WO2016084817A1 - 車両用空調装置 - Google Patents
車両用空調装置 Download PDFInfo
- Publication number
- WO2016084817A1 WO2016084817A1 PCT/JP2015/082976 JP2015082976W WO2016084817A1 WO 2016084817 A1 WO2016084817 A1 WO 2016084817A1 JP 2015082976 W JP2015082976 W JP 2015082976W WO 2016084817 A1 WO2016084817 A1 WO 2016084817A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling water
- circulation passage
- refrigerant
- engine
- water circulation
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/02—Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
- B60H1/04—Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
- B60H1/08—Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
Definitions
- the present invention relates to a vehicle air conditioner.
- JP2011-131871A discloses a vehicle air conditioner that is mounted on a hybrid vehicle, circulates engine cooling water between a heater core and an engine, and heats air that has passed through an evaporator by heat exchange with engine cooling water.
- This vehicle air conditioner includes a heat absorption side heat exchanger provided on the downstream side of the heater core, a heat radiation side heat exchanger provided on the upstream side of the heater core, and between the heat absorption side heat exchanger and the heat radiation side heat exchanger.
- a Peltier element provided. When the engine is stopped, the temperature of the engine coolant flowing into the heater core is not lowered by the Peltier element transferring heat from the engine coolant flowing on the downstream side of the heater core to the engine coolant flowing on the upstream side of the heater core. ing.
- An object of the present invention is to suppress a decrease in energy efficiency due to reheating of cooling water.
- a vehicle air conditioner having a vehicle interior radiator that heats air guided into the vehicle interior of the vehicle includes a first cooling water circulation passage through which cooling water passes through the engine, and the first cooling.
- a second cooling water circulation passage that communicates with the water circulation passage and through which the cooling water passes through the radiator in the vehicle interior; and a communication between the first cooling water circulation passage and the second cooling water circulation passage when switched to the shut-off state.
- a shut-off mechanism that shuts off, a compressor that compresses the refrigerant, a sub-evaporator that absorbs heat from the cooling water in the first cooling water circulation passage, and the second cooling water circulation passage from the refrigerant that absorbs heat in the sub-evaporator
- a refrigeration cycle comprising: a sub-condenser that radiates heat to the cooling water therein; and a sub-expander that decompresses the refrigerant that has passed through the sub-condenser.
- the refrigeration cycle moves heat from the first cooling water circulation passage through which the cooling water passes through the engine to the second cooling water circulation passage through which the cooling water passes through the vehicle interior radiator via the refrigerant.
- the communication between the first cooling water circulation passage and the second cooling water circulation passage can be blocked by a blocking mechanism. Therefore, in a state in which the shut-off mechanism is switched to the shut-off state, the cooling water circulating in the second cooling water circulation passage is not cooled once and then reheated. Therefore, it is possible to suppress a decrease in energy efficiency due to reheating of the cooling water.
- FIG. 1 is a configuration diagram of a vehicle air conditioner according to a first embodiment of the present invention.
- FIG. 2 is a configuration diagram illustrating a specific configuration of the first cooling water circulation passage.
- FIG. 3 is a diagram illustrating a refrigerant recovery mode of the vehicle air conditioner.
- FIG. 4 is a diagram illustrating a heat pump heating mode of the vehicle air conditioner.
- FIG. 5 is a diagram illustrating an engine heating mode of the vehicle air conditioner.
- FIG. 6 is a configuration diagram illustrating a modification of the heater unit.
- FIG. 7 is a diagram illustrating a cooling mode of the vehicle air conditioner.
- FIG. 8 is a diagram illustrating a cold storage mode of the vehicle air conditioner.
- FIG. 1 is a configuration diagram of a vehicle air conditioner according to a first embodiment of the present invention.
- FIG. 2 is a configuration diagram illustrating a specific configuration of the first cooling water circulation passage.
- FIG. 3 is a diagram illustrating a refrigerant recovery mode of the vehicle
- FIG. 9 is a flowchart for explaining the operation mode switching control in the vehicle air conditioner according to the first embodiment of the present invention.
- FIG. 10 is a time chart for explaining the operation of the vehicle air conditioner.
- FIG. 11 is a configuration diagram of a vehicle air conditioner according to a modification of the first embodiment of the present invention.
- FIG. 12 is a configuration diagram of a vehicle air conditioner according to the second embodiment of the present invention.
- the vehicle air conditioner 100 is an air conditioner mounted on a vehicle 1 having an engine stop function for stopping the engine when the vehicle is stopped or running, such as a hybrid vehicle (HEV).
- the vehicle 1 includes an engine 9 that is used for driving wheels and generating electric power, and a radiator 8 that cools the engine 9 with circulating cooling water.
- the vehicle air conditioner 100 cools and dehumidifies the air passage 2 having the air introduction port 21, the blower unit 3 that introduces air from the air introduction port 21 and flows it to the air passage 2, and the air flowing through the air passage 2.
- a heat pump unit 4 as a refrigeration cycle and a heater unit 6 that warms the air flowing through the air passage 2 are provided.
- the air sucked from the air inlet 21 flows through the air passage 2.
- the air passage 2 sucks outside air outside the passenger compartment and inside air inside the passenger compartment.
- the air that has passed through the air passage 2 is guided into the passenger compartment.
- the blower unit 3 has a blower 31 as a blower that causes air to flow through the air passage 2 by rotation around the shaft center.
- the blower unit 3 has intake doors (not shown) for opening and closing an outside air inlet for taking in outside air outside the vehicle compartment and an inside air inlet for taking in air inside the vehicle interior.
- the blower unit 3 can adjust the opening / closing or opening degree of the outside air inlet and the inside air inlet, and can adjust the intake amount of the outside air outside the passenger compartment and the inside air inside the passenger compartment.
- the heat pump unit 4 includes a refrigerant circulation circuit 41 that circulates refrigerant, an electric compressor 42 that is driven by an electric motor (not shown) and compresses the refrigerant, and refrigerant that is compressed by the electric compressor 42 during cooling.
- the outdoor heat exchanger 43 that dissipates heat and condenses, the expansion valve 44 that lowers the temperature by decompressing the condensed refrigerant, and expands the air, and the air that flows through the air passage 2 by the refrigerant that has expanded and lowered the temperature.
- an evaporator 45 as a main evaporator to be cooled.
- the electric compressor 42 is, for example, a vane-type rotary compressor, but a scroll-type compressor may be used.
- the rotational speed of the electric compressor 42 is controlled by a command signal from a controller (not shown).
- An accumulator 46 is provided upstream of the electric compressor 42.
- the accumulator 46 temporarily accumulates the surplus of the refrigerant sent from the evaporator 45 and sends only the gaseous refrigerant to the electric compressor 42.
- the outdoor heat exchanger 43 during cooling cools and liquefies the refrigerant by heat exchange with the outside air.
- the outdoor heat exchanger 43 at this time includes a main outdoor heat exchanger 43a that liquefies the gaseous refrigerant, a liquid tank 43b that stores the liquid refrigerant, and a supercooling outdoor heat exchanger 43c that further cools the liquid refrigerant. .
- the expansion valve 44 expands the liquid refrigerant cooled by the outdoor heat exchanger 43 to further lower the temperature.
- the expansion valve 44 has a temperature sensing cylinder (not shown) attached to the outlet side of the evaporator 45, and the opening degree is automatically adjusted so that the degree of superheat of the refrigerant on the outlet side of the evaporator 45 is maintained at a predetermined value. Adjusted.
- the evaporator 45 performs heat exchange between the liquid refrigerant decompressed by the expansion valve 44 and the air flowing through the air passage 2.
- the evaporator 45 is provided in the air passage 2 and cools and dehumidifies the air flowing through the air passage 2.
- the liquid refrigerant evaporates by the heat of the air flowing through the air passage 2, and becomes a gaseous refrigerant.
- the gaseous refrigerant evaporated by the evaporator 45 is supplied again to the electric compressor 42 via the accumulator 46.
- the heat pump unit 4 also radiates heat to the cooling water in the heater circuit 70 (to be described later) from the evaporator 51 as a sub-evaporator that absorbs heat from the cooling water in the engine cooling circuit 60 (to be described later) and the refrigerant that has absorbed heat in the evaporator 51.
- a condenser 52 serving as a sub-condenser
- an orifice 53 serving as a sub-expander that decompresses the refrigerant that has passed through the condenser 52, a state where the refrigerant compressed by the electric compressor 42 is guided to the evaporator 51, and a state where the refrigerant is guided to the evaporator 45.
- a three-way valve 54 as a switching valve for switching, a bypass passage 55 for circulating the refrigerant compressed by the electric compressor 42 by bypassing the orifice 53, and an opening / closing valve 56 as a bypass valve for opening and closing the bypass passage 55 Also have.
- the evaporator 51 performs heat exchange between the refrigerant that has been decompressed through the condenser 52 and the orifice 53 and the radiator 62 of the engine cooling circuit 60 described later.
- the gaseous refrigerant evaporated by the evaporator 51 is supplied again to the electric compressor 42 via the accumulator 46.
- the capacitor 52 cools the refrigerant by heat exchange with a heat absorber 72 of the heater circuit 70 described later.
- the orifice 53 reduces the pressure by reducing the flow of the refrigerant.
- the orifice 53 expands the refrigerant cooled by the condenser 52 to lower the temperature further.
- a temperature expansion valve or a capillary tube may be used as a sub-expander.
- the three-way valve 54 is switched by a command signal from the controller.
- the three-way valve 54 is switched so as to guide the refrigerant compressed by the electric compressor 42 to the evaporator 45, the refrigerant passes through the outdoor heat exchanger 43, the expansion valve 44, the evaporator 45, and the accumulator 46 and again becomes the electric compressor 42. To be supplied.
- the three-way valve 54 is switched to a state in which the refrigerant compressed by the electric compressor 42 is guided to the evaporator 51, the refrigerant passes through the evaporator 51, passes through the return passage 57, and again through the accumulator 46. To be supplied.
- the bypass passage 55 communicates the upstream of the condenser 52 and the downstream of the orifice 53 in the refrigerant circulation circuit 41.
- the on-off valve 56 is switched by a command signal from the controller.
- the on-off valve 56 communicates the bypass passage 55 when switched to the open state, and shuts off the bypass passage 55 when switched to the closed state.
- the on-off valve 56 causes the bypass passage 55 to communicate, the refrigerant guided from the electric compressor 42 bypasses the condenser 52 and the orifice 53 and is guided to the three-way valve 54 without being decompressed.
- a three-way valve that switches between a state in which the refrigerant guided from the electric compressor 42 is guided to the condenser 52 and a state in which the refrigerant is guided to the bypass passage 55 may be used.
- the heater unit 6 includes an engine cooling circuit 60 that cools the engine 9 with cooling water, and a heater circuit that heats a heater core 75 serving as a vehicle interior radiator that heats the air guided to the vehicle interior of the vehicle 1 through the air passage 2 using the cooling water. 70 and a three-way valve 7 as a shut-off mechanism that shuts off the communication between the engine cooling circuit 60 and the heater circuit 70 when switched to the shut-off state.
- the engine cooling circuit 60 is opposed to the cooling water circulation passage 63 as the first cooling water circulation passage through which the cooling water circulates, the water pump 61 that circulates the cooling water in the cooling water circulation passage 63, and the evaporator 51 of the heat pump unit 4. And a radiator 62 provided.
- the coolant circulation passage 63 circulates coolant in the engine 9 of the vehicle 1.
- the cooling water circulation passage 63 can also circulate cooling water to the radiator 8 of the vehicle 1.
- the heat radiator 62 exchanges heat with the evaporator 51. Specifically, the radiator 62 heats and evaporates the liquid refrigerant flowing in the evaporator 51.
- FIG. 1 a part of the configuration of the cooling water circulation passage 63 is omitted. A specific configuration of the cooling water circulation passage 63 will be described later in detail with reference to FIG.
- the heater circuit 70 includes a cooling water circulation passage 73 as a second cooling water circulation passage through which the cooling water circulates, a water pump 71 that circulates the cooling water in the cooling water circulation passage 73, and a heat absorber 72 that is provided to face the condenser 52. And a heater core 75 disposed in the air passage 2.
- the heat absorber 72 exchanges heat with the condenser 52. Specifically, the heat absorber 72 cools the gaseous refrigerant flowing in the condenser 52.
- the three-way valve 7 is switched by a command signal from the controller.
- the communication passage 65 communicates and the cooling water circulation passage 63 and the cooling water circulation passage 73 communicate.
- the cooling water heated by the engine 9 passes through the three-way valve 7 and is guided to the heater core 75.
- the communication passage 65 is shut off, and the communication between the coolant circulation passage 63 and the coolant circulation passage 73 is shut off.
- the cooling water circulates independently in the cooling water circulation passage 63 and the cooling water circulation passage 73.
- an on-off valve that switches the communication passage 65 between a communication state and a cutoff state may be used as a cutoff mechanism.
- a mix door 76 is provided upstream of the heater core 75 in the air passage 2 to adjust the flow rate of the air flowing through the air passage 2 between the air guided to the heater core 75 and the air bypassing the heater core 75.
- the mix door 76 operates in response to a command signal from the controller.
- the engine 9 has a cylinder block 9b in which a cylinder (not shown) in which a piston (not shown) reciprocates is formed, an intake port (not shown), and an exhaust port (not shown). And a cylinder head 9a fastened and fixed to the upper part of the cylinder block 9b.
- the cylinder head 9a is heated closer to the combustion chamber, so the amount of heat generated by the operation of the engine 9 is larger than that of the cylinder block 9b.
- the cooling water circulation passage 63 includes a first cooling water passage 63a formed in the cylinder head 9a through which cooling water passes, a second cooling water passage 63b formed in the cylinder block 9b through which cooling water passes, and a second cooling water passage 63b. And a thermostat 63c as a temperature on / off valve that is switched from a closed state to an open state when the temperature of the cooling water led to the temperature exceeds a predetermined temperature. That is, the first cooling water passage 63a is formed in a part of the engine 9, and the second cooling water passage 63b has a heat generation amount due to the operation of the engine 9 as compared with the portion in which the first cooling water passage 63a is formed. Formed on another part of the small engine 9.
- the cooling water circulation passage 63 has a thermostat 8a as a temperature on / off valve provided upstream of the radiator 8 in the cooling water passage connecting the radiator 8 and the engine 9.
- the thermostat 8a is switched from the closed state to the open state when the temperature of the cooling water led to the radiator 8 exceeds a predetermined temperature.
- the predetermined temperature at which the thermostat 63c is switched to the open state is set lower than the predetermined temperature at which the thermostat 8a is switched to the open state.
- the cooling water circulation passage 63 has an exhaust heat exchanger 64 in which the cooling water absorbs heat from the exhaust of the engine 9 downstream of the engine 9 and upstream of the position where the evaporator 51 is provided.
- the exhaust heat exchanger 64 is, for example, an exhaust heat recovery device that absorbs heat from exhaust gas exhausted from an exhaust pipe (not shown) and recovers exhaust heat, or an EGR (Exhaust) that recirculates part of the exhaust gas to the intake side.
- a gas recirculation (EGR) cooler provided in a gas recirculation device (not shown) for cooling EGR gas.
- the air introduced into the air passage 2 from the air inlet 21 is first guided to the heat pump unit 4 by the blower 31.
- the air flowing through the air path 2 is cooled and dehumidified by heat exchange with the evaporator 45.
- the air that has passed through the evaporator 45 is divided by the mix door 76 into air that is guided to the heater core 75 and air that bypasses the heater core 75.
- the air guided to the heater core 75 is warmed by heat exchange with the heater core 75. Then, the air heated by the heater core 75 and the air bypassing the heater core 75 are merged again and guided into the vehicle interior.
- the vehicle air conditioner 100 adjusts the temperature and humidity of the air introduced into the air passage 2 from the air introduction port 21 and guides it into the vehicle interior.
- the three-way valve 7 shuts off the cooling water circulation passage 63 and the cooling water circulation passage 73 while the three-way valve 7 blocks the cooling water circulation passage 63 and the cooling water circulation passage 73, and the heat pump unit. Heating operation is performed in any of the heat pump heating mode in which 4 operates.
- ⁇ Refrigerant recovery mode The operation in the refrigerant recovery mode is performed at least once when switching from the cooling operation to the heating operation, as in the beginning of the season when heating is required, such as late autumn or early winter. Alternatively, it is also performed when switching from the dehumidifying heating operation to the heating operation.
- the operation in the refrigerant recovery mode is performed continuously for about 1 minute, for example, and then switched to the heating operation.
- the three-way valve 54 is switched to a state in which the refrigerant is guided to the outdoor heat exchanger 43.
- the on-off valve 56 is switched to the closed state.
- the three-way valve 7 is switched to the cutoff state.
- the refrigerant compressed by the electric compressor 42 passes through the condenser 52 and is cooled, and a part thereof is liquefied.
- the refrigerant passes through the orifice 53 and is depressurized, and evaporates in the outdoor heat exchanger 43.
- the outdoor heat exchanger 43 functions as an evaporator.
- the vaporized refrigerant passes through the expansion valve 44, is led to the evaporator 45, and is supplied again to the electric compressor 42 via the accumulator 46.
- the cooling water circulates independently in the cooling water circulation passage 63 and the cooling water circulation passage 73.
- the refrigerant in the outdoor heat exchanger 43 is evaporated by depressurizing the outdoor heat exchanger 43 at the orifice 53, and the electric compressor The refrigerant is sucked into 42. Therefore, the liquid refrigerant that has fallen in the outdoor heat exchanger 43 can be recovered, and the amount of refrigerant circulating in the heat pump heating mode can be ensured.
- preparation for performing the heating operation in the heat pump heating mode is performed by operating in the refrigerant recovery mode.
- ⁇ Heat pump heating mode The operation in the heat pump heating mode is performed in a state where the temperature of the cooling water is relatively low.
- the three-way valve 54 is switched to a state in which the refrigerant is guided to the evaporator 51.
- the on-off valve 56 is switched to the closed state.
- the three-way valve 7 is switched to the cutoff state.
- the refrigerant compressed by the electric compressor 42 passes through the condenser 52 and the orifice 53 and is cooled, and a part thereof is liquefied. At this time, the heat of the refrigerant moves from the condenser 52 to the heat absorber 72, and the cooling water in the heater circuit 70 is warmed.
- the refrigerant that has passed through the orifice 53 is guided to the evaporator 51 through the three-way valve 54.
- the heat is transferred from the cooling water of the radiator 62 to the refrigerant of the evaporator 51, whereby the refrigerant is warmed. Therefore, a part or all of the refrigerant guided to the evaporator 51 evaporates and is guided to the return passage 57.
- the refrigerant warmed by the evaporator 51 is supplied again to the electric compressor 42 via the accumulator 46. At this time, the cooling water circulates independently in the cooling water circulation passage 63 and the cooling water circulation passage 73.
- the heat pump unit 4 moves heat from the engine cooling circuit 60 to the heater circuit 70 via the refrigerant. Therefore, in the vehicle air conditioner 100, the heater core 75 is warmed by the heat of the engine 9 moved by the heat pump unit 4, and the heating operation is performed.
- the heat of the engine 9 moves to the cooling water circulation passage 73 via the heat pump unit 4 in order to warm the heater core 75. Therefore, it may take time for the engine 9 to warm up.
- the cooling water circulation passage 63 includes a first cooling water passage 63a formed in the cylinder head 9a and a second cooling water formed in the cylinder block 9b. And a passage 63b. While the temperature of the cooling water is relatively low, the thermostat 63c is in a closed state, so that the cooling water passes through the first cooling water passage 63a but does not pass through the second cooling water passage 63b. Therefore, when the temperature of the cooling water is relatively low, the cooling water passes only through the cylinder head 9a whose temperature rises quickly and close to the combustion chamber, so that the cooling water is efficiently heated without impairing the warm air of the cylinder block 9b. be able to.
- the cooling water circulation passage 63 has an exhaust heat exchanger 64 that absorbs heat from the exhaust of the engine 9 by the cooling water. Therefore, the cooling water before heat exchange with the evaporator 51 can also be warmed by the exhaust heat of the engine 9. Therefore, the operation of the heat pump unit 4 can be started at an early stage, and the warm-up operation of the engine 9 can be performed quickly.
- the thermostat 63c is switched from the closed state to the open state.
- the cooling water passes through both the first cooling water passage 63a and the second cooling water passage 63b. Therefore, the cooling water is warmed by the heat of both the cylinder head 9a and the cylinder block 9b.
- ⁇ Engine heating mode> The operation in the engine heating mode is performed in a state where the temperature of the cooling water is higher than that in the heat pump heating mode. As shown in FIG. 5, in the engine heating mode, the operation of the electric compressor 42 is stopped, and the refrigerant does not circulate in the heat pump unit 4. The three-way valve 7 is switched to the communication state.
- the cooling water circulation passage 63 and the cooling water circulation passage 73 communicate with each other, and the cooling water heated by the engine 9 is guided to the heater core 75. Therefore, in the vehicle air conditioner 100, the heater core 75 is warmed by the heat of the engine 9, and the heating operation is performed.
- a water pump 71 may be provided. In this case, it is possible to stop the operation of the water pump 71 and operate only the water pump 61 to perform the heating operation in the engine heating mode.
- ⁇ Cooling mode> As shown in FIG. 7, in the cooling mode, the three-way valve 54 is switched to a state in which the refrigerant is guided to the evaporator 45.
- the on-off valve 56 is switched to the open state.
- the refrigerant compressed by the electric compressor 42 is guided to the condenser via the on-off valve 56 and the three-way valve 54.
- the refrigerant guided to the outdoor heat exchanger 43 is cooled and liquefied, further reduced to low temperature and low pressure by the expansion valve 44, and guided to the evaporator 45.
- the refrigerant guided to the evaporator 45 evaporates and is guided to the accumulator 46.
- the refrigerant guided to the accumulator 46 is supplied to the electric compressor 42 again.
- the three-way valve 7 is switched to the shut-off state and the operation of the water pump 71 is stopped as shown in FIG. Therefore, since the cooling water does not circulate in the cooling water circulation passage 73, the heater core 75 is not warmed. At this time, the mix door 76 is closed so that the air flowing through the air passage 2 is not guided to the heater core 75. Therefore, the air cooled and dehumidified by the evaporator 45 is guided to the vehicle interior while being kept at a low temperature without being heated.
- the three-way valve 7 may be switched to the communication state except when the cooling operation is performed at the maximum capacity.
- the cooling water circulation passage 63 and the cooling water circulation passage 73 communicate with each other, and the cooling water heated by the engine 9 is guided to the heater core 75. Therefore, since the heater core 75 is warmed, the flow rate of the air guided to the heater core 75 and the air bypassing the heater core 75 out of the air flowing through the air passage 2 is adjusted by the mix door 76.
- the position of the mix door 76 is adjusted to increase the flow rate of the air guided to the heater core 75 out of the air flowing through the air passage 2, the air dehumidified by the evaporator 45 is heated by the heater core 75 and guided to the vehicle interior. It becomes dehumidification heating operation.
- ⁇ Cool storage mode> The operation in the cold storage mode is performed mainly during the cooling operation in a hot season.
- the operation in the cold storage mode is performed in a state where the engine 9 is stopped.
- the three-way valve 54 in the cold storage mode, is switched to guide the refrigerant to the evaporator 45 and the on-off valve 56 is switched to the open state, as in the cooling mode.
- the three-way valve 7 is switched to the shut-off state.
- the cooling water circulates independently in the cooling water circulation passage 63 and the cooling water circulation passage 73. Therefore, the cooling water warmed by the engine 9 is not guided to the heater core 75. Therefore, the cooling water in the cooling water circulation passage 73 is stored cold by the air that has been cooled and dehumidified through the evaporator 45 in the air passage 2 being guided to the heater core 75. And the air in the air path 2 can be cooled by flowing the cool-stored cooling water through the heater core 75 during the cooling operation. Therefore, energy consumption during the cooling operation can be suppressed.
- the controller repeatedly executes the routine of FIG. 9 at regular intervals, for example, every 10 milliseconds.
- step S11 the target temperature Xm [° C.] is set.
- This target temperature Xm [° C.] is the temperature of the cooling water for the engine 9 that enables heating operation in the engine heating mode.
- step S12 it is determined whether or not the vehicle air conditioner 100 performs the heating operation.
- the process proceeds to step S13.
- the process proceeds to step S19 and the cooling operation in the cooling mode is performed.
- step S13 it is determined whether or not the vehicle air conditioner 100 was in a cooling operation or a dehumidifying heating operation when it was last operated.
- step S13 when it is determined that the vehicle air conditioner 100 was in the cooling operation or the dehumidifying and heating operation during the previous operation, the process proceeds to step S16 and the operation in the refrigerant recovery mode is performed.
- step S14 when it is determined in step S13 that the vehicle air conditioner 100 was not in the cooling operation or the dehumidifying heating operation during the previous operation, the process proceeds to step S14.
- step S14 the cooling water temperature T [° C.] of the engine 9 is detected. Specifically, in step S14, the temperature of the cooling water in the cooling water circulation passage 63 is detected.
- step S15 whether or not T> Xm + 5 is satisfied when the temperature T [° C.] of the cooling water is increasing, or is T> Xm when the temperature T [° C.] of the cooling water is decreasing. Determine whether or not.
- Xm + 5 [° C.] corresponds to the first set temperature
- Xm [° C.] corresponds to the second set temperature.
- 1st preset temperature should just be higher than 2nd preset temperature, it is not restricted to Xm + 5 [degreeC].
- step S15 If it is determined in step S15 that T> Xm + 5 when the temperature of the cooling water rises or T> Xm when the temperature of the cooling water falls, the routine proceeds to step S17 and the heating operation in the engine heating mode is performed. Is done. On the other hand, if it is determined in step S15 that T ⁇ Xm + 5 when the temperature of the cooling water is increased or T ⁇ Xm when the temperature of the cooling water is decreased, the process proceeds to step S18 and the heat pump heating mode is performed. Heating operation is performed.
- the vehicle air conditioner 100 performs heat pump heating when the temperature of the cooling water in the cooling water circulation passage 63 is Xm + 5 [° C.] or less.
- the heating operation is performed according to the mode, and when the temperature of the cooling water in the cooling water circulation passage 63 becomes higher than Xm + 5 [° C.], the heating operation is performed by switching to the engine heating mode.
- the engine heating mode is used when the temperature of the cooling water in the cooling water circulation passage 63 is higher than Xm [° C.].
- the heating operation is performed in the heat pump heating mode.
- the horizontal axis represents time t [s]
- the vertical axis represents the cooling water temperature T [° C.].
- the temperature of the cooling water of the engine 9 is indicated by a solid line
- the temperature of the cooling water of the heater core 75 when the electric compressor 42 is continuously operated at the maximum output is indicated by a broken line
- the output control of the electric compressor 42 is controlled.
- the actual cooling water temperature of the heater core 75 to be performed is indicated by a thick solid line.
- the output control of the electric compressor 42 is performed. Specifically, the controller adjusts the output of the electric compressor 42 so that the temperature of the cooling water passing through the heater core 75 is maintained at Xm + 5 [° C.].
- the heating operation is performed by switching from the heat pump heating mode to the engine heating mode.
- the cooling water circulation passage 63 and the cooling water circulation passage 73 communicate with each other, the temperature of the cooling water passing through the heater core 75 becomes equal to the temperature of the cooling water passing through the engine 9.
- the heat of the engine 9 is transmitted to the cooling water circulation passage 73 via the heat pump unit 4, so that it passes through the heater core 75 rather than the temperature of the cooling water in the cooling water circulation passage 63 that passes through the engine 9.
- the temperature of the cooling water in the cooling water circulation passage 73 that rises rises faster. Therefore, since the temperature of the heater core 75 rises quickly, the time for operating the engine 9 to warm the heater core 75 can be shortened.
- the heat pump unit 4 moves heat from the cooling water circulation passage 63 through which the cooling water passes through the engine 9 to the cooling water circulation passage 73 through which the cooling water passes through the heater core 75 via the refrigerant.
- the communication between the cooling water circulation passage 63 and the cooling water circulation passage 73 can be blocked by the three-way valve 7. Therefore, in a state where the three-way valve 7 is switched to the shut-off state, the cooling water circulating in the cooling water circulation passage 73 is never cooled and then reheated. Therefore, it is possible to suppress a decrease in energy efficiency due to reheating of the cooling water.
- the heat of the engine 9 is transmitted to the cooling water circulation passage 73 via the heat pump unit 4, so that the cooling that passes through the heater core 75 is lower than the temperature of the cooling water in the cooling water circulation passage 63 that passes through the engine 9.
- the temperature of the cooling water in the water circulation passage 73 rises faster. Therefore, since the temperature of the heater core 75 rises quickly, the time for operating the engine 9 to warm the heater core 75 can be shortened.
- a belt drive compressor 47 is applied instead of the electric compressor 42.
- a sub heat pump unit 5 is provided as a sub refrigeration cycle that moves the heat of the cooling water in the cooling water circulation passage 63 to the cooling water in the cooling water circulation passage 73.
- the heat pump unit 4 cools the refrigerant circulating circuit 41 through which the cooling refrigerant circulates, a belt-driven compressor 47 as a compressor driven by the engine 9 to compress the refrigerant, and the refrigerant compressed by the belt-driven compressor 47.
- An outdoor heat exchanger 43 that condenses the refrigerant, an expansion valve 44 that decompresses and expands the condensed refrigerant to lower the temperature, and an evaporator 45 that cools the air flowing through the air passage 2 using the refrigerant that has expanded and lowered the temperature.
- the sub heat pump unit 5 includes a refrigerant circulation circuit 59 in which the refrigerant circulates, an evaporator 51 that absorbs heat from the cooling water in the engine cooling circuit 60, and a capacitor that radiates heat from the refrigerant that has absorbed heat in the evaporator 51 to the cooling water in the heater circuit 70. 52, an orifice 53 that depressurizes the refrigerant that has passed through the condenser 52, and an electric compressor 58 that is smaller than the electric compressor 42.
- the three-way valve 7 is switched to the shut-off state. Thereby, the cooling water circulates independently in the cooling water circulation passage 63 and the cooling water circulation passage 73.
- the sub heat pump unit 5 moves heat from the engine cooling circuit 60 to the heater circuit 70 via the refrigerant. Therefore, in the vehicle air conditioner 200, the heater core 75 is warmed by the heat of the engine 9 moved by the sub heat pump unit 5, and the heating operation is performed.
- the operation of the electric compressor 58 is stopped, and the refrigerant does not circulate in the sub heat pump unit 5.
- the three-way valve 7 is switched to the communication state.
- the cooling water circulation passage 63 and the cooling water circulation passage 73 communicate with each other, and the cooling water heated by the engine 9 is guided to the heater core 75. Therefore, in the vehicle air conditioner 200, the heater core 75 is warmed by the heat of the engine 9, and the heating operation is performed.
- the sub heat pump unit 5 causes the cooling water circulation passage through which the cooling water passes through the heater core 75 from the cooling water circulation passage 63 through which the cooling water passes through the engine 9. Heat is transferred to 73 via the refrigerant.
- the communication between the cooling water circulation passage 63 and the cooling water circulation passage 73 can be blocked by the three-way valve 7. Therefore, in a state where the three-way valve 7 is switched to the shut-off state, the cooling water circulating in the cooling water circulation passage 73 is never cooled and then reheated. Therefore, it is possible to suppress a decrease in energy efficiency due to reheating of the cooling water.
- a belt-driven compressor by an engine may be used instead of the electric compressor 42.
- the heating operation in the heat pump heating mode is not performed, and the heating operation in the engine heating mode is performed.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
車両用空調装置は、冷却水がエンジンを通過する第1冷却水循環通路と、前記第1冷却水循環通路と連通し、冷却水が車室内放熱器を通過する第2冷却水循環通路と、遮断状態に切り換えられた場合に、前記第1冷却水循環通路と前記第2冷却水循環通路との連通を遮断する遮断機構と、冷凍サイクルと、を備え、前記冷凍サイクルは、冷媒を圧縮する圧縮機と、冷媒が前記第1冷却水循環通路内の冷却水から吸熱する副蒸発器と、前記副蒸発器にて吸熱した冷媒から前記第2冷却水循環通路内の冷却水に放熱する副凝縮器と、前記副凝縮器を通過した冷媒を減圧する副膨張器と、を有する。
Description
本発明は、車両用空調装置に関する。
JP2011-131871Aには、ハイブリッド車両に搭載され、ヒータコアとエンジンとの間でエンジン冷却水を循環させて、蒸発器を通過した空気をエンジン冷却水との熱交換によって加熱する車両用空調装置が開示されている。この車両用空調装置は、ヒータコアの下流側に設けられる吸熱側熱交換器と、ヒータコアの上流側に設けられる放熱側熱交換器と、吸熱側熱交換器と放熱側熱交換器との間に設けられるペルチェ素子と、を備える。そして、エンジン停止時に、ヒータコアの下流側を流れるエンジン冷却水からヒータコアの上流側を流れるエンジン冷却水にペルチェ素子が熱を移動させることによって、ヒータコアに流入するエンジン冷却水の温度が下がらないようにしている。
しかしながら、JP2011-131871Aの車両用空調装置では、吸熱側熱交換器にて温度が低下したエンジン冷却水が循環して再び放熱側熱交換器に導かれる。そのため、一度冷却されたエンジン冷却水がリヒートされることになり、エネルギ効率が低下するおそれがある。
本発明は、冷却水のリヒートに起因するエネルギ効率の低下を抑制することを目的とする。
本発明のある態様によれば、車両の車室内に導かれる空気を加熱する車室内放熱器を有する車両用空調装置は、冷却水がエンジンを通過する第1冷却水循環通路と、前記第1冷却水循環通路と連通し、冷却水が前記車室内放熱器を通過する第2冷却水循環通路と、遮断状態に切り換えられた場合に、前記第1冷却水循環通路と前記第2冷却水循環通路との連通を遮断する遮断機構と、冷媒を圧縮する圧縮機と、冷媒が前記第1冷却水循環通路内の冷却水から吸熱する副蒸発器と、前記副蒸発器にて吸熱した冷媒から前記第2冷却水循環通路内の冷却水に放熱する副凝縮器と、前記副凝縮器を通過した冷媒を減圧する副膨張器と、を有する冷凍サイクルと、を備えることを特徴とする。
この態様では、冷凍サイクルによって、冷却水がエンジンを通過する第1冷却水循環通路から冷却水が車室内放熱器を通過する第2冷却水循環通路へ冷媒を介して熱を移動させる。また、第1冷却水循環通路と第2冷却水循環通路とは、遮断機構によって連通が遮断可能である。よって、遮断機構が遮断状態に切り換えられた状態では、第2冷却水循環通路を循環する冷却水が一度冷却されてからリヒートされることはない。したがって、冷却水のリヒートに起因するエネルギ効率の低下を抑制することができる。
以下、図面を参照して、本発明の実施形態について説明する。
(第1の実施形態)
まず、図1を参照して、本発明の第1の実施形態に係る車両用空調装置100の全体構成について説明する。
まず、図1を参照して、本発明の第1の実施形態に係る車両用空調装置100の全体構成について説明する。
車両用空調装置100は、ハイブリッド車両(Hybrid Electric Vehicle:HEV)など、停車時や走行時にエンジンを停止するエンジン停止機能を有する車両1に搭載される空調装置である。車両1は、車輪の駆動や発電に用いられるエンジン9と、循環する冷却水によってエンジン9を冷却するラジエータ8と、を備える。
車両用空調装置100は、空気導入口21を有する風路2と、空気導入口21から空気を導入して風路2に流すブロワユニット3と、風路2を流れる空気を冷却するとともに除湿する冷凍サイクルとしてのヒートポンプユニット4と、風路2を流れる空気を温めるヒータユニット6と、を備える。
風路2には、空気導入口21から吸い込まれた空気が流れる。風路2には、車室外の外気と車室内の内気とが吸い込まれる。風路2を通過した空気は、車室内に導かれる。
ブロワユニット3は、軸中心の回転によって風路2に空気を流す送風装置としてのブロワ31を有する。ブロワユニット3は、車室外の外気を取り入れる外気取入口と車室内の内気を取り入れる内気取入口との開閉用のインテークドア(図示省略)を有する。ブロワユニット3は、外気取入口と内気取入口の開閉又は開度を調整し、車室外の外気と車室内の内気との吸込量を調整可能である。
ヒートポンプユニット4は、冷媒が循環する冷媒循環回路41と、電動モータ(図示省略)によって駆動されて冷媒を圧縮する圧縮機としての電動コンプレッサ42と、冷房時において電動コンプレッサ42によって圧縮された冷媒を放熱させて凝縮させる室外熱交換器43と、凝縮した冷媒を減圧して膨張させ温度を下げる主膨張器としての膨張弁44と、膨張して温度が下がった冷媒によって風路2を流れる空気を冷却する主蒸発器としてのエバポレータ45と、を有する。
電動コンプレッサ42は、例えばベーン形の回転式コンプレッサであるが、スクロール形のコンプレッサを用いてもよい。電動コンプレッサ42は、コントローラ(図示省略)からの指令信号によって回転速度が制御される。
電動コンプレッサ42の上流には、アキュムレータ46が設けられる。アキュムレータ46は、エバポレータ45から送られてきた冷媒のうち余剰分を一時的に溜めると共に、気体冷媒のみを電動コンプレッサ42に送る。
冷房時の室外熱交換器43は、外気との熱交換によって冷媒を冷却して液化させる。このときの室外熱交換器43は、気体冷媒を液化させる主室外熱交換器43aと、液体冷媒が溜められるリキッドタンク43bと、液体冷媒を更に冷却する過冷却室外熱交換器43cと、を有する。
膨張弁44は、室外熱交換器43によって冷却された液体冷媒を膨張させて更に低温にする。膨張弁44は、エバポレータ45の出口側に取り付けられた感温筒部(図示省略)を有し、エバポレータ45の出口側における冷媒の過熱度を所定値に維持するように開度が自動的に調整される。
エバポレータ45は、膨張弁44によって減圧された液体冷媒と風路2を流れる空気との間で熱交換を行う。エバポレータ45は、風路2内に設けられ、風路2を流れる空気を冷却及び除湿する。エバポレータ45では、風路2を流れる空気の熱によって液体冷媒が蒸発して気体冷媒になる。エバポレータ45によって蒸発した気体冷媒は、アキュムレータ46を介して再び電動コンプレッサ42に供給される。
また、ヒートポンプユニット4は、冷媒が後述するエンジン冷却回路60内の冷却水から吸熱する副蒸発器としてのエバポレータ51と、エバポレータ51にて吸熱した冷媒から後述するヒータ回路70内の冷却水に放熱する副凝縮器としてのコンデンサ52と、コンデンサ52を通過した冷媒を減圧する副膨張器としてのオリフィス53と、電動コンプレッサ42によって圧縮された冷媒をエバポレータ51に導く状態とエバポレータ45に導く状態とに切り換える切換弁としての三方弁54と、電動コンプレッサ42にて圧縮された冷媒を、オリフィス53をバイパスして循環させるバイパス通路55と、バイパス通路55を開閉するバイパス弁としての開閉弁56と、を更に有する。
エバポレータ51は、コンデンサ52及びオリフィス53を通過して減圧された冷媒と後述するエンジン冷却回路60の放熱器62との間で熱交換を行う。エバポレータ51によって蒸発した気体冷媒は、アキュムレータ46を介して再び電動コンプレッサ42に供給される。
コンデンサ52は、後述するヒータ回路70の吸熱器72との熱交換によって冷媒を冷却する。
オリフィス53は、冷媒の流れを絞って減圧する。オリフィス53は、コンデンサ52によって冷却された冷媒を膨張させて更に低温にする。オリフィス53に代えて、温度式膨張弁やキャピラリーチューブを副膨張器として用いてもよい。
三方弁54は、コントローラからの指令信号によって切り換えられる。三方弁54が、電動コンプレッサ42によって圧縮された冷媒をエバポレータ45に導くように切り換えられると、冷媒は室外熱交換器43と膨張弁44とエバポレータ45とアキュムレータ46とを通過して再び電動コンプレッサ42に供給される。一方、三方弁54が、電動コンプレッサ42によって圧縮された冷媒をエバポレータ51に導く状態に切り換えられると、冷媒はエバポレータ51を通過した後、戻り通路57を通り、アキュムレータ46を介して再び電動コンプレッサ42に供給される。
バイパス通路55は、冷媒循環回路41におけるコンデンサ52の上流とオリフィス53の下流とを連通させる。
開閉弁56は、コントローラからの指令信号によって切り換えられる。開閉弁56は、開状態に切り換えられた場合にバイパス通路55を連通させ、閉状態に切り換えられた場合にバイパス通路55を遮断する。開閉弁56がバイパス通路55を連通させると、電動コンプレッサ42から導かれる冷媒は、コンデンサ52とオリフィス53とをバイパスし、減圧されずに三方弁54に導かれる。開閉弁56に代えて、電動コンプレッサ42から導かれる冷媒をコンデンサ52に導く状態とバイパス通路55に導く状態とを切り換える三方弁を用いてもよい。
ヒータユニット6は、エンジン9を冷却水によって冷却するエンジン冷却回路60と、風路2を通じて車両1の車室内に導かれる空気を加熱する車室内放熱器としてのヒータコア75を冷却水によって温めるヒータ回路70と、遮断状態に切り換えられた場合にエンジン冷却回路60とヒータ回路70との連通を遮断する遮断機構としての三方弁7と、を有する。
エンジン冷却回路60は、冷却水が循環する第1冷却水循環通路としての冷却水循環通路63と、冷却水循環通路63内の冷却水を循環させるウォーターポンプ61と、ヒートポンプユニット4のエバポレータ51と対峙して設けられる放熱器62と、を有する。冷却水循環通路63は、車両1のエンジン9に冷却水を循環させる。また、冷却水循環通路63は、車両1のラジエータ8にも冷却水を循環させることが可能である。
放熱器62は、エバポレータ51との間で熱交換を行う。具体的には、放熱器62は、エバポレータ51内を流れる液体冷媒を加熱して蒸発させる。図1では、冷却水循環通路63の一部の構成を省略して示している。冷却水循環通路63の具体的な構成については、後で図2を参照しながら詳細に説明する。
ヒータ回路70は、冷却水が循環する第2冷却水循環通路としての冷却水循環通路73と、冷却水循環通路73内の冷却水を循環させるウォーターポンプ71と、コンデンサ52と対峙して設けられる吸熱器72と、風路2内に配設されるヒータコア75と、を有する。
吸熱器72は、コンデンサ52との間で熱交換を行う。具体的には、吸熱器72は、コンデンサ52内を流れる気体冷媒を冷却する。
三方弁7は、コントローラからの指令信号によって切り換えられる。三方弁7が連通状態に切り換えられると、連通通路65が連通して冷却水循環通路63と冷却水循環通路73とが連通する。この場合、エンジン9にて加熱された冷却水が、三方弁7を通過してヒータコア75に導かれる。一方、三方弁7が遮断状態に切り換えられると、連通通路65が遮断されて冷却水循環通路63と冷却水循環通路73との連通が遮断される。この場合、冷却水循環通路63内と冷却水循環通路73内とでは、各々独立して冷却水が循環する。三方弁7に代えて、連通通路65を連通状態と遮断状態とに切り換える開閉弁を遮断機構として用いてもよい。
風路2内におけるヒータコア75の上流には、風路2を流れる空気のうちヒータコア75に導かれる空気とヒータコア75をバイパスする空気との流量を調整するミックスドア76が設けられる。ミックスドア76は、コントローラの指令信号によって動作する。
次に、図2を参照して、冷却水循環通路63の具体的な構成について説明する。
図2に示すように、エンジン9は、ピストン(図示省略)が往復動するシリンダ(図示省略)が形成されるシリンダブロック9bと、吸気ポート(図示省略)及び排気ポート(図示省略)が形成されてシリンダブロック9bの上部に締結固定されるシリンダヘッド9aと、を有する。エンジン9の冷間始動時の暖機運転では、シリンダヘッド9aは、燃焼室に近い分、シリンダブロック9bと比較してエンジン9の運転による発熱量が大きいので、早く温度が上昇する。
冷却水循環通路63は、シリンダヘッド9aに形成され冷却水が通過する第1冷却水通路63aと、シリンダブロック9bに形成され冷却水が通過する第2冷却水通路63bと、第2冷却水通路63bに導かれる冷却水の温度が所定の温度を超えると閉状態から開状態に切り換えられる温度開閉弁としてのサーモスタット63cと、を有する。つまり、第1冷却水通路63aは、エンジン9の一部に形成され、第2冷却水通路63bは、第1冷却水通路63aが形成される部分と比較してエンジン9の運転による発熱量が小さいエンジン9の他の一部に形成される。
冷却水循環通路63は、ラジエータ8とエンジン9とを連結する冷却水の通路におけるラジエータ8の上流に設けられる温度開閉弁としてのサーモスタット8aを有する。サーモスタット8aは、ラジエータ8に導かれる冷却水の温度が所定の温度を超えると閉状態から開状態に切り換えられる。サーモスタット63cが開状態に切り換えられる所定の温度は、サーモスタット8aが開状態に切り換えられる所定の温度と比較して低く設定される。
冷却水循環通路63は、エンジン9の下流であり、かつエバポレータ51が設けられる位置よりも上流に、冷却水がエンジン9の排気から吸熱する排気熱交換器64を有する。排気熱交換器64は、例えば、排気管(図示省略)から排出される排気ガスから吸熱して排熱を回収する排熱回収装置や、排気ガスの一部を吸気側に還流させるEGR(Exhaust Gas Recirculation)装置(図示省略)に設けられEGRガスを冷却するEGRクーラである。
以下、主に図3から図10を参照して、車両用空調装置100の作用について説明する。
車両用空調装置100では、空気導入口21から風路2に導入された空気は、まず、ブロワ31によってヒートポンプユニット4に導かれる。ヒートポンプユニット4では、風路2を流れる空気が、エバポレータ45との熱交換によって冷却されるとともに除湿される。
エバポレータ45を通過した空気は、ミックスドア76によって、ヒータコア75に導かれる空気とヒータコア75をバイパスする空気とに分けられる。ヒータコア75に導かれた空気は、ヒータコア75との熱交換によって温められる。そして、ヒータコア75によって温められた空気とヒータコア75をバイパスした空気とが再び合流して、車室内に導かれる。このように、車両用空調装置100は、空気導入口21から風路2に導入された空気の温度と湿度とを調整して車室内に導く。
次に、図3から図8を参照して、各運転モードについて説明する。図3から図8では、冷媒又は冷却水が循環する通路を太実線で示し、冷媒又は冷却水の循環が停止する通路を破線で示す。
車両用空調装置100では、三方弁7が冷却水循環通路63と冷却水循環通路73とを連通させるエンジン暖房モードと、三方弁7が冷却水循環通路63と冷却水循環通路73とを遮断すると共に、ヒートポンプユニット4が稼働するヒートポンプ暖房モードと、のいずれかによって暖房運転が行われる。
<冷媒回収モード>
冷媒回収モードによる運転は、晩秋や初冬など暖房が必要とされるシーズン当初のように、冷房運転から暖房運転に切り換える際に少なくとも一度行われる。あるいは、除湿暖房運転から暖房運転に切り換える際にも行われる。冷媒回収モードによる運転は、例えば1分間程度連続して行われ、その後暖房運転に切り換えられる。図3に示すように、冷媒回収モードでは、三方弁54は、室外熱交換器43に冷媒を導く状態に切り換えられる。開閉弁56は、閉状態に切り換えられる。三方弁7は、遮断状態に切り換えられる。
冷媒回収モードによる運転は、晩秋や初冬など暖房が必要とされるシーズン当初のように、冷房運転から暖房運転に切り換える際に少なくとも一度行われる。あるいは、除湿暖房運転から暖房運転に切り換える際にも行われる。冷媒回収モードによる運転は、例えば1分間程度連続して行われ、その後暖房運転に切り換えられる。図3に示すように、冷媒回収モードでは、三方弁54は、室外熱交換器43に冷媒を導く状態に切り換えられる。開閉弁56は、閉状態に切り換えられる。三方弁7は、遮断状態に切り換えられる。
これにより、ヒートポンプユニット4では、電動コンプレッサ42によって圧縮された冷媒が、コンデンサ52を通過して冷却され、その一部が液化される。次いで、冷媒はオリフィス53を通過して減圧され、室外熱交換器43にて蒸発する。このとき、室外熱交換器43は、蒸発器として機能する。そして、気相化した冷媒は、膨張弁44を通過してエバポレータ45に導かれ、アキュムレータ46を介して再び電動コンプレッサ42に供給される。このとき、冷却水循環通路63と冷却水循環通路73とでは、各々独立して冷却水が循環する。
このように、車両用空調装置100では、冷媒回収モードで運転することにより、オリフィス53にて室外熱交換器43内を減圧することで、室外熱交換器43内の冷媒を蒸発させ、電動コンプレッサ42に冷媒を吸引させる。よって、室外熱交換器43内で寝込んでいた液体冷媒を回収して、ヒートポンプ暖房モードにおける冷媒の循環量を確保することができる。車両用空調装置100では、冷媒回収モードで運転することで、ヒートポンプ暖房モードによる暖房運転を行うための準備が行われる。
<ヒートポンプ暖房モード>
ヒートポンプ暖房モードによる運転は、冷却水の温度が比較的低温の状態で行われる。図4に示すように、ヒートポンプ暖房モードでは、三方弁54は、エバポレータ51に冷媒を導く状態に切り換えられる。開閉弁56は、閉状態に切り換えられる。三方弁7は、遮断状態に切り換えられる。
ヒートポンプ暖房モードによる運転は、冷却水の温度が比較的低温の状態で行われる。図4に示すように、ヒートポンプ暖房モードでは、三方弁54は、エバポレータ51に冷媒を導く状態に切り換えられる。開閉弁56は、閉状態に切り換えられる。三方弁7は、遮断状態に切り換えられる。
これにより、ヒートポンプユニット4では、電動コンプレッサ42によって圧縮された冷媒は、コンデンサ52とオリフィス53とを通過して冷却され、その一部が液化される。このとき、コンデンサ52から吸熱器72に冷媒の熱が移動して、ヒータ回路70内の冷却水が温められる。
オリフィス53を通過した冷媒は、三方弁54を介してエバポレータ51に導かれる。エバポレータ51では、放熱器62の冷却水からエバポレータ51の冷媒に熱が移動することによって、冷媒が温められる。よって、エバポレータ51に導かれた冷媒は、一部又は全部が蒸発して戻り通路57に導かれる。エバポレータ51にて温められた冷媒は、アキュムレータ46を介して再び電動コンプレッサ42に供給される。このとき、冷却水循環通路63と冷却水循環通路73とでは、各々独立して冷却水が循環する。
このように、ヒートポンプ暖房モードでは、ヒートポンプユニット4が、エンジン冷却回路60からヒータ回路70へ冷媒を介して熱を移動させる。よって、車両用空調装置100では、ヒートポンプユニット4によって移動したエンジン9の熱によってヒータコア75が温められて暖房運転が行われる。
このとき、冷却水循環通路63と冷却水循環通路73との連通は三方弁7によって遮断されているため、冷却水循環通路73を循環する冷却水が一度冷却されてからリヒートされることはない。したがって、冷却水のリヒートに起因するエネルギ効率の低下を抑制することができる。
ここで、例えば、エンジン9の冷間始動時にヒートポンプ暖房モードによる運転を行った場合には、ヒータコア75を温めるためにエンジン9の熱がヒートポンプユニット4を介して冷却水循環通路73に移動する。そのため、エンジン9の暖機運転に時間がかかるおそれがある。
これに対して、図2に示すように、エンジン冷却回路60では、冷却水循環通路63は、シリンダヘッド9aに形成される第1冷却水通路63aと、シリンダブロック9bに形成される第2冷却水通路63bと、を有する。冷却水の温度が比較的低いうちは、サーモスタット63cは閉状態であるため、冷却水は、第1冷却水通路63aを通過するが第2冷却水通路63bを通過しない。よって、冷却水の温度が比較的低いうちは、燃焼室に近く早く温度が上昇するシリンダヘッド9aのみを冷却水が通過するため、シリンダブロック9bの暖気を損なうことなく冷却水を効率的に温めることができる。
また、冷却水循環通路63は、冷却水がエンジン9の排気から吸熱する排気熱交換器64を有する。そのため、エバポレータ51と熱交換を行う前の冷却水をエンジン9の排気熱によっても温めることができる。よって、ヒートポンプユニット4の運転を早期に開始することができると共に、エンジン9の暖機運転を迅速に行うことができる。
そして、冷却水循環通路63を循環する冷却水が所定の温度を超えると、サーモスタット63cが閉状態から開状態に切り換えられる。これにより、冷却水は、第1冷却水通路63aと第2冷却水通路63bとの両方を通過するようになる。よって、冷却水は、シリンダヘッド9aとシリンダブロック9bとの両方の熱によって温められる。
<エンジン暖房モード>
エンジン暖房モードによる運転は、ヒートポンプ暖房モードと比較して冷却水の温度が高温の状態で行われる。図5に示すように、エンジン暖房モードでは、電動コンプレッサ42の運転が停止され、ヒートポンプユニット4内を冷媒は循環しない。三方弁7は、連通状態に切り換えられる。
エンジン暖房モードによる運転は、ヒートポンプ暖房モードと比較して冷却水の温度が高温の状態で行われる。図5に示すように、エンジン暖房モードでは、電動コンプレッサ42の運転が停止され、ヒートポンプユニット4内を冷媒は循環しない。三方弁7は、連通状態に切り換えられる。
これにより、冷却水循環通路63と冷却水循環通路73とが連通し、エンジン9にて温められた冷却水がヒータコア75に導かれる。よって、車両用空調装置100では、エンジン9の熱によってヒータコア75が温められて暖房運転が行われる。
なお、図6に示すように、三方弁7が連通状態に切り換えられた場合に冷却水が通過せず遮断状態に切り換えられた場合にのみ冷却水が通過する冷却水循環通路73の連通通路部73aにウォーターポンプ71を設けてもよい。この場合、ウォーターポンプ71の運転を停止させ、ウォーターポンプ61のみを運転させてエンジン暖房モードによる暖房運転を行うことが可能である。
<冷房モード>
図7に示すように、冷房モードでは、三方弁54は、エバポレータ45に冷媒を導く状態に切り換えられる。開閉弁56は、開状態に切り換えられる。
図7に示すように、冷房モードでは、三方弁54は、エバポレータ45に冷媒を導く状態に切り換えられる。開閉弁56は、開状態に切り換えられる。
これにより、ヒートポンプユニット4では、電動コンプレッサ42によって圧縮された冷媒は、開閉弁56と三方弁54とを介してコンデンサに導かれる。室外熱交換器43に導かれた冷媒は、冷却されて液化され、膨張弁44にて更に低温低圧にされてエバポレータ45に導かれる。エバポレータ45に導かれた冷媒は、蒸発してアキュムレータ46に導かれる。アキュムレータ46に導かれた冷媒は、再び電動コンプレッサ42に供給される。
冷房運転を最大能力で行う場合には、図7に示すように、三方弁7が遮断状態に切り換えられると共に、ウォーターポンプ71の運転が停止される。よって、冷却水循環通路73内を冷却水が循環しないため、ヒータコア75が温められることはない。また、このときミックスドア76は、風路2を流れる空気がヒータコア75に導かれないように閉じられる。よって、エバポレータ45によって冷却及び除湿された空気は、温められることなく低温を維持したまま車室内に導かれる。
一方、冷房運転を最大能力で行う場合以外において、三方弁7を連通状態に切り換えてもよい。これにより、冷却水循環通路63と冷却水循環通路73とが連通し、エンジン9にて温められた冷却水がヒータコア75に導かれる。よって、ヒータコア75が温められるため、ミックスドア76によって、風路2を流れる空気のうちヒータコア75に導かれる空気とヒータコア75をバイパスする空気との流量が調整される。
なお、ミックスドア76の位置を調整して、風路2を流れる空気のうちヒータコア75に導かれる空気の流量を増やせば、エバポレータ45にて除湿された空気をヒータコア75で温めて車室内に導く除湿暖房運転となる。
<蓄冷モード>
蓄冷モードによる運転は、主に暑い時期における冷房運転時に行われる。また、蓄冷モードによる運転は、エンジン9が停止している状態で行われる。図8に示すように、蓄冷モードでは、冷房モードと同様に、三方弁54は、エバポレータ45に冷媒を導くように切り換えられ、開閉弁56は、開状態に切り換えられる。また、蓄冷モードでは、三方弁7は、遮断状態に切り換えられる。
蓄冷モードによる運転は、主に暑い時期における冷房運転時に行われる。また、蓄冷モードによる運転は、エンジン9が停止している状態で行われる。図8に示すように、蓄冷モードでは、冷房モードと同様に、三方弁54は、エバポレータ45に冷媒を導くように切り換えられ、開閉弁56は、開状態に切り換えられる。また、蓄冷モードでは、三方弁7は、遮断状態に切り換えられる。
これにより、冷却水循環通路63と冷却水循環通路73とでは、各々独立して冷却水が循環する。そのため、エンジン9にて温められた冷却水がヒータコア75に導かれることはない。よって、冷却水循環通路73内の冷却水は、風路2内でエバポレータ45を通過して冷却及び除湿された空気がヒータコア75に導かれることによって蓄冷される。そして、蓄冷された冷却水を冷房運転時にヒータコア75に流すことで、風路2内の空気を冷却することができる。よって、冷房運転時のエネルギ消費量を抑制することができる。
次に、図9を参照して、車両用空調装置100における運転モード切換制御について説明する。コントローラは、図9のルーチンを、例えば10ミリ秒ごとの一定時間隔で繰り返し実行する。
ステップS11では、目標温度Xm[℃]を設定する。この目標温度Xm[℃]は、エンジン暖房モードによる暖房運転が可能となるエンジン9の冷却水の温度である。
ステップS12では、車両用空調装置100が暖房運転を行うか否かを判定する。ステップS12にて、車両用空調装置100が暖房運転を行うと判定された場合には、ステップS13に移行する。一方、ステップS12にて、車両用空調装置100が暖房運転を行わないと判定された場合には、ステップS19に移行して冷房モードによる冷房運転が行われる。
ステップS13では、車両用空調装置100が前回運転された際に、冷房運転又は除湿暖房運転であったか否かを判定する。ステップS13にて、前回運転時に車両用空調装置100が冷房運転又は除湿暖房運転であったと判定された場合には、ステップS16に移行して冷媒回収モードによる運転が行われる。一方、ステップS13にて、前回運転時に車両用空調装置100が冷房運転又は除湿暖房運転でなかったと判定された場合には、ステップS14に移行する。
ステップS14では、エンジン9の冷却水の温度T[℃]を検出する。具体的には、ステップS14では、冷却水循環通路63の冷却水の温度を検出する。
ステップS15では、冷却水の温度T[℃]が上昇している場合にT>Xm+5となったか否か、又は冷却水の温度T[℃]が下降している場合にT>Xmであるか否かを判定する。このとき、Xm+5[℃]が、第1設定温度に該当し、Xm[℃]が、第2設定温度に該当する。なお、第1設定温度は、第2設定温度よりも高ければよいため、Xm+5[℃]に限られない。
ステップS15にて、冷却水の温度上昇時にT>Xm+5となったか、又は冷却水の温度下降時にT>Xmであると判定された場合には、ステップS17に移行してエンジン暖房モードによる暖房運転が行われる。一方、ステップS15にて、冷却水の温度上昇時にT≦Xm+5であるか、又は冷却水の温度下降時にT≦Xmとなったと判定された場合には、ステップS18に移行してヒートポンプ暖房モードによる暖房運転が行われる。
このように、車両用空調装置100は、エンジン9が稼働している状態では、冷却水の温度が上昇するため、冷却水循環通路63の冷却水の温度がXm+5[℃]以下の場合にヒートポンプ暖房モードによって暖房運転を行い、冷却水循環通路63の冷却水の温度がXm+5[℃]よりも高くなった場合にエンジン暖房モードに切り換えて暖房運転を行う。
一方、車両用空調装置100は、エンジン9が停止している状態では、冷却水の温度が下降するため、冷却水循環通路63の冷却水の温度がXm[℃]よりも高い場合にエンジン暖房モードによって暖房運転を行い、冷却水循環通路63の冷却水の温度がXm[℃]以下になった場合にヒートポンプ暖房モードによって暖房運転を行う。
次に、図10を参照して、暖房運転時における車両用空調装置100の運転モード切換制御の作用について説明する。
図10では、横軸が時間t[s]であり、縦軸が冷却水の温度T[℃]である。また、図10では、エンジン9の冷却水の温度を実線で示し、電動コンプレッサ42を最高出力で運転し続けた場合のヒータコア75の冷却水の温度を破線で示し、電動コンプレッサ42の出力制御を行う実際のヒータコア75の冷却水の温度を太実線で示す。
図10に示すように、車両用空調装置100の運転を開始すると、エンジン9の熱によって冷却水の温度が上昇する。このとき、ヒートポンプ暖房モードにて暖房運転が行われるため、冷却水循環通路63内の冷却水の熱がヒートポンプユニット4によって冷却水循環通路73内の冷却水に移動する。よって、ヒータコア75を通過する冷却水の温度の方が、エンジン9を通過する冷却水の温度と比較して早く上昇する。
ヒータコア75を通過する冷却水の温度がXm+5[℃]まで上昇すると、電動コンプレッサ42の出力制御が行われる。具体的には、コントローラは、ヒータコア75を通過する冷却水の温度がXm+5[℃]を維持するように電動コンプレッサ42の出力を調整する。
そして、エンジン9を通過する冷却水の温度がXm+5[℃]を超えると、ヒートポンプ暖房モードからエンジン暖房モードに切り換えられて暖房運転が行われる。このとき、冷却水循環通路63と冷却水循環通路73とが連通するため、ヒータコア75を通過する冷却水の温度は、エンジン9を通過する冷却水の温度と等しくなる。
このように、ヒートポンプ暖房モードでは、エンジン9の熱がヒートポンプユニット4を介して冷却水循環通路73に伝達されるため、エンジン9を通過する冷却水循環通路63の冷却水の温度よりもヒータコア75を通過する冷却水循環通路73の冷却水の温度の方が早く上昇する。よって、ヒータコア75の温度が早く上昇するため、ヒータコア75を温めるためにエンジン9を運転する時間を短縮することができる。
以上の第1の実施形態によれば、以下に示す効果を奏する。
車両用空調装置100では、ヒートポンプユニット4によって、冷却水がエンジン9を通過する冷却水循環通路63から冷却水がヒータコア75を通過する冷却水循環通路73へ冷媒を介して熱を移動させる。また、冷却水循環通路63と冷却水循環通路73とは、三方弁7によって連通が遮断可能である。よって、三方弁7が遮断状態に切り換えられた状態では、冷却水循環通路73を循環する冷却水が一度冷却されてからリヒートされることはない。したがって、冷却水のリヒートに起因するエネルギ効率の低下を抑制することができる。
また、ヒートポンプ暖房モードでは、エンジン9の熱がヒートポンプユニット4を介して冷却水循環通路73に伝達されるため、エンジン9を通過する冷却水循環通路63の冷却水の温度よりもヒータコア75を通過する冷却水循環通路73の冷却水の温度の方が早く上昇する。よって、ヒータコア75の温度が早く上昇するため、ヒータコア75を温めるためにエンジン9を運転する時間を短縮することができる。
なお、図11に示す変形例のように、バイパス通路55がコンデンサ52とオリフィス53とをバイパスする構成に代えて、オリフィス53のみをバイパスするようにしてもよい。この場合にも、上記実施形態と同様に、冷媒回収モード,ヒートポンプ暖房モード,エンジン暖房モード,及び冷房モードによる運転が可能である。
(第2の実施形態)
次に、図12を参照して、本発明の第2の実施形態に係る車両用空調装置200について説明する。なお、第2の実施形態では、上述した第1の実施形態と同様の構成には同一の符号を付し、重複する説明は適宜省略する。
次に、図12を参照して、本発明の第2の実施形態に係る車両用空調装置200について説明する。なお、第2の実施形態では、上述した第1の実施形態と同様の構成には同一の符号を付し、重複する説明は適宜省略する。
第2の実施形態では、電動コンプレッサ42に代えてベルト駆動コンプレッサ47が適用される。また、ヒートポンプユニット4とは別に、冷却水循環通路63内の冷却水の熱を冷却水循環通路73内の冷却水に移動させるサブ冷凍サイクルとしてのサブヒートポンプユニット5が設けられる。
第2の実施形態では、第1の実施形態と同様に、ヒートポンプ暖房モード,エンジン暖房モード,冷房モード,及び蓄冷モードによる運転が可能である。なお、第2の実施形態では、冷媒回収モードによる運転を行う必要はない。
ヒートポンプユニット4は、冷房用の冷媒が循環する冷媒循環回路41と、エンジン9によって駆動されて冷媒を圧縮する圧縮機としてのベルト駆動コンプレッサ47と、ベルト駆動コンプレッサ47によって圧縮された冷媒を冷却して凝縮させる室外熱交換器43と、凝縮した冷媒を減圧して膨張させ温度を下げる膨張弁44と、膨張して温度が下がった冷媒によって風路2を流れる空気を冷却するエバポレータ45と、を有する。
サブヒートポンプユニット5は、冷媒が循環する冷媒循環回路59と、エンジン冷却回路60内の冷却水から吸熱するエバポレータ51と、エバポレータ51にて吸熱した冷媒からヒータ回路70内の冷却水に放熱するコンデンサ52と、コンデンサ52を通過した冷媒を減圧するオリフィス53と、電動コンプレッサ42と比較して小型の電動コンプレッサ58と、を有する。
ヒートポンプ暖房モードでは、三方弁7は、遮断状態に切り換えられる。これにより、冷却水循環通路63と冷却水循環通路73とでは、各々独立して冷却水が循環する。
また、車両用空調装置200では、サブヒートポンプユニット5が、エンジン冷却回路60からヒータ回路70へ冷媒を介して熱を移動させる。よって、車両用空調装置200では、サブヒートポンプユニット5によって移動したエンジン9の熱によってヒータコア75が温められて暖房運転が行われる。
このとき、冷却水循環通路63と冷却水循環通路73との連通は三方弁7によって遮断されているため、冷却水循環通路73を循環する冷却水が一度冷却されてからリヒートされることはない。したがって、冷却水のリヒートに起因するエネルギ効率の低下を抑制することができる。
一方、エンジン暖房モードでは、電動コンプレッサ58の運転が停止され、サブヒートポンプユニット5内を冷媒は循環しない。三方弁7は、連通状態に切り換えられる。
これにより、冷却水循環通路63と冷却水循環通路73とが連通し、エンジン9にて温められた冷却水がヒータコア75に導かれる。よって、車両用空調装置200では、エンジン9の熱によってヒータコア75が温められて暖房運転が行われる。
以上の第2の実施形態によれば、第1の実施形態と同様に、サブヒートポンプユニット5によって、冷却水がエンジン9を通過する冷却水循環通路63から冷却水がヒータコア75を通過する冷却水循環通路73へ冷媒を介して熱を移動させる。また、冷却水循環通路63と冷却水循環通路73とは、三方弁7によって連通が遮断可能である。よって、三方弁7が遮断状態に切り換えられた状態では、冷却水循環通路73を循環する冷却水が一度冷却されてからリヒートされることはない。したがって、冷却水のリヒートに起因するエネルギ効率の低下を抑制することができる。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
例えば、上記実施形態において、電動コンプレッサ42に代えて、エンジンによるベルト駆動のコンプレッサを用いてもよい。ただし、この場合には、エンジン停止時において、ヒートポンプ暖房モードでの暖房運転は行わず、エンジン暖房モードによる暖房運転を行う。
本願は2014年11月27日に日本国特許庁に出願された特願2014-239715,及び2015年11月20日に日本国特許庁に出願された特願2015-227304に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
Claims (9)
- 車両の車室内に導かれる空気を加熱する車室内放熱器を有する車両用空調装置であって、
冷却水がエンジンを通過する第1冷却水循環通路と、
前記第1冷却水循環通路と連通し、冷却水が前記車室内放熱器を通過する第2冷却水循環通路と、
遮断状態に切り換えられた場合に、前記第1冷却水循環通路と前記第2冷却水循環通路との連通を遮断する遮断機構と、
冷媒を圧縮する圧縮機と、冷媒が前記第1冷却水循環通路内の冷却水から吸熱する副蒸発器と、前記副蒸発器にて吸熱した冷媒から前記第2冷却水循環通路内の冷却水に放熱する副凝縮器と、前記副凝縮器を通過した冷媒を減圧する副膨張器と、を有する冷凍サイクルと、を備える車両用空調装置。 - 請求項1に記載の車両用空調装置であって、
前記第1冷却水循環通路は、
前記エンジンの一部に形成され冷却水が通過する第1冷却水通路と、
前記第1冷却水通路が形成される部分と比較して前記エンジンの運転による発熱量が小さい前記エンジンの他の一部に形成され冷却水が通過する第2冷却水通路と、
前記第2冷却水通路に導かれる冷却水の温度が所定の温度を超えると前記第2冷却水通路を冷却水が通過するように閉状態から開状態に切り換えられる温度開閉弁と、を有する車両用空調装置。 - 請求項2に記載の車両用空調装置であって、
前記第1冷却水循環通路は、前記副蒸発器が設けられる位置よりも上流に、冷却水が前記エンジンの排気から吸熱する排気熱交換器を更に有する車両用空調装置。 - 請求項1から3のいずれか一つに記載の車両用空調装置であって、
前記遮断機構が前記第1冷却水循環通路と前記第2冷却水循環通路とを連通させるエンジン暖房モードと、
前記遮断機構が前記第1冷却水循環通路と前記第2冷却水循環通路とを遮断すると共に、前記冷凍サイクルが稼働するヒートポンプ暖房モードと、のいずれかによって暖房運転を行う車両用空調装置。 - 請求項4に記載の車両用空調装置であって、
前記エンジンが稼働している状態では、前記第1冷却水循環通路の冷却水の温度が予め設定された第1設定温度以下の場合に前記ヒートポンプ暖房モードによって暖房運転を行い、前記第1冷却水循環通路の冷却水の温度が前記第1設定温度よりも高い場合に前記エンジン暖房モードによって暖房運転を行う車両用空調装置。 - 請求項5に記載の車両用空調装置であって、
前記エンジンが停止している状態では、前記第1冷却水循環通路の冷却水が前記第1設定温度よりも低く設定される第2設定温度以下の場合に前記ヒートポンプ暖房モードによって暖房運転を行い、前記第1冷却水循環通路の冷却水が前記第2設定温度よりも高い場合に前記エンジン暖房モードによって暖房運転を行う車両用空調装置。 - 請求項1から6のいずれか一つに記載の車両用空調装置であって、
前記冷凍サイクルは、
冷媒を外気との熱交換によって冷却する室外熱交換器と、
前記室外熱交換器にて冷却された冷媒を減圧する主膨張器と、
前記主膨張器にて減圧された冷媒によって前記車室内に導かれる空気を冷却する主蒸発器と、
前記圧縮機によって圧縮された冷媒を前記副蒸発器に導く状態と前記主蒸発器に導く状態とに切り換える切換弁と、
開状態に切り換えられた場合に、前記圧縮機にて圧縮された冷媒を、前記副膨張器をバイパスして循環させるバイパス弁と、を更に有し、
前記切換弁を前記主蒸発器に冷媒を導く状態に切り換えると共に、前記バイパス弁を開状態に切り換えることによって冷房運転を行う車両用空調装置。 - 請求項7に記載の車両用空調装置であって、
冷房運転中に前記エンジンが停止している状態では、前記遮断機構を遮断状態に切り換えると共に、前記車室内に導かれる空気によって前記車室内放熱器を冷却する車両用空調装置。 - 請求項7又は8に記載の車両用空調装置であって、
冷房運転又は除湿暖房運転から暖房運転に切り換えられた場合には、前記切換弁を前記主蒸発器に冷媒を導く状態に切り換え、前記バイパス弁を閉状態に切り換えることによって、前記副膨張弁にて減圧された冷媒を前記室外熱交換器にて蒸発させて前記室外熱交換器内を減圧する車両用空調装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/529,658 US10377207B2 (en) | 2014-11-27 | 2015-11-25 | Vehicle air-conditioning device |
CN201580064739.1A CN107000543B (zh) | 2014-11-27 | 2015-11-25 | 车辆用空调装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-239715 | 2014-11-27 | ||
JP2014239715 | 2014-11-27 | ||
JP2015-227304 | 2015-11-20 | ||
JP2015227304A JP6605928B2 (ja) | 2014-11-27 | 2015-11-20 | 車両用空調装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016084817A1 true WO2016084817A1 (ja) | 2016-06-02 |
Family
ID=56074369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/082976 WO2016084817A1 (ja) | 2014-11-27 | 2015-11-25 | 車両用空調装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016084817A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10166847A (ja) * | 1996-12-09 | 1998-06-23 | Sanden Corp | 車両用空調装置 |
JP2004058951A (ja) * | 2002-07-31 | 2004-02-26 | Keihin Corp | 車両用空調装置 |
JP2012001141A (ja) * | 2010-06-18 | 2012-01-05 | Calsonic Kansei Corp | 車両用空調装置 |
-
2015
- 2015-11-25 WO PCT/JP2015/082976 patent/WO2016084817A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10166847A (ja) * | 1996-12-09 | 1998-06-23 | Sanden Corp | 車両用空調装置 |
JP2004058951A (ja) * | 2002-07-31 | 2004-02-26 | Keihin Corp | 車両用空調装置 |
JP2012001141A (ja) * | 2010-06-18 | 2012-01-05 | Calsonic Kansei Corp | 車両用空調装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6605928B2 (ja) | 車両用空調装置 | |
JP6332560B2 (ja) | 車両用空調装置 | |
KR102170463B1 (ko) | 차량용 히트 펌프 시스템 | |
JP5786615B2 (ja) | 自動車用温調システム | |
WO2014188674A1 (ja) | 冷凍サイクル装置 | |
KR101715723B1 (ko) | 차량용 히트 펌프 시스템 | |
JP5831322B2 (ja) | 車両用空調システム | |
WO2014136447A1 (ja) | 車両用空調装置 | |
JP6838518B2 (ja) | 冷凍サイクル装置 | |
CN108790672B (zh) | 车辆用空调装置 | |
KR101669826B1 (ko) | 차량용 히트 펌프 시스템 | |
JP2013217631A (ja) | 冷凍サイクル装置 | |
JP5517641B2 (ja) | 車両の空調装置 | |
KR101941026B1 (ko) | 차량용 히트 펌프 시스템 | |
KR101384680B1 (ko) | 자동차용 브라인식 냉난방 시스템 | |
JP2022051623A (ja) | 冷凍サイクル装置 | |
KR101418858B1 (ko) | 차량용 히트 펌프 시스템 | |
JP6544287B2 (ja) | 空調装置 | |
WO2016084817A1 (ja) | 車両用空調装置 | |
JP3830242B2 (ja) | ヒートポンプ式自動車用空気調和装置 | |
JP7151394B2 (ja) | 冷凍サイクル装置 | |
KR101430005B1 (ko) | 차량용 히트 펌프 시스템 및 그 제어방법 | |
WO2023002993A1 (ja) | 車両用空調装置 | |
US20240157761A1 (en) | Vehicle air conditioning apparatus | |
WO2023140205A1 (ja) | 車両用空調装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15862875 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15529658 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15862875 Country of ref document: EP Kind code of ref document: A1 |