WO2016098708A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2016098708A1
WO2016098708A1 PCT/JP2015/084827 JP2015084827W WO2016098708A1 WO 2016098708 A1 WO2016098708 A1 WO 2016098708A1 JP 2015084827 W JP2015084827 W JP 2015084827W WO 2016098708 A1 WO2016098708 A1 WO 2016098708A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
lithium ion
secondary battery
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2015/084827
Other languages
English (en)
French (fr)
Inventor
丈史 莇
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/534,254 priority Critical patent/US11011774B2/en
Priority to JP2016564833A priority patent/JP6848435B2/ja
Publication of WO2016098708A1 publication Critical patent/WO2016098708A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium ion secondary battery including a lithium nickel composite oxide on a positive electrode and excellent in cycle characteristics at a high temperature, and a method for manufacturing the same.
  • Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have been widely put into practical use as batteries for notebook computers and mobile phones due to their advantages such as high energy density and excellent long-term reliability.
  • higher performance of electronic devices and use in electric vehicles have progressed, and further improvements in battery characteristics such as capacity, energy density, life, and safety are strongly desired.
  • a compound exhibiting a high discharge capacity As the positive electrode active material, it is preferable to use a compound exhibiting a high discharge capacity as the positive electrode active material.
  • a high-capacity compound a lithium nickel composite oxide in which a part of Ni in nickel lithium oxide (LiNiO 2 ) is substituted with another metal element is often used. Among these, those having a high Ni content have a high capacity and are particularly preferable.
  • a lithium ion secondary battery using a lithium nickel composite oxide having a high Ni content as a positive electrode active material has a higher initial discharge capacity than a conventional one, but discharges while repeating charge and discharge. There is a problem that the capacity decreases. For this reason, a lithium nickel composite oxide positive electrode material excellent in cycle characteristics has been studied.
  • Patent Document 1 a part of the Ni site of the layered rock salt structure LiNiO 2 serving as the positive electrode active material is replaced with Co and, if necessary, one or more elements of Al, Fe, Mn, and B to stabilize the crystal structure.
  • Battery capacity by repeating charge and discharge cycles by using a water-soluble polymer as a binder for the carbon material to be the negative electrode active material and suppressing swelling of the binder itself by the electrolyte It has been reported that the decrease in the amount can be suppressed.
  • An object of the present invention is to provide a lithium ion secondary battery having excellent cycle characteristics at a high temperature in a lithium ion secondary battery including a lithium nickel composite oxide having a high Ni content in a positive electrode.
  • the present invention is a lithium ion secondary battery including a positive electrode, a negative electrode, and an electrolytic solution, and the positive electrode has a general formula of LiNi x Co y Mn z O 2 (x, y, z are 0.75 ⁇ x ⁇ 0.85, respectively) , 0.05 ⁇ y ⁇ 0.15, and 0.10 ⁇ z ⁇ 0.20.), The lithium-ion secondary battery.
  • the present invention it is possible to provide a lithium ion secondary battery having excellent cycle characteristics at a high temperature in a lithium ion secondary battery containing a lithium nickel composite oxide having a high Ni content in the positive electrode.
  • FIG. 1 is a schematic configuration diagram of a laminated lithium ion secondary battery according to an embodiment of the present invention. It is a disassembled perspective view which shows the basic structure of a film-clad battery. It is sectional drawing which shows the cross section of the battery of FIG. 2 typically.
  • the positive electrode active material in the present embodiment includes a lithium nickel composite oxide represented by the following formula (A).
  • a lithium nickel composite oxide represented by the following formula (A) By including the lithium nickel composite oxide represented by the formula (A) in the positive electrode, good cycle characteristics can be achieved.
  • LiNi x Co y Mn z O 2 (A) (In the formula (A), x, y, and z are ranges of 0.75 ⁇ x ⁇ 0.85, 0.05 ⁇ y ⁇ 0.15, and 0.10 ⁇ z ⁇ 0.20, respectively, 0.78 ⁇ x ⁇ 0.82, 0.05 ⁇ y ⁇ 0.10, and 0.10 ⁇ z ⁇ 0.15.)
  • X + y + z is preferably 1 for x, y, and z in Formula (A), but may be 0.9 or more and 1.2 or less.
  • the lithium nickel composite oxide represented by the formula (A) is prepared, for example, by preparing nickel / cobalt / manganese based compound particle powder having a desired composition ratio in advance, and the nickel / cobalt / manganese based compound particle powder and lithium compound Can be obtained by mixing and baking.
  • the method for producing the nickel-cobalt-manganese compound particle powder is not particularly limited.
  • a metal salt containing nickel, cobalt, and manganese is converted into a mole of Ni: Co: Mn in x: y: z.
  • An aqueous solution and an alkali solution mixed so as to have a ratio are dropped into the alkali solution at the same time, and a reaction slurry containing nickel / cobalt / manganese compound particles is obtained by neutralization and precipitation reaction. It can be filtered, washed with water, and dried if necessary to obtain nickel / cobalt / manganese based compound particle powder (hydroxide, oxyhydroxide, oxide or mixture thereof).
  • the nickel / cobalt / manganese compound particle powder and the lithium compound are mixed such that Li: Ni: Co: Mn is 1: x: y: z in a molar ratio.
  • the nickel / cobalt / manganese compound particle powder is preferably a compound having an average particle diameter of behavioral particles of about 1 to 15 ⁇ m.
  • the behavior of nickel-cobalt-manganese compound particles The average particle size of the particles is preferably 1 ⁇ m or more in order to reduce the reactivity when added later and suppress diffusion into the particles. From the viewpoint of industrial production It is preferably 15 ⁇ m or less.
  • the lithium nickel composite oxide may be used alone or in combination of two or more.
  • the positive electrode according to the present embodiment preferably contains 75% by mass or more of the lithium nickel composite oxide in the positive electrode active material, more preferably 85% by mass or more, further preferably 90% by mass or more, and 95% by mass. % Or more is particularly preferable, and may be 100% by mass.
  • the positive electrode active material can be used as the positive electrode active material.
  • the other active material is not particularly limited, and a known positive electrode active material may be used.
  • a layered structure or spinel structure such as LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2).
  • a material in which these metal oxides are partially substituted with Al, Fe, P, Ti, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, etc. Can also be used. These active materials can be used individually by 1 type or in combination of 2 or more types.
  • binder for the positive electrode examples include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, Polyimide, polyamideimide, or the like can be used.
  • the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “higher energy” which are in a trade-off relationship. .
  • a conductive auxiliary material may be added to the coating layer containing the positive electrode active material for the purpose of reducing impedance.
  • the conductive auxiliary material include scaly, rod-like, and fibrous carbonaceous fine particles, such as graphite, carbon black, acetylene black, and vapor grown carbon fiber (VGCF (registered trademark) manufactured by Showa Denko).
  • the positive electrode current collector aluminum, aluminum alloy, or iron / nickel / chromium / molybdenum stainless steel is preferable.
  • the shape include foil, flat plate, and mesh.
  • the positive electrode can be produced by forming a positive electrode active material layer containing a positive electrode active material and a positive electrode binder on a positive electrode current collector.
  • the negative electrode active material according to the present embodiment is not particularly limited, and a known negative electrode active material can be used, but preferably contains artificial graphite and non-graphitizable carbon. By using artificial graphite and non-graphitizable carbon as the negative electrode active material, better cycle characteristics can be achieved.
  • Artificial graphite is graphitized in a relatively high temperature range of 2200 ° C. to 3000 ° C. using coal coke, pitch, heavy oil and the like as main raw materials.
  • the raw material is completely different from natural graphite which is mainly made of natural minerals.
  • artificial graphite is graphitized at the above-mentioned high temperature, so there are few impurities and electron conductivity. Since the resistance is low in this point, it is suitable for a negative electrode material of a lithium ion battery.
  • Non-graphitizable carbon is a substance that does not become graphite when heated in an inert atmosphere. Fine graphite crystals are arranged in random directions, with a size of several nanometers between crystals. It has a hole.
  • the negative electrode according to this embodiment preferably contains artificial graphite and non-graphitizable carbon in an amount of 75% by mass or more in the negative electrode active material, more preferably 85% by mass or more, and further preferably 90% by mass or more. It is particularly preferred to contain at least mass%, and it may be 100 mass%.
  • the negative electrode according to this embodiment is particularly preferably a mixed negative electrode of artificial graphite and non-graphitizable carbon as described above, and preferably contains 5% by mass or more of non-graphitizable carbon in the negative electrode active material. More preferably, it is more preferably 15% by mass or more.
  • the mass ratio of artificial graphite to be mixed with non-graphitizable carbon is preferably in the range of 80:20 to 95: 5, and 85:15 to 95: A range of 5 is more preferred.
  • the shape of the artificial graphite is not particularly limited, and examples thereof include spherical artificial graphite such as massive artificial graphite, flake shaped artificial graphite, and MCMB (mesophase micro beads). Among these, massive artificial graphite is preferable.
  • the shape of the non-graphitizable carbon is not particularly limited, and examples thereof include a lump shape, a flake shape, and a flake shape. Among these, a lump shape is preferable.
  • the ratio is the ratio of the length in the short axis direction (length in the shortest direction) to the length in the long axis direction (length in the longest direction) (short axis).
  • (/ major axis) is larger than 0.2, it can be determined as a spherical or massive shape.
  • the (minor axis) / (major axis) of the spherical graphite is preferably 0.3 or more, more preferably 0.5 or more.
  • Spherical graphite is manufactured using scaly graphite as a raw material, and has a structure in which scaly graphite is folded into a spherical shape. For this reason, a cut is observed in the spherical graphite, and it has a cabbage-like appearance in which the cut is directed in various directions. In addition, voids are observed on the fracture surface of the spherical graphite.
  • the crystal orientation is directed in various directions even after the rolling process at the time of electrode preparation, so that lithium ions can be easily moved between the electrodes.
  • voids suitable for holding the electrolyte solution can be obtained between the negative electrode active materials, so that a lithium ion secondary battery excellent in high output characteristics can be obtained.
  • the lump graphite has a uniform shape without the fact that it is observed with the above spherical graphite.
  • negative electrode active materials include, for example, carbon materials such as amorphous carbon, diamond-like carbon, and carbon nanotubes, silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, germanium oxide, phosphorus oxide, etc. And oxides such as Al, Si, Pb, S, Zn, Cd, Sb, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, and La. These active materials may be used alone or in combination of two or more, and may be added to the above artificial graphite and non-graphitizable carbon.
  • binder for the negative electrode polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, etc. are used. be able to.
  • SBR styrene butadiene rubber
  • a thickener such as carboxymethyl cellulose (CMC) can also be used.
  • the amount of the negative electrode binder used is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the negative electrode active material, from the viewpoint of sufficient binding force and high energy in a trade-off relationship.
  • the above binder for negative electrode can also be used as a mixture.
  • the negative electrode active material can be used together with a conductive auxiliary material.
  • a conductive auxiliary material include the same materials as those specifically exemplified in the positive electrode, and the amount used can be the same.
  • the negative electrode current collector aluminum, nickel, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
  • Examples of the shape include foil, flat plate, and mesh.
  • Examples of the method for forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method. After forming a negative electrode active material layer in advance, a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
  • non-aqueous solvents examples include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and other cyclic carbonates; dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), Chain carbonates such as dipropyl carbonate (DPC); propylene carbonate derivatives, aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate; ethers such as diethyl ether and ethyl propyl ether; trimethyl phosphate; Aprotic organic solvents such as phosphate esters such as triethyl phosphate, tripropyl phosphate, trioctyl phosphate and triphenyl phosphate, and fluorine compounds in which at least some of the hydrogen atoms of these compounds are substituted with fluorine atoms.
  • aprotic organic solvents and the like.
  • cyclic such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (MEC), dipropyl carbonate (DPC), etc.
  • chain carbonates are included.
  • Non-aqueous solvents can be used alone or in combination of two or more.
  • the supporting salts include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) A lithium salt such as 2 .
  • the supporting salt can be used singly or in combination of two or more. LiPF 6 is preferable from the viewpoint of cost reduction.
  • the electrolytic solution according to the present embodiment can further contain an additive.
  • the additive is not particularly limited, and examples thereof include a halogenated cyclic carbonate, an unsaturated cyclic carbonate, and a cyclic or chain disulfonic acid ester.
  • battery characteristics such as cycle characteristics can be improved. This is presumed to be because these additives decompose during charging / discharging of the lithium ion secondary battery to form a film on the surface of the electrode active material and suppress decomposition of the electrolytic solution and the supporting salt.
  • halogenated cyclic carbonate examples include compounds represented by the following formula (B).
  • A, B, C and D are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms or a halogenated alkyl group, and at least one of A, B, C and D One is a halogen atom or a halogenated alkyl group.
  • the number of carbon atoms of the alkyl group and the halogenated alkyl group is more preferably 1 to 4, and further preferably 1 to 3.
  • the halogenated cyclic carbonate is preferably a fluorinated cyclic carbonate.
  • the fluorinated cyclic carbonate include compounds in which some or all of the hydrogen atoms are substituted with fluorine atoms, such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • FEC fluoro-1,3-dioxolan-2-one
  • the content of the fluorinated cyclic carbonate is not particularly limited, but is preferably 0.01% by mass or more and 1% by mass or less in the electrolytic solution. By containing 0.01% by mass or more, a sufficient film forming effect can be obtained. Moreover, the gas generation by decomposition
  • the unsaturated cyclic carbonate is a cyclic carbonate having at least one carbon-carbon unsaturated bond in the molecule.
  • vinylene carbonate methyl vinylene carbonate, ethyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4,5- Vinylene carbonate compounds such as diethyl vinylene carbonate; 4-vinylethylene carbonate, 4-methyl-4-vinylethylene carbonate, 4-ethyl-4-vinylethylene carbonate, 4-n-propyl-4-vinylene ethylene carbonate, 5-methyl -4-vinylethylene carbonate, 4,4-divinylethylene carbonate, 4,5-divinylethylene carbonate, 4,4-dimethyl-5-methyleneethylene carbonate, 4,4-diethyl-5-methyle Vinyl ethylene carbonate compounds such as ethylene carbonate.
  • vinylene carbonate or 4-vinylethylene carbonate is preferable, and vinylene carbonate is particularly preferable.
  • the content of the unsaturated cyclic carbonate is not particularly limited, but is preferably 0.01% by mass or more and 10% by mass or less in the electrolytic solution. By containing 0.01% by mass or more, a sufficient film forming effect can be obtained. Moreover, gas generation by decomposition
  • cyclic or chain disulfonic acid ester examples include a cyclic disulfonic acid ester represented by the following formula (C) or a chain disulfonic acid ester represented by the following formula (D).
  • R 1 and R 2 are each independently a substituent selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a halogen group, and an amino group.
  • R 3 is an alkylene group having 1 to 5 carbon atoms, a carbonyl group, a sulfonyl group, a fluoroalkylene group having 1 to 6 carbon atoms, or an alkylene group or a fluoroalkylene unit having 2 to 6 carbon atoms bonded via an ether group.
  • a divalent group is shown.
  • R 1 and R 2 are preferably each independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a halogen group, and R 3 is an alkylene group having 1 or 2 carbon atoms. Or it is more preferable that it is a fluoroalkylene group.
  • Examples of preferable compounds of the cyclic disulfonic acid ester represented by the formula (C) include compounds represented by the following formulas (1) to (20).
  • R 4 and R 7 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluoroalkyl group having 1 to 5 carbon atoms, a carbon atom A polyfluoroalkyl group having 1 to 5 carbon atoms, —SO 2 X 3 (X 3 is an alkyl group having 1 to 5 carbon atoms), —SY 1 (Y 1 is an alkyl group having 1 to 5 carbon atoms), —COZ (Z Represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms) and an atom or group selected from a halogen atom.
  • R 5 and R 6 are each independently an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a phenoxy group, a fluoroalkyl group having 1 to 5 carbon atoms, or a polyalkyl having 1 to 5 carbon atoms.
  • R 4 and R 7 are preferably each independently a hydrogen atom, an alkyl group having 1 or 2 carbon atoms, a fluoroalkyl group having 1 or 2 carbon atoms, or a halogen atom.
  • 5 and R 6 are each independently an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluoroalkyl group having 1 to 3 carbon atoms, a polyfluoroalkyl group having 1 to 3 carbon atoms, A hydroxyl group or a halogen atom is more preferred.
  • Examples of preferable compounds of the chain disulfonic acid ester compound represented by the formula (D) include the following compounds.
  • the content of the cyclic or chain disulfonic acid ester is preferably 0.005 mol / L or more and 10 mol / L or less, more preferably 0.01 mol / L or more and 5 mol / L or less in the electrolytic solution. It is particularly preferably from 05 mol / L to 0.15 mol / L. By containing 0.005 mol / L or more, a sufficient film effect can be obtained. Further, when the content is 10 mol / L or less, an increase in the viscosity of the electrolyte and an accompanying increase in resistance can be suppressed.
  • An additive can be used alone or in combination of two or more.
  • it is preferable that the sum total of content of an additive is 10 mass% or less in an electrolyte solution, and it is more preferable that it is 5 mass% or less.
  • the separator may be any one as long as it suppresses conduction between the positive electrode and the negative electrode, does not inhibit the permeation of the charged body, and has durability against the electrolytic solution.
  • Specific examples of the material include polyolefins such as polypropylene and polyethylene, cellulose, polyethylene terephthalate, polyimide, polyvinylidene fluoride, and aramid. These can be used as microporous membranes, woven fabrics, non-woven fabrics and the like.
  • a separator made of an aramid microporous membrane is particularly suitable for enhancing the safety against overcharge of a lithium ion secondary battery mainly composed of the positive electrode material having a high nickel ratio of the present invention.
  • the exterior body can be appropriately selected as long as it is stable to the electrolytic solution and has a sufficient water vapor barrier property.
  • the outer package for example, a laminate film made of polypropylene, polyethylene or the like coated with aluminum, silica, or alumina can be used.
  • An exterior body may be comprised with a single member, and may be comprised combining several members. In particular, it is preferable to use an aluminum laminate film from the viewpoint of suppressing volume expansion.
  • the lithium ion secondary battery according to this embodiment can have a configuration in which an electrode element in which a positive electrode and a negative electrode are arranged to face each other and an electrolytic solution are included in an exterior body.
  • the secondary battery can be selected from various types such as a cylindrical type, a flat wound square type, a laminated square type, a coin type, a flat wound laminate type, and a laminated laminate type, depending on the structure and shape of the electrode. .
  • the present invention can be applied to any type of secondary battery, but a laminated laminate type is preferable in that it is inexpensive and has excellent flexibility in designing cell capacity by changing the number of electrode layers.
  • FIG. 1 is a schematic cross-sectional view showing a structure of an electrode element included in a laminated laminate type lithium ion secondary battery.
  • This electrode element is formed by alternately stacking one or more positive electrodes c and one or more negative electrodes a with a separator b interposed therebetween.
  • the positive electrode current collector e of each positive electrode c is welded and electrically connected to each other at an end portion not covered with the positive electrode active material layer, and a positive electrode terminal f is welded to the welded portion.
  • a negative electrode current collector d of each negative electrode a is welded and electrically connected to each other at an end portion not covered with the negative electrode active material layer, and a negative electrode terminal g is welded to the welded portion.
  • the secondary battery includes a battery element 20, a film outer package 10 that houses the battery element 20 together with an electrolyte, and a positive electrode tab 51 and a negative electrode tab 52 (hereinafter also simply referred to as “electrode tabs”). .
  • the battery element 20 is formed by alternately laminating a plurality of positive electrodes 30 and a plurality of negative electrodes 40 with a separator 25 interposed therebetween.
  • the electrode material 32 is applied to both surfaces of the metal foil 31.
  • the electrode material 42 is applied to both surfaces of the metal foil 41.
  • the secondary battery in FIG. 1 has electrode tabs drawn out on both sides of the outer package. However, in the secondary battery to which the present invention can be applied, the electrode tab is drawn out on one side of the outer package as shown in FIG. It may be a configuration. Although detailed illustration is omitted, each of the positive and negative metal foils has an extension on a part of the outer periphery. The extensions of the negative electrode metal foil are collected together and connected to the negative electrode tab 52, and the extensions of the positive electrode metal foil are collected together and connected to the positive electrode tab 51 (see FIG. 3). The portions gathered together in the stacking direction between the extension portions in this way are also called “current collecting portions”.
  • the film outer package 10 is composed of two films 10-1 and 10-2 in this example.
  • the films 10-1 and 10-2 are heat sealed to each other at the periphery of the battery element 20 and sealed.
  • the positive electrode tab 51 and the negative electrode tab 52 are drawn out in the same direction from one short side of the film outer package 10 sealed in this way.
  • FIGS. 2 and 3 show examples in which a cup portion is formed on one film 10-1 and a cup portion is not formed on the other film 10-2.
  • a configuration in which a cup portion is formed on both films (not shown) or a configuration in which neither cup portion is formed (not shown) may be employed.
  • the lithium ion secondary battery according to the present embodiment can be produced according to a normal method. Taking a laminated laminate type lithium ion secondary battery as an example, an example of a method for producing a lithium ion secondary battery will be described. First, in the dry air or inert atmosphere, the above-mentioned electrode element is formed by arranging the positive electrode and the negative electrode opposite to each other with a separator interposed therebetween. Next, this electrode element is accommodated in an exterior body (container), and an electrolytic solution is injected to impregnate the electrode with the electrolytic solution. Then, the opening part of an exterior body is sealed and a lithium ion secondary battery is completed.
  • a plurality of lithium ion secondary batteries according to this embodiment can be combined to form an assembled battery.
  • the assembled battery may have a configuration in which two or more lithium ion secondary batteries according to the present embodiment are used and connected in series, in parallel, or both. Capacitance and voltage can be freely adjusted by connecting in series and / or in parallel. About the number of the lithium ion secondary batteries with which an assembled battery is provided, it can set suitably according to battery capacity or an output.
  • the lithium ion secondary battery or its assembled battery according to this embodiment can be used in a vehicle.
  • Vehicles according to this embodiment include hybrid vehicles, fuel cell vehicles, and electric vehicles (all include four-wheel vehicles (passenger cars, trucks, buses and other commercial vehicles, light vehicles, etc.), motorcycles (motorcycles), and tricycles. ).
  • the vehicle according to the present embodiment is not limited to an automobile, and may be used as various power sources for other vehicles, for example, moving bodies such as trains.
  • the lithium ion secondary battery or its assembled battery according to this embodiment can be used for a power storage device.
  • a power storage device for example, a power source connected to a commercial power source supplied to a general household and a load such as a home appliance, and used as a backup power source or auxiliary power at the time of a power failure, Examples include photovoltaic power generation, which is also used for large-scale power storage for stabilizing power output with a large time fluctuation due to renewable energy.
  • PVdF Polyvinylidene fluoride
  • a positive electrode slurry was prepared by uniformly dispersing in NMP using a rotation and revolution type triaxial mixer excellent in stirring and mixing so as to be Mn 0.05 O 2 ).
  • the obtained positive electrode was cut into 13 cm ⁇ 7 cm and the negative electrode was cut into 12 cm ⁇ 6 cm.
  • a positive electrode active material layer was disposed on both sides of the positive electrode with a separator made of a 14 cm ⁇ 8 cm aramid microporous membrane and opposed to the positive electrode active material layer, thereby producing an electrode laminate.
  • the electrode laminate is sandwiched between two aluminum laminate films of 15 cm ⁇ 9 cm, the three sides excluding one long side are heat sealed with a width of 8 mm, the electrolyte is injected, and the remaining one side is heat sealed Thus, a laminated cell battery was produced.
  • Example 2 to 14 Except that the mixing ratio of Ni, Co, and Mn in the lithium nickel composite oxide of the positive electrode active material, the mixing ratio of the negative electrode active material, and the type and amount of the additive in the electrolytic solution were changed as shown in Table 1. A lithium ion secondary battery was produced in the same manner as in Example 1, and cycle characteristics were measured and an overcharge test was performed. The results are shown in Table 1.
  • Table 2 or Table 3 shows the mixing ratio of Ni, Co, Mn, and Al in the lithium nickel composite oxide of the positive electrode active material, the mixing ratio of the negative electrode active material, the type and amount of the additive in the electrolyte, and the separator.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that it was changed as described, and cycle characteristics were measured and an overcharge test was performed. The results are shown in Table 2 and Table 3.
  • the lithium ion secondary battery according to the present invention can be used in, for example, all industrial fields that require a power source and industrial fields related to transport, storage, and supply of electrical energy.
  • power sources for mobile devices such as mobile phones and laptop computers
  • power sources for mobile vehicles such as electric vehicles, hybrid cars, electric motorcycles, electric assist bicycles, electric vehicles, trains, satellites, submarines, etc .
  • It can be used for backup power sources such as UPS; power storage facilities for storing power generated by solar power generation, wind power generation, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 Ni含有量の高いリチウムニッケル複合酸化物を正極に含むリチウム二次電池において、高温度で優れたサイクル特性を有するリチウムイオン二次電池を提供する。本発明のリチウムイオン二次電池は、正極、負極および電解液を備えるリチウムイオン二次電池であって、正極が一般式LiNiCoMn(x、y、zはそれぞれ0.75≦x≦0.85、0.05≦y≦0.15、0.10≦z≦0.20の範囲である。)で表されるリチウムニッケル複合酸化物を含むことを特徴とする。

Description

リチウムイオン二次電池
 本発明は、正極にリチウムニッケル複合酸化物を備える、高温度におけるサイクル特性に優れたリチウムイオン二次電池およびその製造方法に関する。
 リチウムイオン二次電池等の非水電解液二次電池は、エネルギー密度が高い、長期信頼性に優れる等の利点により、ノート型パソコンや携帯電話等の電池として広く実用化が進められている。近年では、電子機器の高性能化や、電気自動車等への利用が進み、容量、エネルギー密度、寿命、安全性等の電池特性のさらなる改善が強く望まれている。
 電池のエネルギー密度および容量を高めるため、正極活物質には高い放電容量を示す化合物を用いることが好ましい。近年、高容量の化合物として、リチウム酸ニッケル(LiNiO)のNiの一部を他の金属元素で置換したリチウムニッケル複合酸化物が多く用いられている。その中でも、Ni含有量が高いものが高容量であり、特に好ましい。その一方で、Ni含有量の高いリチウムニッケル複合酸化物を、正極活物質として用いたリチウムイオン二次電池は、初期放電容量が従来のものと比較して高いものの、充放電を繰り返すうちに放電容量が低下するという課題がある。このため、サイクル特性に優れるリチウムニッケル複合酸化物正極材について検討がされている。
 特許文献1には、正極活物質となる層状岩塩構造LiNiOのNiサイトの一部を、Coおよび必要に応じAl、Fe、Mn、Bの1種以上の元素で置換して結晶構造の安定化等を図り、さらに、負極活物質となる炭素材料の結着剤として水溶性高分子を用い、電解液による結着剤自体の膨潤を抑制することで、充放電サイクルを繰り返すことによる電池容量の低下が抑制可能であることが報告されている。
特開2000-353525号
 上述した特許文献1に記載のリチウムイオン二次電池であっても、サイクル特性は十分でなく、充放電サイクルを繰り返すことで、次第に電池の容量が低下していく問題が残されている。依然として、より長期のサイクル特性を有する、Ni含有量の高いリチウムニッケル複合酸化物を正極活物質として用いたリチウムイオン二次電池が望まれている。さらに、様々な分野で使用されるために、より広範囲な温度条件での使用が可能であることが求められている。
 本発明の目的は、Ni含有量の高いリチウムニッケル複合酸化物を正極に含むリチウムイオン二次電池において、高温度で優れたサイクル特性を有するリチウムイオン二次電池を提供することにある。
 本発明は、正極、負極および電解液を備えるリチウムイオン二次電池であって、正極が一般式LiNiCoMn(x、y、zはそれぞれ0.75≦x≦0.85、0.05≦y≦0.15、0.10≦z≦0.20の範囲である。)で表されるリチウムニッケル複合酸化物を含む、リチウムイオン二次電池に関する。
 本発明によれば、Ni含有量の高いリチウムニッケル複合酸化物を正極に含むリチウムイオン二次電池において、高温度で優れたサイクル特性を有するリチウムイオン二次電池を提供することができる。
本発明の一実施形態に係るラミネート型リチウムイオン二次電池の概略構成図である。 フィルム外装電池の基本的構造を示す分解斜視図である。 図2の電池の断面を模式的に示す断面図である。
 以下、本発明の電極およびこの電極を使用することができるリチウムイオン二次電池の例を構成要素ごとに説明する。
<正極>
 本実施形態における正極活物質としては、下記の式(A)で表されるリチウムニッケル複合酸化物を含む。式(A)で表されるリチウムニッケル複合酸化物を正極に含むことで、良好なサイクル特性を達成できる。
 
  LiNiCoMn   (A)
 
(式(A)において、x、y、zはそれぞれ0.75≦x≦0.85、0.05≦y≦0.15、0.10≦z≦0.20の範囲であり、好ましくは、0.78≦x≦0.82、0.05≦y≦0.10、0.10≦z≦0.15である。)
 式(A)におけるx、y、zについて、x+y+zは好ましくは1であるが、0.9以上1.2以下であってもよい。
 式(A)で表されるリチウムニッケル複合酸化物は、例えば、あらかじめ所望の組成比率のニッケル・コバルト・マンガン系化合物粒子粉末を作製し、該ニッケル・コバルト・マンガン系化合物粒子粉末とリチウム化合物とを混合し、焼成して得ることができる。
 前記ニッケル・コバルト・マンガン系化合物粒子粉末の製造方法は特に限定されるものではないが、例えば、ニッケル、コバルト及びマンガンを含有する金属塩を、Ni:Co:Mnがx:y:zのモル比となるように混合した水溶液とアルカリ溶液とを、同時にアルカリ溶液中に滴下し、中和、沈殿反応を行ってニッケル・コバルト・マンガン系化合物粒子を含有する反応スラリーを得、該反応スラリーを濾過、水洗し、必要により乾燥して、ニッケル・コバルト・マンガン系化合物粒子粉末(水酸化物、オキシ水酸化物、酸化物又はそれらの混合物)を得ることができる。
 本発明に係るリチウムニッケル複合酸化物粒子粉末は、前記ニッケル・コバルト・マンガン系化合物粒子粉末とリチウム化合物を、Li:Ni:Co:Mnがモル比で1:x:y:zとなるように混合し、焼成して得られるものであり、前記ニッケル・コバルト・マンガン系化合物粒子粉末は、挙動粒子の平均粒径が1~15μm程度の化合物が好ましい。ニッケル・コバルト・マンガン系化合物粒子粉末の挙動粒子の平均粒径は、後に添加するときの反応性を低下させて粒子内部への拡散を抑制するために1μm以上が好ましく、工業的生産の面から15μm以下が好ましい。
 上記リチウムニッケル複合酸化物は、1種を単独で用いてもよく、また2種以上を組み合せて用いてもよい。
 本実施形態に係る正極は、上記リチウムニッケル複合酸化物を正極活物質中75質量%以上含むことが好ましく、85質量%以上含むことがより好ましく、90質量%以上含むことがさらに好ましく、95質量%以上含むことが特に好ましく、100質量%であってもよい。
 上記リチウムニッケル複合酸化物に加えて、その他の活物質を正極活物質として用いることができる。その他の活物質としては、特に限定されず、公知の正極活物質を用いてよい。例えば、LiMnO、LiMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造またはスピネル構造を有するマンガン酸リチウム;LiCoO、LiNiOまたはこれらの遷移金属の一部を他の金属で置き換えたもの;LiNi1/3Co1/3Mn1/3等の特定の遷移金属が半数を超えないリチウム遷移金属酸化物;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;およびLiFePO等のオリビン構造を有するもの等が挙げられる。さらに、これらの金属酸化物をAl、Fe、P、Ti、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等により一部置換した材料も使用することができる。これらの活物質は、1種を単独で、または2種以上を組合せて用いることができる。
 正極用結着剤としては、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を用いることができる。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質100質量部に対して、2~10質量部が好ましい。
 正極活物質を含む塗工層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、鱗片状、煤状、線維状の炭素質微粒子等、例えば、グラファイト、カーボンブラック、アセチレンブラック、気相法炭素繊維(昭和電工製VGCF(登録商標))等が挙げられる。
 正極集電体としては、アルミニウム、アルミニウム合金、鉄・ニッケル・クロム・モリブデン系のステンレスが好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
 正極は、正極集電体上に、正極活物質と正極用結着剤を含む正極活物質層を形成することで作製することができる。
<負極>
 本実施形態に係る負極活物質は特に限定されず公知の負極活物質を用いることができるが、人造黒鉛および難黒鉛化炭素を含むことが好ましい。負極活物質に人造黒鉛および難黒鉛化炭素を用いることで、より良好なサイクル特性を達成できる。
 人造黒鉛とは、石炭コークス、ピッチ、重質油などを主原料として、2200℃~3000℃という比較的に高い温度領域で黒鉛化処理されたものである。天然鉱物を主原料とする天然黒鉛とは、原料が全く異なる。リチウムイオン電池においては、電池の安全性の観点から金属不純物が少ないことがより望ましいが、一般的には人造黒鉛は、上記の高い温度で黒鉛化処理をするので、不純物が少なく、電子伝導性の点では抵抗が低いので、リチウムイオン電池の負極材には適している。
 難黒鉛化炭素とは、不活性雰囲気中で加熱しても黒鉛にならない物質であり、微小な黒鉛の結晶がでたらめな方向に配置され、結晶と結晶の間に数nm(ナノメートル)の大きさの空孔を有している。
 本実施形態に係る負極は、人造黒鉛および難黒鉛化炭素を負極活物質中75質量%以上含むことが好ましく、85質量%以上含むことがより好ましく、90質量%以上含むことがさらに好ましく、95質量%以上含むことが特に好ましく、100質量%であってもよい。また、本実施形態に係る負極は、前記記載の人造黒鉛と難黒鉛化炭素の混合負極が特段に好ましく、難黒鉛化炭素を負極活物質中に5質量%以上含むことが好ましく、10質量%以上含むことがより好ましく、15質量%以上含むことが特に好ましい。
 本発明の一実施形態において、良好なサイクル特性を得るためには、混合する人造黒鉛と難黒鉛化炭素の質量比は、80:20~95:5の範囲が好ましく、85:15~95:5の範囲がより好ましい。
 人造黒鉛の形状としては、特に限定されないが、塊状人造黒鉛、りん片状人造黒鉛、MCMB(メゾフェーズ マイクロ ビーズ)等球状の人造黒鉛が挙げられ、これらのうち塊状人造黒鉛が好ましい。難黒鉛化炭素の形状としては、特に限定されないが、塊状やフレーク状やりん片状の形状が挙げられ、これらのうち塊状が好ましい。
 負極活物質に含まれる炭素の形状が球状または塊状であることは、SEM(走査型顕微鏡)観察により確認することができる。
 負極活物質のSEM画像においては、その短軸方向(長さが最も短い方向の長さ)と長軸方向(長さが最も長い方向の長さ)の長さの比である(短軸)/(長軸)が0.2よりも大きい場合は球状または塊状の形状と判断することができる。なお、球状黒鉛の(短軸)/(長軸)は、好ましくは0.3以上、より好ましくは0.5以上であるのが良い。
 球状の黒鉛は、鱗片状の黒鉛を原料として製造され、鱗片状黒鉛が折り畳まれて球形化した構造を有している。このため、球状の黒鉛には片理が観察され、片理が種々の方向に向かうキャベツ状の外観を有している。また、球状の黒鉛の破断面には、空隙が観察される。負極活物質として球状の黒鉛を含むことにより、電極作製時の圧延工程後も結晶の配向がいろいろな方向を向くため、電極間のリチウムイオンの移動がスムーズに行われやすくなる。さらに、球状黒鉛を用いることにより、負極活物質間に電解液の保持に適した空隙を得ることができるので、高出力特性に優れたリチウムイオン二次電池を得ることができる。
 塊状の黒鉛においては、上記球状の黒鉛で観察されるような片理は観察されず、均質な形状を有している。
 その他の負極活物質としては、例えば、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ等の炭素材料、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、酸化ゲルマニウム、酸化リン等の酸化物、Al、Si、Pb、S、Zn、Cd、Sb、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、La等の金属が挙げられる。これらの活物質は、1種を単独で、もしくは2種以上を組合せて用いてもよく、上記の人造黒鉛および難黒鉛化炭素に加えることもできる。
 負極用結着剤としては、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を用いることができる。前記のもの以外にも、スチレンブタジエンゴム(SBR)等が挙げられる。SBR系エマルジョンのような水系の結着剤を用いる場合、カルボキシメチルセルロース(CMC)等の増粘剤を用いることもできる。使用する負極用結着剤の量は、トレードオフの関係にある十分な結着力と高エネルギー化の観点から、負極活物質100質量部に対して、0.5~20質量部が好ましい。上記の負極用結着剤は、混合して用いることもできる。
 負極活物質は、導電補助材と共に用いることができる。導電補助材としては、具体的には、上記正極において具体的に例示したものと同様のものを挙げることができ、その使用量も同様とすることができる。
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
 負極活物質層の形成方法としては、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法等が挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を形成して、負極集電体としてもよい。
<電解液>
 本実施形態に係るリチウムイオン二次電池の電解液としては特に限定されないが、電池の動作電位において安定な非水溶媒と支持塩を含む非水電解液が好ましい。
 非水溶媒の例としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;ジエチルエーテル、エチルプロピルエーテル等のエーテル類、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリオクチル、リン酸トリフェニル等のリン酸エステル類等の非プロトン性有機溶媒、及び、これらの化合物の水素原子の少なくとも一部をフッ素原子で置換したフッ素化非プロトン性有機溶媒等が挙げられる。
 これらの中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(MEC)、ジプロピルカーボネート(DPC)等の環状または鎖状カーボネート類を含むことが好ましい。
 非水溶媒は、1種を単独で、または2種以上を組み合わせて使用することができる。
 支持塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiN(CFSO等のリチウム塩が挙げられる。支持塩は、1種を単独で、または2種以上を組み合わせて使用することができる。低コスト化の観点からはLiPFが好ましい。
 本実施形態に係る電解液は、さらに添加剤を含むことができる。
 添加剤としては特に限定されるものではないが、ハロゲン化環状カーボネート、不飽和環状カーボネート、及び、環状または鎖状ジスルホン酸エステル等が挙げられる。これらの化合物を添加することにより、サイクル特性等の電池特性を改善することができる。これは、これらの添加剤がリチウムイオン二次電池の充放電時に分解して電極活物質の表面に皮膜を形成し、電解液や支持塩の分解を抑制するためと推定される。
 ハロゲン化環状カーボネートとしては、例えば、下記式(B)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 式(B)において、A、B、CおよびDは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基またはハロゲン化アルキル基であり、A、B、CおよびDの少なくともひとつは、ハロゲン原子またはハロゲン化アルキル基である。アルキル基およびハロゲン化アルキル基の炭素数は1~4であることがより好ましく、1~3であることがさらに好ましい。
 一実施形態において、ハロゲン化環状カーボネートはフッ素化環状カーボンネートであることが好ましい。フッ素化環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の一部または全部の水素原子をフッ素原子に置換した化合物等を挙げることができ、中でも、4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート:FEC)が好ましい。
 フッ素化環状カーボネートの含有量は、特に制限されるものではないが、電解液中0.01質量%以上1質量%以下であることが好ましい。0.01質量%以上含有することにより十分な皮膜形成効果が得られる。また、含有量が1質量%以下であるとフッ素化環状カーボネート自体の分解によるガス発生を抑制することができる。本実施形態では、特に、0.8質量%以下がさらに好ましい。フッ素化環状カーボネートの含有量を0.8質量%以下とすることにより、負極活物質の活性低下を抑制し、良好なサイクル特性を維持できる。
 不飽和環状カーボネートは、分子内に炭素-炭素不飽和結合を少なくとも1つ有する環状カーボネートであり、例えば、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、4,5-ジエチルビニレンカーボネート等のビニレンカーボネート化合物;4-ビニルエチレンカーボネート、4-メチル-4-ビニルエチレンカーボネート、4-エチル-4-ビニルエチレンカーボネート、4-n-プロピル-4-ビニレンエチレンカーボネート、5-メチル-4-ビニルエチレンカーボネート、4,4-ジビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4,4-ジメチル-5-メチレンエチレンカーボネート、4,4-ジエチル-5-メチレンエチレンカーボネート等のビニルエチレンカーボネート化合物等が挙げられる。中でも、ビニレンカーボネート又は4-ビニルエチレンカーボネートが好ましく、ビニレンカーボネートが特に好ましい。
 不飽和環状カーボネートの含有量は、特に制限されるものではないが、電解液中0.01質量%以上10質量%以下であることが好ましい。0.01質量%以上含有することにより十分な皮膜形成効果が得られる。また、含有量が10質量%以下であると不飽和環状カーボネート自体の分解によるガス発生を抑制することができる。本実施形態では、特に、負極活物質の活性低下を抑制する観点から、5質量%以下がより好ましい。
 環状または鎖状ジスルホン酸エステルとしては、例えば、下記式(C)で表される環状ジスルホン酸エステル、または下記式(D)で表される鎖状ジスルホン酸エステルを挙げることができる。
Figure JPOXMLDOC01-appb-C000002
 式(C)において、R、Rは、それぞれ独立して、水素原子、炭素数1~5のアルキル基、ハロゲン基、アミノ基からなる群の中から選ばれる置換基である。Rは炭素数1~5のアルキレン基、カルボニル基、スルホニル基、炭素数1~6のフルオロアルキレン基、または、エーテル基を介してアルキレン単位もしくはフルオロアルキレン単位が結合した炭素数2~6の2価の基を示す。
 式(C)において、R、Rは、それぞれ独立して、水素原子、炭素数1~3のアルキル基またはハロゲン基であることが好ましく、Rは、炭素数1または2のアルキレン基またはフルオロアルキレン基であることがより好ましい。
 式(C)で表される環状ジスルホン酸エステルの好ましい化合物としては、例えば以下の式(1)~(20)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 式(D)において、RおよびRは、それぞれ独立して、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、-SO(Xは炭素数1~5のアルキル基)、-SY(Yは炭素数1~5のアルキル基)、-COZ(Zは水素原子、または炭素数1~5のアルキル基)、およびハロゲン原子から選ばれる原子または基を示す。RおよびRは、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、フェノキシ基、炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、炭素数1~5のフルオロアルコキシ基、炭素数1~5のポリフルオロアルコキシ基、水酸基、ハロゲン原子、-NX(XおよびXは、それぞれ独立して、水素原子、または炭素数1~5のアルキル基)、および-NYCONY(Y~Yは、それぞれ独立して、水素原子、または炭素数1~5のアルキル基)から選ばれる原子または基を示す。
 式(D)において、RおよびRは、それぞれ独立して、水素原子、炭素数1もしくは2のアルキル基、炭素数1もしくは2のフルオロアルキル基、またはハロゲン原子であることが好ましく、RおよびRは、それぞれ独立して、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフルオロアルキル基、炭素数1~3のポリフルオロアルキル基、水酸基またはハロゲン原子であることがより好ましい。
 式(D)で表される鎖状ジスルホン酸エステル化合物の好ましい化合物としては、例えば以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000005
 環状または鎖状ジスルホン酸エステルの含有量は、電解液中0.005mol/L以上10mol/L以下であることが好ましく、0.01mol/L以上5mol/L以下であることがより好ましく、0.05mol/L以上0.15mol/L以下が特に好ましい。0.005mol/L以上含有することにより、十分な皮膜効果を得ることができる。また、含有量が10mol/L以下であると電解液の粘性の上昇、およびそれに伴う抵抗の増加を抑制することができる。
 添加剤は1種を単独で、または2種以上を混合して用いることができる。2種以上の添加剤を組合せて使用する場合、添加剤の含有量の合計が、電解液中10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
<セパレータ>
 セパレータは、正極および負極の導通を抑制し、荷電体の透過を阻害せず、電解液に対して耐久性を有するものであれば、いずれであってもよい。具体的な材質としては、ポリプロピレン、ポリエチレン等のポリオレフィン、セルロース、ポリエチレンテレフタレート、ポリイミド、ポリフッ化ビニリデン、アラミド等が挙げられる。これらは、微多孔膜、織物、不織布等として用いることができる。特にアラミド微多孔膜からなるセパレータは、本発明のニッケル比率の高い正極材を主材とするリチウムイオン二次電池の過充電等に対する安全性を高める上で特に好適である。
<外装体>
 外装体としては、電解液に安定で、かつ十分な水蒸気バリア性を持つものであれば、適宜選択することができる。例えば、積層ラミネート型の二次電池の場合、外装体としては、例えば、アルミニウム、シリカ、アルミナをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルムを用いることができる。外装体は、単一の部材で構成してもよいし、複数の部材を組合せて構成してもよい。特に、体積膨張を抑制する観点からアルミニウムラミネートフィルムを用いることが好ましい。
<リチウムイオン二次電池の構成>
 本実施形態に係るリチウムイオン二次電池は、正極および負極が対向配置された電極素子と、電解液とが外装体に内包された構成とすることができる。二次電池は、電極の構造や形状等の違いにより、円筒型、扁平捲回角型、積層角型、コイン型、扁平捲回ラミネート型、積層ラミネート型の種々のタイプを選択することができる。本発明はいずれのタイプの二次電池にも適用することができるが、安価かつ電極積層数の変更によるセル容量の設計の自由度に優れているという点で、積層ラミネート型が好ましい。
 図1は、積層ラミネート型のリチウムイオン二次電池が有する電極素子の構造を示す模式的断面図である。この電極素子は、1つ又は複数の正極cおよび1つ又は複数の負極aが、セパレータbを挟みつつ交互に積み重ねられて形成されている。各正極cが有する正極集電体eは、正極活物質層に覆われていない端部で互いに溶接されて電気的に接続され、さらにその溶接箇所に正極端子fが溶接されている。各負極aが有する負極集電体dは、負極活物質層に覆われていない端部で互いに溶接され電気的に接続され、さらのその溶接箇所に負極端子gが溶接されている。
 さらに別の態様としては、図2および図3のような構造の二次電池としてもよい。この二次電池は、電池要素20と、それを電解質と一緒に収容するフィルム外装体10と、正極タブ51および負極タブ52(以下、これらを単に「電極タブ」ともいう)とを備えている。
 電池要素20は、図3に示すように、複数の正極30と複数の負極40とがセパレータ25を間に挟んで交互に積層されたものである。正極30は、金属箔31の両面に電極材料32が塗布されており、負極40も、同様に、金属箔41の両面に電極材料42が塗布されている。
 図1の二次電池は電極タブが外装体の両側に引き出されたものであったが、本発明を適用しうる二次電池は図2のように電極タブが外装体の片側に引き出された構成であってもよい。詳細な図示は省略するが、正極および負極の金属箔は、それぞれ、外周の一部に延長部を有している。負極金属箔の延長部は一つに集められて負極タブ52と接続され、正極金属箔の延長部は一つに集められて正極タブ51と接続される(図3参照)。このように延長部どうし積層方向に1つに集めた部分は「集電部」などとも呼ばれる。
 フィルム外装体10は、この例では、2枚のフィルム10-1、10-2で構成されている。フィルム10-1、10-2どうしは電池要素20の周辺部で互いに熱融着されて密閉される。図3では、このように密閉されたフィルム外装体10の1つの短辺から、正極タブ51および負極タブ52が同じ方向に引き出されている。
 当然ながら、異なる2辺から電極タブがそれぞれ引き出されていてもよい。また、フィルムの構成に関し、図2、図3では、一方のフィルム10-1にカップ部が形成されるとともに他方のフィルム10-2にはカップ部が形成されていない例が示されているが、この他にも、両方のフィルムにカップ部を形成する構成(不図示)や、両方ともカップ部を形成しない構成(不図示)なども採用しうる。
<リチウムイオン二次電池の製造方法>
 本実施形態によるリチウムイオン二次電池は、通常の方法に従って作製することができる。積層ラミネート型のリチウムイオン二次電池を例に、リチウムイオン二次電池の製造方法の一例を説明する。まず、乾燥空気または不活性雰囲気において、正極および負極をセパレータを介して対向配置して、前述の電極素子を形成する。次に、この電極素子を外装体(容器)に収容し、電解液を注入して電極に電解液を含浸させる。その後、外装体の開口部を封止してリチウムイオン二次電池を完成する。
<組電池>
 本実施形態に係るリチウムイオン二次電池を複数組み合わせて組電池とすることができる。組電池は、例えば、本実施形態に係るリチウムイオン二次電池を2つ以上用い、直列、並列又はその両方で接続した構成とすることができる。直列および/または並列接続することで容量および電圧を自由に調節することが可能になる。組電池が備えるリチウムイオン二次電池の個数については、電池容量や出力に応じて適宜設定することができる。
<車両>
 本実施形態に係るリチウムイオン二次電池またはその組電池は、車両に用いることができる。本実施形態に係る車両としては、ハイブリッド車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バス等の商用車、軽自動車等)のほか、二輪車(バイク)や三輪車を含む)が挙げられる。なお、本実施形態に係る車両は自動車に限定されるわけではなく、他の車両、例えば電車等の移動体の各種電源として用いることもできる。
<蓄電装置>
 本実施形態に係るリチウムイオン二次電池またはその組電池は、蓄電装置に用いることができる。本実施形態に係る蓄電装置としては、例えば、一般家庭に供給される商用電源と家電製品等の負荷との間に接続され、停電時等のバックアップ電源や補助電力として使用されるものや、太陽光発電等の、再生可能エネルギーによる時間変動の大きい電力出力を安定化するための、大規模電力貯蔵用としても使用されるものが挙げられる。
 以下、本実施形態を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
<正極活物質の調製>
 3mol/lの硫酸ニッケルと硫酸コバルトおよび硫酸マンガンをNi:Co:Mn=80:15:5になるように混合した水溶液と5.0mol/lアンモニア水溶液を、同時に反応槽内に供給した。反応槽は、羽根付き攪拌機で常に攪拌を行い、同時にpH=11.1±0.1となるように2mol/lの水酸化ナトリウム水溶液を自動供給した。生成したニッケル・コバルト・マンガン水酸化物はオーバーフローされ、オーバーフロー管に連結された濃縮槽で濃縮し、反応槽へ循環を行い、反応槽と沈降槽中のニッケル・コバルト・マンガン水酸化物濃度が4mol/lになるまで40時間反応を行った。反応後、取り出した懸濁液を、フィルタープレスを用いて水洗を行った後、乾燥を行い、Ni:Co:Mn=80:15:5のニッケル・コバルト・マンガン水酸化物粒子を得た。得られたニッケル・コバルト・マンガン水酸化物粒子粉末と炭酸リチウム、リチウム/(ニッケル+コバルト+マンガン)のモル比が1.03となるように、各々所定量を十分混合し、この混合物を大気中で、930℃にて8時間後、960℃で2時間焼成し、解砕した。得られたリチウムニッケル複合酸化物(LiNi0.8Co0.15Mn0.05)は、平均粒子径が8μmであった。
<リチウムイオン二次電池の作製>
 結着剤としてポリフッ化ビニリデン(PVdF)を正極活物質の質量に対し3質量%、これ以外の残部は、調製した平均粒子径8μmの層状リチウムニッケル複合酸化物(LiNi0.8Co0.15Mn0.05)となるように、攪拌混合に優れた自転公転式3軸ミキサーを用いてNMP中に均一に分散させて正極スラリーを調製した。厚さ20μmのアルミニウム箔の正極集電体にコーターを用いて正極スラリーを均一に塗布し、NMPを蒸発させて乾燥後、裏面も同様にコーティングし、乾燥後ロールプレスにて密度を調整し、集電体の両面に正極活物質層を作製した。単位面積当たりの正極活物質層の質量は、50mg/cmであった。
 負極活物質として平均粒子径10μmの非晶質炭素系の表面被覆を有する塊状人造黒鉛を91質量%、塊状難黒鉛化炭素を5質量%(人造黒鉛と難黒鉛化炭素の質量比=95:5)、結着剤としてSBRを2質量%、増粘剤としてCMCを1質量%、カーボンブラックを1質量%添加し、水に分散させて負極スラリーを調製した。厚さ10μmの銅箔の負極集電体にコーターを用いて負極スラリーを均一に塗布し、水分を蒸発させて乾燥後、ロールプレスにて密度を調整し、負極活物質層を作製した。単位面積当たりの負極活物質層の質量は、30mg/cmであった。
 電解液は、エチレンカーボネート(EC):ジエチルカーボネート(DEC)=30:70(体積%)の溶媒に、電解質として1mol/LのLiPFを溶解した。
 得られた正極を13cmx7cm、負極を12cmx6cmに切断した。14cmx8cmのアラミド微多孔膜からなるセパレータで正極の両面を覆い、その上に正極活物質層と対向するように負極活物質層を配置し、電極積層体を作製した。次に、電極積層体を15cmx9cmの2枚のアルミラミネートフィルムで挟み、長辺の片側を除いた3辺を幅8mmで熱封止し、電解液を注入した後、残りの一辺を熱封止して、ラミネートセルの電池を作製した。
<容量維持率の測定>
 45℃の恒温槽中で500回の充放電サイクル試験を行い、その容量維持率を測定し、寿命を評価した。充電は、1Cの定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行い、総充電時間を2.5時間行った。放電は、1Cで定電流放電を2.5Vまで行った。充放電サイクル試験後の容量を測定し、充放電サイクル試験前の容量に対する割合を算出した。結果を表1に示す。
<過充電試験>
 作製した電池についてJISC8712記載の過充電試験を実施した。電池は積層体部分を平板な押さえ板で、電池の厚みに合わせて定寸で固定した。過充電試験は、10Aで行った。判定基準を次のとおりとした。電池の電圧約6Vで電池の表面温度が95℃に到達し、ガス放出機構部が開口して電池機能が停止したものを◎判定とし、10Vに到達後でガスが噴出せずに試験を終了したものを○判定、発煙したものを×判定とした。
[実施例2~14]
 正極活物質のリチウムニッケル複合酸化物中のNi、Co、Mnの混合比率、負極活物質の混合比率、電解液中の添加剤の種類および量それぞれについて表1に示したとおりに変えた以外は実施例1と同様にリチウムイオン二次電池を作製し、サイクル特性の測定および過充電試験を行った。結果を表1に示す。
[比較例1~36]
 正極活物質のリチウムニッケル複合酸化物中のNi、Co、Mn、Alの混合比率、負極活物質の混合比率、電解液中の添加剤の種類および量、セパレータそれぞれについて表2または表3に示したとおりに変えた以外は実施例1と同様にリチウムイオン二次電池を作製し、サイクル特性の測定および過充電試験を行った。結果を表2および表3に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 実施例では45℃という高温度下における、500回の充放電サイクル試験後であっても、いずれも試験前に近い容量を保持できることが確認された。
 本発明によるリチウムイオン二次電池は、例えば、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野において利用することができる。具体的には、携帯電話、ノートパソコン等のモバイル機器の電源;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車等を含む電動車両、電車、衛星、潜水艦等の移動・輸送用媒体の電源;UPS等のバックアップ電源;太陽光発電、風力発電等で発電した電力を貯める蓄電設備;等に、利用することができる。
  a 負極
  b セパレータ
  c 正極
  d 負極集電体
  e 正極集電体
  f 正極端子
  g 負極端子
  10 フィルム外装体
  20 電池要素
  25 セパレータ
  30 正極
  40 負極
 
 

Claims (11)

  1.  正極、負極および電解液を備えるリチウムイオン二次電池であって、正極が下記式(A)で表されるリチウムニッケル複合酸化物を含む、リチウムイオン二次電池。
     
      LiNiCoMn   (A)
     
    (式(A)において、x、y、zはそれぞれ0.75≦x≦0.85、0.05≦y≦0.15、0.10≦z≦0.20の範囲である。)
  2.  前記式(A)で表されるリチウムニッケル複合酸化物を正極活物質中75質量%以上含む、請求項1に記載のリチウムイオン二次電池。
  3.  前記負極が、人造黒鉛および難黒鉛化炭素を含む、請求項1または2に記載のリチウムイオン二次電池。
  4.  前記人造黒鉛および難黒鉛化炭素を負極活物質中75質量%以上含む、請求項3に記載のリチウムイオン二次電池。
  5.  前記難黒鉛化炭素を負極活物質中5質量%以上含む、請求項3または4に記載のリチウムイオン二次電池。
  6.  前記人造黒鉛と前記難黒鉛化炭素の質量比が、80:20~95:5の範囲である、請求項3から5のいずれか1項に記載のリチウムイオン二次電池。
  7.  前記電解液が環状ジスルホン酸エステルを含む、請求項1から6のいずれか1項に記載のリチウムイオン二次電池。
  8.  請求項1から7のいずれか1項に記載のリチウムイオン二次電池を複数個備える組電池。
  9.  請求項1から7のいずれか1項に記載のリチウムイオン二次電池、または請求項8に記載の組電池を搭載した車両。
  10.  請求項1から7のいずれか1項に記載のリチウムイオン二次電池、または請求項8に記載の組電池を備える蓄電装置。
  11.  電極素子と電解液と外装体とを有するリチウムイオン二次電池の製造方法であって、
     正極と、負極と、を対向配置して電極素子を作製する工程と、
     前記電極素子と、電解液と、を外装体の中に封入する工程と、
    を含み、
     前記正極が、請求項1に記載の式(A)で表されるリチウムニッケル複合酸化物を含む、リチウムイオン二次電池の製造方法。
PCT/JP2015/084827 2014-12-16 2015-12-11 リチウムイオン二次電池 WO2016098708A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/534,254 US11011774B2 (en) 2014-12-16 2015-12-11 Lithium-ion secondary battery
JP2016564833A JP6848435B2 (ja) 2014-12-16 2015-12-11 リチウムイオン二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014254122 2014-12-16
JP2014-254122 2014-12-16
JP2015061426 2015-03-24
JP2015-061426 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016098708A1 true WO2016098708A1 (ja) 2016-06-23

Family

ID=56126598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084827 WO2016098708A1 (ja) 2014-12-16 2015-12-11 リチウムイオン二次電池

Country Status (3)

Country Link
US (1) US11011774B2 (ja)
JP (1) JP6848435B2 (ja)
WO (1) WO2016098708A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030176A1 (ja) * 2016-08-09 2018-02-15 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2018043369A1 (ja) * 2016-08-29 2018-03-08 株式会社Gsユアサ 非水電解質蓄電素子
KR20180026325A (ko) * 2016-09-02 2018-03-12 삼성전자주식회사 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10535892B2 (en) * 2017-05-30 2020-01-14 Global Graphene Group, Inc. Shape-conformable alkali metal battery having a conductive and deformable quasi-solid polymer electrode
US11394058B2 (en) 2017-06-02 2022-07-19 Global Graphene Group, Inc. Method of producing shape-conformable alkali metal-sulfur battery
US11335946B2 (en) 2017-06-02 2022-05-17 Global Graphene Group, Inc. Shape-conformable alkali metal-sulfur battery
US10454141B2 (en) 2017-06-30 2019-10-22 Global Graphene Group, Inc. Method of producing shape-conformable alkali metal-sulfur battery having a deformable and conductive quasi-solid electrode
US10873083B2 (en) 2017-11-30 2020-12-22 Global Graphene Group, Inc. Anode particulates or cathode particulates and alkali metal batteries
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430617B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11158907B2 (en) * 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430621B1 (ja) * 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430623B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430618B1 (ja) * 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302768A (ja) * 1997-04-24 1998-11-13 Fuji Photo Film Co Ltd リチウムイオン非水電解質二次電池
JP2002270159A (ja) * 2001-03-09 2002-09-20 Sony Corp 電 池
JP2005011713A (ja) * 2003-06-19 2005-01-13 Kureha Chem Ind Co Ltd リチウム二次電池用正極材およびその製造方法
JP2010092706A (ja) * 2008-10-08 2010-04-22 Univ Of Fukui 非水電解質二次電池用正極材料
JP2010097756A (ja) * 2008-10-15 2010-04-30 Sony Corp 二次電池
JP2012119093A (ja) * 2010-11-29 2012-06-21 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法、ならびに該正極活物質を用いた非水系電解質二次電池
JP2013201052A (ja) * 2012-03-26 2013-10-03 Automotive Energy Supply Corp リチウムイオン二次電池
JP2014225430A (ja) * 2013-05-14 2014-12-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353525A (ja) 1999-06-10 2000-12-19 Toyota Central Res & Dev Lab Inc 非水電解液二次電池
JP4337875B2 (ja) * 2006-12-29 2009-09-30 ソニー株式会社 正極合剤、ならびに非水電解質二次電池およびその製造方法
KR102522750B1 (ko) * 2007-04-05 2023-04-17 미쯔비시 케미컬 주식회사 이차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
KR101057162B1 (ko) * 2008-12-01 2011-08-16 삼성에스디아이 주식회사 음극활물질, 이를 구비하는 음극 및 리튬이차전지
EP2535974B1 (en) * 2010-02-08 2016-10-26 NEC Energy Devices, Ltd. Nonaqueous electrolyte secondary battery
US8524113B2 (en) * 2010-09-27 2013-09-03 Long Time Technology Corp., LTD. Anode material of lithium-ion secondary battery and preparation method thereof
JP5682318B2 (ja) 2011-01-12 2015-03-11 トヨタ自動車株式会社 全固体電池
JP5802513B2 (ja) 2011-10-14 2015-10-28 株式会社日立製作所 二次電池用負極、二次電池用負極を用いた非水電解質二次電池
WO2014133165A1 (ja) 2013-03-01 2014-09-04 日本電気株式会社 リチウムイオン二次電池
US9107516B2 (en) * 2013-06-11 2015-08-18 Display Technologies, Llc Merchandising system with pusher assembly
KR102391094B1 (ko) * 2014-04-08 2022-04-28 테슬라, 인크. 에너지 저장 장치, 그 애노드 및 에너지 저장 장치의 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302768A (ja) * 1997-04-24 1998-11-13 Fuji Photo Film Co Ltd リチウムイオン非水電解質二次電池
JP2002270159A (ja) * 2001-03-09 2002-09-20 Sony Corp 電 池
JP2005011713A (ja) * 2003-06-19 2005-01-13 Kureha Chem Ind Co Ltd リチウム二次電池用正極材およびその製造方法
JP2010092706A (ja) * 2008-10-08 2010-04-22 Univ Of Fukui 非水電解質二次電池用正極材料
JP2010097756A (ja) * 2008-10-15 2010-04-30 Sony Corp 二次電池
JP2012119093A (ja) * 2010-11-29 2012-06-21 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法、ならびに該正極活物質を用いた非水系電解質二次電池
JP2013201052A (ja) * 2012-03-26 2013-10-03 Automotive Energy Supply Corp リチウムイオン二次電池
JP2014225430A (ja) * 2013-05-14 2014-12-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565083B (zh) * 2016-08-09 2022-06-14 松下知识产权经营株式会社 非水电解质二次电池
CN109565083A (zh) * 2016-08-09 2019-04-02 松下知识产权经营株式会社 非水电解质二次电池
JPWO2018030176A1 (ja) * 2016-08-09 2019-06-06 パナソニックIpマネジメント株式会社 非水電解質二次電池
US11024837B2 (en) 2016-08-09 2021-06-01 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
WO2018030176A1 (ja) * 2016-08-09 2018-02-15 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2018043369A1 (ja) * 2016-08-29 2018-03-08 株式会社Gsユアサ 非水電解質蓄電素子
CN109643828A (zh) * 2016-08-29 2019-04-16 株式会社杰士汤浅国际 非水电解质蓄电元件
JPWO2018043369A1 (ja) * 2016-08-29 2019-06-24 株式会社Gsユアサ 非水電解質蓄電素子
EP3506412A4 (en) * 2016-08-29 2020-04-01 GS Yuasa International Ltd. ENERGY STORAGE DEVICE WITH WATER-FREE ELECTROLYTE
JP7137757B2 (ja) 2016-08-29 2022-09-15 株式会社Gsユアサ 非水電解質蓄電素子
CN109643828B (zh) * 2016-08-29 2023-03-07 株式会社杰士汤浅国际 非水电解质蓄电元件
KR20180026325A (ko) * 2016-09-02 2018-03-12 삼성전자주식회사 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
KR102460956B1 (ko) * 2016-09-02 2022-11-08 삼성에스디아이 주식회사 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지

Also Published As

Publication number Publication date
JPWO2016098708A1 (ja) 2017-09-28
US20180261878A1 (en) 2018-09-13
US11011774B2 (en) 2021-05-18
JP6848435B2 (ja) 2021-03-24

Similar Documents

Publication Publication Date Title
JP6848435B2 (ja) リチウムイオン二次電池
JP5255143B2 (ja) 正極材料、これを用いたリチウムイオン二次電池、及び正極材料の製造方法
KR100881637B1 (ko) 저온 출력 특성이 개선된 리튬 이차전지
CN107408686B (zh) 用于锂离子二次电池的阴极活性物质、其制造方法及包含其的锂离子二次电池
JP6965745B2 (ja) リチウムイオン二次電池
KR20120129926A (ko) 정극 재료, 그 제조 방법, 비수 이차 전지용 정극 및 비수 이차 전지
KR101108189B1 (ko) 음극 활물질 및 이를 채용한 전극과 리튬 전지
WO2017155021A1 (ja) リチウムイオン二次電池
JP6787310B2 (ja) リチウムイオン二次電池
KR20150009285A (ko) 집전체 구조 및 이를 채용한 전극과 리튬 전지
JPWO2018051667A1 (ja) リチウムイオン二次電池
WO2016152876A1 (ja) リチウムイオン二次電池、およびその製造方法
US20230387384A1 (en) Method for Manufacturing Positive Electrode for Lithium Secondary Battery and Positive Electrode for Lithium Secondary Battery Manufactured Thereby
KR20200075209A (ko) 음극 활물질, 그의 제조 방법 및 그를 포함하는 리튬이차전지
JP6794982B2 (ja) リチウムイオン二次電池
JP5855737B2 (ja) リチウムイオン電池
JP2013131427A (ja) ラミネート電池
WO2016093246A1 (ja) リチウムイオン二次電池
KR101527532B1 (ko) 리튬 확산성이 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지
JP6812966B2 (ja) リチウムイオン二次電池用負極および二次電池
JP6809449B2 (ja) リチウムイオン二次電池
JP6984661B2 (ja) リチウムイオン二次電池
JPWO2013084840A1 (ja) 非水電解質二次電池及びそれを用いた組電池
WO2020255489A1 (ja) 負極材、負極、電池セル
WO2023095755A1 (ja) 多孔金属を含む集電体及び有機硫黄系活物質を含む非水電解質二次電池用電極、当該電極を含む非水電解質二次電池並びに当該電極の製造のための有機硫黄系活物質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869913

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564833

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15534254

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869913

Country of ref document: EP

Kind code of ref document: A1