WO2016052427A1 - 複合半透膜及びその製造方法、スパイラル型分離膜エレメント - Google Patents

複合半透膜及びその製造方法、スパイラル型分離膜エレメント Download PDF

Info

Publication number
WO2016052427A1
WO2016052427A1 PCT/JP2015/077366 JP2015077366W WO2016052427A1 WO 2016052427 A1 WO2016052427 A1 WO 2016052427A1 JP 2015077366 W JP2015077366 W JP 2015077366W WO 2016052427 A1 WO2016052427 A1 WO 2016052427A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous support
composite semipermeable
semipermeable membrane
porous
amine solution
Prior art date
Application number
PCT/JP2015/077366
Other languages
English (en)
French (fr)
Inventor
かずさ 松井
将 越前
敦子 水池
泰輔 山口
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US15/514,282 priority Critical patent/US20170282129A1/en
Priority to CN201580049663.5A priority patent/CN106714950A/zh
Priority to KR1020177006224A priority patent/KR20170061662A/ko
Publication of WO2016052427A1 publication Critical patent/WO2016052427A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/107Specific properties of the central tube or the permeate channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/003Membrane bonding or sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • C08G69/30Solid state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0633Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • B01D2313/042Adhesives or glues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties

Definitions

  • the present invention relates to a composite semipermeable membrane in which a skin layer containing a polyamide-based resin is formed on the surface of a porous support, a method for producing the same, and a spiral separation membrane element using the composite semipermeable membrane.
  • a composite semipermeable membrane and spiral separation membrane element is suitable for the production of ultrapure water, desalination of brine or seawater, etc., and from stains that cause pollution such as dyed wastewater and electrodeposition paint wastewater, It can contribute to the closure of wastewater by removing and collecting the pollution sources or effective substances contained in it. Moreover, it can be used for advanced treatments such as concentration of active ingredients in food applications and removal of harmful components in water purification and sewage applications. It can also be used for wastewater treatment in oil fields, shale gas fields, and the like.
  • Composite semipermeable membranes are called RO (reverse osmosis) membranes, NF (nanofiltration) membranes, and FO (forward osmosis) membranes depending on their filtration performance and treatment methods.
  • RO reverse osmosis
  • NF nanofiltration
  • FO forward osmosis
  • Patent Literature a composite semipermeable membrane in which a skin layer containing a polyamide resin obtained by interfacial polymerization of a polyfunctional amine and a polyfunctional acid halide is formed on a porous support.
  • the composite semipermeable membrane is usually processed into a spiral separation membrane element and used for water treatment or the like.
  • a supply-side flow channel material that guides the supply-side fluid to the separation membrane surface
  • a separation membrane that separates the supply-side fluid
  • a permeate-side flow that passes through the separation membrane and guides the permeation-side fluid separated from the supply-side fluid to the central tube
  • Patent Documents 2 and 3 A spiral type separation membrane element in which a unit made of road material is wound around a perforated central tube is known.
  • the present invention relates to a thin composite semipermeable membrane having a practical salt rejection and permeation flux, a method for producing the same, and a spiral separation membrane having a practical salt rejection and excellent water treatment efficiency.
  • the purpose is to provide elements.
  • the present invention is to bring an amine solution containing a polyfunctional amine component into contact with a porous support while feeding the porous support having a polymer porous layer on one side of the nonwoven fabric layer from the supply roll, and further to the porous support.
  • a composite semipermeable membrane comprising a step of forming a skin layer containing a polyamide-based resin on the surface of a porous support by bringing the amine solution and an organic solution containing a polyfunctional acid halide component into contact with each other for interfacial polymerization.
  • the nonwoven fabric layer has a thickness of 50 to 90 ⁇ m,
  • the amine solution is brought into contact with the porous support when the decrease rate of the water content of the porous support is within 15%.
  • a method for producing a composite semipermeable membrane
  • Another embodiment of the present invention is to bring an amine solution containing a polyfunctional amine component into contact with the porous support while feeding the porous support having a polymer porous layer on one side of the nonwoven fabric layer from the supply roll, and further to make the porous support porous.
  • a composite half comprising a step of forming a skin layer containing a polyamide-based resin on the surface of a porous support by bringing the amine solution on the support into contact with an organic solution containing a polyfunctional acid halide component and interfacial polymerization.
  • the nonwoven fabric layer has a thickness of 50 to 90 ⁇ m, When the water content of the porous support at the time of feeding from the supply roll is 100%, the reduction rate of the water content of the porous support when the amine solution is brought into contact with the porous support is kept within 15%.
  • the present invention relates to a method for producing a composite semipermeable membrane.
  • a method of improving water treatment efficiency without changing the size of the spiral separation membrane element for example, a method of increasing the effective membrane area per unit volume of the element by incorporating more composite semipermeable membranes into the element Can be considered.
  • a method for incorporating more composite semipermeable membranes into the element for example, a method using a thin composite semipermeable membrane is conceivable.
  • it is considered effective to reduce the thickness of a relatively large nonwoven fabric layer.
  • the salt rejection and permeation flux of the composite semipermeable membrane are considered. The problem of a significant drop occurred.
  • the porous support is usually used in a wet state in order to prevent repelling of the amine solution.
  • the porous support wound around the supply roll contains sufficient water, but the water gradually evaporates from the porous support when it is sent out from the supply roll and transported. The rate gradually decreases.
  • a conventional thick porous support is used, the water content is not so lowered during transportation, so that it contains sufficient water when the amine solution is applied onto the porous support.
  • the inventor contacts the amine solution with the porous support when the decrease rate of the water content of the porous support is within 15%. Even when a thin porous support is used, by keeping the reduction rate of the moisture content of the porous support within 15% when the amine solution is brought into contact with the porous support. It has been found that a composite semipermeable membrane having a practical salt rejection and permeation flux can be obtained.
  • the polymer porous layer preferably has a thickness of 10 to 35 ⁇ m.
  • the present invention also relates to a composite semipermeable membrane obtained by the above production method, and a spiral separation membrane element using the composite semipermeable membrane.
  • the composite semipermeable membrane of the present invention has a practical salt rejection and permeation flux despite being thin. Since the spiral type separation membrane element of the present invention uses the thin composite semipermeable membrane, it incorporates more composite semipermeable membranes than the conventional one. In other words, the spiral separation membrane element of the present invention has an effective membrane area per unit volume larger than that of the conventional one, and thus has excellent water treatment efficiency.
  • an amine solution containing a polyfunctional amine component is brought into contact with a porous support while a porous support having a polymer porous layer on one side of a nonwoven fabric layer is fed from a supply roll.
  • a step of forming a skin layer containing a polyamide-based resin on the surface of the porous support by bringing the amine solution on the porous support into contact with an organic solution containing a polyfunctional acid halide component and interfacial polymerization. including. This will be described in detail below.
  • an amine solution containing a polyfunctional amine component is brought into contact with the porous support while a porous support having a polymer porous layer on one side of the nonwoven fabric layer is sent out from a supply roll.
  • the nonwoven fabric layer is not particularly limited as long as it imparts appropriate mechanical strength while maintaining the separation performance and permeation performance of the composite semipermeable membrane, and a commercially available nonwoven fabric can be used.
  • a material made of polyolefin, polyester, cellulose or the like is used, and a material in which a plurality of materials are mixed can also be used.
  • polyester in terms of moldability.
  • a long fiber nonwoven fabric or a short fiber nonwoven fabric can be used as appropriate, but a long fiber nonwoven fabric can be preferably used from the viewpoint of fine fuzz that causes pinhole defects and uniformity of the film surface.
  • the air permeability of the nonwoven fabric layer at this time is not limited to this, but it can be about 0.5 to 10 cm 3 / cm 2 ⁇ s, and 1 to 5 cm 3 / s. Those having a size of about cm 2 ⁇ s are preferably used.
  • the nonwoven fabric layer one having a thickness of 90 ⁇ m or less is used from the viewpoint of producing a thin composite semipermeable membrane.
  • the thickness is preferably 80 ⁇ m or less, more preferably 70 ⁇ m or less, still more preferably 65 ⁇ m or less, and particularly preferably 60 ⁇ m or less.
  • it is too thin the mechanical strength as a support is lowered, and it becomes difficult to obtain a stable composite semipermeable membrane.
  • the polymer porous layer is not particularly limited as long as it can form the skin layer, but is usually a microporous layer having a pore diameter of about 0.01 to 0.4 ⁇ m.
  • the material for forming the microporous layer may include various materials such as polysulfone, polyarylethersulfone exemplified by polyethersulfone, polyimide, and polyvinylidene fluoride.
  • a polymer porous layer using polysulfone or polyarylethersulfone is preferable because it is chemically, mechanically and thermally stable.
  • the thickness of the polymer porous layer is not particularly limited, but if it is too thick, the flux retention rate after pressurization tends to decrease. Therefore, the thickness is preferably 35 ⁇ m or less, more preferably 32 ⁇ m or less, and still more preferably It is 29 ⁇ m or less, and particularly preferably 25 ⁇ m or less. On the other hand, if it is too thin, defects are likely to occur, and therefore it is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more.
  • the polymer porous layer can be produced by a method generally called a wet method or a dry wet method.
  • a solution preparation step in which polysulfone, a solvent, and various additives are mixed and dissolved to obtain a solution
  • a coating step in which the solution is coated on the nonwoven fabric layer, and evaporation of the solvent in the coated solution causes microphase separation.
  • the polymer porous layer can be formed on the nonwoven fabric layer by the drying step to be performed and the fixing step of fixing the porous structure by being immersed in a coagulation bath such as a water bath.
  • the thickness of the polymer porous layer can be set by adjusting the solution concentration and the coating amount after calculating the ratio of impregnation into the nonwoven fabric layer.
  • the amine solution contains at least a polyfunctional amine component.
  • the polyfunctional amine component is a polyfunctional amine having two or more reactive amino groups, and examples thereof include aromatic, aliphatic, and alicyclic polyfunctional amines.
  • aromatic polyfunctional amines include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, and 3,5-diamino.
  • aromatic polyfunctional amines include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, and 3,5-diamino.
  • examples include benzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N, N′-dimethyl-m-phenylenediamine, 2,4-diaminoanisole, amidole, xylylenediamine and the like.
  • Examples of the aliphatic polyfunctional amine include ethylenediamine, propylenediamine, tris (2-aminoethyl) amine, and n-phenyl-ethylenediamine.
  • Examples of the alicyclic polyfunctional amine include 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 2,5-dimethylpiperazine, 4-aminomethylpiperazine, and the like.
  • polyfunctional amines may be used alone or in combination of two or more. In order to obtain a skin layer having a high salt inhibition performance, it is preferable to use an aromatic polyfunctional amine.
  • Examples of the solvent for the amine solution include water, alcohol (for example, ethanol, isopropyl alcohol, ethylene glycol, and the like), and a mixed solvent of water and alcohol.
  • the concentration of the polyfunctional amine component in the amine solution is not particularly limited, but is preferably 0.1 to 5% by weight, more preferably 0.5 to 2% by weight.
  • concentration of the polyfunctional amine component is less than 0.1% by weight, defects such as pinholes are likely to occur in the skin layer, and the salt blocking performance tends to decrease.
  • concentration of the polyfunctional amine component exceeds 5% by weight, the polyfunctional amine component is likely to penetrate into the porous support, or the film thickness becomes too thick to increase the permeation resistance and increase the permeation flow. The bundle tends to decrease.
  • the amine solution is supported by the porous support when the water content reduction rate of the porous support is within 15%. Touch the body.
  • the reduction rate of the moisture content of the porous support is within 12%.
  • a conventional line speed that is, a line using a thick porous support
  • the reduction rate of the moisture content of the thin porous support tends to exceed 15%.
  • a method of increasing the line speed as compared with the conventional method it is preferable to transport the porous support at a speed of 1.5 times or more the conventional line speed.
  • the position where the amine solution is brought into contact with the porous support may be changed to the front side (position closer to the supply roll) than the conventional position.
  • the water content of the porous support at the time of feeding from the supply roll is 100%
  • the reduction rate of the moisture content of the porous support is kept within 12%.
  • the method for maintaining the water content reduction rate of the porous support within 15% include a method of adding a surfactant or a humectant to the porous support, a method of increasing the humidity of the production line, and conveyance. Examples thereof include a method of spraying water on the porous support inside.
  • a skin layer containing a polyamide-based resin is formed on the surface of the porous support by bringing the amine solution on the porous support into contact with an organic solution containing a polyfunctional acid halide component and interfacial polymerization.
  • the polyfunctional acid halide component is a polyfunctional acid halide having two or more reactive carbonyl groups.
  • polyfunctional acid halide examples include aromatic, aliphatic, and alicyclic polyfunctional acid halides.
  • aromatic polyfunctional acid halides include trimesic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyl dicarboxylic acid dichloride, naphthalene dicarboxylic acid dichloride, benzene trisulfonic acid trichloride, benzene disulfonic acid dichloride, and chlorosulfonylbenzene dicarboxylic acid.
  • An acid dichloride etc. are mentioned.
  • Examples of the aliphatic polyfunctional acid halide include propanedicarboxylic acid dichloride, butanedicarboxylic acid dichloride, pentanedicarboxylic acid dichloride, propanetricarboxylic acid trichloride, butanetricarboxylic acid trichloride, pentanetricarboxylic acid trichloride, glutaryl halide, adipoid Examples include luhalides.
  • Examples of the alicyclic polyfunctional acid halide include cyclopropane tricarboxylic acid trichloride, cyclobutane tetracarboxylic acid tetrachloride, cyclopentane tricarboxylic acid trichloride, cyclopentane tetracarboxylic acid tetrachloride, cyclohexane tricarboxylic acid trichloride, and tetrahydrofuran.
  • Examples thereof include tetracarboxylic acid tetrachloride, cyclopentane dicarboxylic acid dichloride, cyclobutane dicarboxylic acid dichloride, cyclohexane dicarboxylic acid dichloride, and tetrahydrofurandicarboxylic acid dichloride.
  • polyfunctional acid halides may be used alone or in combination of two or more.
  • an aromatic polyfunctional acid halide it is preferable to use an aromatic polyfunctional acid halide.
  • a polymer such as polyvinyl alcohol, polyvinyl pyrrolidone or polyacrylic acid, a polyhydric alcohol such as sorbitol or glycerin may be copolymerized.
  • the concentration of the polyfunctional acid halide component in the organic solution is not particularly limited, but is preferably 0.01 to 5% by weight, more preferably 0.05 to 3% by weight. If the concentration of the polyfunctional acid halide component is less than 0.01% by weight, the unreacted polyfunctional amine component tends to remain, or defects such as pinholes are likely to occur in the skin layer, resulting in a decrease in salt blocking performance. Tend to. On the other hand, when the concentration of the polyfunctional acid halide component exceeds 5% by weight, the unreacted polyfunctional acid halide component tends to remain, or the film thickness becomes too thick to increase the permeation resistance, thereby increasing the permeation flux. It tends to decrease.
  • the organic solvent used in the organic solution is not particularly limited as long as the solubility in water is low, the porous support is not deteriorated, and the polyfunctional acid halide component is dissolved.
  • cyclohexane, heptane, octane, And saturated hydrocarbons such as nonane and halogen-substituted hydrocarbons such as 1,1,2-trichlorotrifluoroethane.
  • Preferred is a saturated hydrocarbon having a boiling point of 300 ° C. or lower, more preferably a boiling point of 200 ° C. or lower.
  • additives can be added to the amine solution and the organic solution for the purpose of facilitating film formation and improving the performance of the resulting composite semipermeable membrane.
  • the additive include surfactants such as sodium dodecylbenzenesulfonate, sodium dodecylsulfate, and sodium laurylsulfate, sodium hydroxide that removes hydrogen halide generated by polymerization, trisodium phosphate, and triethylamine.
  • surfactants such as sodium dodecylbenzenesulfonate, sodium dodecylsulfate, and sodium laurylsulfate
  • sodium hydroxide that removes hydrogen halide generated by polymerization
  • trisodium phosphate triethylamine.
  • the time from applying the amine solution on the porous support to applying the organic solution is 15 seconds or less, depending on the composition of the amine solution, the viscosity and the pore size of the surface layer of the porous support. Is more preferable, and more preferably 5 seconds or less. If the application interval of the solution exceeds 15 seconds, the amine solution may penetrate and diffuse deep inside the porous support, and a large amount of unreacted polyfunctional amine component may remain in the porous support. . Further, the unreacted polyfunctional amine component that has penetrated deep inside the porous support tends to be difficult to remove even in the subsequent membrane cleaning treatment. In addition, you may remove an excess solution, after coat
  • the heating temperature is more preferably 70 to 200 ° C., particularly preferably 100 to 150 ° C.
  • the heating time is preferably about 30 seconds to 10 minutes, more preferably about 40 seconds to 7 minutes.
  • the thickness of the skin layer formed on the porous support is not particularly limited, but is usually about 0.01 to 100 ⁇ m, preferably 0.1 to 10 ⁇ m.
  • the shape of the composite semipermeable membrane of the present invention is not limited at all. That is, any conceivable membrane shape such as a flat membrane shape or a spiral element shape is possible. Moreover, in order to improve the salt-blocking property, water permeability, oxidation resistance, etc. of the composite semipermeable membrane, various conventionally known treatments may be performed.
  • the spiral-type separation membrane element of the present invention includes, for example, a supply-side fluid and a permeation-side fluid that are stacked with a supply-side channel material and a permeation-side channel material arranged between two folded composite semipermeable membranes.
  • a separation membrane unit is prepared by applying an adhesive for forming a sealing portion that prevents mixing of the composite semipermeable membrane to the periphery (three sides) of the composite semipermeable membrane, and one or more of the separation membrane units are arranged around the central tube. It is manufactured by winding it in a spiral shape and further sealing the periphery of the separation membrane unit.
  • Example 1 Apply a mixed solution containing polysulfone and dimethylformamide on the surface of a 65 ⁇ m thick nonwoven fabric layer and solidify it to form a polymer porous layer with a thickness of 25 ⁇ m to produce a porous support and supply it I wound it on a roll. Also, an amine solution was prepared by dissolving 3.6% by weight of piperazine hexahydrate and 0.15% by weight of sodium lauryl sulfate in water. Further, an organic solution was prepared by dissolving 0.4% by weight of trimesic acid chloride in hexane.
  • the prepared amine solution was applied onto the porous support, and the prepared organic solution was further applied onto the porous support. . Thereafter, the excess solution was removed, and further kept in a hot air dryer at 100 ° C. for 5 minutes to form a skin layer containing a polyamide-based resin on the porous support to produce a composite semipermeable membrane.
  • Comparative Example 1 A composite semipermeable membrane was produced in the same manner as in Example 1 except that the porous support was fed from the supply roll at a normal line speed.
  • Comparative Example 2 A composite semipermeable membrane was produced in the same manner as in Example 1 except that the porous support was fed from the supply roll at a line speed that was 1.2 times the normal speed.
  • Comparative Example 3 Applying a mixed solution containing polysulfone and dimethylformamide to the surface of a non-woven fabric layer with a thickness of 100 ⁇ m and solidifying it to form a porous polymer layer with a thickness of 45 ⁇ m to supply a porous support. I wound it on a roll.
  • a composite semipermeable membrane was produced in the same manner as in Example 1 except that the porous support was used and the porous support was fed from the supply roll at a normal line speed.
  • the composite semipermeable membrane and spiral separation membrane element of the present invention are suitable for production of ultrapure water, desalination of brackish water or seawater, etc., and stains that cause pollution such as dyed wastewater and electrodeposition paint wastewater. Therefore, it is possible to remove / recover the pollution source or the effective substance contained therein and contribute to the closure of the waste water. Moreover, it can be used for advanced treatments such as concentration of active ingredients in food applications and removal of harmful components in water purification and sewage applications. It can also be used for wastewater treatment in oil fields, shale gas fields, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Polyamides (AREA)

Abstract

 本発明は、実用的な塩阻止率及び透過流束を有する薄型の複合半透膜及びその製造方法、並びに実用的な塩阻止率を有しており、かつ水処理効率に優れるスパイラル型分離膜エレメントを提供することを目的とする。本発明の複合半透膜の製造方法は、不織布層の片面にポリマー多孔質層を有する多孔性支持体を供給ロールから送り出しながら、多官能アミン成分を含むアミン溶液を多孔性支持体に接触させ、さらに多孔性支持体上の前記アミン溶液と多官能酸ハライド成分を含む有機溶液とを接触させて界面重合させることにより、ポリアミド系樹脂を含むスキン層を多孔性支持体の表面に形成する工程を含み、前記不織布層は、厚さが50~90μmであり、供給ロールから送り出す際の多孔性支持体の含水率を100%とした場合、多孔性支持体の含水率の低下率が15%以内の時に前記アミン溶液を多孔性支持体に接触させることを特徴とする。

Description

複合半透膜及びその製造方法、スパイラル型分離膜エレメント
 本発明は、ポリアミド系樹脂を含むスキン層が多孔性支持体の表面に形成されている複合半透膜及びその製造方法、並びに当該複合半透膜を用いたスパイラル型分離膜エレメントに関する。かかる複合半透膜及びスパイラル型分離膜エレメントは、超純水の製造、かん水または海水の脱塩などに好適であり、また染色排水や電着塗料排水などの公害発生原因である汚れなどから、その中に含まれる汚染源あるいは有効物質を除去・回収し、排水のクローズ化に寄与することができる。また、食品用途などで有効成分の濃縮、浄水や下水用途等での有害成分の除去などの高度処理に用いることができる。また、油田やシェールガス田などにおける排水処理に用いることができる。
 複合半透膜はその濾過性能や処理方法に応じてRO(逆浸透)膜、NF(ナノ濾過)膜、FO(正浸透)膜と呼ばれ、超純水製造、海水淡水化、かん水の脱塩処理、排水の再利用処理などに用いることができる。
 現在、複合半透膜としては、多官能アミンと多官能酸ハロゲン化物との界面重合によって得られるポリアミド樹脂を含むスキン層が多孔性支持体上に形成されたものが提案されている(特許文献1)。
 複合半透膜は、通常、スパイラル型分離膜エレメントに加工して水処理等に用いられている。例えば、供給側流体を分離膜表面へ導く供給側流路材、供給側流体を分離する分離膜、分離膜を透過し供給側流体から分離された透過側流体を中心管へと導く透過側流路材からなるユニットを有孔の中心管の周りに巻き付けたスパイラル型分離膜エレメントが知られている(特許文献2、3)。
 これまで、スパイラル型分離膜エレメントの水処理効率を高めるために種々研究されているが、実用的な塩阻止率を維持したまま水処理効率を高めることは困難であった。
特開2005-103517号公報 特開2000-354743号公報 特開2006-68644号公報
 本発明は、実用的な塩阻止率及び透過流束を有する薄型の複合半透膜及びその製造方法、並びに実用的な塩阻止率を有しており、かつ水処理効率に優れるスパイラル型分離膜エレメントを提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、下記製造方法により、実用的な塩阻止率及び透過流束を有する薄型の複合半透膜が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、不織布層の片面にポリマー多孔質層を有する多孔性支持体を供給ロールから送り出しながら、多官能アミン成分を含むアミン溶液を多孔性支持体に接触させ、さらに多孔性支持体上の前記アミン溶液と多官能酸ハライド成分を含む有機溶液とを接触させて界面重合させることにより、ポリアミド系樹脂を含むスキン層を多孔性支持体の表面に形成する工程を含む複合半透膜の製造方法において、
 前記不織布層は、厚さが50~90μmであり、
 供給ロールから送り出す際の多孔性支持体の含水率を100%とした場合、多孔性支持体の含水率の低下率が15%以内の時に前記アミン溶液を多孔性支持体に接触させることを特徴とする複合半透膜の製造方法、に関する。
 また、別の本発明は、不織布層の片面にポリマー多孔質層を有する多孔性支持体を供給ロールから送り出しながら、多官能アミン成分を含むアミン溶液を多孔性支持体に接触させ、さらに多孔性支持体上の前記アミン溶液と多官能酸ハライド成分を含む有機溶液とを接触させて界面重合させることにより、ポリアミド系樹脂を含むスキン層を多孔性支持体の表面に形成する工程を含む複合半透膜の製造方法において、
 前記不織布層は、厚さが50~90μmであり、
 供給ロールから送り出す際の多孔性支持体の含水率を100%とした場合、前記アミン溶液を多孔性支持体に接触させる際の多孔性支持体の含水率の低下率を15%以内に保持することを特徴とする複合半透膜の製造方法、に関する。
 スパイラル型分離膜エレメントの大きさを変えずに水処理効率を向上させる方法としては、例えば、より多くの複合半透膜をエレメントに組み込んで、エレメントの単位体積当たりの有効膜面積を増加させる方法が考えられる。そして、より多くの複合半透膜をエレメントに組み込む方法としては、例えば、薄い複合半透膜を用いる方法が考えられる。薄い複合半透膜を作製するためには、相対的に厚みの大きい不織布層を薄くすることが有効であると考えられるが、不織布層を薄くすると複合半透膜の塩阻止率及び透過流束が大きく低下するという問題が生じた。本発明者は、その原因を鋭意検討した結果、多孔性支持体上にスキン層を形成する際の多孔性支持体中の含水率が塩阻止率及び透過流束に大きな影響を及ぼしていることを発見した。詳しくは、多孔性支持体は、通常、アミン溶液のはじきを防止するためにウェット状態で用いられる。供給ロールに巻かれた状態の多孔性支持体は十分な水分を含んでいるが、供給ロールから送り出して搬送している時に多孔性支持体から水分が徐々に蒸発し、多孔性支持体の含水率は次第に低下してくる。従来の厚い多孔性支持体を用いた場合には、搬送中の含水率の低下はそれほど大きくないため、多孔性支持体上にアミン溶液を塗布する際にも十分な水分を含んでいる。しかし、薄い多孔性支持体を用いた場合には、搬送中に含水率が大きく低下するため、多孔性支持体上にアミン溶液を塗布する際には多孔性支持体の水分が不十分になる。そのため、多官能アミン成分が多孔性支持体内部に浸透しにくくなり、多孔性支持体内部において多官能アミン成分と多官能酸ハライド成分との重合反応が十分に進行しなくなる。その結果、多孔性支持体内部でスキン層が十分に形成されず、多孔性支持体表面にひだのない平坦なスキン層が形成されるため、塩阻止率及び透過流束が大きく低下すると考えられる。
 本発明者は、供給ロールから送り出す際の多孔性支持体の含水率を100%とした場合、多孔性支持体の含水率の低下率が15%以内の時にアミン溶液を多孔性支持体に接触させることにより、あるいはアミン溶液を多孔性支持体に接触させる際の多孔性支持体の含水率の低下率を15%以内に保持することにより、薄い多孔性支持体を用いた場合であっても実用的な塩阻止率及び透過流束を有する複合半透膜が得られることを見出した。
 前記ポリマー多孔質層は、厚さが10~35μmであることが好ましい。
 また、本発明は、前記製造方法により得られる複合半透膜、及び当該複合半透膜を用いたスパイラル型分離膜エレメント、に関する。
 本発明の複合半透膜は、薄型であるにもかかわらず、実用的な塩阻止率及び透過流束を有する。本発明のスパイラル型分離膜エレメントは、当該薄型の複合半透膜を用いているため、従来のものよりも多くの複合半透膜を内蔵している。つまり、本発明のスパイラル型分離膜エレメントは、従来のものよりも単位体積当たりの有効膜面積が大きいため、水処理効率に優れる。
 以下、本発明の実施の形態について説明する。本発明の複合半透膜の製造方法は、不織布層の片面にポリマー多孔質層を有する多孔性支持体を供給ロールから送り出しながら、多官能アミン成分を含むアミン溶液を多孔性支持体に接触させ、さらに多孔性支持体上の前記アミン溶液と多官能酸ハライド成分を含む有機溶液とを接触させて界面重合させることにより、ポリアミド系樹脂を含むスキン層を多孔性支持体の表面に形成する工程を含む。以下、詳しく説明する。
 まず、不織布層の片面にポリマー多孔質層を有する多孔性支持体を供給ロールから送り出しながら、多官能アミン成分を含むアミン溶液を多孔性支持体に接触させる。
 前記不織布層としては、複合半透膜の分離性能および透過性能を保持しつつ、適度な機械強度を付与するものであれば特に限定されるものではなく、市販の不織布を用いることができる。この材料としては例えば、ポリオレフィン、ポリエステル、セルロースなどからなるものが用いられ、複数の素材を混合したものも使用することができる。特に成形性の点ではポリエステルを用いることが好ましい。また適宜、長繊維不織布や短繊維不織布を用いることができるが、ピンホール欠陥の原因となる微細な毛羽立ちや膜面の均一性の点から、長繊維不織布を好ましく用いることができる。また、このときの前記不織布層単体の通気度としては、これに限定されるものではないが、0.5~10cm/cm・s程度のものを用いることができ、1~5cm/cm・s程度のものが好ましく用いられる。
 前記不織布層としては、薄型の複合半透膜を作製する観点から厚さが90μm以下のものを用いる。厚さは、80μm以下であることが好ましく、より好ましくは70μm以下であり、さらに好ましくは65μm以下であり、特に好ましくは60μm以下である。一方、薄すぎると支持体としての機械強度が低下し、安定した複合半透膜が得られにくくなるため、厚さが50μm以上のものを用いる。
 前記ポリマー多孔質層は、前記スキン層を形成しうるものであれば特に限定されないが、通常、0.01~0.4μm程度の孔径を有する微多孔層である。前記微多孔層の形成材料は、例えば、ポリスルホン、ポリエーテルスルホンに例示されるポリアリールエーテルスルホン、ポリイミド、ポリフッ化ビニリデンなど種々のものをあげることができる。特に化学的、機械的、熱的に安定である点からポリスルホン、ポリアリールエーテルスルホンを用いたポリマー多孔質層であることが好ましい。
 前記ポリマー多孔質層の厚さは特に制限されないが、厚すぎると加圧後のFlux保持率が低下しやすくなるため、35μm以下であることが好ましく、より好ましくは32μm以下であり、さらに好ましくは29μm以下であり、特に好ましくは25μm以下である。一方、薄すぎると欠陥が生じやすくなるため、10μm以上であることが好ましく、より好ましくは15μm以上である。
 前記ポリマー多孔質層の形成材料がポリスルホンである場合の製造方法について例示する。ポリマー多孔質層は一般に湿式法または乾湿式法と呼ばれる方法により製造できる。例えば、ポリスルホン、溶媒、及び各種添加剤を混合し溶解させて溶液を得る溶液準備工程、前記溶液を不織布層上に被覆する被覆工程、被覆した溶液中の溶媒を蒸発させてミクロ相分離を生じさせる乾燥工程、及び水浴等の凝固浴に浸漬することで多孔構造を固定化する固定化工程により、不織布層上にポリマー多孔質層を形成することができる。前記ポリマー多孔質層の厚さは、不織布層に含浸される割合も計算の上、前記溶液濃度及び被覆量を調整することで設定することができる。
 アミン溶液は、少なくとも多官能アミン成分を含むものである。
 多官能アミン成分とは、2以上の反応性アミノ基を有する多官能アミンであり、芳香族、脂肪族、及び脂環式の多官能アミンが挙げられる。
 芳香族多官能アミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、o-フェニレンジアミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、2,4-ジアミノトルエン、2,6-ジアミノトルエン、N,N’-ジメチル-m-フェニレンジアミン、2,4-ジアミノアニソール、アミドール、キシリレンジアミン等が挙げられる。
 脂肪族多官能アミンとしては、例えば、エチレンジアミン、プロピレンジアミン、トリス(2-アミノエチル)アミン、n-フェニル-エチレンジアミン等が挙げられる。
 脂環式多官能アミンとしては、例えば、1,3-ジアミノシクロヘキサン、1,2-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ピペラジン、2,5-ジメチルピペラジン、4-アミノメチルピペラジン等が挙げられる。
 これらの多官能アミンは1種で用いてもよく、2種以上を併用してもよい。高塩阻止性能のスキン層を得るためには、芳香族多官能アミンを用いることが好ましい。
 アミン溶液の溶媒としては、例えば、水、アルコール(例えば、エタノール、イソプロピルアルコール、及びエチレングリコールなど)、及び水とアルコールとの混合溶媒などが挙げられる。
 アミン溶液中の多官能アミン成分の濃度は特に制限されないが、0.1~5重量%であることが好ましく、より好ましくは0.5~2重量%である。多官能アミン成分の濃度が0.1重量%未満の場合にはスキン層にピンホール等の欠陥が生じやすくなり、また塩阻止性能が低下する傾向にある。一方、多官能アミン成分の濃度が5重量%を超える場合には、多官能アミン成分が多孔性支持体中に浸透しやすくなったり、膜厚が厚くなりすぎて透過抵抗が大きくなって透過流束が低下する傾向にある。
 本発明の製造方法においては、供給ロールから送り出す際の多孔性支持体の含水率を100%とした場合、多孔性支持体の含水率の低下率が15%以内の時にアミン溶液を多孔性支持体に接触させる。好ましくは多孔性支持体の含水率の低下率が12%以内の時である。
 多孔性支持体の含水率の低下率が15%以内の時にアミン溶液を多孔性支持体に接触させる方法としては、例えば、従来のライン速度(つまり、厚い多孔性支持体を用いた場合のライン速度)で本発明の薄型多孔性支持体を搬送すると、アミン溶液を薄型多孔性支持体に接触させる際には、薄型多孔性支持体の含水率の低下率は15%を超える傾向にあるため、ライン速度を従来よりも大きくする方法が挙げられる。具体的には、従来のライン速度の1.5倍以上の速度で多孔性支持体を搬送することが好ましい。また、例えば、アミン溶液を多孔性支持体に接触させる位置を従来の位置よりも前側(供給ロールにより近い位置)に変更してもよい。
 また、本発明の製造方法においては、供給ロールから送り出す際の多孔性支持体の含水率を100%とした場合、アミン溶液を多孔性支持体に接触させる際の多孔性支持体の含水率の低下率を15%以内に保持する方法を採用してもよい。好ましくは、多孔性支持体の含水率の低下率を12%以内に保持する。多孔性支持体の含水率の低下率を15%以内に保持する方法としては、例えば、多孔性支持体に界面活性剤又は保湿剤を添加する方法、製造ラインの湿度を高くする方法、及び搬送中の多孔性支持体に水を吹き付ける方法などが挙げられる。
 その後、多孔性支持体上の前記アミン溶液と多官能酸ハライド成分を含む有機溶液とを接触させて界面重合させることにより、ポリアミド系樹脂を含むスキン層を多孔性支持体の表面に形成する。
 多官能酸ハライド成分とは、反応性カルボニル基を2個以上有する多官能酸ハライドである。
 多官能酸ハライドとしては、芳香族、脂肪族、及び脂環式の多官能酸ハライドが挙げられる。
 芳香族多官能酸ハライドとしては、例えば、トリメシン酸トリクロライド、テレフタル酸ジクロライド、イソフタル酸ジクロライド、ビフェニルジカルボン酸ジクロライド、ナフタレンジカルボン酸ジクロライド、ベンゼントリスルホン酸トリクロライド、ベンゼンジスルホン酸ジクロライド、クロロスルホニルベンゼンジカルボン酸ジクロライド等が挙げられる。
 脂肪族多官能酸ハライドとしては、例えば、プロパンジカルボン酸ジクロライド、ブタンジカルボン酸ジクロライド、ペンタンジカルボン酸ジクロライド、プロパントリカルボン酸トリクロライド、ブタントリカルボン酸トリクロライド、ペンタントリカルボン酸トリクロライド、グルタリルハライド、アジポイルハライド等が挙げられる。
 脂環式多官能酸ハライドとしては、例えば、シクロプロパントリカルボン酸トリクロライド、シクロブタンテトラカルボン酸テトラクロライド、シクロペンタントリカルボン酸トリクロライド、シクロペンタンテトラカルボン酸テトラクロライド、シクロヘキサントリカルボン酸トリクロライド、テトラハイドロフランテトラカルボン酸テトラクロライド、シクロペンタンジカルボン酸ジクロライド、シクロブタンジカルボン酸ジクロライド、シクロヘキサンジカルボン酸ジクロライド、テトラハイドロフランジカルボン酸ジクロライド等が挙げられる。
 これら多官能酸ハライドは1種で用いてもよく、2種以上を併用してもよい。高塩阻止性能のスキン層を得るためには、芳香族多官能酸ハライドを用いることが好ましい。また、多官能酸ハライド成分の少なくとも一部に3価以上の多官能酸ハライドを用いて、架橋構造を形成するのが好ましい。
 また、ポリアミド系樹脂を含むスキン層の性能を向上させるために、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸などのポリマー、ソルビトール、グリセリンなどの多価アルコールなどを共重合させてもよい。
 有機溶液中の多官能酸ハライド成分の濃度は特に制限されないが、0.01~5重量%であることが好ましく、より好ましくは0.05~3重量%である。多官能酸ハライド成分の濃度が0.01重量%未満の場合には、未反応多官能アミン成分が残留しやすくなったり、スキン層にピンホール等の欠陥が生じやすくなって塩阻止性能が低下する傾向にある。一方、多官能酸ハライド成分の濃度が5重量%を超える場合には、未反応多官能酸ハライド成分が残留しやすくなったり、膜厚が厚くなりすぎて透過抵抗が大きくなり、透過流束が低下する傾向にある。
 有機溶液に用いられる有機溶媒としては、水に対する溶解度が低く、多孔性支持体を劣化させず、多官能酸ハライド成分を溶解するものであれば特に限定されず、例えば、シクロヘキサン、ヘプタン、オクタン、及びノナン等の飽和炭化水素、1,1,2-トリクロロトリフルオロエタン等のハロゲン置換炭化水素などを挙げることができる。好ましくは沸点が300℃以下、さらに好ましくは沸点が200℃以下の飽和炭化水素である。
 アミン溶液や有機溶液には、製膜を容易にしたり、得られる複合半透膜の性能を向上させるための目的で各種の添加剤を加えることができる。前記添加剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、及びラウリル硫酸ナトリウム等の界面活性剤、重合により生成するハロゲン化水素を除去する水酸化ナトリウム、リン酸三ナトリウム、及びトリエチルアミン等の塩基性化合物、アシル化触媒、特開平8-224452号公報記載の溶解度パラメータが8~14(cal/cm1/2の化合物などが挙げられる。
 多孔性支持体上にアミン溶液を塗布してから有機溶液を塗布するまでの時間は、アミン溶液の組成、粘度及び多孔性支持体の表面層の孔径にもよるが、15秒以下であることが好ましく、さらに好ましくは5秒以下である。前記溶液の塗布間隔が15秒を超える場合には、アミン溶液が多孔性支持体の内部深くまで浸透・拡散し、未反応多官能アミン成分が多孔性支持体中に大量に残存する恐れがある。また、多孔性支持体の内部深くまで浸透した未反応多官能アミン成分は、その後の膜洗浄処理でも除去し難い傾向にある。なお、前記多孔性支持体上に前記アミン溶液を被覆した後、余分な溶液を除去してもよい。
 本発明においては、アミン溶液と有機溶液との接触後、多孔性支持体上の過剰な有機溶液を除去し、多孔性支持体上の形成膜を70℃以上で加熱乾燥してスキン層を形成することが好ましい。形成膜を加熱処理することによりその機械的強度や耐熱性等を高めることができる。加熱温度は70~200℃であることがより好ましく、特に好ましくは100~150℃である。加熱時間は30秒~10分程度が好ましく、さらに好ましくは40秒~7分程度である。
 多孔性支持体上に形成したスキン層の厚みは特に制限されないが、通常0.01~100μm程度であり、好ましくは、0.1~10μmである。
 本発明の複合半透膜はその形状になんら制限を受けるものではない。すなわち平膜状、あるいはスパイラルエレメント状など、考えられるあらゆる膜形状が可能である。また、複合半透膜の塩阻止性、透水性、及び耐酸化剤性等を向上させるために、従来公知の各種処理を施してもよい。
 本発明のスパイラル型分離膜エレメントは、例えば、複合半透膜を二つ折りにした間に供給側流路材を配置したものと、透過側流路材とを積み重ね、供給側流体と透過側流体の混合を防ぐ封止部を形成するための接着剤を複合半透膜の周辺部(3辺)に塗布して分離膜ユニットを作製し、この分離膜ユニットの単数または複数を中心管の周囲にスパイラル状に巻きつけて、更に分離膜ユニットの周辺部を封止することによって製造される。
 以下に実施例をあげて本発明を説明するが、本発明はこれら実施例によりなんら限定されるものではない。
 〔評価及び測定方法〕
 (多孔性支持体の含水率の測定)
 供給ロールから送り出した直後の多孔性支持体を切り取ってサンプルを作製し、そのサンプルの重量Xを測定した。その後、当該サンプルを乾燥させて重量Yを測定した。供給ロールから送り出した直後の多孔性支持体の含水率A(%)は、下記式により算出した。 
 含水率A(%)=〔(重量X-重量Y)/(重量X〕×100
 また、アミン溶液を接触させる直前の多孔性支持体を切り取ってサンプルを作製し、そのサンプルの重量Xを測定した。その後、当該サンプルを乾燥させて重量Yを測定した。アミン溶液を接触させる直前の多孔性支持体の含水率B(%)は、下記式により算出した。 
 含水率B(%)=〔(重量X-重量Y)/(重量X〕×100
 また、含水率の低下率は、下記式により算出した。 
 含水率の低下率(%)=〔(含水率A-含水率B)/(含水率A〕×100
 (透過流束及び塩阻止率の測定)
 作製した平膜状の複合半透膜を所定の形状、サイズに切断し、平膜評価用のセルにセットする。0.2%のMgSOを含みかつNaOHを用いてpH7に調整した水溶液を25℃で膜の供給側と透過側に1.5MPaの差圧を与えて膜に接触させる。この操作によって得られた透過水の透過速度および電導度を測定し、透過流束(m/m・d)および塩阻止率(%)を算出した。塩阻止率は、MgSO濃度と水溶液電導度の相関(検量線)を事前に作成し、それらを用いて下式により算出した。 
 塩阻止率(%)={1-(透過液中のMgSO濃度[mg/L])/(供給液中のMgSO濃度[mg/L])}×100
 実施例1
 厚さ65μmの不織布層の表面に、ポリスルホンとジメチルホルムアミドを含む混合溶液を塗布し、凝固処理することにより厚さ25μmのポリマー多孔質層を形成して多孔性支持体を作製し、それを供給ロールに巻きとった。また、ピペラジン6水和物3.6重量%、及びラウリル硫酸ナトリウム0.15重量%を水に溶解させてアミン溶液を調製した。また、トリメシン酸クロライド0.4重量%をヘキサンに溶解させて有機溶液を調製した。多孔性支持体を供給ロールから通常の1.5倍のライン速度で送り出しながら、調製したアミン溶液を多孔性支持体上に塗布し、さらに、調製した有機溶液を多孔性支持体上に塗布した。その後、余分な溶液を除去し、さらに100℃の熱風乾燥機中で5分間保持し、多孔性支持体上にポリアミド系樹脂を含むスキン層を形成して複合半透膜を作製した。
 比較例1
 多孔性支持体を供給ロールから通常のライン速度で送り出した以外は実施例1と同様の方法で複合半透膜を作製した。
 比較例2
 多孔性支持体を供給ロールから通常の1.2倍のライン速度で送り出した以外は実施例1と同様の方法で複合半透膜を作製した。
 比較例3
 厚さ100μmの不織布層の表面に、ポリスルホンとジメチルホルムアミドを含む混合溶液を塗布し、凝固処理することにより厚さ45μmのポリマー多孔質層を形成して多孔性支持体を作製し、それを供給ロールに巻きとった。当該多孔性支持体を用い、多孔性支持体を供給ロールから通常のライン速度で送り出した以外は実施例1と同様の方法で複合半透膜を作製した。
Figure JPOXMLDOC01-appb-T000001
 
 本発明の複合半透膜及びスパイラル型分離膜エレメントは、超純水の製造、かん水または海水の脱塩などに好適であり、また染色排水や電着塗料排水などの公害発生原因である汚れなどから、その中に含まれる汚染源あるいは有効物質を除去・回収し、排水のクローズ化に寄与することができる。また、食品用途などで有効成分の濃縮、浄水や下水用途等での有害成分の除去などの高度処理に用いることができる。また、油田やシェールガス田などにおける排水処理に用いることができる。

Claims (5)

  1. 不織布層の片面にポリマー多孔質層を有する多孔性支持体を供給ロールから送り出しながら、多官能アミン成分を含むアミン溶液を多孔性支持体に接触させ、さらに多孔性支持体上の前記アミン溶液と多官能酸ハライド成分を含む有機溶液とを接触させて界面重合させることにより、ポリアミド系樹脂を含むスキン層を多孔性支持体の表面に形成する工程を含む複合半透膜の製造方法において、
     前記不織布層は、厚さが50~90μmであり、
     供給ロールから送り出す際の多孔性支持体の含水率を100%とした場合、多孔性支持体の含水率の低下率が15%以内の時に前記アミン溶液を多孔性支持体に接触させることを特徴とする複合半透膜の製造方法。
  2. 不織布層の片面にポリマー多孔質層を有する多孔性支持体を供給ロールから送り出しながら、多官能アミン成分を含むアミン溶液を多孔性支持体に接触させ、さらに多孔性支持体上の前記アミン溶液と多官能酸ハライド成分を含む有機溶液とを接触させて界面重合させることにより、ポリアミド系樹脂を含むスキン層を多孔性支持体の表面に形成する工程を含む複合半透膜の製造方法において、
     前記不織布層は、厚さが50~90μmであり、
     供給ロールから送り出す際の多孔性支持体の含水率を100%とした場合、前記アミン溶液を多孔性支持体に接触させる際の多孔性支持体の含水率の低下率を15%以内に保持することを特徴とする複合半透膜の製造方法。
  3. ポリマー多孔質層は、厚さが10~35μmである請求項1又は2記載の複合半透膜の製造方法。
  4. 請求項1~3のいずれかに記載の製造方法により得られる複合半透膜。
  5. 請求項4記載の複合半透膜を用いたスパイラル型分離膜エレメント。
PCT/JP2015/077366 2014-09-30 2015-09-28 複合半透膜及びその製造方法、スパイラル型分離膜エレメント WO2016052427A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/514,282 US20170282129A1 (en) 2014-09-30 2015-09-28 Composite semipermeable membrane and method for producing the same, spiral wound separation membrane element
CN201580049663.5A CN106714950A (zh) 2014-09-30 2015-09-28 复合半透膜及其制造方法、螺旋型分离膜元件
KR1020177006224A KR20170061662A (ko) 2014-09-30 2015-09-28 복합 반투막 및 그 제조 방법, 및 스파이럴형 분리막 엘리먼트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014200657A JP2016068019A (ja) 2014-09-30 2014-09-30 複合半透膜及びその製造方法、スパイラル型分離膜エレメント
JP2014-200657 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016052427A1 true WO2016052427A1 (ja) 2016-04-07

Family

ID=55630457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077366 WO2016052427A1 (ja) 2014-09-30 2015-09-28 複合半透膜及びその製造方法、スパイラル型分離膜エレメント

Country Status (5)

Country Link
US (1) US20170282129A1 (ja)
JP (1) JP2016068019A (ja)
KR (1) KR20170061662A (ja)
CN (1) CN106714950A (ja)
WO (1) WO2016052427A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176048A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 複合逆浸透膜及びその製造方法
WO2023176049A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 複合逆浸透膜及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102085402B1 (ko) * 2016-05-18 2020-03-05 주식회사 엘지화학 수처리 분리막의 제조방법, 이를 이용하여 제조된 수처리 분리막, 및 수처리 분리막을 포함하는 수처리 모듈
CN111905577A (zh) * 2020-08-12 2020-11-10 浙江奥氏环境科技有限公司 一种降低反渗透膜残留胺含量的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130707A (ja) * 1987-11-18 1989-05-23 Dow Chem Co:The ポリアミド逆浸透膜
JP2011516264A (ja) * 2008-04-15 2011-05-26 ナノエイチツーオー・インコーポレーテッド 複合ナノ粒子tfc膜
JP2012135757A (ja) * 2010-12-09 2012-07-19 Toray Ind Inc 複合半透膜、複合半透膜エレメントおよび複合半透膜の製造方法
US20130146530A1 (en) * 2011-12-08 2013-06-13 General Electric Company Membrane, water treatment system, and method of making
JP2013240781A (ja) * 2012-04-25 2013-12-05 Nitto Denko Corp 複合半透膜の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4656502B2 (ja) * 2004-10-01 2011-03-23 日東電工株式会社 複合半透膜及びその製造方法
US20090107922A1 (en) * 2007-10-26 2009-04-30 General Electric Company Membrane, water treatment system, and associated method
US8580341B2 (en) * 2009-05-22 2013-11-12 General Electric Company Method of making composite membrane
AU2011219151A1 (en) * 2010-02-23 2012-08-30 Toray Industries, Inc. Composite semipermeable membrane and process for production thereof
WO2013047398A1 (ja) * 2011-09-29 2013-04-04 東レ株式会社 複合半透膜
ES2856328T3 (es) * 2012-11-23 2021-09-27 Council Scient Ind Res Una membrana de ósmosis inversa de compuesto de película delgada modificada y usos de la misma

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130707A (ja) * 1987-11-18 1989-05-23 Dow Chem Co:The ポリアミド逆浸透膜
JP2011516264A (ja) * 2008-04-15 2011-05-26 ナノエイチツーオー・インコーポレーテッド 複合ナノ粒子tfc膜
JP2012135757A (ja) * 2010-12-09 2012-07-19 Toray Ind Inc 複合半透膜、複合半透膜エレメントおよび複合半透膜の製造方法
US20130146530A1 (en) * 2011-12-08 2013-06-13 General Electric Company Membrane, water treatment system, and method of making
JP2013240781A (ja) * 2012-04-25 2013-12-05 Nitto Denko Corp 複合半透膜の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176048A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 複合逆浸透膜及びその製造方法
WO2023176049A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 複合逆浸透膜及びその製造方法

Also Published As

Publication number Publication date
US20170282129A1 (en) 2017-10-05
JP2016068019A (ja) 2016-05-09
CN106714950A (zh) 2017-05-24
KR20170061662A (ko) 2017-06-05

Similar Documents

Publication Publication Date Title
JP5978998B2 (ja) 複合半透膜、複合半透膜エレメントおよび複合半透膜の製造方法
JP6573249B2 (ja) Tfcメンブレンを介した水フラックスを改善させるための方法
CN105705222B (zh) 复合半透膜
JP2016518982A (ja) 塩除去率及び透過流量特性に優れたポリアミド系水処理分離膜及びその製造方法
KR101114668B1 (ko) 폴리아마이드 역삼투 분리막의 제조방법 및 그에 의해 제조된 폴리아마이드 역삼투 분리막
JP6522185B2 (ja) 複合半透膜
WO2016052427A1 (ja) 複合半透膜及びその製造方法、スパイラル型分離膜エレメント
WO2015118894A1 (ja) 複合半透膜の製造方法
JP2008246419A (ja) 複合半透膜の製造方法
JP6747926B2 (ja) スパイラル型分離膜エレメントの製造方法
JP2006102594A (ja) 複合半透膜の製造方法
JP2008253906A (ja) 乾燥複合半透膜
JP6521422B2 (ja) スパイラル型分離膜エレメント
JP2012143750A (ja) 複合半透膜の製造方法
KR20120077997A (ko) 폴리아마이드계 역삼투 분리막의 제조방법 및 그에 의해 제조된 폴리아마이드계 역삼투 분리막
CN107000368B (zh) 多孔性支撑体、复合半透膜、及螺旋型分离膜元件
WO2017057378A1 (ja) 複合半透膜
JP2008259983A (ja) 乾燥複合半透膜の製造方法
KR101825632B1 (ko) 고유량 폴리아미드 복합막의 제조방법
JP2014188407A (ja) 複合半透膜
WO2016035681A1 (ja) 複合半透膜、分離膜エレメント、及びその製造方法
JP2015147192A (ja) 複合半透膜の製造方法
WO2017057692A1 (ja) スパイラル型分離膜エレメントの製造方法
JP2014064989A (ja) 複合半透膜
JP2008253905A (ja) 乾燥複合半透膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177006224

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15514282

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848025

Country of ref document: EP

Kind code of ref document: A1