to estimation in the first basic physical condition estimation procedure, the time-series change relating to another biological regulation function element having a lower priority than the biological regulation function element used in the first basic physical condition estimation procedure. Using a second basic physical condition estimation procedure to estimate the basic physical condition of the person as a predetermined level classified based on a predetermined criterion;
The computer program according to claim 8, wherein the basic physical condition output procedure outputs the level of the basic physical condition of the person determined by the first basic physical condition estimation procedure or the second basic physical condition estimation procedure. - 前記第1基礎的体調推定手順は、前記生体調節機能要素判定手順において判定された複数の前記生体調節機能要素のうち、前記自律神経機能への関連性の高い指標又は前記肉体・精神疲労への関連性の高い指標の時系列変化を用い、その時系列変化が所定の基準を満たす場合に、前記人の基礎的な体調のレベルを、「良好」又は「不良」と推定する請求項9記載のコンピュータプログラム。 In the first basic physical condition estimation procedure, among the plurality of bioregulatory function elements determined in the bioregulatory function element determination procedure, an index highly relevant to the autonomic nervous function or the physical / mental fatigue The time series change of a highly relevant index is used, and when the time series change satisfies a predetermined standard, the level of the basic physical condition of the person is estimated as “good” or “bad”. Computer program.
- 前記第2基礎的体調推定手順は、前記第1基礎的体調推定手順において「良好」又は「不良」と推定されない場合に、前記生体調節機能要素判定手順において判定された複数の前記生体調節機能要素のうち、前記感覚への関連性の高い指標の時系列変化から、前記人の基礎的な体調のレベルを、「良好」、「不良」又はそれらの「中間状態」のいずれかと推定する請求項9又は10記載のコンピュータプログラム。 When the second basic physical condition estimation procedure is not estimated as “good” or “bad” in the first basic physical condition estimation procedure, the plurality of biological regulation function elements determined in the biological regulation function element determination procedure The basic physical condition level of the person is estimated as either “good”, “bad”, or “intermediate state” based on a time-series change of an index highly relevant to the sense. The computer program according to 9 or 10.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16851196.2A EP3357423A4 (en) | 2015-09-28 | 2016-09-15 | Biological state estimation device, biological state estimation method, and computer program |
US15/576,774 US20180296152A1 (en) | 2015-09-28 | 2016-09-15 | Biological state estimation device, biological state estimation method, and computer program |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015190495 | 2015-09-28 | ||
JP2015-190495 | 2015-09-28 | ||
JP2015-242479 | 2015-12-11 | ||
JP2015242479A JP6666705B2 (en) | 2015-09-28 | 2015-12-11 | Biological condition estimation device, biological condition estimation method, and computer program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017057022A1 true WO2017057022A1 (en) | 2017-04-06 |
Family
ID=58427462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/077274 WO2017057022A1 (en) | 2015-09-28 | 2016-09-15 | Biological state estimation device, biological state estimation method, and computer program |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017057022A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10748644B2 (en) | 2018-06-19 | 2020-08-18 | Ellipsis Health, Inc. | Systems and methods for mental health assessment |
US11120895B2 (en) | 2018-06-19 | 2021-09-14 | Ellipsis Health, Inc. | Systems and methods for mental health assessment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004090724A (en) * | 2002-08-30 | 2004-03-25 | Pioneer Electronic Corp | Play back control system for moving body, its method, and its program and recording medium recording it |
JP2009022610A (en) * | 2007-07-20 | 2009-02-05 | Delta Tooling Co Ltd | Degree of fatigue computing device and computer program |
JP2012239480A (en) * | 2011-05-14 | 2012-12-10 | Delta Tooling Co Ltd | Biological state estimation device and computer program |
JP2014117425A (en) * | 2012-12-14 | 2014-06-30 | Delta Tooling Co Ltd | Driving-time biological state determination apparatus and computer program |
-
2016
- 2016-09-15 WO PCT/JP2016/077274 patent/WO2017057022A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004090724A (en) * | 2002-08-30 | 2004-03-25 | Pioneer Electronic Corp | Play back control system for moving body, its method, and its program and recording medium recording it |
JP2009022610A (en) * | 2007-07-20 | 2009-02-05 | Delta Tooling Co Ltd | Degree of fatigue computing device and computer program |
JP2012239480A (en) * | 2011-05-14 | 2012-12-10 | Delta Tooling Co Ltd | Biological state estimation device and computer program |
JP2014117425A (en) * | 2012-12-14 | 2014-06-30 | Delta Tooling Co Ltd | Driving-time biological state determination apparatus and computer program |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10748644B2 (en) | 2018-06-19 | 2020-08-18 | Ellipsis Health, Inc. | Systems and methods for mental health assessment |
US11120895B2 (en) | 2018-06-19 | 2021-09-14 | Ellipsis Health, Inc. | Systems and methods for mental health assessment |
US11942194B2 (en) | 2018-06-19 | 2024-03-26 | Ellipsis Health, Inc. | Systems and methods for mental health assessment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6118097B2 (en) | Biological state determination device during operation and computer program | |
Jung et al. | Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel | |
US20180310879A1 (en) | Psychological acute stress measurement using a wireless sensor | |
JP6757532B2 (en) | Sleep stage determination device, sleep stage determination method, sleep stage determination program | |
CN111386068B (en) | Pressure measurement system and method based on camera | |
WO2014171499A1 (en) | Driving assistance device and computer program | |
WO2014063160A1 (en) | Detection of emotional states | |
US8852116B2 (en) | Psychiatric symptom and psychiatric disorder onset risk evaluation method and evaluator using heart rate variability index | |
Begum et al. | Mental state monitoring system for the professional drivers based on Heart Rate Variability analysis and Case-Based Reasoning | |
KR20130050817A (en) | Depression diagnosis method using hrv based on neuro-fuzzy network | |
KR101854812B1 (en) | Psychiatric symptoms rating scale system using multiple contents and bio-signal analysis | |
JP6666705B2 (en) | Biological condition estimation device, biological condition estimation method, and computer program | |
JP4636861B2 (en) | Comfort evaluation device | |
WO2023087512A1 (en) | Depression objective screening system, method, and device | |
JP6501941B1 (en) | Fatigue determination apparatus, fatigue determination method and program | |
JP6836265B2 (en) | Biological condition estimation device, biological condition estimation method, computer program and recording medium | |
WO2017057022A1 (en) | Biological state estimation device, biological state estimation method, and computer program | |
Lima et al. | Heart rate variability and electrodermal activity biosignal processing: predicting the autonomous nervous system response in mental stress | |
JP2017124014A (en) | Drowsiness detection program, drowsiness detection method, and drowsiness detection device | |
EP2862509A1 (en) | Psychiatric symptom and psychiatric disorder onset risk evaluation method and evaluator using heart rate variability index | |
WO2014132722A1 (en) | Living-body state estimation device, computer program, and recording medium | |
JP6557489B2 (en) | Biological state estimation device and computer program | |
TWI582727B (en) | Adaptive parameter prediction method and device for physiological reaction | |
WO2016093347A1 (en) | Device and computer program for analyzing biological state | |
JP2016112144A (en) | Living body state analysis device and computer program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16851196 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15576774 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |