WO2016021292A1 - 遊星歯車式変速機 - Google Patents

遊星歯車式変速機 Download PDF

Info

Publication number
WO2016021292A1
WO2016021292A1 PCT/JP2015/066054 JP2015066054W WO2016021292A1 WO 2016021292 A1 WO2016021292 A1 WO 2016021292A1 JP 2015066054 W JP2015066054 W JP 2015066054W WO 2016021292 A1 WO2016021292 A1 WO 2016021292A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
gear
planetary gear
ring gear
rotation
Prior art date
Application number
PCT/JP2015/066054
Other languages
English (en)
French (fr)
Inventor
伸人 安田
拓 松尾
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2016021292A1 publication Critical patent/WO2016021292A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0065Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising nine forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/0082Transmissions for multiple ratios characterised by the number of reverse speeds
    • F16H2200/0086Transmissions for multiple ratios characterised by the number of reverse speeds the gear ratios comprising two reverse speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2012Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with four sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2048Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with seven engaging means

Definitions

  • the present invention relates to a planetary gear type transmission.
  • Construction vehicles such as dump trucks are provided with a planetary gear type transmission having a plurality of planetary gear mechanisms.
  • the planetary gear type transmission can obtain a desired reduction ratio by using each planetary gear mechanism in an appropriate combination.
  • the planetary gear type transmission disclosed in Patent Document 1 has nine forward speeds and one reverse speed stage.
  • the planetary gear type transmission described above has only one reverse speed stage. However, in order to improve fuel efficiency or driving performance, an increase in the reverse speed stage is desired.
  • An object of the present invention is to provide a planetary gear type transmission having a plurality of reverse speed stages.
  • the planetary gear type transmission includes an input shaft, a first intermediate shaft, a first planetary gear mechanism, a second planetary gear mechanism, a third planetary gear mechanism, a fourth planetary gear mechanism, and a first clutch.
  • the input shaft is configured to rotate about the rotation shaft.
  • the first intermediate shaft is configured to rotate about the rotation shaft.
  • the first planetary gear mechanism includes a first sun gear, a first planetary gear, a first ring gear, and a first carrier.
  • the first sun gear is configured to rotate integrally with the input shaft.
  • the second planetary gear mechanism has a second sun gear, a second planetary gear, a second ring gear, and a second carrier.
  • the second sun gear is configured to rotate integrally with the input shaft.
  • the second carrier is configured to rotate integrally with the first ring gear.
  • the third planetary gear mechanism has a third sun gear, a third planetary gear, a third ring gear, and a third carrier.
  • the third sun gear is configured to rotate integrally with the first intermediate shaft.
  • the third ring gear is configured to rotate integrally with the second carrier.
  • the fourth planetary gear mechanism has a fourth sun gear, a fourth planetary gear, a fourth ring gear, and a fourth carrier.
  • the fourth sun gear is configured to rotate integrally with the first intermediate shaft.
  • the fourth ring gear is configured to rotate integrally with the third carrier.
  • the fourth carrier is configured to output power.
  • the first clutch is configured to connect the input shaft and the first intermediate shaft.
  • the second clutch is configured to connect the input shaft and the third carrier.
  • the third clutch is configured to connect the input shaft and the first carrier.
  • the first braking mechanism is configured to brake the rotation of the first carrier.
  • the second braking mechanism is configured to brake at least one rotation of the first ring gear, the second carrier, and the third ring gear.
  • the third braking mechanism is configured to brake the rotation of the second ring gear.
  • the fourth braking mechanism is configured to brake the rotation of the fourth ring gear.
  • the planetary gear type transmission includes an input shaft, a first intermediate shaft, a first planetary gear mechanism, a second planetary gear mechanism, a third planetary gear mechanism, a fourth planetary gear mechanism, and a first clutch.
  • the input shaft is configured to rotate about the rotation shaft.
  • the first intermediate shaft is configured to rotate about the rotation shaft.
  • the first planetary gear mechanism includes a first sun gear, a first planetary gear, a first ring gear, and a first carrier.
  • the first sun gear is configured to rotate integrally with the input shaft.
  • the second planetary gear mechanism has a second sun gear, a second planetary gear, a second ring gear, and a second carrier.
  • the second sun gear is configured to rotate integrally with the input shaft.
  • the second carrier is configured to rotate integrally with the first ring gear.
  • the third planetary gear mechanism has a third sun gear, a third planetary gear, a third ring gear, and a third carrier.
  • the third sun gear is configured to rotate integrally with the first intermediate shaft.
  • the third ring gear is configured to rotate integrally with the second carrier.
  • the fourth planetary gear mechanism has a fourth sun gear, a fourth planetary gear, a fourth ring gear, and a fourth carrier.
  • the fourth sun gear is configured to rotate integrally with the first intermediate shaft.
  • the fourth ring gear is configured to rotate integrally with the third carrier.
  • the fourth carrier is configured to output power.
  • the first clutch is configured to connect the input shaft and the first intermediate shaft.
  • the second clutch is configured to connect the input shaft and the third carrier.
  • the third clutch is configured to connect the first ring gear and the first carrier.
  • the first braking mechanism is configured to brake the rotation of the first carrier.
  • the second braking mechanism is configured to brake at least one rotation of the first ring gear, the second carrier, and the third ring gear.
  • the third braking mechanism is configured to brake the rotation of the second ring gear.
  • the fourth braking mechanism is configured to brake the rotation of the fourth ring gear.
  • the planetary gear type transmission includes an input shaft, a first intermediate shaft, a first planetary gear mechanism, a second planetary gear mechanism, a third planetary gear mechanism, a fourth planetary gear mechanism, and a first clutch.
  • the input shaft is configured to rotate about the rotation shaft.
  • the first intermediate shaft is configured to rotate about the rotation shaft.
  • the first planetary gear mechanism includes a first sun gear, a first planetary gear, a first ring gear, and a first carrier.
  • the first sun gear is configured to rotate integrally with the input shaft.
  • the second planetary gear mechanism has a second sun gear, a second planetary gear, a second ring gear, and a second carrier.
  • the second sun gear is configured to rotate integrally with the input shaft.
  • the second carrier is configured to rotate integrally with the first ring gear.
  • the third planetary gear mechanism has a third sun gear, a third planetary gear, a third ring gear, and a third carrier.
  • the third sun gear is configured to rotate integrally with the first intermediate shaft.
  • the third ring gear is configured to rotate integrally with the second carrier.
  • the fourth planetary gear mechanism has a fourth sun gear, a fourth planetary gear, a fourth ring gear, and a fourth carrier.
  • the fourth sun gear is configured to rotate integrally with the first intermediate shaft.
  • the fourth ring gear is configured to rotate integrally with the third carrier.
  • the fourth carrier is configured to output power.
  • the first clutch is configured to connect the input shaft and the first intermediate shaft.
  • the second clutch is configured to connect the input shaft and the third carrier.
  • the third clutch is configured to connect the third ring gear and the third carrier.
  • the first braking mechanism is configured to brake the rotation of the first carrier.
  • the second braking mechanism is configured to brake at least one rotation of the first ring gear, the second carrier, and the third ring gear.
  • the third braking mechanism is configured to brake the rotation of the second ring gear.
  • the fourth braking mechanism is configured to brake the rotation of the fourth ring gear.
  • the input shaft is hollow.
  • the first intermediate shaft is disposed in the input shaft.
  • the planetary gear type transmission further includes a second intermediate shaft.
  • the second intermediate shaft is disposed between the input shaft and the first intermediate shaft.
  • the second intermediate shaft is configured to rotate integrally with the third carrier.
  • the planetary gear type transmission further includes an output shaft configured to rotate integrally with the fourth carrier.
  • the first planetary gear mechanism, the second planetary gear mechanism, the third planetary gear mechanism, and the fourth planetary gear mechanism are arranged in this order along the rotation axis direction.
  • the planetary gear type transmission further includes a casing for accommodating each planetary gear mechanism.
  • a space is formed between the third clutch and the casing in the radial direction of the rotation shaft.
  • the second braking mechanism is disposed on the radially outer side of the first ring gear.
  • the first braking mechanism is disposed on the input side of the second braking mechanism in the rotation axis direction.
  • the third clutch is disposed between the first braking mechanism and the second braking mechanism in the rotation axis direction.
  • the third clutch is disposed between the third planetary gear mechanism and the fourth planetary gear mechanism in the rotation axis direction.
  • the planetary gear type transmission according to the present invention can have a plurality of reverse speed stages.
  • FIG. 1 is a schematic view of a planetary gear type transmission according to a first embodiment.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 1st Embodiment is in the 2nd speed state of advance.
  • the figure which shows transmission of power when the planetary gear type transmission which concerns on 1st Embodiment is in the state of the 3rd speed of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 1st Embodiment is in the state of the 4th speed of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 1st Embodiment is in the state of the 5th speed of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 1st Embodiment is in the 6th speed state of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 1st Embodiment is in the state of the 7th speed of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 1st Embodiment is in the state of 8th speed of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 1st Embodiment is the state of the 9th speed of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 1st Embodiment is in the state of the reverse 1st speed.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 1st Embodiment is a 2nd speed state of reverse drive.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 2nd Embodiment is in the state of the 1st speed of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 2nd Embodiment is in the state of the 5th speed of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 2nd Embodiment is a 6th speed state of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 2nd Embodiment is a 7th speed state of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 2nd Embodiment is in the state of 8th speed of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 2nd Embodiment is in the state of the 9th speed of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 2nd Embodiment is in the state of the reverse 1st speed.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 2nd Embodiment is in the state of 2nd speed of reverse drive.
  • the schematic diagram of the planetary gear type gearbox concerning a 3rd embodiment The table
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 3rd Embodiment is in the state of the 1st speed of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 3rd Embodiment is in the state of 2nd speed of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 3rd Embodiment is in the state of the 3rd speed of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 3rd Embodiment is in the state of the 7th speed of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 3rd Embodiment is in the state of the 9th speed of advance.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 3rd Embodiment is in the state of the 1st speed of reverse.
  • the figure which shows transmission of motive power when the planetary gear type transmission which concerns on 3rd Embodiment is in the 2nd speed state of reverse.
  • the schematic diagram of the planetary gear type gearbox concerning a modification.
  • the rotation axis direction indicates the direction in which the rotation axis extends.
  • the radial direction of the rotation axis indicates the radial direction of a circle around the rotation axis. Specifically, the rotation axis direction is the left-right direction in FIGS. 1, 14, and 26, and the radial direction is the up-down direction in FIG. 1, FIG. 14, and FIG.
  • the rotation axis indicates the center line of the input shaft.
  • the input side indicates the side on which the planetary gear type transmission inputs power
  • the output side indicates the side on which the planetary gear type transmission outputs power. Specifically, the input side is the left side of FIGS. 1, 14, and 26, and the output side is the right side of FIGS. 1, 14, and 26.
  • FIG. 1 is a schematic view of a planetary gear type transmission according to the first embodiment.
  • the planetary gear type transmission 100 shifts and outputs the rotational speed of power from an engine (not shown) or the like. Note that power from the engine or the like may be input to the planetary gear type transmission 100 via a torque converter.
  • the planetary gear type transmission 100 includes a plurality of planetary gear mechanisms 1 to 4, a plurality of clutches 51 to 53, a plurality of braking mechanisms 61 to 64, an input shaft 7, a first intermediate shaft 81, a second intermediate shaft 82, and a casing. 9 is provided.
  • the casing 9 accommodates the planetary gear mechanisms 1 to 4, clutches 51 to 53, brake mechanisms 61 to 64, the input shaft 7, the first intermediate shaft 81, and the second intermediate shaft 82.
  • the planetary gear type transmission 100 includes a first planetary gear mechanism 1, a second planetary gear mechanism 2, a third planetary gear mechanism 3, and a fourth planetary gear mechanism 4 as a plurality of planetary gear mechanisms.
  • the planetary gear type transmission 100 includes a first clutch 51, a second clutch 52, and a third clutch 53 as a plurality of clutches.
  • the planetary gear type transmission 100 includes a first braking mechanism 61, a second braking mechanism 62, a third braking mechanism 63, and a fourth braking mechanism 64 as a plurality of braking mechanisms.
  • the first planetary gear mechanism 1, the second planetary gear mechanism 2, the third planetary gear mechanism 3, and the fourth planetary gear mechanism 4 are arranged in this order along the rotation axis direction. Specifically, the first planetary gear mechanism 1, the second planetary gear mechanism 2, the third planetary gear mechanism, and the fourth planetary gear mechanism are arranged in this order from the input side to the output side.
  • the input shaft 7 is configured to rotate around the rotation axis O.
  • the rotation axis O is the center line of the input shaft 7.
  • the input shaft 7 is hollow. Specifically, the input shaft 7 is cylindrical. Power from an engine or the like is input to the input shaft 7.
  • the first intermediate shaft 81 is configured to rotate around the rotation axis O. That is, the first intermediate shaft 81 extends in the rotation axis direction.
  • the first intermediate shaft 81 is disposed in the input shaft 7.
  • the central axis of the first intermediate shaft 81 and the central axis of the input shaft 7 are substantially the same.
  • the second intermediate shaft 82 is configured to rotate about the rotation axis O. That is, the second intermediate shaft 82 extends in the rotation axis direction.
  • the second intermediate shaft 82 is disposed in the input shaft 7.
  • the second intermediate shaft 82 is hollow. Specifically, the second intermediate shaft 82 is cylindrical.
  • the first intermediate shaft 81 is disposed in the second intermediate shaft 82. That is, the first intermediate shaft 81 is disposed in the second intermediate shaft 82, and the second intermediate shaft 82 is disposed in the input shaft 7.
  • the first intermediate shaft 81, the second intermediate shaft 82, and the input shaft 7 are arranged in this order toward the radially outer side.
  • the first planetary gear mechanism 1 includes a first sun gear 11, a plurality of first planetary gears 12, a first ring gear 13, and a first carrier 14.
  • the first sun gear 11 is configured to rotate integrally with the input shaft 7. Specifically, the first sun gear 11 is fixed to the input shaft 7.
  • the first sun gear 11 and the input shaft 7 may be formed by a single member.
  • Each first planetary gear 12 is configured to mesh with the first sun gear 11.
  • Each first planetary gear 12 is disposed on the radially outer side of the first sun gear 11. Specifically, the first planetary gears 12 are arranged at intervals in the circumferential direction.
  • Each first planetary gear 12 is configured to revolve around the first sun gear 11. That is, each first planetary gear 12 is configured to rotate about the rotation axis O. Each first planetary gear 12 is configured to rotate.
  • the first ring gear 13 is in mesh with each first planetary gear 12.
  • the first ring gear 13 is configured to rotate around the rotation axis O.
  • the first carrier 14 supports each first planetary gear 12. Each first planetary gear 12 can rotate while being supported by the first carrier 14.
  • the first carrier 14 is configured to rotate about the rotation axis O.
  • the second planetary gear mechanism 2 includes a second sun gear 21, a plurality of second planetary gears 22, a second ring gear 23, and a second carrier 24.
  • the second sun gear 21 is configured to rotate integrally with the input shaft 7. Specifically, the second sun gear 21 is fixed to the input shaft 7.
  • the second sun gear 21 and the input shaft 7 may be formed by a single member.
  • Each second planetary gear 22 is configured to mesh with the second sun gear 21.
  • Each second planetary gear 22 is disposed on the radially outer side of the second sun gear 21. Specifically, the second planetary gears 22 are arranged at intervals in the circumferential direction.
  • Each second planetary gear 22 is configured to revolve around the second sun gear 21. That is, each second planetary gear 22 is configured to rotate about the rotation axis O. Each second planetary gear 22 is configured to rotate.
  • the second ring gear 23 meshes with each second planetary gear 22.
  • the second ring gear 23 is configured to rotate around the rotation axis O.
  • the second carrier 24 supports each second planetary gear 22. Each of the second planetary gears 22 can rotate while being supported by the second carrier 24.
  • the second carrier 24 is configured to rotate around the rotation axis O.
  • the second carrier 24 is configured to rotate integrally with the first ring gear 13. Specifically, the second carrier 24 is connected to the first ring gear 13. The second carrier 24 and the first ring gear 13 may be formed by one member.
  • the third planetary gear mechanism 3 has a third sun gear 31, a plurality of third planetary gears 32, a third ring gear 33, and a third carrier 34.
  • the third sun gear 31 is configured to rotate integrally with the first intermediate shaft 81. Specifically, the third sun gear 31 is fixed to the first intermediate shaft 81. Note that the third sun gear 31 and the first intermediate shaft 81 may be formed by a single member.
  • Each third planetary gear 32 is configured to mesh with the third sun gear 31.
  • Each third planetary gear 32 is disposed on the radially outer side of the third sun gear 31. Specifically, the third planetary gears 32 are arranged at intervals in the circumferential direction.
  • Each third planetary gear 32 is configured to revolve around the third sun gear 31. That is, each third planetary gear 32 is configured to rotate about the rotation axis O. Each third planetary gear 32 is configured to rotate.
  • the third ring gear 33 is in mesh with each third planetary gear 32.
  • the third ring gear 33 is configured to rotate around the rotation axis O.
  • the third ring gear 33 is configured to rotate integrally with the second carrier 24. Specifically, the third ring gear 33 is connected to the second carrier 24. That is, the first ring gear 13, the second carrier 24, and the third ring gear 33 are configured to rotate integrally. Note that the third ring gear 33 and the second carrier 24 may be formed of a single member.
  • the third carrier 34 supports each third planetary gear 32. Each third planetary gear 32 can rotate while being supported by the third carrier 34.
  • the third carrier 34 is configured to rotate about the rotation axis O.
  • the third carrier 34 is configured to rotate integrally with the second intermediate shaft 82. Specifically, the third carrier 34 is fixed to the second intermediate shaft 82. The third carrier 34 and the second intermediate shaft 82 may be formed by one member.
  • the fourth planetary gear mechanism 4 includes a fourth sun gear 41, a plurality of fourth planetary gears 42, a fourth ring gear 43, and a fourth carrier 44.
  • the fourth sun gear 41 is configured to rotate integrally with the first intermediate shaft 81. Specifically, the fourth sun gear 41 is fixed to the first intermediate shaft 81. Note that the fourth sun gear 41 and the first intermediate shaft 81 may be formed of a single member.
  • Each fourth planetary gear 42 is configured to mesh with the fourth sun gear 41.
  • Each fourth planetary gear 42 is disposed on the radially outer side of the fourth sun gear 41. Specifically, the fourth planetary gears 42 are arranged at intervals in the circumferential direction.
  • Each fourth planetary gear 42 is configured to revolve around the fourth sun gear 41. That is, each fourth planetary gear 42 is configured to rotate about the rotation axis O. Each fourth planetary gear 42 is configured to rotate.
  • the fourth ring gear 43 is in mesh with each fourth planetary gear 42.
  • the fourth ring gear is configured to rotate about the rotation axis O.
  • the fourth ring gear 43 is configured to rotate integrally with the third carrier 34.
  • the fourth ring gear 43 is connected to the third carrier 34. That is, the second intermediate shaft 82, the third carrier 34, and the fourth ring gear 43 are configured to rotate integrally with each other.
  • the fourth ring gear 43 and the third carrier 34 may be formed of a single member.
  • the fourth carrier 44 supports each fourth planetary gear 42. Each fourth planetary gear 42 can rotate while being supported by the fourth carrier 44.
  • the fourth carrier 44 is configured to rotate about the rotation axis O.
  • the fourth carrier 44 outputs power. Specifically, the fourth carrier 44 outputs power having a rotational speed changed by the planetary gear type transmission 100. The fourth carrier 44 rotates integrally with the output shaft 10. For this reason, the output shaft 10 outputs the shifted power.
  • the fourth carrier 44 and the output shaft 10 may be formed by a single member.
  • the first clutch 51 is configured to connect the input shaft 7 and the first intermediate shaft 81. Specifically, the first clutch 51 connects the input shaft 7 and the first intermediate shaft 81 so that they can be disconnected. When the first clutch 51 is on, the first clutch 51 connects the input shaft 7 and the first intermediate shaft 81. Therefore, the input shaft 7 and the first intermediate shaft 81 rotate integrally.
  • the first clutch 51 When the first clutch 51 is in the off state, the first clutch 51 disconnects the connection between the input shaft 7 and the first intermediate shaft 81. Accordingly, the first intermediate shaft 81 is rotatable relative to the input shaft 7.
  • the first clutch 51 is, for example, a hydraulic clutch mechanism, and can be composed of a plurality of disks.
  • the second clutch 52 is configured to connect the input shaft 7 and the third carrier 34. That is, the second clutch 52 connects the input shaft 7 and the third carrier 34 so that they can be disconnected. Specifically, the second clutch 52 connects the input shaft 7 and the third carrier 34 by connecting the input shaft 7 and the second intermediate shaft 82.
  • the second clutch 52 is, for example, a hydraulic clutch mechanism and can be composed of a plurality of disks.
  • the second clutch 52 When the second clutch 52 is on, the second clutch 52 connects the input shaft 7 and the second intermediate shaft 82. That is, the second clutch 52 connects the input shaft 7 and the third carrier 34 via the second intermediate shaft 82. Therefore, the input shaft 7 and the third carrier 34 rotate integrally.
  • the second clutch 52 disconnects the connection between the input shaft 7 and the third carrier 34. That is, the second clutch 52 blocks the connection between the input shaft 7 and the third carrier 34 by blocking the connection between the input shaft 7 and the second intermediate shaft 82. Therefore, the second intermediate shaft 82 and the third carrier 34 can rotate relative to the input shaft 7.
  • the third clutch 53 is configured to connect the input shaft 7 and the first carrier 14. Specifically, the third clutch 53 connects the input shaft 7 and the first carrier 14 so that they can be disconnected.
  • the third clutch 53 is, for example, a hydraulic clutch mechanism, and can be composed of a plurality of disks.
  • the third clutch 53 When the third clutch 53 is on, the third clutch 53 connects the input shaft 7 and the first carrier 14. Therefore, the input shaft 7 and the first carrier 14 rotate integrally.
  • the third clutch 53 When the third clutch 53 is in the off state, the third clutch 53 disconnects the connection between the input shaft 7 and the first carrier 14. Therefore, the first carrier 14 can rotate relative to the input shaft 7.
  • the first braking mechanism 61 is configured to brake the rotation of the first carrier 14. Specifically, the first braking mechanism 61 is configured to connect the first carrier 14 and the casing 9.
  • the first braking mechanism 61 brakes the rotation of the first carrier 14. That is, when the first braking mechanism 61 is in the on state, the first braking mechanism 61 connects the first carrier 14 and the casing 9. Therefore, the first carrier 14 cannot rotate.
  • the first braking mechanism 61 when the first braking mechanism 61 is in the off state, the first braking mechanism 61 does not brake the rotation of the first carrier 14. That is, when the first braking mechanism 61 is in the off state, the first braking mechanism 61 does not connect the first carrier 14 and the casing 9. Accordingly, the first carrier 14 is rotatable.
  • the first braking mechanism 61 is disposed on the input side with respect to the second braking mechanism 62 in the rotation axis direction.
  • the second braking mechanism 62 is configured to brake the rotation of the first ring gear 13. Specifically, the second braking mechanism 62 is configured to connect the first ring gear 13 and the casing 9.
  • the second braking mechanism 62 brakes the rotation of the first ring gear 13. That is, when the second braking mechanism 62 is in the on state, the second braking mechanism 62 connects the first ring gear 13 and the casing 9. Therefore, the first ring gear 13 cannot rotate.
  • the second brake mechanism 62 when the second brake mechanism 62 is in the off state, the second brake mechanism 62 does not brake the rotation of the first ring gear 13. That is, when the second braking mechanism 62 is in the off state, the second braking mechanism 62 does not connect the first ring gear 13 and the casing 9. Therefore, the first ring gear 13 is rotatable.
  • the second braking mechanism 62 is disposed on the radially outer side of the first ring gear 13.
  • the third braking mechanism 63 is configured to brake the rotation of the second ring gear 23. Specifically, the third braking mechanism 63 is configured to connect the second ring gear 23 and the casing 9.
  • the third brake mechanism 63 brakes the rotation of the second ring gear 23. That is, when the third braking mechanism 63 is in the on state, the third braking mechanism 63 connects the second ring gear 23 and the casing 9. Therefore, the second ring gear 23 cannot rotate.
  • the third braking mechanism 63 when the third braking mechanism 63 is in the off state, the third braking mechanism 63 does not brake the rotation of the second ring gear 23. That is, when the third braking mechanism 63 is in the off state, the third braking mechanism 63 does not connect the second ring gear 23 and the casing 9. Therefore, the second ring gear 23 is rotatable. Note that the third braking mechanism 63 is disposed on the radially outer side of the second ring gear 23.
  • the fourth braking mechanism 64 is configured to brake the rotation of the fourth ring gear 43. Specifically, the fourth braking mechanism 64 is configured to connect the fourth ring gear 43 and the casing 9.
  • the fourth brake mechanism 64 brakes the rotation of the fourth ring gear 43. That is, when the fourth braking mechanism 64 is in the on state, the fourth braking mechanism 64 connects the fourth ring gear 43 and the casing 9. Therefore, the fourth ring gear 43 cannot rotate.
  • the fourth brake mechanism 64 when the fourth brake mechanism 64 is in the off state, the fourth brake mechanism 64 does not brake the rotation of the fourth ring gear 43. That is, when the fourth braking mechanism 64 is in the off state, the fourth braking mechanism 64 does not connect the fourth ring gear 43 and the casing 9. Therefore, the fourth ring gear 43 is rotatable.
  • the fourth braking mechanism 64 is disposed on the radially outer side of the fourth ring gear 43.
  • FIG. 2 is a table showing each clutch or each braking mechanism that is turned on at each speed stage. 2 indicate the clutches or braking mechanisms that are turned on.
  • the first braking mechanism 61 Since the first braking mechanism 61 is turned on, the first carrier 14 cannot rotate. Further, since the fourth braking mechanism 64 is turned on, the fourth ring gear 43 cannot be rotated. Since the third carrier 34 rotates integrally with the fourth ring gear 43, the third carrier 34 also cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first sun gear 11 rotates integrally with the input shaft 7.
  • the rotation of the first sun gear 11 causes each first planetary gear 12 to rotate.
  • each 1st planetary gear 12 does not revolve.
  • the first ring gear 13 is rotated by the rotation of each first planetary gear 12.
  • the second carrier 24 rotates integrally with the first ring gear 13.
  • the third ring gear 33 rotates integrally with the second carrier 24. As the third ring gear 33 rotates, each third planetary gear 32 rotates. In addition, since the 3rd carrier 34 cannot rotate, each 3rd planetary gear 32 does not revolve.
  • the third sun gear 31 is rotated by the rotation of each third planetary gear 32.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31.
  • the rotation of the fourth sun gear 41 causes each fourth planetary gear 42 to rotate and revolve.
  • the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the first clutch 51 is turned on, the first intermediate shaft 81 rotates integrally with the input shaft 7. Further, since the fourth braking mechanism 64 is turned on, the fourth ring gear 43 cannot be rotated. Since the third carrier 34 rotates integrally with the fourth ring gear 43, the third carrier 34 also cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first intermediate shaft 81 rotates integrally with the input shaft 7.
  • the fourth sun gear 41 rotates integrally with the first intermediate shaft 81.
  • the rotation of the fourth sun gear 41 causes each fourth planetary gear 42 to rotate and revolve.
  • the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the first clutch 51 is turned on and the first braking mechanism 61 is turned on. To do. That is, in switching between the second speed (F2) and the third speed (F3), the first clutch 51 remains on.
  • the second to fourth braking mechanisms 62 to 64, the second clutch 52, and the third clutch 53 are in the off state.
  • the first clutch 51 Since the first clutch 51 is turned on, the first intermediate shaft 81 rotates integrally with the input shaft 7. In addition, since the first braking mechanism 61 is turned on, the first carrier 14 cannot be rotated.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first sun gear 11 rotates integrally with the input shaft 7.
  • the rotation of the first sun gear 11 causes each first planetary gear 12 to rotate.
  • each 1st planetary gear 12 does not revolve.
  • the first ring gear 13 is rotated by the rotation of each first planetary gear 12.
  • the second carrier 24 rotates integrally with the first ring gear 13.
  • the third ring gear 33 rotates integrally with the second carrier 24.
  • the third sun gear 31 rotates integrally with the first intermediate shaft 81.
  • each third planetary gear 32 revolves while rotating. Then, the third carrier 34 rotates.
  • the fourth ring gear 43 rotates integrally with the third carrier 34.
  • the fourth sun gear 41 rotates integrally with the first intermediate shaft 81.
  • each fourth planetary gear 42 revolves while rotating.
  • the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the first clutch 51 is turned on and the second braking mechanism 62 is turned on. To do. That is, in switching between the third speed (F3) and the fourth speed (F4), the first clutch 51 remains on.
  • the first braking mechanism 61, the third braking mechanism 63, the fourth braking mechanism 64, the second clutch 52, and the third clutch 53 are in an off state.
  • the first clutch 51 is turned on, the first intermediate shaft 81 rotates integrally with the input shaft 7. Further, since the second brake mechanism 62 is turned on, the first ring gear 13 cannot be rotated. Since the second carrier 24 rotates integrally with the first ring gear 13, the second carrier 24 also cannot rotate. Furthermore, since the third ring gear 33 rotates integrally with the second carrier 24, the third ring gear 33 cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first intermediate shaft 81 rotates integrally with the input shaft 7.
  • the third sun gear 31 and the fourth sun gear 41 rotate integrally with the first intermediate shaft 81.
  • the rotation of the third sun gear 31 causes each third planetary gear 32 to rotate and revolve. Then, the third carrier 34 rotates. The fourth ring gear 43 rotates integrally with the third carrier 34.
  • the first clutch 51 is turned on and the third braking mechanism 63 is turned on. To do. That is, in switching between the fourth speed (F4) and the fifth speed (F5), the first clutch 51 remains on.
  • the first braking mechanism 61, the second braking mechanism 62, the fourth braking mechanism 64, the second clutch 52, and the third clutch 53 are in an off state.
  • the first clutch 51 Since the first clutch 51 is turned on, the first intermediate shaft 81 rotates integrally with the input shaft 7. Further, since the third braking mechanism 63 is turned on, the second ring gear 23 cannot be rotated.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the input shaft 7 and the first intermediate shaft 81 rotate integrally with each other.
  • the second sun gear 21 rotates integrally with the input shaft 7, and the third sun gear 31 and the fourth sun gear 41 rotate integrally with the first intermediate shaft 81.
  • the rotation of the second sun gear 21 causes each second planetary gear 22 to rotate and revolve. Then, the second carrier 24 rotates.
  • the third ring gear 33 rotates integrally with the second carrier 24.
  • the first intermediate shaft 81 rotates integrally with the input shaft 7. Further, since the second clutch 52 is turned on, the second intermediate shaft 82 rotates integrally with the input shaft 7.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the input shaft 7, the first intermediate shaft 81, and the second intermediate shaft 82 rotate integrally with each other.
  • the third sun gear 31 and the fourth sun gear 41 rotate integrally with the first intermediate shaft 81.
  • the third carrier 34 rotates integrally with the second intermediate shaft 82.
  • the fourth ring gear 43 rotates integrally with the third carrier 34.
  • the fourth planetary gears 42 revolve by the rotation of the fourth sun gear 41 and the rotation of the fourth ring gear 43.
  • each 4th planetary gear 42 does not autorotate.
  • each fourth planetary gear 42 revolves at the same rotational speed as the fourth sun gear 41 and the fourth ring gear 43.
  • the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a rotational speed that is not changed. That is, the planetary gear type transmission 100 in the sixth speed state does not change the rotational speed of the power from the engine or the like.
  • the second clutch 52 is turned on and the third braking mechanism 63 is turned on. To do. That is, in switching between the sixth speed (F6) and the seventh speed (F7), the second clutch 52 remains on.
  • the first braking mechanism 61, the second braking mechanism 62, the fourth braking mechanism 64, the first clutch 51, and the third clutch 53 are in an off state.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the input shaft 7 and the second intermediate shaft 82 rotate integrally with each other.
  • the second sun gear 21 rotates integrally with the input shaft 7.
  • the third carrier 34 rotates integrally with the second intermediate shaft 82.
  • the rotation of the second sun gear 21 causes each second planetary gear 22 to rotate and revolve. Then, the second carrier 24 rotates.
  • the third ring gear 33 rotates integrally with the second carrier 24.
  • Each third planetary gear 32 revolves by the rotation of the third carrier 34. Further, each third planetary gear 32 rotates by the rotation of the third ring gear 33 and the rotation of the third carrier 34. As a result, the third sun gear 31 rotates.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31.
  • the fourth ring gear 43 rotates integrally with the third carrier 34. Due to the rotation of the fourth sun gear 41 and the rotation of the fourth ring gear 43, each fourth planetary gear 42 revolves while rotating. As a result, the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the second clutch 52 is turned on and the second braking mechanism 62 is turned on. To do. That is, in switching between the seventh speed (F7) and the eighth speed (F8), the second clutch 52 remains on.
  • the first braking mechanism 61, the third braking mechanism 63, the fourth braking mechanism 64, the first clutch 51, and the third clutch 53 are in an off state.
  • the second clutch 52 Since the second clutch 52 is turned on, the second intermediate shaft 82 rotates integrally with the input shaft 7. Further, since the second braking mechanism 62 is turned on, the first ring gear 13 cannot be rotated. Since the second carrier 24 rotates integrally with the first ring gear 13, the second carrier 24 also cannot rotate. Furthermore, since the third ring gear 33 rotates integrally with the second carrier 24, the third ring gear 33 cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the second intermediate shaft 82 rotates integrally with the input shaft 7.
  • the third carrier 34 rotates integrally with the second intermediate shaft 82.
  • Rotation of the third carrier 34 causes each third planetary gear 32 to revolve and rotate. Then, the third sun gear 31 rotates.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31.
  • the fourth ring gear 43 rotates integrally with the third carrier 34. Due to the rotation of the fourth sun gear 41 and the rotation of the fourth ring gear 43, each fourth planetary gear 42 revolves while rotating. As a result, the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the second clutch 52 is turned on and the first braking mechanism 61 is turned on. To do. That is, in switching between the eighth speed (F8) and the ninth speed (F9), the second clutch 52 remains on.
  • the second to fourth braking mechanisms 62 to 64, the first clutch 51, and the third clutch 53 are in an off state.
  • the second clutch 52 Since the second clutch 52 is turned on, the second intermediate shaft 82 rotates integrally with the input shaft 7. In addition, since the first braking mechanism 61 is turned on, the first carrier 14 cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first sun gear 11 rotates integrally with the input shaft 7.
  • the rotation of the first sun gear 11 causes each first planetary gear 12 to rotate. Since the first carrier 14 cannot rotate as described above, each first planetary gear 12 does not revolve.
  • the first ring gear 13 is rotated by the rotation of each first planetary gear 12.
  • the second carrier 24 rotates integrally with the first ring gear 13.
  • the third ring gear 33 rotates integrally with the second carrier 24.
  • the third carrier 34 rotates integrally with the second intermediate shaft 82.
  • each third planetary gear 32 rotates and revolves.
  • the 3rd sun gear 31 rotates.
  • the fourth ring gear 43 rotates integrally with the third carrier 34.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31. Due to the rotation of the fourth ring gear 43 and the rotation of the fourth sun gear 41, each fourth planetary gear 42 revolves while rotating. As a result, the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the third braking mechanism 63 is turned on and the fourth braking mechanism 64 is turned on.
  • the first braking mechanism 61, the second braking mechanism 62, and the first to third clutches 51 to 53 are in an off state.
  • the third braking mechanism 63 Since the third braking mechanism 63 is turned on, the second ring gear 23 cannot be rotated. Further, since the fourth braking mechanism 64 is turned on, the fourth ring gear 43 cannot be rotated. Since the third carrier 34 rotates integrally with the fourth ring gear 43, the third carrier 34 also cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the second sun gear 21 rotates integrally with the input shaft 7.
  • the rotation of the second sun gear 21 causes each second planetary gear 22 to rotate and revolve.
  • the second carrier 24 rotates.
  • the third ring gear 33 rotates integrally with the second carrier 24. As the third ring gear 33 rotates, each third planetary gear 32 rotates. In addition, since the 3rd carrier 34 cannot rotate, each 3rd planetary gear 32 does not revolve.
  • the third sun gear 31 is rotated by the rotation of each third planetary gear 32.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31.
  • the rotation of the fourth sun gear 41 causes each fourth planetary gear 42 to rotate and revolve.
  • the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the third clutch 53 Since the third clutch 53 is turned on, the first carrier 14 rotates integrally with the input shaft 7. Further, since the fourth braking mechanism 64 is turned on, the fourth ring gear 43 cannot be rotated. Since the third carrier 34 rotates integrally with the fourth ring gear 43, the third carrier 34 also cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first sun gear 11 and the first carrier 14 rotate integrally with the input shaft 7.
  • the first sun gear 11 and the first carrier 14 rotate at the same rotational speed.
  • each first planetary gear 12 revolves without rotating.
  • the first ring gear 13 is rotated by the revolution of each first planetary gear 12.
  • the first ring gear 13 rotates at the same rotational speed as the revolution of each first planetary gear 12. That is, the first sun gear 11, the first ring gear 13, and the first carrier 14 rotate integrally with each other.
  • the second carrier 24 rotates integrally with the first ring gear 13.
  • the third ring gear 33 rotates integrally with the second carrier 24.
  • each third planetary gear 32 rotates.
  • each 3rd carrier 34 cannot rotate, each 3rd planetary gear 32 does not revolve.
  • the third sun gear 31 is rotated by the rotation of each third planetary gear 32.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31.
  • the rotation of the fourth sun gear 41 causes each fourth planetary gear 42 to rotate and revolve.
  • the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the reduction ratio at each speed stage is obtained using at least one of the following first to fourth relational expressions.
  • the first relational expression is an expression related to the first planetary gear mechanism 1 and is expressed by the following expression (1).
  • s 1 is the number of teeth of the first sun gear 11
  • r 1 is the number of teeth of the first ring gear 13
  • N s1 is the rotational speed ratio of the first sun gear 11
  • N r1 is the rotational speed ratio of the first ring gear 13.
  • N c1 is the rotation speed ratio of the first carrier 14.
  • the second relational expression is an expression relating to the second planetary gear mechanism 2, and is expressed by the following expression (2).
  • s 2 is the number of teeth of the second sun gear 21
  • r 2 is the number of teeth of the second ring gear 23
  • N s2 is the rotation speed ratio of the second sun gear 21
  • N r2 is the rotation speed ratio of the second ring gear 23
  • N c2 is the rotation speed ratio of the second carrier 24.
  • the third relational expression is an expression related to the third planetary gear mechanism 3, and is expressed by the following expression (3).
  • s 3 is the number of teeth of the third sun gear 31
  • r 3 is the number of teeth of the third ring gear 33
  • N s3 is the rotational speed ratio of the third sun gear 31
  • N r3 is the rotational speed ratio of the third ring gear 33
  • N c3 is the rotation speed ratio of the third carrier 34.
  • the fourth relational expression is an expression relating to the fourth planetary gear mechanism 4 and is expressed by the following expression (4).
  • s 4 is the number of teeth of the fourth sun gear 41
  • r 4 is the number of teeth of the fourth ring gear 43
  • N s4 is the rotational speed ratio of the fourth sun gear 41
  • N r4 is the rotational speed ratio of the fourth ring gear 43
  • N c4 is the rotation speed ratio of the fourth carrier 44.
  • the rotational speed ratio N r1 of the first ring gear 13 in the first planetary gear mechanism 1 is obtained from the first relational expression. Since the first sun gear 11 rotates integrally with the input shaft 8, the rotation speed ratio N s1 of the first sun gear 11 is 1. Further, since the first carrier 14 does not rotate, the rotation speed ratio N c1 of the first carrier 14 is zero.
  • the rotation speed ratio N s3 of the third sun gear 31 in the third planetary gear mechanism is obtained from the third relational expression.
  • the third ring gear 33 to rotate integrally with the first ring gear 13 the rotational speed ratio N r3 of the third ring gear 33 is the same as the rotational speed ratio N r1 of the first ring gear 13. Further, since the third carrier 34 does not rotate, the rotation speed ratio Nc3 of the third carrier 34 is zero.
  • the rotation speed ratio N c4 of the fourth carrier 44 in the fourth planetary gear mechanism is obtained from the fourth relational expression. Since the fourth sun gear 41 rotates integrally with the third sun gear 31, the rotation speed ratio N s4 of the fourth sun gear 41 is the same as the rotation speed ratio N s3 of the third sun gear 31. Further, since the fourth ring gear 43 does not rotate, the rotation speed ratio N r4 of the fourth ring gear 43 is zero.
  • the reciprocal number of the rotation speed ratio Nc4 of the fourth carrier 44 obtained as described above is the reduction ratio of the planetary gear type transmission 100.
  • the first sun gear 11 has 30 teeth
  • the second sun gear 21 has 57 teeth
  • the third sun gear 31 has 48 teeth
  • the fourth sun gear 41 has 30 teeth
  • the first to fourth rings When the number of teeth of each of the gears 13, 23, 33, and 43 is 90, the reduction ratio of the forward first speed is about 6.4.
  • the reduction ratios obtained at the respective speed stages are shown in FIG.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression. Thereby, the reduction ratio in the second forward speed is obtained.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is 1, and the rotation speed ratio N r4 of the fourth ring gear 43 is 0.
  • the rotation speed ratio N r1 of the first ring gear 13 is obtained by the first relational expression.
  • the rotation speed ratio N s1 of the first sun gear 11 is 1, and the rotation speed ratio N c1 of the first carrier 14 is 0.
  • the rotation speed ratio N c3 of the third carrier 34 is obtained by the third relational expression.
  • the rotation speed ratio N s3 of the third sun gear 31 is 1.
  • the rotation speed ratio N r3 of the third ring gear 33 is the same as the rotation speed ratio N r1 of the first ring gear 13.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is 1, and the rotation speed ratio N r4 of the fourth ring gear 43 is the same as the rotation speed ratio N c3 of the third carrier 34.
  • the rotation speed ratio N c3 of the third carrier 34 is obtained by the third relational expression.
  • the rotation speed ratio N s3 of the third sun gear 31 is 1, and the rotation speed ratio N r3 of the third ring gear 33 is 0.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression. As a result, the reduction ratio at the fourth forward speed is obtained.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is 1, and the rotation speed ratio N r4 of the fourth ring gear 43 is the same as the rotation speed ratio N c3 of the third carrier 34.
  • the rotation speed ratio N c2 of the second carrier 24 is obtained by the second relational expression.
  • the rotation speed ratio N s2 of the second sun gear 21 is 1, and the rotation speed ratio N r2 of the second ring gear 23 is 0.
  • the rotation speed ratio N c3 of the third carrier 34 is obtained by the third relational expression.
  • the rotation speed ratio N s3 of the third sun gear 31 is 1, and the rotation speed ratio N r3 of the third ring gear 33 is the same as the rotation speed ratio N c2 of the second carrier 24.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression. As a result, the reduction ratio at the fifth forward speed is obtained.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is 1, and the rotation speed ratio N r4 of the fourth ring gear 43 is the same as the rotation speed ratio N c3 of the third carrier 34.
  • the rotation speed ratio N c2 of the second carrier 24 is obtained by the second relational expression.
  • the rotation speed ratio N s2 of the second sun gear 21 is 1, and the rotation speed ratio N r2 of the second ring gear 23 is 0.
  • the rotation speed ratio N s3 of the third sun gear 31 is obtained by the third relational expression.
  • the rotation speed ratio N c3 of the third carrier 34 is 1, and the rotation speed ratio N r3 of the third ring gear 33 is the same as the rotation speed ratio N c2 of the second carrier 24.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression. As a result, the reduction ratio at the seventh forward speed is obtained.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is the same as the rotation speed ratio N s3 of the third sun gear 31, and the rotation speed ratio N r4 of the fourth ring gear 43 is 1.
  • the rotation speed ratio N s3 of the third sun gear 31 is obtained by the third relational expression.
  • the rotation speed ratio N c3 of the third carrier 34 is 1, and the rotation speed ratio N r3 of the third ring gear 33 is 0.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is the same as the rotation speed ratio N s3 of the third sun gear 31, and the rotation speed ratio N r4 of the fourth ring gear 43 is 1.
  • the rotation speed ratio N r1 of the first ring gear 13 is obtained by the first relational expression.
  • the rotation speed ratio N s1 of the first sun gear 11 is 1, and the rotation speed ratio N c1 of the first carrier 14 is 0.
  • the rotation speed ratio N s3 of the third sun gear 31 is obtained by the third relational expression.
  • the rotation speed ratio N c3 of the third carrier 34 is 1, and the rotation speed ratio N r3 of the third ring gear 33 is the same as the rotation speed ratio N r1 of the first ring gear 13.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression.
  • the rotation speed ratio N r4 of the fourth ring gear 43 is 1, and the rotation speed ratio N s4 of the fourth sun gear 41 is the same as the rotation speed ratio N s3 of the third sun gear 31.
  • the rotation speed ratio N c2 of the second carrier 24 is obtained by the second relational expression.
  • the rotation speed ratio N s2 of the second sun gear 21 is 1, and the rotation speed ratio N r2 of the second ring gear 23 is 0.
  • the rotation speed ratio N s3 of the third sun gear 31 is obtained by the third relational expression.
  • the rotation speed ratio N c3 of the third carrier 34 is 0, and the rotation speed ratio N r3 of the third ring gear 33 is the same as the rotation speed ratio N c2 of the second carrier 24.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression.
  • the rotation speed ratio N r4 of the fourth ring gear 43 is 0, and the rotation speed ratio N s4 of the fourth sun gear 41 is the same as the rotation speed ratio N s3 of the third sun gear 31.
  • the rotation speed ratio N s3 of the third sun gear 31 is obtained by the third relational expression.
  • the rotation speed ratio N r3 of the third ring gear 33 is 1, and the rotation speed ratio N c3 of the third carrier 34 is 0.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is the same as the rotation speed ratio N s3 of the third sun gear 31, and the rotation speed ratio N r4 of the fourth ring gear 43 is zero.
  • FIG. 14 is a schematic view of a planetary gear type transmission according to the second embodiment.
  • the planetary gear type transmission 100 shifts and outputs the rotational speed of power from an engine (not shown) or the like. Note that power from the engine or the like may be input to the planetary gear type transmission 100 via a torque converter.
  • the planetary gear type transmission 100 includes a plurality of planetary gear mechanisms 1 to 4, a plurality of clutches 51 to 53, a plurality of braking mechanisms 61 to 64, an input shaft 7, a first intermediate shaft 81, a second intermediate shaft 82, and a casing. 9 is provided.
  • the casing 9 accommodates the planetary gear mechanisms 1 to 4, clutches 51 to 53, brake mechanisms 61 to 64, the input shaft 7, the first intermediate shaft 81, and the second intermediate shaft 82.
  • the planetary gear type transmission 100 includes a first planetary gear mechanism 1, a second planetary gear mechanism 2, a third planetary gear mechanism 3, and a fourth planetary gear mechanism 4 as a plurality of planetary gear mechanisms.
  • the planetary gear type transmission 100 includes a first clutch 51, a second clutch 52, and a third clutch 53 as a plurality of clutches.
  • the planetary gear type transmission 100 includes a first braking mechanism 61, a second braking mechanism 62, a third braking mechanism 63, and a fourth braking mechanism 64 as a plurality of braking mechanisms.
  • the first planetary gear mechanism 1, the second planetary gear mechanism 2, the third planetary gear mechanism 3, and the fourth planetary gear mechanism 4 are arranged in this order along the rotation axis direction. Specifically, the first planetary gear mechanism 1, the second planetary gear mechanism 2, the third planetary gear mechanism, and the fourth planetary gear mechanism are arranged in this order from the input side to the output side.
  • the input shaft 7 is configured to rotate around the rotation axis O.
  • the rotation axis O is the center line of the input shaft 7.
  • the input shaft 7 is hollow. Specifically, the input shaft 7 is cylindrical. Power from an engine or the like is input to the input shaft 7.
  • the first intermediate shaft 81 is configured to rotate around the rotation axis O. That is, the first intermediate shaft 81 extends in the rotation axis direction.
  • the first intermediate shaft 81 is disposed in the input shaft 7.
  • the central axis of the first intermediate shaft 81 and the central axis of the input shaft 7 are substantially the same.
  • the second intermediate shaft 82 is configured to rotate about the rotation axis O. That is, the second intermediate shaft 82 extends in the rotation axis direction.
  • the second intermediate shaft 82 is disposed in the input shaft 7.
  • the second intermediate shaft 82 is hollow. Specifically, the second intermediate shaft 82 is cylindrical.
  • the first intermediate shaft 81 is disposed in the second intermediate shaft 82. That is, the first intermediate shaft 81 is disposed in the second intermediate shaft 82, and the second intermediate shaft 82 is disposed in the input shaft 7.
  • the first intermediate shaft 81, the second intermediate shaft 82, and the input shaft 7 are arranged in this order toward the radially outer side.
  • the first planetary gear mechanism 1 includes a first sun gear 11, a plurality of first planetary gears 12, a first ring gear 13, and a first carrier 14.
  • the first sun gear 11 is configured to rotate integrally with the input shaft 7. Specifically, the first sun gear 11 is fixed to the input shaft 7.
  • the first sun gear 11 and the input shaft 7 may be formed by a single member.
  • Each first planetary gear 12 is configured to mesh with the first sun gear 11.
  • Each first planetary gear 12 is disposed on the radially outer side of the first sun gear 11. Specifically, the first planetary gears 12 are arranged at intervals in the circumferential direction.
  • Each first planetary gear 12 is configured to revolve around the first sun gear 11. That is, each first planetary gear 12 is configured to rotate about the rotation axis O. Each first planetary gear 12 is configured to rotate.
  • the first ring gear 13 is in mesh with each first planetary gear 12.
  • the first ring gear 13 is configured to rotate around the rotation axis O.
  • the first carrier 14 supports each first planetary gear 12. Each first planetary gear 12 can rotate while being supported by the first carrier 14.
  • the first carrier 14 is configured to rotate about the rotation axis O.
  • the second planetary gear mechanism 2 includes a second sun gear 21, a plurality of second planetary gears 22, a second ring gear 23, and a second carrier 24.
  • the second sun gear 21 is configured to rotate integrally with the input shaft 7. Specifically, the second sun gear 21 is fixed to the input shaft 7.
  • the second sun gear 21 and the input shaft 7 may be formed by a single member.
  • Each second planetary gear 22 is configured to mesh with the second sun gear 21.
  • Each second planetary gear 22 is disposed on the radially outer side of the second sun gear 21. Specifically, the second planetary gears 22 are arranged at intervals in the circumferential direction.
  • Each second planetary gear 22 is configured to revolve around the second sun gear 21. That is, each second planetary gear 22 is configured to rotate about the rotation axis O. Each second planetary gear 22 is configured to rotate.
  • the second ring gear 23 meshes with each second planetary gear 22.
  • the second ring gear 23 is configured to rotate around the rotation axis O.
  • the second carrier 24 supports each second planetary gear 22. Each of the second planetary gears 22 can rotate while being supported by the second carrier 24.
  • the second carrier 24 is configured to rotate around the rotation axis O.
  • the second carrier 24 is configured to rotate integrally with the first ring gear 13. Specifically, the second carrier 24 is connected to the first ring gear 13. The second carrier 24 and the first ring gear 13 may be formed by one member.
  • the third planetary gear mechanism 3 has a third sun gear 31, a plurality of third planetary gears 32, a third ring gear 33, and a third carrier 34.
  • the third sun gear 31 is configured to rotate integrally with the first intermediate shaft 81. Specifically, the third sun gear 31 is fixed to the first intermediate shaft 81. Note that the third sun gear 31 and the first intermediate shaft 81 may be formed by a single member.
  • Each third planetary gear 32 is configured to mesh with the third sun gear 31.
  • Each third planetary gear 32 is disposed on the radially outer side of the third sun gear 31. Specifically, the third planetary gears 32 are arranged at intervals in the circumferential direction.
  • Each third planetary gear 32 is configured to revolve around the third sun gear 31. That is, each third planetary gear 32 is configured to rotate about the rotation axis O. Each third planetary gear 32 is configured to rotate.
  • the third ring gear 33 is in mesh with each third planetary gear 32.
  • the third ring gear 33 is configured to rotate around the rotation axis O.
  • the third ring gear 33 is configured to rotate integrally with the second carrier 24. Specifically, the third ring gear 33 is connected to the second carrier 24. That is, the first ring gear 13, the second carrier 24, and the third ring gear 33 are configured to rotate integrally. Note that the third ring gear 33 and the second carrier 24 may be formed of a single member.
  • the third carrier 34 supports each third planetary gear 32. Each third planetary gear 32 can rotate while being supported by the third carrier 34.
  • the third carrier 34 is configured to rotate about the rotation axis O.
  • the third carrier 34 is configured to rotate integrally with the second intermediate shaft 82. Specifically, the third carrier 34 is fixed to the second intermediate shaft 82. The third carrier 34 and the second intermediate shaft 82 may be formed by one member.
  • the fourth planetary gear mechanism 4 includes a fourth sun gear 41, a plurality of fourth planetary gears 42, a fourth ring gear 43, and a fourth carrier 44.
  • the fourth sun gear 41 is configured to rotate integrally with the first intermediate shaft 81. Specifically, the fourth sun gear 41 is fixed to the first intermediate shaft 81. Note that the fourth sun gear 41 and the first intermediate shaft 81 may be formed of a single member.
  • Each fourth planetary gear 42 is configured to mesh with the fourth sun gear 41.
  • Each fourth planetary gear 42 is disposed on the radially outer side of the fourth sun gear 41. Specifically, the fourth planetary gears 42 are arranged at intervals in the circumferential direction.
  • Each fourth planetary gear 42 is configured to revolve around the fourth sun gear 41. That is, each fourth planetary gear 42 is configured to rotate about the rotation axis O. Each fourth planetary gear 42 is configured to rotate.
  • the fourth ring gear 43 is in mesh with each fourth planetary gear 42.
  • the fourth ring gear is configured to rotate about the rotation axis O.
  • the fourth ring gear 43 is configured to rotate integrally with the third carrier 34.
  • the fourth ring gear 43 is connected to the third carrier 34. That is, the second intermediate shaft 82, the third carrier 34, and the fourth ring gear 43 are configured to rotate integrally with each other.
  • the fourth ring gear 43 and the third carrier 34 may be formed of a single member.
  • the fourth carrier 44 supports each fourth planetary gear 42. Each fourth planetary gear 42 can rotate while being supported by the fourth carrier 44.
  • the fourth carrier 44 is configured to rotate about the rotation axis O.
  • the fourth carrier 44 outputs power. Specifically, the fourth carrier 44 outputs power having a rotational speed changed by the planetary gear type transmission 100. The fourth carrier 44 rotates integrally with the output shaft. For this reason, the output shaft 10 outputs the shifted power.
  • the fourth carrier 44 and the output shaft 10 may be formed by a single member.
  • the first clutch 51 is configured to connect the input shaft 7 and the first intermediate shaft 81. Specifically, the first clutch 51 connects the input shaft 7 and the first intermediate shaft 81 so that they can be disconnected. When the first clutch 51 is on, the first clutch 51 connects the input shaft 7 and the first intermediate shaft 81. Therefore, the input shaft 7 and the first intermediate shaft 81 rotate integrally.
  • the first clutch 51 When the first clutch 51 is in the off state, the first clutch 51 disconnects the connection between the input shaft 7 and the first intermediate shaft 81. Accordingly, the first intermediate shaft 81 is rotatable relative to the input shaft 7.
  • the first clutch 51 is, for example, a hydraulic clutch mechanism, and can be composed of a plurality of disks.
  • the second clutch 52 is configured to connect the input shaft 7 and the third carrier 34. That is, the second clutch 52 connects the input shaft 7 and the third carrier 34 so that they can be disconnected. Specifically, the second clutch 52 connects the input shaft 7 and the third carrier 34 by connecting the input shaft 7 and the second intermediate shaft 82.
  • the second clutch 52 is, for example, a hydraulic clutch mechanism and can be composed of a plurality of disks.
  • the second clutch 52 When the second clutch 52 is on, the second clutch 52 connects the input shaft 7 and the second intermediate shaft 82. That is, the second clutch 52 connects the input shaft 7 and the third carrier 34 via the second intermediate shaft 82. Therefore, the input shaft 7 and the third carrier 34 rotate integrally.
  • the second clutch 52 disconnects the connection between the input shaft 7 and the third carrier 34. That is, the second clutch 52 blocks the connection between the input shaft 7 and the third carrier 34 by blocking the connection between the input shaft 7 and the second intermediate shaft 82. Therefore, the second intermediate shaft 82 and the third carrier 34 can rotate relative to the input shaft 7.
  • the third clutch 53 is configured to connect the first ring gear 13 and the first carrier 14. Specifically, the third clutch 53 connects the first ring gear 13 and the first carrier 14 so that they can be disconnected.
  • the third clutch 53 is, for example, a hydraulic clutch mechanism, and can be composed of a plurality of disks.
  • the third clutch 53 When the third clutch 53 is on, the third clutch 53 connects the first ring gear 13 and the first carrier 14. Accordingly, the first ring gear 13 and the first carrier 14 rotate integrally.
  • the third clutch 53 When the third clutch 53 is in the off state, the third clutch 53 disconnects the connection between the first ring gear 13 and the first carrier 14. Therefore, the first ring gear 13 and the first carrier 14 can rotate relative to each other.
  • the third clutch 53 is disposed between the first braking mechanism 61 and the second braking mechanism 62 in the rotation axis direction.
  • a space S is formed between the third clutch 53 and the casing 9 in the radial direction of the rotation shaft.
  • the first braking mechanism 61 is configured to brake the rotation of the first carrier 14. Specifically, the first braking mechanism 61 is configured to connect the first carrier 14 and the casing 9.
  • the first braking mechanism 61 brakes the rotation of the first carrier 14. That is, when the first braking mechanism 61 is in the on state, the first braking mechanism 61 connects the first carrier 14 and the casing 9. Therefore, the first carrier 14 cannot rotate.
  • the first braking mechanism 61 when the first braking mechanism 61 is in the off state, the first braking mechanism 61 does not brake the rotation of the first carrier 14. That is, when the first braking mechanism 61 is in the off state, the first braking mechanism 61 does not connect the first carrier 14 and the casing 9. Accordingly, the first carrier 14 is rotatable.
  • the first braking mechanism 61 is disposed on the input side with respect to the second braking mechanism 62 in the rotation axis direction.
  • the second braking mechanism 62 is configured to brake the rotation of the first ring gear 13. Specifically, the second braking mechanism 62 is configured to connect the first ring gear 13 and the casing 9.
  • the second braking mechanism 62 brakes the rotation of the first ring gear 13. That is, when the second braking mechanism 62 is in the on state, the second braking mechanism 62 connects the first ring gear 13 and the casing 9. Therefore, the first ring gear 13 cannot rotate.
  • the second brake mechanism 62 when the second brake mechanism 62 is in the off state, the second brake mechanism 62 does not brake the rotation of the first ring gear 13. That is, when the second braking mechanism 62 is in the off state, the second braking mechanism 62 does not connect the first ring gear 13 and the casing 9. Therefore, the first ring gear 13 is rotatable.
  • the second braking mechanism 62 is disposed on the radially outer side of the first ring gear 13.
  • the third braking mechanism 63 is configured to brake the rotation of the second ring gear 23. Specifically, the third braking mechanism 63 is configured to connect the second ring gear 23 and the casing 9.
  • the third brake mechanism 63 brakes the rotation of the second ring gear 23. That is, when the third braking mechanism 63 is in the on state, the third braking mechanism 63 connects the second ring gear 23 and the casing 9. Therefore, the second ring gear 23 cannot rotate.
  • the third braking mechanism 63 when the third braking mechanism 63 is in the off state, the third braking mechanism 63 does not brake the rotation of the second ring gear 23. That is, when the third braking mechanism 63 is in the off state, the third braking mechanism 63 does not connect the second ring gear 23 and the casing 9. Therefore, the second ring gear 23 is rotatable. Note that the third braking mechanism 63 is disposed on the radially outer side of the second ring gear 23.
  • the fourth braking mechanism 64 is configured to brake the rotation of the fourth ring gear 43. Specifically, the fourth braking mechanism 64 is configured to connect the fourth ring gear 43 and the casing 9.
  • the fourth brake mechanism 64 brakes the rotation of the fourth ring gear 43. That is, when the fourth braking mechanism 64 is in the on state, the fourth braking mechanism 64 connects the fourth ring gear 43 and the casing 9. Therefore, the fourth ring gear 43 cannot rotate.
  • the fourth brake mechanism 64 when the fourth brake mechanism 64 is in the off state, the fourth brake mechanism 64 does not brake the rotation of the fourth ring gear 43. That is, when the fourth braking mechanism 64 is in the off state, the fourth braking mechanism 64 does not connect the fourth ring gear 43 and the casing 9. Therefore, the fourth ring gear 43 is rotatable.
  • the fourth braking mechanism 64 is disposed on the radially outer side of the fourth ring gear 43.
  • the operation of the planetary gear type transmission 100 configured as described above will be described.
  • the planetary gear type transmission 100 has nine speed stages in the forward direction and two speed stages in the reverse direction.
  • the first braking mechanism 61 Since the first braking mechanism 61 is turned on, the first carrier 14 cannot rotate. Further, since the fourth braking mechanism 64 is turned on, the fourth ring gear 43 cannot be rotated. Since the third carrier 34 rotates integrally with the fourth ring gear 43, the third carrier 34 also cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first sun gear 11 rotates integrally with the input shaft 7.
  • the rotation of the first sun gear 11 causes each first planetary gear 12 to rotate.
  • each 1st planetary gear 12 does not revolve.
  • the first ring gear 13 is rotated by the rotation of each first planetary gear 12.
  • the second carrier 24 rotates integrally with the first ring gear 13.
  • the third ring gear 33 rotates integrally with the second carrier 24. As the third ring gear 33 rotates, each third planetary gear 32 rotates. In addition, since the 3rd carrier 34 cannot rotate, each 3rd planetary gear 32 does not revolve.
  • the third sun gear 31 is rotated by the rotation of each third planetary gear 32.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31.
  • the rotation of the fourth sun gear 41 causes each fourth planetary gear 42 to rotate and revolve.
  • the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the first clutch 51 is turned on, the first intermediate shaft 81 rotates integrally with the input shaft 7. Further, since the fourth braking mechanism 64 is turned on, the fourth ring gear 43 cannot be rotated. Since the third carrier 34 rotates integrally with the fourth ring gear 43, the third carrier 34 also cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first intermediate shaft 81 rotates integrally with the input shaft 7.
  • the fourth sun gear 41 rotates integrally with the first intermediate shaft 81.
  • the rotation of the fourth sun gear 41 causes each fourth planetary gear 42 to rotate and revolve.
  • the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the first clutch 51 is turned on and the first braking mechanism 61 is turned on. To do. That is, in switching between the second speed (F2) and the third speed (F3), the first clutch 51 remains on.
  • the second to fourth braking mechanisms 62 to 64, the second clutch 52, and the third clutch 53 are in the off state.
  • the first clutch 51 Since the first clutch 51 is turned on, the first intermediate shaft 81 rotates integrally with the input shaft 7. In addition, since the first braking mechanism 61 is turned on, the first carrier 14 cannot be rotated.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first sun gear 11 rotates integrally with the input shaft 7.
  • the rotation of the first sun gear 11 causes each first planetary gear 12 to rotate.
  • each 1st planetary gear 12 does not revolve.
  • the first ring gear 13 is rotated by the rotation of each first planetary gear 12.
  • the second carrier 24 rotates integrally with the first ring gear 13.
  • the third ring gear 33 rotates integrally with the second carrier 24.
  • the third sun gear 31 rotates integrally with the first intermediate shaft 81.
  • each third planetary gear 32 revolves while rotating. Then, the third carrier 34 rotates.
  • the fourth ring gear 43 rotates integrally with the third carrier 34.
  • the fourth sun gear 41 rotates integrally with the first intermediate shaft 81.
  • each fourth planetary gear 42 revolves while rotating.
  • the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the first clutch 51 is turned on and the second braking mechanism 62 is turned on. To do. That is, in switching between the third speed (F3) and the fourth speed (F4), the first clutch 51 remains on.
  • the first braking mechanism 61, the third braking mechanism 63, the fourth braking mechanism 64, the second clutch 52, and the third clutch 53 are in an off state.
  • the first clutch 51 is turned on, the first intermediate shaft 81 rotates integrally with the input shaft 7. Further, since the second brake mechanism 62 is turned on, the first ring gear 13 cannot be rotated. Since the second carrier 24 rotates integrally with the first ring gear 13, the second carrier 24 also cannot rotate. Furthermore, since the third ring gear 33 rotates integrally with the second carrier 24, the third ring gear 33 cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first intermediate shaft 81 rotates integrally with the input shaft 7.
  • the third sun gear 31 and the fourth sun gear 41 rotate integrally with the first intermediate shaft 81.
  • the rotation of the third sun gear 31 causes each third planetary gear 32 to rotate and revolve. Then, the third carrier 34 rotates. The fourth ring gear 43 rotates integrally with the third carrier 34.
  • the first clutch 51 is turned on and the third braking mechanism 63 is turned on. To do. That is, in switching between the fourth speed (F4) and the fifth speed (F5), the first clutch 51 remains on.
  • the first braking mechanism 61, the second braking mechanism 62, the fourth braking mechanism 64, the second clutch 52, and the third clutch 53 are in an off state.
  • the first clutch 51 Since the first clutch 51 is turned on, the first intermediate shaft 81 rotates integrally with the input shaft 7. Further, since the third braking mechanism 63 is turned on, the second ring gear 23 cannot be rotated.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the input shaft 7 and the first intermediate shaft 81 rotate integrally with each other.
  • the second sun gear 21 rotates integrally with the input shaft 7, and the third sun gear 31 and the fourth sun gear 41 rotate integrally with the first intermediate shaft 81.
  • the rotation of the second sun gear 21 causes each second planetary gear 22 to rotate and revolve. Then, the second carrier 24 rotates.
  • the third ring gear 33 rotates integrally with the second carrier 24.
  • the first intermediate shaft 81 rotates integrally with the input shaft 7. Further, since the second clutch 52 is turned on, the second intermediate shaft 82 rotates integrally with the input shaft 7.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the input shaft 7, the first intermediate shaft 81, and the second intermediate shaft 82 rotate integrally with each other.
  • the third sun gear 31 and the fourth sun gear 41 rotate integrally with the first intermediate shaft 81.
  • the third carrier 34 rotates integrally with the second intermediate shaft 82.
  • the fourth ring gear 43 rotates integrally with the third carrier 34.
  • the fourth planetary gears 42 revolve by the rotation of the fourth sun gear 41 and the rotation of the fourth ring gear 43.
  • each 4th planetary gear 42 does not autorotate.
  • each fourth planetary gear 42 revolves at the same rotational speed as the fourth sun gear 41 and the fourth ring gear 43.
  • the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a rotational speed that is not changed. That is, the planetary gear type transmission 100 in the sixth speed state does not change the rotational speed of the power from the engine or the like.
  • the second clutch 52 is turned on and the third braking mechanism 63 is turned on. To do. That is, in switching between the sixth speed (F6) and the seventh speed (F7), the second clutch 52 remains on.
  • the first braking mechanism 61, the second braking mechanism 62, the fourth braking mechanism 64, the first clutch 51, and the third clutch 53 are in an off state.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the input shaft 7 and the second intermediate shaft 82 rotate integrally with each other.
  • the second sun gear 21 rotates integrally with the input shaft 7.
  • the third carrier 34 rotates integrally with the second intermediate shaft 82.
  • the rotation of the second sun gear 21 causes each second planetary gear 22 to rotate and revolve. Then, the second carrier 24 rotates.
  • the third ring gear 33 rotates integrally with the second carrier 24.
  • Each third planetary gear 32 revolves by the rotation of the third carrier 34. Further, each third planetary gear 32 rotates by the rotation of the third ring gear 33 and the rotation of the third carrier 34. As a result, the third sun gear 31 rotates.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31.
  • the fourth ring gear 43 rotates integrally with the third carrier 34. Due to the rotation of the fourth sun gear 41 and the rotation of the fourth ring gear 43, each fourth planetary gear 42 revolves while rotating. As a result, the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the second clutch 52 is turned on and the second braking mechanism 62 is turned on. To do. That is, in switching between the seventh speed (F7) and the eighth speed (F8), the second clutch 52 remains on.
  • the first braking mechanism 61, the third braking mechanism 63, the fourth braking mechanism 64, the first clutch 51, and the third clutch 53 are in an off state.
  • the second clutch 52 Since the second clutch 52 is turned on, the second intermediate shaft 82 rotates integrally with the input shaft 7. Further, since the second braking mechanism 62 is turned on, the first ring gear 13 cannot be rotated. Since the second carrier 24 rotates integrally with the first ring gear 13, the second carrier 24 also cannot rotate. Furthermore, since the third ring gear 33 rotates integrally with the second carrier 24, the third ring gear 33 cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the second intermediate shaft 82 rotates integrally with the input shaft 7.
  • the third carrier 34 rotates integrally with the second intermediate shaft 82.
  • Rotation of the third carrier 34 causes each third planetary gear 32 to revolve and rotate. Then, the third sun gear 31 rotates.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31.
  • the fourth ring gear 43 rotates integrally with the third carrier 34. Due to the rotation of the fourth sun gear 41 and the rotation of the fourth ring gear 43, each fourth planetary gear 42 revolves while rotating. As a result, the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the second clutch 52 is turned on and the first braking mechanism 61 is turned on. To do. That is, in switching between the eighth speed (F8) and the ninth speed (F9), the second clutch 52 remains on.
  • the second to fourth braking mechanisms 62 to 64, the first clutch 51, and the third clutch 53 are in an off state.
  • the second clutch 52 Since the second clutch 52 is turned on, the second intermediate shaft 82 rotates integrally with the input shaft 7. In addition, since the first braking mechanism 61 is turned on, the first carrier 14 cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first sun gear 11 rotates integrally with the input shaft 7.
  • the rotation of the first sun gear 11 causes each first planetary gear 12 to rotate. Since the first carrier 14 cannot rotate as described above, each first planetary gear 12 does not revolve.
  • the first ring gear 13 is rotated by the rotation of each first planetary gear 12.
  • the second carrier 24 rotates integrally with the first ring gear 13.
  • the third ring gear 33 rotates integrally with the second carrier 24.
  • the third carrier 34 rotates integrally with the second intermediate shaft 82.
  • each third planetary gear 32 rotates and revolves.
  • the 3rd sun gear 31 rotates.
  • the fourth ring gear 43 rotates integrally with the third carrier 34.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31. Due to the rotation of the fourth ring gear 43 and the rotation of the fourth sun gear 41, each fourth planetary gear 42 revolves while rotating. As a result, the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the third braking mechanism 63 is turned on and the fourth braking mechanism 64 is turned on.
  • the first braking mechanism 61, the second braking mechanism 62, and the first to third clutches 51 to 53 are in an off state.
  • the third braking mechanism 63 Since the third braking mechanism 63 is turned on, the second ring gear 23 cannot be rotated. Further, since the fourth braking mechanism 64 is turned on, the fourth ring gear 43 cannot be rotated. Since the third carrier 34 rotates integrally with the fourth ring gear 43, the third carrier 34 also cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the second sun gear 21 rotates integrally with the input shaft 7.
  • the rotation of the second sun gear 21 causes each second planetary gear 22 to rotate and revolve.
  • the second carrier 24 rotates.
  • the third ring gear 33 rotates integrally with the second carrier 24. As the third ring gear 33 rotates, each third planetary gear 32 rotates. In addition, since the 3rd carrier 34 cannot rotate, each 3rd planetary gear 32 does not revolve.
  • the third sun gear 31 is rotated by the rotation of each third planetary gear 32.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31.
  • the rotation of the fourth sun gear 41 causes each fourth planetary gear 42 to rotate and revolve.
  • the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the third clutch 53 Since the third clutch 53 is turned on, the first carrier 14 rotates integrally with the first ring gear 13. Further, since the fourth braking mechanism 64 is turned on, the fourth ring gear 43 cannot be rotated. Since the third carrier 34 rotates integrally with the fourth ring gear 43, the third carrier 34 also cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first sun gear 11 rotates integrally with the input shaft 7.
  • each 1st planetary gear 12 revolves and the 1st career 14 rotates.
  • the first ring gear 13 rotates integrally with the first carrier 14.
  • Each first planetary gear 12 does not rotate.
  • the second carrier 24 rotates integrally with the first ring gear 13.
  • the third ring gear 33 rotates integrally with the second carrier 24.
  • each third planetary gear 32 rotates.
  • each 3rd carrier 34 cannot rotate, each 3rd planetary gear 32 does not revolve.
  • the third sun gear 31 is rotated by the rotation of each third planetary gear 32.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31.
  • the rotation of the fourth sun gear 41 causes each fourth planetary gear 42 to rotate and revolve.
  • the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the reduction ratio at each speed stage is obtained using at least one of the following first to fourth relational expressions.
  • the first relational expression is an expression related to the first planetary gear mechanism 1 and is expressed by the following expression (1).
  • s 1 is the number of teeth of the first sun gear 11
  • r 1 is the number of teeth of the first ring gear 13
  • N s1 is the rotational speed ratio of the first sun gear 11
  • N r1 is the rotational speed ratio of the first ring gear 13.
  • N c1 is the rotation speed ratio of the first carrier 14.
  • the second relational expression is an expression relating to the second planetary gear mechanism 2, and is expressed by the following expression (2).
  • s 2 is the number of teeth of the second sun gear 21
  • r 2 is the number of teeth of the second ring gear 23
  • N s2 is the rotation speed ratio of the second sun gear 21
  • N r2 is the rotation speed ratio of the second ring gear 23
  • N c2 is the rotation speed ratio of the second carrier 24.
  • the third relational expression is an expression related to the third planetary gear mechanism 3, and is expressed by the following expression (3).
  • s 3 is the number of teeth of the third sun gear 31
  • r 3 is the number of teeth of the third ring gear 33
  • N s3 is the rotational speed ratio of the third sun gear 31
  • N r3 is the rotational speed ratio of the third ring gear 33
  • N c3 is the rotation speed ratio of the third carrier 34.
  • the fourth relational expression is an expression relating to the fourth planetary gear mechanism 4 and is expressed by the following expression (4).
  • s 4 is the number of teeth of the fourth sun gear 41
  • r 4 is the number of teeth of the fourth ring gear 43
  • N s4 is the rotational speed ratio of the fourth sun gear 41
  • N r4 is the rotational speed ratio of the fourth ring gear 43
  • N c4 is the rotation speed ratio of the fourth carrier 44.
  • the rotational speed ratio N r1 of the first ring gear 13 in the first planetary gear mechanism 1 is obtained from the first relational expression. Since the first sun gear 11 rotates integrally with the input shaft 8, the rotation speed ratio N s1 of the first sun gear 11 is 1. Further, since the first carrier 14 does not rotate, the rotation speed ratio N c1 of the first carrier 14 is zero.
  • the rotation speed ratio N s3 of the third sun gear 31 in the third planetary gear mechanism is obtained from the third relational expression.
  • the third ring gear 33 to rotate integrally with the first ring gear 13 the rotational speed ratio N r3 of the third ring gear 33 is the same as the rotational speed ratio N r1 of the first ring gear 13. Further, since the third carrier 34 does not rotate, the rotation speed ratio Nc3 of the third carrier 34 is zero.
  • the rotation speed ratio N c4 of the fourth carrier 44 in the fourth planetary gear mechanism is obtained from the fourth relational expression. Since the fourth sun gear 41 rotates integrally with the third sun gear 31, the rotation speed ratio N s4 of the fourth sun gear 41 is the same as the rotation speed ratio N s3 of the third sun gear 31. Further, since the fourth ring gear 43 does not rotate, the rotation speed ratio N r4 of the fourth ring gear 43 is zero.
  • the reciprocal number of the rotation speed ratio Nc4 of the fourth carrier 44 obtained as described above is the reduction ratio of the planetary gear type transmission 100.
  • the first sun gear 11 has 30 teeth
  • the second sun gear 21 has 57 teeth
  • the third sun gear 31 has 48 teeth
  • the fourth sun gear 41 has 30 teeth
  • the first to fourth rings When the number of teeth of each of the gears 13, 23, 33, and 43 is 90, the reduction ratio of the forward first speed is about 6.4.
  • the reduction ratios obtained at the respective speed stages are shown in FIG.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression. Thereby, the reduction ratio in the second forward speed is obtained.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is 1, and the rotation speed ratio N r4 of the fourth ring gear 43 is 0.
  • the rotation speed ratio N r1 of the first ring gear 13 is obtained by the first relational expression.
  • the rotation speed ratio N s1 of the first sun gear 11 is 1, and the rotation speed ratio N c1 of the first carrier 14 is 0.
  • the rotation speed ratio N c3 of the third carrier 34 is obtained by the third relational expression.
  • the rotation speed ratio N s3 of the third sun gear 31 is 1.
  • the rotation speed ratio N r3 of the third ring gear 33 is the same as the rotation speed ratio N r1 of the first ring gear 13.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is 1, and the rotation speed ratio N r4 of the fourth ring gear 43 is the same as the rotation speed ratio N c3 of the third carrier 34.
  • the rotation speed ratio N c3 of the third carrier 34 is obtained by the third relational expression.
  • the rotation speed ratio N s3 of the third sun gear 31 is 1, and the rotation speed ratio N r3 of the third ring gear 33 is 0.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression. As a result, the reduction ratio at the fourth forward speed is obtained.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is 1, and the rotation speed ratio N r4 of the fourth ring gear 43 is the same as the rotation speed ratio N c3 of the third carrier 34.
  • the rotation speed ratio N c2 of the second carrier 24 is obtained by the second relational expression.
  • the rotation speed ratio N s2 of the second sun gear 21 is 1, and the rotation speed ratio N r2 of the second ring gear 23 is 0.
  • the rotation speed ratio N c3 of the third carrier 34 is obtained by the third relational expression.
  • the rotation speed ratio N s3 of the third sun gear 31 is 1, and the rotation speed ratio N r3 of the third ring gear 33 is the same as the rotation speed ratio N c2 of the second carrier 24.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression. As a result, the reduction ratio at the fifth forward speed is obtained.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is 1, and the rotation speed ratio N r4 of the fourth ring gear 43 is the same as the rotation speed ratio N c3 of the third carrier 34.
  • the rotation speed ratio N c2 of the second carrier 24 is obtained by the second relational expression.
  • the rotation speed ratio N s2 of the second sun gear 21 is 1, and the rotation speed ratio N r2 of the second ring gear 23 is 0.
  • the rotation speed ratio N s3 of the third sun gear 31 is obtained by the third relational expression.
  • the rotation speed ratio N c3 of the third carrier 34 is 1, and the rotation speed ratio N r3 of the third ring gear 33 is the same as the rotation speed ratio N c2 of the second carrier 24.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression. As a result, the reduction ratio at the seventh forward speed is obtained.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is the same as the rotation speed ratio N s3 of the third sun gear 31, and the rotation speed ratio N r4 of the fourth ring gear 43 is 1.
  • the rotation speed ratio N s3 of the third sun gear 31 is obtained by the third relational expression.
  • the rotation speed ratio N c3 of the third carrier 34 is 1, and the rotation speed ratio N r3 of the third ring gear 33 is 0.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is the same as the rotation speed ratio N s3 of the third sun gear 31, and the rotation speed ratio N r4 of the fourth ring gear 43 is 1.
  • the rotation speed ratio N r1 of the first ring gear 13 is obtained by the first relational expression.
  • the rotation speed ratio N s1 of the first sun gear 11 is 1, and the rotation speed ratio N c1 of the first carrier 14 is 0.
  • the rotation speed ratio N s3 of the third sun gear 31 is obtained by the third relational expression.
  • the rotation speed ratio N c3 of the third carrier 34 is 1, and the rotation speed ratio N r3 of the third ring gear 33 is the same as the rotation speed ratio N r1 of the first ring gear 13.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression.
  • the rotation speed ratio N r4 of the fourth ring gear 43 is 1, and the rotation speed ratio N s4 of the fourth sun gear 41 is the same as the rotation speed ratio N s3 of the third sun gear 31.
  • the rotation speed ratio N c2 of the second carrier 24 is obtained by the second relational expression.
  • the rotation speed ratio N s2 of the second sun gear 21 is 1, and the rotation speed ratio N r2 of the second ring gear 23 is 0.
  • the rotation speed ratio N s3 of the third sun gear 31 is obtained by the third relational expression.
  • the rotation speed ratio N c3 of the third carrier 34 is 0, and the rotation speed ratio N r3 of the third ring gear 33 is the same as the rotation speed ratio N c2 of the second carrier 24.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression.
  • the rotation speed ratio N r4 of the fourth ring gear 43 is 0, and the rotation speed ratio N s4 of the fourth sun gear 41 is the same as the rotation speed ratio N s3 of the third sun gear 31.
  • the rotation speed ratio N s3 of the third sun gear 31 is obtained by the third relational expression.
  • the rotation speed ratio N r3 of the third ring gear 33 is 1, and the rotation speed ratio N c3 of the third carrier 34 is 0.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is the same as the rotation speed ratio N s3 of the third sun gear 31, and the rotation speed ratio N r4 of the fourth ring gear 43 is zero.
  • FIG. 26 is a schematic view of a planetary gear type transmission according to the third embodiment. As shown in FIG. 26, the planetary gear type transmission 100 shifts and outputs the rotational speed of power from an engine (not shown) or the like. Note that power from the engine or the like may be input to the planetary gear type transmission 100 via a torque converter.
  • the planetary gear type transmission 100 includes a plurality of planetary gear mechanisms 1 to 4, a plurality of clutches 51 to 53, a plurality of braking mechanisms 61 to 64, an input shaft 7, a first intermediate shaft 81, a second intermediate shaft 82, and a casing. 9 is provided.
  • the casing 9 accommodates the planetary gear mechanisms 1 to 4, clutches 51 to 53, brake mechanisms 61 to 64, the input shaft 7, the first intermediate shaft 81, and the second intermediate shaft 82.
  • the planetary gear type transmission 100 includes a first planetary gear mechanism 1, a second planetary gear mechanism 2, a third planetary gear mechanism 3, and a fourth planetary gear mechanism 4 as a plurality of planetary gear mechanisms.
  • the planetary gear type transmission 100 includes a first clutch 51, a second clutch 52, and a third clutch 53 as a plurality of clutches.
  • the planetary gear type transmission 100 includes a first braking mechanism 61, a second braking mechanism 62, a third braking mechanism 63, and a fourth braking mechanism 64 as a plurality of braking mechanisms.
  • the first planetary gear mechanism 1, the second planetary gear mechanism 2, the third planetary gear mechanism 3, and the fourth planetary gear mechanism 4 are arranged in this order along the rotation axis direction. Specifically, the first planetary gear mechanism 1, the second planetary gear mechanism 2, the third planetary gear mechanism, and the fourth planetary gear mechanism are arranged in this order from the input side to the output side.
  • the input shaft 7 is configured to rotate around the rotation axis O.
  • the rotation axis O is the center line of the input shaft 7.
  • the input shaft 7 is hollow. Specifically, the input shaft 7 is cylindrical. Power from an engine or the like is input to the input shaft 7.
  • the first intermediate shaft 81 is configured to rotate around the rotation axis O. That is, the first intermediate shaft 81 extends in the rotation axis direction.
  • the first intermediate shaft 81 is disposed in the input shaft 7.
  • the central axis of the first intermediate shaft 81 and the central axis of the input shaft 7 are substantially the same.
  • the second intermediate shaft 82 is configured to rotate about the rotation axis O. That is, the second intermediate shaft 82 extends in the rotation axis direction.
  • the second intermediate shaft 82 is disposed in the input shaft 7.
  • the second intermediate shaft 82 is hollow. Specifically, the second intermediate shaft 82 is cylindrical.
  • the first intermediate shaft 81 is disposed in the second intermediate shaft 82. That is, the first intermediate shaft 81 is disposed in the second intermediate shaft 82, and the second intermediate shaft 82 is disposed in the input shaft 7.
  • the first intermediate shaft 81, the second intermediate shaft 82, and the input shaft 7 are arranged in this order toward the radially outer side.
  • the first planetary gear mechanism 1 includes a first sun gear 11, a plurality of first planetary gears 12, a first ring gear 13, and a first carrier 14.
  • the first sun gear 11 is configured to rotate integrally with the input shaft 7. Specifically, the first sun gear 11 is fixed to the input shaft 7.
  • the first sun gear 11 and the input shaft 7 may be formed by a single member.
  • Each first planetary gear 12 is configured to mesh with the first sun gear 11.
  • Each first planetary gear 12 is disposed on the radially outer side of the first sun gear 11. Specifically, the first planetary gears 12 are arranged at intervals in the circumferential direction.
  • Each first planetary gear 12 is configured to revolve around the first sun gear 11. That is, each first planetary gear 12 is configured to rotate about the rotation axis O. Each first planetary gear 12 is configured to rotate.
  • the first ring gear 13 is in mesh with each first planetary gear 12.
  • the first ring gear 13 is configured to rotate around the rotation axis O.
  • the first carrier 14 supports each first planetary gear 12. Each first planetary gear 12 can rotate while being supported by the first carrier 14.
  • the first carrier 14 is configured to rotate about the rotation axis O.
  • the second planetary gear mechanism 2 includes a second sun gear 21, a plurality of second planetary gears 22, a second ring gear 23, and a second carrier 24.
  • the second sun gear 21 is configured to rotate integrally with the input shaft 7. Specifically, the second sun gear 21 is fixed to the input shaft 7.
  • the second sun gear 21 and the input shaft 7 may be formed by a single member.
  • Each second planetary gear 22 is configured to mesh with the second sun gear 21.
  • Each second planetary gear 22 is disposed on the radially outer side of the second sun gear 21. Specifically, the second planetary gears 22 are arranged at intervals in the circumferential direction.
  • Each second planetary gear 22 is configured to revolve around the second sun gear 21. That is, each second planetary gear 22 is configured to rotate about the rotation axis O. Each second planetary gear 22 is configured to rotate.
  • the second ring gear 23 meshes with each second planetary gear 22.
  • the second ring gear 23 is configured to rotate around the rotation axis O.
  • the second carrier 24 supports each second planetary gear 22. Each of the second planetary gears 22 can rotate while being supported by the second carrier 24.
  • the second carrier 24 is configured to rotate around the rotation axis O.
  • the second carrier 24 is configured to rotate integrally with the first ring gear 13. Specifically, the second carrier 24 is connected to the first ring gear 13. The second carrier 24 and the first ring gear 13 may be formed by one member.
  • the third planetary gear mechanism 3 has a third sun gear 31, a plurality of third planetary gears 32, a third ring gear 33, and a third carrier 34.
  • the third sun gear 31 is configured to rotate integrally with the first intermediate shaft 81. Specifically, the third sun gear 31 is fixed to the first intermediate shaft 81. Note that the third sun gear 31 and the first intermediate shaft 81 may be formed by a single member.
  • Each third planetary gear 32 is configured to mesh with the third sun gear 31.
  • Each third planetary gear 32 is disposed on the radially outer side of the third sun gear 31. Specifically, the third planetary gears 32 are arranged at intervals in the circumferential direction.
  • Each third planetary gear 32 is configured to revolve around the third sun gear 31. That is, each third planetary gear 32 is configured to rotate about the rotation axis O. Each third planetary gear 32 is configured to rotate.
  • the third ring gear 33 is in mesh with each third planetary gear 32.
  • the third ring gear 33 is configured to rotate around the rotation axis O.
  • the third ring gear 33 is configured to rotate integrally with the second carrier 24. Specifically, the third ring gear 33 is connected to the second carrier 24. That is, the first ring gear 13, the second carrier 24, and the third ring gear 33 are configured to rotate integrally. Note that the third ring gear 33 and the second carrier 24 may be formed of a single member.
  • the third carrier 34 supports each third planetary gear 32. Each third planetary gear 32 can rotate while being supported by the third carrier 34.
  • the third carrier 34 is configured to rotate about the rotation axis O.
  • the third carrier 34 is configured to rotate integrally with the second intermediate shaft 82. Specifically, the third carrier 34 is fixed to the second intermediate shaft 82. The third carrier 34 and the second intermediate shaft 82 may be formed by one member.
  • the fourth planetary gear mechanism 4 includes a fourth sun gear 41, a plurality of fourth planetary gears 42, a fourth ring gear 43, and a fourth carrier 44.
  • the fourth sun gear 41 is configured to rotate integrally with the first intermediate shaft 81. Specifically, the fourth sun gear 41 is fixed to the first intermediate shaft 81. Note that the fourth sun gear 41 and the first intermediate shaft 81 may be formed of a single member.
  • Each fourth planetary gear 42 is configured to mesh with the fourth sun gear 41.
  • Each fourth planetary gear 42 is disposed on the radially outer side of the fourth sun gear 41. Specifically, the fourth planetary gears 42 are arranged at intervals in the circumferential direction.
  • Each fourth planetary gear 42 is configured to revolve around the fourth sun gear 41. That is, each fourth planetary gear 42 is configured to rotate about the rotation axis O. Each fourth planetary gear 42 is configured to rotate.
  • the fourth ring gear 43 is in mesh with each fourth planetary gear 42.
  • the fourth ring gear is configured to rotate about the rotation axis O.
  • the fourth ring gear 43 is configured to rotate integrally with the third carrier 34.
  • the fourth ring gear 43 is connected to the third carrier 34. That is, the second intermediate shaft 82, the third carrier 34, and the fourth ring gear 43 are configured to rotate integrally with each other.
  • the fourth ring gear 43 and the third carrier 34 may be formed of a single member.
  • the fourth carrier 44 supports each fourth planetary gear 42. Each fourth planetary gear 42 can rotate while being supported by the fourth carrier 44.
  • the fourth carrier 44 is configured to rotate about the rotation axis O.
  • the fourth carrier 44 outputs power. Specifically, the fourth carrier 44 outputs power having a rotational speed changed by the planetary gear type transmission 100. The fourth carrier 44 rotates integrally with the output shaft 10. For this reason, the output shaft 10 outputs the shifted power.
  • the fourth carrier 44 and the output shaft 10 may be formed by a single member.
  • the first clutch 51 is configured to connect the input shaft 7 and the first intermediate shaft 81. Specifically, the first clutch 51 connects the input shaft 7 and the first intermediate shaft 81 so that they can be disconnected. When the first clutch 51 is on, the first clutch 51 connects the input shaft 7 and the first intermediate shaft 81. Therefore, the input shaft 7 and the first intermediate shaft 81 rotate integrally.
  • the first clutch 51 When the first clutch 51 is in the off state, the first clutch 51 disconnects the connection between the input shaft 7 and the first intermediate shaft 81. Accordingly, the first intermediate shaft 81 is rotatable relative to the input shaft 7.
  • the first clutch 51 is, for example, a hydraulic clutch mechanism, and can be composed of a plurality of disks.
  • the second clutch 52 is configured to connect the input shaft 7 and the third carrier 34. That is, the second clutch 52 connects the input shaft 7 and the third carrier 34 so that they can be disconnected. Specifically, the second clutch 52 connects the input shaft 7 and the third carrier 34 by connecting the input shaft 7 and the second intermediate shaft 82.
  • the second clutch 52 is, for example, a hydraulic clutch mechanism and can be composed of a plurality of disks.
  • the second clutch 52 When the second clutch 52 is on, the second clutch 52 connects the input shaft 7 and the second intermediate shaft 82. That is, the second clutch 52 connects the input shaft 7 and the third carrier 34 via the second intermediate shaft 82. Therefore, the input shaft 7 and the third carrier 34 rotate integrally.
  • the second clutch 52 disconnects the connection between the input shaft 7 and the third carrier 34. That is, the second clutch 52 blocks the connection between the input shaft 7 and the third carrier 34 by blocking the connection between the input shaft 7 and the second intermediate shaft 82. Therefore, the second intermediate shaft 82 and the third carrier 34 can rotate relative to the input shaft 7.
  • the third clutch 53 is configured to connect the third ring gear 33 and the third carrier 34. Specifically, the third clutch 53 connects the third ring gear 33 and the third carrier 34 so that they can be disconnected.
  • the third clutch 53 is, for example, a hydraulic clutch mechanism, and can be composed of a plurality of disks.
  • the third clutch 53 When the third clutch 53 is on, the third clutch 53 connects the third ring gear 33 and the third carrier 34. Therefore, the third ring gear 33 and the third carrier 34 rotate integrally.
  • the third clutch 53 When the third clutch 53 is in the off state, the third clutch 53 disconnects the connection between the third ring gear 33 and the third carrier 34. Therefore, the third ring gear 33 and the third carrier 34 can rotate relative to each other.
  • the third clutch 53 is disposed between the third planetary gear mechanism 3 and the fourth planetary gear mechanism 4 in the rotation axis direction.
  • a space S is formed between the third clutch 53 and the casing 9 in the radial direction of the rotation shaft.
  • the first braking mechanism 61 is configured to brake the rotation of the first carrier 14. Specifically, the first braking mechanism 61 is configured to connect the first carrier 14 and the casing 9.
  • the first braking mechanism 61 brakes the rotation of the first carrier 14. That is, when the first braking mechanism 61 is in the on state, the first braking mechanism 61 connects the first carrier 14 and the casing 9. Therefore, the first carrier 14 cannot rotate.
  • the first braking mechanism 61 when the first braking mechanism 61 is in the off state, the first braking mechanism 61 does not brake the rotation of the first carrier 14. That is, when the first braking mechanism 61 is in the off state, the first braking mechanism 61 does not connect the first carrier 14 and the casing 9. Accordingly, the first carrier 14 is rotatable.
  • the first braking mechanism 61 is disposed on the input side with respect to the second braking mechanism 62 in the rotation axis direction.
  • the second braking mechanism 62 is configured to brake the rotation of the first ring gear 13. Specifically, the second braking mechanism 62 is configured to connect the first ring gear 13 and the casing 9.
  • the second braking mechanism 62 brakes the rotation of the first ring gear 13. That is, when the second braking mechanism 62 is in the on state, the second braking mechanism 62 connects the first ring gear 13 and the casing 9. Therefore, the first ring gear 13 cannot rotate.
  • the second brake mechanism 62 when the second brake mechanism 62 is in the off state, the second brake mechanism 62 does not brake the rotation of the first ring gear 13. That is, when the second braking mechanism 62 is in the off state, the second braking mechanism 62 does not connect the first ring gear 13 and the casing 9. Therefore, the first ring gear 13 is rotatable.
  • the second braking mechanism 62 is disposed on the radially outer side of the first ring gear 13.
  • the third braking mechanism 63 is configured to brake the rotation of the second ring gear 23. Specifically, the third braking mechanism 63 is configured to connect the second ring gear 23 and the casing 9.
  • the third brake mechanism 63 brakes the rotation of the second ring gear 23. That is, when the third braking mechanism 63 is in the on state, the third braking mechanism 63 connects the second ring gear 23 and the casing 9. Therefore, the second ring gear 23 cannot rotate.
  • the third braking mechanism 63 when the third braking mechanism 63 is in the off state, the third braking mechanism 63 does not brake the rotation of the second ring gear 23. That is, when the third braking mechanism 63 is in the off state, the third braking mechanism 63 does not connect the second ring gear 23 and the casing 9. Therefore, the second ring gear 23 is rotatable. Note that the third braking mechanism 63 is disposed on the radially outer side of the second ring gear 23.
  • the fourth braking mechanism 64 is configured to brake the rotation of the fourth ring gear 43. Specifically, the fourth braking mechanism 64 is configured to connect the fourth ring gear 43 and the casing 9.
  • the fourth brake mechanism 64 brakes the rotation of the fourth ring gear 43. That is, when the fourth braking mechanism 64 is in the on state, the fourth braking mechanism 64 connects the fourth ring gear 43 and the casing 9. Therefore, the fourth ring gear 43 cannot rotate.
  • the fourth brake mechanism 64 when the fourth brake mechanism 64 is in the off state, the fourth brake mechanism 64 does not brake the rotation of the fourth ring gear 43. That is, when the fourth braking mechanism 64 is in the off state, the fourth braking mechanism 64 does not connect the fourth ring gear 43 and the casing 9. Therefore, the fourth ring gear 43 is rotatable.
  • the fourth braking mechanism 64 is disposed on the radially outer side of the fourth ring gear 43.
  • FIG. 27 is a table showing each clutch or each braking mechanism that is turned on at each speed stage.
  • the ⁇ marks indicate clutches or braking mechanisms that are turned on.
  • the first braking mechanism 61 Since the first braking mechanism 61 is turned on, the first carrier 14 cannot rotate. Further, since the fourth braking mechanism 64 is turned on, the fourth ring gear 43 cannot be rotated. Since the third carrier 34 rotates integrally with the fourth ring gear 43, the third carrier 34 also cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first sun gear 11 rotates integrally with the input shaft 7.
  • the rotation of the first sun gear 11 causes each first planetary gear 12 to rotate.
  • each 1st planetary gear 12 does not revolve.
  • the first ring gear 13 is rotated by the rotation of each first planetary gear 12.
  • the second carrier 24 rotates integrally with the first ring gear 13.
  • the third ring gear 33 rotates integrally with the second carrier 24. As the third ring gear 33 rotates, each third planetary gear 32 rotates. In addition, since the 3rd carrier 34 cannot rotate, each 3rd planetary gear 32 does not revolve.
  • the third sun gear 31 is rotated by the rotation of each third planetary gear 32.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31.
  • the rotation of the fourth sun gear 41 causes each fourth planetary gear 42 to rotate and revolve.
  • the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the first clutch 51 is turned on, the first intermediate shaft 81 rotates integrally with the input shaft 7. Further, since the fourth braking mechanism 64 is turned on, the fourth ring gear 43 cannot be rotated. Since the third carrier 34 rotates integrally with the fourth ring gear 43, the third carrier 34 also cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first intermediate shaft 81 rotates integrally with the input shaft 7.
  • the fourth sun gear 41 rotates integrally with the first intermediate shaft 81.
  • the rotation of the fourth sun gear 41 causes each fourth planetary gear 42 to rotate and revolve.
  • the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the first clutch 51 is turned on and the first braking mechanism 61 is turned on. To do. That is, in switching between the second speed (F2) and the third speed (F3), the first clutch 51 remains on.
  • the second to fourth braking mechanisms 62 to 64, the second clutch 52, and the third clutch 53 are in the off state.
  • the first clutch 51 Since the first clutch 51 is turned on, the first intermediate shaft 81 rotates integrally with the input shaft 7. In addition, since the first braking mechanism 61 is turned on, the first carrier 14 cannot be rotated.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first sun gear 11 rotates integrally with the input shaft 7.
  • the rotation of the first sun gear 11 causes each first planetary gear 12 to rotate.
  • each 1st planetary gear 12 does not revolve.
  • the first ring gear 13 is rotated by the rotation of each first planetary gear 12.
  • the second carrier 24 rotates integrally with the first ring gear 13.
  • the third ring gear 33 rotates integrally with the second carrier 24.
  • the third sun gear 31 rotates integrally with the first intermediate shaft 81.
  • each third planetary gear 32 revolves while rotating. Then, the third carrier 34 rotates.
  • the fourth ring gear 43 rotates integrally with the third carrier 34.
  • the fourth sun gear 41 rotates integrally with the first intermediate shaft 81.
  • each fourth planetary gear 42 revolves while rotating.
  • the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the first clutch 51 is turned on and the second braking mechanism 62 is turned on. To do. That is, in switching between the third speed (F3) and the fourth speed (F4), the first clutch 51 remains on.
  • the first braking mechanism 61, the third braking mechanism 63, the fourth braking mechanism 64, the second clutch 52, and the third clutch 53 are in an off state.
  • the first clutch 51 is turned on, the first intermediate shaft 81 rotates integrally with the input shaft 7. Further, since the second brake mechanism 62 is turned on, the first ring gear 13 cannot be rotated. Since the second carrier 24 rotates integrally with the first ring gear 13, the second carrier 24 also cannot rotate. Furthermore, since the third ring gear 33 rotates integrally with the second carrier 24, the third ring gear 33 cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first intermediate shaft 81 rotates integrally with the input shaft 7.
  • the third sun gear 31 and the fourth sun gear 41 rotate integrally with the first intermediate shaft 81.
  • the rotation of the third sun gear 31 causes each third planetary gear 32 to rotate and revolve. Then, the third carrier 34 rotates. The fourth ring gear 43 rotates integrally with the third carrier 34.
  • the first clutch 51 is turned on and the third braking mechanism 63 is turned on. To do. That is, in switching between the fourth speed (F4) and the fifth speed (F5), the first clutch 51 remains on.
  • the first braking mechanism 61, the second braking mechanism 62, the fourth braking mechanism 64, the second clutch 52, and the third clutch 53 are in an off state.
  • the first clutch 51 Since the first clutch 51 is turned on, the first intermediate shaft 81 rotates integrally with the input shaft 7. Further, since the third braking mechanism 63 is turned on, the second ring gear 23 cannot be rotated.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the input shaft 7 and the first intermediate shaft 81 rotate integrally with each other.
  • the second sun gear 21 rotates integrally with the input shaft 7, and the third sun gear 31 and the fourth sun gear 41 rotate integrally with the first intermediate shaft 81.
  • the rotation of the second sun gear 21 causes each second planetary gear 22 to rotate and revolve. Then, the second carrier 24 rotates.
  • the third ring gear 33 rotates integrally with the second carrier 24.
  • the first intermediate shaft 81 rotates integrally with the input shaft 7. Further, since the second clutch 52 is turned on, the second intermediate shaft 82 rotates integrally with the input shaft 7.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the input shaft 7, the first intermediate shaft 81, and the second intermediate shaft 82 rotate integrally with each other.
  • the third sun gear 31 and the fourth sun gear 41 rotate integrally with the first intermediate shaft 81.
  • the third carrier 34 rotates integrally with the second intermediate shaft 82.
  • the fourth ring gear 43 rotates integrally with the third carrier 34.
  • the fourth planetary gears 42 revolve by the rotation of the fourth sun gear 41 and the rotation of the fourth ring gear 43.
  • each 4th planetary gear 42 does not autorotate.
  • each fourth planetary gear 42 revolves at the same rotational speed as the fourth sun gear 41 and the fourth ring gear 43.
  • the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a rotational speed that is not changed. That is, the planetary gear type transmission 100 in the sixth speed state does not change the rotational speed of the power from the engine or the like.
  • the second clutch 52 is turned on and the third braking mechanism 63 is turned on. To do. That is, in switching between the sixth speed (F6) and the seventh speed (F7), the second clutch 52 remains on.
  • the first braking mechanism 61, the second braking mechanism 62, the fourth braking mechanism 64, the first clutch 51, and the third clutch 53 are in an off state.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the input shaft 7 and the second intermediate shaft 82 rotate integrally with each other.
  • the second sun gear 21 rotates integrally with the input shaft 7.
  • the third carrier 34 rotates integrally with the second intermediate shaft 82.
  • the rotation of the second sun gear 21 causes each second planetary gear 22 to rotate and revolve. Then, the second carrier 24 rotates.
  • the third ring gear 33 rotates integrally with the second carrier 24.
  • Each third planetary gear 32 revolves by the rotation of the third carrier 34. Further, each third planetary gear 32 rotates by the rotation of the third ring gear 33 and the rotation of the third carrier 34. As a result, the third sun gear 31 rotates.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31.
  • the fourth ring gear 43 rotates integrally with the third carrier 34. Due to the rotation of the fourth sun gear 41 and the rotation of the fourth ring gear 43, each fourth planetary gear 42 revolves while rotating. As a result, the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the second clutch 52 is turned on and the second braking mechanism 62 is turned on. To do. That is, in switching between the seventh speed (F7) and the eighth speed (F8), the second clutch 52 remains on.
  • the first braking mechanism 61, the third braking mechanism 63, the fourth braking mechanism 64, the first clutch 51, and the third clutch 53 are in an off state.
  • the second clutch 52 Since the second clutch 52 is turned on, the second intermediate shaft 82 rotates integrally with the input shaft 7. Further, since the second braking mechanism 62 is turned on, the first ring gear 13 cannot be rotated. Since the second carrier 24 rotates integrally with the first ring gear 13, the second carrier 24 also cannot rotate. Furthermore, since the third ring gear 33 rotates integrally with the second carrier 24, the third ring gear 33 cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the second intermediate shaft 82 rotates integrally with the input shaft 7.
  • the third carrier 34 rotates integrally with the second intermediate shaft 82.
  • Rotation of the third carrier 34 causes each third planetary gear 32 to revolve and rotate. Then, the third sun gear 31 rotates.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31.
  • the fourth ring gear 43 rotates integrally with the third carrier 34. Due to the rotation of the fourth sun gear 41 and the rotation of the fourth ring gear 43, each fourth planetary gear 42 revolves while rotating. As a result, the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the second clutch 52 is turned on and the first braking mechanism 61 is turned on. To do. That is, in switching between the eighth speed (F8) and the ninth speed (F9), the second clutch 52 remains on.
  • the second to fourth braking mechanisms 62 to 64, the first clutch 51, and the third clutch 53 are in an off state.
  • the second clutch 52 Since the second clutch 52 is turned on, the second intermediate shaft 82 rotates integrally with the input shaft 7. In addition, since the first braking mechanism 61 is turned on, the first carrier 14 cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first sun gear 11 rotates integrally with the input shaft 7.
  • the rotation of the first sun gear 11 causes each first planetary gear 12 to rotate. Since the first carrier 14 cannot rotate as described above, each first planetary gear 12 does not revolve.
  • the first ring gear 13 is rotated by the rotation of each first planetary gear 12.
  • the second carrier 24 rotates integrally with the first ring gear 13.
  • the third ring gear 33 rotates integrally with the second carrier 24.
  • the third carrier 34 rotates integrally with the second intermediate shaft 82.
  • each third planetary gear 32 rotates and revolves.
  • the 3rd sun gear 31 rotates.
  • the fourth ring gear 43 rotates integrally with the third carrier 34.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31. Due to the rotation of the fourth ring gear 43 and the rotation of the fourth sun gear 41, each fourth planetary gear 42 revolves while rotating. As a result, the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the third braking mechanism 63 Since the third braking mechanism 63 is turned on, the second ring gear 23 cannot be rotated. Further, since the fourth braking mechanism 64 is turned on, the fourth ring gear 43 cannot be rotated. Since the third carrier 34 rotates integrally with the fourth ring gear 43, the third carrier 34 also cannot rotate.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the second sun gear 21 rotates integrally with the input shaft 7.
  • the rotation of the second sun gear 21 causes each second planetary gear 22 to rotate and revolve.
  • the second carrier 24 rotates.
  • the third ring gear 33 rotates integrally with the second carrier 24. As the third ring gear 33 rotates, each third planetary gear 32 rotates. In addition, since the 3rd carrier 34 cannot rotate, each 3rd planetary gear 32 does not revolve.
  • the third sun gear 31 is rotated by the rotation of each third planetary gear 32.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31.
  • the rotation of the fourth sun gear 41 causes each fourth planetary gear 42 to rotate and revolve.
  • the fourth carrier 44 rotates, and the fourth carrier 44 outputs power having a shifted rotation speed.
  • the third clutch 53 Since the third clutch 53 is turned on, the third carrier 34 rotates integrally with the third ring gear 33. In addition, since the first braking mechanism 61 is turned on, the first carrier 14 cannot be rotated.
  • the planetary gear type transmission 100 transmits power through a route shown by a thick line in FIG.
  • the first sun gear 11 rotates integrally with the input shaft 7.
  • each first planetary gear 12 rotates and the first ring gear 13 rotates.
  • the 1st carrier 14 cannot rotate, each 1st planetary gear 12 does not revolve.
  • the second carrier 24 rotates integrally with the first ring gear 13.
  • the third ring gear 33 rotates integrally with the second carrier 24.
  • the third carrier 34 rotates integrally with the third ring gear 33.
  • each 3rd planetary gear 32 revolves without rotating.
  • the third sun gear 31 rotates. That is, the third sun gear 31, the third ring gear 33, and the third carrier 34 rotate integrally with each other.
  • the fourth sun gear 41 rotates integrally with the third sun gear 31.
  • the fourth ring gear 43 rotates integrally with the third carrier 34. Due to the rotation of the fourth sun gear 41 and the fourth ring gear 43, each fourth planetary gear 42 revolves without rotating. Then, the fourth carrier 44 rotates. That is, the first sun gear 41, the fourth ring gear 43, and the fourth carrier 44 rotate integrally with each other. As a result, the fourth carrier 44 outputs power having a shifted rotational speed.
  • the reduction ratio at each speed stage is obtained using at least one of the following first to fourth relational expressions.
  • the first relational expression is an expression related to the first planetary gear mechanism 1 and is expressed by the following expression (1).
  • s 1 is the number of teeth of the first sun gear 11
  • r 1 is the number of teeth of the first ring gear 13
  • N s1 is the rotational speed ratio of the first sun gear 11
  • N r1 is the rotational speed ratio of the first ring gear 13.
  • N c1 is the rotation speed ratio of the first carrier 14.
  • the second relational expression is an expression relating to the second planetary gear mechanism 2, and is expressed by the following expression (2).
  • s 2 is the number of teeth of the second sun gear 21
  • r 2 is the number of teeth of the second ring gear 23
  • N s2 is the rotation speed ratio of the second sun gear 21
  • N r2 is the rotation speed ratio of the second ring gear 23
  • N c2 is the rotation speed ratio of the second carrier 24.
  • the third relational expression is an expression related to the third planetary gear mechanism 3, and is expressed by the following expression (3).
  • s 3 is the number of teeth of the third sun gear 31
  • r 3 is the number of teeth of the third ring gear 33
  • N s3 is the rotational speed ratio of the third sun gear 31
  • N r3 is the rotational speed ratio of the third ring gear 33
  • N c3 is the rotation speed ratio of the third carrier 34.
  • the fourth relational expression is an expression relating to the fourth planetary gear mechanism 4 and is expressed by the following expression (4).
  • s 4 is the number of teeth of the fourth sun gear 41
  • r 4 is the number of teeth of the fourth ring gear 43
  • N s4 is the rotational speed ratio of the fourth sun gear 41
  • N r4 is the rotational speed ratio of the fourth ring gear 43
  • N c4 is the rotation speed ratio of the fourth carrier 44.
  • the rotational speed ratio N r1 of the first ring gear 13 in the first planetary gear mechanism 1 is obtained from the first relational expression. Since the first sun gear 11 rotates integrally with the input shaft 8, the rotation speed ratio N s1 of the first sun gear 11 is 1. Further, since the first carrier 14 does not rotate, the rotation speed ratio N c1 of the first carrier 14 is zero.
  • the rotation speed ratio N s3 of the third sun gear 31 in the third planetary gear mechanism is obtained from the third relational expression.
  • the third ring gear 33 to rotate integrally with the first ring gear 13 the rotational speed ratio N r3 of the third ring gear 33 is the same as the rotational speed ratio N r1 of the first ring gear 13. Further, since the third carrier 34 does not rotate, the rotation speed ratio Nc3 of the third carrier 34 is zero.
  • the rotation speed ratio N c4 of the fourth carrier 44 in the fourth planetary gear mechanism is obtained from the fourth relational expression. Since the fourth sun gear 41 rotates integrally with the third sun gear 31, the rotation speed ratio N s4 of the fourth sun gear 41 is the same as the rotation speed ratio N s3 of the third sun gear 31. Further, since the fourth ring gear 43 does not rotate, the rotation speed ratio N r4 of the fourth ring gear 43 is zero.
  • the reciprocal number of the rotation speed ratio Nc4 of the fourth carrier 44 obtained as described above is the reduction ratio of the planetary gear type transmission 100.
  • the first sun gear 11 has 30 teeth
  • the second sun gear 21 has 57 teeth
  • the third sun gear 31 has 48 teeth
  • the fourth sun gear 41 has 30 teeth
  • the first to fourth rings When the number of teeth of each of the gears 13, 23, 33, and 43 is 90, the reduction ratio of the forward first speed is about 6.4.
  • the reduction ratios obtained at the respective speed stages are shown in FIG.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression. Thereby, the reduction ratio in the second forward speed is obtained.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is 1, and the rotation speed ratio N r4 of the fourth ring gear 43 is 0.
  • the rotation speed ratio N r1 of the first ring gear 13 is obtained by the first relational expression.
  • the rotation speed ratio N s1 of the first sun gear 11 is 1, and the rotation speed ratio N c1 of the first carrier 14 is 0.
  • the rotation speed ratio N c3 of the third carrier 34 is obtained by the third relational expression.
  • the rotation speed ratio N s3 of the third sun gear 31 is 1.
  • the rotation speed ratio N r3 of the third ring gear 33 is the same as the rotation speed ratio N r1 of the first ring gear 13.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is 1, and the rotation speed ratio N r4 of the fourth ring gear 43 is the same as the rotation speed ratio N c3 of the third carrier 34.
  • the rotation speed ratio N c3 of the third carrier 34 is obtained by the third relational expression.
  • the rotation speed ratio N s3 of the third sun gear 31 is 1, and the rotation speed ratio N r3 of the third ring gear 33 is 0.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression. As a result, the reduction ratio at the fourth forward speed is obtained.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is 1, and the rotation speed ratio N r4 of the fourth ring gear 43 is the same as the rotation speed ratio N c3 of the third carrier 34.
  • the rotation speed ratio N c2 of the second carrier 24 is obtained by the second relational expression.
  • the rotation speed ratio N s2 of the second sun gear 21 is 1, and the rotation speed ratio N r2 of the second ring gear 23 is 0.
  • the rotation speed ratio N c3 of the third carrier 34 is obtained by the third relational expression.
  • the rotation speed ratio N s3 of the third sun gear 31 is 1, and the rotation speed ratio N r3 of the third ring gear 33 is the same as the rotation speed ratio N c2 of the second carrier 24.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression. As a result, the reduction ratio at the fifth forward speed is obtained.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is 1, and the rotation speed ratio N r4 of the fourth ring gear 43 is the same as the rotation speed ratio N c3 of the third carrier 34.
  • the rotation speed ratio N c2 of the second carrier 24 is obtained by the second relational expression.
  • the rotation speed ratio N s2 of the second sun gear 21 is 1, and the rotation speed ratio N r2 of the second ring gear 23 is 0.
  • the rotation speed ratio N s3 of the third sun gear 31 is obtained by the third relational expression.
  • the rotation speed ratio N c3 of the third carrier 34 is 1, and the rotation speed ratio N r3 of the third ring gear 33 is the same as the rotation speed ratio N c2 of the second carrier 24.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression. As a result, the reduction ratio at the seventh forward speed is obtained.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is the same as the rotation speed ratio N s3 of the third sun gear 31, and the rotation speed ratio N r4 of the fourth ring gear 43 is 1.
  • the rotation speed ratio N s3 of the third sun gear 31 is obtained by the third relational expression.
  • the rotation speed ratio N c3 of the third carrier 34 is 1, and the rotation speed ratio N r3 of the third ring gear 33 is 0.
  • the rotation speed ratio N s4 of the fourth sun gear 41 is the same as the rotation speed ratio N s3 of the third sun gear 31, and the rotation speed ratio N r4 of the fourth ring gear 43 is 1.
  • the rotation speed ratio N r1 of the first ring gear 13 is obtained by the first relational expression.
  • the rotation speed ratio N s1 of the first sun gear 11 is 1, and the rotation speed ratio N c1 of the first carrier 14 is 0.
  • the rotation speed ratio N s3 of the third sun gear 31 is obtained by the third relational expression.
  • the rotation speed ratio N c3 of the third carrier 34 is 1, and the rotation speed ratio N r3 of the third ring gear 33 is the same as the rotation speed ratio N r1 of the first ring gear 13.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression.
  • the rotation speed ratio N r4 of the fourth ring gear 43 is 1, and the rotation speed ratio N s4 of the fourth sun gear 41 is the same as the rotation speed ratio N s3 of the third sun gear 31.
  • the rotation speed ratio N c2 of the second carrier 24 is obtained by the second relational expression.
  • the rotation speed ratio N s2 of the second sun gear 21 is 1, and the rotation speed ratio N r2 of the second ring gear 23 is 0.
  • the rotation speed ratio N s3 of the third sun gear 31 is obtained by the third relational expression.
  • the rotation speed ratio N c3 of the third carrier 34 is 0, and the rotation speed ratio N r3 of the third ring gear 33 is the same as the rotation speed ratio N c2 of the second carrier 24.
  • the rotation speed ratio N c4 of the fourth carrier 44 is obtained by the fourth relational expression.
  • the rotation speed ratio N r4 of the fourth ring gear 43 is 0, and the rotation speed ratio N s4 of the fourth sun gear 41 is the same as the rotation speed ratio N s3 of the third sun gear 31.
  • the rotation speed ratio N r1 of the first ring gear 13 is obtained by the first relational expression.
  • the rotation speed ratio N s1 of the first sun gear 11 is 1, and the rotation speed ratio N c1 of the first carrier 14 is 0.
  • the rotation speed ratio N c4 of the fourth carrier 44 is the same as the rotation speed ratio N r1 of the first ring gear 13. As a result, the reduction ratio in the second reverse speed is obtained.
  • the planetary gear type transmission according to each embodiment can have two speed stages in reverse.
  • the second clutch 52 is configured to connect the input shaft 7 and the third carrier 34 via the second intermediate shaft, but is not particularly limited thereto. That is, the second clutch 52 may be configured to directly connect the input shaft 7 and the third carrier 34.
  • the second braking mechanism 62 is configured to brake the rotation of the first ring gear 13, but the second braking mechanism 62 includes the first ring gear 13, the second carrier 24, And what is necessary is just to be comprised so that at least 1 rotation of the 3rd ring gear 33 may be braked.
  • the second braking mechanism 62 may be configured to brake the rotation of the third ring gear 33.
  • the 1st ring gear 13, the 2nd carrier 24, and the 3rd ring gear 33 rotate integrally. Therefore, in each embodiment, even if the second braking mechanism 62 is configured to brake the rotation of the second carrier 24 or the third ring gear 33, the operation of the planetary gear type transmission, that is, each speed stage is set.
  • the ON / OFF state of each clutch and each braking mechanism, the power transmission path, and the like are the same as those described in the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)

Abstract

第1サンギア(11)及び第2サンギア(21)は、入力軸(7)と一体的に回転する。第2キャリア(24)は、第1リングギア(13)と一体的に回転する。第3サンギア(31)は、第1中間軸(81)と一体的に回転する。第3リングギア(33)は、第2キャリア(24)と一体的に回転する。第4サンギア(41)は、第1中間軸(81)と一体的に回転する。第4リングギア(43)は、第3キャリア(34)と一体的に回転する。第4キャリア(44)は、動力を出力する。第1クラッチ(51)は、入力軸(7)と第1中間軸(81)とを連結する。第2クラッチ(52)は、入力軸(7)と第3キャリア(34)とを連結する。第3クラッチ(53)は、入力軸(7)と第1キャリア(14)とを連結する。第1制動機構(61)は、第1キャリア(14)の回転を制動する。第2制動機構(62)は、第1リングギア(13)の回転を制動する。第3制動機構(63)は、第2リングギア(23)の回転を制動する。第4制動機構(64)は、第4リングギア(43)の回転を制動する。

Description

遊星歯車式変速機
 本発明は、遊星歯車式変速機に関するものである。
 ダンプトラックなどの建設車両は、複数の遊星歯車機構を有する遊星歯車式変速機を備えている。遊星歯車式変速機は、各遊星歯車機構を適宜組み合わせて使用することによって、所望の減速比を得ることができる。例えば、特許文献1に開示された遊星歯車式変速機は、前進9段、後進1段の速度段を有している。
特公平6-78778号公報
 上述した遊星歯車式変速機は、後進の速度段が1段だけであった。しかしながら、燃費の向上、又は走行性能の向上などのために、後進の速度段の増加が要望されている。
 本発明の課題は、後進の速度段を複数有する遊星歯車式変速機を提供することにある。
 本発明の第1側面に係る遊星歯車式変速機は、入力軸、第1中間軸、第1遊星歯車機構、第2遊星歯車機構、第3遊星歯車機構、第4遊星歯車機構、第1クラッチ、第2クラッチ、第3クラッチ、第1制動機構、第2制動機構、第3制動機構、及び第4制動機構を備える。入力軸は、回転軸を中心に回転するように構成されている。第1中間軸は、回転軸を中心に回転するように構成されている。第1遊星歯車機構は、第1サンギア、第1プラネタリギア、第1リングギア、及び第1キャリア、を有する。第1サンギアは、入力軸と一体的に回転するように構成されている。第2遊星歯車機構は、第2サンギア、第2プラネタリギア、第2リングギア、及び第2キャリア、を有する。第2サンギアは、入力軸と一体的に回転するように構成されている。第2キャリアは、第1リングギアと一体的に回転するように構成されている。第3遊星歯車機構は、第3サンギア、第3プラネタリギア、第3リングギア、及び第3キャリア、を有する。第3サンギアは、第1中間軸と一体的に回転するように構成されている。第3リングギアは、第2キャリアと一体的に回転するように構成されている。第4遊星歯車機構は、第4サンギア、第4プラネタリギア、第4リングギア、及び第4キャリア、を有する。第4サンギアは、第1中間軸と一体的に回転するように構成されている。第4リングギアは、第3キャリアと一体的に回転するように構成されている。第4キャリアは、動力を出力するように構成されている。第1クラッチは、入力軸と第1中間軸とを連結するように構成されている。第2クラッチは、入力軸と第3キャリアとを連結するように構成されている。第3クラッチは、入力軸と第1キャリアとを連結するように構成されている。第1制動機構は、第1キャリアの回転を制動するように構成されている。第2制動機構は、第1リングギア、前記第2キャリア、及び前記第3リングギアの少なくとも1つの回転を制動するように構成されている。第3制動機構は、第2リングギアの回転を制動するように構成されている。第4制動機構は、第4リングギアの回転を制動するように構成されている。
 本発明の第2側面に係る遊星歯車式変速機は、入力軸、第1中間軸、第1遊星歯車機構、第2遊星歯車機構、第3遊星歯車機構、第4遊星歯車機構、第1クラッチ、第2クラッチ、第3クラッチ、第1制動機構、第2制動機構、第3制動機構、及び第4制動機構を備える。入力軸は、回転軸を中心に回転するように構成されている。第1中間軸は、回転軸を中心に回転するように構成されている。第1遊星歯車機構は、第1サンギア、第1プラネタリギア、第1リングギア、及び第1キャリア、を有する。第1サンギアは、入力軸と一体的に回転するように構成されている。第2遊星歯車機構は、第2サンギア、第2プラネタリギア、第2リングギア、及び第2キャリア、を有する。第2サンギアは、入力軸と一体的に回転するように構成されている。第2キャリアは、第1リングギアと一体的に回転するように構成されている。第3遊星歯車機構は、第3サンギア、第3プラネタリギア、第3リングギア、及び第3キャリア、を有する。第3サンギアは、第1中間軸と一体的に回転するように構成されている。第3リングギアは、第2キャリアと一体的に回転するように構成されている。第4遊星歯車機構は、第4サンギア、第4プラネタリギア、第4リングギア、及び第4キャリア、を有する。第4サンギアは、第1中間軸と一体的に回転するように構成されている。第4リングギアは、第3キャリアと一体的に回転するように構成されている。第4キャリアは、動力を出力するように構成されている。第1クラッチは、入力軸と第1中間軸とを連結するように構成されている。第2クラッチは、入力軸と第3キャリアとを連結するように構成されている。第3クラッチは、第1リングギアと第1キャリアとを連結するように構成されている。第1制動機構は、第1キャリアの回転を制動するように構成されている。第2制動機構は、第1リングギア、前記第2キャリア、及び前記第3リングギアの少なくとも1つの回転を制動するように構成されている。第3制動機構は、第2リングギアの回転を制動するように構成されている。第4制動機構は、第4リングギアの回転を制動するように構成されている。
 本発明の第3側面に係る遊星歯車式変速機は、入力軸、第1中間軸、第1遊星歯車機構、第2遊星歯車機構、第3遊星歯車機構、第4遊星歯車機構、第1クラッチ、第2クラッチ、第3クラッチ、第1制動機構、第2制動機構、第3制動機構、及び第4制動機構を備える。入力軸は、回転軸を中心に回転するように構成されている。第1中間軸は、回転軸を中心に回転するように構成されている。第1遊星歯車機構は、第1サンギア、第1プラネタリギア、第1リングギア、及び第1キャリア、を有する。第1サンギアは、入力軸と一体的に回転するように構成されている。第2遊星歯車機構は、第2サンギア、第2プラネタリギア、第2リングギア、及び第2キャリア、を有する。第2サンギアは、入力軸と一体的に回転するように構成されている。第2キャリアは、第1リングギアと一体的に回転するように構成されている。第3遊星歯車機構は、第3サンギア、第3プラネタリギア、第3リングギア、及び第3キャリア、を有する。第3サンギアは、第1中間軸と一体的に回転するように構成されている。第3リングギアは、第2キャリアと一体的に回転するように構成されている。第4遊星歯車機構は、第4サンギア、第4プラネタリギア、第4リングギア、及び第4キャリア、を有する。第4サンギアは、第1中間軸と一体的に回転するように構成されている。第4リングギアは、第3キャリアと一体的に回転するように構成されている。第4キャリアは、動力を出力するように構成されている。第1クラッチは、入力軸と第1中間軸とを連結するように構成されている。第2クラッチは、入力軸と第3キャリアとを連結するように構成されている。第3クラッチは、第3リングギアと第3キャリアとを連結するように構成されている。第1制動機構は、第1キャリアの回転を制動するように構成されている。第2制動機構は、第1リングギア、前記第2キャリア、及び前記第3リングギアの少なくとも1つの回転を制動するように構成されている。第3制動機構は、第2リングギアの回転を制動するように構成されている。第4制動機構は、第4リングギアの回転を制動するように構成されている。
 好ましくは、入力軸は中空状である。第1中間軸は、入力軸内に配置されている。
 好ましくは、遊星歯車式変速機は、第2中間軸をさらに備える。第2中間軸は、入力軸と第1中間軸との間に配置されている。第2中間軸は、第3キャリアと一体的に回転するように構成されている。
 好ましくは、遊星歯車式変速機は、第4キャリアと一体的に回転するように構成された出力軸をさらに備えている。
 好ましくは、第1遊星歯車機構、第2遊星歯車機構、第3遊星歯車機構、第4遊星歯車機構は、回転軸方向に沿って、この順に配置される。
 好ましくは、遊星歯車式変速機は、各遊星歯車機構を収容するケーシングをさらに備えている。回転軸の径方向において、第3クラッチとケーシングとの間にスペースが形成される。この構成によれば、第3クラッチが油圧式クラッチの場合に、第3クラッチへ油を送るための油圧回路を構成しやすい。
 好ましくは、第2制動機構は、第1リングギアの径方向外側に配置されている。第1制動機構は、回転軸方向において、第2制動機構よりも入力側に配置されている。第3クラッチは、回転軸方向において、第1制動機構と第2制動機構との間に配置される。
 好ましくは、第3クラッチは、回転軸方向において、第3遊星歯車機構と第4遊星歯車機構との間に配置される。
 本発明に係る遊星歯車式変速機によれば、後進の速度段を複数有することができる。
第1実施形態に係る遊星歯車式変速機の概略図。 第1実施形態に係る遊星歯車式変速機の各速度段においてオン状態となるクラッチ又は制動機構を示す表。 第1実施形態に係る遊星歯車式変速機が前進の第1速の状態のときの動力の伝達を示す図。 第1実施形態に係る遊星歯車式変速機が前進の第2速の状態のときの動力の伝達を示す図。 第1実施形態に係る遊星歯車式変速機が前進の第3速の状態のときの動力の伝達を示す図。 第1実施形態に係る遊星歯車式変速機が前進の第4速の状態のときの動力の伝達を示す図。 第1実施形態に係る遊星歯車式変速機が前進の第5速の状態のときの動力の伝達を示す図。 第1実施形態に係る遊星歯車式変速機が前進の第6速の状態のときの動力の伝達を示す図。 第1実施形態に係る遊星歯車式変速機が前進の第7速の状態のときの動力の伝達を示す図。 第1実施形態に係る遊星歯車式変速機が前進の第8速の状態のときの動力の伝達を示す図。 第1実施形態に係る遊星歯車式変速機が前進の第9速の状態のときの動力の伝達を示す図。 第1実施形態に係る遊星歯車式変速機が後進の第1速の状態のときの動力の伝達を示す図。 第1実施形態に係る遊星歯車式変速機が後進の第2速の状態のときの動力の伝達を示す図。 第2実施形態に係る遊星歯車式変速機の概略図。 第2実施形態に係る遊星歯車式変速機が前進の第1速の状態のときの動力の伝達を示す図。 第2実施形態に係る遊星歯車式変速機が前進の第2速の状態のときの動力の伝達を示す図。 第2実施形態に係る遊星歯車式変速機が前進の第3速の状態のときの動力の伝達を示す図。 第2実施形態に係る遊星歯車式変速機が前進の第4速の状態のときの動力の伝達を示す図。 第2実施形態に係る遊星歯車式変速機が前進の第5速の状態のときの動力の伝達を示す図。 第2実施形態に係る遊星歯車式変速機が前進の第6速の状態のときの動力の伝達を示す図。 第2実施形態に係る遊星歯車式変速機が前進の第7速の状態のときの動力の伝達を示す図。 第2実施形態に係る遊星歯車式変速機が前進の第8速の状態のときの動力の伝達を示す図。 第2実施形態に係る遊星歯車式変速機が前進の第9速の状態のときの動力の伝達を示す図。 第2実施形態に係る遊星歯車式変速機が後進の第1速の状態のときの動力の伝達を示す図。 第2実施形態に係る遊星歯車式変速機が後進の第2速の状態のときの動力の伝達を示す図。 第3実施形態に係る遊星歯車式変速機の概略図。 第3実施形態に係る遊星歯車式変速機の各速度段においてオン状態となるクラッチ又は制動機構を示す表。 第3実施形態に係る遊星歯車式変速機が前進の第1速の状態のときの動力の伝達を示す図。 第3実施形態に係る遊星歯車式変速機が前進の第2速の状態のときの動力の伝達を示す図。 第3実施形態に係る遊星歯車式変速機が前進の第3速の状態のときの動力の伝達を示す図。 第3実施形態に係る遊星歯車式変速機が前進の第4速の状態のときの動力の伝達を示す図。 第3実施形態に係る遊星歯車式変速機が前進の第5速の状態のときの動力の伝達を示す図。 第3実施形態に係る遊星歯車式変速機が前進の第6速の状態のときの動力の伝達を示す図。 第3実施形態に係る遊星歯車式変速機が前進の第7速の状態のときの動力の伝達を示す図。 第3実施形態に係る遊星歯車式変速機が前進の第8速の状態のときの動力の伝達を示す図。 第3実施形態に係る遊星歯車式変速機が前進の第9速の状態のときの動力の伝達を示す図。 第3実施形態に係る遊星歯車式変速機が後進の第1速の状態のときの動力の伝達を示す図。 第3実施形態に係る遊星歯車式変速機が後進の第2速の状態のときの動力の伝達を示す図。 変形例に係る遊星歯車式変速機の概略図。
 以下、本発明に係る遊星歯車式変速機の各実施形態について図面を参照しつつ説明する。なお、以下の説明において、回転軸方向とは、回転軸が延びる方向を示す。回転軸の径方向とは、回転軸を中心とした円の径方向を示す。具体的には、回転軸方向は図1、図14、及び図26の左右方向であり、径方向は図1、図14、及び図26の上下方向である。回転軸とは、入力軸の中心線を示す。また、入力側とは、遊星歯車式変速機が動力を入力する側を示し、出力側とは、遊星歯車式変速機が動力を出力する側を示す。具体的には、入力側は、図1、図14、及び図26の左側、出力側は、図1、図14、及び図26の右側である。
 [第1実施形態]
 図1は、第1実施形態に係る遊星歯車式変速機の概略図である。図1に示すように、遊星歯車式変速機100は、エンジン(図示省略)等からの動力の回転速度を変速して出力する。なお、エンジン等からの動力は、トルクコンバータを介して遊星歯車式変速機100に入力されてもよい。
 遊星歯車式変速機100は、複数の遊星歯車機構1~4、複数のクラッチ51~53、複数の制動機構61~64、入力軸7、第1中間軸81、第2中間軸82、及びケーシング9を備える。ケーシング9は、各遊星歯車機構1~4、各クラッチ51~53、各制動機構61~64、入力軸7、第1中間軸81、及び第2中間軸82を収容している。
 遊星歯車式変速機100は、複数の遊星歯車機構として、第1遊星歯車機構1、第2遊星歯車機構2、第3遊星歯車機構3、及び第4遊星歯車機構4を備える。また、遊星歯車式変速機100は、複数のクラッチとして、第1クラッチ51、第2クラッチ52、及び第3クラッチ53を備える。また、遊星歯車式変速機100は、複数の制動機構として、第1制動機構61、第2制動機構62、第3制動機構63、及び第4制動機構64を備えている。
 第1遊星歯車機構1、第2遊星歯車機構2、第3遊星歯車機構3、及び第4遊星歯車機構4は、回転軸方向に沿って、この順に配置されている。詳細には、入力側から出力側に向かって、第1遊星歯車機構1、第2遊星歯車機構2、第3遊星歯車機構、及び第4遊星歯車機構の順で配置されている。
 入力軸7は、回転軸Oを中心に回転するように構成されている。回転軸Oは、入力軸7の中心線である。入力軸7は、中空状である。詳細には、入力軸7は、筒状である。エンジンなどからの動力が入力軸7に入力される。
 第1中間軸81は、回転軸Oを中心に回転するように構成されている。すなわち、第1中間軸81は、回転軸方向に延びている。第1中間軸81は、入力軸7内に配置されている。第1中間軸81の中心軸と、入力軸7の中心軸とは、実質的に同じである。
 第2中間軸82は、回転軸Oを中心に回転するように構成されている。すなわち、第2中間軸82は、回転軸方向に延びている。第2中間軸82は、入力軸7内に配置されている。第2中間軸82は、中空状である。詳細には、第2中間軸82は筒状である。第1中間軸81は、第2中間軸82内に配置されている。すなわち、第1中間軸81は、第2中間軸82内に配置され、第2中間軸82は、入力軸7内に配置される。径方向外側に向かって、第1中間軸81、第2中間軸82、入力軸7の順で配置される。
 第1遊星歯車機構1は、第1サンギア11、複数の第1プラネタリギア12、第1リングギア13、及び第1キャリア14を有している。
 第1サンギア11は、入力軸7と一体的に回転するように構成されている。詳細には、第1サンギア11は、入力軸7に固定されている。なお、第1サンギア11と入力軸7とは、1つの部材によって形成されていてもよい。
 各第1プラネタリギア12は、第1サンギア11に噛み合うように構成されている。各第1プラネタリギア12は、第1サンギア11の径方向外側に配置されている。詳細には、各第1プラネタリギア12は、周方向に間隔をあけて配置されている。
 各第1プラネタリギア12は、第1サンギア11の周りを公転するように構成されている。すなわち、各第1プラネタリギア12は、回転軸Oを中心に回転するように構成されている。また、各第1プラネタリギア12は、自転するように構成されている。
 第1リングギア13は、各第1プラネタリギア12と噛み合っている。第1リングギア13は、回転軸Oを中心に回転するように構成されている。
 第1キャリア14は、各第1プラネタリギア12を支持している。各第1プラネタリギア12は、第1キャリア14に支持された状態で、自転可能である。第1キャリア14は、回転軸Oを中心に回転するように構成されている。
 第2遊星歯車機構2は、第2サンギア21、複数の第2プラネタリギア22、第2リングギア23、及び第2キャリア24を有している。
 第2サンギア21は、入力軸7と一体的に回転するように構成されている。詳細には、第2サンギア21は、入力軸7に固定されている。なお、第2サンギア21と入力軸7とは、1つの部材によって形成されていてもよい。
 各第2プラネタリギア22は、第2サンギア21に噛み合うように構成されている。各第2プラネタリギア22は、第2サンギア21の径方向外側に配置されている。詳細には、各第2プラネタリギア22は、周方向に間隔をあけて配置されている。
 各第2プラネタリギア22は、第2サンギア21の周りを公転するように構成されている。すなわち、各第2プラネタリギア22は、回転軸Oを中心に回転するように構成されている。また、各第2プラネタリギア22は、自転するように構成されている。
 第2リングギア23は、各第2プラネタリギア22と噛み合っている。第2リングギア23は、回転軸Oを中心に回転するように構成されている。
 第2キャリア24は、各第2プラネタリギア22を支持している。各第2プラネタリギア22は、第2キャリア24に支持された状態で、自転可能である。第2キャリア24は、回転軸Oを中心に回転するように構成されている。
 第2キャリア24は、第1リングギア13と一体的に回転するように構成されている。詳細には、第2キャリア24は、第1リングギア13に連結されている。第2キャリア24と第1リングギア13とは1つの部材によって形成されていてもよい。
 第3遊星歯車機構3は、第3サンギア31、複数の第3プラネタリギア32、第3リングギア33、及び第3キャリア34を有している。
 第3サンギア31は、第1中間軸81と一体的に回転するように構成されている。詳細には、第3サンギア31は、第1中間軸81に固定されている。なお、第3サンギア31と第1中間軸81とは、1つの部材によって形成されていてもよい。
 各第3プラネタリギア32は、第3サンギア31に噛み合うように構成されている。各第3プラネタリギア32は、第3サンギア31の径方向外側に配置されている。詳細には、各第3プラネタリギア32は、周方向に間隔をあけて配置されている。
 各第3プラネタリギア32は、第3サンギア31の周りを公転するように構成されている。すなわち、各第3プラネタリギア32は、回転軸Oを中心に回転するように構成されている。また、各第3プラネタリギア32は、自転するように構成されている。
 第3リングギア33は、各第3プラネタリギア32と噛み合っている。第3リングギア33は、回転軸Oを中心に回転するように構成されている。
 第3リングギア33は、第2キャリア24と一体的に回転するように構成されている。詳細には、第3リングギア33は、第2キャリア24と連結されている。すなわち、第1リングギア13と第2キャリア24と第3リングギア33とは、一体的に回転するように構成されている。なお、第3リングギア33と第2キャリア24とは、1つの部材によって形成されていてもよい。
 第3キャリア34は、各第3プラネタリギア32を支持している。各第3プラネタリギア32は、第3キャリア34に支持された状態で、自転可能である。第3キャリア34は、回転軸Oを中心に回転するように構成されている。
 第3キャリア34は、第2中間軸82と一体的に回転するように構成されている。詳細には、第3キャリア34は、第2中間軸82に固定されている。第3キャリア34と第2中間軸82とは、1つの部材によって形成されていてもよい。
 第4遊星歯車機構4は、第4サンギア41、複数の第4プラネタリギア42、第4リングギア43、及び第4キャリア44を有している。
 第4サンギア41は、第1中間軸81と一体的に回転するように構成されている。詳細には、第4サンギア41は、第1中間軸81に固定されている。なお、第4サンギア41と第1中間軸81とは、1つの部材によって形成されていてもよい。
 各第4プラネタリギア42は、第4サンギア41に噛み合うように構成されている。各第4プラネタリギア42は、第4サンギア41の径方向外側に配置されている。詳細には、各第4プラネタリギア42は、周方向に間隔をあけて配置されている。
 各第4プラネタリギア42は、第4サンギア41の周りを公転するように構成されている。すなわち、各第4プラネタリギア42は、回転軸Oを中心に回転するように構成されている。また、各第4プラネタリギア42は、自転するように構成されている。
 第4リングギア43は、各第4プラネタリギア42と噛み合っている。第4リングギアは、回転軸Oを中心に回転するように構成されている。
 第4リングギア43は、第3キャリア34と一体的に回転するように構成されている。詳細には、第4リングギア43は、第3キャリア34と連結されている。すなわち、第2中間軸82と第3キャリア34と第4リングギア43とは、互いに一体的に回転するように構成されている。なお、第4リングギア43と第3キャリア34とは、1つの部材によって形成されていてもよい。
 第4キャリア44は、各第4プラネタリギア42を支持している。各第4プラネタリギア42は、第4キャリア44に支持された状態で、自転可能である。第4キャリア44は、回転軸Oを中心に回転するように構成されている。
 第4キャリア44は、動力を出力する。詳細には、第4キャリア44は、遊星歯車式変速機100によって変速された回転速度を有する動力を出力する。この第4キャリア44は、出力軸10と一体的に回転する。このため、出力軸10は、変速された動力を出力する。なお、第4キャリア44と出力軸10とは、1つの部材によって形成されていてもよい。
 第1クラッチ51は、入力軸7と第1中間軸81とを連結するように構成されている。詳細には、第1クラッチ51は、入力軸7と第1中間軸81とを遮断可能に連結している。第1クラッチ51がオン状態のとき、第1クラッチ51は入力軸7と第1中間軸81とを連結する。したがって、入力軸7と第1中間軸81とが一体的に回転する。
 第1クラッチ51がオフ状態のとき、第1クラッチ51は入力軸7と第1中間軸81との連結を遮断する。したがって、第1中間軸81は、入力軸7に対して相対的に回転可能である。第1クラッチ51は、例えば、油圧式のクラッチ機構であって、複数のディスクから構成することができる。
 第2クラッチ52は、入力軸7と第3キャリア34とを連結するように構成されている。すなわち、第2クラッチ52は、入力軸7と第3キャリア34とを遮断可能に連結している。具体的には、第2クラッチ52は、入力軸7と第2中間軸82とを連結することによって、入力軸7と第3キャリア34とを連結する。第2クラッチ52は、例えば、油圧式のクラッチ機構であって、複数のディスクから構成することができる。
 第2クラッチ52がオン状態のとき、第2クラッチ52は入力軸7と第2中間軸82とを連結する。すなわち、第2クラッチ52は、第2中間軸82を介して、入力軸7と第3キャリア34とを連結する。したがって、入力軸7と第3キャリア34とが一体的に回転する。
 第2クラッチ52がオフ状態のとき、第2クラッチ52は、入力軸7と第3キャリア34との連結を遮断する。すなわち、第2クラッチ52は、入力軸7と第2中間軸82との連結を遮断することによって、入力軸7と第3キャリア34との連結を遮断する。したがって、第2中間軸82及び第3キャリア34は、入力軸7に対して相対回転可能である。
 第3クラッチ53は、入力軸7と第1キャリア14とを連結するように構成されている。詳細には、第3クラッチ53は、入力軸7と第1キャリア14とを遮断可能に連結している。第3クラッチ53は、例えば、油圧式のクラッチ機構であって、複数のディスクから構成することができる。
 第3クラッチ53がオン状態のとき、第3クラッチ53は、入力軸7と第1キャリア14とを連結する。したがって、入力軸7と第1キャリア14とが一体的に回転する。
 第3クラッチ53がオフ状態のとき、第3クラッチ53は、入力軸7と第1キャリア14との連結を遮断する。したがって、第1キャリア14は、入力軸7に対して、相対回転可能である。
 第1制動機構61は、第1キャリア14の回転を制動するように構成されている。詳細には、第1制動機構61は、第1キャリア14とケーシング9とを連結するように構成されている。
 第1制動機構61がオン状態のとき、第1制動機構61は第1キャリア14の回転を制動する。すなわち、第1制動機構61がオン状態のとき、第1制動機構61は、第1キャリア14とケーシング9とを連結する。したがって、第1キャリア14は、回転不能である。
 一方、第1制動機構61がオフ状態のとき、第1制動機構61は第1キャリア14の回転を制動しない。すなわち、第1制動機構61がオフ状態のとき、第1制動機構61は、第1キャリア14とケーシング9とを連結しない。したがって、第1キャリア14は回転可能である。
 第1制動機構61は、回転軸方向において、第2制動機構62よりも入力側に配置されている。
 第2制動機構62は、第1リングギア13の回転を制動するように構成されている。詳細には、第2制動機構62は、第1リングギア13とケーシング9とを連結するように構成されている。
 第2制動機構62がオン状態のとき、第2制動機構62は第1リングギア13の回転を制動する。すなわち、第2制動機構62がオン状態のとき、第2制動機構62は、第1リングギア13とケーシング9とを連結する。したがって、第1リングギア13は、回転不能である。
 一方、第2制動機構62がオフ状態のとき、第2制動機構62は第1リングギア13の回転を制動しない。すなわち、第2制動機構62がオフ状態のとき、第2制動機構62は、第1リングギア13とケーシング9とを連結しない。したがって、第1リングギア13は回転可能である。なお、第2制動機構62は、第1リングギア13の径方向外側に配置されている。
 第3制動機構63は、第2リングギア23の回転を制動するように構成されている。詳細には、第3制動機構63は、第2リングギア23とケーシング9とを連結するように構成されている。
 第3制動機構63がオン状態のとき、第3制動機構63は第2リングギア23の回転を制動する。すなわち、第3制動機構63がオン状態のとき、第3制動機構63は、第2リングギア23とケーシング9とを連結する。したがって、第2リングギア23は、回転不能である。
 一方、第3制動機構63がオフ状態のとき、第3制動機構63は第2リングギア23の回転を制動しない。すなわち、第3制動機構63がオフ状態のとき、第3制動機構63は、第2リングギア23とケーシング9とを連結しない。したがって、第2リングギア23は回転可能である。なお、第3制動機構63は、第2リングギア23の径方向外側に配置されている。
 第4制動機構64は、第4リングギア43の回転を制動するように構成されている。詳細には、第4制動機構64は、第4リングギア43とケーシング9とを連結するように構成されている。
 第4制動機構64がオン状態のとき、第4制動機構64は第4リングギア43の回転を制動する。すなわち、第4制動機構64がオン状態のとき、第4制動機構64は、第4リングギア43とケーシング9とを連結する。したがって、第4リングギア43は、回転不能である。
 一方、第4制動機構64がオフ状態のとき、第4制動機構64は第4リングギア43の回転を制動しない。すなわち、第4制動機構64がオフ状態のとき、第4制動機構64は、第4リングギア43とケーシング9とを連結しない。したがって、第4リングギア43は回転可能である。なお、第4制動機構64は、第4リングギア43の径方向外側に配置されている。
 以上のように構成された遊星歯車式変速機100の動作について説明する。遊星歯車式変速機100は、前進において9つの速度段、後進において2つの速度段を有している。図2は、各速度段においてオン状態となる各クラッチ又は各制動機構を示す表である。なお、図2の○印は、オン状態となる各クラッチ又は各制動機構を示している。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第1速(F1)とする際は、第1制動機構61をオン状態にするとともに、第4制動機構64をオン状態にする。なお、第2制動機構62、第3制動機構63、及び第1~第3クラッチ51~53は、オフ状態である。
 第1制動機構61がオン状態になるため、第1キャリア14が回転不能となる。また、第4制動機構64がオン状態になるため、第4リングギア43が回転不能となる。第3キャリア34は第4リングギア43と一体的に回転するため、第3キャリア34も回転不能となる。
 この状態において、遊星歯車式変速機100は、図3において太線で示すような経路で、動力を伝達する。まず、第1サンギア11が、入力軸7と一体的に回転する。第1サンギア11の回転によって、各第1プラネタリギア12が自転する。なお、第1キャリア14が回転不能なため、各第1プラネタリギア12は公転しない。
 各第1プラネタリギア12の自転によって、第1リングギア13が回転する。そして、第2キャリア24は第1リングギア13と一体的に回転する。
 第3リングギア33は、第2キャリア24と一体的に回転する。この第3リングギア33の回転によって、各第3プラネタリギア32が自転する。なお、第3キャリア34は回転不能であるため、各第3プラネタリギア32は公転しない。
 各第3プラネタリギア32の自転によって、第3サンギア31が回転する。第4サンギア41は、第3サンギア31と一体的に回転する。第4サンギア41の回転によって、各第4プラネタリギア42は自転するとともに公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第2速(F2)とする際は、第1クラッチ51をオン状態にするとともに、第4制動機構64をオン状態にする。すなわち、第1速(F1)と第2速(F2)との間の切り換えにおいて、第4制動機構64はオン状態を維持している。なお、第2クラッチ52、第3クラッチ53、及び第1~第3制動機構61~63は、オフ状態である。
 第1クラッチ51がオン状態になるため、第1中間軸81は入力軸7と一体的に回転する。また、第4制動機構64がオン状態になるため、第4リングギア43は回転不能となる。第3キャリア34は第4リングギア43と一体的に回転するため、第3キャリア34も回転不能となる。
 この状態において、遊星歯車式変速機100は、図4において太線で示すような経路で、動力を伝達する。まず、第1中間軸81が入力軸7と一体的に回転する。
 第4サンギア41が第1中間軸81と一体的に回転する。この第4サンギア41の回転によって、各第4プラネタリギア42は自転するとともに公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第3速(F3)とする際は、第1クラッチ51をオン状態にするとともに、第1制動機構61をオン状態にする。すなわち、第2速(F2)と第3速(F3)との間の切り換えにおいて、第1クラッチ51はオン状態を維持している。なお、第2~第4制動機構62~64、第2クラッチ52、及び第3クラッチ53は、オフ状態である。
 第1クラッチ51がオン状態になるため、第1中間軸81は入力軸7と一体的に回転する。また、第1制動機構61がオン状態になるため、第1キャリア14が回転不能となる。
 この状態において、遊星歯車式変速機100は、図5において太線で示すような経路で、動力を伝達する。まず、第1サンギア11が入力軸7と一体的に回転する。第1サンギア11の回転によって、各第1プラネタリギア12が自転する。なお、第1キャリア14が回転不能であるため、各第1プラネタリギア12は公転しない。
 各第1プラネタリギア12の自転によって、第1リングギア13が回転する。第2キャリア24は第1リングギア13と一体的に回転する。
 第3リングギア33は、第2キャリア24と一体的に回転する。第3サンギア31は第1中間軸81と一体的に回転する。第3サンギア31の回転、及び第3リングギア33の回転によって、各第3プラネタリギア32は、自転しながら公転する。そして、第3キャリア34が回転する。
 第4リングギア43は、第3キャリア34と一体的に回転する。第4サンギア41は第1中間軸81と一体的に回転する。この第4リングギア43の回転、及び第4サンギア41の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第4速(F4)とする際は、第1クラッチ51をオン状態にするとともに、第2制動機構62をオン状態にする。すなわち、第3速(F3)と第4速(F4)との間の切り換えにおいて、第1クラッチ51はオン状態を維持している。なお、第1制動機構61、第3制動機構63、第4制動機構64、第2クラッチ52、及び第3クラッチ53は、オフ状態である。
 第1クラッチ51がオン状態になるため、第1中間軸81は入力軸7と一体的に回転する。また、第2制動機構62がオン状態になるため、第1リングギア13が回転不能となる。第2キャリア24は第1リングギア13と一体的に回転するため、第2キャリア24も回転不能である。さらには、第3リングギア33は第2キャリア24と一体的に回転するため、第3リングギア33も回転不能である。
 この状態において、遊星歯車式変速機100は、図6において太線で示すような経路で、動力を伝達する。まず、第1中間軸81が入力軸7と一体的に回転する。そして、第3サンギア31及び第4サンギア41が第1中間軸81と一体的に回転する。
 第3サンギア31の回転によって、各第3プラネタリギア32が自転するとともに公転する。そして、第3キャリア34が回転する。第4リングギア43は、第3キャリア34と一体的に回転する。
 第4リングギア43の回転、及び第4サンギア41の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第5速(F5)とする際は、第1クラッチ51をオン状態にするとともに、第3制動機構63をオン状態にする。すなわち、第4速(F4)と第5速(F5)との間の切り換えにおいて、第1クラッチ51はオン状態を維持している。なお、第1制動機構61、第2制動機構62、第4制動機構64、第2クラッチ52、及び第3クラッチ53は、オフ状態である。
 第1クラッチ51がオン状態になるため、第1中間軸81は入力軸7と一体的に回転する。また、第3制動機構63がオン状態になるため、第2リングギア23が回転不能となる。
 この状態において、遊星歯車式変速機100は、図7において太線で示すような経路で、動力を伝達する。まず、入力軸7と第1中間軸81とが互いに一体的に回転する。第2サンギア21が入力軸7と一体的に回転し、第3サンギア31及び第4サンギア41が第1中間軸81と一体的に回転する。
 第2サンギア21の回転によって、各第2プラネタリギア22は自転するとともに公転する。そして、第2キャリア24が回転する。第3リングギア33は、第2キャリア24と一体的に回転する。
 第3サンギア31の回転及び第3リングギア33の回転によって、各第3プラネタリギア32が自転するとともに公転する。そして、第3キャリア34が回転する。第4リングギア43は、第3キャリア34と一体的に回転する。
 第4リングギア43の回転、及び第4サンギア41の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第6速(F6)とする際は、第1クラッチ51をオン状態にするとともに、第2クラッチ52をオン状態にする。すなわち、第5速(F5)と第6速(F6)との間の切り換えにおいて、第1クラッチ51はオン状態を維持している。なお、第1~第4制動機構61~64、及び第3クラッチ53は、オフ状態である。
 第1クラッチ51がオン状態になるため、第1中間軸81は入力軸7と一体的に回転する。また、第2クラッチ52がオン状態になるため、第2中間軸82は入力軸7と一体的に回転する。
 この状態において、遊星歯車式変速機100は、図8において太線で示すような経路で、動力を伝達する。まず、入力軸7と第1中間軸81と第2中間軸82とが、互いに一体的に回転する。第3サンギア31及び第4サンギア41が第1中間軸81と一体的に回転する。第3キャリア34が第2中間軸82と一体的に回転する。第4リングギア43は第3キャリア34と一体的に回転する。
 第4サンギア41の回転、及び第4リングギア43の回転によって、各第4プラネタリギア42が公転する。なお、第4サンギア41と第4リングギア43とは、互いに同じ回転速度で回転するため、各第4プラネタリギア42は自転しない。このため、各第4プラネタリギア42は、第4サンギア41及び第4リングギア43と同じ回転速度で公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速されない回転速度を有する動力を出力する。すなわち、第6速の状態の遊星歯車式変速機100は、エンジン等からの動力の回転速度を変速しない。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第7速(F7)とする際は、第2クラッチ52をオン状態にするとともに、第3制動機構63をオン状態にする。すなわち、第6速(F6)と第7速(F7)との間の切り換えにおいて、第2クラッチ52はオン状態を維持している。なお、第1制動機構61、第2制動機構62、第4制動機構64、第1クラッチ51、及び第3クラッチ53は、オフ状態である。
 第2クラッチ52がオン状態になるため、第2中間軸82は入力軸7と一体的に回転する。また、第3制動機構63がオン状態になるため、第2リングギア23は回転不能となる。
 この状態において、遊星歯車式変速機100は、図9において太線で示すような経路で、動力を伝達する。まず、入力軸7と第2中間軸82とが互いに一体的に回転する。第2サンギア21が、入力軸7と一体的に回転する。第3キャリア34が、第2中間軸82と一体的に回転する。
 第2サンギア21の回転によって、各第2プラネタリギア22は自転するとともに公転する。そして、第2キャリア24が回転する。第3リングギア33は、第2キャリア24と一体的に回転する。
 第3キャリア34の回転によって、各第3プラネタリギア32が公転する。また、第3リングギア33の回転、及び第3キャリア34の回転によって、各第3プラネタリギア32が自転する。この結果、第3サンギア31が回転する。
 第4サンギア41は、第3サンギア31と一体的に回転する。第4リングギア43は、第3キャリア34と一体的に回転する。この第4サンギア41の回転と第4リングギア43の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第8速(F8)とする際は、第2クラッチ52をオン状態にするとともに、第2制動機構62をオン状態にする。すなわち、第7速(F7)と第8速(F8)との間の切り換えにおいて、第2クラッチ52はオン状態を維持している。なお、第1制動機構61、第3制動機構63、第4制動機構64、第1クラッチ51、及び第3クラッチ53は、オフ状態である。
 第2クラッチ52がオン状態になるため、第2中間軸82は入力軸7と一体的に回転する。また、第2制動機構62がオン状態になるため、第1リングギア13は回転不能となる。第2キャリア24は第1リングギア13と一体的に回転するため、第2キャリア24も回転不能である。さらには、第3リングギア33は第2キャリア24と一体的に回転するため、第3リングギア33も回転不能である。
 この状態において、遊星歯車式変速機100は、図10において太線で示すような経路で、動力を伝達する。まず、第2中間軸82が入力軸7と一体的に回転する。そして、第3キャリア34が第2中間軸82と一体的に回転する。
 第3キャリア34の回転によって、各第3プラネタリギア32が公転するとともに自転する。そして、第3サンギア31が回転する。
 第4サンギア41は、第3サンギア31と一体的に回転する。第4リングギア43は、第3キャリア34と一体的に回転する。この第4サンギア41の回転と第4リングギア43の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第9速(F9)とする際は、第2クラッチ52をオン状態にするとともに、第1制動機構61をオン状態にする。すなわち、第8速(F8)と第9速(F9)との間の切り換えにおいて、第2クラッチ52はオン状態を維持している。なお、第2~第4制動機構62~64、第1クラッチ51、及び第3クラッチ53は、オフ状態である。
 第2クラッチ52がオン状態になるため、第2中間軸82は入力軸7と一体的に回転する。また、第1制動機構61がオン状態になるため、第1キャリア14は回転不能となる。
 この状態において、遊星歯車式変速機100は、図11において太線で示すような経路で、動力を伝達する。まず、第1サンギア11が入力軸7と一体的に回転する。第1サンギア11の回転によって、各第1プラネタリギア12が自転する。なお、上述したように第1キャリア14は回転できないため、各第1プラネタリギア12は公転しない。
 各第1プラネタリギア12の自転によって、第1リングギア13が回転する。第2キャリア24は第1リングギア13と一体的に回転する。
 第3リングギア33は、第2キャリア24と一体的に回転する。第3キャリア34が第2中間軸82と一体的に回転する。この結果、各第3プラネタリギア32は自転するとともに公転する。そして、第3サンギア31は回転する。
 第4リングギア43は、第3キャリア34と一体的に回転する。第4サンギア41は、第3サンギア31と一体的に回転する。第4リングギア43の回転、及び第4サンギア41の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を後進の第1速(R1)とする際は、第3制動機構63をオン状態にするとともに、第4制動機構64をオン状態にする。なお、第1制動機構61、第2制動機構62、及び第1~第3クラッチ51~53は、オフ状態である。
 第3制動機構63がオン状態になるため、第2リングギア23が回転不能となる。また、第4制動機構64がオン状態になるため、第4リングギア43が回転不能となる。第3キャリア34は第4リングギア43と一体的に回転するため、第3キャリア34も回転不能となる。
 この状態において、遊星歯車式変速機100は、図12において太線で示すような経路で、動力を伝達する。まず、第2サンギア21が入力軸7と一体的に回転する。第2サンギア21の回転によって、各第2プラネタリギア22が自転するとともに公転する。そして第2キャリア24が回転する。
 第3リングギア33は、第2キャリア24と一体的に回転する。この第3リングギア33の回転によって、各第3プラネタリギア32が自転する。なお、第3キャリア34は回転不能であるため、各第3プラネタリギア32は公転しない。
 各第3プラネタリギア32の自転によって、第3サンギア31が回転する。第4サンギア41は、第3サンギア31と一体的に回転する。第4サンギア41の回転によって、各第4プラネタリギア42は自転するとともに公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を後進の第2速(R2)とする際は、第3クラッチ53をオン状態にするとともに、第4制動機構64をオン状態にする。すなわち、第1速(R1)と第2速(R2)との間の切り換えにおいて、第4制動機構64はオン状態を維持している。なお、第1~第3制動機構61~63、第1クラッチ51、及び第2クラッチ52は、オフ状態である。
 第3クラッチ53がオン状態になるため、第1キャリア14は入力軸7と一体的に回転する。また、第4制動機構64がオン状態になるため、第4リングギア43が回転不能となる。第3キャリア34は第4リングギア43と一体的に回転するため、第3キャリア34も回転不能となる。
 この状態において、遊星歯車式変速機100は、図13において太線で示すような経路で、動力を伝達する。まず、第1サンギア11及び第1キャリア14が、入力軸7と一体的に回転する。第1サンギア11と第1キャリア14とは、互いに同じ回転速度で回転する。このため、各第1プラネタリギア12は自転せずに公転する。各第1プラネタリギア12の公転によって、第1リングギア13が回転する。なお、第1リングギア13は、各第1プラネタリギア12の公転と同じ回転速度で回転する。すなわち、第1サンギア11と第1リングギア13と第1キャリア14とは、互いに一体的に回転する。
 第2キャリア24は、第1リングギア13と一体的に回転する。そして、第3リングギア33は、第2キャリア24と一体的に回転する。この第3リングギア33の回転によって、各第3プラネタリギア32が自転する。なお、第3キャリア34は回転不能であるため、各第3プラネタリギア32は公転しない。各第3プラネタリギア32の自転によって、第3サンギア31が回転する。
 第4サンギア41は、第3サンギア31と一体的に回転する。第4サンギア41の回転によって、各第4プラネタリギア42は自転するとともに公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 次に、上述した各速度段における減速比の求め方について説明する。各速度段における減速比は、以下の第1~第4関係式の少なくとも1つを用いて求める。
 第1関係式は、第1遊星歯車機構1に関する式であり、以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、sは第1サンギア11の歯数、rは第1リングギア13の歯数、Ns1は第1サンギア11の回転数比、Nr1は第1リングギア13の回転数比、Nc1は第1キャリア14の回転数比である。
 第2関係式は、第2遊星歯車機構2に関する式であり、以下の式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、sは第2サンギア21の歯数、rは第2リングギア23の歯数、Ns2は第2サンギア21の回転数比、Nr2は第2リングギア23の回転数比、Nc2は第2キャリア24の回転数比である。
 第3関係式は、第3遊星歯車機構3に関する式であり、以下の式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 ここで、sは第3サンギア31の歯数、rは第3リングギア33の歯数、Ns3は第3サンギア31の回転数比、Nr3は第3リングギア33の回転数比、Nc3は第3キャリア34の回転数比である。
 第4関係式は、第4遊星歯車機構4に関する式であり、以下の式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 ここで、sは第4サンギア41の歯数、rは第4リングギア43の歯数、Ns4は第4サンギア41の回転数比、Nr4は第4リングギア43の回転数比、Nc4は第4キャリア44の回転数比である。
 まず、前進の第1速における減速比の求め方を説明する。第1遊星歯車機構1における第1リングギア13の回転数比Nr1を、第1関係式から求める。なお、第1サンギア11は入力軸8と一体的に回転するため、第1サンギア11の回転数比Ns1は1である。また、第1キャリア14は回転しないため、第1キャリア14の回転数比Nc1は0である。
 次に、第3遊星歯車機構における第3サンギア31の回転数比Ns3を、第3関係式から求める。なお、第3リングギア33は第1リングギア13と一体的に回転するため、第3リングギア33の回転数比Nr3は、第1リングギア13の回転数比Nr1と同じである。また、第3キャリア34は回転しないため、第3キャリア34の回転数比Nc3は0である。
 次に、第4遊星歯車機構における第4キャリア44の回転数比Nc4を、第4関係式から求める。なお、第4サンギア41は第3サンギア31と一体的に回転するため、第4サンギア41の回転数比Ns4は、第3サンギア31の回転数比Ns3と同じである。また、第4リングギア43は回転しないため、第4リングギア43の回転数比Nr4は0である。
 以上のようにして求めた、第4キャリア44の回転数比Nc4の逆数が遊星歯車式変速機100の減速比となる。例えば、第1サンギア11の歯数が30、第2サンギア21の歯数が57、第3サンギア31の歯数が48、第4サンギア41の歯数が30であり、第1~第4リングギア13、23、33、43の歯数がそれぞれ90であるとき、前進の第1速の減速比は約6.4である。なお、同様に、各速度段において求められた減速比を図2に示す。
 前進の第2速では、第4関係式によって、第4キャリア44の回転数比Nc4を求める。これによって、前進の第2速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は1であり、第4リングギア43の回転数比Nr4は0である。
 前進の第3速では、第1関係式によって、第1リングギア13の回転数比Nr1を求める。なお、第1サンギア11の回転数比Ns1は1であり、第1キャリア14の回転数比Nc1は0である。
 次に、第3関係式によって、第3キャリア34の回転数比Nc3を求める。なお、第3サンギア31の回転数比Ns3は1であり。第3リングギア33の回転数比Nr3は第1リングギア13の回転数比Nr1と同じである。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第3速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は1であり、第4リングギア43の回転数比Nr4は、第3キャリア34の回転数比Nc3と同じである。
 前進の第4速では、第3関係式によって、第3キャリア34の回転数比Nc3を求める。なお、第3サンギア31の回転数比Ns3は1であり、第3リングギア33の回転数比Nr3は0である。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第4速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は1であり、第4リングギア43の回転数比Nr4は第3キャリア34の回転数比Nc3と同じである。
 前進の第5速では、第2関係式によって、第2キャリア24の回転数比Nc2を求める。なお、第2サンギア21の回転数比Ns2は1であり、第2リングギア23の回転数比Nr2は0である。
 次に、第3関係式によって、第3キャリア34の回転数比Nc3を求める。なお、第3サンギア31の回転数比Ns3は1であり、第3リングギア33の回転数比Nr3は第2キャリア24の回転数比Nc2と同じである。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第5速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は1であり、第4リングギア43の回転数比Nr4は第3キャリア34の回転数比Nc3と同じである。
 前進の第6速では、上述したように変速は行われない。
 前進の第7速では、第2関係式によって、第2キャリア24の回転数比Nc2を求める。なお、第2サンギア21の回転数比Ns2は1であり、第2リングギア23の回転数比Nr2は0である。
 次に、第3関係式によって、第3サンギア31の回転数比Ns3を求める。なお、第3キャリア34の回転数比Nc3は1であり、第3リングギア33の回転数比Nr3は第2キャリア24の回転数比Nc2と同じである。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第7速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は第3サンギア31の回転数比Ns3と同じであり、第4リングギア43の回転数比Nr4は1である。
 前進の第8速では、第3関係式によって、第3サンギア31の回転数比Ns3を求める。なお、第3キャリア34の回転数比Nc3は1であり、第3リングギア33の回転数比Nr3は0である。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第8速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は第3サンギア31の回転数比Ns3と同じであり、第4リングギア43の回転数比Nr4は1である。
 前進の第9速では、第1関係式によって、第1リングギア13の回転数比Nr1を求める。なお、第1サンギア11の回転数比Ns1は1であり、第1キャリア14の回転数比Nc1は0である。
 次に、第3関係式によって、第3サンギア31の回転数比Ns3を求める。なお、第3キャリア34の回転数比Nc3は1であり、第3リングギア33の回転数比Nr3は第1リングギア13の回転数比Nr1と同じである。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第9速における減速比が求められる。なお、第4リングギア43の回転数比Nr4は1であり、第4サンギア41の回転数比Ns4は第3サンギア31の回転数比Ns3と同じである。
 後進の第1速では、第2関係式によって、第2キャリア24の回転数比Nc2を求める。なお、第2サンギア21の回転数比Ns2は1であり、第2リングギア23の回転数比Nr2は0である。
 次に、第3関係式によって、第3サンギア31の回転数比Ns3を求める。なお、第3キャリア34の回転数比Nc3は0であり、第3リングギア33の回転数比Nr3は第2キャリア24の回転数比Nc2と同じである。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、後進の第1速における減速比が求められる。なお、第4リングギア43の回転数比Nr4は0であり、第4サンギア41の回転数比Ns4は第3サンギア31の回転数比Ns3と同じである。
 後進の第2速では、第3関係式によって、第3サンギア31の回転数比Ns3を求める。なお、第3リングギア33の回転数比Nr3は1であり、第3キャリア34の回転数比Nc3は0である。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、後進の第2速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は第3サンギア31の回転数比Ns3と同じであり、第4リングギア43の回転数比Nr4は0である。
 [第2実施形態]
 図14は、第2実施形態に係る遊星歯車式変速機の概略図である。図14に示すように、遊星歯車式変速機100は、エンジン(図示省略)等からの動力の回転速度を変速して出力する。なお、エンジン等からの動力は、トルクコンバータを介して遊星歯車式変速機100に入力されてもよい。
 遊星歯車式変速機100は、複数の遊星歯車機構1~4、複数のクラッチ51~53、複数の制動機構61~64、入力軸7、第1中間軸81、第2中間軸82、及びケーシング9を備える。ケーシング9は、各遊星歯車機構1~4、各クラッチ51~53、各制動機構61~64、入力軸7、第1中間軸81、及び第2中間軸82を収容している。
 遊星歯車式変速機100は、複数の遊星歯車機構として、第1遊星歯車機構1、第2遊星歯車機構2、第3遊星歯車機構3、及び第4遊星歯車機構4を備える。また、遊星歯車式変速機100は、複数のクラッチとして、第1クラッチ51、第2クラッチ52、及び第3クラッチ53を備える。また、遊星歯車式変速機100は、複数の制動機構として、第1制動機構61、第2制動機構62、第3制動機構63、及び第4制動機構64を備えている。
 第1遊星歯車機構1、第2遊星歯車機構2、第3遊星歯車機構3、及び第4遊星歯車機構4は、回転軸方向に沿って、この順に配置されている。詳細には、入力側から出力側に向かって、第1遊星歯車機構1、第2遊星歯車機構2、第3遊星歯車機構、及び第4遊星歯車機構の順で配置されている。
 入力軸7は、回転軸Oを中心に回転するように構成されている。回転軸Oは、入力軸7の中心線である。入力軸7は、中空状である。詳細には、入力軸7は、筒状である。エンジンなどからの動力が入力軸7に入力される。
 第1中間軸81は、回転軸Oを中心に回転するように構成されている。すなわち、第1中間軸81は、回転軸方向に延びている。第1中間軸81は、入力軸7内に配置されている。第1中間軸81の中心軸と、入力軸7の中心軸とは、実質的に同じである。
 第2中間軸82は、回転軸Oを中心に回転するように構成されている。すなわち、第2中間軸82は、回転軸方向に延びている。第2中間軸82は、入力軸7内に配置されている。第2中間軸82は、中空状である。詳細には、第2中間軸82は筒状である。第1中間軸81は、第2中間軸82内に配置されている。すなわち、第1中間軸81は、第2中間軸82内に配置され、第2中間軸82は、入力軸7内に配置される。径方向外側に向かって、第1中間軸81、第2中間軸82、入力軸7の順で配置される。
 第1遊星歯車機構1は、第1サンギア11、複数の第1プラネタリギア12、第1リングギア13、及び第1キャリア14を有している。
 第1サンギア11は、入力軸7と一体的に回転するように構成されている。詳細には、第1サンギア11は、入力軸7に固定されている。なお、第1サンギア11と入力軸7とは、1つの部材によって形成されていてもよい。
 各第1プラネタリギア12は、第1サンギア11に噛み合うように構成されている。各第1プラネタリギア12は、第1サンギア11の径方向外側に配置されている。詳細には、各第1プラネタリギア12は、周方向に間隔をあけて配置されている。
 各第1プラネタリギア12は、第1サンギア11の周りを公転するように構成されている。すなわち、各第1プラネタリギア12は、回転軸Oを中心に回転するように構成されている。また、各第1プラネタリギア12は、自転するように構成されている。
 第1リングギア13は、各第1プラネタリギア12と噛み合っている。第1リングギア13は、回転軸Oを中心に回転するように構成されている。
 第1キャリア14は、各第1プラネタリギア12を支持している。各第1プラネタリギア12は、第1キャリア14に支持された状態で、自転可能である。第1キャリア14は、回転軸Oを中心に回転するように構成されている。
 第2遊星歯車機構2は、第2サンギア21、複数の第2プラネタリギア22、第2リングギア23、及び第2キャリア24を有している。
 第2サンギア21は、入力軸7と一体的に回転するように構成されている。詳細には、第2サンギア21は、入力軸7に固定されている。なお、第2サンギア21と入力軸7とは、1つの部材によって形成されていてもよい。
 各第2プラネタリギア22は、第2サンギア21に噛み合うように構成されている。各第2プラネタリギア22は、第2サンギア21の径方向外側に配置されている。詳細には、各第2プラネタリギア22は、周方向に間隔をあけて配置されている。
 各第2プラネタリギア22は、第2サンギア21の周りを公転するように構成されている。すなわち、各第2プラネタリギア22は、回転軸Oを中心に回転するように構成されている。また、各第2プラネタリギア22は、自転するように構成されている。
 第2リングギア23は、各第2プラネタリギア22と噛み合っている。第2リングギア23は、回転軸Oを中心に回転するように構成されている。
 第2キャリア24は、各第2プラネタリギア22を支持している。各第2プラネタリギア22は、第2キャリア24に支持された状態で、自転可能である。第2キャリア24は、回転軸Oを中心に回転するように構成されている。
 第2キャリア24は、第1リングギア13と一体的に回転するように構成されている。詳細には、第2キャリア24は、第1リングギア13に連結されている。第2キャリア24と第1リングギア13とは1つの部材によって形成されていてもよい。
 第3遊星歯車機構3は、第3サンギア31、複数の第3プラネタリギア32、第3リングギア33、及び第3キャリア34を有している。
 第3サンギア31は、第1中間軸81と一体的に回転するように構成されている。詳細には、第3サンギア31は、第1中間軸81に固定されている。なお、第3サンギア31と第1中間軸81とは、1つの部材によって形成されていてもよい。
 各第3プラネタリギア32は、第3サンギア31に噛み合うように構成されている。各第3プラネタリギア32は、第3サンギア31の径方向外側に配置されている。詳細には、各第3プラネタリギア32は、周方向に間隔をあけて配置されている。
 各第3プラネタリギア32は、第3サンギア31の周りを公転するように構成されている。すなわち、各第3プラネタリギア32は、回転軸Oを中心に回転するように構成されている。また、各第3プラネタリギア32は、自転するように構成されている。
 第3リングギア33は、各第3プラネタリギア32と噛み合っている。第3リングギア33は、回転軸Oを中心に回転するように構成されている。
 第3リングギア33は、第2キャリア24と一体的に回転するように構成されている。詳細には、第3リングギア33は、第2キャリア24と連結されている。すなわち、第1リングギア13と第2キャリア24と第3リングギア33とは、一体的に回転するように構成されている。なお、第3リングギア33と第2キャリア24とは、1つの部材によって形成されていてもよい。
 第3キャリア34は、各第3プラネタリギア32を支持している。各第3プラネタリギア32は、第3キャリア34に支持された状態で、自転可能である。第3キャリア34は、回転軸Oを中心に回転するように構成されている。
 第3キャリア34は、第2中間軸82と一体的に回転するように構成されている。詳細には、第3キャリア34は、第2中間軸82に固定されている。第3キャリア34と第2中間軸82とは、1つの部材によって形成されていてもよい。
 第4遊星歯車機構4は、第4サンギア41、複数の第4プラネタリギア42、第4リングギア43、及び第4キャリア44を有している。
 第4サンギア41は、第1中間軸81と一体的に回転するように構成されている。詳細には、第4サンギア41は、第1中間軸81に固定されている。なお、第4サンギア41と第1中間軸81とは、1つの部材によって形成されていてもよい。
 各第4プラネタリギア42は、第4サンギア41に噛み合うように構成されている。各第4プラネタリギア42は、第4サンギア41の径方向外側に配置されている。詳細には、各第4プラネタリギア42は、周方向に間隔をあけて配置されている。
 各第4プラネタリギア42は、第4サンギア41の周りを公転するように構成されている。すなわち、各第4プラネタリギア42は、回転軸Oを中心に回転するように構成されている。また、各第4プラネタリギア42は、自転するように構成されている。
 第4リングギア43は、各第4プラネタリギア42と噛み合っている。第4リングギアは、回転軸Oを中心に回転するように構成されている。
 第4リングギア43は、第3キャリア34と一体的に回転するように構成されている。詳細には、第4リングギア43は、第3キャリア34と連結されている。すなわち、第2中間軸82と第3キャリア34と第4リングギア43とは、互いに一体的に回転するように構成されている。なお、第4リングギア43と第3キャリア34とは、1つの部材によって形成されていてもよい。
 第4キャリア44は、各第4プラネタリギア42を支持している。各第4プラネタリギア42は、第4キャリア44に支持された状態で、自転可能である。第4キャリア44は、回転軸Oを中心に回転するように構成されている。
 第4キャリア44は、動力を出力する。詳細には、第4キャリア44は、遊星歯車式変速機100によって変速された回転速度を有する動力を出力する。この第4キャリア44は、出力軸と一体的に回転する。このため、出力軸10は、変速された動力を出力する。なお、第4キャリア44と出力軸10とは、1つの部材によって形成されていてもよい。
 第1クラッチ51は、入力軸7と第1中間軸81とを連結するように構成されている。詳細には、第1クラッチ51は、入力軸7と第1中間軸81とを遮断可能に連結している。第1クラッチ51がオン状態のとき、第1クラッチ51は入力軸7と第1中間軸81とを連結する。したがって、入力軸7と第1中間軸81とが一体的に回転する。
 第1クラッチ51がオフ状態のとき、第1クラッチ51は入力軸7と第1中間軸81との連結を遮断する。したがって、第1中間軸81は、入力軸7に対して相対的に回転可能である。第1クラッチ51は、例えば、油圧式のクラッチ機構であって、複数のディスクから構成することができる。
 第2クラッチ52は、入力軸7と第3キャリア34とを連結するように構成されている。すなわち、第2クラッチ52は、入力軸7と第3キャリア34とを遮断可能に連結している。具体的には、第2クラッチ52は、入力軸7と第2中間軸82とを連結することによって、入力軸7と第3キャリア34とを連結する。第2クラッチ52は、例えば、油圧式のクラッチ機構であって、複数のディスクから構成することができる。
 第2クラッチ52がオン状態のとき、第2クラッチ52は入力軸7と第2中間軸82とを連結する。すなわち、第2クラッチ52は、第2中間軸82を介して、入力軸7と第3キャリア34とを連結する。したがって、入力軸7と第3キャリア34とが一体的に回転する。
 第2クラッチ52がオフ状態のとき、第2クラッチ52は、入力軸7と第3キャリア34との連結を遮断する。すなわち、第2クラッチ52は、入力軸7と第2中間軸82との連結を遮断することによって、入力軸7と第3キャリア34との連結を遮断する。したがって、第2中間軸82及び第3キャリア34は、入力軸7に対して相対回転可能である。
 第3クラッチ53は、第1リングギア13と第1キャリア14とを連結するように構成されている。詳細には、第3クラッチ53は、第1リングギア13と第1キャリア14とを遮断可能に連結している。第3クラッチ53は、例えば、油圧式のクラッチ機構であって、複数のディスクから構成することができる。
 第3クラッチ53がオン状態のとき、第3クラッチ53は、第1リングギア13と第1キャリア14とを連結する。したがって、第1リングギア13と第1キャリア14とが一体的に回転する。
 第3クラッチ53がオフ状態のとき、第3クラッチ53は、第1リングギア13と第1キャリア14との連結を遮断する。したがって、第1リングギア13と第1キャリア14とは、互いに相対回転可能である。
 第3クラッチ53は、回転軸方向において、第1制動機構61と第2制動機構62との間に配置されている。回転軸の径方向において、第3クラッチ53とケーシング9との間にスペースSが形成されている。
 第1制動機構61は、第1キャリア14の回転を制動するように構成されている。詳細には、第1制動機構61は、第1キャリア14とケーシング9とを連結するように構成されている。
 第1制動機構61がオン状態のとき、第1制動機構61は第1キャリア14の回転を制動する。すなわち、第1制動機構61がオン状態のとき、第1制動機構61は、第1キャリア14とケーシング9とを連結する。したがって、第1キャリア14は、回転不能である。
 一方、第1制動機構61がオフ状態のとき、第1制動機構61は第1キャリア14の回転を制動しない。すなわち、第1制動機構61がオフ状態のとき、第1制動機構61は、第1キャリア14とケーシング9とを連結しない。したがって、第1キャリア14は回転可能である。
 第1制動機構61は、回転軸方向において、第2制動機構62よりも入力側に配置されている。
 第2制動機構62は、第1リングギア13の回転を制動するように構成されている。詳細には、第2制動機構62は、第1リングギア13とケーシング9とを連結するように構成されている。
 第2制動機構62がオン状態のとき、第2制動機構62は第1リングギア13の回転を制動する。すなわち、第2制動機構62がオン状態のとき、第2制動機構62は、第1リングギア13とケーシング9とを連結する。したがって、第1リングギア13は、回転不能である。
 一方、第2制動機構62がオフ状態のとき、第2制動機構62は第1リングギア13の回転を制動しない。すなわち、第2制動機構62がオフ状態のとき、第2制動機構62は、第1リングギア13とケーシング9とを連結しない。したがって、第1リングギア13は回転可能である。なお、第2制動機構62は、第1リングギア13の径方向外側に配置されている。
 第3制動機構63は、第2リングギア23の回転を制動するように構成されている。詳細には、第3制動機構63は、第2リングギア23とケーシング9とを連結するように構成されている。
 第3制動機構63がオン状態のとき、第3制動機構63は第2リングギア23の回転を制動する。すなわち、第3制動機構63がオン状態のとき、第3制動機構63は、第2リングギア23とケーシング9とを連結する。したがって、第2リングギア23は、回転不能である。
 一方、第3制動機構63がオフ状態のとき、第3制動機構63は第2リングギア23の回転を制動しない。すなわち、第3制動機構63がオフ状態のとき、第3制動機構63は、第2リングギア23とケーシング9とを連結しない。したがって、第2リングギア23は回転可能である。なお、第3制動機構63は、第2リングギア23の径方向外側に配置されている。
 第4制動機構64は、第4リングギア43の回転を制動するように構成されている。詳細には、第4制動機構64は、第4リングギア43とケーシング9とを連結するように構成されている。
 第4制動機構64がオン状態のとき、第4制動機構64は第4リングギア43の回転を制動する。すなわち、第4制動機構64がオン状態のとき、第4制動機構64は、第4リングギア43とケーシング9とを連結する。したがって、第4リングギア43は、回転不能である。
 一方、第4制動機構64がオフ状態のとき、第4制動機構64は第4リングギア43の回転を制動しない。すなわち、第4制動機構64がオフ状態のとき、第4制動機構64は、第4リングギア43とケーシング9とを連結しない。したがって、第4リングギア43は回転可能である。なお、第4制動機構64は、第4リングギア43の径方向外側に配置されている。
 以上のように構成された遊星歯車式変速機100の動作について説明する。遊星歯車式変速機100は、前進において9つの速度段、後進において2つの速度段を有している。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第1速(F1)とする際は、第1制動機構61をオン状態にするとともに、第4制動機構64をオン状態にする。なお、第2制動機構62、第3制動機構63、及び第1~第3クラッチ51~53は、オフ状態である。
 第1制動機構61がオン状態になるため、第1キャリア14が回転不能となる。また、第4制動機構64がオン状態になるため、第4リングギア43が回転不能となる。第3キャリア34は第4リングギア43と一体的に回転するため、第3キャリア34も回転不能となる。
 この状態において、遊星歯車式変速機100は、図15において太線で示すような経路で、動力を伝達する。まず、第1サンギア11が、入力軸7と一体的に回転する。第1サンギア11の回転によって、各第1プラネタリギア12が自転する。なお、第1キャリア14が回転不能なため、各第1プラネタリギア12は公転しない。
 各第1プラネタリギア12の自転によって、第1リングギア13が回転する。そして、第2キャリア24は第1リングギア13と一体的に回転する。
 第3リングギア33は、第2キャリア24と一体的に回転する。この第3リングギア33の回転によって、各第3プラネタリギア32が自転する。なお、第3キャリア34は回転不能であるため、各第3プラネタリギア32は公転しない。
 各第3プラネタリギア32の自転によって、第3サンギア31が回転する。第4サンギア41は、第3サンギア31と一体的に回転する。第4サンギア41の回転によって、各第4プラネタリギア42は自転するとともに公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第2速(F2)とする際は、第1クラッチ51をオン状態にするとともに、第4制動機構64をオン状態にする。すなわち、第1速(F1)と第2速(F2)との間の切り換えにおいて、第4制動機構64はオン状態を維持している。なお、第2クラッチ52、第3クラッチ53、及び第1~第3制動機構61~63は、オフ状態である。
 第1クラッチ51がオン状態になるため、第1中間軸81は入力軸7と一体的に回転する。また、第4制動機構64がオン状態になるため、第4リングギア43は回転不能となる。第3キャリア34は第4リングギア43と一体的に回転するため、第3キャリア34も回転不能となる。
 この状態において、遊星歯車式変速機100は、図16において太線で示すような経路で、動力を伝達する。まず、第1中間軸81が入力軸7と一体的に回転する。
 第4サンギア41が第1中間軸81と一体的に回転する。この第4サンギア41の回転によって、各第4プラネタリギア42は自転するとともに公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第3速(F3)とする際は、第1クラッチ51をオン状態にするとともに、第1制動機構61をオン状態にする。すなわち、第2速(F2)と第3速(F3)との間の切り換えにおいて、第1クラッチ51はオン状態を維持している。なお、第2~第4制動機構62~64、第2クラッチ52、及び第3クラッチ53は、オフ状態である。
 第1クラッチ51がオン状態になるため、第1中間軸81は入力軸7と一体的に回転する。また、第1制動機構61がオン状態になるため、第1キャリア14が回転不能となる。
 この状態において、遊星歯車式変速機100は、図17において太線で示すような経路で、動力を伝達する。まず、第1サンギア11が入力軸7と一体的に回転する。第1サンギア11の回転によって、各第1プラネタリギア12が自転する。なお、第1キャリア14が回転不能であるため、各第1プラネタリギア12は公転しない。
 各第1プラネタリギア12の自転によって、第1リングギア13が回転する。第2キャリア24は第1リングギア13と一体的に回転する。
 第3リングギア33は、第2キャリア24と一体的に回転する。第3サンギア31は第1中間軸81と一体的に回転する。第3サンギア31の回転、及び第3リングギア33の回転によって、各第3プラネタリギア32は、自転しながら公転する。そして、第3キャリア34が回転する。
 第4リングギア43は、第3キャリア34と一体的に回転する。第4サンギア41は第1中間軸81と一体的に回転する。この第4リングギア43の回転、及び第4サンギア41の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第4速(F4)とする際は、第1クラッチ51をオン状態にするとともに、第2制動機構62をオン状態にする。すなわち、第3速(F3)と第4速(F4)との間の切り換えにおいて、第1クラッチ51はオン状態を維持している。なお、第1制動機構61、第3制動機構63、第4制動機構64、第2クラッチ52、及び第3クラッチ53は、オフ状態である。
 第1クラッチ51がオン状態になるため、第1中間軸81は入力軸7と一体的に回転する。また、第2制動機構62がオン状態になるため、第1リングギア13が回転不能となる。第2キャリア24は第1リングギア13と一体的に回転するため、第2キャリア24も回転不能である。さらには、第3リングギア33は第2キャリア24と一体的に回転するため、第3リングギア33も回転不能である。
 この状態において、遊星歯車式変速機100は、図18において太線で示すような経路で、動力を伝達する。まず、第1中間軸81が入力軸7と一体的に回転する。そして、第3サンギア31及び第4サンギア41が第1中間軸81と一体的に回転する。
 第3サンギア31の回転によって、各第3プラネタリギア32が自転するとともに公転する。そして、第3キャリア34が回転する。第4リングギア43は、第3キャリア34と一体的に回転する。
 第4リングギア43の回転、及び第4サンギア41の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第5速(F5)とする際は、第1クラッチ51をオン状態にするとともに、第3制動機構63をオン状態にする。すなわち、第4速(F4)と第5速(F5)との間の切り換えにおいて、第1クラッチ51はオン状態を維持している。なお、第1制動機構61、第2制動機構62、第4制動機構64、第2クラッチ52、及び第3クラッチ53は、オフ状態である。
 第1クラッチ51がオン状態になるため、第1中間軸81は入力軸7と一体的に回転する。また、第3制動機構63がオン状態になるため、第2リングギア23が回転不能となる。
 この状態において、遊星歯車式変速機100は、図19において太線で示すような経路で、動力を伝達する。まず、入力軸7と第1中間軸81とが互いに一体的に回転する。第2サンギア21が入力軸7と一体的に回転し、第3サンギア31及び第4サンギア41が第1中間軸81と一体的に回転する。
 第2サンギア21の回転によって、各第2プラネタリギア22は自転するとともに公転する。そして、第2キャリア24が回転する。第3リングギア33は、第2キャリア24と一体的に回転する。
 第3サンギア31の回転及び第3リングギア33の回転によって、各第3プラネタリギア32が自転するとともに公転する。そして、第3キャリア34が回転する。第4リングギア43は、第3キャリア34と一体的に回転する。
 第4リングギア43の回転、及び第4サンギア41の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第6速(F6)とする際は、第1クラッチ51をオン状態にするとともに、第2クラッチ52をオン状態にする。すなわち、第5速(F5)と第6速(F6)との間の切り換えにおいて、第1クラッチ51はオン状態を維持している。なお、第1~第4制動機構61~64、及び第3クラッチ53は、オフ状態である。
 第1クラッチ51がオン状態になるため、第1中間軸81は入力軸7と一体的に回転する。また、第2クラッチ52がオン状態になるため、第2中間軸82は入力軸7と一体的に回転する。
 この状態において、遊星歯車式変速機100は、図20において太線で示すような経路で、動力を伝達する。まず、入力軸7と第1中間軸81と第2中間軸82とが、互いに一体的に回転する。第3サンギア31及び第4サンギア41が第1中間軸81と一体的に回転する。第3キャリア34が第2中間軸82と一体的に回転する。第4リングギア43は第3キャリア34と一体的に回転する。
 第4サンギア41の回転、及び第4リングギア43の回転によって、各第4プラネタリギア42が公転する。なお、第4サンギア41と第4リングギア43とは、互いに同じ回転速度で回転するため、各第4プラネタリギア42は自転しない。このため、各第4プラネタリギア42は、第4サンギア41及び第4リングギア43と同じ回転速度で公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速されない回転速度を有する動力を出力する。すなわち、第6速の状態の遊星歯車式変速機100は、エンジン等からの動力の回転速度を変速しない。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第7速(F7)とする際は、第2クラッチ52をオン状態にするとともに、第3制動機構63をオン状態にする。すなわち、第6速(F6)と第7速(F7)との間の切り換えにおいて、第2クラッチ52はオン状態を維持している。なお、第1制動機構61、第2制動機構62、第4制動機構64、第1クラッチ51、及び第3クラッチ53は、オフ状態である。
 第2クラッチ52がオン状態になるため、第2中間軸82は入力軸7と一体的に回転する。また、第3制動機構63がオン状態になるため、第2リングギア23は回転不能となる。
 この状態において、遊星歯車式変速機100は、図21において太線で示すような経路で、動力を伝達する。まず、入力軸7と第2中間軸82とが互いに一体的に回転する。第2サンギア21が、入力軸7と一体的に回転する。第3キャリア34が、第2中間軸82と一体的に回転する。
 第2サンギア21の回転によって、各第2プラネタリギア22は自転するとともに公転する。そして、第2キャリア24が回転する。第3リングギア33は、第2キャリア24と一体的に回転する。
 第3キャリア34の回転によって、各第3プラネタリギア32が公転する。また、第3リングギア33の回転、及び第3キャリア34の回転によって、各第3プラネタリギア32が自転する。この結果、第3サンギア31が回転する。
 第4サンギア41は、第3サンギア31と一体的に回転する。第4リングギア43は、第3キャリア34と一体的に回転する。この第4サンギア41の回転と第4リングギア43の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第8速(F8)とする際は、第2クラッチ52をオン状態にするとともに、第2制動機構62をオン状態にする。すなわち、第7速(F7)と第8速(F8)との間の切り換えにおいて、第2クラッチ52はオン状態を維持している。なお、第1制動機構61、第3制動機構63、第4制動機構64、第1クラッチ51、及び第3クラッチ53は、オフ状態である。
 第2クラッチ52がオン状態になるため、第2中間軸82は入力軸7と一体的に回転する。また、第2制動機構62がオン状態になるため、第1リングギア13は回転不能となる。第2キャリア24は第1リングギア13と一体的に回転するため、第2キャリア24も回転不能である。さらには、第3リングギア33は第2キャリア24と一体的に回転するため、第3リングギア33も回転不能である。
 この状態において、遊星歯車式変速機100は、図22において太線で示すような経路で、動力を伝達する。まず、第2中間軸82が入力軸7と一体的に回転する。そして、第3キャリア34が第2中間軸82と一体的に回転する。
 第3キャリア34の回転によって、各第3プラネタリギア32が公転するとともに自転する。そして、第3サンギア31が回転する。
 第4サンギア41は、第3サンギア31と一体的に回転する。第4リングギア43は、第3キャリア34と一体的に回転する。この第4サンギア41の回転と第4リングギア43の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を前進の第9速(F9)とする際は、第2クラッチ52をオン状態にするとともに、第1制動機構61をオン状態にする。すなわち、第8速(F8)と第9速(F9)との間の切り換えにおいて、第2クラッチ52はオン状態を維持している。なお、第2~第4制動機構62~64、第1クラッチ51、及び第3クラッチ53は、オフ状態である。
 第2クラッチ52がオン状態になるため、第2中間軸82は入力軸7と一体的に回転する。また、第1制動機構61がオン状態になるため、第1キャリア14は回転不能となる。
 この状態において、遊星歯車式変速機100は、図23において太線で示すような経路で、動力を伝達する。まず、第1サンギア11が入力軸7と一体的に回転する。第1サンギア11の回転によって、各第1プラネタリギア12が自転する。なお、上述したように第1キャリア14は回転できないため、各第1プラネタリギア12は公転しない。
 各第1プラネタリギア12の自転によって、第1リングギア13が回転する。第2キャリア24は第1リングギア13と一体的に回転する。
 第3リングギア33は、第2キャリア24と一体的に回転する。第3キャリア34が第2中間軸82と一体的に回転する。この結果、各第3プラネタリギア32は自転するとともに公転する。そして、第3サンギア31は回転する。
 第4リングギア43は、第3キャリア34と一体的に回転する。第4サンギア41は、第3サンギア31と一体的に回転する。第4リングギア43の回転、及び第4サンギア41の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を後進の第1速(R1)とする際は、第3制動機構63をオン状態にするとともに、第4制動機構64をオン状態にする。なお、第1制動機構61、第2制動機構62、及び第1~第3クラッチ51~53は、オフ状態である。
 第3制動機構63がオン状態になるため、第2リングギア23が回転不能となる。また、第4制動機構64がオン状態になるため、第4リングギア43が回転不能となる。第3キャリア34は第4リングギア43と一体的に回転するため、第3キャリア34も回転不能となる。
 この状態において、遊星歯車式変速機100は、図24において太線で示すような経路で、動力を伝達する。まず、第2サンギア21が入力軸7と一体的に回転する。第2サンギア21の回転によって、各第2プラネタリギア22が自転するとともに公転する。そして第2キャリア24が回転する。
 第3リングギア33は、第2キャリア24と一体的に回転する。この第3リングギア33の回転によって、各第3プラネタリギア32が自転する。なお、第3キャリア34は回転不能であるため、各第3プラネタリギア32は公転しない。
 各第3プラネタリギア32の自転によって、第3サンギア31が回転する。第4サンギア41は、第3サンギア31と一体的に回転する。第4サンギア41の回転によって、各第4プラネタリギア42は自転するとともに公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図2に示すように、遊星歯車式変速機100の速度段を後進の第2速(R2)とする際は、第3クラッチ53をオン状態にするとともに、第4制動機構64をオン状態にする。すなわち、第1速(R1)と第2速(R2)との間の切り換えにおいて、第4制動機構64はオン状態を維持している。なお、第1~第3制動機構61~63、第1クラッチ51、及び第2クラッチ52は、オフ状態である。
 第3クラッチ53がオン状態になるため、第1キャリア14は第1リングギア13と一体的に回転する。また、第4制動機構64がオン状態になるため、第4リングギア43が回転不能となる。第3キャリア34は第4リングギア43と一体的に回転するため、第3キャリア34も回転不能となる。
 この状態において、遊星歯車式変速機100は、図25において太線で示すような経路で、動力を伝達する。まず、第1サンギア11が、入力軸7と一体的に回転する。そして、各第1プラネタリギア12が公転して、第1キャリア14が回転する。第1リングギア13は第1キャリア14と一体的に回転する。なお、各第1プラネタリギア12が自転しない。
 第2キャリア24は、第1リングギア13と一体的に回転する。そして、第3リングギア33は、第2キャリア24と一体的に回転する。この第3リングギア33の回転によって、各第3プラネタリギア32が自転する。なお、第3キャリア34は回転不能であるため、各第3プラネタリギア32は公転しない。各第3プラネタリギア32の自転によって、第3サンギア31が回転する。
 第4サンギア41は、第3サンギア31と一体的に回転する。第4サンギア41の回転によって、各第4プラネタリギア42は自転するとともに公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 次に、上述した各速度段における減速比の求め方について説明する。各速度段における減速比は、以下の第1~第4関係式の少なくとも1つを用いて求める。
 第1関係式は、第1遊星歯車機構1に関する式であり、以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000005
 ここで、sは第1サンギア11の歯数、rは第1リングギア13の歯数、Ns1は第1サンギア11の回転数比、Nr1は第1リングギア13の回転数比、Nc1は第1キャリア14の回転数比である。
 第2関係式は、第2遊星歯車機構2に関する式であり、以下の式(2)で表される。
Figure JPOXMLDOC01-appb-M000006
 ここで、sは第2サンギア21の歯数、rは第2リングギア23の歯数、Ns2は第2サンギア21の回転数比、Nr2は第2リングギア23の回転数比、Nc2は第2キャリア24の回転数比である。
 第3関係式は、第3遊星歯車機構3に関する式であり、以下の式(3)で表される。
Figure JPOXMLDOC01-appb-M000007
 ここで、sは第3サンギア31の歯数、rは第3リングギア33の歯数、Ns3は第3サンギア31の回転数比、Nr3は第3リングギア33の回転数比、Nc3は第3キャリア34の回転数比である。
 第4関係式は、第4遊星歯車機構4に関する式であり、以下の式(4)で表される。
Figure JPOXMLDOC01-appb-M000008
 ここで、sは第4サンギア41の歯数、rは第4リングギア43の歯数、Ns4は第4サンギア41の回転数比、Nr4は第4リングギア43の回転数比、Nc4は第4キャリア44の回転数比である。
 まず、前進の第1速における減速比の求め方を説明する。第1遊星歯車機構1における第1リングギア13の回転数比Nr1を、第1関係式から求める。なお、第1サンギア11は入力軸8と一体的に回転するため、第1サンギア11の回転数比Ns1は1である。また、第1キャリア14は回転しないため、第1キャリア14の回転数比Nc1は0である。
 次に、第3遊星歯車機構における第3サンギア31の回転数比Ns3を、第3関係式から求める。なお、第3リングギア33は第1リングギア13と一体的に回転するため、第3リングギア33の回転数比Nr3は、第1リングギア13の回転数比Nr1と同じである。また、第3キャリア34は回転しないため、第3キャリア34の回転数比Nc3は0である。
 次に、第4遊星歯車機構における第4キャリア44の回転数比Nc4を、第4関係式から求める。なお、第4サンギア41は第3サンギア31と一体的に回転するため、第4サンギア41の回転数比Ns4は、第3サンギア31の回転数比Ns3と同じである。また、第4リングギア43は回転しないため、第4リングギア43の回転数比Nr4は0である。
 以上のようにして求めた、第4キャリア44の回転数比Nc4の逆数が遊星歯車式変速機100の減速比となる。例えば、第1サンギア11の歯数が30、第2サンギア21の歯数が57、第3サンギア31の歯数が48、第4サンギア41の歯数が30であり、第1~第4リングギア13、23、33、43の歯数がそれぞれ90であるとき、前進の第1速の減速比は約6.4である。なお、同様に、各速度段において求められた減速比を図2に示す。
 前進の第2速では、第4関係式によって、第4キャリア44の回転数比Nc4を求める。これによって、前進の第2速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は1であり、第4リングギア43の回転数比Nr4は0である。
 前進の第3速では、第1関係式によって、第1リングギア13の回転数比Nr1を求める。なお、第1サンギア11の回転数比Ns1は1であり、第1キャリア14の回転数比Nc1は0である。
 次に、第3関係式によって、第3キャリア34の回転数比Nc3を求める。なお、第3サンギア31の回転数比Ns3は1であり。第3リングギア33の回転数比Nr3は第1リングギア13の回転数比Nr1と同じである。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第3速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は1であり、第4リングギア43の回転数比Nr4は、第3キャリア34の回転数比Nc3と同じである。
 前進の第4速では、第3関係式によって、第3キャリア34の回転数比Nc3を求める。なお、第3サンギア31の回転数比Ns3は1であり、第3リングギア33の回転数比Nr3は0である。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第4速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は1であり、第4リングギア43の回転数比Nr4は第3キャリア34の回転数比Nc3と同じである。
 前進の第5速では、第2関係式によって、第2キャリア24の回転数比Nc2を求める。なお、第2サンギア21の回転数比Ns2は1であり、第2リングギア23の回転数比Nr2は0である。
 次に、第3関係式によって、第3キャリア34の回転数比Nc3を求める。なお、第3サンギア31の回転数比Ns3は1であり、第3リングギア33の回転数比Nr3は第2キャリア24の回転数比Nc2と同じである。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第5速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は1であり、第4リングギア43の回転数比Nr4は第3キャリア34の回転数比Nc3と同じである。
 前進の第6速では、上述したように変速は行われない。
 前進の第7速では、第2関係式によって、第2キャリア24の回転数比Nc2を求める。なお、第2サンギア21の回転数比Ns2は1であり、第2リングギア23の回転数比Nr2は0である。
 次に、第3関係式によって、第3サンギア31の回転数比Ns3を求める。なお、第3キャリア34の回転数比Nc3は1であり、第3リングギア33の回転数比Nr3は第2キャリア24の回転数比Nc2と同じである。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第7速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は第3サンギア31の回転数比Ns3と同じであり、第4リングギア43の回転数比Nr4は1である。
 前進の第8速では、第3関係式によって、第3サンギア31の回転数比Ns3を求める。なお、第3キャリア34の回転数比Nc3は1であり、第3リングギア33の回転数比Nr3は0である。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第8速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は第3サンギア31の回転数比Ns3と同じであり、第4リングギア43の回転数比Nr4は1である。
 前進の第9速では、第1関係式によって、第1リングギア13の回転数比Nr1を求める。なお、第1サンギア11の回転数比Ns1は1であり、第1キャリア14の回転数比Nc1は0である。
 次に、第3関係式によって、第3サンギア31の回転数比Ns3を求める。なお、第3キャリア34の回転数比Nc3は1であり、第3リングギア33の回転数比Nr3は第1リングギア13の回転数比Nr1と同じである。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第9速における減速比が求められる。なお、第4リングギア43の回転数比Nr4は1であり、第4サンギア41の回転数比Ns4は第3サンギア31の回転数比Ns3と同じである。
 後進の第1速では、第2関係式によって、第2キャリア24の回転数比Nc2を求める。なお、第2サンギア21の回転数比Ns2は1であり、第2リングギア23の回転数比Nr2は0である。
 次に、第3関係式によって、第3サンギア31の回転数比Ns3を求める。なお、第3キャリア34の回転数比Nc3は0であり、第3リングギア33の回転数比Nr3は第2キャリア24の回転数比Nc2と同じである。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、後進の第1速における減速比が求められる。なお、第4リングギア43の回転数比Nr4は0であり、第4サンギア41の回転数比Ns4は第3サンギア31の回転数比Ns3と同じである。
 後進の第2速では、第3関係式によって、第3サンギア31の回転数比Ns3を求める。なお、第3リングギア33の回転数比Nr3は1であり、第3キャリア34の回転数比Nc3は0である。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、後進の第2速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は第3サンギア31の回転数比Ns3と同じであり、第4リングギア43の回転数比Nr4は0である。
 [第3実施形態]
 図26は、第3実施形態に係る遊星歯車式変速機の概略図である。図26に示すように、遊星歯車式変速機100は、エンジン(図示省略)等からの動力の回転速度を変速して出力する。なお、エンジン等からの動力は、トルクコンバータを介して遊星歯車式変速機100に入力されてもよい。
 遊星歯車式変速機100は、複数の遊星歯車機構1~4、複数のクラッチ51~53、複数の制動機構61~64、入力軸7、第1中間軸81、第2中間軸82、及びケーシング9を備える。ケーシング9は、各遊星歯車機構1~4、各クラッチ51~53、各制動機構61~64、入力軸7、第1中間軸81、及び第2中間軸82を収容している。
 遊星歯車式変速機100は、複数の遊星歯車機構として、第1遊星歯車機構1、第2遊星歯車機構2、第3遊星歯車機構3、及び第4遊星歯車機構4を備える。また、遊星歯車式変速機100は、複数のクラッチとして、第1クラッチ51、第2クラッチ52、及び第3クラッチ53を備える。また、遊星歯車式変速機100は、複数の制動機構として、第1制動機構61、第2制動機構62、第3制動機構63、及び第4制動機構64を備えている。
 第1遊星歯車機構1、第2遊星歯車機構2、第3遊星歯車機構3、及び第4遊星歯車機構4は、回転軸方向に沿って、この順に配置されている。詳細には、入力側から出力側に向かって、第1遊星歯車機構1、第2遊星歯車機構2、第3遊星歯車機構、及び第4遊星歯車機構の順で配置されている。
 入力軸7は、回転軸Oを中心に回転するように構成されている。回転軸Oは、入力軸7の中心線である。入力軸7は、中空状である。詳細には、入力軸7は、筒状である。エンジンなどからの動力が入力軸7に入力される。
 第1中間軸81は、回転軸Oを中心に回転するように構成されている。すなわち、第1中間軸81は、回転軸方向に延びている。第1中間軸81は、入力軸7内に配置されている。第1中間軸81の中心軸と、入力軸7の中心軸とは、実質的に同じである。
 第2中間軸82は、回転軸Oを中心に回転するように構成されている。すなわち、第2中間軸82は、回転軸方向に延びている。第2中間軸82は、入力軸7内に配置されている。第2中間軸82は、中空状である。詳細には、第2中間軸82は筒状である。第1中間軸81は、第2中間軸82内に配置されている。すなわち、第1中間軸81は、第2中間軸82内に配置され、第2中間軸82は、入力軸7内に配置される。径方向外側に向かって、第1中間軸81、第2中間軸82、入力軸7の順で配置される。
 第1遊星歯車機構1は、第1サンギア11、複数の第1プラネタリギア12、第1リングギア13、及び第1キャリア14を有している。
 第1サンギア11は、入力軸7と一体的に回転するように構成されている。詳細には、第1サンギア11は、入力軸7に固定されている。なお、第1サンギア11と入力軸7とは、1つの部材によって形成されていてもよい。
 各第1プラネタリギア12は、第1サンギア11に噛み合うように構成されている。各第1プラネタリギア12は、第1サンギア11の径方向外側に配置されている。詳細には、各第1プラネタリギア12は、周方向に間隔をあけて配置されている。
 各第1プラネタリギア12は、第1サンギア11の周りを公転するように構成されている。すなわち、各第1プラネタリギア12は、回転軸Oを中心に回転するように構成されている。また、各第1プラネタリギア12は、自転するように構成されている。
 第1リングギア13は、各第1プラネタリギア12と噛み合っている。第1リングギア13は、回転軸Oを中心に回転するように構成されている。
 第1キャリア14は、各第1プラネタリギア12を支持している。各第1プラネタリギア12は、第1キャリア14に支持された状態で、自転可能である。第1キャリア14は、回転軸Oを中心に回転するように構成されている。
 第2遊星歯車機構2は、第2サンギア21、複数の第2プラネタリギア22、第2リングギア23、及び第2キャリア24を有している。
 第2サンギア21は、入力軸7と一体的に回転するように構成されている。詳細には、第2サンギア21は、入力軸7に固定されている。なお、第2サンギア21と入力軸7とは、1つの部材によって形成されていてもよい。
 各第2プラネタリギア22は、第2サンギア21に噛み合うように構成されている。各第2プラネタリギア22は、第2サンギア21の径方向外側に配置されている。詳細には、各第2プラネタリギア22は、周方向に間隔をあけて配置されている。
 各第2プラネタリギア22は、第2サンギア21の周りを公転するように構成されている。すなわち、各第2プラネタリギア22は、回転軸Oを中心に回転するように構成されている。また、各第2プラネタリギア22は、自転するように構成されている。
 第2リングギア23は、各第2プラネタリギア22と噛み合っている。第2リングギア23は、回転軸Oを中心に回転するように構成されている。
 第2キャリア24は、各第2プラネタリギア22を支持している。各第2プラネタリギア22は、第2キャリア24に支持された状態で、自転可能である。第2キャリア24は、回転軸Oを中心に回転するように構成されている。
 第2キャリア24は、第1リングギア13と一体的に回転するように構成されている。詳細には、第2キャリア24は、第1リングギア13に連結されている。第2キャリア24と第1リングギア13とは1つの部材によって形成されていてもよい。
 第3遊星歯車機構3は、第3サンギア31、複数の第3プラネタリギア32、第3リングギア33、及び第3キャリア34を有している。
 第3サンギア31は、第1中間軸81と一体的に回転するように構成されている。詳細には、第3サンギア31は、第1中間軸81に固定されている。なお、第3サンギア31と第1中間軸81とは、1つの部材によって形成されていてもよい。
 各第3プラネタリギア32は、第3サンギア31に噛み合うように構成されている。各第3プラネタリギア32は、第3サンギア31の径方向外側に配置されている。詳細には、各第3プラネタリギア32は、周方向に間隔をあけて配置されている。
 各第3プラネタリギア32は、第3サンギア31の周りを公転するように構成されている。すなわち、各第3プラネタリギア32は、回転軸Oを中心に回転するように構成されている。また、各第3プラネタリギア32は、自転するように構成されている。
 第3リングギア33は、各第3プラネタリギア32と噛み合っている。第3リングギア33は、回転軸Oを中心に回転するように構成されている。
 第3リングギア33は、第2キャリア24と一体的に回転するように構成されている。詳細には、第3リングギア33は、第2キャリア24と連結されている。すなわち、第1リングギア13と第2キャリア24と第3リングギア33とは、一体的に回転するように構成されている。なお、第3リングギア33と第2キャリア24とは、1つの部材によって形成されていてもよい。
 第3キャリア34は、各第3プラネタリギア32を支持している。各第3プラネタリギア32は、第3キャリア34に支持された状態で、自転可能である。第3キャリア34は、回転軸Oを中心に回転するように構成されている。
 第3キャリア34は、第2中間軸82と一体的に回転するように構成されている。詳細には、第3キャリア34は、第2中間軸82に固定されている。第3キャリア34と第2中間軸82とは、1つの部材によって形成されていてもよい。
 第4遊星歯車機構4は、第4サンギア41、複数の第4プラネタリギア42、第4リングギア43、及び第4キャリア44を有している。
 第4サンギア41は、第1中間軸81と一体的に回転するように構成されている。詳細には、第4サンギア41は、第1中間軸81に固定されている。なお、第4サンギア41と第1中間軸81とは、1つの部材によって形成されていてもよい。
 各第4プラネタリギア42は、第4サンギア41に噛み合うように構成されている。各第4プラネタリギア42は、第4サンギア41の径方向外側に配置されている。詳細には、各第4プラネタリギア42は、周方向に間隔をあけて配置されている。
 各第4プラネタリギア42は、第4サンギア41の周りを公転するように構成されている。すなわち、各第4プラネタリギア42は、回転軸Oを中心に回転するように構成されている。また、各第4プラネタリギア42は、自転するように構成されている。
 第4リングギア43は、各第4プラネタリギア42と噛み合っている。第4リングギアは、回転軸Oを中心に回転するように構成されている。
 第4リングギア43は、第3キャリア34と一体的に回転するように構成されている。詳細には、第4リングギア43は、第3キャリア34と連結されている。すなわち、第2中間軸82と第3キャリア34と第4リングギア43とは、互いに一体的に回転するように構成されている。なお、第4リングギア43と第3キャリア34とは、1つの部材によって形成されていてもよい。
 第4キャリア44は、各第4プラネタリギア42を支持している。各第4プラネタリギア42は、第4キャリア44に支持された状態で、自転可能である。第4キャリア44は、回転軸Oを中心に回転するように構成されている。
 第4キャリア44は、動力を出力する。詳細には、第4キャリア44は、遊星歯車式変速機100によって変速された回転速度を有する動力を出力する。この第4キャリア44は、出力軸10と一体的に回転する。このため、出力軸10は、変速された動力を出力する。なお、第4キャリア44と出力軸10とは、1つの部材によって形成されていてもよい。
 第1クラッチ51は、入力軸7と第1中間軸81とを連結するように構成されている。詳細には、第1クラッチ51は、入力軸7と第1中間軸81とを遮断可能に連結している。第1クラッチ51がオン状態のとき、第1クラッチ51は入力軸7と第1中間軸81とを連結する。したがって、入力軸7と第1中間軸81とが一体的に回転する。
 第1クラッチ51がオフ状態のとき、第1クラッチ51は入力軸7と第1中間軸81との連結を遮断する。したがって、第1中間軸81は、入力軸7に対して相対的に回転可能である。第1クラッチ51は、例えば、油圧式のクラッチ機構であって、複数のディスクから構成することができる。
 第2クラッチ52は、入力軸7と第3キャリア34とを連結するように構成されている。すなわち、第2クラッチ52は、入力軸7と第3キャリア34とを遮断可能に連結している。具体的には、第2クラッチ52は、入力軸7と第2中間軸82とを連結することによって、入力軸7と第3キャリア34とを連結する。第2クラッチ52は、例えば、油圧式のクラッチ機構であって、複数のディスクから構成することができる。
 第2クラッチ52がオン状態のとき、第2クラッチ52は入力軸7と第2中間軸82とを連結する。すなわち、第2クラッチ52は、第2中間軸82を介して、入力軸7と第3キャリア34とを連結する。したがって、入力軸7と第3キャリア34とが一体的に回転する。
 第2クラッチ52がオフ状態のとき、第2クラッチ52は、入力軸7と第3キャリア34との連結を遮断する。すなわち、第2クラッチ52は、入力軸7と第2中間軸82との連結を遮断することによって、入力軸7と第3キャリア34との連結を遮断する。したがって、第2中間軸82及び第3キャリア34は、入力軸7に対して相対回転可能である。
 第3クラッチ53は、第3リングギア33と第3キャリア34とを連結するように構成されている。詳細には、第3クラッチ53は、第3リングギア33と第3キャリア34とを遮断可能に連結している。第3クラッチ53は、例えば、油圧式のクラッチ機構であって、複数のディスクから構成することができる。
 第3クラッチ53がオン状態のとき、第3クラッチ53は、第3リングギア33と第3キャリア34とを連結する。したがって、第3リングギア33と第3キャリア34とが一体的に回転する。
 第3クラッチ53がオフ状態のとき、第3クラッチ53は、第3リングギア33と第3キャリア34との連結を遮断する。したがって、第3リングギア33と第3キャリア34とは、互いに相対回転可能である。
 第3クラッチ53は、回転軸方向において、第3遊星歯車機構3と第4遊星歯車機構4との間に配置されている。回転軸の径方向において、第3クラッチ53とケーシング9との間にスペースSが形成されている。
 第1制動機構61は、第1キャリア14の回転を制動するように構成されている。詳細には、第1制動機構61は、第1キャリア14とケーシング9とを連結するように構成されている。
 第1制動機構61がオン状態のとき、第1制動機構61は第1キャリア14の回転を制動する。すなわち、第1制動機構61がオン状態のとき、第1制動機構61は、第1キャリア14とケーシング9とを連結する。したがって、第1キャリア14は、回転不能である。
 一方、第1制動機構61がオフ状態のとき、第1制動機構61は第1キャリア14の回転を制動しない。すなわち、第1制動機構61がオフ状態のとき、第1制動機構61は、第1キャリア14とケーシング9とを連結しない。したがって、第1キャリア14は回転可能である。
 第1制動機構61は、回転軸方向において、第2制動機構62よりも入力側に配置されている。
 第2制動機構62は、第1リングギア13の回転を制動するように構成されている。詳細には、第2制動機構62は、第1リングギア13とケーシング9とを連結するように構成されている。
 第2制動機構62がオン状態のとき、第2制動機構62は第1リングギア13の回転を制動する。すなわち、第2制動機構62がオン状態のとき、第2制動機構62は、第1リングギア13とケーシング9とを連結する。したがって、第1リングギア13は、回転不能である。
 一方、第2制動機構62がオフ状態のとき、第2制動機構62は第1リングギア13の回転を制動しない。すなわち、第2制動機構62がオフ状態のとき、第2制動機構62は、第1リングギア13とケーシング9とを連結しない。したがって、第1リングギア13は回転可能である。なお、第2制動機構62は、第1リングギア13の径方向外側に配置されている。
 第3制動機構63は、第2リングギア23の回転を制動するように構成されている。詳細には、第3制動機構63は、第2リングギア23とケーシング9とを連結するように構成されている。
 第3制動機構63がオン状態のとき、第3制動機構63は第2リングギア23の回転を制動する。すなわち、第3制動機構63がオン状態のとき、第3制動機構63は、第2リングギア23とケーシング9とを連結する。したがって、第2リングギア23は、回転不能である。
 一方、第3制動機構63がオフ状態のとき、第3制動機構63は第2リングギア23の回転を制動しない。すなわち、第3制動機構63がオフ状態のとき、第3制動機構63は、第2リングギア23とケーシング9とを連結しない。したがって、第2リングギア23は回転可能である。なお、第3制動機構63は、第2リングギア23の径方向外側に配置されている。
 第4制動機構64は、第4リングギア43の回転を制動するように構成されている。詳細には、第4制動機構64は、第4リングギア43とケーシング9とを連結するように構成されている。
 第4制動機構64がオン状態のとき、第4制動機構64は第4リングギア43の回転を制動する。すなわち、第4制動機構64がオン状態のとき、第4制動機構64は、第4リングギア43とケーシング9とを連結する。したがって、第4リングギア43は、回転不能である。
 一方、第4制動機構64がオフ状態のとき、第4制動機構64は第4リングギア43の回転を制動しない。すなわち、第4制動機構64がオフ状態のとき、第4制動機構64は、第4リングギア43とケーシング9とを連結しない。したがって、第4リングギア43は回転可能である。なお、第4制動機構64は、第4リングギア43の径方向外側に配置されている。
 以上のように構成された遊星歯車式変速機100の動作について説明する。遊星歯車式変速機100は、前進において9つの速度段、後進において2つの速度段を有している。図27は、各速度段においてオン状態となる各クラッチ又は各制動機構を示す表である。なお、図27の○印は、オン状態となる各クラッチ又は各制動機構を示している。
 図27に示すように、遊星歯車式変速機100の速度段を前進の第1速(F1)とする際は、第1制動機構61をオン状態にするとともに、第4制動機構64をオン状態にする。なお、第2制動機構62、第3制動機構63、及び第1~第3クラッチ51~53は、オフ状態である。
 第1制動機構61がオン状態になるため、第1キャリア14が回転不能となる。また、第4制動機構64がオン状態になるため、第4リングギア43が回転不能となる。第3キャリア34は第4リングギア43と一体的に回転するため、第3キャリア34も回転不能となる。
 この状態において、遊星歯車式変速機100は、図28において太線で示すような経路で、動力を伝達する。まず、第1サンギア11が、入力軸7と一体的に回転する。第1サンギア11の回転によって、各第1プラネタリギア12が自転する。なお、第1キャリア14が回転不能なため、各第1プラネタリギア12は公転しない。
 各第1プラネタリギア12の自転によって、第1リングギア13が回転する。そして、第2キャリア24は第1リングギア13と一体的に回転する。
 第3リングギア33は、第2キャリア24と一体的に回転する。この第3リングギア33の回転によって、各第3プラネタリギア32が自転する。なお、第3キャリア34は回転不能であるため、各第3プラネタリギア32は公転しない。
 各第3プラネタリギア32の自転によって、第3サンギア31が回転する。第4サンギア41は、第3サンギア31と一体的に回転する。第4サンギア41の回転によって、各第4プラネタリギア42は自転するとともに公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図27に示すように、遊星歯車式変速機100の速度段を前進の第2速(F2)とする際は、第1クラッチ51をオン状態にするとともに、第4制動機構64をオン状態にする。すなわち、第1速(F1)と第2速(F2)との間の切り換えにおいて、第4制動機構64はオン状態を維持している。なお、第2クラッチ52、第3クラッチ53、及び第1~第3制動機構61~63は、オフ状態である。
 第1クラッチ51がオン状態になるため、第1中間軸81は入力軸7と一体的に回転する。また、第4制動機構64がオン状態になるため、第4リングギア43は回転不能となる。第3キャリア34は第4リングギア43と一体的に回転するため、第3キャリア34も回転不能となる。
 この状態において、遊星歯車式変速機100は、図29において太線で示すような経路で、動力を伝達する。まず、第1中間軸81が入力軸7と一体的に回転する。
 第4サンギア41が第1中間軸81と一体的に回転する。この第4サンギア41の回転によって、各第4プラネタリギア42は自転するとともに公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図27に示すように、遊星歯車式変速機100の速度段を前進の第3速(F3)とする際は、第1クラッチ51をオン状態にするとともに、第1制動機構61をオン状態にする。すなわち、第2速(F2)と第3速(F3)との間の切り換えにおいて、第1クラッチ51はオン状態を維持している。なお、第2~第4制動機構62~64、第2クラッチ52、及び第3クラッチ53は、オフ状態である。
 第1クラッチ51がオン状態になるため、第1中間軸81は入力軸7と一体的に回転する。また、第1制動機構61がオン状態になるため、第1キャリア14が回転不能となる。
 この状態において、遊星歯車式変速機100は、図30において太線で示すような経路で、動力を伝達する。まず、第1サンギア11が入力軸7と一体的に回転する。第1サンギア11の回転によって、各第1プラネタリギア12が自転する。なお、第1キャリア14が回転不能であるため、各第1プラネタリギア12は公転しない。
 各第1プラネタリギア12の自転によって、第1リングギア13が回転する。第2キャリア24は第1リングギア13と一体的に回転する。
 第3リングギア33は、第2キャリア24と一体的に回転する。第3サンギア31は第1中間軸81と一体的に回転する。第3サンギア31の回転、及び第3リングギア33の回転によって、各第3プラネタリギア32は、自転しながら公転する。そして、第3キャリア34が回転する。
 第4リングギア43は、第3キャリア34と一体的に回転する。第4サンギア41は第1中間軸81と一体的に回転する。この第4リングギア43の回転、及び第4サンギア41の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図27に示すように、遊星歯車式変速機100の速度段を前進の第4速(F4)とする際は、第1クラッチ51をオン状態にするとともに、第2制動機構62をオン状態にする。すなわち、第3速(F3)と第4速(F4)との間の切り換えにおいて、第1クラッチ51はオン状態を維持している。なお、第1制動機構61、第3制動機構63、第4制動機構64、第2クラッチ52、及び第3クラッチ53は、オフ状態である。
 第1クラッチ51がオン状態になるため、第1中間軸81は入力軸7と一体的に回転する。また、第2制動機構62がオン状態になるため、第1リングギア13が回転不能となる。第2キャリア24は第1リングギア13と一体的に回転するため、第2キャリア24も回転不能である。さらには、第3リングギア33は第2キャリア24と一体的に回転するため、第3リングギア33も回転不能である。
 この状態において、遊星歯車式変速機100は、図31において太線で示すような経路で、動力を伝達する。まず、第1中間軸81が入力軸7と一体的に回転する。そして、第3サンギア31及び第4サンギア41が第1中間軸81と一体的に回転する。
 第3サンギア31の回転によって、各第3プラネタリギア32が自転するとともに公転する。そして、第3キャリア34が回転する。第4リングギア43は、第3キャリア34と一体的に回転する。
 第4リングギア43の回転、及び第4サンギア41の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図27に示すように、遊星歯車式変速機100の速度段を前進の第5速(F5)とする際は、第1クラッチ51をオン状態にするとともに、第3制動機構63をオン状態にする。すなわち、第4速(F4)と第5速(F5)との間の切り換えにおいて、第1クラッチ51はオン状態を維持している。なお、第1制動機構61、第2制動機構62、第4制動機構64、第2クラッチ52、及び第3クラッチ53は、オフ状態である。
 第1クラッチ51がオン状態になるため、第1中間軸81は入力軸7と一体的に回転する。また、第3制動機構63がオン状態になるため、第2リングギア23が回転不能となる。
 この状態において、遊星歯車式変速機100は、図32において太線で示すような経路で、動力を伝達する。まず、入力軸7と第1中間軸81とが互いに一体的に回転する。第2サンギア21が入力軸7と一体的に回転し、第3サンギア31及び第4サンギア41が第1中間軸81と一体的に回転する。
 第2サンギア21の回転によって、各第2プラネタリギア22は自転するとともに公転する。そして、第2キャリア24が回転する。第3リングギア33は、第2キャリア24と一体的に回転する。
 第3サンギア31の回転及び第3リングギア33の回転によって、各第3プラネタリギア32が自転するとともに公転する。そして、第3キャリア34が回転する。第4リングギア43は、第3キャリア34と一体的に回転する。
 第4リングギア43の回転、及び第4サンギア41の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図27に示すように、遊星歯車式変速機100の速度段を前進の第6速(F6)とする際は、第1クラッチ51をオン状態にするとともに、第2クラッチ52をオン状態にする。すなわち、第5速(F5)と第6速(F6)との間の切り換えにおいて、第1クラッチ51はオン状態を維持している。なお、第1~第4制動機構61~64、及び第3クラッチ53は、オフ状態である。
 第1クラッチ51がオン状態になるため、第1中間軸81は入力軸7と一体的に回転する。また、第2クラッチ52がオン状態になるため、第2中間軸82は入力軸7と一体的に回転する。
 この状態において、遊星歯車式変速機100は、図33において太線で示すような経路で、動力を伝達する。まず、入力軸7と第1中間軸81と第2中間軸82とが、互いに一体的に回転する。第3サンギア31及び第4サンギア41が第1中間軸81と一体的に回転する。第3キャリア34が第2中間軸82と一体的に回転する。第4リングギア43は第3キャリア34と一体的に回転する。
 第4サンギア41の回転、及び第4リングギア43の回転によって、各第4プラネタリギア42が公転する。なお、第4サンギア41と第4リングギア43とは、互いに同じ回転速度で回転するため、各第4プラネタリギア42は自転しない。このため、各第4プラネタリギア42は、第4サンギア41及び第4リングギア43と同じ回転速度で公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速されない回転速度を有する動力を出力する。すなわち、第6速の状態の遊星歯車式変速機100は、エンジン等からの動力の回転速度を変速しない。
 図27に示すように、遊星歯車式変速機100の速度段を前進の第7速(F7)とする際は、第2クラッチ52をオン状態にするとともに、第3制動機構63をオン状態にする。すなわち、第6速(F6)と第7速(F7)との間の切り換えにおいて、第2クラッチ52はオン状態を維持している。なお、第1制動機構61、第2制動機構62、第4制動機構64、第1クラッチ51、及び第3クラッチ53は、オフ状態である。
 第2クラッチ52がオン状態になるため、第2中間軸82は入力軸7と一体的に回転する。また、第3制動機構63がオン状態になるため、第2リングギア23は回転不能となる。
 この状態において、遊星歯車式変速機100は、図34において太線で示すような経路で、動力を伝達する。まず、入力軸7と第2中間軸82とが互いに一体的に回転する。第2サンギア21が、入力軸7と一体的に回転する。第3キャリア34が、第2中間軸82と一体的に回転する。
 第2サンギア21の回転によって、各第2プラネタリギア22は自転するとともに公転する。そして、第2キャリア24が回転する。第3リングギア33は、第2キャリア24と一体的に回転する。
 第3キャリア34の回転によって、各第3プラネタリギア32が公転する。また、第3リングギア33の回転、及び第3キャリア34の回転によって、各第3プラネタリギア32が自転する。この結果、第3サンギア31が回転する。
 第4サンギア41は、第3サンギア31と一体的に回転する。第4リングギア43は、第3キャリア34と一体的に回転する。この第4サンギア41の回転と第4リングギア43の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図27に示すように、遊星歯車式変速機100の速度段を前進の第8速(F8)とする際は、第2クラッチ52をオン状態にするとともに、第2制動機構62をオン状態にする。すなわち、第7速(F7)と第8速(F8)との間の切り換えにおいて、第2クラッチ52はオン状態を維持している。なお、第1制動機構61、第3制動機構63、第4制動機構64、第1クラッチ51、及び第3クラッチ53は、オフ状態である。
 第2クラッチ52がオン状態になるため、第2中間軸82は入力軸7と一体的に回転する。また、第2制動機構62がオン状態になるため、第1リングギア13は回転不能となる。第2キャリア24は第1リングギア13と一体的に回転するため、第2キャリア24も回転不能である。さらには、第3リングギア33は第2キャリア24と一体的に回転するため、第3リングギア33も回転不能である。
 この状態において、遊星歯車式変速機100は、図35において太線で示すような経路で、動力を伝達する。まず、第2中間軸82が入力軸7と一体的に回転する。そして、第3キャリア34が第2中間軸82と一体的に回転する。
 第3キャリア34の回転によって、各第3プラネタリギア32が公転するとともに自転する。そして、第3サンギア31が回転する。
 第4サンギア41は、第3サンギア31と一体的に回転する。第4リングギア43は、第3キャリア34と一体的に回転する。この第4サンギア41の回転と第4リングギア43の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図27に示すように、遊星歯車式変速機100の速度段を前進の第9速(F9)とする際は、第2クラッチ52をオン状態にするとともに、第1制動機構61をオン状態にする。すなわち、第8速(F8)と第9速(F9)との間の切り換えにおいて、第2クラッチ52はオン状態を維持している。なお、第2~第4制動機構62~64、第1クラッチ51、及び第3クラッチ53は、オフ状態である。
 第2クラッチ52がオン状態になるため、第2中間軸82は入力軸7と一体的に回転する。また、第1制動機構61がオン状態になるため、第1キャリア14は回転不能となる。
 この状態において、遊星歯車式変速機100は、図36において太線で示すような経路で、動力を伝達する。まず、第1サンギア11が入力軸7と一体的に回転する。第1サンギア11の回転によって、各第1プラネタリギア12が自転する。なお、上述したように第1キャリア14は回転できないため、各第1プラネタリギア12は公転しない。
 各第1プラネタリギア12の自転によって、第1リングギア13が回転する。第2キャリア24は第1リングギア13と一体的に回転する。
 第3リングギア33は、第2キャリア24と一体的に回転する。第3キャリア34が第2中間軸82と一体的に回転する。この結果、各第3プラネタリギア32は自転するとともに公転する。そして、第3サンギア31は回転する。
 第4リングギア43は、第3キャリア34と一体的に回転する。第4サンギア41は、第3サンギア31と一体的に回転する。第4リングギア43の回転、及び第4サンギア41の回転によって、各第4プラネタリギア42が自転しながら公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図27に示すように、遊星歯車式変速機100の速度段を後進の第1速(R1)とする際は、第3制動機構63をオン状態にするとともに、第4制動機構64をオン状態にする。なお、第1制動機構61、第2制動機構62、及び第1~第3クラッチ51~53は、オフ状態である。
 第3制動機構63がオン状態になるため、第2リングギア23が回転不能となる。また、第4制動機構64がオン状態になるため、第4リングギア43が回転不能となる。第3キャリア34は第4リングギア43と一体的に回転するため、第3キャリア34も回転不能となる。
 この状態において、遊星歯車式変速機100は、図37において太線で示すような経路で、動力を伝達する。まず、第2サンギア21が入力軸7と一体的に回転する。第2サンギア21の回転によって、各第2プラネタリギア22が自転するとともに公転する。そして第2キャリア24が回転する。
 第3リングギア33は、第2キャリア24と一体的に回転する。この第3リングギア33の回転によって、各第3プラネタリギア32が自転する。なお、第3キャリア34は回転不能であるため、各第3プラネタリギア32は公転しない。
 各第3プラネタリギア32の自転によって、第3サンギア31が回転する。第4サンギア41は、第3サンギア31と一体的に回転する。第4サンギア41の回転によって、各第4プラネタリギア42は自転するとともに公転する。この結果、第4キャリア44が回転し、第4キャリア44は、変速された回転速度を有する動力を出力する。
 図27に示すように、遊星歯車式変速機100の速度段を後進の第2速(R2)とする際は、第3クラッチ53をオン状態にするとともに、第1制動機構61をオン状態にする。なお、第2~第4制動機構62~64、第1クラッチ51、及び第2クラッチ52は、オフ状態である。
 第3クラッチ53がオン状態になるため、第3キャリア34は第3リングギア33と一体的に回転する。また、第1制動機構61がオン状態になるため、第1キャリア14が回転不能となる。
 この状態において、遊星歯車式変速機100は、図38において太線で示すような経路で、動力を伝達する。まず、第1サンギア11が入力軸7と一体的に回転する。そして、各第1プラネタリギア12が自転し、第1リングギア13が回転する。なお、第1キャリア14が回転不能なため、各第1プラネタリギア12は公転しない。
 第2キャリア24は、第1リングギア13と一体的に回転する。そして、第3リングギア33は、第2キャリア24と一体的に回転する。第3キャリア34は、第3リングギア33と一体的に回転する。このため、各第3プラネタリギア32は、自転せずに公転する。そして、第3サンギア31が回転する。すなわち、第3サンギア31、第3リングギア33、及び第3キャリア34は、互いに一体的に回転する。
 第4サンギア41は、第3サンギア31と一体的に回転する。第4リングギア43は、第3キャリア34と一体的に回転する。この第4サンギア41及び第4リングギア43の回転によって、各第4プラネタリギア42は自転せずに公転する。そして、第4キャリア44が回転する。すなわち、第1サンギア41、第4リングギア43、及び第4キャリア44は、互いに一体的に回転する。この結果、第4キャリア44は、変速された回転速度を有する動力を出力する。
 次に、上述した各速度段における減速比の求め方について説明する。各速度段における減速比は、以下の第1~第4関係式の少なくとも1つを用いて求める。
 第1関係式は、第1遊星歯車機構1に関する式であり、以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000009
 ここで、sは第1サンギア11の歯数、rは第1リングギア13の歯数、Ns1は第1サンギア11の回転数比、Nr1は第1リングギア13の回転数比、Nc1は第1キャリア14の回転数比である。
 第2関係式は、第2遊星歯車機構2に関する式であり、以下の式(2)で表される。
Figure JPOXMLDOC01-appb-M000010
 ここで、sは第2サンギア21の歯数、rは第2リングギア23の歯数、Ns2は第2サンギア21の回転数比、Nr2は第2リングギア23の回転数比、Nc2は第2キャリア24の回転数比である。
 第3関係式は、第3遊星歯車機構3に関する式であり、以下の式(3)で表される。
Figure JPOXMLDOC01-appb-M000011
 ここで、sは第3サンギア31の歯数、rは第3リングギア33の歯数、Ns3は第3サンギア31の回転数比、Nr3は第3リングギア33の回転数比、Nc3は第3キャリア34の回転数比である。
 第4関係式は、第4遊星歯車機構4に関する式であり、以下の式(4)で表される。
Figure JPOXMLDOC01-appb-M000012
 ここで、sは第4サンギア41の歯数、rは第4リングギア43の歯数、Ns4は第4サンギア41の回転数比、Nr4は第4リングギア43の回転数比、Nc4は第4キャリア44の回転数比である。
 まず、前進の第1速における減速比の求め方を説明する。第1遊星歯車機構1における第1リングギア13の回転数比Nr1を、第1関係式から求める。なお、第1サンギア11は入力軸8と一体的に回転するため、第1サンギア11の回転数比Ns1は1である。また、第1キャリア14は回転しないため、第1キャリア14の回転数比Nc1は0である。
 次に、第3遊星歯車機構における第3サンギア31の回転数比Ns3を、第3関係式から求める。なお、第3リングギア33は第1リングギア13と一体的に回転するため、第3リングギア33の回転数比Nr3は、第1リングギア13の回転数比Nr1と同じである。また、第3キャリア34は回転しないため、第3キャリア34の回転数比Nc3は0である。
 次に、第4遊星歯車機構における第4キャリア44の回転数比Nc4を、第4関係式から求める。なお、第4サンギア41は第3サンギア31と一体的に回転するため、第4サンギア41の回転数比Ns4は、第3サンギア31の回転数比Ns3と同じである。また、第4リングギア43は回転しないため、第4リングギア43の回転数比Nr4は0である。
 以上のようにして求めた、第4キャリア44の回転数比Nc4の逆数が遊星歯車式変速機100の減速比となる。例えば、第1サンギア11の歯数が30、第2サンギア21の歯数が57、第3サンギア31の歯数が48、第4サンギア41の歯数が30であり、第1~第4リングギア13、23、33、43の歯数がそれぞれ90であるとき、前進の第1速の減速比は約6.4である。なお、同様に、各速度段において求められた減速比を図2に示す。
 前進の第2速では、第4関係式によって、第4キャリア44の回転数比Nc4を求める。これによって、前進の第2速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は1であり、第4リングギア43の回転数比Nr4は0である。
 前進の第3速では、第1関係式によって、第1リングギア13の回転数比Nr1を求める。なお、第1サンギア11の回転数比Ns1は1であり、第1キャリア14の回転数比Nc1は0である。
 次に、第3関係式によって、第3キャリア34の回転数比Nc3を求める。なお、第3サンギア31の回転数比Ns3は1であり。第3リングギア33の回転数比Nr3は第1リングギア13の回転数比Nr1と同じである。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第3速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は1であり、第4リングギア43の回転数比Nr4は、第3キャリア34の回転数比Nc3と同じである。
 前進の第4速では、第3関係式によって、第3キャリア34の回転数比Nc3を求める。なお、第3サンギア31の回転数比Ns3は1であり、第3リングギア33の回転数比Nr3は0である。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第4速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は1であり、第4リングギア43の回転数比Nr4は第3キャリア34の回転数比Nc3と同じである。
 前進の第5速では、第2関係式によって、第2キャリア24の回転数比Nc2を求める。なお、第2サンギア21の回転数比Ns2は1であり、第2リングギア23の回転数比Nr2は0である。
 次に、第3関係式によって、第3キャリア34の回転数比Nc3を求める。なお、第3サンギア31の回転数比Ns3は1であり、第3リングギア33の回転数比Nr3は第2キャリア24の回転数比Nc2と同じである。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第5速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は1であり、第4リングギア43の回転数比Nr4は第3キャリア34の回転数比Nc3と同じである。
 前進の第6速では、上述したように変速は行われない。
 前進の第7速では、第2関係式によって、第2キャリア24の回転数比Nc2を求める。なお、第2サンギア21の回転数比Ns2は1であり、第2リングギア23の回転数比Nr2は0である。
 次に、第3関係式によって、第3サンギア31の回転数比Ns3を求める。なお、第3キャリア34の回転数比Nc3は1であり、第3リングギア33の回転数比Nr3は第2キャリア24の回転数比Nc2と同じである。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第7速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は第3サンギア31の回転数比Ns3と同じであり、第4リングギア43の回転数比Nr4は1である。
 前進の第8速では、第3関係式によって、第3サンギア31の回転数比Ns3を求める。なお、第3キャリア34の回転数比Nc3は1であり、第3リングギア33の回転数比Nr3は0である。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第8速における減速比が求められる。なお、第4サンギア41の回転数比Ns4は第3サンギア31の回転数比Ns3と同じであり、第4リングギア43の回転数比Nr4は1である。
 前進の第9速では、第1関係式によって、第1リングギア13の回転数比Nr1を求める。なお、第1サンギア11の回転数比Ns1は1であり、第1キャリア14の回転数比Nc1は0である。
 次に、第3関係式によって、第3サンギア31の回転数比Ns3を求める。なお、第3キャリア34の回転数比Nc3は1であり、第3リングギア33の回転数比Nr3は第1リングギア13の回転数比Nr1と同じである。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、前進の第9速における減速比が求められる。なお、第4リングギア43の回転数比Nr4は1であり、第4サンギア41の回転数比Ns4は第3サンギア31の回転数比Ns3と同じである。
 後進の第1速では、第2関係式によって、第2キャリア24の回転数比Nc2を求める。なお、第2サンギア21の回転数比Ns2は1であり、第2リングギア23の回転数比Nr2は0である。
 次に、第3関係式によって、第3サンギア31の回転数比Ns3を求める。なお、第3キャリア34の回転数比Nc3は0であり、第3リングギア33の回転数比Nr3は第2キャリア24の回転数比Nc2と同じである。
 次に、第4関係式によって、第4キャリア44の回転数比Nc4を求める。この結果、後進の第1速における減速比が求められる。なお、第4リングギア43の回転数比Nr4は0であり、第4サンギア41の回転数比Ns4は第3サンギア31の回転数比Ns3と同じである。
 後進の第2速では、第1関係式によって、第1リングギア13の回転数比Nr1を求める。なお、第1サンギア11の回転数比Ns1は1であり、第1キャリア14の回転数比Nc1は0である。
 第4キャリア44の回転数比Nc4は、第1リングギア13の回転数比Nr1と同じである。この結果、後進の第2速における減速比が求められる。
 以上のように、各実施形態に係る遊星歯車式変速機によれば、後進において2段の速度段を有することができる。
 [変形例]
 以上、本発明の各実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。例えば、上記実施形態では、第2クラッチ52が、第2中間軸を介して入力軸7と第3キャリア34とを連結するように構成されているが、特にこれに限定されない。すなわち、第2クラッチ52は、入力軸7と第3キャリア34とを直接連結するように構成されていてもよい。
 また、上記各実施形態では、第2制動機構62は第1リングギア13の回転を制動するように構成されているが、第2制動機構62は、第1リングギア13、第2キャリア24、及び第3リングギア33の少なくとも1つの回転を制動するように構成されていればよい。例えば、図39に示すように、第2制動機構62は、第3リングギア33の回転を制動するように構成されていてもよい。なお、第1リングギア13、第2キャリア24、及び第3リングギア33は、一体的に回転する。このため、各実施形態において第2制動機構62を第2キャリア24又は第3リングギア33の回転を制動するように構成しても、遊星歯車式変速機の動作、すなわち、各速度段にするときの各クラッチ及び各制動機構のオンオフ状態、並びに動力伝達経路などは、上記各実施形態で説明したものと同じである。
 1  第1遊星歯車機構
 11  第1サンギア
 12  第1プラネタリギア
 13  第1リングギア
 14  第1キャリア
 2  第2遊星歯車機構
 21  第2サンギア
 22  第2プラネタリギア
 23  第2リングギア
 24  第2キャリア
 3  第3遊星歯車機構
 31  第3サンギア
 32  第3プラネタリギア
 33  第3リングギア
 34  第3キャリア
 4  第4遊星歯車機構
 41  第4サンギア
 42  第4プラネタリギア
 43  第4リングギア
 44  第4キャリア
 51  第1クラッチ
 52  第2クラッチ
 53  第3クラッチ
 61  第1制動機構
 62  第2制動機構
 63  第3制動機構
 7  入力軸
 81  第1中間軸
 82  第2中間軸
 9  ケーシング
 100  遊星歯車式変速機
 

Claims (10)

  1.  回転軸を中心に回転するように構成された入力軸と、
     前記回転軸を中心に回転するように構成された第1中間軸と、
     前記入力軸と一体的に回転するように構成された第1サンギア、第1プラネタリギア、第1リングギア、及び第1キャリア、を有する第1遊星歯車機構と、
     前記入力軸と一体的に回転するように構成された第2サンギア、第2プラネタリギア、第2リングギア、及び前記第1リングギアと一体的に回転するように構成された第2キャリア、を有する第2遊星歯車機構と、
     前記第1中間軸と一体的に回転するように構成された第3サンギア、第3プラネタリギア、前記第2キャリアと一体的に回転するように構成された第3リングギア、及び第3キャリア、を有する第3遊星歯車機構と、
     前記第1中間軸と一体的に回転するように構成された第4サンギア、第4プラネタリギア、前記第3キャリアと一体的に回転するように構成された第4リングギア、及び動力を出力するように構成された第4キャリア、を有する第4遊星歯車機構と、
     前記入力軸と前記第1中間軸とを連結するように構成された第1クラッチと、
     前記入力軸と前記第3キャリアとを連結するように構成された第2クラッチと、
     前記入力軸と前記第1キャリアとを連結するように構成された第3クラッチと、
     前記第1キャリアの回転を制動するように構成された第1制動機構と、
     前記第1リングギア、前記第2キャリア、及び前記第3リングギアの少なくとも1つの回転を制動するように構成された第2制動機構と、
     前記第2リングギアの回転を制動するように構成された第3制動機構と、
     前記第4リングギアの回転を制動するように構成された第4制動機構と、
    を備える、遊星歯車式変速機。
  2.  回転軸を中心に回転するように構成された入力軸と、
     前記回転軸を中心に回転するように構成された第1中間軸と、
     前記入力軸と一体的に回転するように構成された第1サンギア、第1プラネタリギア、第1リングギア、及び第1キャリア、を有する第1遊星歯車機構と、
     前記入力軸と一体的に回転するように構成された第2サンギア、第2プラネタリギア、第2リングギア、及び前記第1リングギアと一体的に回転するように構成された第2キャリア、を有する第2遊星歯車機構と、
     前記第1中間軸と一体的に回転するように構成された第3サンギア、第3プラネタリギア、前記第2キャリアと一体的に回転するように構成された第3リングギア、及び第3キャリア、を有する第3遊星歯車機構と、
     前記第1中間軸と一体的に回転するように構成された第4サンギア、第4プラネタリギア、前記第3キャリアと一体的に回転するように構成された第4リングギア、及び動力を出力するように構成された第4キャリア、を有する第4遊星歯車機構と、
     前記入力軸と前記第1中間軸とを連結するように構成された第1クラッチと、
     前記入力軸と前記第3キャリアとを連結するように構成された第2クラッチと、
     前記第1キャリアと前記第1リングギアとを連結するように構成された第3クラッチと、
     前記第1キャリアの回転を制動するように構成された第1制動機構と、
     前記第1リングギア、前記第2キャリア、及び前記第3リングギアの少なくとも1つの回転を制動するように構成された第2制動機構と、
     前記第2リングギアの回転を制動するように構成された第3制動機構と、
     前記第4リングギアの回転を制動するように構成された第4制動機構と、
    を備える、遊星歯車式変速機。
  3.  回転軸を中心に回転するように構成された入力軸と、
     前記回転軸を中心に回転するように構成された第1中間軸と、
     前記入力軸と一体的に回転するように構成された第1サンギア、第1プラネタリギア、第1リングギア、及び第1キャリア、を有する第1遊星歯車機構と、
     前記入力軸と一体的に回転するように構成された第2サンギア、第2プラネタリギア、第2リングギア、及び前記第1リングギアと一体的に回転するように構成された第2キャリア、を有する第2遊星歯車機構と、
     前記第1中間軸と一体的に回転するように構成された第3サンギア、第3プラネタリギア、前記第2キャリアと一体的に回転するように構成された第3リングギア、及び第3キャリア、を有する第3遊星歯車機構と、
     前記第1中間軸と一体的に回転するように構成された第4サンギア、第4プラネタリギア、前記第3キャリアと一体的に回転するように構成された第4リングギア、及び動力を出力するように構成された第4キャリア、を有する第4遊星歯車機構と、
     前記入力軸と前記第1中間軸とを連結するように構成された第1クラッチと、
     前記入力軸と前記第3キャリアとを連結するように構成された第2クラッチと、
     前記第3リングギアと前記第3キャリアとを連結するように構成された第3クラッチと、
     前記第1キャリアの回転を制動するように構成された第1制動機構と、
     前記第1リングギア、前記第2キャリア、及び前記第3リングギアの少なくとも1つの回転を制動するように構成された第2制動機構と、
     前記第2リングギアの回転を制動するように構成された第3制動機構と、
     前記第4リングギアの回転を制動するように構成された第4制動機構と、
    を備える、遊星歯車式変速機。
  4.  前記入力軸は、中空状であり、
     前記第1中間軸は、前記入力軸内に配置される、
    請求項1から3のいずれかに記載の遊星歯車式変速機。
  5.  前記入力軸と前記第1中間軸との間に配置され、前記第3キャリアと一体的に回転するように構成された第2中間軸をさらに備える、
    請求項4に記載の遊星歯車式変速機。
  6.  前記第4キャリアと一体的に回転するように構成された出力軸をさらに備える、
    請求項1から5のいずれかに記載の遊星歯車式変速機。
  7.  前記第1遊星歯車機構、第2遊星歯車機構、第3遊星歯車機構、第4遊星歯車機構は、前記回転軸方向に沿って、この順に配置される、
    請求項1から6のいずれかに記載の遊星歯車式変速機。
  8.  前記各遊星歯車機構を収容するケーシングをさらに備え、
     前記回転軸の径方向において、前記第3クラッチと前記ケーシングとの間にスペースが形成される、
    請求項1から7のいずれかに記載の遊星歯車式変速機。
  9.  前記第2制動機構は、前記第1リングギアの径方向外側に配置され、
     前記第1制動機構は、前記回転軸方向において、前記第2制動機構よりも入力側に配置され、
     前記第3クラッチは、前記回転軸方向において、前記第1制動機構と前記第2制動機構との間に配置される、
    請求項8に記載の遊星歯車式変速機。
  10.  前記第3クラッチは、前記回転軸方向において、前記第3遊星歯車機構と前記第4遊星歯車機構との間に配置される、
    請求項8に記載の遊星歯車式変換機。
PCT/JP2015/066054 2014-08-05 2015-06-03 遊星歯車式変速機 WO2016021292A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-159613 2014-08-05
JP2014159613A JP2017160919A (ja) 2014-08-05 2014-08-05 遊星歯車式変速機

Publications (1)

Publication Number Publication Date
WO2016021292A1 true WO2016021292A1 (ja) 2016-02-11

Family

ID=55263570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066054 WO2016021292A1 (ja) 2014-08-05 2015-06-03 遊星歯車式変速機

Country Status (2)

Country Link
JP (1) JP2017160919A (ja)
WO (1) WO2016021292A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107542862A (zh) * 2016-06-27 2018-01-05 现代自动车株式会社 用于车辆的自动变速器的行星齿轮系

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134048A (en) * 1981-09-11 1982-08-19 Aisin Seiki Co Ltd Speed change gear
JPH04285347A (ja) * 1991-03-14 1992-10-09 Nissan Motor Co Ltd 遊星歯車変速機構
JPH0678778B2 (ja) * 1986-02-27 1994-10-05 ゼネラル モ−タ−ズ コ−ポレ−シヨン 変速機歯車装置
JPH08121555A (ja) * 1994-10-20 1996-05-14 Jatco Corp 遊星歯車式変速装置
JP2003510539A (ja) * 1999-09-28 2003-03-18 キャタピラー インコーポレイテッド 前進9速および後退1速のギヤ比を提供する4つの遊星歯車セットを備えた変速機アセンブリ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134048A (en) * 1981-09-11 1982-08-19 Aisin Seiki Co Ltd Speed change gear
JPH0678778B2 (ja) * 1986-02-27 1994-10-05 ゼネラル モ−タ−ズ コ−ポレ−シヨン 変速機歯車装置
JPH04285347A (ja) * 1991-03-14 1992-10-09 Nissan Motor Co Ltd 遊星歯車変速機構
JPH08121555A (ja) * 1994-10-20 1996-05-14 Jatco Corp 遊星歯車式変速装置
JP2003510539A (ja) * 1999-09-28 2003-03-18 キャタピラー インコーポレイテッド 前進9速および後退1速のギヤ比を提供する4つの遊星歯車セットを備えた変速機アセンブリ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107542862A (zh) * 2016-06-27 2018-01-05 现代自动车株式会社 用于车辆的自动变速器的行星齿轮系
CN107542862B (zh) * 2016-06-27 2021-02-05 现代自动车株式会社 用于车辆的自动变速器的行星齿轮系

Also Published As

Publication number Publication date
JP2017160919A (ja) 2017-09-14

Similar Documents

Publication Publication Date Title
WO2015108028A1 (ja) 多段変速機
WO2013146247A1 (ja) 自動変速機
WO2018163948A1 (ja) ハイブリッド車両用トランスミッション
JP2019049285A (ja) 自動変速機
WO2013146032A1 (ja) 自動変速機装置
JP2013072464A (ja) 自動変速機装置
WO2016021293A1 (ja) 遊星歯車式変速機
WO2016175287A1 (ja) 変速装置
JP6054002B2 (ja) 遊星歯車式変速機
JP6215775B2 (ja) 多段変速機
WO2017134950A1 (ja) 遊星歯車式変速機
WO2016021292A1 (ja) 遊星歯車式変速機
JP2017137890A (ja) 遊星歯車式変速機
JP2009156297A (ja) 車両用自動変速機
JP6802743B2 (ja) 変速機
JP6184364B2 (ja) 多段変速機
WO2017142060A1 (ja) 動力伝達装置
JP2009144797A (ja) 車両用自動変速機
JP2018168930A (ja) 変速機
JP2017137892A (ja) 遊星歯車式変速機
JP2017172717A (ja) 自動変速機
JP6788538B2 (ja) 変速機
JP6802744B2 (ja) 変速機
JP2017137891A (ja) 遊星歯車式変速機
JP6107579B2 (ja) 自動変速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15829497

Country of ref document: EP

Kind code of ref document: A1