WO2016121688A1 - Obstacle detection device for transport vehicle - Google Patents
Obstacle detection device for transport vehicle Download PDFInfo
- Publication number
- WO2016121688A1 WO2016121688A1 PCT/JP2016/052007 JP2016052007W WO2016121688A1 WO 2016121688 A1 WO2016121688 A1 WO 2016121688A1 JP 2016052007 W JP2016052007 W JP 2016052007W WO 2016121688 A1 WO2016121688 A1 WO 2016121688A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- obstacle
- scanning
- measurement
- road surface
- laser
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
Definitions
- the present invention relates to an obstacle detection device for a transportation vehicle for detecting an obstacle on a traveling path in a transportation vehicle such as a dump truck operating in a mine.
- Patent Document 1 discloses a distance measuring device using a laser sensor.
- This known distance measuring device is mounted on a vehicle, emits a pulse laser toward the front position with respect to the traveling direction of the vehicle, receives the reflected light, and measures the time from transmission to reception of this pulse laser. By doing so, the distance of the obstacle is measured.
- the vehicle is a vehicle that is running or stopped on a general road, and is a person such as a passerby on the road of the vehicle.
- the detection target has a certain height, and in order to improve the line of sight as much as possible, the irradiated pulse laser is in a substantially horizontal direction.
- a transport vehicle such as a dump truck that uses a mine as an operating field
- the vehicle travels at a high speed to some extent, and obstacles such as rocks that obstruct travel are present on the travel path.
- obstacles such as rocks that obstruct travel are present on the travel path.
- the load will spill from the vessel (loading platform), and obstacles such as rocks may enter the travel path later. Therefore, when the dump truck travels, it must travel so as to avoid these obstacles, and when a large obstacle is in the front position in the traveling direction, the dump truck must be stopped.
- the present invention has been made in view of the above points, and detects obstacles on the road surface of a traveling road that may hinder traveling stability even when the vehicle is traveling at a high speed while traveling. Its purpose is to make it possible.
- the present invention is provided in a transport vehicle, and receives a reflected light from the road surface, and a laser irradiation unit that irradiates a laser toward a road surface at a front position in the traveling direction of the transport vehicle.
- a light receiving sensor a laser scanning unit that scans a laser irradiation position from the laser irradiation unit in a direction intersecting a traveling direction of the transporting vehicle, a traveling speed V of the transporting vehicle, and a scan from a scanning start point position.
- the scanning interval between the scanning lines of the preceding and following lasers is adjusted on the basis of the scanning time to the end point position and the measurement cycle Th including the cycle from the end of scanning to the start of the next scanning period, And a scanning interval adjustment unit that changes the measurement cycle Th so that the scanning interval does not exceed a predetermined value even when the traveling speed of the transporting vehicle changes.
- the obstacle detection device includes a laser irradiation unit that irradiates a laser and a light receiving sensor that receives scattered light of the laser light from the road surface. Further, when the optical path of the laser beam is bent, a reflection mirror is arranged in the middle of the optical path, and the angle of the reflection mirror is controlled. It is desirable that the reflected light from the road surface be collected by a condenser lens and incident on the light receiving sensor.
- the road surface is scanned by the laser irradiated from the laser irradiation unit.
- the traveling direction is taken as y g direction
- x g direction is to define the road width of the road.
- the laser scanning unit defines a scanning range in the xg direction, and a road width when the transport vehicle travels is set.
- the laser scanning unit reciprocally swings the laser irradiation unit or rotates it in one direction.
- the laser can be scanned also by reciprocatingly rotating the reflection mirror, and a linear or belt-like scanning line is set.
- the scanning lines are not limited to those orthogonal to the traveling direction of the vehicle, but may be oblique to the direction orthogonal to the traveling direction.
- a system that performs inspection / monitoring by irradiating a laser toward the front in the traveling direction of the vehicle in this way is called a LIDAR (Light Detection and Ranging) system.
- the size of the obstacle that can be detected changes based on the size of the mesh (mesh) that constitutes the grid.
- the size of the obstacle to be detected is generally determined based on the stability when the obstacle is overtaken when the transport vehicle is running.
- x g direction and length of y g direction mesh is determined based on the size of the object.
- the traveling speed V of the transporting vehicle the scanning time from the scanning start point position to the scanning end point position, and the period from the end of scanning to the start of the next scanning period are defined as the measurement period Th
- the mesh described above is used.
- x g direction and y g directions constituting a spacing x g direction are those determined by the pulse interval of the laser emitted from the laser irradiation unit.
- the distance y g direction will change by the traveling speed V of the transportation vehicles. That is, the spacing of y g direction when carrying vehicle is running at low speed is shorter, longer if running at high speed. Therefore, the scanning interval (V ⁇ Th) between the preceding and following scanning lines changes according to the traveling speed of the transporting vehicle.
- the scanning interval adjustment unit is for adjusting the pitch interval in the yg direction of the scanning line according to the traveling speed of the transporting vehicle.
- y g direction interval may be changed according to the speed change of the transportation vehicles, but if the upper limit speed of transportation vehicles is determined is, y g and the upper limit speed reference
- the pitch interval in the direction can be fixed.
- FIG. 16 is a plan view of FIG. 15.
- Fig. 1 shows the overall configuration of the dump truck 1
- Fig. 2 schematically shows the situation of a mine site as an example of the operation field of the dump truck 1.
- the dump truck 1 is for transporting ores and earth and sand excavated in a mine, and its operation field is off-road with poor traveling conditions and travels in the presence of rocks and gravel.
- the dump truck 1 is composed of a vehicle body 1a and a vessel 1b.
- a driver's cab 2 is installed in the vehicle main body 1a, and has a front wheel 3 and a rear wheel 4 provided on the left and right, respectively.
- the front wheel 3 is a driven wheel and the rear wheel 4 is a driving wheel.
- the operator's cab 2 is provided with an upper deck 5 in the vehicle main body 1a for the operator to board.
- the upper deck 5 is installed on the front side of the vehicle main body 1a, and its width dimension is the vehicle main body 1a. Spans the entire width of.
- a pair of building structures 6R and 6L are disposed at the lower center position of the upper deck 5, and an air cleaner 7 is disposed at an intermediate position thereof.
- the air cleaner 7 is provided with a plurality of filter elements and is configured to capture dust and the like in the air.
- An obstacle detection device 30 is provided at the front surface of the dump truck 1, more specifically at a position between the building structures 6 ⁇ / b> R and 6 ⁇ / b> L, and at an upper position of the mounting portion of the air cleaner 7.
- the obstacle detection device 30 is provided with LIDAR (Light Detection and Ranging) that irradiates pulse laser light, receives the reflected wave, and measures the distance to the measurement point.
- Obstacle detection device 30 is arranged in.
- An intersection line between the scanning surface of the pulse laser beam and the road surface is referred to as an intersection line A.
- 10 is a mining site, and a hydraulic excavator 11 for performing mining work is operating in the mining site 10.
- a traveling path 12 extends from the mining site 10, and the traveling path 12 is not shown in the figure, but the ore transporting path 13 toward the ore accumulation field and the earth and sand transporting path 14 toward the earth discharging field are branched. Is formed.
- the dump truck 1 is carried into the mining site 10, and earth and sand or ore is loaded on the vessel 1 b from the excavator 11 and travels along the travel path 12.
- earth and sand or ore is loaded on the vessel 1 b from the excavator 11 and travels along the travel path 12.
- the ore is loaded, it is transferred from the ore transport path 13 to the ore depository.
- the vehicle travels toward the earth and sand transport path 14. Whichever route is taken, the load is discharged from the vessel 1b at the ore accumulation site and the earth removal site.
- each dump truck 1 can acquire its own position information from a communication satellite (GPS) 17.
- GPS communication satellite
- the dump truck 1 travels from the mining site 10 to the ore transport path 13 and the earth and sand transport path 14 and to the return path to the mining site 10 side.
- the other dump trucks 1 will pass each other.
- the traveling path 12 is divided into an outbound path and a return path.
- usually no median strip is provided at the boundary.
- a cliff or the like is located at the end of the road width of the travel path 12, and as a result, the travel path 12 is roughly set with a road width on the forward path and the return path. Therefore, in the following description, the side ends of the forward path and the return path of the traveling path 12 are referred to as road shoulders, respectively.
- the dump truck 1 When the dump truck 1 travels on the travel path 12 (including the ore transport path 13 and the earth and sand transport path 14), there is no obstacle on the road surface in order to improve travel stability and enable smooth travel. It is necessary to do so. In the mine, since there is no pavement or the like, the road surface is uneven and there may be rocks and the like. Therefore, it is necessary to monitor the condition of the road surface. In particular, it is necessary to determine whether or not there is an obstacle that makes it impossible to travel to the front position in the traveling direction of the dump truck 1 or affects traveling stability. . Moreover, if there is an obstacle, it may be necessary to run or stop to avoid it. Therefore, it is necessary to detect whether or not the dump truck 1 has an obstacle on the road surface in front of the traveling direction.
- FIG. 3A is an explanatory diagram showing the structure of a uniaxial LIDAR.
- FIG. 3B is an explanatory diagram showing a configuration related to the rotation operation of the uniaxial LIDAR structure.
- FIG. 4 is an explanatory diagram showing the structure of a biaxial LIDAR.
- FIG. 5 is an explanatory diagram showing a scannable range of the obstacle detection apparatus.
- FIG. 6 is an explanatory diagram showing the irradiation range of the pulse laser from the obstacle detection device.
- FIG. 7 is an explanatory diagram of scanning intervals in the X and Y directions of the pulse laser.
- the obstacle detection device 30 shown in FIG. 3A has a configuration in which the laser holding unit 32 and the pulse laser scanning unit 33 are mounted on the upper and lower sides of the support plate 31 at positions separated by a predetermined interval. An entrance / exit region of the pulse laser is secured between the pulse laser scanning unit 33. A pulse laser irradiation unit 34 is attached to the laser holding unit 32. Further, the pulse laser scanning unit 33 is provided with a rotating body 35 that is rotationally driven by a motor 38 (see FIG. 3B). A half mirror 36 is attached to the rotating body 35 and a light receiving sensor 37 is provided. Is provided. Further, the obstacle detection device 30 outputs rotation period information indicating the rotation period (corresponding to the measurement period Th) of the rotating body 35 to the pulse laser scanning unit 33 and performs rotation driving control of the pulse laser scanning unit 33. An interval adjusting unit 60 is provided.
- the optical path from the pulse laser irradiation unit 34 and the rotation center of the pulse laser scanning unit 33 substantially coincide with each other, and a part of the pulse laser emitted from the pulse laser irradiation unit 34 is reflected by the half mirror 36. Irradiation is directed toward the region to be examined. The reflected light from the surface of the test region is scattered, but a part of the scattered light is transmitted through the half mirror 36. The scattered light that has passed through the half mirror 36 is received by a light receiving sensor 37, and a condensing lens is attached to the light receiving sensor 37.
- the scanning interval adjustment unit 60 includes a measurement cycle calculation unit 61 and a measurement cycle storage unit 62.
- the measurement cycle calculation unit 61 obtains the travel speed V t at the time t from the wheel speed measurement sensor 42a, the measurement cycle calculation unit 61 stores the current measurement cycle stored in the measurement cycle storage unit 62 (this is the latest past time t-1). (Corresponding to the measurement cycle Th t ⁇ 1 calculated in step 1 ). Then, the measurement cycle Th t at time t is calculated using the traveling speed V t and the measurement cycle Th t ⁇ 1 .
- Measurement cycle calculation unit 61 outputs the measurement cycle Th t information to the motor 38. The measurement cycle is adjusted by rotating the motor 38 at the measurement cycle Th t .
- the measurement cycle calculation unit 61 updates and records the newly calculated measurement cycle Th t in the measurement cycle storage unit 62.
- the scanning interval adjustment unit 60 adjusts the measurement cycle Th by using the traveling speed V.
- the travel interval adjustment unit 60 may further include a grid map storage unit 63 and may accumulate the grid map created by the measurement cycle calculation unit 61.
- the measurement cycle calculation unit 61 also has a function as a grid map creation unit. Details of the grid map will be described later.
- the scan interval adjustment unit 60 may be configured by cooperating hardware such as a CPU, ROM, RAM, HDD, an interface with an external device, a bus, and software for realizing the function of the scan interval adjustment unit 60. Good.
- the obstacle detection device 30 is not limited to the above example, and a biaxial LIDAR shown in FIG. 4 may be used.
- the biaxial LIDAR 20 in FIG. 4 detects whether an obstacle exists in the test region 21.
- the LIDAR 20 includes a pulse laser irradiation unit 22 that emits a pulse laser at a predetermined interval, a pulse laser scanning unit 23 that scans the pulse laser over a predetermined range, a light receiving sensor 24, and a condenser lens 25.
- the pulse laser scanning unit 23 includes a reflection mirror 23a, and the pulse laser is irradiated onto the test region 21 by the reflection mirror 23a.
- the reflection mirror 23a can be tilted or rotated in two orthogonal axes, that is, the X direction and the Y direction. Specifically, it has a rotating shaft 23Y extending in the vertical direction.
- a pulse laser is scanned in the xg direction of the region 21 to be examined.
- the pulse laser that has scanned the test region 21 is condensed by the condenser lens 25 and is incident on the light receiving sensor 24.
- the light receiving sensor 24 receives the scattered light of the reflected light from the test region 21. If the test region 21 has irregularities, the scattered light changes, so that it is possible to determine the presence / absence, size, shape, and the like of an obstacle protruding from the road surface based on the amount of light scattered by the light receiving sensor 24.
- the two-axis LIDAR 20 and obstacle detection device 30 By using the above-described two-axis LIDAR 20 and obstacle detection device 30 (one-axis LIDAR), it is possible to detect the state of the road surface at the front position in the traveling direction of the dump truck 1. That is, depending on the condition of the road surface, the dump truck 1 may not be able to travel, and the dump truck 1 may not be able to go straight and a steering operation may be required. In this way, when the dump truck 1 is in a state where it cannot go straight, an avoiding operation such as stopping or performing a steering operation is performed.
- the 2-axis LIDAR 20 or the obstacle detection device 30 can be used.
- the irradiation position of the pulse laser by the two-axis LIDAR 20 and the obstacle detection device 30 is set obliquely in front of the road surface, and covers the entire road width on which the dump truck 1 can travel.
- the obstacle detection device 30 will be described as an example.
- the obstacle detection device 30 has a blind spot in the direction facing the support plate 31, and can irradiate laser light over a wide angle range excluding this blind spot range. It is.
- the time for scanning this wide angle range is the scan time from the scan start position (start point of the arrow in FIG. 5) to the scan end point position (end point of the arrow in FIG. 5).
- the time during which the laser beam is applied to the blind spot range is a period from the end of scanning to the start of scanning in the next scanning period. Then, a time obtained by adding the scanning time from the scanning start position (start point of the arrow in FIG. 5) to the scanning end point position (end point of the arrow in FIG.
- the obstacle detection device 30 is driven while the dump truck 1 is traveling, and the rotating body 35 is moved. While rotating, the pulse laser is emitted from the pulse laser irradiation unit 34. As a result, the road surface of the traveling road 12 is scanned as shown in FIG.
- the traveling direction of the vehicle and y g direction, the road width direction is taken as x g direction, in the x g direction, the scanning interval of the pulsed laser is the pitch spacing of the laser spot.
- the pitch interval of the laser spot in the y g direction is changed by the traveling speed V of the vehicle. That is, when the vehicle travels at a high speed, the pitch spacing of the laser spot y g direction becomes wider, when the vehicle travels at a low speed, pitch is narrowed.
- the laser irradiation and detection are repeated at a constant time interval ⁇ T when the pulse laser irradiation direction is rotated at a constant angular velocity ⁇ and the vehicle is driven at a speed V. Therefore, measurement is obtained for each constant angular resolution ⁇ .
- ⁇ T is constant
- the measurement period Th is the time from irradiation of the laser in a certain angle ⁇ direction to the next irradiation of the pulse laser in the same angle ⁇ direction
- FIG. 8A is a perspective explanatory view showing the height and pitch interval of the obstacle detection device 30 and the resolution in the laser irradiation direction.
- FIG. 8B is an explanatory plan view showing the height and pitch interval of the obstacle detection device 30 and the resolution in the laser irradiation direction.
- FIG. 9 is an explanatory view showing the pitch interval of laser spots.
- FIG. 10 is an operation explanatory diagram illustrating a state in which an obstacle inspection on a road surface is performed by a dump truck.
- the pitch interval is ⁇
- the laser irradiation direction is ⁇
- the measurement resolution is ⁇
- the pitch of the x g direction of the laser spot on the road surface i.e. the distance [Delta] x g is H / cos ⁇
- the maximum values ⁇ x gMAX and ⁇ y gMAX of the distances ⁇ x g and ⁇ y g during traveling of the dump truck 1 take the road shoulder or the vicinity thereof. . Therefore, regarding the size of the obstacle to be detected on the road surface, even when the dump truck 1 has the maximum traveling speed, when the size of the position indicated by E in FIG. gMAX ⁇ ⁇ y It is set so that it can be reliably detected if gMAX is within a predetermined range.
- the traveling speed of the dump truck 1 can be calculated based on data obtained from a self-position measuring unit 42 described later.
- the scanning interval adjustment unit 60 (more specifically, the measurement cycle calculation unit 61) acquires the traveling speed V from the self-position measurement unit 42 (more specifically, a wheel speed measurement sensor 42a described later).
- a scanning interval adjustment unit is configured. This configuration is only an example, and if the measurement cycle is changed based on the travel speed and the measurement cycle so that the scan interval does not exceed a predetermined value even if the travel speed changes, the scan interval adjustment unit included.
- the obstacle B is described as having a configuration in which the scanning interval is set based on the size of the obstacle B. In short, the scanning interval is prevented from changing depending on the traveling speed of the dump truck 1. However, it is not necessarily based only on the size of the obstacle B, and the scanning interval can be set in consideration of other factors.
- FIG. 11 is a schematic configuration diagram of an obstacle detection system.
- the obstacle detection system 40 is a system for detecting whether or not an obstacle B having a predetermined size or more exists on the road surface of the traveling road 12. Here, it is for ensuring the stability at the time of driving
- FIG. 12 is an operation explanatory diagram regarding the position of the obstacle during the traveling of the dump truck and the operation to avoid it.
- the area S when the area where the dump truck 1 travels straight is defined as the area S, if the areas L and R exist on both the left and right sides of the area S, the areas T and R If the obstacle B is located in front of the dump truck 1 and is traveling straight ahead, it will collide with the obstacle B, but as indicated by the arrow T or arrow S, the area T or area S If the steering operation is performed in the direction, it may be possible to travel without the front wheels 3 and the rear wheels 4 getting on the obstacle B. Accordingly, when the obstacle detection system 40 mounted on the dump truck 1 detects an obstacle B of a predetermined size in front of the dump truck 1 in the traveling direction, the obstacle detection system 40 can travel while avoiding the obstacle B. In the case where the steering operation is performed and there is an obstacle B that cannot be traveled, the vehicle is stopped by operating the brake.
- the obstacle detection system 40 shown in FIG. 11 is a measurement system that measures the relative position of the obstacle B with respect to the vehicle body 1a.
- the obstacle detection system 40 and the traffic control center 15 transmit signals by wireless communication. You can send and receive.
- the obstacle detection system 40 includes an obstacle measurement unit 41, a self-position measurement unit 42 for measuring the position and posture of the vehicle main body 1a, and a relative position and road surface of the obstacle B in order to detect an obstacle. And a vehicle body motion control unit 43 that changes the traveling direction and traveling speed of the vehicle main body 1a based on the width and the presence of an oncoming vehicle. Furthermore, a communication device 44 for performing communication with the traffic control center 15 is provided.
- the obstacle measurement unit 41 includes an obstacle detection device 30, an obstacle measurement device 41 a that measures the relative position of the obstacle B with respect to the dump truck 1 based on the measurement result by the obstacle detection device 30, and the surroundings of the road surface And an obstacle storage device 41b as a storage unit for storing obstacle data related to obstacle positions and obstacle shapes in the external coordinate system (corresponding to the x g- y g coordinate system in FIGS. 4 and 6). ing.
- the obstacle detection device 30 is connected to the obstacle measurement device 41a, and the obstacle measurement device 41a is connected to the obstacle storage device 41b.
- the obstacle detection device 30 has an intersection line A as a scanning direction, which is a straight line formed by measurement points on the road surface to which the laser light emitted from the obstacle detection device 30 arrives. It is set along the width direction (road width x g direction). Further, the obstacle detection device 30 gradually changes the irradiation direction of the laser light at a predetermined angle, for example, every 0.25 degrees (corresponding to ⁇ in FIGS. 7, 8A, and 8B). The upper measurement point is scanned, and the distance to the road surface at every predetermined angle is measured on the scanning surface of the laser beam by the obstacle detection device 30.
- the obstacle measuring device 41a further includes a comparison unit 41c that compares the obstacle information detected by the obstacle detection device 30 with the obstacle data stored in the obstacle storage device 41b.
- the attribute information of the obstacle data such as whether the obstacle is a stationary obstacle such as an installation object or a dynamic obstacle such as a vehicle is updated.
- the self-position measuring unit 42 is a steering angle of a wheel speed measurement sensor 42a for measuring, for example, the rotational speed of the front wheel 3 of the vehicle main body 1a, and a handle (not shown) provided in the cab 2 of the vehicle main body 1a. Based on the rotation angle result measured by the steering angle measurement sensor 42b and the wheel speed measurement sensor 42a and the steering angle result measured by the steering angle measurement sensor 42b, the traveling speed of the vehicle main body 1a, the front wheel 3 And a self-position calculating device 42c for calculating the position and orientation of the vehicle main body 1a in a coordinate system fixed to the ground.
- the wheel speed measurement sensor 42a is a speed sensor or the like for detecting the rotational speed of the front wheels 3, for example.
- the steering angle measurement sensor 42b is a displacement sensor that can detect the steering angle of the steering wheel.
- the self-position measuring unit 42 includes a self-position correcting device 42d for correcting the self-position of the vehicle main body 1a.
- the self-position correcting device 42d is for measuring the position and orientation of the vehicle body 1a with higher accuracy, and is configured by, for example, an inertial measurement device (IMU: Internal Measurement Unit), GPS (Global Positioning System), or the like. ing.
- IMU Internal Measurement Unit
- GPS Global Positioning System
- the wheel speed measuring sensor 42a, the steering angle measuring sensor 42b, and the self-position correcting device 42d are respectively connected to the self-position calculating device 42c.
- the vehicle body motion control unit 43 includes a braking device 43a that reduces or stops the traveling speed of the vehicle body 1a, a drive torque limiting device 43b for limiting the rotational torque command value for the rear wheel 4 of the dump truck 1, A steering control device 43c for avoiding the obstacle B, a data storage device 43d in which map data such as the route of the road, the road width of the road surface, and oncoming vehicle information is stored, the braking amount by the braking device 43a, and the driving torque
- a vehicle control device 43e for calculating a limit amount by the limit device 43b and a control amount by the steering control device 43c is provided.
- the vehicle control device 43e limits the braking amount and driving torque by the braking device 43a for the purpose of limiting the distance and traveling speed of the vehicle body 1a to the obstacle B based on the map data stored in the data storage device 43d. A limit amount by the device 43b and a control amount by the steering control device 43c are calculated.
- the braking device 43a is a mechanical brake having a mechanical structure such as a disc brake for braking the rotation of the rear wheel 4, for example.
- the drive torque limiting device 43b is a retarder brake such as an electric brake that applies an electric resistance to the rotation of the rear wheel 4 to brake the rotation.
- road shoulder information such as a road shoulder shape provided on the side of the traveling road is also stored.
- the vehicle control device 43e receives map data stored in the data storage device 43d, self-position information calculated by the self-position calculation device 42c, and obstacle information measured by the obstacle measurement device 41a.
- the vehicle control device 43e is connected to each of the braking device 43a, the drive torque limiting device 43b, and the steering control device 43c.
- the communication device 44 is connected to the self-position calculating device 42c and transmits the self-location information of the dump truck 1 calculated by the self-position calculating device 42c to the traffic control center 15.
- the communication device 44 is connected to the obstacle storage device 41b and the data storage device 43d, and transmits the obstacle position data stored in the obstacle storage device 41b and the map data stored in the data storage device 43d to the communication device. 44 is configured to be able to output via 44.
- the traffic control center 15 includes a communication device 51 for transmitting and receiving information to and from the communication device 44 mounted on the dump truck 1, and an obstacle data storage in which an obstacle map such as an obstacle shape of a traveling path is stored.
- the comparison unit that compares the obstacle information transmitted from the communication device 44 of the dump truck 1 to the communication device 51 of the traffic control center 15 with the obstacle map stored in the obstacle data storage device 52.
- the change data storage for storing the obstacle change information in the obstacle information Device 54.
- FIG. 13A is a schematic perspective view showing a scanning state by the pulse laser PL at the time of detecting an obstacle
- FIG. 13B is an explanatory diagram of a predetermined distance F used for the obstacle measurement processing
- FIG. 13C is an explanatory diagram in a plan view of FIG. 13B.
- FIG. 13A shows a state where the dump truck 1 is traveling while detecting the obstacle B on the traveling path
- the broken line in FIG. 13C indicates the position of the obstacle in the plan view of FIG. 13B.
- FIG. 14 is a flowchart showing obstacle detection processing by the dump truck 1.
- the obstacle detection device 30 irradiates the front of the dump truck 1 with the pulse laser PL as shown in FIG. 13A, and the obstacle B on the road surface of the traveling path 12 (see FIG. 2). Measurement is performed to obtain distance measurement data about the position of the road surface and the obstacle B (step S1, hereinafter simply referred to as “S1” or the like). Based on the distance measurement data acquired in S1, as shown in FIGS. 13A and 13B, the obstacle measurement device 41a calculates an intersection line A that intersects the scanning surface and the road surface by the obstacle detection device 30. (S2).
- the obstacle measuring device 41a sets the measurement points that are separated from the intersection line A calculated in S2 by a predetermined distance F or more as the obstacle measurement points Pn (P1, P2, and P3 obstacle measurement points in FIG. 13B). (S3).
- the predetermined distance F here refers to the road surface when the optical path of the pulse laser PL is extended from the intersection of the pulse laser PL and the obstacle B (corresponding to the obstacle measurement point Pn). Is the distance F to the intersection a.
- the intersection point a is a point on the intersection line A between the road surface and the pulse laser PL, and the axial direction of the intersection line A coincides with the direction perpendicular to the paper surface of FIG. 13C.
- the magnitude of the predetermined distance F is defined by a value corresponding to the height of the obstacle B to be measured by the obstacle measuring device 41a.
- the obstacle measuring device 41a detects an obstacle having a predetermined size and shape at the obstacle measuring point Pn while the dump truck 1 is traveling (S4 / Yes)
- the relative position of the obstacle measuring point Pn and the dump truck are detected.
- the absolute position of the obstacle measurement point Pn is calculated (S5).
- the current position of the dump truck 1 is measured based on the communication satellite 17.
- the obstacle measuring device 41a stores the absolute position of the obstacle measuring point Pn in the obstacle storage device 41b (S6).
- the obstacle measuring device 41a does not detect an obstacle having a predetermined size and shape at the obstacle measuring point Pn while the dump truck 1 is traveling (S4 / No)
- the obstacle measuring device 41a returns to S1.
- the traveling speed of the dump truck 1 corrected by the self-position correcting device 42d the traveling speed of the dump truck 1 corrected by the self-position correcting device 42d, the front wheels
- the position and posture of the dump truck 1 in the coordinate system (x g- y g coordinate system) fixed to the ground at an angular velocity of 3 are calculated by the self-position calculating device 42c and self-position is estimated.
- the vehicle control apparatus 43e is the position of the dump truck 1 calculated by the self-position calculating apparatus 42c and the position of the obstacle around the dump truck 1 stored in the obstacle storage apparatus 41b. It is determined whether the shortest distance is larger than the obstacle avoidance distance (S7).
- the “obstacle avoidance distance” is a threshold value provided for determining that an avoidance operation is necessary when there is an obstacle, and is a variable depending on the speed.
- the obstacle avoidance distance may be dynamically set according to the current travel speed, or may be set statically according to the speed limit set for the travel path 12. Further, the obstacle avoidance distance may be set in more detail in accordance with the load amount of the dump truck 1 in addition to the speed.
- the distance between the position obtained by the self-position calculating device 42c and the position of the obstacle around the dump truck 1 stored in the obstacle storage device 41b is determined to be equal to or less than the obstacle turning distance.
- S7 / No that is, when it is determined that there is a risk of colliding with an obstacle, it is determined whether or not the dump truck 1 can be driven while avoiding the obstacle.
- S8 / Yes When avoidance is possible (S8 / Yes), the dump truck 1 is caused to take an avoidance action by steering or the like (S9).
- the braking device 43a and the drive torque limiting device 43b of the vehicle body motion control unit 43 are controlled to stop the traveling of the dump truck 1 ( S10).
- the measurement cycle calculation unit 61 the travel path, to prepare a grid map of the x g direction and y g direction of the laser spot, the presence or absence of an obstacle on the road surface managed by this grid map, undetected
- the angular resolution ⁇ (or measurement period ⁇ T) is set so that the grid is as small as possible.
- the measurement cycle calculation unit 61 records the grid information in the grid map storage unit 63, thereby enabling efficient management and maintenance of the traveling road surface. Further, since the dump truck 1 travels on substantially the same traveling road surface, grid information at the same position on the same traveling road surface is repeatedly obtained from the same dump truck 1 and the plurality of dump trucks 1.
- the dump truck 1 travels back and forth, and can scan the same position even if the position scanned during the forward travel is the return path. Therefore, it is also possible to acquire grid information of a part that reciprocates on the traveling road surface. If the grid information is set to be accumulated, the grid map becomes more complete, and the unknown detection area can be minimized.
- the dump truck 1 includes a vehicle main body 1a and a vessel 1b as a working portion provided on the vehicle main body 1a so as to be able to be raised and lowered, and a driver's cab above the vehicle main body 1a. 2 is provided. And it is set as the structure provided with the right-and-left front wheel 3 and the rear wheel 4 supported so that driving
- a pair of building structures 6L and 6R are provided at a predetermined interval in the lower central portion of the upper deck 5, and a heat exchange device such as a radiator is installed between the building structures 6L and 6R. Yes.
- the position between each building structure 6L, 6R is a total of two units. Obstacle detection devices 30L and 30R are respectively attached.
- an obstacle is detected by the LIDAR system.
- the two obstacle detection devices 30L and 30R are connected to the traveling direction of the dump truck 1.
- the scanning lines AL and AR are set in an oblique direction, instead of scanning with a pulse laser in the orthogonal direction.
- the scanning lines AL and AR intersect at a predetermined position, and the obstacle detection is performed on the scanning line AL from the intersection position Q on the basis of the intersection position Q.
- Obstacle detection is performed from the intersection position Q to the other road shoulder, that is, the right road shoulder, up to the road shoulder, that is, the left road shoulder.
- the evaluation value E ⁇ x gMAX ⁇ y
- gMAX as an evaluation function, not only the angular resolution ⁇ (or measurement period ⁇ T), but also the scan line AL, AR, by appropriately determining the crossing angle ⁇ at the crossing position Q, a smaller obstacle Can be reliably detected.
- this invention is not limited to embodiment mentioned above, Various deformation
- the above-described embodiments are for explaining the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to only having all the configurations described.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Traffic Control Systems (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
The purpose of the present invention is to make it possible to detect, on a surface of a road on which a transport vehicle is traveling, obstacles that may hinder travel stability, even when the vehicle is traveling at a high speed. The present invention is disposed on a dump truck 1 and is configured such that: a pulse laser is emitted by a pulse laser emitting unit 34 toward a road surface which is forward in the travel direction, and light reflected from the road surface is received; the pulse laser emission position is made to scan in a direction intersecting the travel direction of the dump truck 1; and the scanning interval between scans of the scanning line of the pulse laser is changed in accordance with travel speed.
Description
本発明は、鉱山で稼働するダンプトラック等の運搬用車両における走行路の障害物を検出するための運搬用車両の障害物検出装置に関するものである。
The present invention relates to an obstacle detection device for a transportation vehicle for detecting an obstacle on a traveling path in a transportation vehicle such as a dump truck operating in a mine.
走行車両の前方に走行の障害となる物体や人、さらに他の車両等といった障害物が位置していると、これら障害物を避けて走行しなければならない。このために、車両の前方部位にセンサを装着して、前方を監視する構成としたものは従来から広く知られている。例えば、特許文献1に開示されているのは、レーザセンサを用いた距離測定装置である。
If there are obstacles such as objects, people, and other vehicles that obstruct driving in front of the traveling vehicle, it is necessary to travel avoiding these obstacles. For this reason, it has been widely known that a sensor is attached to a front part of a vehicle to monitor the front. For example, Patent Document 1 discloses a distance measuring device using a laser sensor.
この公知の距離測定装置は車両に搭載されて、車両の走行方向に対する前方位置に向けてパルスレーザを出射して、その反射光を受信して、このパルスレーザの送信から受信までの時間を計測することにより障害物の距離を測定するものである。
This known distance measuring device is mounted on a vehicle, emits a pulse laser toward the front position with respect to the traveling direction of the vehicle, receives the reflected light, and measures the time from transmission to reception of this pulse laser. By doing so, the distance of the obstacle is measured.
前述した特許文献1では、車両の走行路において、一般道路における走行中または停止中の車両であり、さらに通行者等の人である。つまり、検出対象はある程度の高さを有するものであって、できるだけ見通しを良くするために、照射されるパルスレーザは概略水平方向となる。
In the above-mentioned Patent Document 1, the vehicle is a vehicle that is running or stopped on a general road, and is a person such as a passerby on the road of the vehicle. In other words, the detection target has a certain height, and in order to improve the line of sight as much as possible, the irradiated pulse laser is in a substantially horizontal direction.
ところで、鉱山を稼働フィールドとするダンプトラック等の運搬用車両にあっては、車両はある程度高速で走行するものであり、岩石等のように、走行に障害となる障害物が走行路上に存在する可能性がある。特に、掘削物を積載したダンプトラックが頻繁に走行することから、ベッセル(荷台)から積載物がこぼれ落ちる可能性もあり、また後発的に岩石等の障害物が走行路に入り込むこともある。従って、ダンプトラックの走行時には、これらの障害物を避けるように走行しなければならず、大きな障害物が走行方向の前方位置にある場合には、ダンプトラックを停止させなければならないことになる。
By the way, in a transport vehicle such as a dump truck that uses a mine as an operating field, the vehicle travels at a high speed to some extent, and obstacles such as rocks that obstruct travel are present on the travel path. there is a possibility. In particular, since dump trucks loaded with excavated material frequently travel, there is a possibility that the load will spill from the vessel (loading platform), and obstacles such as rocks may enter the travel path later. Therefore, when the dump truck travels, it must travel so as to avoid these obstacles, and when a large obstacle is in the front position in the traveling direction, the dump truck must be stopped.
以上のことから、ダンプトラックが走行する路面上にダンプトラックの走行に支障のある障害物の存在を検出する必要があり、車両が乗り越えられない障害物はもとより、車両の高速走行時における安定性を考慮すれば、乗り越えることができる障害物であっても、乗り越えた時に車体が、特にベッセルに積荷がある状態では、衝撃により積荷がこぼれ出すおそれがある場合には、その障害物を避けて走行しなければならず、若しくは車両を停止させなければならないこともある。しかも、この障害物の検出はダンプトラックの走行中に行われることになる。従って、検出対象は走行路の路面からの突出物であるから、パルスレーザは路面に向けて照射する必要があり、しかも車両からどの程度離れた位置の情報を必要とするか、またどの程度の高さの突出物を検出するかはダンプトラックの構成、ベッセルにおける積載物の種類、車両の走行速度、その他の状況に応じて、任意に設定できるようにする必要がある。
Based on the above, it is necessary to detect the presence of obstacles that hinder the operation of the dump truck on the road surface on which the dump truck travels. If there is a risk of spillage due to impact, even if there are obstacles that can be overcome, especially when there is a load on the vessel, the obstacle should be avoided. It may be necessary to travel or the vehicle must be stopped. Moreover, this obstacle detection is performed while the dump truck is running. Therefore, since the detection target is a projecting object from the road surface of the traveling road, the pulse laser needs to be directed toward the road surface, and how far away from the vehicle the information of the position is required and how much is required. It is necessary to make it possible to arbitrarily set whether to detect the height of the protruding object according to the configuration of the dump truck, the type of the load in the vessel, the traveling speed of the vehicle, and other situations.
本発明は以上の点に鑑みてなされたものであって、運搬用車両の走行中に、その走行路の路面において、車両の高速走行時にも走行安定性を阻害するおそれのある障害物を検出できるようにすることをその目的とするものである。
The present invention has been made in view of the above points, and detects obstacles on the road surface of a traveling road that may hinder traveling stability even when the vehicle is traveling at a high speed while traveling. Its purpose is to make it possible.
この目的を達成するために、本発明は、運搬用車両に設けられ、この運搬用車両の走行方向の前方位置の路面に向けてレーザを照射するレーザ照射部と、路面からの反射光を受光する受光センサと、前記レーザ照射部からのレーザの照射位置を前記運搬用車両の走行方向と交差する方向に走査させるレーザ走査部と、前記運搬用車両の走行速度Vと、走査始点位置から走査終点位置までの走査時間及び、走査終了時点から次の走査期間の開始までの周期とからなる計測周期Thとに基づいて、前後のレーザの走査ライン間の走査間隔を調整するようになし、前記運搬用車両の走行速度が変化しても、前記走査間隔が所定値を超えないように前記計測周期Thを変化させる走査間隔調整部と、を含むものである。
In order to achieve this object, the present invention is provided in a transport vehicle, and receives a reflected light from the road surface, and a laser irradiation unit that irradiates a laser toward a road surface at a front position in the traveling direction of the transport vehicle. A light receiving sensor, a laser scanning unit that scans a laser irradiation position from the laser irradiation unit in a direction intersecting a traveling direction of the transporting vehicle, a traveling speed V of the transporting vehicle, and a scan from a scanning start point position. The scanning interval between the scanning lines of the preceding and following lasers is adjusted on the basis of the scanning time to the end point position and the measurement cycle Th including the cycle from the end of scanning to the start of the next scanning period, And a scanning interval adjustment unit that changes the measurement cycle Th so that the scanning interval does not exceed a predetermined value even when the traveling speed of the transporting vehicle changes.
障害物検出装置はレーザを照射するレーザ照射部と、路面からのレーザ光の散乱光を受信する受光センサとを含む。また、レーザ光の光路を曲折する場合には、光路の途中に反射ミラーを配置し、この反射ミラーの角度を制御する。路面からの反射光は集光レンズにより集光させて、受光センサに入射されるように構成するのが望ましい。
The obstacle detection device includes a laser irradiation unit that irradiates a laser and a light receiving sensor that receives scattered light of the laser light from the road surface. Further, when the optical path of the laser beam is bent, a reflection mirror is arranged in the middle of the optical path, and the angle of the reflection mirror is controlled. It is desirable that the reflected light from the road surface be collected by a condenser lens and incident on the light receiving sensor.
レーザ照射部から照射されるレーザにより路面を走査する。運搬用車両の走行路において、車両の走行方向と直交する方向をxg方向とし、走行方向をyg方向としたときに、xg方向は走行路の道幅を規定するものである。レーザ走査部はxg方向の走査範囲を規定するものであり、運搬用車両が走行する際の道幅が設定される。レーザ走査部はレーザ照射部を往復揺動させるか、または一方向に回転させる。レーザ光の光路に反射ミラーを配置している場合には、この反射ミラーを往復回動させることによっても、レーザを走査させることができ、線状乃至帯状の走査ラインが設定される。ここで、走査ラインは車両の走行方向と直交するものだけに限らず、走行方向と直交する方向に対して斜め方向であっても良い。このようにして車両の走行方向前方に向けてレーザを照射することにより検査・監視を行うシステムはLIDAR(Light Detection and Ranging:光検出と測距)システムと呼ばれるものである。
The road surface is scanned by the laser irradiated from the laser irradiation unit. In the traveling path of the transportation vehicles, and a direction perpendicular to the traveling direction of the vehicle and x g direction, the traveling direction is taken as y g direction, x g direction is to define the road width of the road. The laser scanning unit defines a scanning range in the xg direction, and a road width when the transport vehicle travels is set. The laser scanning unit reciprocally swings the laser irradiation unit or rotates it in one direction. When a reflection mirror is disposed in the optical path of the laser beam, the laser can be scanned also by reciprocatingly rotating the reflection mirror, and a linear or belt-like scanning line is set. Here, the scanning lines are not limited to those orthogonal to the traveling direction of the vehicle, but may be oblique to the direction orthogonal to the traveling direction. A system that performs inspection / monitoring by irradiating a laser toward the front in the traveling direction of the vehicle in this way is called a LIDAR (Light Detection and Ranging) system.
以上により運搬用車両の走行方向における前方位置における所定の範囲をスレーザによる走査が行われて、LIDARシステムに基づく障害物が存在するか否かの検出を行うことができる。従って、路面上にレーザスポット間を結ぶ仮想のグリッドを設定したときに、このグリッドを構成する網目(メッシュ)の大きさに基づいて検出可能な障害物の大きさが変化する。どの程度の大きさの障害物を検出するかについては、運搬用車両の走行時に、その障害物を乗り越えた時の安定性に基づいて決定するのが一般的であり、この検出対象とする障害物の大きさに基づいて網目のxg方向及びyg方向の長さが決定される。
As described above, it is possible to detect whether or not there is an obstacle based on the LIDAR system by scanning a predetermined range at the front position in the traveling direction of the transporting vehicle with the laser. Therefore, when a virtual grid connecting the laser spots is set on the road surface, the size of the obstacle that can be detected changes based on the size of the mesh (mesh) that constitutes the grid. The size of the obstacle to be detected is generally determined based on the stability when the obstacle is overtaken when the transport vehicle is running. x g direction and length of y g direction mesh is determined based on the size of the object.
ここで、運搬用車両の走行速度Vと、走査始点位置から走査終点位置までの走査時間及び、走査終了時点から次の走査期間の開始までの周期を計測周期Thとしたときに、前述した網目を構成するxg方向及びyg方向について、xg方向の間隔はレーザ照射部から出射されるレーザのパルス間隔により定まるものである。一方、yg方向の間隔は運搬用車両の走行速度Vにより変化することになる。つまり、運搬用車両が低速で走行している際にはyg方向の間隔は短くなり、高速で走行している場合には長くなる。従って、運搬用車両の走行速度に応じて、前後の走査ライン間の走査間隔(V×Th)が変化することになる。走査間隔調整部は、運搬用車両の走行速度に応じて、走査ラインのyg方向のピッチ間隔を調整するためのものである。この走査間隔調整部による調整によって、設定した大きさの障害物を確実に検出することができる。ここで、yg方向の間隔は運搬用車両の速度変化に応じて変化させるようにしても良いが、運搬用車両の上限速度が決まっている場合には、この上限速度を基準にしてyg方向のピッチ間隔を固定することができる。
Here, when the traveling speed V of the transporting vehicle, the scanning time from the scanning start point position to the scanning end point position, and the period from the end of scanning to the start of the next scanning period are defined as the measurement period Th, the mesh described above is used. for x g direction and y g directions constituting a spacing x g direction are those determined by the pulse interval of the laser emitted from the laser irradiation unit. On the other hand, the distance y g direction will change by the traveling speed V of the transportation vehicles. That is, the spacing of y g direction when carrying vehicle is running at low speed is shorter, longer if running at high speed. Therefore, the scanning interval (V × Th) between the preceding and following scanning lines changes according to the traveling speed of the transporting vehicle. The scanning interval adjustment unit is for adjusting the pitch interval in the yg direction of the scanning line according to the traveling speed of the transporting vehicle. By the adjustment by the scanning interval adjustment unit, an obstacle having a set size can be reliably detected. Here, y g direction interval may be changed according to the speed change of the transportation vehicles, but if the upper limit speed of transportation vehicles is determined is, y g and the upper limit speed reference The pitch interval in the direction can be fixed.
運搬用車両の走行中に、その走行路の路面において、車両の高速走行時にも走行安定性を阻害するおそれのある障害物を確実に検出できるようになる。
During traveling of the transport vehicle, it is possible to reliably detect obstacles on the road surface of the traveling path that may hinder traveling stability even when the vehicle is traveling at high speed.
前述及び前述以外の発明の課題、構成及び効果については、以下において、図面を参照して説明する本発明の実施の形態によって、より明確にする。
The problems, configurations, and effects of the invention described above and other than those described above will be further clarified by embodiments of the present invention described below with reference to the drawings.
以下、本発明に係る運搬用車両の障害物検出装置について、鉱山で稼働するダンプトラックとして構成したものについて、その実施の形態を図面に基づいて説明する。
Hereinafter, an embodiment of the obstacle detection device for a transportation vehicle according to the present invention configured as a dump truck operating in a mine will be described with reference to the drawings.
図1にダンプトラック1の全体構成を示し、図2にダンプトラック1の稼働フィールドの一例としての鉱山現場の状況を模式的に示す。ダンプトラック1は鉱山で掘削された鉱石や土砂等を運搬するためのものであり、その稼働フィールドは走行条件の悪いオフロードであり、岩石や礫等が存在する中を走行するものである。
Fig. 1 shows the overall configuration of the dump truck 1, and Fig. 2 schematically shows the situation of a mine site as an example of the operation field of the dump truck 1. The dump truck 1 is for transporting ores and earth and sand excavated in a mine, and its operation field is off-road with poor traveling conditions and travels in the presence of rocks and gravel.
ダンプトラック1は車両本体1aとベッセル1bとから構成される。車両本体1aには運転室2が設置されており、それぞれ左右に設けた前輪3及び後輪4を有するものであり、前輪3は従動輪、後輪4は駆動輪である。
The dump truck 1 is composed of a vehicle body 1a and a vessel 1b. A driver's cab 2 is installed in the vehicle main body 1a, and has a front wheel 3 and a rear wheel 4 provided on the left and right, respectively. The front wheel 3 is a driven wheel and the rear wheel 4 is a driving wheel.
運転室2には、オペレータが搭乗するために、車両本体1aには上側デッキ5が設けられており、この上側デッキ5は車両本体1aの前側に設置されており、その幅寸法は車両本体1aの幅全体に及んでいる。上側デッキ5の下部中央位置には、一対の建屋構造部6R、6Lが配置されており、その中間位置にはエアクリーナ7が設置されている。エアクリーナ7は複数のフィルタエレメントが装着されて、空気中の塵埃等を捕捉するように構成されている。
The operator's cab 2 is provided with an upper deck 5 in the vehicle main body 1a for the operator to board. The upper deck 5 is installed on the front side of the vehicle main body 1a, and its width dimension is the vehicle main body 1a. Spans the entire width of. A pair of building structures 6R and 6L are disposed at the lower center position of the upper deck 5, and an air cleaner 7 is disposed at an intermediate position thereof. The air cleaner 7 is provided with a plurality of filter elements and is configured to capture dust and the like in the air.
ダンプトラック1の前面、より詳しくは建屋構造部6R、6Lの間の位置で、エアクリーナ7の装着部の上部位置には、障害物検出装置30を備える。本実施形態ではパルスレーザ光を照射し、その反射波を受信して計測点までの距離を測定するLIDAR(Light Detection and Ranging)を障害物検出装置30が備えられている。障害物検出装置30は、に配置される。パルスレーザ光の走査面と路面との交線を交線Aと記載する。
An obstacle detection device 30 is provided at the front surface of the dump truck 1, more specifically at a position between the building structures 6 </ b> R and 6 </ b> L, and at an upper position of the mounting portion of the air cleaner 7. In the present embodiment, the obstacle detection device 30 is provided with LIDAR (Light Detection and Ranging) that irradiates pulse laser light, receives the reflected wave, and measures the distance to the measurement point. Obstacle detection device 30 is arranged in. An intersection line between the scanning surface of the pulse laser beam and the road surface is referred to as an intersection line A.
図2において、10は採鉱場であり、採鉱場10には採鉱作業を行うための油圧ショベル11が稼働している。採鉱場10からは走行路12が延在されており、この走行路12は、図示は省略するが、鉱石集積場に向けた鉱石送路13や排土場に向けた土砂送路14が分岐して形成されている。
In FIG. 2, 10 is a mining site, and a hydraulic excavator 11 for performing mining work is operating in the mining site 10. A traveling path 12 extends from the mining site 10, and the traveling path 12 is not shown in the figure, but the ore transporting path 13 toward the ore accumulation field and the earth and sand transporting path 14 toward the earth discharging field are branched. Is formed.
ダンプトラック1は採鉱場10に搬入され、油圧ショベル11から土砂や鉱石等がベッセル1bに積載されて、走行路12に沿って走行する。鉱石が積載されている場合には、鉱石送路13から鉱石集積所に移送される。また、ベッセル1bに土砂が積載されている際には土砂送路14に向って走行することになる。いずれの送路を取るにしても、鉱石集積所や排土場においては、ベッセル1bから積載物が排出される。
The dump truck 1 is carried into the mining site 10, and earth and sand or ore is loaded on the vessel 1 b from the excavator 11 and travels along the travel path 12. When the ore is loaded, it is transferred from the ore transport path 13 to the ore depository. Further, when earth and sand are loaded on the vessel 1b, the vehicle travels toward the earth and sand transport path 14. Whichever route is taken, the load is discharged from the vessel 1b at the ore accumulation site and the earth removal site.
ダンプトラック1が稼働するフィールドにおいては、複数台のダンプトラック1が稼働しており、これらのダンプトラック1は交通管制センタ15に設けた管理装置により運行が管理されることになる。ダンプトラック1と交通管制センタ15との間は無線通信により情報の双方向伝達が可能となっている。このために、走行路12及び交通管制センタ15における所定の位置にはアンテナ16が設けられている。さらに、各ダンプトラック1には通信衛星(GPS)17から自己の位置情報を取得できるようにしている。
In the field where the dump truck 1 is operated, a plurality of dump trucks 1 are operating, and the operation of these dump trucks 1 is managed by a management device provided in the traffic control center 15. Bidirectional transmission of information is possible between the dump truck 1 and the traffic control center 15 by wireless communication. For this purpose, an antenna 16 is provided at a predetermined position in the travel path 12 and the traffic control center 15. Further, each dump truck 1 can acquire its own position information from a communication satellite (GPS) 17.
走行路12において、ダンプトラック1は採鉱場10から鉱石送路13や土砂送路14に向う往路と、採鉱場10側に向う復路とに向けて走行するものであり、走行路12の途中で他のダンプトラック1がすれ違うことになる。このために、走行路12には往路と復路とが区画されている。ただし、通常、その境界部に中央分離帯等は設けられていない。また、走行路12の道幅端部は崖等が位置しており、これによって、走行路12は往路及び復路における道幅が概略設定されていることになる。そこで、以下の説明においては、走行路12について往路及び復路の側端部をそれぞれ路肩という。
In the travel path 12, the dump truck 1 travels from the mining site 10 to the ore transport path 13 and the earth and sand transport path 14 and to the return path to the mining site 10 side. The other dump trucks 1 will pass each other. For this purpose, the traveling path 12 is divided into an outbound path and a return path. However, usually no median strip is provided at the boundary. In addition, a cliff or the like is located at the end of the road width of the travel path 12, and as a result, the travel path 12 is roughly set with a road width on the forward path and the return path. Therefore, in the following description, the side ends of the forward path and the return path of the traveling path 12 are referred to as road shoulders, respectively.
走行路12(鉱石送路13、土砂送路14を含む)をダンプトラック1が走行する際には、走行安定性を図り、円滑な走行を可能にするために、路面に障害物が存在しないようにする必要がある。鉱山においては、舗装等が行われていないことから、路面に凹凸があり、また岩石等が存在していることがある。従って、路面の状態を監視する必要があり、特にダンプトラック1の走行方向前方位置に走行不能となり、若しくは走行安定性に影響を及ぼすような障害物が存在するか否かを判断しなければならない。しかも、障害物が存在する場合、それを避けるように走行させるか、または停止しなければならない場合もある。このために、ダンプトラック1には、特に走行方向前方の路面上に障害物があるか否かの検出を行う必要がある。
When the dump truck 1 travels on the travel path 12 (including the ore transport path 13 and the earth and sand transport path 14), there is no obstacle on the road surface in order to improve travel stability and enable smooth travel. It is necessary to do so. In the mine, since there is no pavement or the like, the road surface is uneven and there may be rocks and the like. Therefore, it is necessary to monitor the condition of the road surface. In particular, it is necessary to determine whether or not there is an obstacle that makes it impossible to travel to the front position in the traveling direction of the dump truck 1 or affects traveling stability. . Moreover, if there is an obstacle, it may be necessary to run or stop to avoid it. Therefore, it is necessary to detect whether or not the dump truck 1 has an obstacle on the road surface in front of the traveling direction.
そこで、本実施形態では、障害物検出装置30の一例として、図3に示すように1軸のLIDARを備える。以下、図3Aから図7を参照して障害物検出装置の構造について説明する。図3Aは、1軸のLIDARの構造を示す説明図である。図3Bは、1軸のLIDARの構造の回転動作に関する構成を示す説明図である。図4は、2軸のLIDARの構造を示す説明図である。図5は、障害物検出装置の走査可能範囲を示す説明図である。図6は、障害物検出装置からのパルスレーザの照射範囲を示す説明図である。図7は、パルスレーザのX、Y方向の走査間隔についての説明図である。
Therefore, in the present embodiment, as an example of the obstacle detection device 30, a uniaxial LIDAR is provided as shown in FIG. Hereinafter, the structure of the obstacle detection apparatus will be described with reference to FIGS. 3A to 7. FIG. 3A is an explanatory diagram showing the structure of a uniaxial LIDAR. FIG. 3B is an explanatory diagram showing a configuration related to the rotation operation of the uniaxial LIDAR structure. FIG. 4 is an explanatory diagram showing the structure of a biaxial LIDAR. FIG. 5 is an explanatory diagram showing a scannable range of the obstacle detection apparatus. FIG. 6 is an explanatory diagram showing the irradiation range of the pulse laser from the obstacle detection device. FIG. 7 is an explanatory diagram of scanning intervals in the X and Y directions of the pulse laser.
図3Aに示す障害物検出装置30は、支持板体31の上下にレーザ保持部32とパルスレーザ走査部33とを所定の間隔だけ離間した位置に装着する構成となし、これらレーザ保持部32とパルスレーザ走査部33との間にパルスレーザの入出射領域が確保される。レーザ保持部32にはパルスレーザ照射部34が装着されている。また、パルスレーザ走査部33には、モータ38(図3B参照)により回転駆動される回転体35が設けられており、この回転体35にはハーフミラー36が装着されると共に、受光センサ37が設けられている。更に障害物検出装置30は、回転体35の回転周期(計測周期Thに相当する)を示す回転周期情報をパルスレーザ走査部33に出力して、パルスレーザ走査部33の回転駆動制御を行う走査間隔調整部60を備える。
The obstacle detection device 30 shown in FIG. 3A has a configuration in which the laser holding unit 32 and the pulse laser scanning unit 33 are mounted on the upper and lower sides of the support plate 31 at positions separated by a predetermined interval. An entrance / exit region of the pulse laser is secured between the pulse laser scanning unit 33. A pulse laser irradiation unit 34 is attached to the laser holding unit 32. Further, the pulse laser scanning unit 33 is provided with a rotating body 35 that is rotationally driven by a motor 38 (see FIG. 3B). A half mirror 36 is attached to the rotating body 35 and a light receiving sensor 37 is provided. Is provided. Further, the obstacle detection device 30 outputs rotation period information indicating the rotation period (corresponding to the measurement period Th) of the rotating body 35 to the pulse laser scanning unit 33 and performs rotation driving control of the pulse laser scanning unit 33. An interval adjusting unit 60 is provided.
パルスレーザ照射部34からの光路と、パルスレーザ走査部33の回転中心とはほぼ一致しており、このパルスレーザ照射部34から出射されるパルスレーザは一部がハーフミラー36に反射して、被検領域に向けて照射されることになる。そして、被検領域の表面からの反射光は散乱するが、この散乱光の一部がハーフミラー36を透過することになる。このハーフミラー36を透過した散乱光は受光センサ37により受光されるが、この受光センサ37には集光レンズが装着されている。
The optical path from the pulse laser irradiation unit 34 and the rotation center of the pulse laser scanning unit 33 substantially coincide with each other, and a part of the pulse laser emitted from the pulse laser irradiation unit 34 is reflected by the half mirror 36. Irradiation is directed toward the region to be examined. The reflected light from the surface of the test region is scattered, but a part of the scattered light is transmitted through the half mirror 36. The scattered light that has passed through the half mirror 36 is received by a light receiving sensor 37, and a condensing lens is attached to the light receiving sensor 37.
図3Bに示すように、走査間隔調整部60は、計測周期演算部61及び計測周期記憶部62を含む。計測周期演算部61は、車輪速計測センサ42aから時刻tにおける走行速度Vtを取得すると、計測周期記憶部62に記憶されている現在の計測周期(これは直近の過去である時刻t-1において演算された計測周期Tht-1に相当する)を読み出す。そして、走行速度Vtと計測周期Tht-1とを用いて、時刻tにおける計測周期Thtを演算する。計測周期演算部61は、計測周期Tht情報をモータ38に出力する。そしてモータ38が計測周期Thtで回転することにより、計測周期が調整される。計測周期演算部61は、新たに演算した計測周期Thtを計測周期記憶部62に更新記録する。このように走査間隔調整部60は、走行速度Vを用いて、計測周期Thの調整を行う。また、走行間隔調整部60は、グリッドマップ記憶部63も更に備え、計測周期演算部61が作成したグリッドマップを蓄積してもよい。この場合、計測周期演算部61は、グリッドマップ作製部としての機能も有する。グリッドマップの詳細は後述する。走査間隔調整部60は、CPU、ROM、RAM、HDD、外部機器とのインターフェース、バスといったハードウェアと、走査間隔調整部60の機能を実現するためのソフトウェアとが協働して構成されてもよい。
As illustrated in FIG. 3B, the scanning interval adjustment unit 60 includes a measurement cycle calculation unit 61 and a measurement cycle storage unit 62. When the measurement cycle calculation unit 61 obtains the travel speed V t at the time t from the wheel speed measurement sensor 42a, the measurement cycle calculation unit 61 stores the current measurement cycle stored in the measurement cycle storage unit 62 (this is the latest past time t-1). (Corresponding to the measurement cycle Th t−1 calculated in step 1 ). Then, the measurement cycle Th t at time t is calculated using the traveling speed V t and the measurement cycle Th t−1 . Measurement cycle calculation unit 61 outputs the measurement cycle Th t information to the motor 38. The measurement cycle is adjusted by rotating the motor 38 at the measurement cycle Th t . The measurement cycle calculation unit 61 updates and records the newly calculated measurement cycle Th t in the measurement cycle storage unit 62. As described above, the scanning interval adjustment unit 60 adjusts the measurement cycle Th by using the traveling speed V. In addition, the travel interval adjustment unit 60 may further include a grid map storage unit 63 and may accumulate the grid map created by the measurement cycle calculation unit 61. In this case, the measurement cycle calculation unit 61 also has a function as a grid map creation unit. Details of the grid map will be described later. The scan interval adjustment unit 60 may be configured by cooperating hardware such as a CPU, ROM, RAM, HDD, an interface with an external device, a bus, and software for realizing the function of the scan interval adjustment unit 60. Good.
障害物検出装置30は、上記の例に限らず図4に示す2軸のLIDARを用いてもよい。図4の2軸のLIDAR20は、被検領域21内に障害物が存在しているか否かの検出を行うものである。LIDAR20は、所定の間隔をもってパルスレーザを出射するパルスレーザ照射部22、パルスレーザを所定の範囲にわたって走査させるパルスレーザ走査部23、受光センサ24、及び集光レンズ25を備える。
The obstacle detection device 30 is not limited to the above example, and a biaxial LIDAR shown in FIG. 4 may be used. The biaxial LIDAR 20 in FIG. 4 detects whether an obstacle exists in the test region 21. The LIDAR 20 includes a pulse laser irradiation unit 22 that emits a pulse laser at a predetermined interval, a pulse laser scanning unit 23 that scans the pulse laser over a predetermined range, a light receiving sensor 24, and a condenser lens 25.
被検領域21をxg方向及びyg方向に所定の広がりをもったエリアとしたときにおいて、パルスレーザ照射部22から出射されレーザ光はパルスレーザ走査部23により光路を曲げられた上で被検領域21の表面を走査することになる。従って、パルスレーザ走査部23は反射ミラー23aを有し、この反射ミラー23aによって被検領域21にパルスレーザが照射される。パルスレーザを被検領域21の全体を走査させるためには、反射ミラー23aは直交2軸、つまりX方向及びY方向に傾動乃至回転できるものとする。具体的には鉛直方向に延在させた回転軸23Yを有するものであり、この回転軸23Yを図示しないモータ等により回転駆動することによって、被検領域21のxg方向にパルスレーザが走査される。また、水平方向に延在させた回転軸23Xを駆動することにより被検領域21の内部をyg方向に走査させることができる。被検領域21を走査したパルスレーザは集光レンズ25により集光されて、受光センサ24に入射される。上記モータの回転駆動制御に、図3Bで説明した回転駆動制御装置を用いることにより2軸のLIDARにおいても、走行速度に応じて計測周期を調整することができる。
In case that the test area 21 and an area having a predetermined spread x g direction and y g direction, the laser beam emitted from the pulse laser irradiation unit 22 on which optical path is bent by the pulse laser scanning unit 23 to be The surface of the inspection area 21 is scanned. Therefore, the pulse laser scanning unit 23 includes a reflection mirror 23a, and the pulse laser is irradiated onto the test region 21 by the reflection mirror 23a. In order for the pulse laser to scan the entire test region 21, the reflection mirror 23a can be tilted or rotated in two orthogonal axes, that is, the X direction and the Y direction. Specifically, it has a rotating shaft 23Y extending in the vertical direction. By rotating the rotating shaft 23Y by a motor (not shown) or the like, a pulse laser is scanned in the xg direction of the region 21 to be examined. The Further, by driving the rotation shaft 23X extending in the horizontal direction, the inside of the test region 21 can be scanned in the gg direction. The pulse laser that has scanned the test region 21 is condensed by the condenser lens 25 and is incident on the light receiving sensor 24. By using the rotation drive control device described with reference to FIG. 3B for the rotation drive control of the motor, the measurement cycle can be adjusted according to the traveling speed even in a biaxial LIDAR.
受光センサ24は被検領域21からの反射光の散乱光を受信する。被検領域21に凹凸があると、散乱光が変化するので、受光センサ24による散乱光量に基づいて路面から突出している障害物の有無及びその大きさ、形状等を判定することができる。
The light receiving sensor 24 receives the scattered light of the reflected light from the test region 21. If the test region 21 has irregularities, the scattered light changes, so that it is possible to determine the presence / absence, size, shape, and the like of an obstacle protruding from the road surface based on the amount of light scattered by the light receiving sensor 24.
以上の2軸LIDAR20や障害物検出装置30(1軸LIDAR)を利用して、ダンプトラック1の走行方向における前方位置の路面の状況を検出することができる。即ち、路面の状態によっては、ダンプトラック1が走行できない状態となっていることがあり、またダンプトラック1が直進することができず、ステアリング操作が必要なこともある。このように、ダンプトラック1が直進できない状況となっていると、停止させるなり、ステアリング操作を行うなりといった回避動作を行うが、このために2軸LIDAR20や障害物検出装置30を用いることができ、これら2軸LIDAR20や障害物検出装置30によるパルスレーザの照射位置は路面の斜め前方とし、またダンプトラック1が走行できる道幅の全体をカバーさせる。以下、障害物検出装置30を例に挙げて説明する。
By using the above-described two-axis LIDAR 20 and obstacle detection device 30 (one-axis LIDAR), it is possible to detect the state of the road surface at the front position in the traveling direction of the dump truck 1. That is, depending on the condition of the road surface, the dump truck 1 may not be able to travel, and the dump truck 1 may not be able to go straight and a steering operation may be required. In this way, when the dump truck 1 is in a state where it cannot go straight, an avoiding operation such as stopping or performing a steering operation is performed. For this purpose, the 2-axis LIDAR 20 or the obstacle detection device 30 can be used. The irradiation position of the pulse laser by the two-axis LIDAR 20 and the obstacle detection device 30 is set obliquely in front of the road surface, and covers the entire road width on which the dump truck 1 can travel. Hereinafter, the obstacle detection device 30 will be described as an example.
ここで、図5に示したように、障害物検出装置30は支持板体31と対面する方向は死角となるが、この死角範囲を除いた広い角度範囲にわたってレーザ光を照射することができるものである。この広い角度範囲を走査する時間が、図5において矢印で記載した角度範囲が走査開始位置(図5の矢印の始点)から走査終点位置(図5の矢印の終点)までの走査時間である。また上記死角範囲にレーザ光が照射される時間が、走査終了時点から次の走査期間の走査開始までの周期である。そして、走査開始位置(図5の矢印の始点)から走査終点位置(図5の矢印の終点)までの走査時間と、走査終了時点から次の走査期間の走査開始までの周期とを加えた時間が、レーザ光が360°に亘って照射される時間であり、これが計測周期Thに相当する。障害物の検出は走行路12の路面において、その道幅に限定されることから、パルスレーザ走査部33による回転体35は一方向に回転させることによって、この走行路12の路面全体を走査することは可能である。ただし、所定角度分だけ往復回動させるようにしても良い。
Here, as shown in FIG. 5, the obstacle detection device 30 has a blind spot in the direction facing the support plate 31, and can irradiate laser light over a wide angle range excluding this blind spot range. It is. The time for scanning this wide angle range is the scan time from the scan start position (start point of the arrow in FIG. 5) to the scan end point position (end point of the arrow in FIG. 5). The time during which the laser beam is applied to the blind spot range is a period from the end of scanning to the start of scanning in the next scanning period. Then, a time obtained by adding the scanning time from the scanning start position (start point of the arrow in FIG. 5) to the scanning end point position (end point of the arrow in FIG. 5) and the period from the end of scanning to the start of scanning in the next scanning period. Is the time during which the laser beam is irradiated over 360 °, which corresponds to the measurement cycle Th. Since the detection of obstacles is limited to the road width on the road surface of the travel path 12, the entire surface of the travel path 12 is scanned by rotating the rotating body 35 by the pulse laser scanning unit 33 in one direction. Is possible. However, it may be reciprocally rotated by a predetermined angle.
路面に対してレーザ光を走査させることにより、路面上に障害物の有無を検出するが、このためにダンプトラック1が走行する間に、障害物検出装置30を駆動して、回転体35を回転させながら、パルスレーザ照射部34からパルスレーザを出射させる。その結果、図6に示したように、走行路12の路面が走査される。ここで、車両の進行方向をyg方向とし、道幅方向をxg方向としたときに、xg方向においては、パルスレーザの走査間隔がレーザスポットのピッチ間隔となる。一方、yg方向におけるレーザスポットのピッチ間隔は車両の走行速度Vにより変化する。即ち、車両が高速で走行する際には、yg方向のレーザスポットのピッチ間隔は広くなり、車両が低速で走行する際には、ピッチ間隔が狭くなる。
By scanning the road surface with laser light, the presence or absence of an obstacle is detected on the road surface. For this purpose, the obstacle detection device 30 is driven while the dump truck 1 is traveling, and the rotating body 35 is moved. While rotating, the pulse laser is emitted from the pulse laser irradiation unit 34. As a result, the road surface of the traveling road 12 is scanned as shown in FIG. Here, the traveling direction of the vehicle and y g direction, the road width direction is taken as x g direction, in the x g direction, the scanning interval of the pulsed laser is the pitch spacing of the laser spot. On the other hand, the pitch interval of the laser spot in the y g direction is changed by the traveling speed V of the vehicle. That is, when the vehicle travels at a high speed, the pitch spacing of the laser spot y g direction becomes wider, when the vehicle travels at a low speed, pitch is narrowed.
一般的なLIDARシステムでは、図7に示したように、パルスレーザの照射方向を一定角速度ωで回転させながら、速度Vで走行させたときにおいて、一定時間間隔ΔTでレーザ照射と検出を繰り返すことから、計測は一定角度分解能Δθ毎に得られることになる。ΔTは一定であるとすると、t=T0において、ある角度θ方向にレーザを照射した後、次に同じ角度θ方向にパルスレーザを照射するまでの時間を計測周期Thとすると、計測周期Thと計測分解能Δθとの間にはΔθ・Th=2π・ΔTの関係になる。すなわち、ThとΔθとの間に反比例の関係がある。
In a general LIDAR system, as shown in FIG. 7, the laser irradiation and detection are repeated at a constant time interval ΔT when the pulse laser irradiation direction is rotated at a constant angular velocity ω and the vehicle is driven at a speed V. Therefore, measurement is obtained for each constant angular resolution Δθ. Assuming that ΔT is constant, when t = T 0 , if the measurement period Th is the time from irradiation of the laser in a certain angle θ direction to the next irradiation of the pulse laser in the same angle θ direction, the measurement period Th And the measurement resolution Δθ have a relationship of Δθ · Th = 2π · ΔT. That is, there is an inversely proportional relationship between Th and Δθ.
ここで、図8A、図8B及び図10を参照して障害物検出装置の分解能について説明する。図8Aは、障害物検出装置30の高さとピッチ間隔及びレーザ照射方向の分解能を示す斜視説明図である。図8Bは、障害物検出装置30の高さとピッチ間隔及びレーザ照射方向の分解能を示す平面説明図である。図9は、レーザスポットのピッチ間隔を示す説明図である。図10は、ダンプトラックによる路面の障害物検査を行っている状態を示す動作説明図である。
Here, the resolution of the obstacle detection apparatus will be described with reference to FIGS. 8A, 8B, and 10. FIG. FIG. 8A is a perspective explanatory view showing the height and pitch interval of the obstacle detection device 30 and the resolution in the laser irradiation direction. FIG. 8B is an explanatory plan view showing the height and pitch interval of the obstacle detection device 30 and the resolution in the laser irradiation direction. FIG. 9 is an explanatory view showing the pitch interval of laser spots. FIG. 10 is an operation explanatory diagram illustrating a state in which an obstacle inspection on a road surface is performed by a dump truck.
図9において、計測点P1-P2、P1-P1´、P2-P2´間の2方向の距離(進行方向の距離Δyg、進行方向と直交する方向の距離Δxg)としたときに、距離Δygは計測周期Th間の間隔であり、ダンプトラック1の走行速度Vとパルスレーザ走査部33による回転体35の回転速度に基づくものであり、パルスレーザ走査部33の回転速度が一定であるとすれば、ダンプトラック1の走行速度Vにより変化する計測周期ThがΔygに相当する。また、図8Aで示したように、パルスレーザ照射部34の路面からの高さをH、ピッチ間隔をρ、レーザ照射方向をθ、計測分解能をΔθとしたときに、図8Bに示したように、路面上のレーザスポットのxg方向のピッチ間隔、つまり距離ΔxgはH/cosρ|tanθ-tan(θ+Δθ)|に基づいて演算される。
In FIG. 9, when the distances in the two directions between the measurement points P1-P2, P1-P1 ′, P2-P2 ′ (the distance Δy g in the traveling direction and the distance Δx g in the direction orthogonal to the traveling direction) are distances Δy g is an interval between measurement cycles Th, which is based on the traveling speed V of the dump truck 1 and the rotational speed of the rotating body 35 by the pulse laser scanning unit 33, and the rotational speed of the pulse laser scanning unit 33 is constant. Then, the measurement cycle Th that changes depending on the traveling speed V of the dump truck 1 corresponds to Δy g . Further, as shown in FIG. 8A, when the height from the road surface of the pulse laser irradiation unit 34 is H, the pitch interval is ρ, the laser irradiation direction is θ, and the measurement resolution is Δθ, as shown in FIG. 8B. , the pitch of the x g direction of the laser spot on the road surface, i.e. the distance [Delta] x g is H / cosρ | tanθ-tan ( θ + Δθ) | is calculated based on.
ここで、図9及び図10に示したように、ダンプトラック1の走行中における距離Δxg及びΔygの最大値ΔxgMAX、ΔygMAXを取るのは走行路12における路肩若しくはその近傍位置である。そこで、路面上において、検出すべき障害物の大きさについて、ダンプトラック1の最高走行速度であっても、図10においてEで示した位置の大きさを評価値Eとした場合、E=ΔxgMAX・ΔygMAXが所定の範囲内であれば確実に検出できるように設定する。
Here, as shown in FIGS. 9 and 10, the maximum values Δx gMAX and Δy gMAX of the distances Δx g and Δy g during traveling of the dump truck 1 take the road shoulder or the vicinity thereof. . Therefore, regarding the size of the obstacle to be detected on the road surface, even when the dump truck 1 has the maximum traveling speed, when the size of the position indicated by E in FIG. gMAX · Δy It is set so that it can be reliably detected if gMAX is within a predetermined range.
なお、評価値Eに関しては、E=ΔxgMAX・ΔygMAXでなく、E=ΔxgMAX+ΔygMAXや、ΔxgMAXとΔygMAXのうち大きいほうで評価する方法などもあり、目的によって選定するのがよい。以上のことから、ダンプトラック1の走行中に所定の大きさの障害物Bを検出するには、その走行速度に応じて30のパルスレーザ走査部33により駆動されるパルスレーザ照射部34の回転速度を調整する。これによって、所望の大きさの障害物Bを検出することができるようになる。このダンプトラック1の走行速度は、後述する自己位置計測ユニット42から得られるデータに基づいて計算することができるものである。これらにより走査間隔調整部が構成される。このように本実施形態では、走査間隔調整部60(より詳しくは計測周期演算部61)が自己位置計測ユニット42(より詳しくは後述する車輪速計測センサ42a)から走行速度Vを取得し、これに基づいてハーフミラー36の回転速度(計測周期Thに相当)を調整することにより、走査間隔調整部が構成される。この構成は一例にすぎず、走行速度及び計測周期に基づいて、走行速度が変化しても走査間隔が所定値を超えないように計測周期を変化させる構成であれば、上記走査間隔調整部に含まれる。ここで、以下においては、障害物Bについて、その大きさを基準として、走査間隔を設定する構成としたものとして説明するが、要するにダンプトラック1の走行速度により走査間隔が変化するのを防止するものであって、必ずしも障害物Bの大きさのみを基準するものではなく、他の要素を勘案して走査間隔を設定することもできる。
The evaluation value E is not E = Δx gMAX · Δy gMAX , but E = Δx gMAX + Δy gMAX, or a method of evaluating the larger one of Δx gMAX and Δy gMAX , etc., and should be selected according to the purpose. . From the above, in order to detect an obstacle B having a predetermined size while the dump truck 1 is traveling, the rotation of the pulse laser irradiation unit 34 driven by the 30 pulse laser scanning units 33 according to the traveling speed. Adjust the speed. As a result, the obstacle B having a desired size can be detected. The traveling speed of the dump truck 1 can be calculated based on data obtained from a self-position measuring unit 42 described later. These constitute a scanning interval adjustment unit. As described above, in this embodiment, the scanning interval adjustment unit 60 (more specifically, the measurement cycle calculation unit 61) acquires the traveling speed V from the self-position measurement unit 42 (more specifically, a wheel speed measurement sensor 42a described later). By adjusting the rotation speed of the half mirror 36 (corresponding to the measurement cycle Th) based on the above, a scanning interval adjustment unit is configured. This configuration is only an example, and if the measurement cycle is changed based on the travel speed and the measurement cycle so that the scan interval does not exceed a predetermined value even if the travel speed changes, the scan interval adjustment unit included. Here, in the following description, the obstacle B is described as having a configuration in which the scanning interval is set based on the size of the obstacle B. In short, the scanning interval is prevented from changing depending on the traveling speed of the dump truck 1. However, it is not necessarily based only on the size of the obstacle B, and the scanning interval can be set in consideration of other factors.
次に、図11に基づいて障害物検出システムの構成について説明する。図11は、障害物検出システムの概略構成図である。この障害物検出システム40は、走行路12の路面上に所定の大きさ以上の障害物Bが存在しているか否かを検出するためのシステムである。ここで、ダンプトラック1の走行時の安定性を確保するためのものであり、障害物Bが路面上に位置しており、前輪3または後輪4がこの障害物B(図10参照)により走行不能となる大きさのものである場合には、走行を停止させるが、ステアリング操作により障害物Bを避けるようにして走行できる場合もある。
Next, the configuration of the obstacle detection system will be described with reference to FIG. FIG. 11 is a schematic configuration diagram of an obstacle detection system. The obstacle detection system 40 is a system for detecting whether or not an obstacle B having a predetermined size or more exists on the road surface of the traveling road 12. Here, it is for ensuring the stability at the time of driving | running | working of the dump truck 1, the obstruction B is located on the road surface, and the front wheel 3 or the rear wheel 4 is this obstruction B (refer FIG. 10). If the vehicle is of a size that makes it impossible to travel, traveling is stopped, but the vehicle may be able to travel while avoiding the obstacle B by a steering operation.
ここで、図12を参照してダンプトラック1の障害物回避動作について説明する。図12は、ダンプトラックの走行時における障害物の位置とそれを回避する動作についての動作説明図である。
Here, the obstacle avoidance operation of the dump truck 1 will be described with reference to FIG. FIG. 12 is an operation explanatory diagram regarding the position of the obstacle during the traveling of the dump truck and the operation to avoid it.
図12に示したように、走行路12においては、ダンプトラック1が直進走行するエリアをエリアSとした時に、このエリアSの左右両側にエリアL、エリアRが存在する場合、エリアT、Rはダンプトラック1の前方に障害物Bが位置しており、直進走行していたのでは、この障害物Bと衝突するが、矢印Tまたは矢印Sで示したように、エリアTまたはエリアSの方向にステアリング操作を行えば、前輪3、後輪4が障害物Bに乗り上げないようにして走行できることが可能となる場合がある。従って、ダンプトラック1に装着される障害物検出システム40はダンプトラック1の走行方向の前方において、所定の大きさの障害物Bを検出したときには、この障害物Bを避けるようにして走行できる場合には、ステアリング操作が行われ、また走行できない障害物Bが存在する場合には、ブレーキ操作することにより車両を停止させる。
As shown in FIG. 12, in the travel path 12, when the area where the dump truck 1 travels straight is defined as the area S, if the areas L and R exist on both the left and right sides of the area S, the areas T and R If the obstacle B is located in front of the dump truck 1 and is traveling straight ahead, it will collide with the obstacle B, but as indicated by the arrow T or arrow S, the area T or area S If the steering operation is performed in the direction, it may be possible to travel without the front wheels 3 and the rear wheels 4 getting on the obstacle B. Accordingly, when the obstacle detection system 40 mounted on the dump truck 1 detects an obstacle B of a predetermined size in front of the dump truck 1 in the traveling direction, the obstacle detection system 40 can travel while avoiding the obstacle B. In the case where the steering operation is performed and there is an obstacle B that cannot be traveled, the vehicle is stopped by operating the brake.
そこで、図11に示した障害物検出システム40は、車両本体1aに対する障害物Bの相対位置を計測する計測システムであり、この障害物検出システム40と交通管制センタ15とは無線通信により信号の授受をできるようになっている。
Therefore, the obstacle detection system 40 shown in FIG. 11 is a measurement system that measures the relative position of the obstacle B with respect to the vehicle body 1a. The obstacle detection system 40 and the traffic control center 15 transmit signals by wireless communication. You can send and receive.
障害物検出システム40は、障害物を検出するために、障害物計測ユニット41と、車両本体1aの位置及び姿勢を計測するための自己位置計測ユニット42と、障害物Bの相対位置や路面路幅、対向車の存在に基づいて、車両本体1aの進行方向や走行速度を変更させる車体運動制御ユニット43と、を有している。さらに、交通管制センタ15との間で通信を行うための通信装置44を備えている。
The obstacle detection system 40 includes an obstacle measurement unit 41, a self-position measurement unit 42 for measuring the position and posture of the vehicle main body 1a, and a relative position and road surface of the obstacle B in order to detect an obstacle. And a vehicle body motion control unit 43 that changes the traveling direction and traveling speed of the vehicle main body 1a based on the width and the presence of an oncoming vehicle. Furthermore, a communication device 44 for performing communication with the traffic control center 15 is provided.
障害物計測ユニット41には、障害物検出装置30と、この障害物検出装置30による測定結果に基づき、障害物Bのダンプトラック1に対する相対位置を測定する障害物計測装置41aと、路面の周囲の外部座標系(図4、図6のxg―yg座標系に相当する)での障害物位置、障害物形状に関する障害物データを記憶する記憶部としての障害物記憶装置41bとを備えている。
The obstacle measurement unit 41 includes an obstacle detection device 30, an obstacle measurement device 41 a that measures the relative position of the obstacle B with respect to the dump truck 1 based on the measurement result by the obstacle detection device 30, and the surroundings of the road surface And an obstacle storage device 41b as a storage unit for storing obstacle data related to obstacle positions and obstacle shapes in the external coordinate system (corresponding to the x g- y g coordinate system in FIGS. 4 and 6). ing.
障害物検出装置30は、障害物計測装置41aに接続され、障害物計測装置41aは、障害物記憶装置41bに接続されている。障害物検出装置30は、図1に示すように、これら障害物検出装置30から照射するレーザ光が到達する路面上の計測点がなす直線である走査方向としての交線Aが、それぞれ路面の幅方向(路幅xg方向)に沿うように設定されている。また、障害物検出装置30は、レーザ光の照射方向を予め定めた所定の角度、例えば0.25度毎(図7、図8A、図8BのΔθに相当する)に徐々に変化させて路面上の計測点を走査していき、この障害物検出装置30によるレーザ光の走査面において、所定の角度毎の路面までの距離を計測する。
The obstacle detection device 30 is connected to the obstacle measurement device 41a, and the obstacle measurement device 41a is connected to the obstacle storage device 41b. As shown in FIG. 1, the obstacle detection device 30 has an intersection line A as a scanning direction, which is a straight line formed by measurement points on the road surface to which the laser light emitted from the obstacle detection device 30 arrives. It is set along the width direction (road width x g direction). Further, the obstacle detection device 30 gradually changes the irradiation direction of the laser light at a predetermined angle, for example, every 0.25 degrees (corresponding to Δθ in FIGS. 7, 8A, and 8B). The upper measurement point is scanned, and the distance to the road surface at every predetermined angle is measured on the scanning surface of the laser beam by the obstacle detection device 30.
さらに、障害物計測装置41aは、障害物検出装置30で検出した障害物情報と、障害物記憶装置41bに記憶させた障害物データとを比較する比較部41cを備え、比較部41cでの比較に基づき、その障害物が設置物などの静止障害物なのか、若しくは車両などの動的障害物なのかといった障害物データの属性情報を更新する。
The obstacle measuring device 41a further includes a comparison unit 41c that compares the obstacle information detected by the obstacle detection device 30 with the obstacle data stored in the obstacle storage device 41b. The attribute information of the obstacle data such as whether the obstacle is a stationary obstacle such as an installation object or a dynamic obstacle such as a vehicle is updated.
自己位置計測ユニット42は、車両本体1aの、例えば前輪3の回転速度を計測するための車輪速計測センサ42aと、車両本体1aの運転室2に設けられたハンドル(図示せず)の操舵角度を計測するための操舵角計測センサ42bと、車輪速計測センサ42aにて計測した回転速度結果及び操舵角計測センサ42bにて計測した操舵角結果に基づいて、車両本体1aの走行速度、前輪3の角速度、地面に固定された座標系での車両本体1aの位置及び姿勢を算出するための自己位置演算装置42cとを0備えている。車輪速計測センサ42aは、例えば前輪3の回転速度を検出するための速度センサ等である。操舵角計測センサ42bは、ハンドルの操舵角を検出することができる変位センサ等である。
The self-position measuring unit 42 is a steering angle of a wheel speed measurement sensor 42a for measuring, for example, the rotational speed of the front wheel 3 of the vehicle main body 1a, and a handle (not shown) provided in the cab 2 of the vehicle main body 1a. Based on the rotation angle result measured by the steering angle measurement sensor 42b and the wheel speed measurement sensor 42a and the steering angle result measured by the steering angle measurement sensor 42b, the traveling speed of the vehicle main body 1a, the front wheel 3 And a self-position calculating device 42c for calculating the position and orientation of the vehicle main body 1a in a coordinate system fixed to the ground. The wheel speed measurement sensor 42a is a speed sensor or the like for detecting the rotational speed of the front wheels 3, for example. The steering angle measurement sensor 42b is a displacement sensor that can detect the steering angle of the steering wheel.
自己位置計測ユニット42は、車両本体1aの自己位置を補正するための自己位置補正装置42dを備えている。自己位置補正装置42dは、車両本体1aの位置及び姿勢をより高精度に計測するためのものであり、例えば慣性計測装置(IMU:Inertial Measurement Unit)や、GPS(Global Positioning System)等で構成されている。車輪速計測センサ42a、操舵角計測センサ42b及び自己位置補正装置42dは、自己位置演算装置42cにそれぞれ接続されている。
The self-position measuring unit 42 includes a self-position correcting device 42d for correcting the self-position of the vehicle main body 1a. The self-position correcting device 42d is for measuring the position and orientation of the vehicle body 1a with higher accuracy, and is configured by, for example, an inertial measurement device (IMU: Internal Measurement Unit), GPS (Global Positioning System), or the like. ing. The wheel speed measuring sensor 42a, the steering angle measuring sensor 42b, and the self-position correcting device 42d are respectively connected to the self-position calculating device 42c.
車体運動制御ユニット43は、車両本体1aの走行速度を低下させたり停止させたりする制動装置43aと、ダンプトラック1の後輪4に対する回転トルク指令値を制限するための駆動トルク制限装置43bと、障害物Bを避けるための操舵制御装置43cと、走行路の経路やその路面の路幅、対向車情報等の地図データが記憶されたデータ記憶装置43dと、制動装置43aによる制動量、駆動トルク制限装置43bによる制限量、及び操舵制御装置43cによる制御量を算出するための車両制御装置43eを備えている。車両制御装置43eは、データ記憶装置43dに記憶された地図データに基づき、車両本体1aの障害物Bまでの距離や走行速度を制限することを目的として、制動装置43aによる制動量、駆動トルク制限装置43bによる制限量、及び操舵制御装置43cによる制御量を算出する。
The vehicle body motion control unit 43 includes a braking device 43a that reduces or stops the traveling speed of the vehicle body 1a, a drive torque limiting device 43b for limiting the rotational torque command value for the rear wheel 4 of the dump truck 1, A steering control device 43c for avoiding the obstacle B, a data storage device 43d in which map data such as the route of the road, the road width of the road surface, and oncoming vehicle information is stored, the braking amount by the braking device 43a, and the driving torque A vehicle control device 43e for calculating a limit amount by the limit device 43b and a control amount by the steering control device 43c is provided. The vehicle control device 43e limits the braking amount and driving torque by the braking device 43a for the purpose of limiting the distance and traveling speed of the vehicle body 1a to the obstacle B based on the map data stored in the data storage device 43d. A limit amount by the device 43b and a control amount by the steering control device 43c are calculated.
制動装置43aとして、例えば後輪4の回転を制動させるディスクブレーキ等の機械的構造のメカニカルブレーキである。駆動トルク制限装置43bは、例えば後輪4の回転に対して電気的な抵抗を掛けて制動させる電気ブレーキ等のリターダブレーキである。データ記憶装置43dに記憶された地図データとしては、走行路の側部に設けられている路肩形状等の路肩情報も記憶されている。車両制御装置43eには、データ記憶装置43dに記憶されている地図データ、自己位置演算装置42cにて演算された自己位置情報、及び障害物計測装置41aにて計測された障害物情報が入力される。車両制御装置43eは、制動装置43a、駆動トルク制限装置43b及び操舵制御装置43cのそれぞれに接続されている。
The braking device 43a is a mechanical brake having a mechanical structure such as a disc brake for braking the rotation of the rear wheel 4, for example. The drive torque limiting device 43b is a retarder brake such as an electric brake that applies an electric resistance to the rotation of the rear wheel 4 to brake the rotation. As the map data stored in the data storage device 43d, road shoulder information such as a road shoulder shape provided on the side of the traveling road is also stored. The vehicle control device 43e receives map data stored in the data storage device 43d, self-position information calculated by the self-position calculation device 42c, and obstacle information measured by the obstacle measurement device 41a. The The vehicle control device 43e is connected to each of the braking device 43a, the drive torque limiting device 43b, and the steering control device 43c.
通信装置44は、自己位置演算装置42cに接続され、自己位置演算装置42cにおいて演算したダンプトラック1の自己位置情報を交通管制センタ15へ送信する。通信装置44は、障害物記憶装置41b及びデータ記憶装置43dに接続され、障害物記憶装置41bに記憶されている障害物位置データや、データ記憶装置43dに記憶されている地図データを、通信装置44を介して出力できる構成とされている。
The communication device 44 is connected to the self-position calculating device 42c and transmits the self-location information of the dump truck 1 calculated by the self-position calculating device 42c to the traffic control center 15. The communication device 44 is connected to the obstacle storage device 41b and the data storage device 43d, and transmits the obstacle position data stored in the obstacle storage device 41b and the map data stored in the data storage device 43d to the communication device. 44 is configured to be able to output via 44.
交通管制センタ15は、ダンプトラック1に搭載された通信装置44との間で情報を送受信するための通信装置51と、走行路の障害物形状等の障害物マップが記憶される障害物データ記憶装置52と、ダンプトラック1の通信装置44から交通管制センタ15の通信装置51に送信されてくる障害物情報と、障害物データ記憶装置52に記憶されている障害物マップとを比較する比較部としての障害物比較装置53と、障害物比較装置53での比較により障害物情報が障害物マップと相違する場合に、その障害物情報のうちの障害物変化情報を記憶させるための変化データ記憶装置54と、が備えられている。
The traffic control center 15 includes a communication device 51 for transmitting and receiving information to and from the communication device 44 mounted on the dump truck 1, and an obstacle data storage in which an obstacle map such as an obstacle shape of a traveling path is stored. The comparison unit that compares the obstacle information transmitted from the communication device 44 of the dump truck 1 to the communication device 51 of the traffic control center 15 with the obstacle map stored in the obstacle data storage device 52. When the obstacle information is different from the obstacle map as a result of comparison between the obstacle comparison device 53 and the obstacle comparison device 53, the change data storage for storing the obstacle change information in the obstacle information Device 54.
次いで、障害物検出システム40による障害物検出処理について、図13Aから図15を参照して説明する。図13Aは障害物検出時のパルスレーザPLによる走査状態を示す概略斜視図、図13Bは、障害物計測処理に用いる所定距離Fの説明図、図13Cは図13Bの平面視における説明図である。ここで、図13Aは、ダンプトラック1が走行路上の障害物Bを検出しながら走行している様子を示しており、図13Cにおける破線は、図13Bの平面視図における障害物位置を示す。図14は、ダンプトラック1による障害物検出処理を示すフローチャートである。
Next, obstacle detection processing by the obstacle detection system 40 will be described with reference to FIGS. 13A to 15. 13A is a schematic perspective view showing a scanning state by the pulse laser PL at the time of detecting an obstacle, FIG. 13B is an explanatory diagram of a predetermined distance F used for the obstacle measurement processing, and FIG. 13C is an explanatory diagram in a plan view of FIG. 13B. . Here, FIG. 13A shows a state where the dump truck 1 is traveling while detecting the obstacle B on the traveling path, and the broken line in FIG. 13C indicates the position of the obstacle in the plan view of FIG. 13B. FIG. 14 is a flowchart showing obstacle detection processing by the dump truck 1.
まず、図14の各ステップ順に沿って障害物検出処理の流れについて説明する。ダンプトラック1の走行中、障害物検出装置30は、図13Aに示すように、パルスレーザPLをダンプトラック1の前方に照射し、走行路12(図2参照)の路面上の障害物Bを計測し、これら路面の位置と障害物Bについての測距データを取得する(ステップS1、以下単に「S1」等と示す。)。このS1にて取得した測距データに基づいて、図13A及び図13Bに示すように、障害物検出装置30による走査面と路面と交差する交線Aを、障害物計測装置41aにて算出する(S2)。
First, the flow of the obstacle detection process will be described in the order of steps in FIG. During traveling of the dump truck 1, the obstacle detection device 30 irradiates the front of the dump truck 1 with the pulse laser PL as shown in FIG. 13A, and the obstacle B on the road surface of the traveling path 12 (see FIG. 2). Measurement is performed to obtain distance measurement data about the position of the road surface and the obstacle B (step S1, hereinafter simply referred to as “S1” or the like). Based on the distance measurement data acquired in S1, as shown in FIGS. 13A and 13B, the obstacle measurement device 41a calculates an intersection line A that intersects the scanning surface and the road surface by the obstacle detection device 30. (S2).
この後、障害物計測装置41aは、S2にて算出した交線Aから所定の距離F以上離れた測定点を、障害物計測点Pnとする(図13BのP1、P2、P3障害物計測点である。)(S3)。ここでいう所定距離Fとは、図13Cに示すように、パルスレーザPLと障害物Bとの交点(障害物計測点Pnに相当する)から、パルスレーザPLの光路を延長したときの路面との交点aまでの距離Fである。交点aは路面とパルスレーザPLとの交線A上の点であり、交線Aの軸方向は図13Cの紙面に垂直な方向に一致する。所定距離Fの大きさは、障害物計測装置41aにより計測したい障害物Bの高さに応じた値により定義される。
After that, the obstacle measuring device 41a sets the measurement points that are separated from the intersection line A calculated in S2 by a predetermined distance F or more as the obstacle measurement points Pn (P1, P2, and P3 obstacle measurement points in FIG. 13B). (S3). As shown in FIG. 13C, the predetermined distance F here refers to the road surface when the optical path of the pulse laser PL is extended from the intersection of the pulse laser PL and the obstacle B (corresponding to the obstacle measurement point Pn). Is the distance F to the intersection a. The intersection point a is a point on the intersection line A between the road surface and the pulse laser PL, and the axial direction of the intersection line A coincides with the direction perpendicular to the paper surface of FIG. 13C. The magnitude of the predetermined distance F is defined by a value corresponding to the height of the obstacle B to be measured by the obstacle measuring device 41a.
障害物計測装置41aは、ダンプトラック1の走行中に障害物計測点Pnに所定の大きさ及び形状の障害物を検出すると(S4/Yes)、この障害物計測点Pnの相対位置とダンプトラック1の現在位置から、障害物計測点Pnの絶対位置を算出する(S5)。ここで、ダンプトラック1の現在位置は通信衛星17に基づいて測定される。
When the obstacle measuring device 41a detects an obstacle having a predetermined size and shape at the obstacle measuring point Pn while the dump truck 1 is traveling (S4 / Yes), the relative position of the obstacle measuring point Pn and the dump truck are detected. From the current position of 1, the absolute position of the obstacle measurement point Pn is calculated (S5). Here, the current position of the dump truck 1 is measured based on the communication satellite 17.
そして、障害物計測装置41aは、障害物計測点Pnの絶対位置を障害物記憶装置41bに記憶させる(S6)。障害物計測装置41aは、ダンプトラック1の走行中に障害物計測点Pnに所定の大きさ及び形状の障害物を検出しないときは(S4/No)、S1へ戻る。
Then, the obstacle measuring device 41a stores the absolute position of the obstacle measuring point Pn in the obstacle storage device 41b (S6). When the obstacle measuring device 41a does not detect an obstacle having a predetermined size and shape at the obstacle measuring point Pn while the dump truck 1 is traveling (S4 / No), the obstacle measuring device 41a returns to S1.
一方、車輪速計測センサ42aにて計測した回転速度結果と、操舵角計測センサ42bにて計測した操舵角結果とに基づき、自己位置補正装置42dにて補正されたダンプトラック1の走行速度、前輪3の角速度、地面に固定された座標系(xg―yg座標系)でのダンプトラック1の位置及び姿勢が自己位置演算装置42cにて算出されて自己位置推定されている。そして、車両制御装置43eは、自己位置演算装置42cにて演算されたダンプトラック1の位置と、障害物記憶装置41bに記憶させたダンプトラック1の周囲の障害物の位置から、障害物までの最短距離が、障害物回避距離よりも大きいか判断する(S7)。上記「障害物回避距離」は、障害物がある場合に回避動作が必要であると判断するために設けられた閾値であり、速度に依存する変数である。障害物回避距離は、現在の走行速度に応じて閾値を動的に設定してもよいし、走行路12に対して設定された制限速度に応じて静的に設定してもよい。また、障害物回避距離は、速度に加えてダンプトラック1の積荷量に応じて更に詳細に設定してもよい。
On the other hand, based on the rotational speed result measured by the wheel speed measurement sensor 42a and the steering angle result measured by the steering angle measurement sensor 42b, the traveling speed of the dump truck 1 corrected by the self-position correcting device 42d, the front wheels The position and posture of the dump truck 1 in the coordinate system (x g- y g coordinate system) fixed to the ground at an angular velocity of 3 are calculated by the self-position calculating device 42c and self-position is estimated. And the vehicle control apparatus 43e is the position of the dump truck 1 calculated by the self-position calculating apparatus 42c and the position of the obstacle around the dump truck 1 stored in the obstacle storage apparatus 41b. It is determined whether the shortest distance is larger than the obstacle avoidance distance (S7). The “obstacle avoidance distance” is a threshold value provided for determining that an avoidance operation is necessary when there is an obstacle, and is a variable depending on the speed. The obstacle avoidance distance may be dynamically set according to the current travel speed, or may be set statically according to the speed limit set for the travel path 12. Further, the obstacle avoidance distance may be set in more detail in accordance with the load amount of the dump truck 1 in addition to the speed.
S7により、自己位置演算装置42cにて求めた位置と、障害物記憶装置41bに記憶させたダンプトラック1の周囲の障害物の位置との距離が、障害物回避距離よりも大きいか判断された(S7/Yes)場合は、図14に示す障害物検出処理が終了となる。
In S7, it is determined whether the distance between the position obtained by the self-position calculating device 42c and the position of the obstacle around the dump truck 1 stored in the obstacle storage device 41b is larger than the obstacle avoidance distance. In the case of (S7 / Yes), the obstacle detection process shown in FIG. 14 ends.
一方、S7により、自己位置演算装置42cにて求めた位置と、障害物記憶装置41bに記憶させたダンプトラック1の周囲の障害物の位置との距離が、障害物回距離以下と判断された場合(S7/No)、すなわち、障害物に衝突する危険があると判断されたときにあっては、この障害物を回避してダンプトラック1を走行させることができるか否かを判断する(S8)。回避可能な場合には(S8/Yes)、操舵等によりダンプトラック1に回避行動を取らせる(S9)。
On the other hand, in S7, the distance between the position obtained by the self-position calculating device 42c and the position of the obstacle around the dump truck 1 stored in the obstacle storage device 41b is determined to be equal to or less than the obstacle turning distance. In the case (S7 / No), that is, when it is determined that there is a risk of colliding with an obstacle, it is determined whether or not the dump truck 1 can be driven while avoiding the obstacle ( S8). When avoidance is possible (S8 / Yes), the dump truck 1 is caused to take an avoidance action by steering or the like (S9).
車両制御装置43eが回避動作を行うことができないと判断したときには(S8/No)、車体運動制御ユニット43の制動装置43a及び駆動トルク制限装置43bを制御してダンプトラック1の走行を停止させる(S10)。
When the vehicle control device 43e determines that the avoidance operation cannot be performed (S8 / No), the braking device 43a and the drive torque limiting device 43b of the vehicle body motion control unit 43 are controlled to stop the traveling of the dump truck 1 ( S10).
さらに、計測周期演算部61は、走行路において、レーザスポットのxg方向及びyg方向のグリッドマップを作製して、走行路面上の障害物の有無をこのグリッドマップで管理し、未検出のグリッドができるだけ少なくなるように、角度分解能Δθ(または、計測周期ΔT)を設定する。計測周期演算部61は、このグリッド情報をグリッドマップ記憶部63に記録することで、走行路面の管理やメンテナンスを効率的に実施できるようになる。また、ダンプトラック1は概略同一の走行路面を走行することになるので、同一のダンプトラック1及び複数のダンプトラック1から同一走行路面において同じ位置のグリッド情報が繰り返し得られる。しかも、ダンプトラック1は往復走行するものであり、往路走行中で走査した位置が復路でも同じ位置を走査することも可能である。従って、走行路面を往復する部位のグリッド情報を取得することも可能である。これらのグリッド情報を蓄積するように設定すれば、グリッドマップはより完全なものになり、未知検知領域を最小限に抑制することができる。
Furthermore, the measurement cycle calculation unit 61, the travel path, to prepare a grid map of the x g direction and y g direction of the laser spot, the presence or absence of an obstacle on the road surface managed by this grid map, undetected The angular resolution Δθ (or measurement period ΔT) is set so that the grid is as small as possible. The measurement cycle calculation unit 61 records the grid information in the grid map storage unit 63, thereby enabling efficient management and maintenance of the traveling road surface. Further, since the dump truck 1 travels on substantially the same traveling road surface, grid information at the same position on the same traveling road surface is repeatedly obtained from the same dump truck 1 and the plurality of dump trucks 1. Moreover, the dump truck 1 travels back and forth, and can scan the same position even if the position scanned during the forward travel is the return path. Therefore, it is also possible to acquire grid information of a part that reciprocates on the traveling road surface. If the grid information is set to be accumulated, the grid map becomes more complete, and the unknown detection area can be minimized.
次に、図15及び図16は、発明の第2実施形態に係るダンプトラック1を示す概略構成図である。ダンプトラック1は、第1の実施形態と同様、車両本体1aと、車両本体1a上に起伏可能に設けられた作業部としてのベッセル1bとを有し、また車両本体1aの前側上方に運転室2が設けられている。そして、走行可能に支持する左右の前輪3及び後輪4を備えた構成とされている。また、上側デッキ5の下側の中央部には、一対の建屋構造物6L、6Rが所定間隔を空けて設けられ、これら建屋構造物6L、6R間にラジエータ等の熱交換装置が設置されている。各建屋構造部6L、6Rの間の位置には、車両本体1aの走行方向の一側、例えば走行方向前方に存在する障害物Bの一部の相対位置を検出するために、計2台の障害物検出装置30L、30Rがそれぞれ取り付けられている。
15 and 16 are schematic configuration diagrams showing the dump truck 1 according to the second embodiment of the invention. Similar to the first embodiment, the dump truck 1 includes a vehicle main body 1a and a vessel 1b as a working portion provided on the vehicle main body 1a so as to be able to be raised and lowered, and a driver's cab above the vehicle main body 1a. 2 is provided. And it is set as the structure provided with the right-and-left front wheel 3 and the rear wheel 4 supported so that driving | running | working is possible. In addition, a pair of building structures 6L and 6R are provided at a predetermined interval in the lower central portion of the upper deck 5, and a heat exchange device such as a radiator is installed between the building structures 6L and 6R. Yes. In order to detect the relative position of a part of the obstacle B existing on one side in the traveling direction of the vehicle main body 1a, for example, the front in the traveling direction, the position between each building structure 6L, 6R is a total of two units. Obstacle detection devices 30L and 30R are respectively attached.
本第2実施形態においては、第1の実施形態と同様、LIDARシステムにより障害物の検出を行うものであり、この場合、2台の障害物検出装置30L、30Rはダンプトラック1の走行方向と直交する方向にパルスレーザの走査を行うのではなく、斜め方向に走査ラインAL、ARが設定されるようにしている。そして、この場合には、走査ラインALとARとは所定の位置で交差することになり、この交差位置Qを基準として、障害物検出の実行は走査ラインALについては、交差位置Qから一方の路肩、つまり左側の路肩まで、走査ラインARについては、交差位置Qから他方の路肩、つまり右側の路肩までについて、障害物検出を行うようにしている。
In the second embodiment, as in the first embodiment, an obstacle is detected by the LIDAR system. In this case, the two obstacle detection devices 30L and 30R are connected to the traveling direction of the dump truck 1. The scanning lines AL and AR are set in an oblique direction, instead of scanning with a pulse laser in the orthogonal direction. In this case, the scanning lines AL and AR intersect at a predetermined position, and the obstacle detection is performed on the scanning line AL from the intersection position Q on the basis of the intersection position Q. Obstacle detection is performed from the intersection position Q to the other road shoulder, that is, the right road shoulder, up to the road shoulder, that is, the left road shoulder.
障害物を検出する領域上の計測点間の2方向の距離(進行方向の距離ΔY、進行方向と垂直な方向の距離Δxg)のうち、最大となるものに着目し、評価値E=ΔxgMAXΔygMAXを評価関数とするが、角度分解能Δθ(または、計測周期ΔT)だけでなく、走査ラインAL、ARについて、交差位置Qにおける交差角αを適切に決定することで、より小さい障害物を確実に検出できるようになる。
Paying attention to the maximum of the two-direction distances (distance ΔY in the traveling direction and distance Δx g in the direction perpendicular to the traveling direction) between the measurement points on the obstacle detection area, the evaluation value E = Δx gMAX Δy Using gMAX as an evaluation function, not only the angular resolution Δθ (or measurement period ΔT), but also the scan line AL, AR, by appropriately determining the crossing angle α at the crossing position Q, a smaller obstacle Can be reliably detected.
なお、本発明は前述した実施形態に限定されるものではなく、様々な変形態様が含まれる。例えば、前述した実施形態は、本発明を分りやすく説明するためのものであり、本発明は、必ずしも説明した全ての構成を備えるものだけに限定されるものではない。
In addition, this invention is not limited to embodiment mentioned above, Various deformation | transformation aspects are included. For example, the above-described embodiments are for explaining the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to only having all the configurations described.
1 ダンプトラック
1a 車両本体
1b ベッセル
2 運転室
6L、6R 建屋構造物
12 走行路
30 障害物検出装置
33 ハルスレーザ走査部
34 パルスレーザ照射部
35 回転体
37 受光センサ
40 障害物検出システム
41 障害物計測ユニット
42 自己位置計測ユニット
42a 車輪速計測センサ
42b 操舵角計測センサ
43 車体運動制御ユニット DESCRIPTION OFSYMBOLS 1 Dump truck 1a Vehicle main body 1b Vessel 2 Driver's cab 6L, 6R Building structure 12 Runway 30 Obstacle detection device 33 Hals laser scanning part 34 Pulse laser irradiation part 35 Rotating body 37 Light receiving sensor 40 Obstacle detection system 41 Obstacle detection unit 41 42 Self-position measurement unit 42a Wheel speed measurement sensor 42b Steering angle measurement sensor 43 Car body motion control unit
1a 車両本体
1b ベッセル
2 運転室
6L、6R 建屋構造物
12 走行路
30 障害物検出装置
33 ハルスレーザ走査部
34 パルスレーザ照射部
35 回転体
37 受光センサ
40 障害物検出システム
41 障害物計測ユニット
42 自己位置計測ユニット
42a 車輪速計測センサ
42b 操舵角計測センサ
43 車体運動制御ユニット DESCRIPTION OF
Claims (4)
- 運搬用車両に設けられ、この運搬用車両の走行方向の前方位置の路面に向けてレーザを照射するレーザ照射部と、
路面からの反射光を受光する受光センサと、
前記レーザ照射部からのレーザの照射位置を前記運搬用車両の走行方向と交差する方向に走査させるレーザ走査部と、
前記運搬用車両の走行速度Vと、走査始点位置から走査終点位置までの走査時間及び、走査終了時点から次の走査期間の開始までの周期とからなる計測周期Thとに基づいて、前後のレーザの走査ライン間の走査間隔を調整するようになし、前記運搬用車両の走行速度が変化しても、前記走査間隔が所定値を超えないように前記計測周期Thを変化させる走査間隔調整部と、
を有する運搬用車両の障害物検出装置。 A laser irradiation unit that is provided in the transport vehicle and irradiates a laser toward a road surface in a forward position of the travel direction of the transport vehicle;
A light receiving sensor for receiving reflected light from the road surface;
A laser scanning unit that scans a laser irradiation position from the laser irradiation unit in a direction intersecting a traveling direction of the transporting vehicle;
Based on the traveling speed V of the transporting vehicle, the scanning time from the scanning start point position to the scanning end point position, and the measurement period Th including the period from the scanning end point to the start of the next scanning period, the front and rear lasers A scan interval adjusting unit that adjusts the scan interval between the scan lines, and changes the measurement cycle Th so that the scan interval does not exceed a predetermined value even if the traveling speed of the transporting vehicle changes. ,
An obstacle detection device for a transporting vehicle having: - 前記走査間隔調整部は、前記レーザ照射部の路面からの高さをH、ピッチ間隔をρ、レーザ照射方向をθ、計測分解能をΔθとして、路面上のレーザスポットのピッチH/cosρ|tanθ-tan(θ+Δθ)|間隔と、前記走査間隔(V×Th)とからなる計測メッシュの大きさとが各々所定値を超えないように前記計測周期Thを変化させることを特徴とする請求項1記載の運搬用車両の障害物検出装置。 The scanning interval adjustment unit has a height H from the road surface of the laser irradiation unit, a pitch interval of ρ, a laser irradiation direction of θ, and a measurement resolution of Δθ, and the pitch H / cos ρ | tan θ− of the laser spot on the road surface. The measurement period Th is changed so that the size of the measurement mesh composed of the tan (θ + Δθ) | interval and the scanning interval (V × Th) does not exceed a predetermined value. Obstacle detection device for transportation vehicles.
- 前記走査間隔調整部は、前記路面上の障害物をグリッドマップに記録して、前記路面の計測が繰り返される毎にグリッドマップデータを蓄積することによって、このグリッドマップの未知検知領域を減らすように、前記計測周期Thを変化させる構成としたことを特徴とする請求項1記載の運搬用車両の障害物検出装置。 The scanning interval adjusting unit records obstacles on the road surface in a grid map, and accumulates grid map data every time the road surface measurement is repeated, thereby reducing an unknown detection area of the grid map. The obstacle detection device for a transportation vehicle according to claim 1, wherein the measurement cycle Th is changed.
- 前記レーザ照射部は前記運搬用車両の左右両側に一対配置して、レーザの走査方向を交差するようにしてレーザを照射するように構成したことを特徴とする請求項1記載の運搬用車両の障害物検出装置。 2. The transport vehicle according to claim 1, wherein a pair of the laser irradiation units are arranged on both left and right sides of the transport vehicle so as to irradiate the laser so as to intersect a laser scanning direction. Obstacle detection device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015015868A JP2018054290A (en) | 2015-01-29 | 2015-01-29 | Obstacle detection device for transportation vehicle |
JP2015-015868 | 2015-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016121688A1 true WO2016121688A1 (en) | 2016-08-04 |
Family
ID=56543301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/052007 WO2016121688A1 (en) | 2015-01-29 | 2016-01-25 | Obstacle detection device for transport vehicle |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018054290A (en) |
WO (1) | WO2016121688A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106708059A (en) * | 2017-01-24 | 2017-05-24 | 厦门万久科技股份有限公司 | Channel selection-based real-time motion planning method for mobile robot |
WO2019053707A1 (en) * | 2017-09-12 | 2019-03-21 | Israel Aerospace Industries Ltd. | Active seeker head system |
WO2019167519A1 (en) * | 2018-02-27 | 2019-09-06 | 日立オートモティブシステムズ株式会社 | Noise-cancelling learning device and vehicle provided with same |
GB2576074A (en) * | 2018-06-01 | 2020-02-05 | Joy Global Underground Mining Llc | Methods and systems for controlling the heading of a mining machine |
US20210239799A1 (en) * | 2020-02-05 | 2021-08-05 | Caterpillar Inc. | Method and system for detecting an obstacle |
US11320830B2 (en) | 2019-10-28 | 2022-05-03 | Deere & Company | Probabilistic decision support for obstacle detection and classification in a working area |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7324026B2 (en) * | 2019-03-26 | 2023-08-09 | 株式会社トプコン | measuring device |
JP6945773B2 (en) * | 2019-07-22 | 2021-10-06 | 三菱電機株式会社 | Obstacle detector |
JP7481239B2 (en) * | 2020-11-24 | 2024-05-10 | 日立Astemo株式会社 | Electronic Control Unit |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62156408A (en) * | 1985-12-28 | 1987-07-11 | 株式会社小松製作所 | Apparatus for measuring properties of road surface |
JP2006329971A (en) * | 2005-04-27 | 2006-12-07 | Sanyo Electric Co Ltd | Detector |
JP2008033633A (en) * | 2006-07-28 | 2008-02-14 | Secom Co Ltd | Mobile robot |
JP2009110250A (en) * | 2007-10-30 | 2009-05-21 | Ihi Corp | Map creation device and method for determining traveling path of autonomous traveling object |
JP2011150473A (en) * | 2010-01-20 | 2011-08-04 | Ihi Aerospace Co Ltd | Autonomous traveling object |
JP2011196916A (en) * | 2010-03-23 | 2011-10-06 | Mitsubishi Electric Corp | Measuring vehicle, and road feature measuring system |
JP2011238025A (en) * | 2010-05-11 | 2011-11-24 | Nissan Motor Co Ltd | Travel control device |
-
2015
- 2015-01-29 JP JP2015015868A patent/JP2018054290A/en active Pending
-
2016
- 2016-01-25 WO PCT/JP2016/052007 patent/WO2016121688A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62156408A (en) * | 1985-12-28 | 1987-07-11 | 株式会社小松製作所 | Apparatus for measuring properties of road surface |
JP2006329971A (en) * | 2005-04-27 | 2006-12-07 | Sanyo Electric Co Ltd | Detector |
JP2008033633A (en) * | 2006-07-28 | 2008-02-14 | Secom Co Ltd | Mobile robot |
JP2009110250A (en) * | 2007-10-30 | 2009-05-21 | Ihi Corp | Map creation device and method for determining traveling path of autonomous traveling object |
JP2011150473A (en) * | 2010-01-20 | 2011-08-04 | Ihi Aerospace Co Ltd | Autonomous traveling object |
JP2011196916A (en) * | 2010-03-23 | 2011-10-06 | Mitsubishi Electric Corp | Measuring vehicle, and road feature measuring system |
JP2011238025A (en) * | 2010-05-11 | 2011-11-24 | Nissan Motor Co Ltd | Travel control device |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106708059A (en) * | 2017-01-24 | 2017-05-24 | 厦门万久科技股份有限公司 | Channel selection-based real-time motion planning method for mobile robot |
US11236970B2 (en) | 2017-09-12 | 2022-02-01 | Israel Aerospace Industries Ltd. | Active seeker head system |
WO2019053707A1 (en) * | 2017-09-12 | 2019-03-21 | Israel Aerospace Industries Ltd. | Active seeker head system |
WO2019167519A1 (en) * | 2018-02-27 | 2019-09-06 | 日立オートモティブシステムズ株式会社 | Noise-cancelling learning device and vehicle provided with same |
CN111742236B (en) * | 2018-02-27 | 2023-07-28 | 日立安斯泰莫株式会社 | Noise cancellation learning device and vehicle provided with same |
CN111742236A (en) * | 2018-02-27 | 2020-10-02 | 日立汽车系统株式会社 | Noise cancellation learning device and vehicle provided with same |
JPWO2019167519A1 (en) * | 2018-02-27 | 2021-01-14 | 日立オートモティブシステムズ株式会社 | Noise canceling learning device and vehicles equipped with it |
US11429108B2 (en) | 2018-02-27 | 2022-08-30 | Hitachi Astemo, Ltd. | Noise-cancelling learning device and vehicle provided with same |
US10982541B2 (en) | 2018-06-01 | 2021-04-20 | Joy Global Underground Mining Llc | Methods and systems for controlling the heading of a mining machine |
GB2576074B (en) * | 2018-06-01 | 2022-08-31 | Joy Global Underground Mining Llc | Methods and systems for controlling the heading of a mining machine |
GB2576074A (en) * | 2018-06-01 | 2020-02-05 | Joy Global Underground Mining Llc | Methods and systems for controlling the heading of a mining machine |
US11320830B2 (en) | 2019-10-28 | 2022-05-03 | Deere & Company | Probabilistic decision support for obstacle detection and classification in a working area |
US20210239799A1 (en) * | 2020-02-05 | 2021-08-05 | Caterpillar Inc. | Method and system for detecting an obstacle |
US11520009B2 (en) * | 2020-02-05 | 2022-12-06 | Caterpillar Inc. | Method and system for detecting an obstacle |
Also Published As
Publication number | Publication date |
---|---|
JP2018054290A (en) | 2018-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016121688A1 (en) | Obstacle detection device for transport vehicle | |
AU2018201164B2 (en) | Road-shoulder-detecting system and transportation vehicle for mining | |
US9568608B2 (en) | Peripheral object detection system and haulage vehicle | |
CN108140306B (en) | Obstacle monitoring device, vehicle control device, and work machine | |
US10800406B2 (en) | Mining machine, management system of mining machine, and management method of mining machine | |
US10712451B2 (en) | Anomaly detector for self-location estimation device and vehicle | |
JP6284741B2 (en) | Retreat support device | |
JP6718341B2 (en) | Mine work machine and its rear monitoring method | |
WO2017175361A1 (en) | Traveling vehicle and method for controlling traveling vehicle | |
US11835643B2 (en) | Work machine control system, work machine, and work machine control method | |
JP7199984B2 (en) | WORK VEHICLE CONTROL SYSTEM AND WORK VEHICLE CONTROL METHOD | |
JP2018151217A (en) | Scanner, work machine, and car stop detector | |
US11520009B2 (en) | Method and system for detecting an obstacle | |
US11059480B2 (en) | Collision avoidance system with elevation compensation | |
JP6293328B2 (en) | Road shoulder detection system and mine transport vehicle | |
JP6387135B2 (en) | Road shoulder detection system and mine transport vehicle | |
WO2024075577A1 (en) | Mining vehicle autonomous travel system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16743291 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.11.2017) |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16743291 Country of ref document: EP Kind code of ref document: A1 |