WO2016088704A1 - 電動パワーステアリング装置 - Google Patents
電動パワーステアリング装置 Download PDFInfo
- Publication number
- WO2016088704A1 WO2016088704A1 PCT/JP2015/083559 JP2015083559W WO2016088704A1 WO 2016088704 A1 WO2016088704 A1 WO 2016088704A1 JP 2015083559 W JP2015083559 W JP 2015083559W WO 2016088704 A1 WO2016088704 A1 WO 2016088704A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steering
- torque
- electric power
- control
- command value
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/046—Controlling the motor
- B62D5/0463—Controlling the motor calculating assisting torque from the motor based on driver input
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D1/00—Steering controls, i.e. means for initiating a change of direction of the vehicle
- B62D1/24—Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted
- B62D1/28—Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted non-mechanical, e.g. following a line or other known markers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D1/00—Steering controls, i.e. means for initiating a change of direction of the vehicle
- B62D1/24—Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted
- B62D1/28—Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted non-mechanical, e.g. following a line or other known markers
- B62D1/286—Systems for interrupting non-mechanical steering due to driver intervention
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D15/00—Steering not otherwise provided for
- B62D15/02—Steering position indicators ; Steering position determination; Steering aids
- B62D15/021—Determination of steering angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D15/00—Steering not otherwise provided for
- B62D15/02—Steering position indicators ; Steering position determination; Steering aids
- B62D15/027—Parking aids, e.g. instruction means
- B62D15/0285—Parking performed automatically
Definitions
- the present invention relates to an electric power steering apparatus having functions of automatic steering control (automatic driving mode, parking assist mode, etc.) and manual steering control, and applying an assist force by a motor to a steering system of a vehicle.
- the present invention relates to an electric power steering apparatus having a function of switching the control system between a torque control system for controlling motor output torque and a position / speed control system for controlling the steering angle of steering.
- a fade processing time (gradual change time) from torque control (normal control) to automatic steering position / speed control and a fade processing time (gradual change time) from position / speed control to torque control are provided separately.
- the present invention relates to an electric power steering apparatus.
- An electric power steering device that includes a motor control device and applies a steering assist force (assist force) to the vehicle steering system by the rotational force of the motor is configured to drive the motor driving force through a reducer, such as a gear or a belt. With this transmission mechanism, a steering assist force is applied to the steering shaft or the rack shaft.
- a conventional electric power steering apparatus performs feedback control of the motor current in order to accurately generate the torque of the steering assist force.
- the motor applied voltage is adjusted so that the difference between the steering assist command value (current command value) and the motor current detection value is small.
- the adjustment of the motor applied voltage is generally performed by PWM (pulse width). This is done by adjusting the duty of modulation) control.
- a general configuration (column system) of an electric power steering apparatus will be described with reference to FIG. 5, via tie rods 6a and 6b, and further connected to steered wheels 8L and 8R via hub units 7a and 7b.
- the column shaft 2 is provided with a torque sensor 10 that detects the steering torque of the handle 1, and a motor 20 that assists the steering force of the handle (steering wheel) 1 is connected to the column shaft 2 via the reduction gear 3. It is connected.
- the control unit (ECU) 30 that controls the electric power steering apparatus is supplied with electric power from the battery 13 and also receives an ignition key signal via the ignition key 11.
- the control unit 30 calculates a steering assist command value of an assist (steering assist) command based on the steering torque Ts detected by the torque sensor 10 and the vehicle speed Vs detected by the vehicle speed sensor 12, and obtains the steering assist command value.
- the current supplied to the motor 20 is controlled by the voltage control value Vref subjected to compensation or the like.
- the rudder angle sensor 14 is not essential and may not be provided, and may be obtained from a rotation sensor connected to the motor 20.
- control unit 30 Controller Area Network
- vehicle speed Vs can also be received from the CAN 40.
- the control unit 30 can be connected to a non-CAN 41 that exchanges communications, analog / digital signals, radio waves, and the like other than the CAN 40.
- control unit 30 is mainly composed of a CPU (including an MPU, MCU, etc.). General functions executed by a program inside the CPU are shown in FIG. The configuration is as shown.
- the function and operation of the control unit 30 will be described with reference to FIG. 2.
- the steering torque Ts from the torque sensor 10 and the vehicle speed Vs from the vehicle speed sensor 12 are input to the current command value calculation unit 31, and the current command value calculation unit 31.
- the calculated current command value Iref1 is added by the adding unit 32A and the compensation signal CM from the compensating unit 34 for improving the characteristics, and the added current command value Iref2 is limited to the maximum value by the current limiting unit 33.
- the current command value Irefm whose maximum value is limited is input to the subtraction unit 32B and subtracted from the motor current detection value Im.
- the motor 20 is PWM driven via the inverter 37 with the PWM signal whose duty is calculated.
- the motor current value Im of the motor 20 is detected by the motor current detection means 38, and is input to the subtraction unit 32B and fed back.
- the compensating unit 34 adds the detected or estimated self-aligning torque (SAT) 34-3 to the inertia compensation value 34-2 by the adding unit 34-4, and further adds the convergence result to the convergence by the adding unit 34-5.
- the control value 34-1 is added, and the addition result is input to the adder 32A as a compensation signal CM to improve the characteristics.
- automatic steering control is performed in which a target steering angle is set based on data such as a camera (image) and a distance sensor, and the actual steering angle follows the target steering angle.
- the electric power steering device can automatically operate by controlling the position of the actual steering angle so as to follow the steering angle command value.
- back parking is performed by controlling an actuator (motor) based on the relationship between the movement distance of the vehicle stored in advance and the turning angle.
- parallel parking is automatically performed. That is, the automatic steering control device recognizes a parking space from a positioning sensor such as an around view monitor or an ultrasonic sensor, and outputs a steering angle command value to the EPS side.
- the EPS guides the vehicle to the parking space by controlling the actual steering angle so as to follow the steering angle command value.
- FIG. 3 shows a control system of an electric power steering apparatus having an automatic steering control function.
- Various data are input to the automatic steering command apparatus 50 from a camera and a positioning sensor (ultrasonic sensor, etc.),
- the angle command value ⁇ tc is input to the position / speed control unit 51 in the EPS actuator function via CAN or the like, and the automatic steering execution command is input to the automatic steering execution determination unit 52 in the EPS actuator function via CAN or the like.
- a steering torque Ts is also input to the automatic steering execution determination unit 52.
- the actual steering angle ⁇ r from the EPS sensor is input to the position / speed control unit 51, and the determination result of the automatic steering execution determination unit 52 is input to the torque command value gradual change switching unit 54.
- the steering torque Ts of the EPS sensor is input to the torque control unit 53 in the EPS power assist function, and the steering assist torque command value Tc from the torque control unit 53 is input to the torque command value gradual change switching unit 54.
- the position / speed control torque command value Tp from the position / speed control unit 51 is also input to the torque command value gradual change switching unit 54, and the steering assist is performed according to the determination result of the automatic steering execution determination unit 52 (ON / OFF of the automatic steering command).
- the torque command value Tc and the position / speed control torque command value Tp are switched and output as a motor torque command value, and the motor is driven and controlled via the current control system.
- the normal power assist is a torque control system
- a position / speed control system such as a rudder angle.
- the effect cannot be fully exhibited in switching between torque control and position / speed control.
- the cause is that in the case of a system that can input disturbance from the steering wheel, such as electric power steering, the position / speed control assists in the opposite direction when switching to normal power assist control because torque assist is performed to suppress the disturbance. There are cases.
- an object of the present invention is to gradually change the control torque for torque control and the command value for position / speed control in the fade process (gradual change process) for switching the control method. Accordingly, an object of the present invention is to provide an electric power steering apparatus that can switch a control method smoothly and self-steerlessly.
- the present invention relates to an electric power steering apparatus having a torque sensor for detecting a steering torque and a motor control apparatus for controlling a motor for applying an assist torque for assisting steering to a steering system of a vehicle.
- the motor control method is achieved by providing a function of switching between a torque control method for controlling the motor output torque and a position / speed control method for controlling the steering angle of the steering.
- the object of the present invention is that the predetermined switching trigger is ON / OFF of an automatic steering command, or that the predetermined switching trigger is ON / OFF of a switching command given by an internal determination of the steering torque.
- the fade process is started, and the steering angle command value after gradually changing the position / speed control is gradually changed from the actual steering angle to the steering angle command value.
- the torque control gradually increases the assist torque level from 0% to 100%.
- the steering angle command value after the gradual change of the position / speed control is gradually changed with an exponential curve, and the assist torque level is gradually changed linearly. Or by fading the fading characteristics of the fading process, or fading processing time 1 from the torque control system to the position / speed control system, and from the position / speed control system to the torque control system.
- the fade processing time 2 is set to be different from the above, or the fade processing time 2 is shorter than the fade processing time 1, or the predetermined switching trigger is performed by the automatic steering execution determination unit.
- the automatic steering execution determination unit inputs a steering angle command value and calculates an angular velocity and an angular acceleration; and
- a map determination unit that determines the steering angle command value, the angular velocity, and the angular acceleration with a determination map corresponding to the vehicle speed, respectively, and a diagnosis unit that diagnoses based on the determination result of the map determination unit
- a disturbance observer for compensating for inertia and friction of the steering wheel is further provided, or the disturbance observer estimates a disturbance estimation torque from an output difference of an LPF that performs band limitation with an inverse model of the steering system.
- the inertial and friction values of the steering system are greater than or equal to the inertial and frictional values of the inverse model.
- the steering angle command value after gradual change is gradually changed from the actual steering angle to the steering angle command value, and the actual steering angle follows the steering angle command value after gradual change. Since the position / speed control is performed as described above, the torque command value for the position / speed control can be automatically and smoothly changed, which provides a gentle feeling for the driver.
- the steering torque command value is gradually changed from the steering angle command value to the actual steering angle even if excessive steering torque fluctuations occur.
- the position / speed control automatically compensates for variations. Thereby, the malfunction that a driver
- the fade processing time from the position control to the torque control is shortened with respect to the fade processing time for fading from the normal steering torque control to the automatic steering position control.
- the control is shifted relatively slowly so that the driver does not feel a sense of incongruity.
- the driver's intention is quickly communicated in order to avoid danger, and control is performed in a short time. There is an advantage that can be switched.
- summary of an electric power steering apparatus (column system). It is a block diagram which shows the structural example of the control system of an electric power steering apparatus. It is a block diagram which shows the structural example of the control system of the electric power steering apparatus which has a parking assistance mode (automatic steering) function. It is a characteristic view which shows the operation
- the conventional torque gradual change control in the electric power steering apparatus has a problem that when the torque control and the position / speed control are switched to each other, there is a problem that the control is not switched smoothly and an unintended self-steer occurs. For this reason, in the present invention, the control torque for torque control and the command value for position / speed control are gradually changed to realize a process of switching control smoothly and without self-steering.
- the motor control method is switched between a torque control method for controlling the motor output torque and a position / speed control method for controlling the steering angle in accordance with a predetermined switching opportunity (for example, an automatic steering command). It has a function and realizes a smooth and self-steering fade process.
- the fade processing time from the normal control torque control to the automatic steering position control for example, 500 to 1000 ms
- the fade processing time from the position control to the torque control for example, 20 to 100 ms.
- a disturbance observer is provided to compensate for the inertia and friction of the steering wheel, and the driver can easily perform steering intervention with respect to automatic steering.
- the present invention includes a single pinion system whose schematic configuration is shown in FIG. 5, a dual pinion system whose schematic is shown in FIG. 6, a dual pinion system (modified example) whose schematic configuration is shown in FIG.
- the present invention can be applied to the rack coaxial system schematically shown in FIG. 8 and the rack offset system schematically shown in FIG. 9, the column system will be described below.
- FIG. 10 shows a configuration example of the present invention, in which the steering torque Ts is input to the torque control unit 102 and also to the automatic steering execution determination unit 120, and the steering assist torque command value Tc from the torque control unit 102 is Input to the torque gradual change unit 103. Also, the steering angle command value ⁇ tc from CAN or the like is input to the automatic steering execution determination unit 120, and the steering angle command value ⁇ t after the arithmetic processing in the automatic steering execution determination unit 120 is input to the steering angle command value gradual change unit 100. Then, the post-gradual change steering angle command value ⁇ m from the steering angle command value gradual change unit 100 is input to the position / speed control unit 101 together with the actual steering angle ⁇ r.
- the steering assist torque command value Tg after the gradual change of torque and the position / speed control torque command value Tp from the position / speed control unit 101 are input to the adding unit 104, and the addition result of the adding unit 104 is output as a motor torque command value.
- the motor torque command value is input to the current control system 130, and the motor 131 is driven and controlled via the current control system 130.
- the automatic steering execution determination unit 120 outputs ON / OFF of an automatic steering command as a determination (diagnosis) result, and the ON / OFF of the automatic steering command is input to the torque gradual change unit 103 and the steering angle command value gradual change unit 100. Is done.
- the automatic steering execution determination unit 120 is configured as shown in FIG. 11, and the steering angle command value ⁇ tc is input to the calculation unit 121.
- the calculation unit 121 calculates the angular velocity ⁇ tc and the angular acceleration ⁇ tc based on the steering angle command value ⁇ tc. To do.
- the angular velocity ⁇ tc and the angular acceleration ⁇ tc are input to the map determination unit 122 that is determined using a determination map, and the steering angle command value ⁇ tc and the vehicle speed Vs are also input to the map determination unit 122.
- the map determination unit 122 uses a determination map # 1 for the steering angle command value ⁇ tc having a characteristic A1 or B1 as shown in FIG. 12A and an angular velocity ⁇ tc having a characteristic A2 or B2 as shown in FIG. And a determination map # 3 for the angular acceleration ⁇ tc having the characteristic A3 or B3 as shown in FIG.
- the characteristic of the determination map # 1 with respect to the steering angle command value ⁇ tc is a constant value ⁇ tc 0 up to a low vehicle speed Vs1, and decreases like a characteristic A1 or a characteristic B1 within a range equal to or higher than the vehicle speed Vs1.
- Characteristics of determination map # 2 for angular ⁇ tc is 0 constant value ⁇ to low vehicle speed Vs2, it decreases as characteristic A2 or characteristic B2 in vehicle speed Vs2 above range.
- the characteristic of the determination map # 3 with respect to the angular acceleration ⁇ tc is a constant value ⁇ c 0 until the vehicle speed Vs3 at a low speed, and decreases like a characteristic A3 or a characteristic B3 in a range equal to or higher than the vehicle speed Vs3.
- the characteristics of the determination maps # 1 to # 3 are all tunable and may be characteristics that decrease linearly.
- the map determination unit 122 determines whether or not the steering angle command value ⁇ tc exceeds the characteristic value range of the determination map # 1, determines whether or not the angular velocity ⁇ tc exceeds the characteristic value range of the determination map # 2, Further, it is determined whether or not the angular acceleration ⁇ tc exceeds the characteristic value range of the determination map # 3.
- the determination result MD is input to the diagnosis unit 123, and the diagnosis unit 123 outputs ON / OFF of the automatic steering command based on the result of the diagnosis based on time and the number of times, and ON / OFF of the automatic steering command is input to the output unit 124 Is done.
- the output unit 124 outputs the steering angle command value ⁇ t only when the automatic steering command is ON.
- the steering angle command value ⁇ t is input to the steering angle command value gradual change unit 100 together with the actual steering angle ⁇ r.
- the actual steering angle ⁇ r is calculated as follows.
- a sensor as shown in FIG. 13 is mounted on the column shaft 2 (2A (input side), 2B (output side)), and the steering angle is detected. That is, a Hall IC sensor 21 as an angle sensor and a 20 ° rotor sensor 22 as a torque sensor input side rotor are mounted on the input shaft 2A on the handle 1 side of the column shaft 2.
- the Hall IC sensor 21 outputs an AS_IS angle ⁇ h with a cycle of 296 °.
- the 20 ° rotor sensor 22 mounted on the handle 1 side of the torsion bar 23 outputs a column input side angle ⁇ s with a cycle of 20 °, and the column input side angle ⁇ s is input to the steering angle calculation unit 132.
- the output shaft 2B of the column shaft 2 is fitted with a 40 ° rotor sensor 24 of the torque sensor output side rotor, and the column output side angle ⁇ o is output from the 40 ° rotor sensor 24, and the column output side angle ⁇ o is It is input to the steering angle calculation unit 132.
- Both the column input side angle ⁇ s and the column output side angle signal ⁇ o are calculated into absolute angles by the steering angle calculation unit 132, and the column angle on the column input side and the steering angle ⁇ r1 on the column output side of the absolute angle are calculated from the steering angle calculation unit 132. Is output.
- the steering angle ⁇ r on the column input side is described as the actual steering angle, but the steering angle ⁇ r1 on the column output side can also be used as the actual steering angle.
- step S1 When the automatic steering command is not turned on (step S1), normal steering with an assist torque level of 100%, that is, torque control is performed (step S15). Then, when the automatic steering command is turned ON at time t2 by the automatic steering execution determination unit 120 (step S1), the fade process of EPS is started from this time t2 (step S2). At this time, ON / OFF of the automatic steering command is output from the automatic steering execution determination unit 120, and the steering angle command value gradual change unit 100 determines the steering angle command value ⁇ m after the gradual change of the position / speed control from the actual steering angle ⁇ r. The steering angle command value ⁇ t is gradually changed (step S3).
- the torque gradually changing unit 103 gradually changes the torque level from 100% to 0% (step S4), and thereafter the above operation is repeated until the end of the fade process (step S4).
- Step S5 the order of position / speed control command value gradual change and torque control level gradual change in the fade section (gradual change time) is arbitrary.
- step S6 From time t3 when the fade process ends, the torque control is switched to the automatic steering (position / speed control), and the automatic steering is continued (step S6).
- step S10 When the automatic steering command is turned off (time t4), or when the driver steers the steering wheel during automatic steering, the steering torque Ts exceeds a certain threshold value, and the automatic steering command is turned off (time t4).
- Automatic steering ends (step S10), and fade processing is started (step S11).
- the automatic steering command OFF is output from the automatic steering execution determination unit 120, whereby the steering angle command value gradual change unit 100 uses the steering angle command value ⁇ m after the gradual change of the position / speed control as the steering angle.
- the command value ⁇ t is gradually changed to the actual steering angle ⁇ r (step S12), and the torque gradual change unit 103 gradually changes the torque level from 0% to 100% (step S13).
- This fade process is continued until time t5 (step S14), and after time t5 when the fade process ends, the automatic steering is switched to the torque control of normal steering (step S15).
- the steering angle command value fade characteristic for position / speed control is an exponential curve, and the gradual change of torque for torque control is a straight line (linear), but it can be freely tuned according to hand feeling. Further, the time between time t3 and time t4 in FIG. 16 is an automatic steering section, which indicates that the deviation is zero.
- An example of the operation of the automatic steering execution determination unit 120 is as shown in the flowchart of FIG. 15, and the calculation unit 121 in the automatic steering execution determination unit 120 inputs the steering angle command value ⁇ tc from CAN or the like (step S20). Based on the angle command value ⁇ tc, the angular velocity ⁇ tc and the angular acceleration ⁇ tc are calculated (step S21). The angular velocity ⁇ tc and the angular acceleration ⁇ tc are input to the map determining unit 122, the vehicle speed Vs is also input to the map determining unit 122 (step S22), and the map determining unit 122 first displays the steering angle command value ⁇ tc corresponding to the vehicle speed Vs.
- step S23 It is determined whether it is within the characteristic value range of the determination map # 1 shown in FIG. 12 (A), that is, below the characteristic line of FIG. 12 (A) (step S23), and the characteristic value range of the determination map # 1 If it is within the range, is the angular velocity ⁇ tc corresponding to the vehicle speed Vs next within the characteristic value range of the determination map # 2 shown in FIG. 12B, that is, below the characteristic line in FIG. It is determined whether or not (step S24). If it is within the characteristic value range of the determination map # 2, the angular acceleration ⁇ tc is next within the characteristic value range of the determination map # 3 shown in FIG. 12C corresponding to the vehicle speed Vs, that is, FIG. ) Is determined below the characteristic line (step S25).
- the automatic steering execution determination unit 120 turns on the automatic steering command (step S31), outputs the steering angle command value ⁇ tc as the steering angle command value ⁇ t, and gradually decreases the steering angle command value. Input to the transformation unit 100 (step S32).
- step S23 when the steering angle command value ⁇ tc is not within the characteristic value range of the determination map # 1 shown in FIG. 12A corresponding to the vehicle speed Vs, in step S24, it corresponds to the vehicle speed Vs.
- the angular velocity ⁇ tc is not within the characteristic value range of the determination map # 2 shown in FIG. 12B, in step S25, the angular acceleration ⁇ tc corresponds to the vehicle speed Vs and the determination map shown in FIG.
- the diagnosis unit 123 compares the number of times out of the range with a predetermined number threshold, or compares the time out of the range with a predetermined time threshold (step) S30).
- step S31 If it is equal to or less than the threshold value, the process proceeds to step S31 and the automatic steering command is turned ON. If the number of times or time exceeds the threshold, the automatic steering command is turned off (step S33), and the steering angle command value ⁇ t is cut off and not output (step S34).
- steps S23 to S25 can be changed as appropriate.
- the fade process is started.
- the gradually changing steering angle command value ⁇ m is gradually changed from the actual steering angle ⁇ r to the steering angle command value ⁇ t. Since the actual steering angle ⁇ r is position / speed controlled so as to follow the steering angle command value ⁇ m after the gradual change, the torque command value of the position / speed control can be automatically and smoothly changed. A gentle hand feeling. Note that FIG. 17B shows that the position deviation appears in the torque.
- the steering angle command value ⁇ m after gradually changing is steered even if excessive steering torque fluctuation occurs after time t21. Since the angle command value ⁇ t is gradually changed from the actual steering angle ⁇ r, the excessive steering torque fluctuation is automatically compensated by the position / speed control. As a result, the driver is prevented from taking the steering wheel. That is, in the present invention, as shown in FIG. 18A, the position / velocity control is performed so that the actual steering angle ⁇ r follows the steering angle command value ⁇ m after the gradual change, so that the generation of the peak is delayed.
- a position / speed control torque command value Tp is generated according to the difference between the steering angle command value ⁇ m and the actual steering angle ⁇ r, and smoothly converges.
- the conventional control as shown by the broken line in FIG. 18A, since the gradual change starts from the peak of the torque, it does not converge smoothly. Further, the position ⁇ r obtained by integrating the torque (acceleration) twice becomes a locus as shown by a broken line in FIG. 18A, and the handle moves more greatly.
- a disturbance observer 150 that compensates for inertia and friction of the steering wheel is provided in the position / speed control unit 101 so that the driver's steering wheel input is not hindered.
- the disturbance observer 150 also functions as a torque sensor that estimates the driver's torque input from the motor current and detects manual input at high speed.
- the position / velocity control unit 101 in FIG. 10 includes the position / velocity feedback control unit 170 and the disturbance observer 150 shown in FIG. That is, the input of the position / speed control unit 101 is the steering angle command value ⁇ m after gradual change, the output is the position / speed control torque command value Tp, and the state feedback variables are the steering angle ⁇ r and the steering angular speed ⁇ r.
- the position / speed feedback control unit 170 includes a subtracting unit 171 that obtains a steering angle deviation between the steering angle command value ⁇ m and the steering angle ⁇ r after gradual change, a position controller 172 that controls the steering angle deviation, and a position controller 172.
- the subtractor 173 for obtaining the speed deviation of the angular speed and the steering angular speed ⁇ r and the speed controller 174 for controlling the speed deviation are added, and the output of the speed controller 174 is added to the subtractor 154 in the disturbance observer 150.
- the disturbance observer 150 receives the band inverse by inputting the inverse model 151 of the steering to be controlled expressed by the transfer function “(J 2 ⁇ s + B 2 ) / ( ⁇ ⁇ s + 1)” and the position / speed control torque command value Tp.
- a low-pass filter (LPF) 152 having a transfer function “1 / ( ⁇ ⁇ s + 1)” to be limited, a subtracting unit 153 that obtains a disturbance estimated torque Td *, and a subtracting unit 154 that outputs a position / speed control torque command value Tp by subtraction. It consists of and.
- the steering system 160 to be controlled includes an adder 161 for adding an unknown disturbance torque Td to the position / speed control torque command value Tp, and a steering system 162 represented by a transfer function “1 / (J 1 ⁇ s + B 1 )”. And an integrator 163 that integrates (1 / s) the angular velocity ⁇ r from the steering system 162 and outputs the steering angle ⁇ r.
- the steering angular velocity ⁇ r is fed back to the position / speed feedback control unit 170 and input to the integration unit 163, and the steering angle ⁇ r is fed back to the position / speed feedback control unit 170.
- J 1 of the transfer function is the inertia of the steering system 162
- B 1 is the friction of the tearing system 162
- J 2 is the inertia of the inverse model 151
- B 2 is the friction of the inverse model 151
- ⁇ is a predetermined time constant.
- J 1 ⁇ J 2 (Equation 2)
- B 1 ⁇ B 2 The disturbance observer 150 estimates an unknown disturbance torque Td from the output difference between the steering reverse model 151 and the LPF 152, and obtains a disturbance estimated torque Td * as an estimated value.
- the estimated disturbance torque Td * is subtracted and input to the subtracting unit 154, and is subtracted from the output of the speed controller 174 by the subtracting unit 154, thereby enabling robust position / speed control.
- the robust position / speed control causes a contradiction such that the steering wheel cannot be stopped with respect to the driver's intervention.
- the inertia J 1 of the actual steering system 162 the small inertia J 2 less than the friction B 1 and the friction B 2 are input as the reverse model 151 of the steering, so that the driver can feel the inertia of the steering wheel. Friction is apparently reduced. As a result, the driver can easily perform steering intervention with respect to automatic steering.
- the disturbance estimated torque Td * of the disturbance observer 150 it becomes possible to detect the steering torque of the driver instead of the torque sensor.
- the torque sensor is a digital signal
- detection of the driver's steering intervention may be delayed due to communication delays or the like.
- the estimated disturbance torque Td * shows a value larger than the threshold value for a certain period of time, it is possible to determine that steering intervention has been performed and perform fade processing.
- FIGS. 21A and 21B show the characteristics when the disturbance observer 150 is provided for the angle and torque in the fade process from position / speed control to torque control.
- the driver turns the steering wheel in a direction opposite to the direction of the steering angle command value ⁇ t by automatic driving, and releases the hand when the automatic steering is turned off (fading process starts).
- FIG. 21A shows a change example of the actual steering angle ⁇ r when the disturbance observer 150 is provided
- FIG. 21B shows the steering torque Ts and the position / speed control torque command value when the disturbance observer 150 is provided. An example of change in Tp is shown.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Power Steering Mechanism (AREA)
Abstract
Description
(Controller Area Network)40が接続されており、車速VsはCAN40から受信することも可能である。また、コントロールユニット30には、CAN40以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN41も接続可能である。
(数1)
J1≧J2
(数2)
B1≧B2
外乱オブザーバ150は、ステアリングの逆モデル151とLPF152の出力差から、未知である外乱トルクTdを推定し、推定値として外乱推定トルクTd*を求める。外乱推定トルクTd*は減算部154に減算入力され、減算部154で速度制御器174の出力から減算されることにより、ロバストな位置/速度制御が可能としている。しかしながら、ロバストな位置/速度制御は運転者の介入に対して、ハンドルが止められない等の背反が生じる。これを改善するため、実際のステアリングシステム162が持つ慣性J1、摩擦B1以下の小さな慣性J2と摩擦B2をステアリングの逆モデル151として入力することにより、運転者が感じるハンドルの慣性や摩擦が見かけ上、小さくなる。これにより、運転者は自動操舵に対して容易に操舵介入が可能となる。
2 コラム軸(ステアリングシャフト、ハンドル軸)
10 トルクセンサ
12 車速センサ
20、131 モータ
30 コントロールユニット(ECU)
40 CAN
41 非CAN
50 自動操舵指令装置
51、101 位置/速度制御部
52、120 自動操舵実行判定部
53 トルク制御部
54 トルク指令値徐変切替部
100 舵角指令値徐変部
102 トルク制御部
103 トルク徐変部
121 演算部
122 マップ判定部
123 診断部
130 電流制御系
150 外乱オブザーバ
Claims (14)
- 操舵トルクを検出するトルクセンサと、操舵を補助するアシストトルクを車両のステアリングシステムに付与するモータを制御するモータ制御装置とを有する電動パワーステアリング装置において、
所定の切替え契機に従って、前記モータの制御方式を、モータ出力トルクを制御するトルク制御方式と、前記操舵の舵角を制御する位置/速度制御方式との間で切替える機能を具備したことを特徴とする電動パワーステアリング装置。 - 前記所定の切替え契機が自動操舵指令のON/OFFである請求項1に記載の電動パワーステアリング装置。
- 前記所定の切替え契機が前記操舵トルクの内部判定によって与えられる切替え指令のON/OFFである請求項1に記載の電動パワーステアリング装置。
- 自動操舵指令がONしたとき、フェード処理が開始され、位置/速度制御の徐変後舵角指令値を実舵角から徐々に舵角指令値へ変化させ、トルク制御は、前記アシストトルクレベルを100%から0%に徐々に変化させ、前記位置/速度制御方式で動作するようになっている請求項1に記載の電動パワーステアリング装置。
- 自動操舵指令がOFFされたとき、フェード処理が開始され、位置/速度制御の徐変後舵角指令値を舵角指令値から徐々に実舵角へ変化させ、トルク制御は、前記アシストトルクレベルを0%から100%に徐々に変化させ、前記トルク制御方式で動作するようになっている請求項1に記載の電動パワーステアリング装置。
- 前記位置/速度制御の徐変後舵角指令値を指数曲線で徐変し、前記アシストトルクレベルを線形で徐変する請求項4又は5に記載の電動パワーステアリング装置。
- 前記フェード処理のフェード特性を自由にチュ-ニングできる請求項4又は5に記載の電動パワーステアリング装置。
- 前記トルク制御方式から前記位置/速度制御方式へのフェード処理時間1と、前記位置/速度制御方式から前記トルク制御方式へのフェード処理時間2とを異なるようにしている請求項1乃至7のいずれかに記載の電動パワーステアリング装置。
- 前記フェード処理時間2が前記フェード処理時間1よりも短くなっている請求項8に記載の電動パワーステアリング装置。
- 前記所定の切替え契機を自動操舵実行判定部で行う請求項1に記載の電動パワーステアリング装置。
- 前記自動操舵実行判定部が、
舵角指令値を入力して角速度及び角加速度を演算する演算部と、
前記舵角指令値、前記角速度及び前記角加速度をそれぞれ車速に対応する判定マップで判定するマップ判定部と、
前記マップ判定部の判定結果に基づいて診断する診断部と、
で構成されている請求項10に記載の電動パワーステアリング装置。 - ハンドルの慣性、摩擦を補償する外乱オブザーバが更に設けられている請求項1に記載の電動パワーステアリング装置。
- 前記外乱オブザーバが、
前記ステアリングシステムの逆モデルと帯域制限を行うLPFの出力差から外乱推定トルクを推定するようになっている請求項12に記載の電動パワーステアリング装置。 - 前記ステアリングシステムの慣性及び摩擦の値が、前記逆モデルの慣性及び摩擦の値以上となっている請求項13に記載の電動パワーステアリング装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15865942.5A EP3210854B1 (en) | 2014-12-02 | 2015-11-30 | Electric power steering device |
BR112017011293-0A BR112017011293A2 (ja) | 2014-12-02 | 2015-11-30 | Electric power steering device |
US15/512,729 US10144448B2 (en) | 2014-12-02 | 2015-11-30 | Electric power steering apparatus |
JP2016562440A JP6108050B2 (ja) | 2014-12-02 | 2015-11-30 | 電動パワーステアリング装置 |
CN201580075041.XA CN107207042B (zh) | 2014-12-02 | 2015-11-30 | 电动助力转向装置 |
US16/140,026 US11097770B2 (en) | 2014-12-02 | 2018-09-24 | Electric power steering apparatus |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014244328 | 2014-12-02 | ||
JP2014244330 | 2014-12-02 | ||
JP2014-244328 | 2014-12-02 | ||
JP2014-244330 | 2014-12-02 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/512,729 A-371-Of-International US10144448B2 (en) | 2014-12-02 | 2015-11-30 | Electric power steering apparatus |
US16/140,026 Continuation US11097770B2 (en) | 2014-12-02 | 2018-09-24 | Electric power steering apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016088704A1 true WO2016088704A1 (ja) | 2016-06-09 |
Family
ID=56091646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/083559 WO2016088704A1 (ja) | 2014-12-02 | 2015-11-30 | 電動パワーステアリング装置 |
Country Status (6)
Country | Link |
---|---|
US (2) | US10144448B2 (ja) |
EP (1) | EP3210854B1 (ja) |
JP (2) | JP6108050B2 (ja) |
CN (1) | CN107207042B (ja) |
BR (1) | BR112017011293A2 (ja) |
WO (1) | WO2016088704A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2549328A (en) * | 2016-04-15 | 2017-10-18 | Jaguar Land Rover Ltd | Vehicle steering system |
WO2018096897A1 (ja) * | 2016-11-22 | 2018-05-31 | 日立オートモティブシステムズ株式会社 | 操舵制御装置 |
JP7542629B2 (ja) | 2020-01-29 | 2024-08-30 | メルセデス・ベンツ グループ アクチェンゲゼルシャフト | 車両の自動運転操作中止方法および車両 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10286953B2 (en) | 2014-09-17 | 2019-05-14 | Ford Global Technologies, Llc | Autopark steering wheel snap reduction |
WO2016088704A1 (ja) * | 2014-12-02 | 2016-06-09 | 日本精工株式会社 | 電動パワーステアリング装置 |
KR20170085633A (ko) * | 2016-01-14 | 2017-07-25 | 주식회사 만도 | 전동식 파워 스티어링 제어 방법 및 그 장치 |
DE102016221565B4 (de) * | 2016-11-03 | 2018-05-17 | Ford Global Technologies, Llc | Verfahren zum Unterscheiden zwischen gewollten Lenkbewegungen eines Fahrers zur Beeinflussung eines gewollten Fahrpfades eines Kraftfahrzeuges von Korrekturlenkbewegungen des Fahrers als Reaktion auf unerwartete Abweichungen des Kraftfahrzeuges vom gewollten Fahrpfad sowie maschinenlesbarer Datenträger |
JP6931484B2 (ja) * | 2017-08-14 | 2021-09-08 | 日本精工株式会社 | 電動パワーステアリング装置 |
US10793188B2 (en) * | 2018-01-03 | 2020-10-06 | Steering Solution Ip Holding Corporation | High bandwidth universal electric steering system controller |
KR102518903B1 (ko) * | 2018-05-31 | 2023-04-06 | 에이치엘만도 주식회사 | 조향 장치 및 이를 이용한 조향 제어 방법 |
JP7247508B2 (ja) | 2018-09-28 | 2023-03-29 | 日本電産株式会社 | ステアリング制御装置およびパワーステアリング装置 |
JP7192646B2 (ja) * | 2019-05-07 | 2022-12-20 | 株式会社デンソー | 回転電機制御装置 |
CN110884563A (zh) * | 2019-12-12 | 2020-03-17 | 上海衡鲁汽车科技有限公司 | 一种电动助力高级驾驶辅助系统 |
CN113753122B (zh) * | 2020-06-05 | 2022-11-01 | 广州汽车集团股份有限公司 | 电动助力转向控制方法、电动助力转向系统及存储介质 |
JP7491785B2 (ja) * | 2020-09-07 | 2024-05-28 | 株式会社ジェイテクト | 操舵制御装置 |
DE102021202482B4 (de) * | 2021-03-15 | 2023-06-29 | Continental Automotive Technologies GmbH | Regelungseinrichtung und Verfahren zur Lenkwinkelregelung eines Fahrzeugs |
CN115476916B (zh) * | 2022-09-27 | 2024-09-17 | 上汽通用五菱汽车股份有限公司 | 智能辅助驾驶方法、装置、设备以及存储介质 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08310417A (ja) * | 1995-05-15 | 1996-11-26 | Nippon Seiko Kk | 電動パワ−ステアリング装置の制御装置 |
JP2004017881A (ja) * | 2002-06-19 | 2004-01-22 | Toyoda Mach Works Ltd | 電動パワーステアリング装置 |
WO2004106143A1 (ja) * | 2003-05-30 | 2004-12-09 | Nsk Ltd. | 電動パワーステアリング装置の制御装置 |
JP2008189058A (ja) * | 2007-02-01 | 2008-08-21 | Toyota Motor Corp | 車両用操舵システム |
JP2009012656A (ja) * | 2007-07-06 | 2009-01-22 | Nsk Ltd | 電動パワーステアリング装置の制御装置 |
JP2009022149A (ja) * | 2007-07-16 | 2009-01-29 | Denso Corp | 電動パワーステアリング装置の制御装置 |
WO2014162769A1 (ja) * | 2013-04-04 | 2014-10-09 | 日本精工株式会社 | 電動パワーステアリング装置 |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3311277B2 (ja) * | 1997-09-05 | 2002-08-05 | 本田技研工業株式会社 | 車両の自動操舵装置 |
US6651771B2 (en) * | 2001-10-20 | 2003-11-25 | Ford Global Technologies, Llc | H-infinity control and gain scheduling method for electric power assist steering system |
JP3705227B2 (ja) * | 2002-03-06 | 2005-10-12 | トヨタ自動車株式会社 | 車輌用自動操舵装置 |
JP4349016B2 (ja) * | 2003-01-30 | 2009-10-21 | 日産自動車株式会社 | 操作反力生成制御装置 |
JP4058362B2 (ja) * | 2003-02-27 | 2008-03-05 | トヨタ自動車株式会社 | 自動操舵装置 |
JP4839793B2 (ja) * | 2005-11-19 | 2011-12-21 | 日産自動車株式会社 | 車両用操舵制御装置 |
CN101421148B (zh) * | 2006-05-26 | 2010-06-09 | 三菱电机株式会社 | 电动动力转向装置 |
EP2026458A1 (en) * | 2006-05-31 | 2009-02-18 | NSK Ltd. | Electric power steering device |
JP4362137B2 (ja) * | 2007-02-28 | 2009-11-11 | 三菱電機株式会社 | 車両用操舵装置 |
JP5345433B2 (ja) | 2009-03-24 | 2013-11-20 | 日立オートモティブシステムズ株式会社 | 操舵制御装置 |
JP5499526B2 (ja) | 2009-06-19 | 2014-05-21 | 株式会社ジェイテクト | 電動パワーステアリング装置 |
US8892309B2 (en) * | 2010-12-20 | 2014-11-18 | Toyota Jidosha Kabushiki Kaisha | Vehicle steering control apparatus |
US9073576B2 (en) * | 2011-09-02 | 2015-07-07 | GM Global Technology Operations LLC | System and method for smooth steering override transition during automated lane centering |
JP5533822B2 (ja) * | 2011-09-05 | 2014-06-25 | 株式会社デンソー | 電動パワーステアリング制御装置 |
GB201118619D0 (en) * | 2011-10-27 | 2011-12-07 | Jaguar Cars | Improvements in electric power assisted steering (EPAS) systems |
DE102012001666A1 (de) * | 2012-01-28 | 2013-08-01 | Audi Ag | Verfahren zum Lenken eines Fahrzeugs mittels eines Lenkassistenzsystems |
KR101524732B1 (ko) * | 2012-08-16 | 2015-05-29 | 주식회사 만도 | 전동식 파워 스티어링 시스템 및 그의 조향각 출력 방법 |
WO2014050565A1 (ja) * | 2012-09-25 | 2014-04-03 | 日産自動車株式会社 | 操舵制御装置 |
RU2636636C2 (ru) | 2012-10-01 | 2017-11-24 | Ниссан Мотор Ко., Лтд. | Устройство управления устойчивостью |
JP5979239B2 (ja) | 2012-10-04 | 2016-08-24 | 日産自動車株式会社 | 操舵制御装置 |
US8909428B1 (en) * | 2013-01-09 | 2014-12-09 | Google Inc. | Detecting driver grip on steering wheel |
JP6052306B2 (ja) * | 2013-01-29 | 2016-12-27 | 日本精工株式会社 | 電動パワーステアリング装置 |
JP5930078B2 (ja) * | 2013-02-07 | 2016-06-08 | 日本精工株式会社 | 電動パワーステアリング装置 |
WO2014136516A1 (ja) * | 2013-03-07 | 2014-09-12 | 日本精工株式会社 | 電動パワーステアリング装置 |
CN104583056B (zh) * | 2013-03-08 | 2017-02-22 | 日本精工株式会社 | 电动助力转向装置 |
GB2512287B (en) * | 2013-03-22 | 2015-06-03 | Jaguar Land Rover Ltd | Improvements in vehicle steering |
US9533705B2 (en) | 2013-07-16 | 2017-01-03 | Honda Motor Co., Ltd. | Vehicle steering system |
JP6213724B2 (ja) * | 2013-09-24 | 2017-10-18 | 日立オートモティブシステムズ株式会社 | パワーステアリング装置 |
JP5939238B2 (ja) * | 2013-11-29 | 2016-06-22 | トヨタ自動車株式会社 | 車両用操舵制御装置 |
EP2977296B1 (en) * | 2014-01-29 | 2018-07-18 | NSK Ltd. | Electric power steering device |
US9840272B2 (en) * | 2014-08-08 | 2017-12-12 | Nsk Ltd. | Electric power steering apparatus |
US10286953B2 (en) * | 2014-09-17 | 2019-05-14 | Ford Global Technologies, Llc | Autopark steering wheel snap reduction |
JP2016088436A (ja) * | 2014-11-10 | 2016-05-23 | 株式会社デンソー | モータ制御装置 |
EP3210853B1 (en) * | 2014-12-02 | 2019-06-05 | NSK Ltd. | Electric power steering device |
WO2016088704A1 (ja) * | 2014-12-02 | 2016-06-09 | 日本精工株式会社 | 電動パワーステアリング装置 |
BR112017011295A2 (ja) * | 2014-12-02 | 2018-10-23 | Nsk Ltd. | Electric power steering device |
EP3254933B1 (en) * | 2015-02-04 | 2019-08-14 | NSK Ltd. | Electric power steering device |
JP5994962B1 (ja) * | 2015-02-19 | 2016-09-21 | 日本精工株式会社 | 車両用舵角検出装置及びそれを搭載した電動パワーステアリング装置 |
US10059369B2 (en) * | 2015-06-12 | 2018-08-28 | Nsk Ltd. | Electric power steering apparatus |
JP2017013636A (ja) | 2015-07-01 | 2017-01-19 | 株式会社ジェイテクト | 自動操舵装置 |
CN108778903B (zh) * | 2016-03-25 | 2021-06-04 | 日本精工株式会社 | 电动助力转向装置 |
JP6759675B2 (ja) | 2016-04-11 | 2020-09-23 | 株式会社ジェイテクト | ステアリング制御装置 |
EP3453592B1 (en) * | 2016-06-06 | 2020-02-26 | NSK Ltd. | Electric power steering device |
JP6264522B1 (ja) * | 2016-06-06 | 2018-01-24 | 日本精工株式会社 | 電動パワーステアリング装置 |
CN107873008B (zh) * | 2016-07-28 | 2019-05-07 | 日本精工株式会社 | 电动助力转向装置 |
JP6481799B2 (ja) * | 2016-08-26 | 2019-03-13 | 日本精工株式会社 | 電動パワーステアリング装置の制御装置 |
CN109641619A (zh) * | 2016-08-26 | 2019-04-16 | 日本精工株式会社 | 电动助力转向装置的控制装置 |
EP3434559A4 (en) * | 2016-09-16 | 2019-11-20 | NSK Ltd. | POWER ASSISTED STEERING DEVICE |
JP6330986B1 (ja) * | 2016-10-14 | 2018-05-30 | 日本精工株式会社 | 電動パワーステアリング装置 |
DE102016221565B4 (de) * | 2016-11-03 | 2018-05-17 | Ford Global Technologies, Llc | Verfahren zum Unterscheiden zwischen gewollten Lenkbewegungen eines Fahrers zur Beeinflussung eines gewollten Fahrpfades eines Kraftfahrzeuges von Korrekturlenkbewegungen des Fahrers als Reaktion auf unerwartete Abweichungen des Kraftfahrzeuges vom gewollten Fahrpfad sowie maschinenlesbarer Datenträger |
EP3486141B1 (en) * | 2016-11-11 | 2020-06-03 | NSK Ltd. | Electric power steering device |
JP6380721B1 (ja) * | 2017-02-03 | 2018-08-29 | 日本精工株式会社 | 電動パワーステアリング装置 |
CN110418749A (zh) * | 2017-03-15 | 2019-11-05 | 日本精工株式会社 | 电动助力转向装置 |
US20200156698A1 (en) * | 2017-08-02 | 2020-05-21 | Nsk Ltd. | Electric power steering apparatus |
-
2015
- 2015-11-30 WO PCT/JP2015/083559 patent/WO2016088704A1/ja active Application Filing
- 2015-11-30 JP JP2016562440A patent/JP6108050B2/ja active Active
- 2015-11-30 US US15/512,729 patent/US10144448B2/en active Active
- 2015-11-30 BR BR112017011293-0A patent/BR112017011293A2/ja not_active Application Discontinuation
- 2015-11-30 CN CN201580075041.XA patent/CN107207042B/zh active Active
- 2015-11-30 EP EP15865942.5A patent/EP3210854B1/en active Active
-
2017
- 2017-03-09 JP JP2017044934A patent/JP6365711B2/ja active Active
-
2018
- 2018-09-24 US US16/140,026 patent/US11097770B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08310417A (ja) * | 1995-05-15 | 1996-11-26 | Nippon Seiko Kk | 電動パワ−ステアリング装置の制御装置 |
JP2004017881A (ja) * | 2002-06-19 | 2004-01-22 | Toyoda Mach Works Ltd | 電動パワーステアリング装置 |
WO2004106143A1 (ja) * | 2003-05-30 | 2004-12-09 | Nsk Ltd. | 電動パワーステアリング装置の制御装置 |
JP2008189058A (ja) * | 2007-02-01 | 2008-08-21 | Toyota Motor Corp | 車両用操舵システム |
JP2009012656A (ja) * | 2007-07-06 | 2009-01-22 | Nsk Ltd | 電動パワーステアリング装置の制御装置 |
JP2009022149A (ja) * | 2007-07-16 | 2009-01-29 | Denso Corp | 電動パワーステアリング装置の制御装置 |
WO2014162769A1 (ja) * | 2013-04-04 | 2014-10-09 | 日本精工株式会社 | 電動パワーステアリング装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2549328A (en) * | 2016-04-15 | 2017-10-18 | Jaguar Land Rover Ltd | Vehicle steering system |
US11724738B2 (en) | 2016-04-15 | 2023-08-15 | Jaguar Land Rover Limited | Vehicle steering system |
WO2018096897A1 (ja) * | 2016-11-22 | 2018-05-31 | 日立オートモティブシステムズ株式会社 | 操舵制御装置 |
CN109963773A (zh) * | 2016-11-22 | 2019-07-02 | 日立汽车系统株式会社 | 操舵控制装置 |
JPWO2018096897A1 (ja) * | 2016-11-22 | 2019-07-18 | 日立オートモティブシステムズ株式会社 | 操舵制御装置 |
CN109963773B (zh) * | 2016-11-22 | 2021-10-01 | 日立安斯泰莫株式会社 | 操舵控制装置 |
US11685437B2 (en) | 2016-11-22 | 2023-06-27 | Hitachi Astemo, Ltd. | Steering control device |
JP7542629B2 (ja) | 2020-01-29 | 2024-08-30 | メルセデス・ベンツ グループ アクチェンゲゼルシャフト | 車両の自動運転操作中止方法および車両 |
Also Published As
Publication number | Publication date |
---|---|
US20190023312A1 (en) | 2019-01-24 |
US20170305459A1 (en) | 2017-10-26 |
CN107207042A (zh) | 2017-09-26 |
US11097770B2 (en) | 2021-08-24 |
EP3210854B1 (en) | 2019-07-31 |
BR112017011293A2 (ja) | 2018-10-09 |
JP6108050B2 (ja) | 2017-04-05 |
JP2017132465A (ja) | 2017-08-03 |
JPWO2016088704A1 (ja) | 2017-04-27 |
CN107207042B (zh) | 2019-02-12 |
EP3210854A4 (en) | 2018-10-10 |
US10144448B2 (en) | 2018-12-04 |
EP3210854A1 (en) | 2017-08-30 |
JP6365711B2 (ja) | 2018-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6365711B2 (ja) | 電動パワーステアリング装置 | |
JP6519695B2 (ja) | 電動パワーステアリング装置 | |
JP6477938B2 (ja) | 電動パワーステアリング装置 | |
JP6237958B2 (ja) | 電動パワーステアリング装置 | |
US9002579B2 (en) | Steering assist device | |
WO2016072143A1 (ja) | 電動パワーステアリング装置 | |
WO2019026351A1 (ja) | 電動パワーステアリング装置 | |
JPWO2014162769A1 (ja) | 電動パワーステアリング装置 | |
WO2016021526A1 (ja) | 電動パワーステアリング装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15865942 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016562440 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15512729 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015865942 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017011293 Country of ref document: BR |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112017011293 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112017011293 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170529 |