WO2017047702A1 - Exhaust purification system - Google Patents

Exhaust purification system Download PDF

Info

Publication number
WO2017047702A1
WO2017047702A1 PCT/JP2016/077288 JP2016077288W WO2017047702A1 WO 2017047702 A1 WO2017047702 A1 WO 2017047702A1 JP 2016077288 W JP2016077288 W JP 2016077288W WO 2017047702 A1 WO2017047702 A1 WO 2017047702A1
Authority
WO
WIPO (PCT)
Prior art keywords
nox
amount
exhaust
catalyst
control
Prior art date
Application number
PCT/JP2016/077288
Other languages
French (fr)
Japanese (ja)
Inventor
輝男 中田
隆行 坂本
長岡 大治
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2017047702A1 publication Critical patent/WO2017047702A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • This disclosure relates to an exhaust purification system.
  • a NOx occlusion reduction type catalyst is known as a catalyst for reducing and purifying nitrogen compounds (NOx) in exhaust gas discharged from an internal combustion engine.
  • NOx nitrogen compounds
  • This NOx occlusion reduction type catalyst occludes NOx contained in the exhaust when the exhaust is in a lean atmosphere, and reduces and purifies NOx occluded by hydrocarbons contained in the exhaust when the exhaust is in a rich atmosphere. Detoxify and release. For this reason, when the NOx occlusion amount of the catalyst reaches a predetermined amount, so-called NOx purge that makes the exhaust rich by post injection or exhaust pipe injection needs to be performed periodically to restore the NOx occlusion capacity ( For example, see Patent Document 1).
  • the amount of reducing agent required to reduce NOx released from the NOx storage reduction catalyst is added to the amount of reducing agent commensurate with the amount of oxygen released from the NOx storage reduction catalyst.
  • the target air-fuel ratio is made different between the first rich control until oxygen is released from the NOx storage reduction catalyst and the second rich control after oxygen is released. It is disclosed that the target air-fuel ratio is made larger than that in rich control.
  • the reduction efficiency of NOx occluded after oxygen is released varies depending on the catalyst temperature. For example, if the catalyst temperature is relatively low, the reduction efficiency is low, and if the catalyst temperature is relatively high, the reduction efficiency is high. For this reason, it is preferable to control the fuel injection amount in consideration of the catalyst temperature because NOx can be efficiently reduced.
  • the exhaust purification system of the present disclosure aims to efficiently reduce NOx in an exhaust purification system including a NOx storage reduction catalyst.
  • An exhaust purification system of the present disclosure is provided in an exhaust passage of an internal combustion engine to reduce and purify NOx in exhaust gas, and is provided on a downstream side of the exhaust passage with respect to the NOx reduction catalyst.
  • the exhaust air-fuel ratio is switched from the lean state to the rich state by using a sensor for detecting the excess air ratio of the exhaust gas flowing through the passage, the air system control for reducing the intake air amount, and the injection system control for increasing the fuel injection amount.
  • a control unit that executes a regeneration process for recovering the purification ability of the NOx reduction catalyst, wherein the control unit reduces NOx released from the NOx storage reduction catalyst.
  • First rich control for injecting fuel at a first injection amount obtained by adding an injection amount commensurate with the amount of oxygen released from the NOx storage reduction catalyst to the injection amount required for
  • a second rich control that is executed after the execution of the 1 rich control and injects the fuel at a second injection amount determined based on the amount of NOx stored in the NOx storage reduction catalyst and the temperature of the NOx storage reduction catalyst; ,I do.
  • NOx can be efficiently reduced in the exhaust purification system including the NOx storage reduction catalyst.
  • FIG. 1 is an overall configuration diagram showing an exhaust purification system according to the present embodiment.
  • FIG. 2 is a timing chart for explaining the NOx purge control according to the present embodiment.
  • FIG. 3 is a block diagram showing a MAF target value setting process during NOx purge lean control according to the present embodiment.
  • FIG. 4 is a block diagram showing a target injection amount setting process during the first-time NOx purge rich control according to the present embodiment.
  • FIG. 5A is a block diagram showing a target injection amount setting process during the late NOx purge rich control according to the present embodiment.
  • FIG. 5B is a diagram schematically illustrating the third target excess air ratio setting map.
  • FIG. 6 is a block diagram showing a catalyst temperature estimation process according to the present embodiment.
  • FIG. 7 is a block diagram illustrating the occlusion amount estimation processing according to the present embodiment.
  • FIG. 8 is a block diagram showing the injection amount learning correction process of the injector according to the present embodiment.
  • FIG. 9 is a flowchart for explaining the learning correction coefficient calculation processing according to the present embodiment.
  • FIG. 10 is a block diagram showing MAF correction coefficient setting processing according to the present embodiment.
  • each cylinder of a diesel engine (hereinafter simply referred to as “engine”) 10 is provided with an in-cylinder injector 11 that directly injects high-pressure fuel that is stored in a common rail (not shown) into each cylinder. Yes.
  • the fuel injection amount and fuel injection timing of each in-cylinder injector 11 are controlled according to an instruction signal input from an electronic control unit (hereinafter referred to as ECU) 50.
  • ECU electronice control unit
  • An intake passage 12 for introducing fresh air is connected to the intake manifold 10A of the engine 10, and an exhaust passage 13 for connecting exhaust to the outside is connected to the exhaust manifold 10B.
  • an air cleaner 14 an intake air amount sensor (hereinafter referred to as MAF sensor) 40, a compressor 20A of the variable displacement supercharger 20, an intercooler 15, an intake throttle valve 16 and the like are provided in order from the intake upstream side.
  • MAF sensor intake air amount sensor
  • the exhaust passage 13 is provided with a turbine 20B of the variable displacement supercharger 20, an exhaust aftertreatment device 30 and the like in order from the exhaust upstream side.
  • reference numeral 41 denotes an engine speed sensor
  • reference numeral 42 denotes an accelerator opening sensor
  • reference numeral 46 denotes a boost pressure sensor
  • reference numeral 47 denotes an outside air temperature sensor
  • reference numeral 48 denotes an intake air temperature sensor.
  • the EGR device 21 includes an EGR passage 22 that connects the exhaust manifold 10B and the intake manifold 10A, an EGR cooler 23 that cools the EGR gas, and an EGR valve 24 that adjusts the EGR amount.
  • the exhaust aftertreatment device 30 is configured by arranging an oxidation catalyst 31, a NOx occlusion reduction type catalyst 32, and a particulate filter (hereinafter simply referred to as a filter) 33 in order from the exhaust upstream side in a case 30A.
  • the exhaust passage 13 upstream of the oxidation catalyst 31 is provided with an exhaust injector 34 that injects unburned fuel (mainly HC) into the exhaust passage 13 in accordance with an instruction signal input from the ECU 50. Yes.
  • the oxidation catalyst 31 is formed, for example, by carrying an oxidation catalyst component on the surface of a ceramic carrier such as a honeycomb structure.
  • a ceramic carrier such as a honeycomb structure.
  • the NOx occlusion reduction type catalyst 32 is formed, for example, by supporting an alkali metal or the like on the surface of a ceramic carrier such as a honeycomb structure.
  • the NOx occlusion reduction type catalyst 32 occludes NOx in the exhaust when the exhaust air-fuel ratio is in a lean state, and occludes with a reducing agent (HC or the like) contained in the exhaust when the exhaust air-fuel ratio is in a rich state. NOx is reduced and purified.
  • the filter 33 is formed, for example, by arranging a large number of cells partitioned by porous partition walls along the flow direction of the exhaust gas and alternately plugging the upstream side and the downstream side of these cells. .
  • the filter 33 collects PM in the exhaust gas in the pores and surfaces of the partition walls, and when the estimated amount of PM deposition reaches a predetermined amount, so-called filter forced regeneration is performed in which the PM is burned and removed.
  • Filter forced regeneration is performed by supplying unburned fuel to the upstream side oxidation catalyst 31 by exhaust pipe injection or post injection, and raising the exhaust temperature flowing into the filter 33 to the PM combustion temperature.
  • the first exhaust temperature sensor 43 is provided on the upstream side of the oxidation catalyst 31 and detects the exhaust temperature flowing into the oxidation catalyst 31.
  • the second exhaust temperature sensor 44 is provided between the NOx storage reduction catalyst 32 and the filter 33 and detects the exhaust temperature flowing into the filter 33.
  • the NOx / lambda sensor 45 is provided downstream of the filter 33, and detects the NOx value and lambda value (excess air ratio) of the exhaust gas that has passed through the NOx storage reduction catalyst 32.
  • the NOx / lambda sensor 45 outputs a positive output (positive output) when the lambda value is 1.0 or more, and outputs a negative output (negative output) when the lambda value is less than 1.0.
  • a negative output may be made when the lambda value is 1.0 or more
  • a positive output may be made when the lambda value is less than 1.0.
  • the ECU 50 performs various controls of the engine 10 and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like. In order to perform these various controls, the sensor values of the sensors 40 to 48 are input to the ECU 50.
  • the ECU 50 also includes a filter regeneration control unit 51, a NOx purge control unit 60, a catalyst temperature estimation unit 70, an occlusion amount estimation unit 80, a MAF follow-up control unit 85, an injection amount learning correction unit 90, and an MAF correction.
  • the coefficient calculation unit 95 is included as a part of functional elements. Each of these functional elements will be described as being included in the ECU 50 which is an integral hardware, but any one of these may be provided in separate hardware.
  • the filter regeneration control unit 51 executes a filter regeneration process that burns and removes the PM accumulated on the filter 33.
  • the filter regeneration control unit 51 turns on the filter forced regeneration flag FDPF when the estimated PM accumulation amount acquired from the PM accumulation amount estimation unit 52 exceeds a predetermined upper limit threshold.
  • the filter forced regeneration flag F DPF is turned on, an instruction signal for performing exhaust pipe injection is transmitted to the exhaust injector 34, or an instruction signal for performing post injection to each in-cylinder injector 11 is transmitted. .
  • the exhaust temperature is raised to the PM combustion temperature (for example, about 550 ° C.), and this temperature rise state is maintained.
  • the filter forced regeneration flag F DPF is turned off when the PM accumulation estimated amount falls to a predetermined lower threshold (determination threshold) indicating combustion removal.
  • An injection amount instruction value (hereinafter referred to as a filter regeneration post injection amount instruction value Q DPF_Post_Trgt ) when the forced filter regeneration is performed by post injection is also used for estimating the catalyst heat generation amount, and the catalyst temperature estimation unit 70 described later in detail. Sent.
  • NOx purge control restores the NOx occlusion ability of the NOx occlusion reduction catalyst 32 by making the exhaust rich and detoxifying and releasing NOx occluded in the NOx occlusion reduction catalyst 32 by reduction purification.
  • a catalyst regeneration process (hereinafter, this control is referred to as NOx purge control) is executed.
  • the NOx purge flag F NP for starting the NOx purge control is estimated when the NOx emission amount per unit time is estimated from the operating state of the engine 10 and the accumulated cumulative value ⁇ NOx obtained by accumulating the NOx purge flag exceeds a predetermined threshold (see FIG. 2). It is the time reference t 1).
  • the NOx purification rate by the NOx occlusion reduction type catalyst 32 is calculated from the NOx emission amount upstream of the catalyst estimated from the operating state of the engine 10 and the NOx amount downstream of the catalyst detected by the NOx / lambda sensor 45. When the NOx purification rate becomes lower than a predetermined determination threshold, the NOx purge flag F NP is turned on.
  • the enrichment by the NOx purge control is performed on the lean side of the excess air ratio from the stoichiometric air-fuel ratio equivalent value (about 1.0) from the time of steady operation (for example, about 1.5) by the air system control.
  • NOx purge lean control for reducing to 1 target excess air ratio (for example, about 1.3) and injection system control to reduce the excess air ratio from the first target excess air ratio to the second target excess air ratio on the rich side (for example, about 0) .9) and NOx purge rich control for reducing the pressure to 9).
  • the details of the NOx purge lean control and the NOx purge rich control will be described below.
  • FIG. 3 is a block diagram showing a process for setting the MAF target value MAF NPL_Trgt during the NOx purge lean control.
  • the first target excess air ratio setting map 61 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge lean control corresponding to the engine speed Ne and the accelerator opening Q.
  • An excess air ratio target value ⁇ NPL_Trgt (first excess air ratio) is set in advance based on experiments or the like.
  • the excess air ratio target value ⁇ NPL_Trgt at the time of NOx purge lean control is read from the first target excess air ratio setting map 61 using the engine speed Ne and the accelerator opening Q as input signals, and is sent to the MAF target value calculation unit 62. Entered. Further, the MAF target value calculation unit 62 calculates the MAF target value MAF NPL_Trgt at the time of NOx purge lean control based on the following formula (1).
  • Equation (1) Q fnl_cord represents a learning-corrected fuel injection amount (excluding post-injection) described later, Ro Fuel represents fuel specific gravity, AFR sto represents a theoretical air-fuel ratio, and Maf_corr represents a MAF correction coefficient described later. Yes.
  • the MAF target value MAF NPL_Trgt calculated by the MAF target value calculation unit 62 is input to the ramp processing unit 63 when the NOx purge flag F NP is turned on (see time t 1 in FIG. 2).
  • the ramp processing unit 63 reads the ramp coefficient from the respective ramp coefficient maps 63A and 63B using the engine speed Ne and the accelerator opening Q as input signals, and uses the MAF target ramp value MAF NPL_Trgt_Ramp to which the ramp coefficient is added as the valve control unit 64. To enter.
  • the valve control unit 64 throttles the intake throttle valve 16 to the close side and opens the EGR valve 24 to the open side so that the actual MAF value MAF Act input from the MAF sensor 40 becomes the MAF target ramp value MAF NPL_Trgt_Ramp. Execute control.
  • the MAF target value MAF NPL_Trgt is set based on the excess air ratio target value ⁇ NPL_Trgt read from the first target excess air ratio setting map 61 and the fuel injection amount of each in-cylinder injector 11.
  • the air system operation is feedback-controlled based on the MAF target value MAF NPL_Trgt .
  • the MAF target value MAF NPL_Trgt can be set by feedforward control. Effects such as deterioration and characteristic changes can be effectively eliminated.
  • FIG. 4 shows the exhaust pipe in the NOx purge rich control, specifically, the first rich control (an example of the first rich control of the present disclosure) in consideration of the oxygen released from the NOx storage reduction catalyst 32 at the beginning of the NOx purge. It is a block diagram which shows the setting process of the target injection quantity instruction
  • the second target excess air ratio setting map 65A is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge rich control corresponding to the engine speed Ne and the accelerator opening Q.
  • the air excess rate target value ⁇ NPR_Trgt (second target air excess rate) is preset based on experiments or the like.
  • the stored oxygen amount map 65B the relationship between the amount of oxygen released from the NOx storage reduction catalyst 32 and the catalyst temperature is set in advance based on experiments and the like.
  • the excess air ratio target value ⁇ NPR_Trgt at the time of NOx purge rich control is read from the second target excess air ratio setting map 65A using the engine speed Ne and the accelerator opening Q as input signals, and the injection amount target.
  • the value is input to the value calculation unit 66.
  • the injection amount target value calculation unit 66 calculates a target injection amount instruction value Q NPR_Trgt at the time of NOx purge rich control based on the following formula (2).
  • MAF NPL_Trgt is a NOx purge lean MAF target value, and is input from the MAF target value calculation unit 62 described above.
  • Q fnl_cord is a fuel injection amount (excluding post-injection) before application of learning corrected MAF tracking control described later,
  • Ro Fuel is fuel specific gravity, AFR sto is a theoretical air-fuel ratio, and
  • Maf_corr is a MAF correction coefficient described later. Show.
  • the injection amount target value calculation unit 66 calculates a target injection amount instruction value Q O2_Trgt corresponding to the oxygen amount by multiplying the oxygen amount acquired from the stored oxygen amount map 65B by a predetermined conversion coefficient C1.
  • the target injection amount instruction value Q O2_Trgt may be read from the map by setting a MAP indicating the relationship with the oxygen amount in advance based on experiments or the like and using the oxygen amount as an input signal.
  • the injection amount target value calculation unit 66 adds the target injection amount instruction value Q O2_Trgt to the target injection amount instruction value Q NPR_Trgt calculated by the mathematical formula (2), so that the target injection amount instruction value Q NPR_Trgt_O2 considering the oxygen amount is added. (An example of the first injection amount of the present disclosure) is acquired.
  • NOx purge rich / post injection amount instruction value Q NPR_Post_Trgt the injection amount instruction value of the post injection transmitted to the in-cylinder injector 11 is referred to as NOx purge rich / post injection amount instruction value Q NPR_Post_Trgt ).
  • the NOx purge rich / post-injection amount instruction value Q NPR_Post_Trgt is also transmitted to the catalyst temperature estimation unit 70 in order to estimate the catalyst heat generation amount.
  • the excess air ratio target value ⁇ NPR_Trgt and the target injection amount instruction value Q NPR_Trgt set based on the fuel injection amount of each in-cylinder injector 11 are released from the storage reduction catalyst 32. that since the target injection amount instruction value Q O2_Trgt commensurate to the amount of oxygen and using the target injection amount instruction value Q NPR_Trgt_O2 computed by adding the even fuel (reducing agent) is consumed by the released oxygen, NOx Can be sufficiently reduced and purified.
  • the target injection amount instruction value Q NPR_Trgt is set based on the excess air ratio target value ⁇ NPR_Trgt read from the second target excess air ratio setting map 65 and the fuel injection amount of each in-cylinder injector 11. Yes.
  • the sensor value of the lambda sensor is not used. It is possible to effectively reduce the exhaust gas to a desired excess air ratio required for NOx purge rich control.
  • the target injection amount instruction value Q NPR_Trgt can be set by feedforward control, and each in-cylinder injector 11 It is possible to effectively eliminate the influence of aging deterioration and characteristic changes.
  • the NOx purge control unit 60 monitors the output from the NOx / lambda sensor 45 after the execution of the first rich control, and the second rich control (an example of the second rich control of the present disclosure) on condition that the output is inverted. To start. In the late rich control, fuel is injected at an injection amount determined based on the amount of NOx stored in the NOx storage reduction catalyst 32 and the catalyst temperature.
  • FIG. 5A is a block diagram showing processing for setting a target injection amount instruction value Q NPR_Trgt_NOX (injection amount per unit time) for exhaust pipe injection or post injection in the late rich control.
  • the third target excess air ratio setting map 65C is a map that is referred to based on the NOx occlusion amount estimated by the occlusion amount estimation unit 80, which will be described in detail later, and the catalyst temperature estimated by the catalyst temperature estimation unit 70.
  • the excess air ratio target value ⁇ NPR_Trgt_NOX at the time of NOx purge rich control corresponding to the NOx occlusion amount and the catalyst temperature is set in advance based on experiments or the like.
  • the third target excess air ratio setting map 65C includes four conditions (two levels of “low” or “high” for the NOx occlusion amount and two levels of “low” or “high” for the catalyst temperature ( Area).
  • the excess air ratio target value ⁇ NPR_Trgt_NOX is set for each of the four conditions.
  • the excess air ratio target value ⁇ NPR_Trgt_NOX is determined in the range of 0.8 to 0.9 under the conditions of NOx occlusion amount “high” and catalyst temperature “high”. Excess air ratio target value lambda NPR_Trgt_NOX in this condition may be less than the excess air ratio target value lambda NPR_Trgt in year rich control.
  • the excess air ratio target value lambda NPR_Trgt_NOX is smaller than the excess air ratio target value ⁇ NPR_Trgt.
  • the excess air ratio target value ⁇ NPR_Trgt_NOX is determined in the range of 0.9 to 1.0.
  • the read excess air ratio target value ⁇ NPR_Trgt_NOX is input to the injection amount target value calculation unit 66.
  • the 5A calculates a target injection amount instruction value Q NPR_Trgt_NOX (an example of the second injection amount of the present disclosure) based on the excess air ratio target value ⁇ NPR_Trgt_NOX .
  • the target injection amount instruction value Q NPR_Trgt_NOX is the excess air ratio target value lambda NPR_Trgt in the above equation (2), is calculated by replacing the air excess ratio target value ⁇ NPR_Trgt_NOX.
  • This target injection amount instruction value Q NPR_Trgt_NOX is immediately transmitted to the exhaust injector 34 or each in-cylinder injector 11 as an injection instruction signal.
  • the NOx occlusion amount and the catalyst temperature at the time when oxygen is released from the NOx occlusion reduction type catalyst 32 are referred to.
  • the excess air ratio target value ⁇ NPR_Trgt_NOX is determined based on the referenced NOx occlusion amount and the catalyst temperature, and fuel is injected so as to reach this target value. For this reason, NOx occluded in the NOx occlusion reduction type catalyst 32 can be efficiently reduced and purified with a necessary and sufficient amount of fuel injection.
  • the latter rich control becomes deep rich control having a target excess air ratio smaller than the first rich control.
  • the NOx occlusion amount and the catalyst temperature are two levels, respectively, but the present invention is not limited to this. You may set more than 3 levels.
  • FIG. 6 is a block diagram showing an estimation process of the oxidation catalyst temperature and the NOx catalyst temperature by the catalyst temperature estimation unit 70.
  • the catalyst temperature estimation unit 70 estimates the catalyst temperature based on the amount of unburned fuel contained in the exhaust and the heat generation amount of the oxidation catalyst 31 and the NOx storage reduction catalyst 32.
  • the lean HC map 71A is a map that is referred to based on the operating state of the engine 10, and the amount of HC discharged from the engine 10 during lean operation (hereinafter referred to as lean HC discharge amount) is set in advance through experiments or the like. Has been.
  • reading is performed from the lean HC map 71A based on the engine speed Ne and the accelerator opening Q.
  • the lean HC emission amount is transmitted to each of the heat generation amount estimation units 76A and 76B.
  • the lean CO map 71B is a map that is referred to based on the operating state of the engine 10, and the amount of CO discharged from the engine 10 during lean operation (hereinafter referred to as lean CO emission) is set in advance through experiments or the like. Has been.
  • reading is performed from the lean CO map 71B based on the engine speed Ne and the accelerator opening Q.
  • the lean CO emission amount is transmitted to each of the heat generation amount estimation units 76A and 76B.
  • the filter forced regeneration HC map 72A is a map that is referred to based on the operating state of the engine 10, and is the amount of HC discharged from the engine 10 when filter forced regeneration control is executed (hereinafter referred to as HC exhaust during filter regeneration). (Referred to as “quantity”) is set in advance by experiments or the like.
  • F DPF 1
  • the engine regeneration amount HC emission amount read from the filter forced regeneration HC map 72A based on the engine speed Ne and the accelerator opening Q is A predetermined correction coefficient corresponding to the ten operating states is multiplied and transmitted to each of the heat generation amount estimation units 76A and 76B.
  • the filter forced regeneration CO map 72B is a map that is referred to based on the operating state of the engine 10, and is the amount of CO discharged from the engine 10 when filter forced regeneration control is executed (hereinafter referred to as CO regeneration during filter regeneration). (Referred to as “quantity”) is set in advance by experiments or the like.
  • the engine regeneration amount CO emission amount read from the filter forced regeneration CO map 72B based on the engine speed Ne and the accelerator opening Q is A predetermined correction coefficient corresponding to the ten operating states is multiplied and transmitted to each of the heat generation amount estimation units 76A and 76B.
  • the NOx purge HC map 73A is a map that is referred to based on the operating state of the engine 10, and is the amount of HC discharged from the engine 10 when the NOx purge control is executed (hereinafter referred to as NOx purge HC discharge amount). ) Is set in advance by experiments or the like.
  • the operation of the engine 10 is performed based on the NOx purge HC discharge amount read from the NOx purge HC map 73A based on the engine speed Ne and the accelerator opening Q.
  • a predetermined correction coefficient corresponding to the state is multiplied and transmitted to each of the heat generation amount estimation units 76A and 76B.
  • the NOx purge CO map 73B is a map that is referred to based on the operating state of the engine 10, and is the amount of CO discharged from the engine 10 when the NOx purge control is executed (hereinafter referred to as NOx purge CO emission). ) Is set in advance by experiments or the like.
  • the engine 10 is operated based on the NOx purge CO emission amount read from the NOx purge CO map 73B based on the engine speed Ne and the accelerator opening Q.
  • a predetermined correction coefficient corresponding to the state is multiplied and transmitted to each of the heat generation amount estimation units 76A and 76B.
  • the post-injection-amount instruction value correction unit 75 is a learning correction coefficient calculator 91 described later for a post-injection-amount instruction value used for estimating the catalyst heat generation amount when NOx purge rich control or filter forced regeneration control is executed by post-injection.
  • the post-injection amount instruction value correction that is corrected by the learning correction coefficient input from is executed.
  • the NOx purge rich value input from the injection amount target value calculation unit 66 (NOx purge control unit 60).
  • the learning correction coefficient is added to the filter regeneration post injection amount instruction value Q DPF_Post_Trgt input from the filter regeneration control unit 51.
  • the oxidation catalyst heat generation amount estimation unit 76A performs the HC / CO emission amount input from each map 71A to 73B and the exhaust pipe injection / post injection according to ON / OFF of the NOx purge flag F NP and the filter forced regeneration flag F DPF . Based on the post-injection amount instruction value after correction input from the post-injection amount instruction value correction unit 75 according to the selection, etc., the HC / CO heat generation amount in the oxidation catalyst 31 (hereinafter referred to as the oxidation catalyst HC / CO heat generation amount). Estimated). The oxidation catalyst HC / CO heat generation amount is estimated and calculated based on, for example, a model formula or map including the HC / CO emission amount and the corrected post-injection amount instruction value as input values.
  • the NOx catalyst heat generation amount estimation unit 76B performs the HC / CO emission amount input from each map 71A to 73B and the exhaust pipe injection / post injection according to ON / OFF of the NOx purge flag F NP and the forced filter regeneration flag F DPF .
  • the HC / CO heat generation amount (hereinafter referred to as the NOx catalyst HC / CO) inside the NOx storage reduction type catalyst 32. Estimated calorific value).
  • the NOx catalyst HC / CO heat generation amount is estimated and calculated based on, for example, a model formula or map including the HC / CO emission amount and the corrected post injection amount instruction value as input values.
  • the oxidation catalyst temperature estimation unit 77A includes an oxidation catalyst inlet temperature detected by the first exhaust temperature sensor 43, an oxidation catalyst HC / CO heating value input from the oxidation catalyst heating value estimation unit 76A, a sensor value of the MAF sensor 40, and outside air.
  • the catalyst temperature of the oxidation catalyst 31 is estimated and calculated based on a model equation or map including, as an input value, the amount of heat released to the outside air estimated from the sensor value of the temperature sensor 47 or the intake air temperature sensor 48.
  • the NOx catalyst temperature estimation unit 77B is an oxidation catalyst temperature (hereinafter also referred to as NOx catalyst inlet temperature) input from the oxidation catalyst temperature estimation unit 77A, and a NOx catalyst HC / CO heating value input from the NOx catalyst heating value estimation unit 76B.
  • the catalyst temperature of the NOx occlusion reduction type catalyst 32 is estimated and calculated based on a model formula or map including, as an input value, the amount of heat released to the outside air estimated from the sensor value of the outside air temperature sensor 47 or the intake air temperature sensor 48.
  • the post injection amount instruction value is used.
  • the reference temperature selection unit 78 shown in FIG. 6 selects a reference temperature used for the temperature feedback control of the filter forced regeneration described above.
  • the amount of heat generated by the HC / CO in each of the catalysts 31, 32 varies depending on the heat generation characteristics of the catalyst. For this reason, it is preferable to select the catalyst temperature with the larger calorific value as the reference temperature for temperature feedback control in order to improve controllability.
  • the reference temperature selection unit 78 selects one of the oxidation catalyst temperature and the NOx catalyst temperature that has a larger calorific value estimated from the operating state of the engine 10 at that time, and the filter regeneration control unit 51.
  • the NOx purge control unit 60 and the occlusion amount estimation unit 80 are configured to transmit the reference temperature for the temperature feedback control. As described above, in this embodiment, the controllability can be effectively improved by selecting the catalyst temperature with the larger HC / CO heat generation amount as the reference temperature for the temperature feedback control.
  • the storage amount estimation unit 80 includes an SOx storage amount calculation unit 81 and a NOx storage amount calculation unit 82.
  • the SOx occlusion amount calculation unit 81 is based on the following mathematical formula (3), and the total SOx occlusion amount when it is assumed that the entire amount is generated in the exhaust and is occluded in the occlusion material of the NOx occlusion reduction type catalyst 32. SOx_TTL (g) is calculated.
  • the amount of SOx SOx _Oil from SOx amount SOx _Fuel and engine oil derived fuels is calculated on the basis of the operating state of the internal combustion engine.
  • the SOx release amount SOx_out is calculated based on the catalyst temperature of the NOx storage reduction catalyst 32 and the like.
  • the catalyst temperature is estimated by the catalyst temperature estimation unit 70 described above.
  • the SOx release amount SOx_out is expressed as a negative value.
  • the total amount of SOx occurring in the exhaust i.e., the total amount of SOx occlusion SOx_ TTL
  • the total amount of SOx occlusion SOx_ TTL is not necessarily occluded in the occlusion material of the NOx occlusion-reduction catalyst 32, the other materials and precious metals other than occlusion material Has been.
  • SOx occlusion amount calculation unit 67 taking into account the amount of SOx occlusion of the non-absorbing material, the total amount of SOx occlusion SOx_ TTL, predetermined storage rate coefficient C2 (0 ⁇ C2 ⁇ 1 ) Is estimated as the SOx occlusion amount SOx_STR (g) in the occlusion material of the NOx occlusion reduction type catalyst 32.
  • the storage ratio coefficient C2 may be a constant obtained in advance by experiments or the like, or may be a variable read from a map that is referred to by the catalyst temperature and the heat history.
  • the SOx occlusion amount SOx_STR in the occlusion material of the NOx occlusion reduction catalyst 32 is estimated in consideration of the SOx adsorption amount other than the occlusion material, so that the NOx occlusion reduction catalyst 32 of the NOx occlusion reduction catalyst 32 can be more accurately estimated.
  • the SOx occlusion amount in the occlusion material can be estimated.
  • NOx storage amount calculation unit 82 calculates the NOx adsorption amount NOx _ADS to be trapped by the occluding material of the NOx occlusion reduction type catalyst 32 (g / s) .
  • NOx & SOx occlusion amount level NOx & SOx_ LEV is, NOx and NOx storage amount NOx_ STR (g), the sum of the amount of SOx occlusion SOx_ STR calculated (g) by SOx occlusion amount calculation unit 81 is a value obtained by dividing the NOx storage capacity LNT _ NOx_ STR_CAP the occlusion-reduction catalyst 32 (g).
  • NOx occlusion amount NOx_ STR (g) includes a later-described NOx adsorption amount NOx_ ADS (g / s), is obtained by sequentially multiplying the NOx reduction amount NOx_ RED (g / s).
  • the NOx occlusion amount calculation unit 82 calculates the NOx adsorption amount_ADS (g / s) by taking the product of the NOx amount (engine exit NOx amount) discharged from the engine 10 and the occlusion efficiency of the NOx occlusion reduction type catalyst 32. ) Is calculated.
  • the engine outlet NOx amount is estimated from the operating state of the engine 10 based on the engine speed Ne and the fuel injection amount Q.
  • Storage efficiency of the NOx occlusion-reduction catalyst 32, the catalyst temperature of the NOx occlusion-reduction catalyst 32, gas flow rate (MAF value) is determined from the model formula or a map or the like including a NOx & SOx occlusion level NOx & SOx_ LEV as an input value.
  • Reduced NOx amount NOx _RED (g / s) is calculated based on the NOx & SOx occlusion level NOx & SOx_ LEV of the equation (4). Specifically, the NOx occlusion amount calculation unit 77 calculates the NOx reduction amount NOx_ by taking the product of MAF (g / s) and the NOx occlusion efficiency of the NOx occlusion catalyst of the NOx occlusion reduction type catalyst 32. RED (g / s) is calculated.
  • the NOx & SOx occlusion amount level can be made more accurate.
  • NOx & SOx occlusion amount level NOx & SOx_ LEV since to calculate the storage efficiency of the NOx storage catalyst can be estimated more accurately NOx adsorption amount _ ADS (g / s). For this reason, the NOx occlusion amount NOx_STR of the NOx occlusion reduction type catalyst 32 can be estimated with high accuracy.
  • the MAF follow-up control unit 85 includes (1) a switching period from the lean state of the normal operation to the rich state by the NOx purge control, and (2) a switching period from the rich state to the lean state of the normal operation by the NOx purge control. MAF follow-up control for correcting the fuel injection timing and the fuel injection amount of the in-cylinder injector 11 according to the MAF change is executed.
  • the injection amount learning correction unit 90 includes a learning correction coefficient calculation unit 91 and an injection amount correction unit 92.
  • the learning correction coefficient calculation unit 91 is based on the error ⁇ between the actual lambda value ⁇ Act detected by the NOx / lambda sensor 45 during the lean operation of the engine 10 and the estimated lambda value ⁇ Est, and the learning correction coefficient F for the fuel injection amount. Calculate Corr .
  • the HC concentration in the exhaust is very low, so that the change in the exhaust lambda value due to the oxidation reaction of HC at the oxidation catalyst 31 is negligibly small. Therefore, the actual lambda value ⁇ Act in the exhaust gas that passes through the oxidation catalyst 31 and is detected by the downstream NOx / lambda sensor 45 matches the estimated lambda value ⁇ Est in the exhaust gas discharged from the engine 10.
  • step S300 based on the engine speed Ne and the accelerator opening Q, it is determined whether or not the engine 10 is in a lean operation state. If it is in the lean operation state, the process proceeds to step S310 to start the calculation of the learning correction coefficient.
  • the estimated lambda value ⁇ Est is estimated and calculated from the operating state of the engine 10 according to the engine speed Ne and the accelerator opening Q. Further, the correction sensitivity coefficient K 2 is read the actual lambda value lambda Act detected by the NOx / lambda sensor 45 from the correction sensitivity coefficient map 91A shown in FIG. 8 as an input signal.
  • step S320 it is determined whether or not the absolute value
  • step S330 it is determined whether the learning prohibition flag FPro is off.
  • Whether or not the engine 10 is in a transient operation state is determined based on, for example, the time change amount of the actual lambda value ⁇ Act detected by the NOx / lambda sensor 45 when the time change amount is larger than a predetermined threshold value. What is necessary is just to determine with a transient operation state.
  • step S340 the learning value map 91B (see FIG. 8) referred to based on the engine speed Ne and the accelerator opening Q is updated to the learning value F CorrAdpt calculated in step S310. More specifically, on the learning value map 91B, a plurality of learning areas divided according to the engine speed Ne and the accelerator opening Q are set. These learning regions are preferably set to have a narrower range as the region is used more frequently and to be wider as a region is used less frequently. As a result, learning accuracy is improved in regions where the usage frequency is high, and unlearning can be effectively prevented in regions where the usage frequency is low.
  • the learning correction coefficient F Corr is input to the injection amount correction unit 92 shown in FIG.
  • the injection amount correction unit 92 multiplies each basic injection amount of pilot injection Q Pilot , pre-injection Q Pre , main injection Q Main , after-injection Q After , and post-injection Q Post by a learning correction coefficient F Corr. The injection amount is corrected.
  • MAF correction coefficient calculating unit 95 calculates the MAF correction coefficient Maf _Corr used to set the MAF target value MAF NPL_Trgt and the target injection amount Q NPR_Trgt during NOx purge control.
  • the fuel injection amount of each in-cylinder injector 11 is corrected based on the error ⁇ between the actual lambda value ⁇ Act detected by the NOx / lambda sensor 45 and the estimated lambda value ⁇ Est .
  • the factor of error ⁇ is not necessarily the only effect of the difference between the commanded injection amount and the actual injection amount for each in-cylinder injector 11. That is, there is a possibility that the error of the MAF sensor 40 as well as the in-cylinder injectors 11 affects the lambda error ⁇ .
  • FIG. 10 is a block diagram showing the setting process of the MAF correction coefficient Maf_corr by the MAF correction coefficient calculation unit 95.
  • the correction coefficient setting map 96 is a map that is referred to based on the engine speed Ne and the accelerator opening Q.
  • the MAF indicating the sensor characteristics of the MAF sensor 40 corresponding to the engine speed Ne and the accelerator opening Q is shown in FIG.
  • the correction coefficient Maf_corr is set in advance based on experiments or the like.
  • the MAF correction coefficient calculation unit 95 reads the MAF correction coefficient Maf_corr from the correction coefficient setting map 96 using the engine speed Ne and the accelerator opening Q as input signals, and uses the MAF correction coefficient Maf_corr as the MAF target value calculation unit 62 and It transmits to the injection quantity target value calculating part 66.
  • the sensor characteristics of the MAF sensor 40 can be effectively reflected in the settings of the MAF target value MAF NPL_Trgt and the target injection amount Q NPR_Trgt during the NOx purge control.
  • the exhaust purification system of the present disclosure is useful in that it can efficiently reduce NOx in an exhaust purification system including a NOx storage reduction catalyst.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

The present invention is provided with: a NOx reduction catalyst 32 for reducing and purifying NOx in exhaust; a NOx/lambda sensor 45 provided further towards the downstream side of the exhaust than the catalyst 32; and an ECU 50 which combines air-system control and injection-system control to switch the exhaust air-fuel ratio from a lean state to a rich state, to execute NOx purging in which purification capacity of the NOx reduction catalyst is recovered. The ECU 50 executes: early-stage rich control in which fuel is injected in a first injection amount obtained by adding, to an injection amount required in order to reduce NOx released from the catalyst 32, an injection amount corresponding to the amount of oxygen released from the catalyst 32; and later-stage rich control which is executed after execution of the early-state rich control, and in which fuel is injected in a second injection amount determined on the basis of the catalyst temperature and the amount of NOx occluded in the catalyst 32.

Description

排気浄化システムExhaust purification system
 本開示は、排気浄化システムに関する。 This disclosure relates to an exhaust purification system.
 従来、内燃機関から排出される排気中の窒素化合物(NOx)を還元浄化する触媒として、NOx吸蔵還元型触媒が知られている。このNOx吸蔵還元型触媒は、排気がリーン雰囲気のときに排気中に含まれるNOxを吸蔵すると共に、排気がリッチ雰囲気のときに排気中に含まれる炭化水素で吸蔵していたNOxを還元浄化により無害化して放出する。このため、触媒のNOx吸蔵量が所定量に達した場合は、NOx吸蔵能力を回復させるべく、ポスト噴射や排気管噴射によって排気をリッチ状態にする所謂NOxパージを定期的に行う必要がある(例えば、特許文献1参照)。 Conventionally, a NOx occlusion reduction type catalyst is known as a catalyst for reducing and purifying nitrogen compounds (NOx) in exhaust gas discharged from an internal combustion engine. This NOx occlusion reduction type catalyst occludes NOx contained in the exhaust when the exhaust is in a lean atmosphere, and reduces and purifies NOx occluded by hydrocarbons contained in the exhaust when the exhaust is in a rich atmosphere. Detoxify and release. For this reason, when the NOx occlusion amount of the catalyst reaches a predetermined amount, so-called NOx purge that makes the exhaust rich by post injection or exhaust pipe injection needs to be performed periodically to restore the NOx occlusion capacity ( For example, see Patent Document 1).
 また、NOx吸蔵還元型触媒から放出される酸素量に見合う還元剤の量に、NOx吸蔵還元型触媒から放出されるNOxを還元するために必要な還元剤の量を追加した量を還元剤の総噴射量とすることで、NOx吸蔵還元型触媒から放出されるNOxを確実に還元することができる(例えば、特許文献2参照)。 In addition, the amount of reducing agent required to reduce NOx released from the NOx storage reduction catalyst is added to the amount of reducing agent commensurate with the amount of oxygen released from the NOx storage reduction catalyst. By setting the total injection amount, NOx released from the NOx storage reduction catalyst can be reliably reduced (see, for example, Patent Document 2).
 この特許文献2には、NOx吸蔵還元型触媒から酸素が放出されるまでの前期リッチ制御と、酸素が放出された後の後期リッチ制御で目標空燃比を異ならせており、後期リッチ制御では前期リッチ制御よりも目標空燃比を大きくすることが開示されている。 In Patent Document 2, the target air-fuel ratio is made different between the first rich control until oxygen is released from the NOx storage reduction catalyst and the second rich control after oxygen is released. It is disclosed that the target air-fuel ratio is made larger than that in rich control.
日本国特開2008-202425号公報Japanese Unexamined Patent Publication No. 2008-202425 日本国特開2006-70834号公報Japanese Unexamined Patent Publication No. 2006-70834
 ところで、酸素が放出された後に吸蔵されているNOxの還元効率は、触媒温度の影響を受けて変化する。例えば、触媒温度が比較的低温であれば還元効率は低く、比較的高温であれば還元効率は高い。このため、触媒温度を考慮して燃料噴射量を制御すれば、NOxを効率よく還元することができて好ましい。 By the way, the reduction efficiency of NOx occluded after oxygen is released varies depending on the catalyst temperature. For example, if the catalyst temperature is relatively low, the reduction efficiency is low, and if the catalyst temperature is relatively high, the reduction efficiency is high. For this reason, it is preferable to control the fuel injection amount in consideration of the catalyst temperature because NOx can be efficiently reduced.
 本開示の排気浄化システムは、NOx吸蔵還元型触媒を備える排気浄化システムにおいて、NOxの効率よく還元することを目的とする。 The exhaust purification system of the present disclosure aims to efficiently reduce NOx in an exhaust purification system including a NOx storage reduction catalyst.
 本開示の排気浄化システムは、内燃機関の排気通路に設けられて排気中のNOxを還元浄化するNOx還元型触媒と、前記NOx還元型触媒よりも前記排気通路の下流側に設けられ、前記排気通路を流れる排気の空気過剰率を検出するセンサと、吸入空気量を減少させる空気系制御と燃料噴射量を増加させる噴射系制御とを併用して排気空燃比をリーン状態からリッチ状態に切り替えることで、前記NOx還元型触媒の浄化能力を回復させる再生処理を実行する制御部と、を備える排気浄化システムであって、前記制御部は、前記NOx吸蔵還元型触媒から放出されるNOxを還元するために必要な噴射量に、前記NOx吸蔵還元型触媒から放出される酸素量に見合う噴射量を加えた第1噴射量で燃料を噴射させる第1リッチ制御と、前記第1リッチ制御の実行後に実行され、前記NOx吸蔵還元型触媒に吸蔵されたNOx量と前記NOx吸蔵還元型触媒の温度に基づいて定められた第2噴射量で燃料を噴射させる第2リッチ制御と、を行う。 An exhaust purification system of the present disclosure is provided in an exhaust passage of an internal combustion engine to reduce and purify NOx in exhaust gas, and is provided on a downstream side of the exhaust passage with respect to the NOx reduction catalyst. The exhaust air-fuel ratio is switched from the lean state to the rich state by using a sensor for detecting the excess air ratio of the exhaust gas flowing through the passage, the air system control for reducing the intake air amount, and the injection system control for increasing the fuel injection amount. And a control unit that executes a regeneration process for recovering the purification ability of the NOx reduction catalyst, wherein the control unit reduces NOx released from the NOx storage reduction catalyst. First rich control for injecting fuel at a first injection amount obtained by adding an injection amount commensurate with the amount of oxygen released from the NOx storage reduction catalyst to the injection amount required for A second rich control that is executed after the execution of the 1 rich control and injects the fuel at a second injection amount determined based on the amount of NOx stored in the NOx storage reduction catalyst and the temperature of the NOx storage reduction catalyst; ,I do.
 本開示の排気浄化システムによれば、NOx吸蔵還元型触媒を備える排気浄化システムにおいて、NOxを効率よく還元することができる。 According to the exhaust purification system of the present disclosure, NOx can be efficiently reduced in the exhaust purification system including the NOx storage reduction catalyst.
図1は、本実施形態に係る排気浄化システムを示す全体構成図である。FIG. 1 is an overall configuration diagram showing an exhaust purification system according to the present embodiment. 図2は、本実施形態に係るNOxパージ制御を説明するタイミングチャート図である。FIG. 2 is a timing chart for explaining the NOx purge control according to the present embodiment. 図3は、本実施形態に係るNOxパージリーン制御時のMAF目標値の設定処理を示すブロック図である。FIG. 3 is a block diagram showing a MAF target value setting process during NOx purge lean control according to the present embodiment. 図4は、本実施形態に係る前期NOxパージリッチ制御時の目標噴射量の設定処理を示すブロック図である。FIG. 4 is a block diagram showing a target injection amount setting process during the first-time NOx purge rich control according to the present embodiment. 図5Aは、本実施形態に係る後期NOxパージリッチ制御時の目標噴射量の設定処理を示すブロック図である。FIG. 5A is a block diagram showing a target injection amount setting process during the late NOx purge rich control according to the present embodiment. 図5Bは、第3目標空気過剰率設定マップを模式的に説明する図である。FIG. 5B is a diagram schematically illustrating the third target excess air ratio setting map. 図6は、本実施形態に係る触媒温度推定処理を示すブロック図である。FIG. 6 is a block diagram showing a catalyst temperature estimation process according to the present embodiment. 図7は、本実施形態に係る吸蔵量推定処理を示すブロック図である。FIG. 7 is a block diagram illustrating the occlusion amount estimation processing according to the present embodiment. 図8は、本実施形態に係るインジェクタの噴射量学習補正の処理を示すブロック図である。FIG. 8 is a block diagram showing the injection amount learning correction process of the injector according to the present embodiment. 図9は、本実施形態に係る学習補正係数の演算処理を説明するフロー図である。FIG. 9 is a flowchart for explaining the learning correction coefficient calculation processing according to the present embodiment. 図10は、本実施形態に係るMAF補正係数の設定処理を示すブロック図である。FIG. 10 is a block diagram showing MAF correction coefficient setting processing according to the present embodiment.
 以下、添付図面に基づいて、本開示の一実施形態に係る排気浄化システムを説明する。 Hereinafter, an exhaust purification system according to an embodiment of the present disclosure will be described based on the accompanying drawings.
 図1に示すように、ディーゼルエンジン(以下、単にエンジンという)10の各気筒には、図示しないコモンレールに畜圧された高圧燃料を各気筒内に直接噴射する筒内インジェクタ11がそれぞれ設けられている。これら各筒内インジェクタ11の燃料噴射量や燃料噴射タイミングは、電子制御ユニット(以下、ECUという)50から入力される指示信号に応じてコントロールされる。 As shown in FIG. 1, each cylinder of a diesel engine (hereinafter simply referred to as “engine”) 10 is provided with an in-cylinder injector 11 that directly injects high-pressure fuel that is stored in a common rail (not shown) into each cylinder. Yes. The fuel injection amount and fuel injection timing of each in-cylinder injector 11 are controlled according to an instruction signal input from an electronic control unit (hereinafter referred to as ECU) 50.
 エンジン10の吸気マニホールド10Aには新気を導入する吸気通路12が接続され、排気マニホールド10Bには排気を外部に導出する排気通路13が接続されている。吸気通路12には、吸気上流側から順にエアクリーナ14、吸入空気量センサ(以下、MAFセンサという)40、可変容量型過給機20のコンプレッサ20A、インタークーラ15、吸気スロットルバルブ16等が設けられている。排気通路13には、排気上流側から順に可変容量型過給機20のタービン20B、排気後処理装置30等が設けられている。なお、図1中において、符号41はエンジン回転数センサ、符号42はアクセル開度センサ、符号46はブースト圧センサ、符号47は外気温度センサ、符号48は吸気温度センサをそれぞれ示している。 An intake passage 12 for introducing fresh air is connected to the intake manifold 10A of the engine 10, and an exhaust passage 13 for connecting exhaust to the outside is connected to the exhaust manifold 10B. In the intake passage 12, an air cleaner 14, an intake air amount sensor (hereinafter referred to as MAF sensor) 40, a compressor 20A of the variable displacement supercharger 20, an intercooler 15, an intake throttle valve 16 and the like are provided in order from the intake upstream side. ing. The exhaust passage 13 is provided with a turbine 20B of the variable displacement supercharger 20, an exhaust aftertreatment device 30 and the like in order from the exhaust upstream side. In FIG. 1, reference numeral 41 denotes an engine speed sensor, reference numeral 42 denotes an accelerator opening sensor, reference numeral 46 denotes a boost pressure sensor, reference numeral 47 denotes an outside air temperature sensor, and reference numeral 48 denotes an intake air temperature sensor.
 EGR装置21は、排気マニホールド10Bと吸気マニホールド10Aとを接続するEGR通路22と、EGRガスを冷却するEGRクーラ23と、EGR量を調整するEGRバルブ24とを備えている。 The EGR device 21 includes an EGR passage 22 that connects the exhaust manifold 10B and the intake manifold 10A, an EGR cooler 23 that cools the EGR gas, and an EGR valve 24 that adjusts the EGR amount.
 排気後処理装置30は、ケース30A内に排気上流側から順に酸化触媒31、NOx吸蔵還元型触媒32、パティキュレートフィルタ(以下、単にフィルタという)33を配置して構成されている。また、酸化触媒31よりも上流側の排気通路13には、ECU50から入力される指示信号に応じて、排気通路13内に未燃燃料(主にHC)を噴射する排気インジェクタ34が設けられている。 The exhaust aftertreatment device 30 is configured by arranging an oxidation catalyst 31, a NOx occlusion reduction type catalyst 32, and a particulate filter (hereinafter simply referred to as a filter) 33 in order from the exhaust upstream side in a case 30A. The exhaust passage 13 upstream of the oxidation catalyst 31 is provided with an exhaust injector 34 that injects unburned fuel (mainly HC) into the exhaust passage 13 in accordance with an instruction signal input from the ECU 50. Yes.
 酸化触媒31は、例えば、ハニカム構造体等のセラミック製担体表面に酸化触媒成分を担持して形成されている。酸化触媒31は、排気インジェクタ34の排気管噴射又は筒内インジェクタ11のポスト噴射によって未燃燃料が供給されると、これを酸化して排気温度を上昇させる。 The oxidation catalyst 31 is formed, for example, by carrying an oxidation catalyst component on the surface of a ceramic carrier such as a honeycomb structure. When the unburned fuel is supplied by the exhaust pipe injection of the exhaust injector 34 or the post injection of the in-cylinder injector 11, the oxidation catalyst 31 oxidizes this and raises the exhaust temperature.
 NOx吸蔵還元型触媒32は、例えば、ハニカム構造体等のセラミック製担体表面にアルカリ金属等を担持して形成されている。このNOx吸蔵還元型触媒32は、排気空燃比がリーン状態のときに排気中のNOxを吸蔵すると共に、排気空燃比がリッチ状態のときに排気中に含まれる還元剤(HC等)で吸蔵したNOxを還元浄化する。 The NOx occlusion reduction type catalyst 32 is formed, for example, by supporting an alkali metal or the like on the surface of a ceramic carrier such as a honeycomb structure. The NOx occlusion reduction type catalyst 32 occludes NOx in the exhaust when the exhaust air-fuel ratio is in a lean state, and occludes with a reducing agent (HC or the like) contained in the exhaust when the exhaust air-fuel ratio is in a rich state. NOx is reduced and purified.
 フィルタ33は、例えば、多孔質性の隔壁で区画された多数のセルを排気の流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して形成されている。フィルタ33は、排気中のPMを隔壁の細孔や表面に捕集すると共に、PM堆積推定量が所定量に達すると、これを燃焼除去するいわゆるフィルタ強制再生が実行される。フィルタ強制再生は、排気管噴射又はポスト噴射によって上流側の酸化触媒31に未燃燃料を供給し、フィルタ33に流入する排気温度をPM燃焼温度まで昇温することで行われる。 The filter 33 is formed, for example, by arranging a large number of cells partitioned by porous partition walls along the flow direction of the exhaust gas and alternately plugging the upstream side and the downstream side of these cells. . The filter 33 collects PM in the exhaust gas in the pores and surfaces of the partition walls, and when the estimated amount of PM deposition reaches a predetermined amount, so-called filter forced regeneration is performed in which the PM is burned and removed. Filter forced regeneration is performed by supplying unburned fuel to the upstream side oxidation catalyst 31 by exhaust pipe injection or post injection, and raising the exhaust temperature flowing into the filter 33 to the PM combustion temperature.
 第1排気温度センサ43は、酸化触媒31よりも上流側に設けられており、酸化触媒31に流入する排気温度を検出する。第2排気温度センサ44は、NOx吸蔵還元型触媒32とフィルタ33との間に設けられており、フィルタ33に流入する排気温度を検出する。 The first exhaust temperature sensor 43 is provided on the upstream side of the oxidation catalyst 31 and detects the exhaust temperature flowing into the oxidation catalyst 31. The second exhaust temperature sensor 44 is provided between the NOx storage reduction catalyst 32 and the filter 33 and detects the exhaust temperature flowing into the filter 33.
 NOx/ラムダセンサ45は、フィルタ33よりも下流側に設けられており、NOx吸蔵還元型触媒32を通過した排気のNOx値及びラムダ値(空気過剰率)を検出する。本実施形態のNOx/ラムダセンサ45には、理論空燃比付近において出力が著しく大きく変化するバイナリタイプのセンサを用いている。具体的には、λ=1.0がゼロ点になるように出力の変換を設定した場合に、λ=1.0を境としてプラスとマイナスに反転するような特性を持つタイプのセンサを用いている。なお、NOx/ラムダセンサ45は、ラムダ値が1.0以上の場合にプラス出力(正出力)をし、ラムダ値が1.0未満の場合にマイナス出力(負出力)をするものであってもよく、反対に、ラムダ値が1.0以上の場合にマイナス出力をし、ラムダ値が1.0未満の場合にプラス出力をするものであってもよい。 The NOx / lambda sensor 45 is provided downstream of the filter 33, and detects the NOx value and lambda value (excess air ratio) of the exhaust gas that has passed through the NOx storage reduction catalyst 32. As the NOx / lambda sensor 45 of this embodiment, a binary type sensor whose output changes remarkably in the vicinity of the theoretical air-fuel ratio is used. Specifically, when the output conversion is set so that λ = 1.0 becomes the zero point, a type of sensor having a characteristic that reverses between plus and minus with λ = 1.0 as a boundary is used. ing. The NOx / lambda sensor 45 outputs a positive output (positive output) when the lambda value is 1.0 or more, and outputs a negative output (negative output) when the lambda value is less than 1.0. On the contrary, a negative output may be made when the lambda value is 1.0 or more, and a positive output may be made when the lambda value is less than 1.0.
 ECU50は、エンジン10等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備えて構成されている。これら各種制御を行うため、ECU50にはセンサ類40~48のセンサ値が入力される。また、ECU50は、フィルタ再生制御部51と、NOxパージ制御部60と、触媒温度推定部70と、吸蔵量推定部80と、MAF追従制御部85と、噴射量学習補正部90と、MAF補正係数演算部95とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU50に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。 The ECU 50 performs various controls of the engine 10 and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like. In order to perform these various controls, the sensor values of the sensors 40 to 48 are input to the ECU 50. The ECU 50 also includes a filter regeneration control unit 51, a NOx purge control unit 60, a catalyst temperature estimation unit 70, an occlusion amount estimation unit 80, a MAF follow-up control unit 85, an injection amount learning correction unit 90, and an MAF correction. The coefficient calculation unit 95 is included as a part of functional elements. Each of these functional elements will be described as being included in the ECU 50 which is an integral hardware, but any one of these may be provided in separate hardware.
 [フィルタ再生制御]
 フィルタ再生制御部51は、フィルタ33に堆積されたPMを燃焼除去するフィルタ再生処理を実行する。フィルタ再生制御部51は、PM堆積量推定部52から取得したPM堆積推定量が、所定の上限閾値を超えるとフィルタ強制再生フラグFDPFをオンにする。フィルタ強制再生フラグFDPFがオンにされると、排気インジェクタ34に排気管噴射を実行させる指示信号が送信されるか、あるいは、各筒内インジェクタ11にポスト噴射を実行させる指示信号が送信される。これにより、排気温度がPM燃焼温度(例えば、約550℃)まで昇温され、この昇温状態が維持される。フィルタ強制再生フラグFDPFは、PM堆積推定量が燃焼除去を示す所定の下限閾値(判定閾値)まで低下するとオフにされる。フィルタ強制再生をポスト噴射で実行する場合の噴射量指示値(以下、フィルタ再生ポスト噴射量指示値QDPF_Post_Trgtという)は、触媒発熱量推定のために、詳細を後述する触媒温度推定部70にも送信される。
[Filter regeneration control]
The filter regeneration control unit 51 executes a filter regeneration process that burns and removes the PM accumulated on the filter 33. The filter regeneration control unit 51 turns on the filter forced regeneration flag FDPF when the estimated PM accumulation amount acquired from the PM accumulation amount estimation unit 52 exceeds a predetermined upper limit threshold. When the filter forced regeneration flag F DPF is turned on, an instruction signal for performing exhaust pipe injection is transmitted to the exhaust injector 34, or an instruction signal for performing post injection to each in-cylinder injector 11 is transmitted. . As a result, the exhaust temperature is raised to the PM combustion temperature (for example, about 550 ° C.), and this temperature rise state is maintained. The filter forced regeneration flag F DPF is turned off when the PM accumulation estimated amount falls to a predetermined lower threshold (determination threshold) indicating combustion removal. An injection amount instruction value (hereinafter referred to as a filter regeneration post injection amount instruction value Q DPF_Post_Trgt ) when the forced filter regeneration is performed by post injection is also used for estimating the catalyst heat generation amount, and the catalyst temperature estimation unit 70 described later in detail. Sent.
 [NOxパージ制御]
 NOxパージ制御部60は、排気をリッチ状態にしてNOx吸蔵還元型触媒32に吸蔵されているNOxを還元浄化により無害化して放出することで、NOx吸蔵還元型触媒32のNOx吸蔵能力を回復させる触媒再生処理(以下、この制御をNOxパージ制御という)を実行する。
[NOx purge control]
The NOx purge control unit 60 restores the NOx occlusion ability of the NOx occlusion reduction catalyst 32 by making the exhaust rich and detoxifying and releasing NOx occluded in the NOx occlusion reduction catalyst 32 by reduction purification. A catalyst regeneration process (hereinafter, this control is referred to as NOx purge control) is executed.
 NOxパージ制御を開始するNOxパージフラグFNPは、エンジン10の運転状態から単位時間当たりのNOx排出量を推定し、これを累積計算した推定累積値ΣNOxが所定の閾値を超えるとオン(図2の時刻t参照)にされる。あるいは、エンジン10の運転状態から推定される触媒上流側のNOx排出量と、NOx/ラムダセンサ45で検出される触媒下流側のNOx量とからNOx吸蔵還元型触媒32によるNOx浄化率を演算し、このNOx浄化率が所定の判定閾値よりも低くなった場合に、NOxパージフラグFNPはオンにされる。 The NOx purge flag F NP for starting the NOx purge control is estimated when the NOx emission amount per unit time is estimated from the operating state of the engine 10 and the accumulated cumulative value ΣNOx obtained by accumulating the NOx purge flag exceeds a predetermined threshold (see FIG. 2). It is the time reference t 1). Alternatively, the NOx purification rate by the NOx occlusion reduction type catalyst 32 is calculated from the NOx emission amount upstream of the catalyst estimated from the operating state of the engine 10 and the NOx amount downstream of the catalyst detected by the NOx / lambda sensor 45. When the NOx purification rate becomes lower than a predetermined determination threshold, the NOx purge flag F NP is turned on.
 本実施形態において、NOxパージ制御によるリッチ化は、空気系制御によって空気過剰率を定常運転時(例えば、約1.5)から理論空燃比相当値(約1.0)よりもリーン側の第1目標空気過剰率(例えば、約1.3)まで低下させるNOxパージリーン制御と、噴射系制御によって空気過剰率を第1目標空気過剰率からリッチ側の第2目標空気過剰率(例えば、約0.9)まで低下させるNOxパージリッチ制御とを併用することで実現される。以下、NOxパージリーン制御及び、NOxパージリッチ制御の詳細について説明する。 In the present embodiment, the enrichment by the NOx purge control is performed on the lean side of the excess air ratio from the stoichiometric air-fuel ratio equivalent value (about 1.0) from the time of steady operation (for example, about 1.5) by the air system control. NOx purge lean control for reducing to 1 target excess air ratio (for example, about 1.3) and injection system control to reduce the excess air ratio from the first target excess air ratio to the second target excess air ratio on the rich side (for example, about 0) .9) and NOx purge rich control for reducing the pressure to 9). The details of the NOx purge lean control and the NOx purge rich control will be described below.
 [NOxパージリーン制御のMAF目標値設定]
 図3は、NOxパージリーン制御時のMAF目標値MAFNPL_Trgtの設定処理を示すブロック図である。第1目標空気過剰率設定マップ61は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリーン制御時の空気過剰率目標値λNPL_Trgt(第1目標空気過剰率)が予め実験等に基づいて設定されている。
[NOF purge lean control MAF target value setting]
FIG. 3 is a block diagram showing a process for setting the MAF target value MAF NPL_Trgt during the NOx purge lean control. The first target excess air ratio setting map 61 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge lean control corresponding to the engine speed Ne and the accelerator opening Q. An excess air ratio target value λ NPL_Trgt (first excess air ratio) is set in advance based on experiments or the like.
 まず、第1目標空気過剰率設定マップ61から、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリーン制御時の空気過剰率目標値λNPL_Trgtが読み取られて、MAF目標値演算部62に入力される。さらに、MAF目標値演算部62では、以下の数式(1)に基づいてNOxパージリーン制御時のMAF目標値MAFNPL_Trgtが演算される。 First, the excess air ratio target value λ NPL_Trgt at the time of NOx purge lean control is read from the first target excess air ratio setting map 61 using the engine speed Ne and the accelerator opening Q as input signals, and is sent to the MAF target value calculation unit 62. Entered. Further, the MAF target value calculation unit 62 calculates the MAF target value MAF NPL_Trgt at the time of NOx purge lean control based on the following formula (1).
Figure JPOXMLDOC01-appb-M000001
 数式(1)において、Qfnl_corrdは後述する学習補正された燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
Figure JPOXMLDOC01-appb-M000001
In Equation (1), Q fnl_cord represents a learning-corrected fuel injection amount (excluding post-injection) described later, Ro Fuel represents fuel specific gravity, AFR sto represents a theoretical air-fuel ratio, and Maf_corr represents a MAF correction coefficient described later. Yes.
 MAF目標値演算部62によって演算されたMAF目標値MAFNPL_Trgtは、NOxパージフラグFNPがオン(図2の時刻t参照)になるとランプ処理部63に入力される。ランプ処理部63は、各ランプ係数マップ63A,63Bからエンジン回転数Ne及びアクセル開度Qを入力信号としてランプ係数を読み取ると共に、このランプ係数を付加したMAF目標ランプ値MAFNPL_Trgt_Rampをバルブ制御部64に入力する。 The MAF target value MAF NPL_Trgt calculated by the MAF target value calculation unit 62 is input to the ramp processing unit 63 when the NOx purge flag F NP is turned on (see time t 1 in FIG. 2). The ramp processing unit 63 reads the ramp coefficient from the respective ramp coefficient maps 63A and 63B using the engine speed Ne and the accelerator opening Q as input signals, and uses the MAF target ramp value MAF NPL_Trgt_Ramp to which the ramp coefficient is added as the valve control unit 64. To enter.
 バルブ制御部64は、MAFセンサ40から入力される実MAF値MAFActがMAF目標ランプ値MAFNPL_Trgt_Rampとなるように、吸気スロットルバルブ16を閉側に絞ると共に、EGRバルブ24を開側に開くフィードバック制御を実行する。 The valve control unit 64 throttles the intake throttle valve 16 to the close side and opens the EGR valve 24 to the open side so that the actual MAF value MAF Act input from the MAF sensor 40 becomes the MAF target ramp value MAF NPL_Trgt_Ramp. Execute control.
 このように、本実施形態では、第1目標空気過剰率設定マップ61から読み取られる空気過剰率目標値λNPL_Trgtと、各筒内インジェクタ11の燃料噴射量とに基づいてMAF目標値MAFNPL_Trgtを設定し、このMAF目標値MAFNPL_Trgtに基づいて空気系動作をフィードバック制御するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリーン制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。 Thus, in this embodiment, the MAF target value MAF NPL_Trgt is set based on the excess air ratio target value λ NPL_Trgt read from the first target excess air ratio setting map 61 and the fuel injection amount of each in-cylinder injector 11. The air system operation is feedback-controlled based on the MAF target value MAF NPL_Trgt . Thus, without providing a lambda sensor upstream of the NOx storage reduction catalyst 32, or even when a lambda sensor is provided upstream of the NOx storage reduction catalyst 32, the sensor value of the lambda sensor is not used. It is possible to effectively reduce the exhaust gas to a desired excess air ratio required for NOx purge lean control.
 また、各筒内インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、MAF目標値MAFNPL_Trgtをフィードフォワード制御で設定することが可能となり、各筒内インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。 Further, by using the fuel injection amount Q fnl_corrd after learning correction as the fuel injection amount of each in-cylinder injector 11, the MAF target value MAF NPL_Trgt can be set by feedforward control. Effects such as deterioration and characteristic changes can be effectively eliminated.
 また、MAF目標値MAFNPL_Trgtにエンジン10の運転状態に応じて設定されるランプ係数を付加することで、吸入空気量の急激な変化によるエンジン10の失火やトルク変動によるドライバビリティーの悪化等を効果的に防止することができる。 Further, by adding a ramp coefficient that is set according to the operating state of the engine 10 to the MAF target value MAF NPL_Trgt , it is possible to prevent misfire of the engine 10 due to a sudden change in the intake air amount, deterioration of drivability due to torque fluctuation, and the like. It can be effectively prevented.
 [NOxパージリッチ制御の燃料噴射量設定]
 図4は、NOxパージリッチ制御、詳しくは、NOxパージの開始初期にNOx吸蔵還元型触媒32から放出される酸素を考慮した前期リッチ制御(本開示の第1リッチ制御の一例)における、排気管噴射又はポスト噴射の目標噴射量指示値QNPR_Trgt_O2(単位時間当たりの噴射量)の設定処理を示すブロック図である。
[NOx purge rich control fuel injection amount setting]
FIG. 4 shows the exhaust pipe in the NOx purge rich control, specifically, the first rich control (an example of the first rich control of the present disclosure) in consideration of the oxygen released from the NOx storage reduction catalyst 32 at the beginning of the NOx purge. It is a block diagram which shows the setting process of the target injection quantity instruction | indication value QNPR_Trgt_O2 (injection quantity per unit time) of injection or post injection.
 第2目標空気過剰率設定マップ65Aは、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgt(第2目標空気過剰率)が予め実験等に基づいて設定されている。吸蔵酸素量マップ65Bには、NOx吸蔵還元型触媒32から放出される酸素の量と触媒温度の関係が予め実験等に基づいて設定されている。 The second target excess air ratio setting map 65A is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge rich control corresponding to the engine speed Ne and the accelerator opening Q. The air excess rate target value λ NPR_Trgt (second target air excess rate) is preset based on experiments or the like. In the stored oxygen amount map 65B, the relationship between the amount of oxygen released from the NOx storage reduction catalyst 32 and the catalyst temperature is set in advance based on experiments and the like.
 前期リッチ制御では、まず第2目標空気過剰率設定マップ65Aから、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgtが読み取られて噴射量目標値演算部66に入力される。さらに、噴射量目標値演算部66では、以下の数式(2)に基づいてNOxパージリッチ制御時の目標噴射量指示値QNPR_Trgtが演算される。 In the first half rich control, first, the excess air ratio target value λ NPR_Trgt at the time of NOx purge rich control is read from the second target excess air ratio setting map 65A using the engine speed Ne and the accelerator opening Q as input signals, and the injection amount target. The value is input to the value calculation unit 66. Further, the injection amount target value calculation unit 66 calculates a target injection amount instruction value Q NPR_Trgt at the time of NOx purge rich control based on the following formula (2).
Figure JPOXMLDOC01-appb-M000002
 数式(2)において、MAFNPL_TrgtはNOxパージリーンMAF目標値であって、前述のMAF目標値演算部62から入力される。また、Qfnl_corrdは後述する学習補正されたMAF追従制御適用前の燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
Figure JPOXMLDOC01-appb-M000002
In Expression (2), MAF NPL_Trgt is a NOx purge lean MAF target value, and is input from the MAF target value calculation unit 62 described above. Q fnl_cord is a fuel injection amount (excluding post-injection) before application of learning corrected MAF tracking control described later, Ro Fuel is fuel specific gravity, AFR sto is a theoretical air-fuel ratio, and Maf_corr is a MAF correction coefficient described later. Show.
 次に、吸蔵酸素量マップ65Bから、詳細を後述する触媒温度推定部70からの触媒温度を入力信号として、NOxパージ制御の開始時に放出される酸素の量が読み取られて噴射量目標値演算部66に入力される。さらに、噴射量目標値演算部66では、吸蔵酸素量マップ65Bから取得した酸素量に所定の変換係数C1を乗じることで、酸素量に見合った目標噴射量指示値QO2_Trgtが演算される。なお、目標噴射量指示値QO2_Trgtについては、酸素量との関係を示すMAPを予め実験等に基づいて設定しておき、酸素量を入力信号として当該マップから読み取ってもよい。 Next, from the stored oxygen amount map 65B, the amount of oxygen released at the start of the NOx purge control is read using the catalyst temperature from the catalyst temperature estimating unit 70, which will be described in detail later, as an input signal, and the injection amount target value calculating unit. 66. Further, the injection amount target value calculation unit 66 calculates a target injection amount instruction value Q O2_Trgt corresponding to the oxygen amount by multiplying the oxygen amount acquired from the stored oxygen amount map 65B by a predetermined conversion coefficient C1. Note that the target injection amount instruction value Q O2_Trgt may be read from the map by setting a MAP indicating the relationship with the oxygen amount in advance based on experiments or the like and using the oxygen amount as an input signal.
 噴射量目標値演算部66では、数式(2)で演算された目標噴射量指示値QNPR_Trgtに目標噴射量指示値QO2_Trgtを加算することで、酸素量を考慮した目標噴射量指示値QNPR_Trgt_O2(本開示の第1噴射量の一例)を取得する。この目標噴射量指示値QNPR_Trgt_O2は、図2の時刻tに示すように、NOxパージフラグFNPがオンになると、排気インジェクタ34又は各筒内インジェクタ11に噴射指示信号として送信される(以下、特に筒内インジェクタ11に送信されるポスト噴射の噴射量指示値をNOxパージリッチ・ポスト噴射量指示値QNPR_Post_Trgtという)。NOxパージリッチ・ポスト噴射量指示値QNPR_Post_Trgtは、触媒発熱量推定のために、触媒温度推定部70にも送信される。 The injection amount target value calculation unit 66 adds the target injection amount instruction value Q O2_Trgt to the target injection amount instruction value Q NPR_Trgt calculated by the mathematical formula (2), so that the target injection amount instruction value Q NPR_Trgt_O2 considering the oxygen amount is added. (An example of the first injection amount of the present disclosure) is acquired. The target injection amount instruction value Q NPR_Trgt_O2, as shown at time t 1 in FIG. 2, when the NOx purge flag F NP is on, is sent as the injection instruction signal to the exhaust injector 34 or each cylinder injector 11 (hereinafter, In particular, the injection amount instruction value of the post injection transmitted to the in-cylinder injector 11 is referred to as NOx purge rich / post injection amount instruction value Q NPR_Post_Trgt ). The NOx purge rich / post-injection amount instruction value Q NPR_Post_Trgt is also transmitted to the catalyst temperature estimation unit 70 in order to estimate the catalyst heat generation amount.
 このように、本実施形態では、空気過剰率目標値λNPR_Trgtと各筒内インジェクタ11の燃料噴射量とに基づいて設定された目標噴射量指示値QNPR_Trgtに、吸蔵還元型触媒32から放出される酸素量に見合う目標噴射量指示値QO2_Trgtを加算することで演算された目標噴射量指示値QNPR_Trgt_O2を用いているので、放出された酸素によって燃料(還元剤)が消費されても、NOxを十分に還元浄化することができる。 Thus, in this embodiment, the excess air ratio target value λ NPR_Trgt and the target injection amount instruction value Q NPR_Trgt set based on the fuel injection amount of each in-cylinder injector 11 are released from the storage reduction catalyst 32. that since the target injection amount instruction value Q O2_Trgt commensurate to the amount of oxygen and using the target injection amount instruction value Q NPR_Trgt_O2 computed by adding the even fuel (reducing agent) is consumed by the released oxygen, NOx Can be sufficiently reduced and purified.
 また、第2目標空気過剰率設定マップ65から読み取られる空気過剰率目標値λNPR_Trgtと、各筒内インジェクタ11の燃料噴射量とに基づいて目標噴射量指示値QNPR_Trgtを設定するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリッチ制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。 Further, the target injection amount instruction value Q NPR_Trgt is set based on the excess air ratio target value λ NPR_Trgt read from the second target excess air ratio setting map 65 and the fuel injection amount of each in-cylinder injector 11. Yes. Thus, without providing a lambda sensor upstream of the NOx storage reduction catalyst 32, or even when a lambda sensor is provided upstream of the NOx storage reduction catalyst 32, the sensor value of the lambda sensor is not used. It is possible to effectively reduce the exhaust gas to a desired excess air ratio required for NOx purge rich control.
 また、各筒内インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、目標噴射量指示値QNPR_Trgtをフィードフォワード制御で設定することが可能となり、各筒内インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。 Further, by using the fuel injection amount Q fnl_corrd after learning correction as the fuel injection amount of each in-cylinder injector 11, the target injection amount instruction value Q NPR_Trgt can be set by feedforward control, and each in-cylinder injector 11 It is possible to effectively eliminate the influence of aging deterioration and characteristic changes.
 NOxパージ制御部60は、前期リッチ制御の実行後、NOx/ラムダセンサ45からの出力を監視しており、出力が反転したことを条件に後期リッチ制御(本開示の第2リッチ制御の一例)を開始させる。後期リッチ制御では、NOx吸蔵還元型触媒32に吸蔵されたNOx量と触媒温度に基づいて定められた噴射量で燃料を噴射させる。 The NOx purge control unit 60 monitors the output from the NOx / lambda sensor 45 after the execution of the first rich control, and the second rich control (an example of the second rich control of the present disclosure) on condition that the output is inverted. To start. In the late rich control, fuel is injected at an injection amount determined based on the amount of NOx stored in the NOx storage reduction catalyst 32 and the catalyst temperature.
 図5Aは、後期リッチ制御における、排気管噴射又はポスト噴射の目標噴射量指示値QNPR_Trgt_NOX(単位時間当たりの噴射量)の設定処理を示すブロック図である。第3目標空気過剰率設定マップ65Cは、詳細を後述する吸蔵量推定部80で推定されたNOx吸蔵量、及び、触媒温度推定部70で推定された触媒温度に基づいて参照されるマップであって、これらNOx吸蔵量と触媒温度とに対応したNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgt_NOXが予め実験等に基づいて設定されている。 FIG. 5A is a block diagram showing processing for setting a target injection amount instruction value Q NPR_Trgt_NOX (injection amount per unit time) for exhaust pipe injection or post injection in the late rich control. The third target excess air ratio setting map 65C is a map that is referred to based on the NOx occlusion amount estimated by the occlusion amount estimation unit 80, which will be described in detail later, and the catalyst temperature estimated by the catalyst temperature estimation unit 70. Thus, the excess air ratio target value λ NPR_Trgt_NOX at the time of NOx purge rich control corresponding to the NOx occlusion amount and the catalyst temperature is set in advance based on experiments or the like.
 図5Bに示す例において、第3目標空気過剰率設定マップ65Cは、NOx吸蔵量について「少」又は「多」の2水準、触媒温度について「低」又は「高」の2水準の4条件(領域)で構成されている。そして、4条件のそれぞれについて空気過剰率目標値λNPR_Trgt_NOXが設定されている。例えば、NOx吸蔵量「多」及び触媒温度「高」の条件において、空気過剰率目標値λNPR_Trgt_NOXは、0.8~0.9の範囲で定められている。この条件における空気過剰率目標値λNPR_Trgt_NOXは、前期リッチ制御における空気過剰率目標値λNPR_Trgtよりも小さくなることがある。例えば、NOx吸蔵還元型触媒32に多量のNOxが吸蔵され、かつ、触媒温度が十分に高い場合、空気過剰率目標値λNPR_Trgt_NOXは、空気過剰率目標値λNPR_Trgtよりも小さくなる。一方、他の3条件において、空気過剰率目標値λNPR_Trgt_NOXは、0.9~1.0の範囲で定められている。読み取られた空気過剰率目標値λNPR_Trgt_NOXは、噴射量目標値演算部66に入力される。 In the example shown in FIG. 5B, the third target excess air ratio setting map 65C includes four conditions (two levels of “low” or “high” for the NOx occlusion amount and two levels of “low” or “high” for the catalyst temperature ( Area). The excess air ratio target value λ NPR_Trgt_NOX is set for each of the four conditions. For example, the excess air ratio target value λ NPR_Trgt_NOX is determined in the range of 0.8 to 0.9 under the conditions of NOx occlusion amount “high” and catalyst temperature “high”. Excess air ratio target value lambda NPR_Trgt_NOX in this condition may be less than the excess air ratio target value lambda NPR_Trgt in year rich control. For example, a large amount of NOx stored in the NOx occlusion-reduction catalyst 32, and, when the catalyst temperature is sufficiently high, the excess air ratio target value lambda NPR_Trgt_NOX is smaller than the excess air ratio target value λ NPR_Trgt. On the other hand, in the other three conditions, the excess air ratio target value λ NPR_Trgt_NOX is determined in the range of 0.9 to 1.0. The read excess air ratio target value λ NPR_Trgt_NOX is input to the injection amount target value calculation unit 66.
 図5Aに示す噴射量目標値演算部66では、空気過剰率目標値λNPR_Trgt_NOXに基づいて目標噴射量指示値QNPR_Trgt_NOX(本開示の第2噴射量の一例)を演算する。具体的には、目標噴射量指示値QNPR_Trgt_NOXは、上述の数式(2)における空気過剰率目標値λNPR_Trgtを、空気過剰率目標値λNPR_Trgt_NOXに置き換えることで演算される。この目標噴射量指示値QNPR_Trgt_NOXは、直ちに排気インジェクタ34又は各筒内インジェクタ11に噴射指示信号として送信される。 5A calculates a target injection amount instruction value Q NPR_Trgt_NOX (an example of the second injection amount of the present disclosure) based on the excess air ratio target value λ NPR_Trgt_NOX . Specifically, the target injection amount instruction value Q NPR_Trgt_NOX is the excess air ratio target value lambda NPR_Trgt in the above equation (2), is calculated by replacing the air excess ratio target value λ NPR_Trgt_NOX. This target injection amount instruction value Q NPR_Trgt_NOX is immediately transmitted to the exhaust injector 34 or each in-cylinder injector 11 as an injection instruction signal.
 これにより、図5Bに示すように、後期リッチ制御では、NOx吸蔵量「多」及び触媒温度「高」の条件において、空気過剰率(λ)が0.8~0.9程度の深いリッチ制御が行われる。一方、他の3条件では、空気過剰率が0.9~1.0程度の浅いリッチ制御が行われる。 As a result, as shown in FIG. 5B, in the late rich control, deep rich control in which the excess air ratio (λ) is about 0.8 to 0.9 under the conditions of NOx occlusion amount “high” and catalyst temperature “high”. Is done. On the other hand, under the other three conditions, shallow rich control with an excess air ratio of about 0.9 to 1.0 is performed.
 このように、本実施形態では、NOx吸蔵還元型触媒32から酸素が放出された時点におけるNOx吸蔵量と触媒温度を参照している。そして、参照したNOx吸蔵量と触媒温度に基づいて、空気過剰率目標値λNPR_Trgt_NOXを定め、この目標値となるように燃料を噴射させている。このため、NOx吸蔵還元型触媒32に吸蔵されているNOxを、必要十分な燃料噴射量で効率よく還元浄化することができる。 Thus, in this embodiment, the NOx occlusion amount and the catalyst temperature at the time when oxygen is released from the NOx occlusion reduction type catalyst 32 are referred to. The excess air ratio target value λ NPR_Trgt_NOX is determined based on the referenced NOx occlusion amount and the catalyst temperature, and fuel is injected so as to reach this target value. For this reason, NOx occluded in the NOx occlusion reduction type catalyst 32 can be efficiently reduced and purified with a necessary and sufficient amount of fuel injection.
 例えば、NOx吸蔵還元型触媒32に多量のNOxが吸蔵され、かつ、触媒温度が十分に高い場合には、後期リッチ制御が前期リッチ制御よりも目標空気過剰率の小さい深いリッチ制御となる。これにより、触媒再生初期における過剰なNOx脱離が抑制され、NOx吸蔵還元型触媒32に吸蔵されているNOxを、必要十分な燃料噴射量で効率よく還元浄化することができる。 For example, when a large amount of NOx is occluded in the NOx occlusion reduction type catalyst 32 and the catalyst temperature is sufficiently high, the latter rich control becomes deep rich control having a target excess air ratio smaller than the first rich control. Thereby, excessive NOx desorption in the initial stage of catalyst regeneration is suppressed, and NOx occluded in the NOx occlusion reduction catalyst 32 can be efficiently reduced and purified with a necessary and sufficient amount of fuel injection.
 なお、図5Bの第3目標空気過剰率設定マップ65Cでは、NOx吸蔵量及び触媒温度がそれぞれ2水準であったが、これに限定されない。3水準以上に設定してもよい。 In the third target excess air ratio setting map 65C in FIG. 5B, the NOx occlusion amount and the catalyst temperature are two levels, respectively, but the present invention is not limited to this. You may set more than 3 levels.
 [触媒温度推定]
 図6は、触媒温度推定部70による酸化触媒温度及び、NOx触媒温度の推定処理を示すブロック図である。触媒温度推定部70は、排気に含まれる未燃燃料の量と酸化触媒31やNOx吸蔵還元型触媒32の発熱量に基づいて触媒温度を推定する。
[Catalyst temperature estimation]
FIG. 6 is a block diagram showing an estimation process of the oxidation catalyst temperature and the NOx catalyst temperature by the catalyst temperature estimation unit 70. The catalyst temperature estimation unit 70 estimates the catalyst temperature based on the amount of unburned fuel contained in the exhaust and the heat generation amount of the oxidation catalyst 31 and the NOx storage reduction catalyst 32.
 リーン時HCマップ71Aは、エンジン10の運転状態に基づいて参照されるマップであって、リーン運転時にエンジン10から排出されるHC量(以下、リーン時HC排出量という)が予め実験等により設定されている。フィルタ強制再生フラグFDPF、NOxパージフラグFNPの何れもがオフ(FDPF=0,FNP=0)の場合は、リーン時HCマップ71Aからエンジン回転数Ne及びアクセル開度Qに基づいて読み取られたリーン時HC排出量が各発熱量推定部76A,76Bに送信されるようになっている。 The lean HC map 71A is a map that is referred to based on the operating state of the engine 10, and the amount of HC discharged from the engine 10 during lean operation (hereinafter referred to as lean HC discharge amount) is set in advance through experiments or the like. Has been. When both the filter forced regeneration flag F DPF and the NOx purge flag F NP are off (F DPF = 0, F NP = 0), reading is performed from the lean HC map 71A based on the engine speed Ne and the accelerator opening Q. The lean HC emission amount is transmitted to each of the heat generation amount estimation units 76A and 76B.
 リーン時COマップ71Bは、エンジン10の運転状態に基づいて参照されるマップであって、リーン運転時にエンジン10から排出されるCO量(以下、リーン時CO排出量という)が予め実験等により設定されている。フィルタ強制再生フラグFDPF、NOxパージフラグFNPの何れもがオフ(FDPF=0,FNP=0)の場合は、リーン時COマップ71Bからエンジン回転数Ne及びアクセル開度Qに基づいて読み取られたリーン時CO排出量が各発熱量推定部76A,76Bに送信されるようになっている。 The lean CO map 71B is a map that is referred to based on the operating state of the engine 10, and the amount of CO discharged from the engine 10 during lean operation (hereinafter referred to as lean CO emission) is set in advance through experiments or the like. Has been. When both the filter forced regeneration flag F DPF and the NOx purge flag F NP are off (F DPF = 0, F NP = 0), reading is performed from the lean CO map 71B based on the engine speed Ne and the accelerator opening Q. The lean CO emission amount is transmitted to each of the heat generation amount estimation units 76A and 76B.
 フィルタ強制再生時HCマップ72Aは、エンジン10の運転状態に基づいて参照されるマップであって、フィルタ強制再生制御を実行した際にエンジン10から排出されるHC量(以下、フィルタ再生時HC排出量という)が予め実験等により設定されている。フィルタ強制再生フラグFDPFがオン(FDPF=1)の場合は、フィルタ強制再生時HCマップ72Aからエンジン回転数Ne及びアクセル開度Qに基づいて読み取られたフィルタ再生時HC排出量に、エンジン10の運転状態に応じた所定の補正係数が乗じられて、各発熱量推定部76A,76Bに送信されるようになっている。 The filter forced regeneration HC map 72A is a map that is referred to based on the operating state of the engine 10, and is the amount of HC discharged from the engine 10 when filter forced regeneration control is executed (hereinafter referred to as HC exhaust during filter regeneration). (Referred to as “quantity”) is set in advance by experiments or the like. When the filter forced regeneration flag F DPF is on (F DPF = 1), the engine regeneration amount HC emission amount read from the filter forced regeneration HC map 72A based on the engine speed Ne and the accelerator opening Q is A predetermined correction coefficient corresponding to the ten operating states is multiplied and transmitted to each of the heat generation amount estimation units 76A and 76B.
 フィルタ強制再生時COマップ72Bは、エンジン10の運転状態に基づいて参照されるマップであって、フィルタ強制再生制御を実行した際にエンジン10から排出されるCO量(以下、フィルタ再生時CO排出量という)が予め実験等により設定されている。フィルタ強制再生フラグFDPFがオン(FDPF=1)の場合は、フィルタ強制再生時COマップ72Bからエンジン回転数Ne及びアクセル開度Qに基づいて読み取られたフィルタ再生時CO排出量に、エンジン10の運転状態に応じた所定の補正係数が乗じられて、各発熱量推定部76A,76Bに送信されるようになっている。 The filter forced regeneration CO map 72B is a map that is referred to based on the operating state of the engine 10, and is the amount of CO discharged from the engine 10 when filter forced regeneration control is executed (hereinafter referred to as CO regeneration during filter regeneration). (Referred to as “quantity”) is set in advance by experiments or the like. When the filter forced regeneration flag F DPF is ON (F DPF = 1), the engine regeneration amount CO emission amount read from the filter forced regeneration CO map 72B based on the engine speed Ne and the accelerator opening Q is A predetermined correction coefficient corresponding to the ten operating states is multiplied and transmitted to each of the heat generation amount estimation units 76A and 76B.
 NOxパージ時HCマップ73Aは、エンジン10の運転状態に基づいて参照されるマップであって、NOxパージ制御を実行した際にエンジン10から排出されるHC量(以下、NOxパージ時HC排出量という)が予め実験等により設定されている。NOxパージフラグFNPがオン(FNP=1)の場合は、NOxパージ時HCマップ73Aからエンジン回転数Ne及びアクセル開度Qに基づいて読み取られたNOxパージ時HC排出量に、エンジン10の運転状態に応じた所定の補正係数が乗じられて、各発熱量推定部76A,76Bに送信されるようになっている。 The NOx purge HC map 73A is a map that is referred to based on the operating state of the engine 10, and is the amount of HC discharged from the engine 10 when the NOx purge control is executed (hereinafter referred to as NOx purge HC discharge amount). ) Is set in advance by experiments or the like. When the NOx purge flag F NP is ON (F NP = 1), the operation of the engine 10 is performed based on the NOx purge HC discharge amount read from the NOx purge HC map 73A based on the engine speed Ne and the accelerator opening Q. A predetermined correction coefficient corresponding to the state is multiplied and transmitted to each of the heat generation amount estimation units 76A and 76B.
 NOxパージ時COマップ73Bは、エンジン10の運転状態に基づいて参照されるマップであって、NOxパージ制御を実行した際にエンジン10から排出されるCO量(以下、NOxパージ時CO排出量という)が予め実験等により設定されている。NOxパージフラグFNPがオン(FNP=1)の場合は、NOxパージ時COマップ73Bからエンジン回転数Ne及びアクセル開度Qに基づいて読み取られたNOxパージ時CO排出量に、エンジン10の運転状態に応じた所定の補正係数が乗じられて、各発熱量推定部76A,76Bに送信されるようになっている。 The NOx purge CO map 73B is a map that is referred to based on the operating state of the engine 10, and is the amount of CO discharged from the engine 10 when the NOx purge control is executed (hereinafter referred to as NOx purge CO emission). ) Is set in advance by experiments or the like. When the NOx purge flag F NP is on (F NP = 1), the engine 10 is operated based on the NOx purge CO emission amount read from the NOx purge CO map 73B based on the engine speed Ne and the accelerator opening Q. A predetermined correction coefficient corresponding to the state is multiplied and transmitted to each of the heat generation amount estimation units 76A and 76B.
 ポスト噴射量指示値補正部75は、NOxパージリッチ制御又は、フィルタ強制再生制御がポスト噴射によって実行される場合に、触媒発熱量推定に用いるポスト噴射量指示値を後述する学習補正係数演算部91から入力される学習補正係数によって補正するポスト噴射量指示値補正を実行する。 The post-injection-amount instruction value correction unit 75 is a learning correction coefficient calculator 91 described later for a post-injection-amount instruction value used for estimating the catalyst heat generation amount when NOx purge rich control or filter forced regeneration control is executed by post-injection. The post-injection amount instruction value correction that is corrected by the learning correction coefficient input from is executed.
 より詳しくは、NOxパージフラグFNPがオンとなり、且つ、NOxパージリッチ制御がポスト噴射で実行される場合は、噴射量目標値演算部66(NOxパージ制御部60)から入力されるNOxパージリッチ・ポスト噴射量指示値QNPR_Post_Trgtに学習補正係数FCorrを乗じた補正後のポスト噴射量指示値QNPR_Post_Corr(=QNPR_Post_Trgt×FCorr)が各発熱量推定部76A,76Bに送信されるようになっている。 More specifically, when the NOx purge flag F NP is turned on and the NOx purge rich control is executed by post-injection, the NOx purge rich value input from the injection amount target value calculation unit 66 (NOx purge control unit 60). post injection amount instruction value Q NPR_Post_Trgt the learning correction coefficient F Corr post injection amount instruction value Q NPR_Post_Corr corrected by multiplying (= Q NPR_Post_Trgt × F Corr) are each heating value estimating unit 76A, so as to be transmitted to 76B ing.
 また、フィルタ強制再生フラグFDPFがオンとなり、且つ、フィルタ強制再生制御がポスト噴射で実行される場合は、フィルタ再生制御部51から入力されるフィルタ再生ポスト噴射量指示値QDPF_Post_Trgtに学習補正係数FCorrを乗じた補正後のポスト噴射量指示値QDPF_Post_Corr(=QDPF_Post_Trgt×FCorr)が各発熱量推定部76A,76Bに送信されるようになっている。 When the forced filter regeneration flag F DPF is turned on and the forced filter regeneration control is executed by post injection, the learning correction coefficient is added to the filter regeneration post injection amount instruction value Q DPF_Post_Trgt input from the filter regeneration control unit 51. post injection amount instruction value after correction obtained by multiplying F Corr Q DPF_Post_Corr (= Q DPF_Post_Trgt × F Corr) are each heating value estimating unit 76A, is adapted to be sent to 76B.
 酸化触媒発熱量推定部76Aは、NOxパージフラグFNP、フィルタ強制再生フラグFDPFのオン/オフに応じて各マップ71A~73Bから入力されるHC・CO排出量及び、排気管噴射/ポスト噴射の選択に応じてポスト噴射量指示値補正部75から入力される補正後のポスト噴射量指示値等に基づいて、酸化触媒31内部でのHC・CO発熱量(以下、酸化触媒HC・CO発熱量という)を推定する。酸化触媒HC・CO発熱量は、例えば、HC・CO排出量や補正後のポスト噴射量指示値を入力値として含むモデル式やマップに基づいて推定演算する。 The oxidation catalyst heat generation amount estimation unit 76A performs the HC / CO emission amount input from each map 71A to 73B and the exhaust pipe injection / post injection according to ON / OFF of the NOx purge flag F NP and the filter forced regeneration flag F DPF . Based on the post-injection amount instruction value after correction input from the post-injection amount instruction value correction unit 75 according to the selection, etc., the HC / CO heat generation amount in the oxidation catalyst 31 (hereinafter referred to as the oxidation catalyst HC / CO heat generation amount). Estimated). The oxidation catalyst HC / CO heat generation amount is estimated and calculated based on, for example, a model formula or map including the HC / CO emission amount and the corrected post-injection amount instruction value as input values.
 NOx触媒発熱量推定部76Bは、NOxパージフラグFNP、フィルタ強制再生フラグFDPFのオン/オフに応じて各マップ71A~73Bから入力されるHC・CO排出量及び、排気管噴射/ポスト噴射の選択に応じてポスト噴射量指示値補正部75から入力される補正後のポスト噴射量指示値等に基づいて、NOx吸蔵還元型触媒32内部のHC・CO発熱量(以下、NOx触媒HC・CO発熱量という)を推定する。NOx触媒HC・CO発熱量は、例えば、HC・CO排出量や補正後のポスト噴射量指示値を入力値として含むモデル式やマップに基づいて推定演算する。 The NOx catalyst heat generation amount estimation unit 76B performs the HC / CO emission amount input from each map 71A to 73B and the exhaust pipe injection / post injection according to ON / OFF of the NOx purge flag F NP and the forced filter regeneration flag F DPF . Based on the post-injection amount instruction value after correction input from the post-injection amount instruction value correction unit 75 according to the selection, etc., the HC / CO heat generation amount (hereinafter referred to as the NOx catalyst HC / CO) inside the NOx storage reduction type catalyst 32. Estimated calorific value). The NOx catalyst HC / CO heat generation amount is estimated and calculated based on, for example, a model formula or map including the HC / CO emission amount and the corrected post injection amount instruction value as input values.
 酸化触媒温度推定部77Aは、第1排気温度センサ43によって検出される酸化触媒入口温度、酸化触媒発熱量推定部76Aから入力される酸化触媒HC・CO発熱量、MAFセンサ40のセンサ値、外気温度センサ47又は吸気温度センサ48のセンサ値から推定される外気への放熱量等を入力値として含むモデル式やマップに基づいて、酸化触媒31の触媒温度を推定演算する。 The oxidation catalyst temperature estimation unit 77A includes an oxidation catalyst inlet temperature detected by the first exhaust temperature sensor 43, an oxidation catalyst HC / CO heating value input from the oxidation catalyst heating value estimation unit 76A, a sensor value of the MAF sensor 40, and outside air. The catalyst temperature of the oxidation catalyst 31 is estimated and calculated based on a model equation or map including, as an input value, the amount of heat released to the outside air estimated from the sensor value of the temperature sensor 47 or the intake air temperature sensor 48.
 NOx触媒温度推定部77Bは、酸化触媒温度推定部77Aから入力される酸化触媒温度(以下、NOx触媒入口温度ともいう)、NOx触媒発熱量推定部76Bから入力されるNOx触媒HC・CO発熱量、外気温度センサ47又は吸気温度センサ48のセンサ値から推定される外気への放熱量等を入力値として含むモデル式やマップに基づいて、NOx吸蔵還元型触媒32の触媒温度を推定演算する。 The NOx catalyst temperature estimation unit 77B is an oxidation catalyst temperature (hereinafter also referred to as NOx catalyst inlet temperature) input from the oxidation catalyst temperature estimation unit 77A, and a NOx catalyst HC / CO heating value input from the NOx catalyst heating value estimation unit 76B. The catalyst temperature of the NOx occlusion reduction type catalyst 32 is estimated and calculated based on a model formula or map including, as an input value, the amount of heat released to the outside air estimated from the sensor value of the outside air temperature sensor 47 or the intake air temperature sensor 48.
 以上詳述したように、本実施形態では、NOxパージ制御、フィルタ強制再生制御がポスト噴射で実行される場合は、各触媒31,32の発熱量推定演算に学習補正値が反映された補正後のポスト噴射量指示値を用いるように構成されている。これにより、筒内インジェクタ11の経年劣化等の影響を考慮した触媒発熱量を高精度に演算することが可能となり、各触媒31,32の温度推定精度を確実に向上することができる。 As described above in detail, in the present embodiment, when the NOx purge control and the forced filter regeneration control are executed by the post injection, the corrected correction in which the learning correction value is reflected in the calorific value estimation calculation of each of the catalysts 31 and 32. The post injection amount instruction value is used. As a result, it is possible to calculate the heat generation amount of the catalyst in consideration of the influence of the aging deterioration of the in-cylinder injector 11 with high accuracy, and the temperature estimation accuracy of each of the catalysts 31 and 32 can be reliably improved.
 また、HC・CO排出量がそれぞれ異なる通常のリーン運転時、フィルタ強制再生時、NOxパージ時等の各運転状態に応じてHC・COマップ71A~73B等を適宜切り替えることで、これら運転状態に応じた触媒内部におけるHC・CO発熱量を精度よく演算することが可能となり、各触媒31,32の温度推定精度を効果的に向上することができる。 In addition, by switching the HC / CO maps 71A to 73B and the like appropriately according to each operation state such as normal lean operation with different HC / CO emissions, filter forced regeneration, NOx purge, etc., these operation states can be obtained. It is possible to calculate the HC / CO heat generation amount in the corresponding catalyst accurately, and the temperature estimation accuracy of each of the catalysts 31 and 32 can be effectively improved.
 [FB制御参照温度選択]
 図6に示す参照温度選択部78は、上述したフィルタ強制再生の温度フィードバック制御に用いる参照温度を選択する。
[FB control reference temperature selection]
The reference temperature selection unit 78 shown in FIG. 6 selects a reference temperature used for the temperature feedback control of the filter forced regeneration described above.
 酸化触媒31とNOx吸蔵還元型触媒32とを備える排気浄化システムにおいては、触媒の発熱特性等に応じて各触媒31,32におけるHC・CO発熱量が異なってくる。このため、温度フィードバック制御の参照温度としては、発熱量が多い方の触媒温度を選択することが制御性を向上するうえで好ましい。 In the exhaust purification system including the oxidation catalyst 31 and the NOx occlusion reduction type catalyst 32, the amount of heat generated by the HC / CO in each of the catalysts 31, 32 varies depending on the heat generation characteristics of the catalyst. For this reason, it is preferable to select the catalyst temperature with the larger calorific value as the reference temperature for temperature feedback control in order to improve controllability.
 参照温度選択部78は、酸化触媒温度及び、NOx触媒温度のうち、そのときのエンジン10の運転状態から推定される発熱量が多い方の触媒温度を一つ選択して、フィルタ再生制御部51、NOxパージ制御部60、吸蔵量推定部80に温度フィードバック制御の参照温度として送信するように構成されている。このように、本実施形態では、HC・CO発熱量が多くなる方の触媒温度を温度フィードバック制御の参照温度として選択することで、制御性を効果的に向上することが可能になる。 The reference temperature selection unit 78 selects one of the oxidation catalyst temperature and the NOx catalyst temperature that has a larger calorific value estimated from the operating state of the engine 10 at that time, and the filter regeneration control unit 51. The NOx purge control unit 60 and the occlusion amount estimation unit 80 are configured to transmit the reference temperature for the temperature feedback control. As described above, in this embodiment, the controllability can be effectively improved by selecting the catalyst temperature with the larger HC / CO heat generation amount as the reference temperature for the temperature feedback control.
 [NOx・SOx吸蔵量推定]
 図7に示すように、吸蔵量推定部80は、SOx吸蔵量演算部81とNOx吸蔵量演算部82を備えている。SOx吸蔵量演算部81は、以下の数式(3)に基づいて、排気中に発生してその全量がNOx吸蔵還元型触媒32の吸蔵材に吸蔵されるものと仮定した場合の総SOx吸蔵量SOx_TTL(g)を演算する。
[NOx / SOx occlusion estimation]
As shown in FIG. 7, the storage amount estimation unit 80 includes an SOx storage amount calculation unit 81 and a NOx storage amount calculation unit 82. The SOx occlusion amount calculation unit 81 is based on the following mathematical formula (3), and the total SOx occlusion amount when it is assumed that the entire amount is generated in the exhaust and is occluded in the occlusion material of the NOx occlusion reduction type catalyst 32. SOx_TTL (g) is calculated.
Figure JPOXMLDOC01-appb-M000003
 数式(3)で示すように、総SOx吸蔵量SOx_TTLは、燃料由来のSOx量SOx_Fuel(g/s)とエンジンオイル由来のSOx量SOx_oil(g/s)とSOx放出量SOx_out(g/s)との総和を積分したものである。ここで、燃料由来のSOx量SOx_Fuelとエンジンオイル由来のSOx量SOx_oilとは、内燃機関の運転状態に基づいて演算される。SOx放出量SOx_outは、NOx吸蔵還元型触媒32の触媒温度等に基づいて演算される。触媒温度は、上述した触媒温度推定部70によって推定される。SOx放出量SOx_outは負の値で表現されている。
Figure JPOXMLDOC01-appb-M000003
As shown in Equation (3), the total amount of SOx occlusion SOx_ TTL, the fuel from the SOx amount SOx _Fuel (g / s) and the engine oil from the SOx amount SOx _oil (g / s) and SOx emissions SOx _out ( g / s) and the sum total. Here, the amount of SOx SOx _Oil from SOx amount SOx _Fuel and engine oil derived fuels, is calculated on the basis of the operating state of the internal combustion engine. The SOx release amount SOx_out is calculated based on the catalyst temperature of the NOx storage reduction catalyst 32 and the like. The catalyst temperature is estimated by the catalyst temperature estimation unit 70 described above. The SOx release amount SOx_out is expressed as a negative value.
 ここで、排気中に発生したSOxの全量(すなわち、総SOx吸蔵量SOx_TTL)がNOx吸蔵還元型触媒32の吸蔵材に吸蔵されているわけではなく、吸蔵材以外の他材や貴金属に吸蔵されている。 Storage Here, the total amount of SOx occurring in the exhaust (i.e., the total amount of SOx occlusion SOx_ TTL) is not necessarily occluded in the occlusion material of the NOx occlusion-reduction catalyst 32, the other materials and precious metals other than occlusion material Has been.
 そこで、本実施形態では、SOx吸蔵量演算部67は、吸蔵材以外へのSOx吸蔵量を考慮して、総SOx吸蔵量SOx_TTLに対して、所定の吸蔵割合係数C2(0<C2<1)を乗じた値を、NOx吸蔵還元型触媒32の吸蔵材におけるSOx吸蔵量SOx_STR(g)と推定している。ここで、吸蔵割合係数C2は、予め実験等により求めた定数であってもよく、触媒温度と熱履歴とによって参照されるマップから読みだされる変数等であってもよい。 Therefore, in the present embodiment, SOx occlusion amount calculation unit 67, taking into account the amount of SOx occlusion of the non-absorbing material, the total amount of SOx occlusion SOx_ TTL, predetermined storage rate coefficient C2 (0 <C2 <1 ) Is estimated as the SOx occlusion amount SOx_STR (g) in the occlusion material of the NOx occlusion reduction type catalyst 32. Here, the storage ratio coefficient C2 may be a constant obtained in advance by experiments or the like, or may be a variable read from a map that is referred to by the catalyst temperature and the heat history.
 このように、吸蔵材以外へのSOx吸着量を考慮して、NOx吸蔵還元型触媒32の吸蔵材におけるSOx吸蔵量SOx_STRを推定しているので、より高精度にNOx吸蔵還元型触媒32の吸蔵材におけるSOx吸蔵量を推定することができる。 As described above, the SOx occlusion amount SOx_STR in the occlusion material of the NOx occlusion reduction catalyst 32 is estimated in consideration of the SOx adsorption amount other than the occlusion material, so that the NOx occlusion reduction catalyst 32 of the NOx occlusion reduction catalyst 32 can be more accurately estimated. The SOx occlusion amount in the occlusion material can be estimated.
 NOx吸蔵量演算部82は、以下の数式(4)のNOx&SOx吸蔵レベルNOx&SOx_LEVに基づいて、NOx吸蔵還元型触媒32の吸蔵材に吸着されるNOx吸着量NOx_ADS(g/s)を演算する。 NOx storage amount calculation unit 82, based on the NOx & SOx occlusion level NOx & SOx_ LEV following equation (4), calculates the NOx adsorption amount NOx _ADS to be trapped by the occluding material of the NOx occlusion reduction type catalyst 32 (g / s) .
Figure JPOXMLDOC01-appb-M000004
 数式(4)で示すように、NOx&SOx吸蔵量レベルNOx&SOx_LEVは、NOx吸蔵量NOx_STR(g)と、SOx吸蔵量演算部81により算出されるSOx吸蔵量SOx_STR(g)との和をNOx吸蔵還元型触媒32のNOx吸蔵容量LNT_NOx_STR_CAP(g)で除算した値である。NOx吸蔵量NOx_STR(g)は、後述するNOx吸着量NOx_ADS(g/s)と、NOx還元量NOx_RED(g/s)とを逐次積算して得られる。
Figure JPOXMLDOC01-appb-M000004
As shown in Equation (4), NOx & SOx occlusion amount level NOx & SOx_ LEV is, NOx and NOx storage amount NOx_ STR (g), the sum of the amount of SOx occlusion SOx_ STR calculated (g) by SOx occlusion amount calculation unit 81 is a value obtained by dividing the NOx storage capacity LNT _ NOx_ STR_CAP the occlusion-reduction catalyst 32 (g). NOx occlusion amount NOx_ STR (g) includes a later-described NOx adsorption amount NOx_ ADS (g / s), is obtained by sequentially multiplying the NOx reduction amount NOx_ RED (g / s).
 NOx吸蔵量演算部82は、エンジン10から排出されるNOx量(エンジン出口NOx量)と、NOx吸蔵還元型触媒32の吸蔵効率との積を取ることにより、NOx吸着量_ADS(g/s)を算出する。エンジン出口NOx量は、エンジン回転数Neや燃料噴射量Qに基づくエンジン10の運転状態から推定される。NOx吸蔵還元型触媒32の吸蔵効率は、NOx吸蔵還元型触媒32の触媒温度、ガス流量(MAF値)、NOx&SOx吸蔵レベルNOx&SOx_LEVを入力値として含むモデル式やマップ等から求められる。 The NOx occlusion amount calculation unit 82 calculates the NOx adsorption amount_ADS (g / s) by taking the product of the NOx amount (engine exit NOx amount) discharged from the engine 10 and the occlusion efficiency of the NOx occlusion reduction type catalyst 32. ) Is calculated. The engine outlet NOx amount is estimated from the operating state of the engine 10 based on the engine speed Ne and the fuel injection amount Q. Storage efficiency of the NOx occlusion-reduction catalyst 32, the catalyst temperature of the NOx occlusion-reduction catalyst 32, gas flow rate (MAF value) is determined from the model formula or a map or the like including a NOx & SOx occlusion level NOx & SOx_ LEV as an input value.
 NOx還元量NOx_RED(g/s)は、上記数式(4)のNOx&SOx吸蔵レベルNOx&SOx_LEVに基づいて演算される。具体的には、NOx吸蔵量演算部77は、MAF(g/s)と、NOx吸蔵還元型触媒32の吸蔵材のNOx吸蔵触媒のNOx還元効率との積を取ることにより、NOx還元量NOx_RED(g/s)を算出する。 Reduced NOx amount NOx _RED (g / s) is calculated based on the NOx & SOx occlusion level NOx & SOx_ LEV of the equation (4). Specifically, the NOx occlusion amount calculation unit 77 calculates the NOx reduction amount NOx_ by taking the product of MAF (g / s) and the NOx occlusion efficiency of the NOx occlusion catalyst of the NOx occlusion reduction type catalyst 32. RED (g / s) is calculated.
 本実施形態では、総SOx吸蔵量SOx_TTLではなく、NOx吸蔵還元型触媒32の吸蔵材に吸蔵されていると推定されるSOx吸蔵量SOx_STRを用いてNOx&SOx吸蔵量レベルNOx&SOx_LEVを算出しているので、より精度の高いNOx&SOx吸蔵量レベルとすることができる。 In this embodiment, rather than the total amount of SOx occlusion SOx_ TTL, and calculates the NOx & SOx occlusion amount level NOx & SOx_ LEV with the amount of SOx occlusion SOx_ STR which is estimated to be occluded by the occluding material of the NOx occlusion-reduction catalyst 32 Therefore, the NOx & SOx occlusion amount level can be made more accurate.
 また、NOx&SOx吸蔵量レベルNOx&SOx_LEVを用いて、NOx吸蔵触媒の吸蔵効率を算出するようにしているので、より精度よくNOx吸着量_ADS(g/s)を推定することができる。このため、NOx吸蔵還元型触媒32のNOx吸蔵量NOx_STRを高精度で推定することができる。 Further, by using the NOx & SOx occlusion amount level NOx & SOx_ LEV, since to calculate the storage efficiency of the NOx storage catalyst can be estimated more accurately NOx adsorption amount _ ADS (g / s). For this reason, the NOx occlusion amount NOx_STR of the NOx occlusion reduction type catalyst 32 can be estimated with high accuracy.
 [MAF追従制御]
 MAF追従制御部85は、(1)通常運転のリーン状態からNOxパージ制御によるリッチ状態への切り替え期間及び、(2)NOxパージ制御によるリッチ状態から通常運転のリーン状態への切り替え期間に、各筒内インジェクタ11の燃料噴射タイミング及び燃料噴射量をMAF変化に応じて補正するMAF追従制御を実行する。
[MAF tracking control]
The MAF follow-up control unit 85 includes (1) a switching period from the lean state of the normal operation to the rich state by the NOx purge control, and (2) a switching period from the rich state to the lean state of the normal operation by the NOx purge control. MAF follow-up control for correcting the fuel injection timing and the fuel injection amount of the in-cylinder injector 11 according to the MAF change is executed.
 [噴射量学習補正]
 図8に示すように、噴射量学習補正部90は、学習補正係数演算部91と、噴射量補正部92とを有する。
[Injection amount learning correction]
As shown in FIG. 8, the injection amount learning correction unit 90 includes a learning correction coefficient calculation unit 91 and an injection amount correction unit 92.
 学習補正係数演算部91は、エンジン10のリーン運転時にNOx/ラムダセンサ45で検出される実ラムダ値λActと、推定ラムダ値λEstとの誤差Δλに基づいて燃料噴射量の学習補正係数FCorrを演算する。排気がリーン状態のときは、排気中のHC濃度が非常に低いので、酸化触媒31でHCの酸化反応による排気ラムダ値の変化は無視できるほど小さい。このため、酸化触媒31を通過して下流側のNOx/ラムダセンサ45で検出される排気中の実ラムダ値λActと、エンジン10から排出された排気中の推定ラムダ値λEstとは一致すると考えられる。すなわち、これら実ラムダ値λActと推定ラムダ値λEstとに誤差Δλが生じた場合は、各筒内インジェクタ11に対する指示噴射量と実噴射量との差によるものと仮定することができる。以下、この誤差Δλを用いた学習補正係数演算部91による学習補正係数の演算処理を図9のフローに基づいて説明する。 The learning correction coefficient calculation unit 91 is based on the error Δλ between the actual lambda value λ Act detected by the NOx / lambda sensor 45 during the lean operation of the engine 10 and the estimated lambda value λ Est, and the learning correction coefficient F for the fuel injection amount. Calculate Corr . When the exhaust is in a lean state, the HC concentration in the exhaust is very low, so that the change in the exhaust lambda value due to the oxidation reaction of HC at the oxidation catalyst 31 is negligibly small. Therefore, the actual lambda value λ Act in the exhaust gas that passes through the oxidation catalyst 31 and is detected by the downstream NOx / lambda sensor 45 matches the estimated lambda value λ Est in the exhaust gas discharged from the engine 10. Conceivable. That is, when an error Δλ occurs between the actual lambda value λ Act and the estimated lambda value λ Est , it can be assumed that the difference is between the instructed injection amount for each in-cylinder injector 11 and the actual injection amount. Hereinafter, the learning correction coefficient calculation processing by the learning correction coefficient calculation unit 91 using the error Δλ will be described with reference to the flowchart of FIG. 9.
 ステップS300では、エンジン回転数Ne及びアクセル開度Qに基づいて、エンジン10がリーン運転状態にあるか否かが判定される。リーン運転状態にあれば、学習補正係数の演算を開始すべく、ステップS310に進む。 In step S300, based on the engine speed Ne and the accelerator opening Q, it is determined whether or not the engine 10 is in a lean operation state. If it is in the lean operation state, the process proceeds to step S310 to start the calculation of the learning correction coefficient.
 ステップS310では、推定ラムダ値λEstからNOx/ラムダセンサ45で検出される実ラムダ値λActを減算した誤差Δλに、学習値ゲインK及び補正感度係数Kを乗じることで、学習値FCorrAdptが演算される(FCorrAdpt=(λEst-λAct)×K×K)。推定ラムダ値λEstは、エンジン回転数Neやアクセル開度Qに応じたエンジン10の運転状態から推定演算される。また、補正感度係数Kは、図8に示す補正感度係数マップ91AからNOx/ラムダセンサ45で検出される実ラムダ値λActを入力信号として読み取られる。 In step S310, an error Δλ obtained by subtracting the actual lambda value λ Act detected by the NOx / lambda sensor 45 from the estimated lambda value λ Est is multiplied by the learning value gain K 1 and the correction sensitivity coefficient K 2 to thereby obtain the learning value F CorrAdpt is calculated (F CorrAdpt = (λ Est −λ Act ) × K 1 × K 2 ). The estimated lambda value λ Est is estimated and calculated from the operating state of the engine 10 according to the engine speed Ne and the accelerator opening Q. Further, the correction sensitivity coefficient K 2 is read the actual lambda value lambda Act detected by the NOx / lambda sensor 45 from the correction sensitivity coefficient map 91A shown in FIG. 8 as an input signal.
 ステップS320では、学習値FCorrAdptの絶対値|FCorrAdpt|が所定の補正限界値Aの範囲内にあるか否かが判定される。絶対値|FCorrAdpt|が補正限界値Aを超えている場合、本制御はリターンされて今回の学習を中止する。 In step S320, it is determined whether or not the absolute value | F CorrAdpt | of the learning value F CorrAdpt is within the range of the predetermined correction limit value A. If the absolute value | F CorrAdpt | exceeds the correction limit value A, the present control is returned to stop the current learning.
 ステップS330では、学習禁止フラグFProがオフか否かが判定される。学習禁止フラグFProとしては、例えば、エンジン10の過渡運転時、NOxパージ制御時(FNP=1)等が該当する。これらの条件が成立する状態では、実ラムダ値λActの変化によって誤差Δλが大きくなり、正確な学習を行えないためである。エンジン10が過渡運転状態にあるか否かは、例えば、NOx/ラムダセンサ45で検出される実ラムダ値λActの時間変化量に基づいて、当該時間変化量が所定の閾値よりも大きい場合に過渡運転状態と判定すればよい。 In step S330, it is determined whether the learning prohibition flag FPro is off. The learning prohibition flag F Pro corresponds to, for example, a transient operation of the engine 10 or a NOx purge control (F NP = 1). This is because when these conditions are satisfied, the error Δλ increases due to a change in the actual lambda value λ Act , and accurate learning cannot be performed. Whether or not the engine 10 is in a transient operation state is determined based on, for example, the time change amount of the actual lambda value λ Act detected by the NOx / lambda sensor 45 when the time change amount is larger than a predetermined threshold value. What is necessary is just to determine with a transient operation state.
 ステップS340では、エンジン回転数Ne及びアクセル開度Qに基づいて参照される学習値マップ91B(図8参照)が、ステップS310で演算された学習値FCorrAdptに更新される。より詳しくは、この学習値マップ91B上には、エンジン回転数Ne及びアクセル開度Qに応じて区画された複数の学習領域が設定されている。これら学習領域は、好ましくは、使用頻度が多い領域ほどその範囲が狭く設定され、使用頻度が少ない領域ほどその範囲が広く設定されている。これにより、使用頻度が多い領域では学習精度が向上され、使用頻度が少ない領域では未学習を効果的に防止することが可能になる。 In step S340, the learning value map 91B (see FIG. 8) referred to based on the engine speed Ne and the accelerator opening Q is updated to the learning value F CorrAdpt calculated in step S310. More specifically, on the learning value map 91B, a plurality of learning areas divided according to the engine speed Ne and the accelerator opening Q are set. These learning regions are preferably set to have a narrower range as the region is used more frequently and to be wider as a region is used less frequently. As a result, learning accuracy is improved in regions where the usage frequency is high, and unlearning can be effectively prevented in regions where the usage frequency is low.
 ステップS350では、エンジン回転数Ne及びアクセル開度Qを入力信号として学習値マップ91Bから読み取った学習値に「1」を加算することで、学習補正係数FCorrが演算される(FCorr=1+FCorrAdpt)。この学習補正係数FCorrは、図8に示す噴射量補正部92に入力される。 In step S350, the learning correction coefficient F Corr is calculated by adding “1” to the learned value read from the learned value map 91B using the engine speed Ne and the accelerator opening Q as input signals (F Corr = 1 + F). CorrAdpt ). The learning correction coefficient F Corr is input to the injection amount correction unit 92 shown in FIG.
 噴射量補正部92は、パイロット噴射QPilot、プレ噴射QPre、メイン噴射QMain、アフタ噴射QAfter、ポスト噴射QPostの各基本噴射量に学習補正係数FCorrを乗算することで、これら燃料噴射量の補正を実行する。 The injection amount correction unit 92 multiplies each basic injection amount of pilot injection Q Pilot , pre-injection Q Pre , main injection Q Main , after-injection Q After , and post-injection Q Post by a learning correction coefficient F Corr. The injection amount is corrected.
 このように、推定ラムダ値λEstと実ラムダ値λActとの誤差Δλに応じた学習値で各筒内インジェクタ11に燃料噴射量を補正することで、各筒内インジェクタ11の経年劣化や特性変化、個体差等のバラツキを効果的に排除することが可能になる。 In this way, by correcting the fuel injection amount to each in-cylinder injector 11 with a learning value corresponding to the error Δλ between the estimated lambda value λ Est and the actual lambda value λ Act , the aging deterioration and characteristics of each in-cylinder injector 11 are corrected. Variations such as changes and individual differences can be effectively eliminated.
 [MAF補正係数]
 MAF補正係数演算部95は、NOxパージ制御時のMAF目標値MAFNPL_Trgtや目標噴射量QNPR_Trgtの設定に用いられるMAF補正係数Maf_corrを演算する。
[MAF correction coefficient]
MAF correction coefficient calculating unit 95 calculates the MAF correction coefficient Maf _Corr used to set the MAF target value MAF NPL_Trgt and the target injection amount Q NPR_Trgt during NOx purge control.
 本実施形態において、各筒内インジェクタ11の燃料噴射量は、NOx/ラムダセンサ45で検出される実ラムダ値λActと推定ラムダ値λEstとの誤差Δλに基づいて補正される。しかしながら、ラムダは空気と燃料の比であるため、誤差Δλの要因が必ずしも各筒内インジェクタ11に対する指示噴射量と実噴射量との差の影響のみとは限らない。すなわち、ラムダの誤差Δλには、各筒内インジェクタ11のみならずMAFセンサ40の誤差も影響している可能性がある。 In the present embodiment, the fuel injection amount of each in-cylinder injector 11 is corrected based on the error Δλ between the actual lambda value λ Act detected by the NOx / lambda sensor 45 and the estimated lambda value λ Est . However, since lambda is the ratio of air and fuel, the factor of error Δλ is not necessarily the only effect of the difference between the commanded injection amount and the actual injection amount for each in-cylinder injector 11. That is, there is a possibility that the error of the MAF sensor 40 as well as the in-cylinder injectors 11 affects the lambda error Δλ.
 図10は、MAF補正係数演算部95によるMAF補正係数Maf_corrの設定処理を示すブロック図である。補正係数設定マップ96は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したMAFセンサ40のセンサ特性を示すMAF補正係数Maf_corrが予め実験等に基づいて設定されている。 FIG. 10 is a block diagram showing the setting process of the MAF correction coefficient Maf_corr by the MAF correction coefficient calculation unit 95. The correction coefficient setting map 96 is a map that is referred to based on the engine speed Ne and the accelerator opening Q. The MAF indicating the sensor characteristics of the MAF sensor 40 corresponding to the engine speed Ne and the accelerator opening Q is shown in FIG. The correction coefficient Maf_corr is set in advance based on experiments or the like.
 MAF補正係数演算部95は、エンジン回転数Ne及びアクセル開度Qを入力信号として補正係数設定マップ96からMAF補正係数Maf_corrを読み取ると共に、このMAF補正係数Maf_corrをMAF目標値演算部62及び噴射量目標値演算部66に送信する。これにより、NOxパージ制御時のMAF目標値MAFNPL_Trgtや目標噴射量QNPR_Trgtの設定に、MAFセンサ40のセンサ特性を効果的に反映することが可能になる。 The MAF correction coefficient calculation unit 95 reads the MAF correction coefficient Maf_corr from the correction coefficient setting map 96 using the engine speed Ne and the accelerator opening Q as input signals, and uses the MAF correction coefficient Maf_corr as the MAF target value calculation unit 62 and It transmits to the injection quantity target value calculating part 66. As a result, the sensor characteristics of the MAF sensor 40 can be effectively reflected in the settings of the MAF target value MAF NPL_Trgt and the target injection amount Q NPR_Trgt during the NOx purge control.
 [その他]
 なお、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
[Others]
It should be noted that the present disclosure is not limited to the above-described embodiment, and can be appropriately modified and implemented without departing from the spirit of the present disclosure.
 本出願は、2015年09月18日付で出願された日本国特許出願(特願2015-185541)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on September 18, 2015 (Japanese Patent Application No. 2015-185541), the contents of which are incorporated herein by reference.
 本開示の排気浄化システムは、NOx吸蔵還元型触媒を備える排気浄化システムにおいて、NOxを効率よく還元することができるという点において有用である。 The exhaust purification system of the present disclosure is useful in that it can efficiently reduce NOx in an exhaust purification system including a NOx storage reduction catalyst.
 10 エンジン
 11 筒内インジェクタ
 12 吸気通路
 13 排気通路
 16 吸気スロットルバルブ
 24 EGRバルブ
 31 酸化触媒
 32 NOx吸蔵還元型触媒
 33 フィルタ
 34 排気インジェクタ
 40 MAFセンサ
 45 NOx/ラムダセンサ
 50 ECU
DESCRIPTION OF SYMBOLS 10 Engine 11 In-cylinder injector 12 Intake passage 13 Exhaust passage 16 Intake throttle valve 24 EGR valve 31 Oxidation catalyst 32 NOx occlusion reduction type catalyst 33 Filter 34 Exhaust injector 40 MAF sensor 45 NOx / lambda sensor 50 ECU

Claims (4)

  1.  内燃機関の排気通路に設けられて排気中のNOxを還元浄化するNOx還元型触媒と、
     前記NOx還元型触媒よりも前記排気通路の下流側に設けられ、前記排気通路を流れる排気の空気過剰率を検出するセンサと、
     吸入空気量を減少させる空気系制御と燃料噴射量を増加させる噴射系制御とを併用して排気空燃比をリーン状態からリッチ状態に切り替えることで、前記NOx還元型触媒の浄化能力を回復させる再生処理を実行する制御部と、
     を備える排気浄化システムであって、
     前記制御部は、
      前記NOx吸蔵還元型触媒から放出されるNOxを還元するために必要な噴射量に、前記NOx吸蔵還元型触媒から放出される酸素量に見合う噴射量を加えた第1噴射量で燃料を噴射させる第1リッチ制御と、
      前記第1リッチ制御の実行後に実行され、前記NOx吸蔵還元型触媒に吸蔵されたNOx量と前記NOx吸蔵還元型触媒の温度に基づいて定められた第2噴射量で燃料を噴射させる第2リッチ制御と、を行う
     排気浄化システム。
    A NOx reduction catalyst provided in an exhaust passage of the internal combustion engine for reducing and purifying NOx in the exhaust;
    A sensor that is provided on the downstream side of the exhaust passage relative to the NOx reduction catalyst and detects an excess air ratio of exhaust flowing through the exhaust passage;
    Regeneration that restores the purification ability of the NOx reduction catalyst by switching the exhaust air-fuel ratio from the lean state to the rich state by using both the air system control for reducing the intake air amount and the injection system control for increasing the fuel injection amount. A control unit that executes processing;
    An exhaust purification system comprising:
    The controller is
    Fuel is injected at a first injection amount obtained by adding an injection amount commensurate with the amount of oxygen released from the NOx storage reduction catalyst to an injection amount necessary for reducing NOx released from the NOx storage reduction catalyst. First rich control;
    A second rich that is executed after execution of the first rich control and injects fuel at a second injection amount determined based on the amount of NOx stored in the NOx storage reduction catalyst and the temperature of the NOx storage reduction catalyst. Control and do the exhaust purification system.
  2.  前記第2リッチ制御は、前記第1リッチ制御の目標空気過剰率より目標空気過剰率が小さい制御領域を含む
     請求項1に記載の排気浄化システム。
    The exhaust purification system according to claim 1, wherein the second rich control includes a control region in which a target excess air ratio is smaller than a target excess air ratio of the first rich control.
  3.  前記制御部は、前記第1リッチ制御の実行後に、前記センサで検出される空気過剰率が所定値に達したことを条件に、前記第2リッチ制御を行う
     請求項1又は2に記載の排気浄化システム。
    3. The exhaust according to claim 1, wherein the control unit performs the second rich control on condition that an excess air ratio detected by the sensor has reached a predetermined value after the execution of the first rich control. Purification system.
  4.  前記センサは、前記排気の空気過剰率が前記所定値以上である場合に正と負の一方の出力をし、前記排気の空気過剰率が前記所定値未満である場合に正と負の他方の出力をする
     請求項1から3の何れか一項に記載の排気浄化システム。
    The sensor outputs one of positive and negative when the excess air ratio of the exhaust is equal to or greater than the predetermined value, and the other of positive and negative when the excess air ratio of the exhaust is less than the predetermined value. The exhaust gas purification system according to any one of claims 1 to 3, wherein an output is provided.
PCT/JP2016/077288 2015-09-18 2016-09-15 Exhaust purification system WO2017047702A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015185541A JP2017057830A (en) 2015-09-18 2015-09-18 Exhaust emission control system
JP2015-185541 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047702A1 true WO2017047702A1 (en) 2017-03-23

Family

ID=58289313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077288 WO2017047702A1 (en) 2015-09-18 2016-09-15 Exhaust purification system

Country Status (2)

Country Link
JP (1) JP2017057830A (en)
WO (1) WO2017047702A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023132024A (en) 2022-03-10 2023-09-22 ヤンマーホールディングス株式会社 Particulate accumulation amount estimation device and exhaust emission control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070834A (en) * 2004-09-03 2006-03-16 Isuzu Motors Ltd Exhaust gas purification method and exhaust gas purification system
JP2008025467A (en) * 2006-07-21 2008-02-07 Toyota Motor Corp Exhaust emission control system for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070834A (en) * 2004-09-03 2006-03-16 Isuzu Motors Ltd Exhaust gas purification method and exhaust gas purification system
JP2008025467A (en) * 2006-07-21 2008-02-07 Toyota Motor Corp Exhaust emission control system for internal combustion engine

Also Published As

Publication number Publication date
JP2017057830A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6582409B2 (en) Exhaust purification system
WO2016039451A1 (en) Exhaust gas purification system
JP6476930B2 (en) Exhaust purification system
JP6492854B2 (en) Exhaust purification equipment
JP2016061146A (en) Exhaust emission control system
JP2017025718A (en) Exhaust emission control system
JP2016061143A (en) Exhaust emission control system
JP6432411B2 (en) Exhaust purification system
JP6455237B2 (en) Exhaust purification system
WO2017047702A1 (en) Exhaust purification system
JP2016118135A (en) Exhaust emission control system
JP6405816B2 (en) Exhaust purification system
JP6424618B2 (en) Exhaust purification system
JP6604034B2 (en) Exhaust purification device
WO2016039450A1 (en) Exhaust-gas-cleaning system and method of controlling same
WO2016039453A1 (en) Exhaust-gas-cleaning system and method for controlling the same
JP6550996B2 (en) Storage amount estimation device
JP2016180383A (en) Catalyst temperature estimation device
JP6435730B2 (en) Control device for internal combustion engine
JP2016125375A (en) Exhaust emission control system
JP2016166540A (en) Exhaust emission control system
WO2016039454A1 (en) Exhaust cleaning system
JP2016183565A (en) Storage amount estimation device
JP2016153619A (en) Exhaust emission control system
JP2016084753A (en) Exhaust emission control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846573

Country of ref document: EP

Kind code of ref document: A1