WO2015181933A1 - Memory module, memory bus system, and computer system - Google Patents

Memory module, memory bus system, and computer system Download PDF

Info

Publication number
WO2015181933A1
WO2015181933A1 PCT/JP2014/064332 JP2014064332W WO2015181933A1 WO 2015181933 A1 WO2015181933 A1 WO 2015181933A1 JP 2014064332 W JP2014064332 W JP 2014064332W WO 2015181933 A1 WO2015181933 A1 WO 2015181933A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
signal
module
sdram
flash memory
Prior art date
Application number
PCT/JP2014/064332
Other languages
French (fr)
Japanese (ja)
Inventor
雅行 本間
大志 隅倉
諭 村岡
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/064332 priority Critical patent/WO2015181933A1/en
Publication of WO2015181933A1 publication Critical patent/WO2015181933A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/06Addressing a physical block of locations, e.g. base addressing, module addressing, memory dedication

Definitions

  • the present invention relates to a memory module, a memory bus system, and a computer system in which a plurality of storage devices having different power supply voltage specifications are mounted on a substrate.
  • DRAM Dynamic Random Access Memorory
  • SDRAM Synchronous DRAM
  • TSV Through Silicon Via
  • PCIe Peripheral Component Interconnect Express
  • SSD Solid State Drive
  • An OS (Operating System) technology that enables applications to use SSDs as a virtual large memory space has also been developed.
  • DIMM dual-inline memory module
  • a non-volatile NAND flash as in Patent Document 1
  • a DIMM equipped with a plurality of devices hereinafter referred to as a prior art DIMM
  • a method of transmitting and receiving data to and from a NAND flash device by cable transmission using a serial interface has been proposed.
  • a technique related to a memory unit including a system memory controller coupled to a plurality of memory clock oscillators and a plurality of respective voltage controllers has been proposed (see Patent Document 2).
  • NAND flash device signal and power supply voltage specifications are different from SDRAM DIMM signal and power supply voltage specifications.
  • a NAND flash device is mounted on the DIMM board in addition to SDRAM, CPU (Central Processing Unit) and SDRAM It is not possible to directly connect the NAND flash device and the CPU by using the substrate wiring of the memory bus connected to the. For this reason, in the DIMM as the prior art, in addition to the CPU, a SAS controller for controlling the NAND flash device is mounted on the DIMM board. A new cable is arranged around the CPU instead of the memory bus.
  • the SDRAM-DIMM and the prior art DIMM require different voltages, and thus cannot share DC-DC.
  • the voltage difference from the SDRAM DIMM is eliminated on the DIMM.
  • DC-DC with higher output voltage than SDRAM DC-DC is installed as DC-DC for supplying power to NAND flash devices.
  • the DIMM size increases and physical mounting restrictions on the board occur.
  • a general DC-DC converter has a power efficiency of about 90%, if a DC-DC having a higher output voltage than a DC-DC for SDRAM is installed, the power required by a NAND flash device is higher than that originally required. About 10% extra power is required, resulting in an increase in power consumption.
  • the cost increases with the addition of DC-DC and cables.
  • An object of the present invention is to provide a memory module, a memory bus system, and a computer system that can share a power supply unit that supplies power to a power supply destination even if the voltage specification of the power supply destination is switched depending on the type of the power supply destination. It is to provide.
  • the present invention supplies power to a flash memory on a flash memory module or an SDRAM on an SDRAM module via a module socket, and the first controller or A power supply unit configured to supply power to the second controller, wherein the power supply unit determines type information for specifying a type of the module mounted on the module socket and a type of the controller mounted on the controller socket; Two or more different output voltages are selected from a plurality of different output voltages according to the determination result, and each selected output voltage is applied to the flash memory on the flash memory module or the SDRAM on the SDRAM module. And the first co And applying to the controller or the second controller.
  • the power supply unit that supplies power to the power supply destination can be shared.
  • FIG. 3 is a configuration diagram in the case where two board modules mounted with three packages of flash memory are connected to an SSD controller by a bus. It is a block diagram of the table which shows pin arrangement of the module for SDRAM and the module for flash memory. It is a block diagram of a voltage control switching register map. It is a block diagram of an I / O expander register map. It is a flowchart for demonstrating the process of a control microcomputer.
  • FIG. 1 is a configuration diagram showing an embodiment of a system board on which a CPU and an SSD controller are mounted.
  • a system board 101 is configured as a board on which a plurality of storage devices having different signal and power supply voltage specifications are mounted, and various devices constituting a computer system or a memory bus system are provided on the system board 101. It is installed.
  • auxiliary power supply 102 For example, on the system board 101, an auxiliary power supply 102, a voltage switching control register 103, a control microcomputer 104, an I / O expander ( Expander) 105 and main power supply 106 are mounted, auxiliary power supply 102 is connected to voltage switching control register 103, control microcomputer 104 and I / O expander 105, and control microcomputer 104 receives voltage via I2C bus 107.
  • the switching control register 103 and the I / O expander 105 are connected.
  • the CPU socket 122 includes, for example, an SSD controller 130 as a first controller (control device) that controls a storage device and an arithmetic unit.
  • a CPU 131 is mounted in 123 as a second controller (control device) that controls the storage device and an arithmetic unit.
  • the CPU socket 122 may be equipped with a CPU 131 as a control device for controlling the storage device. Also, a part of the SSD controller 130 or the CPU 131 can be used as an input / output interface.
  • SDRAM DIMM (hereinafter referred to as an SDRAM module) or NAND flash device DIMM (hereinafter referred to as a flash memory module) is mounted on the module sockets 124 to 126 as the modules 132 to 134. ... Are mounted with SDRAM or NAND flash devices (hereinafter referred to as flash memories) as storage devices or storage devices.
  • the module sockets 127 to 129 include, for example, SDRAM DIMMs (SDRAM modules) as the modules 135 to 137, and the modules 135 to 137 include, for example, SDRAMs as storage devices or storage devices. .
  • the voltage switching DC-DC converters 108 to 121 are connected to the main power source 106, respectively.
  • the voltage switching DC-DC converter 108 applies a voltage of 0.9 V or 1.0 V to the power supply core unit of the control device mounted on the CPU socket 122. 138 is powered.
  • the voltage switching DC-DC converters 109, 111, and 113 apply a voltage of 1.35V or 1.8V to the control device mounted on the CPU socket 122. Power is supplied to power supply I / O units 140 to 142 and power supply I / O units 152 to 154 of storage devices mounted in the modules 132 to 134.
  • the voltage switching DC-DC converters 110, 112, and 114 In response to the control signal from the I / O expander 105, the voltage switching DC-DC converters 110, 112, and 114 generate a voltage of 1.35V or 3.3V of the storage devices mounted on the modules 132 to 134, respectively. Power is supplied to the power supply core units 146 to 148.
  • the voltage switching DC-DC converter 115 supplies a fixed voltage of 0.9 V to the power supply core unit 139 of the control device mounted on the CPU socket 123.
  • the voltage switching DC-DC converters 116, 118, and 120 are mounted with a fixed voltage of 1.35 V on the I / O units 143 to 145 and the modules 135 to 137 of the control device mounted on the CPU socket 123. Power is supplied to the power supply I / O units 155 to 157 of the storage device.
  • the voltage switching DC-DC converters 117, 119, and 121 supply the fixed voltage of 1.35 V to the power supply core units 149 to 151 of the storage devices mounted on the modules 135 to 137, respectively.
  • the control device mounted on the CPU socket 122 and the control device mounted on the CPU socket 123 are connected via the CPU bus 158.
  • the voltage switching control register 103 is built in the CPU board setting memory (EEPROM) 165, and the voltage switching control register 103 stores information recorded in the voltage control switching register map.
  • the control microcomputer 107 is a computer device having information processing resources such as a CPU, a memory, and an input / output interface.
  • the control microcomputer 107 drives the main power supply 106 by the main power supply control signal 166 and also stores the voltage stored in the voltage switching control register 103.
  • information for controlling the voltage switching DC-DC converters 106 to 114 is acquired from the voltage switching control register 103, and the acquired information is stored in the register of the I / O expander 105. Store.
  • the output voltage of the voltage switching DC-DC converter 108 is managed according to the type of the control device (controller) mounted on the CPU socket 122, and the output voltages of the voltage switching DC-DC converters 109, 111, 113 are
  • the output voltages of the voltage switching DC-DC converters 110, 112, and 114 are managed according to the type of the modules 132 to 134 (or storage devices mounted on the modules 132 to 134) mounted in the module sockets 124 to 126. Management is performed according to the types of modules 132 to 134 (or storage devices mounted to the modules 132 to 134) mounted on the 124 to 126.
  • the I / O expander 105 outputs a control signal for controlling the voltage switching DC-DC converters 108 to 114 to the voltage switching DC-DC converters 108 to 114 based on the information stored in the register, and the voltage switching DC-DC. Control the output voltage of the DC converters 108-114.
  • the main power supply 106 is driven by a main power supply control signal 166 from the control microcomputer 107 and supplies power to the voltage switching DC-DC converters 108 to 121.
  • FIG. 2 is a block diagram of the SSD controller.
  • the SSD controller 130 is mounted on a CPU socket 122, and includes a CPU bus controller 191, a plurality of flash memory controllers (FMC) 192, an internal bus 194, and a control core (CPU core) 195.
  • the CPU bus controller 191 is connected to a CPU bus 158
  • each flash memory controller (FMC) 192 is connected to a plurality of module sockets 124 to 126 via memory buses 159 to 161, respectively.
  • the module socket 124 is mounted with a flash memory module 132A
  • the module socket 125 is mounted with a flash memory module 133A
  • the module socket 126 is mounted with a flash memory module 134A.
  • Each flash memory module 132A, 133A, 134A is equipped with a flash memory as a storage device.
  • the CPU bus controller 191 controls the CPU bus 158, exchanges data with the CPU 131 in the CPU socket 123 via the CPU bus 158, and communicates with the control core 195 and each flash memory controller 192 via the internal bus 194. Send and receive data.
  • Each flash memory controller 192 controls input / output of data to / from each flash memory via the memory buses 159 to 161.
  • the control core 195 converts a physical address and a logical address of the memory, and converts a data transmission request from the CPU bus 158 into an access to each flash memory controller 192.
  • the SSD controller 130 is composed of an FPGA (Field Programmable Gate Array) and is a flash memory module connected to the memory buses 159 to 161 in order to change the SDRAM capacity required for the system and the flash memory capacity.
  • the setting for mounting 132A, 133A, and 134A and the setting for mounting the SDRAM module can be switched. Further, the SSD controller 130 can be configured with the same specifications as the SSD of PCI connection from the system. For this reason, the software operating on the control core (CPU core) 195 has the same function as a pseudo PCI device, and can be used by a user with a standard PCI-SSD device driver.
  • the CPU 131 mounted in the CPU socket 122 is configured as a computer device having information processing resources such as a control core, a memory, and an input / output interface.
  • information processing resources such as a control core, a memory, and an input / output interface.
  • the CPU 131 is used. Controls input / output of data to / from SDRAM on the module.
  • FIG. 3 is a circuit diagram of the voltage switching DC-DC converter.
  • the voltage switching DC-DC converter 108 includes a DC-DC converter 201, a voltage adjustment circuit 202, and resistors 203 and 204.
  • the voltage adjustment circuit 202 includes AND logic components 205 and 206, and FETs. It consists of switches 207 and 208.
  • the switching DC-DC converters 109 to 114 have the same configuration as the voltage switching DC-DC converter 108 except that the resistance values of the resistors 203 and 204 are different.
  • the DC-DC converter 201 converts the DC voltage from the main power supply 106 into a DC voltage, and outputs the converted DC voltage to the CPU socket 122 from the output terminal (OUT).
  • a resistor 203 or a resistor 204 is connected to an adjustment pin (ADJ) 209 of the DC-DC converter 201 via an FET switch 207 or 208.
  • An AND logic component 205 is connected to the gate of the FET switch 207, an AND logic component 206 is connected to the gate of the FET switch 208, and each AND logic component 205, 206 is connected to the EN ( An enable signal 210 and a SEL (select) signal 211 are input.
  • the FET switch 207 When the level of the EN signal 210 is “H” and the level of the SEL signal 211 is “H”, the FET switch 207 is turned off, the FET switch 208 is turned on, and the adjustment pin (ADJ) of the DC-DC converter 201 is turned on.
  • a resistor 204 having a resistance value RB larger than the resistance value RA is connected to 209, and the voltage of the output terminal (OUT) of the DC-DC converter 201 becomes 1.0V.
  • the FET switch 207 is turned on, the FET switch 208 is turned off, and the adjustment pin ( ADJ) 209 is connected to a resistor 203 having a resistance value RA smaller than the resistance value RB, and the voltage of the output terminal (OUT) of the DC-DC converter 201 becomes 0.9V.
  • the output voltage of the DC-DC converter 201 is determined by the resistance value of the resistor 203 or the resistor 204 connected to the adjustment pin (ADJ) 209 of the DC-DC converter 201 via the FET switch 207 or 208.
  • FIG. 4 is a configuration diagram of a voltage switching DC-DC converter management table.
  • the voltage switching DC-DC converter management table 300 shows the output level of the I / O expander 105 and the voltage switching DC-DC converter 108 according to the control device mounted on the CPU socket 122. It is a table for managing output voltages, and includes a mounted device 301, an EN (signal) 302, a SEL (signal) 303, an R (resistance) 304, and a VOUT (output voltage) 305.
  • the level of the EN signal 210 is “L”
  • the level of the SEL signal 211 is “N / AL”
  • the adjustment pin (ADJ) 209 of the DC-DC converter 201 is applied. Is connected to a resistor (open) having an infinite resistance value, and the voltage of the output terminal (OUT) of the voltage switching DC-DC converter 108 becomes 0V.
  • the level of the EN signal 210 is “H”
  • the level of the SEL signal 211 is “L”
  • the adjustment pin (ADJ) 209 of the DC-DC converter 201 is set. Is connected to a resistor 203 having a resistance value RA, and the voltage of the output terminal (OUT) of the voltage switching DC-DC converter 108 becomes 0.9V.
  • the level of the EN signal 210 is “H”
  • the level of the SEL signal 211 is “H”
  • the adjustment pin (ADJ) of the DC-DC converter 201 is set.
  • 209 is connected to a resistor 204 having a resistance value RB, and the voltage of the output terminal (OUT) of the voltage switching DC-DC converter 108 becomes 1.0V.
  • the voltage switching DC-DC converter management table 310 shows the output level and the output level of the I / O expander 105 according to the modules (devices mounted on the modules) mounted on the module sockets 124 to 126.
  • the level of the EN signal 210 is “L”
  • the level of the SEL signal 211 is “N / AL”
  • the adjustment pin (ADJ) of the DC-DC converter 201 is ) 209 is connected to a resistor (open) having an infinite resistance value, and the voltage at the output terminal (OUT) of the voltage switching DC-DC converters 110, 112, 114 becomes 0V.
  • the level of the EN signal 210 is “H” and the level of the SEL signal 211 is “L”.
  • the resistor 203 having the resistance value RA is connected to the adjustment pin (ADJ) 209 of the DC-DC converter 201, and the voltage at the output terminal (OUT) of the voltage switching DC-DC converters 110, 112, 114 is 1. 35V.
  • the level of the EN signal 210 is “H” and the level of the SEL signal 211 is “ H ”, the resistor 204 having the resistance value RB is connected to the adjustment pin (ADJ) 209 of the DC-DC converter 201, and the voltage of the output terminal (OUT) of the voltage switching DC-DC converters 110, 112, 114 is 3.3V.
  • the voltage switching DC-DC converter management table 320 shows the output level of the I / O expander 105 according to the modules (storage devices mounted on the modules) mounted on the module sockets 124 to 126. And a table for managing output voltages of the voltage-switching DC-DC converters 109, 111, and 113, including a mounted device 321, an EN (signal) 322, a SEL (signal) 323, and an R (resistance) 324. , VOUT (output voltage) 325.
  • the level of the EN signal 210 is “L”
  • the level of the SEL signal 211 is “N / AL”
  • the adjustment pin (ADJ) of the DC-DC converter 201 is ) 209 is connected to a resistor (open) having an infinite resistance value, and the voltage at the output terminals (OUT) of the voltage switching DC-DC converters 109, 111, 113 becomes 0V.
  • a resistor 203 having a resistance value RA is connected to the adjustment pin (ADJ) 209 of the DC-DC converter 201, and the voltage at the output terminals (OUT) of the voltage switching DC-DC converters 109, 111, 113 is 1. 35V. This voltage is supplied to the memory buses 159 to 161.
  • the level of the EN signal 210 is “H” and the level of the SEL signal 211 is “ H ”, the resistor 204 having the resistance value RB is connected to the adjustment pin (ADJ) 209 of the DC-DC converter 201, and the voltage at the output terminals (OUT) of the voltage switching DC-DC converters 109, 111, 113 is 1.8V. This voltage is supplied to the memory buses 159 to 161.
  • the output voltages of the voltage switching DC-DC converters 108 to 114 can be automatically determined.
  • the resistor 203 is directly connected to the adjustment pin (ADJ) 209 of the DC-DC converter 201 without using the voltage adjustment circuit 202, and the resistance value of the resistor 203 is By adjusting the output voltage, the output voltage of the voltage switching DC-DC converter 115 can be set to 0.9V, and the output voltages of the voltage switching DC-DC converters 116 to 121 can be set to 1.35V.
  • FIG. 5 is a configuration diagram of a system board with an additional memory.
  • three module sockets 124 to 126 connected to the memory buses 159 to 161 are mounted on the system board 101, and connected to the memory buses 162 to 164, respectively.
  • Three module sockets 127 to 129 are mounted, and voltage switching DC-DC converters 109, 111, 113 and voltage switching DC-DC converters 110, 112, 114 are connected to the module sockets 124-126, respectively.
  • the voltage switching DC-DC converters 116 to 121 are connected to the module sockets 127 to 129, respectively.
  • three additional module sockets 124 to 126 connected to the additional memory buses 181 to 183 are mounted on the system board 101, and three additional module sockets connected to the additional memory buses 184 to 186 are mounted.
  • 127 to 129 are mounted in each of three, and additional voltage switching DC-DC converters 109 to 114 and 116 to 121 are mounted, and each of the additional module sockets 124 to 126 is connected to the additional voltage switching DC-DC.
  • Converters 109, 111, and 113 are connected to expansion voltage switching DC-DC converters 110, 112, and 114, respectively, and expansion module switching DC-DC converters 116 to 121 are connected to expansion module sockets 127 to 129, respectively. Is done.
  • the SSD controller 130 is mounted on the CPU socket 122, the CPU 131 is mounted on the CPU socket 123, and the flash memory is mounted on each of the module sockets 124 to 126 via the modules 132 to 134. SDRAMs are mounted in the sockets 127 to 129 via modules 135 to 137, respectively.
  • Three module sockets 124 to 126 are mounted on the system board 101.
  • the frequencies of the memory buses 159 to 161 and 181 to 183 used for communication between the SSD controller 130 and the flash memory are the same as when the SDRAM is mounted. Is 1.6 GHz, whereas when the flash memory is mounted, it is 400 MHz, which is relatively slow. Therefore, even if three module sockets 124 to 126 are mounted on the system board 101, the memory buses 159 to 161 and 181 to 183 can be used when the SDRAM and the flash memory are mounted.
  • FIG. 6 is a configuration diagram for explaining the relationship between buses and signal lines connected to the module and pins of the module board.
  • module sockets (DIMM sockets) 124 to 129 have 240 pins, and each of the module sockets 124 to 129 has, for example, 240 pins as SDRAM 132 to 137.
  • Module substrate 501 is mounted, and a plurality of SDRAMs 502 are mounted on each SDRAM module substrate 501.
  • the CPU 131 is connected to each module substrate 501 via the address bus 520 and the data bus 521, and is connected to the module substrate 501 # 0 via the one-to-one signal line 522. It is connected to the # 1 module substrate 501 via the pair 1 signal line 523.
  • Each module substrate 501 is connected with SPD (Serial Presence Detect) signal lines 524 and 525.
  • the # 0 module substrate 501 has 24 pins connected to the address bus 520, 108 pins connected to the data bus 521, 12 pins connected to the one-to-one signal line 522, and an SPD signal line. Seven pins are connected to 524.
  • the # 1 module board 501 has 24 pins connected to the address bus 520, 108 pins connected to the data bus 521, 12 pins connected to the one-to-one signal line 523, and an SPD signal line. Seven pins are connected to 525. That is, each module substrate 501 uses 132 pins for bus connection and 12 pins for one-to-one signals.
  • the number of pins for bus connection is 60 pins, which is less than 132 pins, but there are 20 pins for one-to-one signal, and 8 pins are insufficient.
  • the bus connection pins are 90 pins, which is smaller than 132 pins, but there are 30 one-to-one signal pins, and 18 pins are insufficient.
  • FIG. 6C is a configuration diagram of the module substrate in the present embodiment.
  • the module socket (DIMM socket) 124 is mounted with a flash memory module board 505 having 240 pins as the module 132, and the flash memory module board 505 has three packages of flash.
  • a memory 504, a plurality of selector logic components 508, and a plurality of AND logic components 510 are mounted.
  • the flash memory module substrate 505 is configured as a module substrate having the same pin specifications as the SDRAM module substrate 501. At this time, as will be described later, by forming a part of the one-to-one signal line as a bus wiring, the flash module substrate 505 has a three-package flash memory without a shortage of one-to-one signal pins. 504 can be mounted.
  • FIG. 7 is an explanatory diagram for explaining a connection relationship between the SSD controller and the module substrate, and is an explanatory diagram before a part of the one-to-one signal line is bus-wired.
  • the SSD controller 130 mounted on the CPU socket 122 includes WE0 (write enable), CLE0 (command latch enable), ALE0 (address latch enable), RE0 (read enable), DQ0 ( Data) and DQS0 (data strobe) via a bus 530 connected to each flash memory 504 on each flash memory module board 505, via a bus 531 including WE1, CLE1, ALE1, RE1, DQ1, and DQS1. Are connected to each flash memory 504 on each flash module substrate 505.
  • the SSD controller 130 also includes a CE (chip enable) signal line 540, a WP (write protect) signal line 541, an R / B (ready / busy) signal line 542, and a CE signal line 543.
  • WP signal signal line 544 and R / B signal signal line 545 are connected to flash memory 504 on # 0 flash memory module substrate 505, CE signal signal line 550, WP signal signal line 551, the flash memory 504 on the # 1 flash module substrate 505 via the R / B signal signal line 552, the CE signal signal line 553, the WP signal line 554, and the R / B signal signal line 555. Connected to.
  • the flash memory 504 on the # 0 flash memory module substrate 505 uses 15 pins for connection to the bus 530 and 15 pins for connection to the bus 531, and is connected to the signal lines 540 to 545. Ten pins are used for connection.
  • the flash memory 504 on the # 1 flash memory module substrate 505 uses 15 pins for connection to the bus 530, 15 pins for connection to the bus 531, and 10 for connection to the signal lines 550 to 555. Pins are used.
  • Each flash memory 504 has a total of 30 pins used for connection to the buses 530 and 531, and is connected to signal lines (one-to-one signal lines) 540 to 545 or signal lines (one-to-one signal lines) 550 to 555. A total of 10 pins are used.
  • the total number of pins for bus connection is 60 pins, which is less than 132 pins, but there are a total of 20 pins for one-to-one signals.
  • the flash memory 504 is mounted on a substrate having the same configuration as the SDRAM module substrate 501, eight pins are insufficient. Therefore, in this embodiment, as described below, a part of the one-to-one signal line is formed as a bus wiring.
  • FIG. 8 is an explanatory diagram for explaining the connection relationship between the SSD controller and the module substrate, and is an explanatory diagram in the case where the CE signal line is formed as a bus wiring.
  • the CE signal signal lines 540 and 550 are connected to each flash as one-to-one signal lines. Connected to memory 504.
  • each flash memory 504 uses two pins for connection with the CE signal signal lines 540 and 550.
  • the SSD controller 130 When a part of the CE signal signal lines 540 and 550 is bus-wired, as shown in FIG. 8B, the SSD controller 130 is provided with three OR logic components 509A to 509C as an encoding circuit.
  • an AND logic component 510 is arranged as a decoding circuit.
  • the input sides of the OR logic components 509 A to 509 C are connected to CE signal signal lines 540 and 550 and the SSD controller 130.
  • the output side of the OR logic component 509A is connected to one input side of each AND logic component 510 via the CE signal signal line 550, and the output side of the OR logic component 509B is connected to a bus-wired signal line 540A.
  • each AND circuit component 510 is connected to each flash memory 504.
  • each flash memory 504 asserts only one bit of a low-active CE (chip enable) signal at the same time. It is possible, and 2 bits out of 4 bits used for the CE signal can be used as a bus signal. Therefore, the CE signal is encoded by the encode circuit (OR logic components 509A to 509C), the encoded signal is decoded by the decode circuit (AND logic component 510), and the decoded signal is supplied to each flash memory 504. It is said. As shown in the truth value management table 330 in FIG.
  • a signal having the same logical value as the CE signal which is a one-to-one signal, is given to each flash memory 504 as a bus signal, so that the bus 530 has 2 Although the number of bits increases, the number of pins used for connection to the CE signal signal lines 540 and 550 in each flash memory 504 can be reduced from 4 pins to 2 pins.
  • the truth value management table 330 is a table for managing the truth value of the CE signal, and is composed of input-side truth values 331, 332, 333, and 334 and output-side truth values 335 and 336.
  • the truth value 331 on the input side is composed of the truth value of the CE signal signal line 540 on the encoder circuit input side
  • the truth value 332 on the input side is composed of the truth value of the CE signal signal line 550 on the encoder circuit input side. Is done.
  • the truth value 333 on the input side is composed of the truth value of the CE signal signal line 540 on the decode circuit input side (encode circuit output side)
  • the truth value 334 on the input side is the decode circuit input side (encode circuit output side).
  • the truth value 335 on the output side is composed of the truth value of the CE signal signal line 540 on the output side of the decode circuit
  • the truth value 336 on the output side is composed of the truth value of the CE signal signal line 550 on the output side of the decode circuit. Is done.
  • a part of the bus (memory bus) 350 is configured as a plurality of signal lines 540A and 540B wired as buses, and includes module sockets 124 to 126 and a CPU socket (controller socket) 122.
  • a signal transmitted through the two or more specific signal lines 540 and 550 is transmitted to the two or more specific signal lines 540 and 550 and the plurality of signal lines 540A and 540B wired as buses.
  • the OR logic components 509A to 509C and the plurality of AND logic components 510 are connected as a plurality of logic components that convert the signal to a signal having the same logical value and output the converted signal as a bus signal to the flash memory 504 or the SDRAM 502. Therefore, each flash memory 504 is used for connection with CE signal signal lines 540 and 550.
  • the Lupine can be reduced from 4 pin to 2 pin. The same configuration can be applied when the CPU 131 is mounted on the CPU socket 122 and the SDRAM 502 is mounted on the module.
  • FIG. 9 is an explanatory diagram for explaining a connection relationship between the SSD controller and the module substrate, and is an explanatory diagram when a WP (write protect) signal line (write inhibit signal line) is formed as a bus wiring.
  • WP write protect
  • FIG. 9A when each flash memory 504 on two flash memory module substrates 505 is connected to the SSD controller 130, the WP signal signal lines 541 and 551 are used as one-to-one signal lines. Connected to memory 504. In this case, each flash memory 504 uses one pin for connection with the CE signal signal lines 541 and 551.
  • the WP signal signal lines 541 and 551 are formed as bus wirings, as shown in FIG. 9B, a part of the bus 530 connected to the SSD controller 130 is connected to the Low fixed signal signal line 560 and the High fixed signal.
  • a selector logic component 508 is disposed in each flash memory 504, which is used as a signal line 561 for a signal.
  • the input side of the # 0 selector logic component 508 is connected to the WP signal signal lines 541 and 554 and the Low fixed signal signal line 560, and the # 1 selector logic component 508 includes the WP signal signal lines 541 and 554 and Connected to the high fixed signal signal line 561, the output side of each selector logic component 508 is connected to each flash memory 504.
  • the WP signal is a level signal and is used to identify the module substrate 505.
  • a high / low fixed signal is used instead of the WP signal, and the signal line wired as a bus is used as a signal line for transmitting the high / low fixed signal, thereby transmitting the WP signal.
  • One-to-one signal lines can be reduced. That is, as shown in the truth value management table 340 of FIG. 9C, a signal having the same logical value as that of the WP signal, which is a one-to-one signal, is used as a bus signal and is given to each flash memory 504, thereby providing a bus.
  • 530 increases by 2 bits, in each flash memory 504, the pins used for connection to the WP signal signal lines 541 and 551 can be reduced from 1 pin to 0, respectively.
  • the truth value management table 340 is a table for managing the truth value of the WP signal, and is composed of input-side truth values 341, 342, 343, and 344 and output-side truth values 345 and 346.
  • the truth value 341 on the input side is composed of the truth value of the WP signal signal line 541 on the input side of the selector logic component 508, and the truth value 342 on the input side is the WP signal signal line 554 on the input side of the selector logic component 508. Consists of truth values.
  • the truth value 343 on the input side is constituted by the truth value of the Low fixed signal signal line 560 on the input side of the selector logic component 508, and the truth value 344 on the input side is the signal line for High fixed signal on the input side of the selector logic component 508. It is composed of 561 truth values.
  • the truth value 345 on the output side is composed of the truth value on the output side of the selector logic component 508, and the truth value 346 on the output side is composed of the truth value on the output side of the selector logic component 508.
  • a part of the bus (memory bus) 350 is configured as a plurality of signal lines 560 and 561 wired as buses, and the module sockets 124 to 126 and the CPU socket (controller socket) 122 are connected to each other.
  • a signal that transmits two or more specific signal lines 541 and 551 is transmitted to two or more specific signal lines 541 and 551 and a plurality of signal lines 560 and 561 that are wired as buses.
  • the selector logic component 508 is connected as a plurality of logic components that convert this signal into a signal having the same logical value and output the converted signal as a bus signal to the flash memory 504 or the SDRAM 502, each flash memory 504 is connected. Therefore, the number of pins used for connection to the WP signal signal lines 541 and 551 can be reduced from 1 pin to 0 respectively. Kill.
  • the same configuration can be applied when the CPU 131 is mounted on the CPU socket 122 and the SDRAM 502 is mounted on the module.
  • FIG. 10 is an explanatory diagram for explaining a connection relationship between the SSD controller and the module substrate, and is an explanatory diagram in the case where the R / B signal line is formed as a bus wiring.
  • an R / B ready / busy
  • Signal signal lines 542 and 552 are connected to each flash memory 504 as one-to-one signal lines.
  • each flash memory 504 uses two pins for connection to the R / B signal signal lines 542 and 552.
  • Each input side of the AND logic components 512 and 513 arranged in the # 0 flash memory 504 is connected to the Low fixed signal signal line 560 or the R / B signal pin of the # 0 flash memory 504, and # 0
  • the output side of the AND logic component 512 arranged in the flash memory 504 is connected to the R / B signal signal line 542, and the output side of the AND logic component 513 arranged in the # 0 flash memory 504 is the R / B signal. Connected to the signal line 552.
  • Each input side of the AND logic components 512 and 513 arranged in the # 1 flash memory 504 is connected to the High fixed signal signal line 561 or the R / B signal pin of the # 1 flash memory 504, and # 1
  • the output side of the AND logic component 512 arranged in the flash memory 504 is connected to the R / B signal signal line 542, and the output side of the AND logic component 513 arranged in the # 1 flash memory 504 is connected to the R / B signal line 542. It is connected to the B signal signal line 552.
  • the R / B signal is a wired OR signal for wiring the output signal.
  • a High / Low fixed signal is used, and the signal line wired as a bus is used as a signal line for transmitting the High / Low fixed signal to transmit the R / B signal. Therefore, the one-to-one signal line can be reduced. That is, as shown in the truth value management table 350 in FIG. 10C, a signal having the same logical value as the R / B signal, which is a one-to-one signal, is used as a bus signal and given to each flash memory 504.
  • the bus 530 is increased by 4 bits, the pins used for connection to the R / B signal signal lines 542 and 552 in each flash memory 504 can be reduced from 2 pins to 0, respectively.
  • the truth value management table 350 is a table for managing the truth values of the R / B signal, and is composed of input-side truth values 351, 352, 353, and 354 and output-side truth values 355 and 356.
  • the truth value 351 on the input side is composed of the truth values on the input side of the AND logic components 512 and 513 arranged in the # 0 flash memory 504, and the truth value 352 on the input side is arranged in the # 1 flash memory 504.
  • Each AND logic component 512, 513 is composed of truth values on the input side.
  • the truth value 353 on the input side is composed of the truth values of the low fixed signal signal lines 560 on the input sides of the AND logic components 512 and 513 arranged in the # 0 flash memory 504, and the truth value 354 on the input side is It consists of the truth value of the high fixed signal signal line 561 on the input side of each AND logic component 512, 513 arranged in the # 1 flash memory 504.
  • the truth value 355 on the output side is composed of the truth value of the R / B signal signal line 542 on the output side of the AND logic component 512 arranged in each flash memory 504, and the truth value 356 on the output side is composed of each flash memory 504.
  • the R / B signal signal line 552 on the output side of the AND logic component 513 arranged at the truth value.
  • a part of the bus (memory bus) 350 is configured as a plurality of signal lines 560 and 561 wired as buses, and the module sockets 124 to 126 and the CPU socket (controller socket) 122 are connected.
  • specific two or more signal lines 542 and 552 and a plurality of signal lines 560 and 561 wired as buses are signals transmitted through the two or more specific signal lines 542 and 552. Since a plurality of AND logic components 512 and 513 are connected as a plurality of logic components that convert this signal into a signal having the same logical value and output the converted signal to the SSD controller 130 or the CPU 131 as a bus signal.
  • each flash memory 504 the pins used for connection to the R / B signal signal lines 542 and 552 are changed from 2 pins to 0 respectively. It can be reduced. The same configuration can be applied when the CPU 131 is mounted on the CPU socket 122 and the SDRAM 502 is mounted on the module.
  • FIG. 11 is a configuration diagram when two module boards are connected to the SSD controller by a bus.
  • a # 0 flash memory module substrate 505 is mounted with a # 0 memory unit 511
  • a # 1 module substrate 505 is mounted with a # 1 memory unit 511.
  • Each memory unit 511 includes a plurality of AND logic components 510, 512, and 513, a selector logic component 508, and a flash memory 504 in one package.
  • the SSD controller 130 has a plurality of OR logic circuit components 509A to 509C constituting an encoding circuit, and each flash memory module substrate 505 via a bus 530 including WE0, CLE0, ALE0, RE0, DQ0, and DQS0.
  • Each flash memory 504 is connected to each flash memory 504 and connected to each flash memory 504 on each flash memory module substrate 505 via a bus 531 including WE1, CLE1, ALE1, RE1, DQ1, and DQS1.
  • the SSD controller 130 is provided for each flash memory via the CE signal line 553, the WP signal signal lines 541 and 554, the R / B signal signal lines 552, 542, 545 and 555, and the CE signal line 550. It is connected to each flash memory 504 on the module substrate 505. Further, the SSD controller 130 is connected to the flash memory 504 on the # 0 flash memory module substrate 505 via the CE signal lines 543A, 540A, the WP signal signal line 544, and the Low fixed signal signal line 560. , The CE signal lines 543B and 540B, the WP signal signal line 551, and the high fixed signal signal line 561, are connected to the flash memory 504 on the # 1 flash memory module substrate 505.
  • the flash memory 504 on the # 0 flash memory module substrate 505 has 15 pins used for connection to the bus 530 and 15 pins used for connection to the bus 531, and is a signal line formed as a bus wiring. 14 pins are used for connection to 553, 541, 554, 552, 542, 545, and 555, and 4 pins are used for connection to the one-to-one signal lines 543A, 544, 540A, and 560.
  • the flash memory 504 on the # 1 flash memory module substrate 505 has 15 pins used for connection to the bus 530 and 15 pins used for connection to the bus 531, and signal lines 553 and 541 wired as buses. 14 pins are used for connection to 554, 552, 542, 545, 555, and 4 pins are used for connection to the one-to-one signal lines 543B, 551, 540B, 561.
  • Each flash memory 504 uses a total of 30 pins for connection to buses 530 and 531, and uses a total of 14 pins for connection to signal lines 553, 541, 554, 552, 542, 545, and 555 that are wired as buses. Thus, a total of 44 pins are used for the bus connection, and a total of 4 pins are used for the connection with the one-to-one signal lines 543A, 544, 540A, 560 or the signal lines 543B, 551, 540B, 561.
  • each flash memory 504 uses a total of 44 pins for bus connection, but uses only 4 pins for connection to a one-to-one signal line. For this reason, by forming a part of the one-to-one signal line as a bus wiring, each flash memory 504 can reduce the number of pins required for connection to the one-to-one signal line from 10 pins to 4 pins. Two packages of flash memory 504 can be mounted on each of the modules 132 to 134.
  • FIG. 12 is a configuration diagram of the signal number comparison table.
  • the signal number comparison table 360 includes a standard type in which a part of the signal line is not bus-wired and the signal number when the flash memory 504 is mounted on the module 132 in one package. A comparison result with an example in which a part of the line is bus-wired is recorded.
  • the flash memory 504 has 10 pins for connection to a signal line that transmits a one-to-one signal, and 30 pins for connection to a bus that transmits a bus signal.
  • the flash memory 504 uses 4 pins for connection to a signal line for transmitting a one-to-one signal, and 44 pins for connection to a bus for transmitting a bus signal. I understand.
  • Each of the modules 132 to 134 has 12 pins used for connection with a signal line for transmitting a one-to-one signal and 132 pins used for connection with a bus for transmitting a bus signal.
  • Three packages of flash memory 504 can be mounted on the modules 132 to 134.
  • FIG. 13 is a configuration diagram in the case where two module boards on which three packages of flash memory are mounted are connected to the SSD controller by a bus.
  • three # 0 memory units 511 and three SPD devices 512 are mounted on the # 0 module board 505, and the # 1 memory unit 511 is mounted on the # 1 module board 505.
  • Three SPD devices 512 are mounted.
  • Each memory unit 511 includes a plurality of AND logic components 510, 512, and 513, a selector logic component 508, and a flash memory 504 in one package.
  • Each SPD 512 recognizes the specification of each module substrate 505 and transfers an error signal to the SSD controller 130 when an error occurs in each module substrate 505.
  • the SSD controller 130 is connected to the # 0 memory unit 511 and the # 1 memory unit 511 via the bus 570, and is connected to the # 0 memory unit 511 and the # 1 memory unit 511 via the bus 571. Are connected to the # 0 memory unit 511 and the # 1 memory unit 511 via the bus 572.
  • the SSD controller 130 is connected to the # 0 memory unit 511 and the # 1 memory unit 511 via the one-to-one signal lines 580 and 581, and is connected to the # 1 memory line 582 and 583 via the one-to-one signal lines 582 and 583.
  • the SSD controller 130 is connected to the three memory units 511 of # 0 via the Low fixed signal signal line 560, and is connected to the three memory units of # 1 via the High fixed signal signal line 561. 511 is connected. Further, the SSD controller 130 is connected to the # 0 SPD device 512 and the # 1 SPD device 512 via the EVENT signal line 586.
  • the bus 570 includes, for example, buses 530 and 531 and signal lines 553, 541, 554, 552, 542, 545, and 555 wired as buses
  • the signal line 580 includes, for example, signal lines 543A
  • the signal line 581 includes, for example, signal lines 543B, 551, and 540B.
  • the # 0 memory unit 511 connected to the bus 570 among the memory units 511 on the # 0 flash memory module substrate 505 uses 3 pins for connection to the signal line 580, and is connected to the bus 570. 44 pins are used for connection, and 1 pin is used for connection to the low fixed signal signal line 560.
  • the # 0 memory unit 511 connected to the bus 571 uses 3 pins for connection to the signal line 582, uses 44 pins for connection to the bus 571, and connects to the low fixed signal signal line 560. One pin is used.
  • the # 0 memory unit 511 connected to the bus 572 uses 3 pins for connection to the signal line 584, uses 44 pins for connection to the bus 572, and connects to the low fixed signal signal line 560. One pin is used. In the entire three # 0 memory units 511, 10 pins are used for connection to signal lines for transmitting one-to-one signals, and 132 pins are used for connections to buses for transmitting bus signals.
  • the # 1 memory unit 511 connected to the bus 570 uses 3 pins for connection to the signal line 581, uses 44 pins for connection to the bus 570, and connects to the high fixed signal signal line 561. One pin is used.
  • the # 1 memory unit 511 connected to the bus 571 uses 3 pins for connection to the signal line 583, uses 44 pins for connection to the bus 571, and connects to the high fixed signal signal line 561. One pin is used.
  • the # 1 memory unit 511 connected to the bus 572 uses 3 pins for connection to the signal line 585, uses 44 pins for connection to the bus 572, and connects to the high fixed signal signal line 561. One pin is used. In the entire three # 1 memory units 511, 10 pins are used for connection with signal lines for transmitting one-to-one signals, and 132 pins are used for connection with buses for transmitting bus signals.
  • Each module board 505 is provided with 10 pins used for connection with signal lines for transmitting one-to-one signals and 132 pins used for connection with buses for transmitting bus signals.
  • Three memory units 511 each having one package of flash memory 504 can be mounted on the substrate 505.
  • FIG. 14 is a configuration diagram of a table showing the pin arrangement of the SDRAM module and the flash memory module.
  • information indicating the relationship between pins (# 1 to 60, # 121 to 180) of the SDRAM module 501 and one-to-one communication lines or buses is recorded in a table 600.
  • Information indicating the relationship between the pins (# 1 to 60, # 121 to 180) of the memory module 505 and the one-to-one communication line or bus is recorded, and the pins (# 61 to # 61) of the SDRAM module 501 are recorded in the table 620.
  • the table 630 includes the pins (# 61 to 120, # 181 to 240) and 1 of the flash memory module 505. Information indicating the relationship with the one-to-one communication line or bus is recorded.
  • FIG. 15 is a configuration diagram of the voltage control switching register map.
  • the voltage control switching register map 380 is stored in the voltage switching control register 103 as a map generated based on the information recorded in the power switching DC-DC converter management tables 300, 310, 320, and is offset 380A. 380B, bit 380C, data 380D, and description 380E.
  • the voltage control switching register map 380 records information when the system board 101 has a 2-socket configuration.
  • Information relating to the SEL signal (control signal) applied to the module and type information for specifying the types of the controllers 132 to 134 mounted on the module sockets 124 to 126 and the controller mounted on the CPU socket (controller socket) 122 are stored. Is done. This type information is, for example, “0” when the CPU 131 is mounted on the CPU socket 122, and “1” when the SSD controller 130 is mounted on the CPU socket 122. Further, when the SDRAM module 501 is mounted as the modules 132 to 134 in the module sockets 124 to 126, it is “0”, and when the flash memory module 505 is mounted, it is “1”.
  • FIG. 16 is a configuration diagram of the I / O expander register map.
  • an I / O expander register map 390 is a map managed by the control microcomputer 104 and stored in the register of the I / O expander register 105, and includes an offset 390A, a bit 390B, and data 390C. , 390D.
  • the offset 0x02 stores information related to the EN signal applied to each voltage switching DC-DC converter 108-114
  • the column of offset 0x03 stores the SEL signal applied to each voltage switching DC-DC converter 108-114.
  • one I / O expander 105 corresponds to one CPU socket in which the CPU 131 or the SSD controller 130 can be mounted.
  • a 4-CPU socket configuration that is, in the configuration of one CPU 131 and three SSD controllers 130, three I / O expanders 105 are arranged on the system board 101.
  • FIG. 17 is a flowchart for explaining the processing of the control microcomputer. This process is executed by the CPU in the control microcomputer 104.
  • the control microcomputer 104 accesses the voltage switching control register 103, refers to the voltage control switching register map 380, and reads the number of CPU sockets stored in the offset 0x30 column of the voltage control switching register map 380.
  • S1 The read value (the number of CPU sockets) is substituted into a variable X (S2), and the number of CPU sockets on which the CPU 131 or the SSD controller 130 can be mounted is determined from the value of the variable X (S3).
  • step S3 If it is determined in step S3 that the variable X is not 0, the control microcomputer 104 reads the information related to the EN signal stored in the offset 0x51 column of the voltage control switching register map 380, and reads the read information as I / O. Of the registers of the expander 105, the data is written into the offset 0x02 field of the I / O expander register map 390 (S4).
  • the control microcomputer 104 ends the DC-DC voltage switching process and the process in this routine.
  • the I / O expander 105 sends the information to the voltage switching DC-DC converters 108 to 114.
  • An EN signal and a SEL signal are output as control signals.
  • each of the voltage switching DC-DC converters 108 to 114 outputs an output voltage suitable for the power supply voltage of each power supply destination to each power supply destination.
  • the main power supply 106, the I / O expander 105, and the voltage switching DC-DC converters 108 to 114 constitute a power supply unit, and are stored in the register (storage unit) of the I / O expander 105.
  • the type information is discriminated, two or more different output voltages are selected from a plurality of different output voltages according to the discrimination result, and the selected output voltages are respectively selected from the flash memory 504 on the flash memory module or the SDRAM 502 on the SDRAM module. And applied to the SSD controller 130 or the CPU 131.
  • the I / O expander 105 determines the type information stored in the register (storage unit) of the I / O expander 105, and a plurality of control signals (EN signals) having different control information according to the determination result. SEL signal), and the voltage switching DC-DC converters 108 to 114 receive the control signal from the I / O expander 105.
  • the output voltage specified by the control information of the received control signal is selected from two or more different output voltages that match the power supply voltage of the power supply destination, and each selected output voltage is flashed on the flash memory module.
  • the voltage switching DC-DC converter 108 receives a control signal from the I / O expander 105
  • the voltage switching DC-DC converter 108 receives the control signal from a plurality of different controller output voltages (0.9V and 1.0V).
  • the controller output voltage selected by the control information of the control signal is selected, and the controller output voltage is output to the power supply core unit 138 of the SSD controller 130 or the CPU 131.
  • the voltage switching DC-DC converters 110, 112, 114 When the voltage switching DC-DC converters 110, 112, 114 receive the control signal from the I / O expander 105, the voltage switching DC-DC converters 110, 112, 114 have received the output voltage from a plurality of different storage devices (1.35 V and 3.3 V).
  • the storage device output voltage specified by the control information of the control signal is selected, and the selected storage device output voltage is used to supply power to the power supply core of the flash memory 504 on the flash memory module or to the SDRAM 502 on the SDRAM module. It is configured as a storage device voltage switching unit that outputs to the core unit.
  • the control signal received from a plurality of different common output voltages (1.35V and 1.8V).
  • the shared output voltage specified by the control information of the flash memory 504 on the SSD controller 130 and the flash memory module or the power supply I / O unit of the flash memory 504 on the SSD controller 130 or the SDRAM 502 on the SDRAM module on the SDRAM 131 is selected. It is configured as a shared voltage switching unit that outputs to the power feeding I / O unit.
  • the power supply unit that supplies power to the power supply destination can be shared. That is, the output voltage of the voltage switching DC-DC converter 108 is managed according to the type of control device (controller) mounted on the CPU socket 122, and the output voltage of the voltage switching DC-DC converters 109, 111, 113 is the module.
  • the output voltages of the voltage switching DC-DC converters 110, 112, and 114 are managed according to the type of the modules 132 to 134 (or storage devices mounted to the modules 132 to 134) mounted in the sockets 124 to 126.
  • modules 132 to 134 are managed according to the type of modules 132 to 134 (or storage devices mounted to the modules 132 to 134) mounted on the CPU 126, the SSD controller 130 or the CPU 131 is mounted on the CPU socket 122, or the module 1 Even or flash memory 504 or SDRAM502 is mounted from 2 to 134, may share the respective voltage switching DC-DC converters 108-114. Therefore, the configuration of the system board 101 can be simplified, and the power consumption can be reduced with the reduction in the number of voltage switching DC-DC converters.
  • SDRAM 502 which is a high-speed volatile memory
  • flash memory 504 which is low-speed but nonvolatile and inexpensive per bit
  • SDRAM 502 and flash memory 504 can be mounted on the system board 101, respectively, and the capacity of the SDRAM 502 and flash memory 504 can be flexibly increased with the same device. Therefore, it is possible to provide an information processing apparatus or a computer system that is lower in cost.
  • the present invention can also be applied to a nonvolatile memory embedded DIMM that may be put to practical use in the future generations of MRAM and FRAM (registered trademark).
  • the SSD controller 130 and the CPU 131 are configured as an arithmetic device that executes arithmetic processing according to a program stored in the memory, and the plurality of flash memories 504 and the plurality of SDRAMs 502 are included in the arithmetic device. It can be configured as a storage device that stores data to be accessed. Also, part of the SSD controller 130 and the CPU 131 can be configured as an input / output interface.
  • the voltage switching DC-DC converter for supplying power to the control device (controller) mounted on the CPU socket 122 and the storage device mounted on the modules 132 to 134, these control device (controller) and storage device Depending on the specifications of the power supply voltage, two types of voltage switching DC-DC converters having different output voltages or three or more types of voltage switching DC-DC converters may be used.
  • each of the above-described configurations, functions, etc. may be realized by hardware by designing a part or all of them, for example, by an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function is stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), an IC (Integrated Circuit) card, an SD (Secure Digital) memory card, a DVD ( It can be recorded on a recording medium such as Digital Versatile (Disc).
  • the memory bus, the one-to-one signal line, or the control line indicates what is considered necessary for the explanation, and not all memory buses, the one-to-one signal line, or the control line are necessarily shown in the product. . In practice, almost all the components are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Memory System (AREA)

Abstract

Provided is a memory module, comprising: module sockets on which either flash memory modules or SDRAM modules are mounted; a controller socket on which either a first controller which controls the flash memory or a second controller which controls the SDRAM is mounted; a power source unit which supplies power via the module sockets to either the flash memory upon the flash memory modules or the SDRAM upon the SDRAM modules, and which supplies power via the controller socket to either the first controller or the second controller; and a storage unit which stores type information which specifies the types of the modules which are mounted upon the module sockets and the type of the controller which is mounted upon the controller socket. The power source unit assesses the type information which is stored in the storage unit, selects two or more different output voltages according to the result of the assessment from a plurality of different output voltages, and imparts each of the selected output voltages to either the flash memory or the SDRAM, and to either the first controller or the second controller.

Description

メモリモジュールとメモリバスシステム及び計算機システムMemory module, memory bus system and computer system
 本発明は、電源電圧の仕様の異なる複数の記憶デバイスが基板上に搭載されるメモリモジュールとメモリバスシステム及び計算機システムに関する。 The present invention relates to a memory module, a memory bus system, and a computer system in which a plurality of storage devices having different power supply voltage specifications are mounted on a substrate.
 ビッグデータ時代に向けて、データベース(以下DBと略す)のように大容量を高速にアクセするニーズが増加している。Dynamic Random Access Memorory(以下DRAMと略す)、Synchronous DRAM(以下SDRAMと略す)等の主記憶素子の大容量化は、3次元メモリ実装技Through Silicon Via(以下TSVと略す)や更なる回路の微細化により進展しているが、前記ニーズに追従できていない。他方で、DRAMとSolid State Drive(以下SSDと略す)間の応答速度を有するPCI(Peripheral Component Interconnect) Express(以下PCIeと略す)接続SSDの市場が増加しており、この背景からDRAMとPCI-SSDを仮想的な大メモリ空間としてアプリケーションが使用できるようにするOS(Operating System)技術も開発されてきている。また、主記憶素子用のDual Inline Memory Module(以下DIMMと略す)ソケットを活用して、高密度な記憶素子を搭載することを目的として、例えば、特許文献1のように、不揮発性のNAND フラッシュデバイスを複数搭載したDIMM(以下先行技術になるDIMM)が開発されている。NAND フラッシュデバイスに対するデータの送受信は、シリアルインターフェースでケーブル伝送する方式が提案されている。また、複数のメモリ・クロック発振器および複数のそれぞれの電圧コントローラに結合されたシステム・メモリ・コントローラを含む、メモリユニットに関する技術が提案されている(特許文献2参照)。 Demand for high-speed access to large volumes like databases (hereinafter abbreviated as DB) is increasing toward the big data era. The main memory elements such as Dynamic Random Access Memorory (hereinafter abbreviated as DRAM) and Synchronous DRAM (hereinafter abbreviated as SDRAM) can be increased in capacity of three-dimensional memory mounting technology Through Silicon Via (hereinafter abbreviated as TSV) and further circuit details. Although progress has been made in the future, it has not been able to follow the needs. On the other hand, the market for PCI (Peripheral Component Interconnect) Express (hereinafter abbreviated as PCIe) SSDs with a response speed between DRAM and Solid State Drive (hereinafter abbreviated as SSD) is increasing. An OS (Operating System) technology that enables applications to use SSDs as a virtual large memory space has also been developed. In addition, for the purpose of mounting a high-density memory element using a dual-inline memory module (hereinafter abbreviated as DIMM) socket for the main memory element, for example, a non-volatile NAND flash as in Patent Document 1 A DIMM equipped with a plurality of devices (hereinafter referred to as a prior art DIMM) has been developed. A method of transmitting and receiving data to and from a NAND flash device by cable transmission using a serial interface has been proposed. In addition, a technique related to a memory unit including a system memory controller coupled to a plurality of memory clock oscillators and a plurality of respective voltage controllers has been proposed (see Patent Document 2).
米国特許出願公開第2011/0153903号明細書US Patent Application Publication No. 2011/0153903 Specification 特開2008-065819号公報JP 2008-065819 A
 NAND フラッシュデバイスの信号及び電源電圧の仕様は、SDRAM DIMMの信号及び電源電圧の仕様と異なるため、DIMM基板上に、SDRAMの他にNAND フラッシュデバイスを搭載する場合、CPU(Central Processing Unit)とSDRAMに接続されるメモリバスの基板配線を流用し、NAND フラッシュデバイスとCPUとを直接接続することができない。このため、先行技術になるDIMMでは、DIMM基板上に、CPUの他に、NAND フラッシュデバイスを制御するためのSASコントローラを搭載している。また、メモリバスの代わりにCPU周辺に、新たなケーブルを配置している。 NAND flash device signal and power supply voltage specifications are different from SDRAM DIMM signal and power supply voltage specifications. When a NAND flash device is mounted on the DIMM board in addition to SDRAM, CPU (Central Processing Unit) and SDRAM It is not possible to directly connect the NAND flash device and the CPU by using the substrate wiring of the memory bus connected to the. For this reason, in the DIMM as the prior art, in addition to the CPU, a SAS controller for controlling the NAND flash device is mounted on the DIMM board. A new cable is arranged around the CPU instead of the memory bus.
 しかし、CPU周辺は、CPU冷却のためのヒートシンクなど構造的に混み合うので、空冷に伴う風によってケーブルソケット抜け等が発生すると、信頼性が低下するリスクがある。 However, since the CPU periphery is structurally crowded, such as a heat sink for cooling the CPU, there is a risk that reliability will be reduced if the cable socket comes off due to the wind accompanying air cooling.
 一方で、SDRAM DIMMと先行技術になるDIMMでは必要な電圧が異なるため、DC-DCを共有することができない。先行技術になるDIMMでは、SDRAM DIMMとの電圧の違いをDIMM上で解消している。しかし、SDRAMに給電するためのSDRAM用DC-DCの他に、NAND フラッシュデバイスに給電するためのDC-DCとして、SDRAM用DC-DCよりも出力電圧の高いDC-DCを搭載しているので、DIMMサイズが大きくなり、基板上の物理的な搭載制約が発生する。また、一般的なDC-DCコンバータは、電力効率が90%程度であるため、SDRAM用DC-DCよりも出力電圧の高いDC-DCを搭載すると、NAND フラッシュデバイスが本来必要とする電力よりも10%程度余計に電力が必要となり、消費電力の増加となる。さらに上記方式によれば、DC-DCとケーブルの追加に伴い、コストが増加する。 On the other hand, the SDRAM-DIMM and the prior art DIMM require different voltages, and thus cannot share DC-DC. In the DIMM which is the prior art, the voltage difference from the SDRAM DIMM is eliminated on the DIMM. However, in addition to SDRAM DC-DC for supplying power to SDRAM, DC-DC with higher output voltage than SDRAM DC-DC is installed as DC-DC for supplying power to NAND flash devices. As a result, the DIMM size increases and physical mounting restrictions on the board occur. In addition, since a general DC-DC converter has a power efficiency of about 90%, if a DC-DC having a higher output voltage than a DC-DC for SDRAM is installed, the power required by a NAND flash device is higher than that originally required. About 10% extra power is required, resulting in an increase in power consumption. Furthermore, according to the above method, the cost increases with the addition of DC-DC and cables.
 本発明の目的は、電力供給先の電圧の仕様が、電力供給先の種別によって切り替わっても、電力供給先に電力を供給する電源部を共用することできるメモリモジュールとメモリバスシステム及び計算機システムを提供することにある。 An object of the present invention is to provide a memory module, a memory bus system, and a computer system that can share a power supply unit that supplies power to a power supply destination even if the voltage specification of the power supply destination is switched depending on the type of the power supply destination. It is to provide.
 前記課題を解決するために、本発明は、モジュールソケットを介してフラッシュメモリ用モジュール上のフラッシュメモリ又はSDRAM用モジュール上のSDRAMに電力を供給すると共に、コントローラ用ソケットを介して第1のコントローラ又は第2のコントローラに電力を供給する電源部を有し、前記電源部は、前記モジュールソケットに搭載されるモジュールと前記コントローラ用ソケットに搭載されるコントローラの種別をそれぞれ特定する種別情報を判別し、複数の異なる出力電圧の中から前記判別結果に従って2以上の異なる出力電圧を選択し、前記選択した各出力電圧をそれぞれ前記フラッシュメモリ用モジュール上のフラッシュメモリ又は前記SDRAM用モジュール上のSDRAMに印加すると共に、前記第1のコントローラ又は前記第2のコントローラに印加することを特徴とする。 In order to solve the above-mentioned problem, the present invention supplies power to a flash memory on a flash memory module or an SDRAM on an SDRAM module via a module socket, and the first controller or A power supply unit configured to supply power to the second controller, wherein the power supply unit determines type information for specifying a type of the module mounted on the module socket and a type of the controller mounted on the controller socket; Two or more different output voltages are selected from a plurality of different output voltages according to the determination result, and each selected output voltage is applied to the flash memory on the flash memory module or the SDRAM on the SDRAM module. And the first co And applying to the controller or the second controller.
 本発明によれば、電力供給先の電圧の仕様が、電力供給先の種別によって切り替わっても、電力供給先に電力を供給する電源部を共用することできる。 According to the present invention, even when the voltage specification of the power supply destination is switched depending on the type of the power supply destination, the power supply unit that supplies power to the power supply destination can be shared.
CPUおよびSSDコントローラが搭載されるシステム基板の一実施例を示す構成図である。It is a block diagram which shows one Example of the system board by which CPU and SSD controller are mounted. SSDコントローラの構成図である。It is a block diagram of a SSD controller. 電圧切替DC-DCコンバータの回路図である。It is a circuit diagram of a voltage switching DC-DC converter. 電圧切替DC-DCコンバータ管理テーブルの構成図である。It is a block diagram of a voltage switching DC-DC converter management table. メモリを増設したシステム基板の構成図である。It is a block diagram of a system board with an additional memory. モジュールに接続されるバス及び信号線と、モジュール基板のピンとの関係を説明するための構成図である。It is a block diagram for demonstrating the relationship between the bus | bath and signal wire | line connected to a module, and the pin of a module board. SSDコントローラとモジュール基板との接続関係を説明するための説明図であって、1対1信号線の一部がバス配線化される前の説明図である。It is explanatory drawing for demonstrating the connection relationship of an SSD controller and a module board | substrate, Comprising: It is explanatory drawing before a part of one-to-one signal line is made into bus wiring. SSDコントローラとモジュール基板との接続関係を説明するための説明図であって、CE信号線をバス配線化する場合の説明図である。It is explanatory drawing for demonstrating the connection relationship of an SSD controller and a module board | substrate, Comprising: It is explanatory drawing in the case of making CE signal line into bus wiring. SSDコントローラとモジュール基板との接続関係を説明するための説明図であって、WP信号線をバス配線化する場合の説明図である。It is explanatory drawing for demonstrating the connection relation of an SSD controller and a module board | substrate, Comprising: It is explanatory drawing in the case of making a WP signal line into bus wiring. SSDコントローラとモジュール基板との接続関係を説明するための説明図であって、R/B信号線をバス配線化する場合の説明図である。It is explanatory drawing for demonstrating the connection relation of a SSD controller and a module board | substrate, Comprising: It is explanatory drawing in the case of carrying out bus wiring of an R / B signal line. SSDコントローラにモジュール基板を2枚バス接続した場合の構成図である。It is a block diagram at the time of connecting two module substrates to the SSD controller by bus. 信号数比較テーブルの構成図である。It is a block diagram of a signal number comparison table. SSDコントローラに、3パッケージのフラッシュメモリが搭載されたモジュール基板を2枚バス接続した場合の構成図である。FIG. 3 is a configuration diagram in the case where two board modules mounted with three packages of flash memory are connected to an SSD controller by a bus. SDRAM用モジュールとフラッシュメモリ用モジュールのピン配置を示すテーブルの構成図である。It is a block diagram of the table which shows pin arrangement of the module for SDRAM and the module for flash memory. 電圧制御切替レジスタマップの構成図である。It is a block diagram of a voltage control switching register map. I/Oエキスパンダレジスタマップの構成図である。It is a block diagram of an I / O expander register map. 制御マイコンの処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process of a control microcomputer.
 以下、図面を用いて実施例を説明する。 Hereinafter, examples will be described with reference to the drawings.
 図1は、CPUおよびSSDコントローラが搭載されるシステム基板の一実施例を示す構成図である。図1において、システム基板101は、信号及び電源電圧の仕様の異なる複数の記憶デバイスが搭載される基板として構成され、このシステム基板101上には、計算機システムあるいはメモリバスシステムを構成する各種デバイスが搭載されている。例えば、システム基板101上には、信号及び電源電圧の仕様の異なる複数の記憶デバイスを駆動するために、補助電源102と、電圧切替制御レジスタ103と、制御マイコン104と、I/Oエキスパンダ(Expander)105と、主電源106が搭載され、補助電源102が、電圧切替制御レジスタ103と、制御マイコン104およびI/Oエキスパンダ105に接続され、制御マイコン104が、I2Cバス107を介して電圧切替制御レジスタ103とI/Oエキスパンダ105に接続される。 FIG. 1 is a configuration diagram showing an embodiment of a system board on which a CPU and an SSD controller are mounted. In FIG. 1, a system board 101 is configured as a board on which a plurality of storage devices having different signal and power supply voltage specifications are mounted, and various devices constituting a computer system or a memory bus system are provided on the system board 101. It is installed. For example, on the system board 101, an auxiliary power supply 102, a voltage switching control register 103, a control microcomputer 104, an I / O expander ( Expander) 105 and main power supply 106 are mounted, auxiliary power supply 102 is connected to voltage switching control register 103, control microcomputer 104 and I / O expander 105, and control microcomputer 104 receives voltage via I2C bus 107. The switching control register 103 and the I / O expander 105 are connected.
 また、システム基板101上には、各記憶デバイスに電源を供給するための複数の電圧切替DC-DCコンバータ108~121と、複数のCPUソケット122、123と、複数のモジュールソケット(DIMMソケット)124~129が搭載される。CPUソケット122、123は、コントローラ用ソケットとして構成され、CPUソケット122には、記憶デバイスを制御する第1のコントローラ(制御用デバイス)及び演算装置として、例えば、SSDコントローラ130が搭載され、CPUソケット123には、記憶デバイスを制御する第2のコントローラ(制御用デバイス)及び演算装置として、例えば、CPU131が搭載される。なお、CPUソケット122には、記憶デバイスを制御する制御用デバイスとして、CPU131を搭載することもできる。また、SSDコントローラ130やCPU131の一部を入出力インフェースとして用いることもできる。 On the system board 101, a plurality of voltage switching DC-DC converters 108 to 121 for supplying power to each storage device, a plurality of CPU sockets 122 and 123, and a plurality of module sockets (DIMM sockets) 124 are provided. ~ 129 are mounted. The CPU sockets 122 and 123 are configured as controller sockets. The CPU socket 122 includes, for example, an SSD controller 130 as a first controller (control device) that controls a storage device and an arithmetic unit. For example, a CPU 131 is mounted in 123 as a second controller (control device) that controls the storage device and an arithmetic unit. The CPU socket 122 may be equipped with a CPU 131 as a control device for controlling the storage device. Also, a part of the SSD controller 130 or the CPU 131 can be used as an input / output interface.
 モジュールソケット124~126には、モジュール132~134として、例えば、SDRAM DIMM(以下、SDRAM用モジュールと称する。)またはNAND フラッシュデバイス DIMM(以下、フラッシュメモリ用モジュールと称する。)が搭載され、モジュール132~134には、記憶装置或いは記憶デバイスとして、SDRAMまたはNAND フラッシュデバイス(以下、フラッシュメモリと称する。)が搭載される。また、モジュールソケット127~129には、モジュール135~137として、例えば、SDRAM DIMM(SDRAM用モジュール)が搭載され、モジュール135~137には、記憶装置或いは記憶デバイスとして、例えば、SDRAMが搭載される。 For example, SDRAM DIMM (hereinafter referred to as an SDRAM module) or NAND flash device DIMM (hereinafter referred to as a flash memory module) is mounted on the module sockets 124 to 126 as the modules 132 to 134. ... Are mounted with SDRAM or NAND flash devices (hereinafter referred to as flash memories) as storage devices or storage devices. The module sockets 127 to 129 include, for example, SDRAM DIMMs (SDRAM modules) as the modules 135 to 137, and the modules 135 to 137 include, for example, SDRAMs as storage devices or storage devices. .
 各電圧切替DC-DCコンバータ108~121は、それぞれ主電源106に接続されている。電圧切替DC-DCコンバータ108は、I/Oエキスパンダ105からの制御信号に応答して、0.9Vまたは1.0Vの電圧を、CPUソケット122に搭載された制御用デバイスの給電用コア部138に給電する。電圧切替DC-DCコンバータ109、111、113は、I/Oエキスパンダ105からの制御信号に応答して、1.35Vまたは1.8Vの電圧を、CPUソケット122に搭載された制御用デバイスの給電用I/O部140~142とモジュール132~134に搭載された記憶デバイスの給電用I/O部152~154に給電する。電圧切替DC-DCコンバータ110、112、114は、I/Oエキスパンダ105からの制御信号に応答して、1.35Vまたは3.3Vの電圧を、モジュール132~134に搭載された記憶デバイスの給電用コア部146~148に給電する。 The voltage switching DC-DC converters 108 to 121 are connected to the main power source 106, respectively. In response to a control signal from the I / O expander 105, the voltage switching DC-DC converter 108 applies a voltage of 0.9 V or 1.0 V to the power supply core unit of the control device mounted on the CPU socket 122. 138 is powered. In response to a control signal from the I / O expander 105, the voltage switching DC- DC converters 109, 111, and 113 apply a voltage of 1.35V or 1.8V to the control device mounted on the CPU socket 122. Power is supplied to power supply I / O units 140 to 142 and power supply I / O units 152 to 154 of storage devices mounted in the modules 132 to 134. In response to the control signal from the I / O expander 105, the voltage switching DC- DC converters 110, 112, and 114 generate a voltage of 1.35V or 3.3V of the storage devices mounted on the modules 132 to 134, respectively. Power is supplied to the power supply core units 146 to 148.
 電圧切替DC-DCコンバータ115は、固定された0.9Vの電圧を、CPUソケット123に搭載された制御用デバイスの給電用コア部139に給電する。電圧切替DC-DCコンバータ116、118、120は、固定された1.35Vの電圧を、CPUソケット123に搭載された制御用デバイスのI/O部143~145とモジュール135~137に搭載された記憶デバイスの給電用I/O部155~157に給電する。電圧切替DC-DCコンバータ117、119、121は、固定された1.35Vの電圧を、モジュール135~137に搭載された記憶デバイスの給電用コア部149~151に給電する。 The voltage switching DC-DC converter 115 supplies a fixed voltage of 0.9 V to the power supply core unit 139 of the control device mounted on the CPU socket 123. The voltage switching DC- DC converters 116, 118, and 120 are mounted with a fixed voltage of 1.35 V on the I / O units 143 to 145 and the modules 135 to 137 of the control device mounted on the CPU socket 123. Power is supplied to the power supply I / O units 155 to 157 of the storage device. The voltage switching DC- DC converters 117, 119, and 121 supply the fixed voltage of 1.35 V to the power supply core units 149 to 151 of the storage devices mounted on the modules 135 to 137, respectively.
 CPUソケット122に搭載された制御用デバイスとCPUソケット123に搭載された制御用デバイスは、CPUバス158を介して接続される。また、CPUソケット122に搭載された制御用デバイスとモジュール132~134に搭載された記憶デバイスはメモリバス159~160を介して接続され、CPUソケット123に搭載された制御用デバイスとモジュール135~137に搭載された記憶デバイスはメモリバス162~164を介して接続される。 The control device mounted on the CPU socket 122 and the control device mounted on the CPU socket 123 are connected via the CPU bus 158. The control device mounted on the CPU socket 122 and the storage device mounted on the modules 132 to 134 are connected via the memory buses 159 to 160, and the control device mounted on the CPU socket 123 and the modules 135 to 137 are connected. Are connected via memory buses 162-164.
 電圧切替制御レジスタ103は、CPU基板設定メモリ(EEPROM)165に内蔵されており、電圧切替制御レジスタ103には、電圧制御切替レジスタマップに記録された情報が格納されている。制御マイコン107は、CPU、メモリ、入出力インタフェース等の情報処理資源を備えたコンピュータ装置であって、主電源制御信号166によって主電源106を駆動するとともに、電圧切替制御レジスタ103に格納された電圧制御切替レジスタマップに記録された情報のうち電圧切替DC-DCコンバータ106~114を制御するための情報を、電圧切替制御レジスタ103から取得し、取得した情報をI/Oエキスパンダ105のレジスタに格納する。 The voltage switching control register 103 is built in the CPU board setting memory (EEPROM) 165, and the voltage switching control register 103 stores information recorded in the voltage control switching register map. The control microcomputer 107 is a computer device having information processing resources such as a CPU, a memory, and an input / output interface. The control microcomputer 107 drives the main power supply 106 by the main power supply control signal 166 and also stores the voltage stored in the voltage switching control register 103. Among the information recorded in the control switching register map, information for controlling the voltage switching DC-DC converters 106 to 114 is acquired from the voltage switching control register 103, and the acquired information is stored in the register of the I / O expander 105. Store.
 この際、電圧切替DC-DCコンバータ108の出力電圧は、CPUソケット122に搭載される制御用デバイス(コントローラ)の種別によって管理され、電圧切替DC-DCコンバータ109、111、113の出力電圧は、モジュールソケット124~126に搭載されるモジュール132~134(或いはモジュール132~134に搭載される記憶デバイス)の種別によって管理され、電圧切替DC-DCコンバータ110、112、114の出力電圧は、モジュールソケット124~126に搭載されるモジュール132~134(或いはモジュール132~134に搭載される記憶デバイス)の種別によって管理される。 At this time, the output voltage of the voltage switching DC-DC converter 108 is managed according to the type of the control device (controller) mounted on the CPU socket 122, and the output voltages of the voltage switching DC- DC converters 109, 111, 113 are The output voltages of the voltage switching DC- DC converters 110, 112, and 114 are managed according to the type of the modules 132 to 134 (or storage devices mounted on the modules 132 to 134) mounted in the module sockets 124 to 126. Management is performed according to the types of modules 132 to 134 (or storage devices mounted to the modules 132 to 134) mounted on the 124 to 126.
 I/Oエキスパンダ105は、レジスタに格納された情報を基に電圧切替DC-DCコンバータ108~114を制御するための制御信号を電圧切替DC-DCコンバータ108~114に出力し、電圧切替DC-DCコンバータ108~114の出力電圧を制御する。主電源106は、制御マイコン107からの主電源制御信号166によって駆動され、各電圧切替DC-DCコンバータ108~121に電力を供給する。 The I / O expander 105 outputs a control signal for controlling the voltage switching DC-DC converters 108 to 114 to the voltage switching DC-DC converters 108 to 114 based on the information stored in the register, and the voltage switching DC-DC. Control the output voltage of the DC converters 108-114. The main power supply 106 is driven by a main power supply control signal 166 from the control microcomputer 107 and supplies power to the voltage switching DC-DC converters 108 to 121.
 図2は、SSDコントローラの構成図である。図2において、SSDコントローラ130は、CPUソケット122に搭載され、CPUバスコントローラ191と、複数のフラッシュメモリコントローラ(FMC)192と、内部バス194と、制御コア(CPUコア)195を有し、各部が内部バス194を介して接続される。CPUバスコントローラ191は、CPUバス158に接続され、各フラッシュメモリコントローラ(FMC)192は、メモリバス159~161を介して、それぞれ複数のモジュールソケット124~126に接続される。モジュールソケット124には、フラッシュメモリ用モジュール132Aが搭載され、モジュールソケット125には、フラッシュメモリ用モジュール133Aが搭載され、モジュールソケット126には、フラッシュメモリ用モジュール134Aが搭載される。各フラッシュメモリ用モジュール132A、133A、134Aには、記憶デバイスとして、フラッシュメモリが搭載される。 FIG. 2 is a block diagram of the SSD controller. 2, the SSD controller 130 is mounted on a CPU socket 122, and includes a CPU bus controller 191, a plurality of flash memory controllers (FMC) 192, an internal bus 194, and a control core (CPU core) 195. Are connected via an internal bus 194. The CPU bus controller 191 is connected to a CPU bus 158, and each flash memory controller (FMC) 192 is connected to a plurality of module sockets 124 to 126 via memory buses 159 to 161, respectively. The module socket 124 is mounted with a flash memory module 132A, the module socket 125 is mounted with a flash memory module 133A, and the module socket 126 is mounted with a flash memory module 134A. Each flash memory module 132A, 133A, 134A is equipped with a flash memory as a storage device.
 CPUバスコントローラ191は、CPUバス158を制御するとともに、CPUバス158を介して、CPUソケット123内のCPU131とデータの授受を行い、内部バス194を介して制御コア195や各フラッシュメモリコントローラ192とデータの授受を行う。各フラッシュメモリコントローラ192は、各メモリバス159~161を介して、各フラッシュメモリに対するデータの入出力を制御する。制御コア195は、メモリの物理アドレスと論理アドレスの変換を行い、CPUバス158からのデータ伝送要求を、各フラッシュメモリコントローラ192へのアクセスに変換する。 The CPU bus controller 191 controls the CPU bus 158, exchanges data with the CPU 131 in the CPU socket 123 via the CPU bus 158, and communicates with the control core 195 and each flash memory controller 192 via the internal bus 194. Send and receive data. Each flash memory controller 192 controls input / output of data to / from each flash memory via the memory buses 159 to 161. The control core 195 converts a physical address and a logical address of the memory, and converts a data transmission request from the CPU bus 158 into an access to each flash memory controller 192.
 SSDコントローラ130は、FPGA(Field Programmable Gate Array)にて構成されており、システムに必要なSDRAM容量と、フラッシュメモリの容量を変更するために、メモリバス159~161に接続されるフラッシュメモリ用モジュール132A、133A、134Aを搭載する設定と、SDRAM用モジュールを搭載する設定を切り替えることができる。また、SSDコントローラ130は、システム上からPCI接続のSSDと同様の仕様で構成することができる。このために、制御コア(CPUコア)195上で動作するソフトウェアは、擬似的なPCIデバイスと同じ機能を有し、ユーザが標準的なPCI-SSDのデバイスドライバで使用できる。なお、CPUソケット122に搭載されるCPU131は、制御コア、メモリ、入出力インタフェース等の情報処理資源を備えたコンピュータ装置として構成され、モジュール132~134にSDRAM用モジュールが用いられた場合、SDRAM用モジュール上のSDRAMに対するデータの入出力等を制御する。 The SSD controller 130 is composed of an FPGA (Field Programmable Gate Array) and is a flash memory module connected to the memory buses 159 to 161 in order to change the SDRAM capacity required for the system and the flash memory capacity. The setting for mounting 132A, 133A, and 134A and the setting for mounting the SDRAM module can be switched. Further, the SSD controller 130 can be configured with the same specifications as the SSD of PCI connection from the system. For this reason, the software operating on the control core (CPU core) 195 has the same function as a pseudo PCI device, and can be used by a user with a standard PCI-SSD device driver. The CPU 131 mounted in the CPU socket 122 is configured as a computer device having information processing resources such as a control core, a memory, and an input / output interface. When SDRAM modules are used for the modules 132 to 134, the CPU 131 is used. Controls input / output of data to / from SDRAM on the module.
 図3は、電圧切替DC-DCコンバータの回路図である。図3において、電圧切替DC-DCコンバータ108は、DC-DC変換器201と、電圧調整回路202と、抵抗203、204から構成され、電圧調整回路202は、AND論理部品205、206と、FETスイッチ207、208から構成される。なお、切替DC-DCコンバータ109~114は、抵抗203、204の抵抗値が異なる他は、電圧切替DC-DCコンバータ108と同一の構成である。 FIG. 3 is a circuit diagram of the voltage switching DC-DC converter. In FIG. 3, the voltage switching DC-DC converter 108 includes a DC-DC converter 201, a voltage adjustment circuit 202, and resistors 203 and 204. The voltage adjustment circuit 202 includes AND logic components 205 and 206, and FETs. It consists of switches 207 and 208. The switching DC-DC converters 109 to 114 have the same configuration as the voltage switching DC-DC converter 108 except that the resistance values of the resistors 203 and 204 are different.
 DC-DC変換器201は、主電源106からの直流電圧を直流電圧に変換し、変換された直流電圧を出力端子(OUT)からCPUソケット122に出力する。DC-DC変換器201の調整ピン(ADJ)209には、FETスイッチ207または208を介して抵抗203または抵抗204が接続される。FETスイッチ207のゲートにはAND論理部品205が接続され、FETスイッチ208のゲートにはAND論理部品206が接続され、各AND論理部品205、206には、I/Oエキスパンダ105から、EN(イネーブル)信号210とSEL(セレクト)信号211が入力される。 The DC-DC converter 201 converts the DC voltage from the main power supply 106 into a DC voltage, and outputs the converted DC voltage to the CPU socket 122 from the output terminal (OUT). A resistor 203 or a resistor 204 is connected to an adjustment pin (ADJ) 209 of the DC-DC converter 201 via an FET switch 207 or 208. An AND logic component 205 is connected to the gate of the FET switch 207, an AND logic component 206 is connected to the gate of the FET switch 208, and each AND logic component 205, 206 is connected to the EN ( An enable signal 210 and a SEL (select) signal 211 are input.
 EN信号210のレベルが「H」で、SEL信号211のレベルが「H」の場合、FETスイッチ207がオフに、FETスイッチ208がオンになり、DC-DC変換器201の調整ピン(ADJ)209には、抵抗値RBが、抵抗値RAよりも大きい抵抗204が接続され、DC-DC変換器201の出力端子(OUT)の電圧が1.0Vとなる。一方、EN信号210のレベルが「H」で、SEL信号211のレベルが「L」の場合、FETスイッチ207がオンに、FETスイッチ208がオフになり、DC-DC変換器201の調整ピン(ADJ)209には、抵抗値RAが、抵抗値RBよりも小さい抵抗203が接続され、DC-DC変換器201の出力端子(OUT)の電圧が0.9Vとなる。 When the level of the EN signal 210 is “H” and the level of the SEL signal 211 is “H”, the FET switch 207 is turned off, the FET switch 208 is turned on, and the adjustment pin (ADJ) of the DC-DC converter 201 is turned on. A resistor 204 having a resistance value RB larger than the resistance value RA is connected to 209, and the voltage of the output terminal (OUT) of the DC-DC converter 201 becomes 1.0V. On the other hand, when the level of the EN signal 210 is “H” and the level of the SEL signal 211 is “L”, the FET switch 207 is turned on, the FET switch 208 is turned off, and the adjustment pin ( ADJ) 209 is connected to a resistor 203 having a resistance value RA smaller than the resistance value RB, and the voltage of the output terminal (OUT) of the DC-DC converter 201 becomes 0.9V.
 即ち、DC-DC変換器201の出力電圧は、DC-DC変換器201の調整ピン(ADJ)209に、FETスイッチ207または208を介して接続される抵抗203または抵抗204の抵抗値によって決定される。 That is, the output voltage of the DC-DC converter 201 is determined by the resistance value of the resistor 203 or the resistor 204 connected to the adjustment pin (ADJ) 209 of the DC-DC converter 201 via the FET switch 207 or 208. The
 図4は、電圧切替DC-DCコンバータ管理テーブルの構成図である。図4(A)において、電圧切替DC-DCコンバータ管理テーブル300は、CPUソケット122に搭載される制御用デバイスに応じて、I/Oエキスパンダ105の出力レベル及び電圧切替DC-DCコンバータ108の出力電圧を管理するためのテーブルであって、搭載デバイス301と、EN(信号)302と、SEL(信号)303と、R(抵抗)304と、VOUT(出力電圧)305から構成される。 FIG. 4 is a configuration diagram of a voltage switching DC-DC converter management table. In FIG. 4A, the voltage switching DC-DC converter management table 300 shows the output level of the I / O expander 105 and the voltage switching DC-DC converter 108 according to the control device mounted on the CPU socket 122. It is a table for managing output voltages, and includes a mounted device 301, an EN (signal) 302, a SEL (signal) 303, an R (resistance) 304, and a VOUT (output voltage) 305.
 CPUソケット122に制御用デバイスが搭載されない場合、EN信号210のレベルが「L」で、SEL信号211のレベルが「N/AL」となり、DC-DC変換器201の調整ピン(ADJ)209には、抵抗値が無限大の抵抗(オープン)が接続され、電圧切替DC-DCコンバータ108の出力端子(OUT)の電圧が0Vとなる。 When the control device is not mounted on the CPU socket 122, the level of the EN signal 210 is “L”, the level of the SEL signal 211 is “N / AL”, and the adjustment pin (ADJ) 209 of the DC-DC converter 201 is applied. Is connected to a resistor (open) having an infinite resistance value, and the voltage of the output terminal (OUT) of the voltage switching DC-DC converter 108 becomes 0V.
 CPUソケット122に制御用デバイスとしてCPU131が搭載された場合、EN信号210のレベルが「H」で、SEL信号211のレベルが「L」となり、DC-DC変換器201の調整ピン(ADJ)209には、抵抗値RAの抵抗203が接続され、電圧切替DC-DCコンバータ108の出力端子(OUT)の電圧が0.9Vとなる。 When the CPU 131 is mounted as a control device in the CPU socket 122, the level of the EN signal 210 is “H”, the level of the SEL signal 211 is “L”, and the adjustment pin (ADJ) 209 of the DC-DC converter 201 is set. Is connected to a resistor 203 having a resistance value RA, and the voltage of the output terminal (OUT) of the voltage switching DC-DC converter 108 becomes 0.9V.
 CPUソケット122に制御用デバイスとしてSSDコントローラ130が搭載された場合、EN信号210のレベルが「H」で、SEL信号211のレベルが「H」となり、DC-DC変換器201の調整ピン(ADJ)209には、抵抗値RBの抵抗204が接続され、電圧切替DC-DCコンバータ108の出力端子(OUT)の電圧が1.0Vとなる。 When the SSD controller 130 is mounted as a control device in the CPU socket 122, the level of the EN signal 210 is “H”, the level of the SEL signal 211 is “H”, and the adjustment pin (ADJ) of the DC-DC converter 201 is set. ) 209 is connected to a resistor 204 having a resistance value RB, and the voltage of the output terminal (OUT) of the voltage switching DC-DC converter 108 becomes 1.0V.
 図4(B)において、電圧切替DC-DCコンバータ管理テーブル310は、モジュールソケット124~126に搭載されるモジュール(モジュールに搭載されるデバイス)に応じて、I/Oエキスパンダ105の出力レベル及び電圧切替DC-DCコンバータ110、112、114の出力電圧を管理するためのテーブルであって、搭載デバイス311と、EN(信号)312と、SEL(信号)313と、R(抵抗)314と、VOUT(出力電圧)315から構成される。 In FIG. 4B, the voltage switching DC-DC converter management table 310 shows the output level and the output level of the I / O expander 105 according to the modules (devices mounted on the modules) mounted on the module sockets 124 to 126. A table for managing output voltages of the voltage-switching DC- DC converters 110, 112, and 114, and includes a mounted device 311, an EN (signal) 312, a SEL (signal) 313, an R (resistance) 314, It is composed of VOUT (output voltage) 315.
 モジュールソケット124~126にモジュール(デバイス)が搭載されない場合、EN信号210のレベルが「L」で、SEL信号211のレベルが「N/AL」となり、DC-DC変換器201の調整ピン(ADJ)209には、抵抗値が無限大の抵抗(オープン)が接続され、電圧切替DC-DCコンバータ110、112、114の出力端子(OUT)の電圧が0Vとなる。 When modules (devices) are not mounted in the module sockets 124 to 126, the level of the EN signal 210 is “L”, the level of the SEL signal 211 is “N / AL”, and the adjustment pin (ADJ) of the DC-DC converter 201 is ) 209 is connected to a resistor (open) having an infinite resistance value, and the voltage at the output terminal (OUT) of the voltage switching DC- DC converters 110, 112, 114 becomes 0V.
 モジュールソケット124~126にモジュールとして、SDRAM用モジュールが搭載された場合(記憶デバイスとして、SDRAMが搭載された場合)、EN信号210のレベルが「H」で、SEL信号211のレベルが「L」となり、DC-DC変換器201の調整ピン(ADJ)209には、抵抗値RAの抵抗203が接続され、電圧切替DC-DCコンバータ110、112、114の出力端子(OUT)の電圧が1.35Vとなる。 When an SDRAM module is mounted as a module in the module sockets 124 to 126 (when an SDRAM is mounted as a storage device), the level of the EN signal 210 is “H” and the level of the SEL signal 211 is “L”. The resistor 203 having the resistance value RA is connected to the adjustment pin (ADJ) 209 of the DC-DC converter 201, and the voltage at the output terminal (OUT) of the voltage switching DC- DC converters 110, 112, 114 is 1. 35V.
 モジュールソケット124~126にモジュールとして、フラッシュメモリ用モジュールが搭載された場合(記憶デバイスとして、フラッシュメモリが搭載された場合)、EN信号210のレベルが「H」で、SEL信号211のレベルが「H」となり、DC-DC変換器201の調整ピン(ADJ)209には、抵抗値RBの抵抗204が接続され、電圧切替DC-DCコンバータ110、112、114の出力端子(OUT)の電圧が3.3Vとなる。 When a module for flash memory is mounted as a module in the module sockets 124 to 126 (when a flash memory is mounted as a storage device), the level of the EN signal 210 is “H” and the level of the SEL signal 211 is “ H ”, the resistor 204 having the resistance value RB is connected to the adjustment pin (ADJ) 209 of the DC-DC converter 201, and the voltage of the output terminal (OUT) of the voltage switching DC- DC converters 110, 112, 114 is 3.3V.
 図4(C)において、電圧切替DC-DCコンバータ管理テーブル320は、モジュールソケット124~126に搭載されるモジュール(モジュールに搭載される記憶デバイス)に応じて、I/Oエキスパンダ105の出力レベル及び電圧切替DC-DCコンバータ109、111、113の出力電圧を管理するためのテーブルであって、搭載デバイス321と、EN(信号)322と、SEL(信号)323と、R(抵抗)324と、VOUT(出力電圧)325から構成される。 In FIG. 4C, the voltage switching DC-DC converter management table 320 shows the output level of the I / O expander 105 according to the modules (storage devices mounted on the modules) mounted on the module sockets 124 to 126. And a table for managing output voltages of the voltage-switching DC- DC converters 109, 111, and 113, including a mounted device 321, an EN (signal) 322, a SEL (signal) 323, and an R (resistance) 324. , VOUT (output voltage) 325.
 モジュールソケット124~126にモジュール(デバイス)が搭載されない場合、EN信号210のレベルが「L」で、SEL信号211のレベルが「N/AL」となり、DC-DC変換器201の調整ピン(ADJ)209には、抵抗値が無限大の抵抗(オープン)が接続され、電圧切替DC-DCコンバータ109、111、113の出力端子(OUT)の電圧が0Vとなる。 When modules (devices) are not mounted in the module sockets 124 to 126, the level of the EN signal 210 is “L”, the level of the SEL signal 211 is “N / AL”, and the adjustment pin (ADJ) of the DC-DC converter 201 is ) 209 is connected to a resistor (open) having an infinite resistance value, and the voltage at the output terminals (OUT) of the voltage switching DC- DC converters 109, 111, 113 becomes 0V.
 モジュールソケット124~126にモジュールとして、SDRAM用モジュールが搭載された場合(記憶デバイスとして、SDRAMが搭載された場合)、EN信号210のレベルが「H」で、SEL信号211のレベルが「L」となり、DC-DC変換器201の調整ピン(ADJ)209には、抵抗値RAの抵抗203が接続され、電圧切替DC-DCコンバータ109、111、113の出力端子(OUT)の電圧が1.35Vとなる。この電圧は、メモリバス159~161に給電される。 When an SDRAM module is mounted as a module in the module sockets 124 to 126 (when an SDRAM is mounted as a storage device), the level of the EN signal 210 is “H” and the level of the SEL signal 211 is “L”. Thus, a resistor 203 having a resistance value RA is connected to the adjustment pin (ADJ) 209 of the DC-DC converter 201, and the voltage at the output terminals (OUT) of the voltage switching DC- DC converters 109, 111, 113 is 1. 35V. This voltage is supplied to the memory buses 159 to 161.
 モジュールソケット124~126にモジュールとして、フラッシュメモリ用モジュールが搭載された場合(記憶デバイスとして、フラッシュメモリが搭載された場合)、EN信号210のレベルが「H」で、SEL信号211のレベルが「H」となり、DC-DC変換器201の調整ピン(ADJ)209には、抵抗値RBの抵抗204が接続され、電圧切替DC-DCコンバータ109、111、113の出力端子(OUT)の電圧が1.8Vとなる。この電圧は、メモリバス159~161に給電される。 When a module for flash memory is mounted as a module in the module sockets 124 to 126 (when a flash memory is mounted as a storage device), the level of the EN signal 210 is “H” and the level of the SEL signal 211 is “ H ”, the resistor 204 having the resistance value RB is connected to the adjustment pin (ADJ) 209 of the DC-DC converter 201, and the voltage at the output terminals (OUT) of the voltage switching DC- DC converters 109, 111, 113 is 1.8V. This voltage is supplied to the memory buses 159 to 161.
 ここで、CPUソケット122、123に制御用デバイスを搭載すると共に、各モジュール132~137に記憶デバイスを搭載する際に、電圧切替DC-DCコンバータ管理テーブル300、310、320に記録された情報のうち、R(抵抗)304、314、324に記録された抵抗値を、CPUソケット122に搭載された制御用デバイスの種別や各モジュール132~134に搭載された記憶デバイスの種別に応じて設定することで、各電圧切替DC-DCコンバータ108~114の出力電圧を自動的に決定することができる。 Here, when a control device is mounted on the CPU sockets 122 and 123 and a storage device is mounted on each of the modules 132 to 137, the information recorded in the voltage switching DC-DC converter management tables 300, 310, and 320 is stored. Among them, the resistance value recorded in R (resistance) 304, 314, 324 is set according to the type of control device mounted on the CPU socket 122 and the type of storage device mounted on each of the modules 132-134. Thus, the output voltages of the voltage switching DC-DC converters 108 to 114 can be automatically determined.
 なお、電圧切替DC-DCコンバータ115~121の場合、電圧調整回路202を用いることなく、DC-DC変換器201の調整ピン(ADJ)209に、抵抗203を直接接続し、抵抗203の抵抗値を調整することで、電圧切替DC-DCコンバータ115の出力電圧を0.9Vに設定したり、電圧切替DC-DCコンバータ116~121の出力電圧を1.35Vに設定したりすることができる。 In the case of the voltage switching DC-DC converters 115 to 121, the resistor 203 is directly connected to the adjustment pin (ADJ) 209 of the DC-DC converter 201 without using the voltage adjustment circuit 202, and the resistance value of the resistor 203 is By adjusting the output voltage, the output voltage of the voltage switching DC-DC converter 115 can be set to 0.9V, and the output voltages of the voltage switching DC-DC converters 116 to 121 can be set to 1.35V.
 図5は、メモリを増設したシステム基板の構成図である。図5において、システム基板101上には、CPUソケット122、123の他に、メモリバス159~161に接続されるモジュールソケット124~126がそれぞれ3個ずつ搭載され、メモリバス162~164に接続されるモジュールソケット127~129がそれぞれ3個ずつ搭載され、各モジュールソケット124~126には、電圧切替DC-DCコンバータ109、111、113と電圧切替DC-DCコンバータ110、112、114がそれぞれ接続され、各モジュールソケット127~129には、電圧切替DC-DCコンバータ116~121がそれぞれ接続される。 FIG. 5 is a configuration diagram of a system board with an additional memory. In FIG. 5, in addition to the CPU sockets 122 and 123, three module sockets 124 to 126 connected to the memory buses 159 to 161 are mounted on the system board 101, and connected to the memory buses 162 to 164, respectively. Three module sockets 127 to 129 are mounted, and voltage switching DC- DC converters 109, 111, 113 and voltage switching DC- DC converters 110, 112, 114 are connected to the module sockets 124-126, respectively. The voltage switching DC-DC converters 116 to 121 are connected to the module sockets 127 to 129, respectively.
 さらに、システム基板101上には、増設用メモリバス181~183に接続される増設用モジュールソケット124~126がそれぞれ3個ずつ搭載され、増設用メモリバス184~186に接続される増設用モジュールソケット127~129がそれぞれ3個ずつ搭載され、且つ、増設用電圧切替DC-DCコンバータ109~114、116~121が搭載され、各増設用モジュールソケット124~126には、増設用電圧切替DC-DCコンバータ109、111、113と増設用電圧切替DC-DCコンバータ110、112、114がそれぞれ接続され、各増設用モジュールソケット127~129には、増設用電圧切替DC-DCコンバータ116~121がそれぞれ接続される。 Further, three additional module sockets 124 to 126 connected to the additional memory buses 181 to 183 are mounted on the system board 101, and three additional module sockets connected to the additional memory buses 184 to 186 are mounted. 127 to 129 are mounted in each of three, and additional voltage switching DC-DC converters 109 to 114 and 116 to 121 are mounted, and each of the additional module sockets 124 to 126 is connected to the additional voltage switching DC-DC. Converters 109, 111, and 113 are connected to expansion voltage switching DC- DC converters 110, 112, and 114, respectively, and expansion module switching DC-DC converters 116 to 121 are connected to expansion module sockets 127 to 129, respectively. Is done.
 この際、CPUソケット122には、SSDコントローラ130が搭載され、CPUソケット123には、CPU131が搭載され、各モジュールソケット124~126にはモジュール132~134を介してフラッシュメモリが搭載され、各モジュールソケット127~129には、モジュール135~137を介してSDRAMが搭載される。 At this time, the SSD controller 130 is mounted on the CPU socket 122, the CPU 131 is mounted on the CPU socket 123, and the flash memory is mounted on each of the module sockets 124 to 126 via the modules 132 to 134. SDRAMs are mounted in the sockets 127 to 129 via modules 135 to 137, respectively.
 システム基板101上には、モジュールソケット124~126が3枚ずつ搭載されているが、SSDコントローラ130とフラッシュメモリとの通信に用いられるメモリバス159~161、181~183の周波数は、SDRAM搭載時が1.6GHzであるのに対して、フラッシュメモリ搭載時が400MHzであって、比較的低速である。このため、システム基板101上には、モジュールソケット124~126を3枚ずつ搭載しても、メモリバス159~161、181~183を、SDRAM搭載時とフラッシュメモリ搭載時にも流用することができる。 Three module sockets 124 to 126 are mounted on the system board 101. The frequencies of the memory buses 159 to 161 and 181 to 183 used for communication between the SSD controller 130 and the flash memory are the same as when the SDRAM is mounted. Is 1.6 GHz, whereas when the flash memory is mounted, it is 400 MHz, which is relatively slow. Therefore, even if three module sockets 124 to 126 are mounted on the system board 101, the memory buses 159 to 161 and 181 to 183 can be used when the SDRAM and the flash memory are mounted.
 図6は、モジュールに接続されるバス及び信号線と、モジュール基板のピンとの関係を説明するための構成図である。図6(A)において、モジュールソケット(DIMMソケット)124~129は、240個のピンを有し、各モジュールソケット124~129には、モジュール132~137として、例えば、240個のピンを有するSDRAM用モジュール基板501が搭載され、各SDRAM用モジュール基板501には、複数のSDRAM502が搭載される。 FIG. 6 is a configuration diagram for explaining the relationship between buses and signal lines connected to the module and pins of the module board. In FIG. 6A, module sockets (DIMM sockets) 124 to 129 have 240 pins, and each of the module sockets 124 to 129 has, for example, 240 pins as SDRAM 132 to 137. Module substrate 501 is mounted, and a plurality of SDRAMs 502 are mounted on each SDRAM module substrate 501.
 図6(B)において、CPU131は、アドレスバス520とデータバス521を介して各モジュール基板501に接続される共に、1対1信号線522を介して#0のモジュール基板501に接続され、1対1信号線523を介して#1のモジュール基板501に接続される。なお、各モジュール基板501には、SPD(Serial Presence Detect)信号線524、525が接続される。 In FIG. 6B, the CPU 131 is connected to each module substrate 501 via the address bus 520 and the data bus 521, and is connected to the module substrate 501 # 0 via the one-to-one signal line 522. It is connected to the # 1 module substrate 501 via the pair 1 signal line 523. Each module substrate 501 is connected with SPD (Serial Presence Detect) signal lines 524 and 525.
 #0のモジュール基板501は、アドレスバス520に24個のピンが接続され、データバス521に108個のピンが接続され、1対1信号線522に12個のピンが接続され、SPD信号線524に7個のピンが接続される。#1のモジュール基板501は、アドレスバス520に24個のピンが接続され、データバス521に108個のピンが接続され、1対1信号線523に12個のピンが接続され、SPD信号線525に7個のピンが接続される。即ち、各モジュール基板501は、バス接続用に132ピンが使用され、1対1信号用に12ピンが使用される。 The # 0 module substrate 501 has 24 pins connected to the address bus 520, 108 pins connected to the data bus 521, 12 pins connected to the one-to-one signal line 522, and an SPD signal line. Seven pins are connected to 524. The # 1 module board 501 has 24 pins connected to the address bus 520, 108 pins connected to the data bus 521, 12 pins connected to the one-to-one signal line 523, and an SPD signal line. Seven pins are connected to 525. That is, each module substrate 501 uses 132 pins for bus connection and 12 pins for one-to-one signals.
 これに対して、フラッシュメモリの場合、1パッケージ当たり、バス接続用に30ピンが使用され、1対1信号用に10ピンが使用される。このため、モジュール基板501と同一の構成の基板にフラッシュメモリを搭載する場合、1パッケージのフラッシュメモリであれば、ピンが不足することなく、搭載可能である。但し、基板に余分なスペースが生じることになる。一方、2パッケージ以上のフラッシュメモリをモジュール基板501と同一の構成の基板に搭載すると、1対1信号用のピンが不足することになる。例えば、2パッケージのフラッシュメモリを基板に搭載した場合、バス接続用のピンは60ピンで、132ピンより少ないが、1対1信号用のピンが20個となり、8個ピンが不足する。3パッケージのフラッシュメモリを基板に搭載した場合、バス接続用のピンは90ピンで、132ピンより少ないが、1対1信号用のピンが30個となり、18個ピンが不足する。 In contrast, in the case of a flash memory, 30 pins are used for bus connection and 10 pins are used for one-to-one signal per package. For this reason, when a flash memory is mounted on a substrate having the same configuration as the module substrate 501, a single package flash memory can be mounted without a shortage of pins. However, an extra space is generated on the substrate. On the other hand, when two or more packages of flash memories are mounted on a board having the same configuration as the module board 501, one-to-one signal pins are insufficient. For example, when a two-package flash memory is mounted on a board, the number of pins for bus connection is 60 pins, which is less than 132 pins, but there are 20 pins for one-to-one signal, and 8 pins are insufficient. When a 3-package flash memory is mounted on a board, the bus connection pins are 90 pins, which is smaller than 132 pins, but there are 30 one-to-one signal pins, and 18 pins are insufficient.
 図6(C)は、本実施例におけるモジュール基板の構成図である。図6(C)において、モジュールソケット(DIMMソケット)124には、モジュール132として、240個のピンを有するフラッシュメモリ用モジュール基板505が搭載され、フラッシュメモリ用モジュール基板505には、3パッケージのフラッシュメモリ504と、複数のセレクタ論理部品508と、複数のAND論理部品510が搭載される。フラッシュメモリ用モジュール基板505は、SDRAM用モジュール基板501とピン仕様を共通化したモジュール基板として構成されている。この際、後述するように、1対1信号線の一部をバス配線化することで、1対1信号用のピンが不足することなく、フラッシュ用モジュール基板505には、3パッケージのフラッシュメモリ504が搭載可能になる。 FIG. 6C is a configuration diagram of the module substrate in the present embodiment. In FIG. 6C, the module socket (DIMM socket) 124 is mounted with a flash memory module board 505 having 240 pins as the module 132, and the flash memory module board 505 has three packages of flash. A memory 504, a plurality of selector logic components 508, and a plurality of AND logic components 510 are mounted. The flash memory module substrate 505 is configured as a module substrate having the same pin specifications as the SDRAM module substrate 501. At this time, as will be described later, by forming a part of the one-to-one signal line as a bus wiring, the flash module substrate 505 has a three-package flash memory without a shortage of one-to-one signal pins. 504 can be mounted.
 図7は、SSDコントローラとモジュール基板との接続関係を説明するための説明図であって、1対1信号線の一部がバス配線化される前の説明図である。図7において、CPUソケット122に搭載されたSSDコントローラ130は、WE0(ライト・イネーブル)、CLE0(コマンド・ラッチ・イネーブル)、ALE0(アドレス・ラッチ・イネーブル)、RE0(リード・イネーブル)、DQ0(データ)、DQS0(データストローブ)を含むバス530を介して、各フラッシュメモリ用モジュール基板505上の各フラッシュメモリ504に接続され、WE1、CLE1、ALE1、RE1、DQ1、DQS1を含むバス531を介して各フラッシュ用モジュール基板505上の各フラッシュメモリ504に接続される。 FIG. 7 is an explanatory diagram for explaining a connection relationship between the SSD controller and the module substrate, and is an explanatory diagram before a part of the one-to-one signal line is bus-wired. In FIG. 7, the SSD controller 130 mounted on the CPU socket 122 includes WE0 (write enable), CLE0 (command latch enable), ALE0 (address latch enable), RE0 (read enable), DQ0 ( Data) and DQS0 (data strobe) via a bus 530 connected to each flash memory 504 on each flash memory module board 505, via a bus 531 including WE1, CLE1, ALE1, RE1, DQ1, and DQS1. Are connected to each flash memory 504 on each flash module substrate 505.
 また、SSDコントローラ130は、CE(チップ・イネーブル)信号用信号線540、WP(ライト・プロテクト)信号用信号線541、R/B(レディ/ビジィ)信号用信号線542、CE用信号線543、WP信号用信号線544、R/B信号用信号線545を介して、#0のフラッシュメモリ用モジュール基板505上のフラッシュメモリ504に接続され、CE信号用信号線550、WP信号用信号線551、R/B信号用信号線552、CE信号用信号線553、WP信号用信号線554、R/B信号用信号線555を介して、#1のフラッシュ用モジュール基板505上のフラッシュメモリ504に接続される。 The SSD controller 130 also includes a CE (chip enable) signal line 540, a WP (write protect) signal line 541, an R / B (ready / busy) signal line 542, and a CE signal line 543. , WP signal signal line 544 and R / B signal signal line 545 are connected to flash memory 504 on # 0 flash memory module substrate 505, CE signal signal line 550, WP signal signal line 551, the flash memory 504 on the # 1 flash module substrate 505 via the R / B signal signal line 552, the CE signal signal line 553, the WP signal signal line 554, and the R / B signal signal line 555. Connected to.
 この際、#0のフラッシュメモリ用モジュール基板505上のフラッシュメモリ504は、バス530との接続に15ピンが使用され、バス531との接続に15ピンが使用され、信号線540~545との接続に10ピンが使用される。#1のフラッシュメモリ用モジュール基板505上のフラッシュメモリ504は、バス530との接続に15ピンが使用され、バス531との接続に15ピンが使用され、信号線550~555との接続に10ピンが使用される。各フラッシュメモリ504は、バス530、531との接続に合計30ピンが使用され、信号線(1対1信号線)540~545または信号線(1対1信号線)550~555との接続に合計10ピンが使用される。 At this time, the flash memory 504 on the # 0 flash memory module substrate 505 uses 15 pins for connection to the bus 530 and 15 pins for connection to the bus 531, and is connected to the signal lines 540 to 545. Ten pins are used for connection. The flash memory 504 on the # 1 flash memory module substrate 505 uses 15 pins for connection to the bus 530, 15 pins for connection to the bus 531, and 10 for connection to the signal lines 550 to 555. Pins are used. Each flash memory 504 has a total of 30 pins used for connection to the buses 530 and 531, and is connected to signal lines (one-to-one signal lines) 540 to 545 or signal lines (one-to-one signal lines) 550 to 555. A total of 10 pins are used.
 即ち、SSDコントローラ130に、2パッケージのフラッシュメモリ504を接続すると、バス接続用のピンは合計60ピンで、132ピンより少ないが、1対1信号用のピンが合計20個となり、2パッケージのフラッシュメモリ504をSDRAM用モジュール基板501と同一構成の基板に搭載した場合、8個ピンが不足する。そこで、本実施例では、以下で説明するように、1対1信号線の一部をバス配線化することとしている。 That is, when two packages of flash memory 504 are connected to the SSD controller 130, the total number of pins for bus connection is 60 pins, which is less than 132 pins, but there are a total of 20 pins for one-to-one signals. When the flash memory 504 is mounted on a substrate having the same configuration as the SDRAM module substrate 501, eight pins are insufficient. Therefore, in this embodiment, as described below, a part of the one-to-one signal line is formed as a bus wiring.
 図8は、SSDコントローラとモジュール基板との接続関係を説明するための説明図であって、CE信号線をバス配線化する場合の説明図である。図8(A)において、SSDコントローラ130に、2枚のフラッシュメモリ用モジュール基板505上の各フラッシュメモリ504を接続した場合、CE信号用信号線540、550が、1対1信号線として各フラッシュメモリ504に接続される。この場合、各フラッシュメモリ504は、CE信号用信号線540、550との接続に、それぞれ2ピンが使用される。 FIG. 8 is an explanatory diagram for explaining the connection relationship between the SSD controller and the module substrate, and is an explanatory diagram in the case where the CE signal line is formed as a bus wiring. In FIG. 8A, when each flash memory 504 on two flash memory module substrates 505 is connected to the SSD controller 130, the CE signal signal lines 540 and 550 are connected to each flash as one-to-one signal lines. Connected to memory 504. In this case, each flash memory 504 uses two pins for connection with the CE signal signal lines 540 and 550.
 CE信号用信号線540、550の一部をバス配線化するに際して、図8(B)に示すように、SSDコントローラ130には、エンコード回路として、3個のOR論理部品509A~509Cが配置され、各フラッシュメモリ504には、デコード回路として、AND論理部品510が配置される。各OR論理部品509A~509Cの入力側は、CE信号用信号線540、550とSSDコントローラ130に接続される。OR論理部品509Aの出力側は、CE信号用信号線550を介して各AND論理部品510の一方の入力側に接続され、OR論理部品509Bの出力側は、バス配線化された信号線540Aを介して#0のAND論理部品510の他方の入力側に接続され、OR論理部品509Cの出力側は、バス配線化された信号線540Bを介して#1のAND論理部品510の他方の入力側に接続される。各AND回路部品510の出力側は、各フラッシュメモリ504に接続される。 When a part of the CE signal signal lines 540 and 550 is bus-wired, as shown in FIG. 8B, the SSD controller 130 is provided with three OR logic components 509A to 509C as an encoding circuit. In each flash memory 504, an AND logic component 510 is arranged as a decoding circuit. The input sides of the OR logic components 509 A to 509 C are connected to CE signal signal lines 540 and 550 and the SSD controller 130. The output side of the OR logic component 509A is connected to one input side of each AND logic component 510 via the CE signal signal line 550, and the output side of the OR logic component 509B is connected to a bus-wired signal line 540A. Is connected to the other input side of the AND logic component 510 of # 0, and the output side of the OR logic component 509C is connected to the other input side of the AND logic component 510 of # 1 via the bus-wired signal line 540B. Connected to. The output side of each AND circuit component 510 is connected to each flash memory 504.
 即ち、DQ、DQSを含むバス530が、SSDコントローラ130と各フラッシュメモリ504とを結ぶバスとして用いられる場合、各フラッシュメモリ504は、ローアクティブのCE(チップ・イネーブル)信号を同時に1ビットのみアサート可能であり、CE信号に用いる4ビットのうち2ビットはバス信号として使用できる。このため、CE信号をエンコード回路(OR論理部品509A~509C)でエンコードし、エンコードされた信号を、デコード回路(AND論理部品510)でデコードし、デコードされた信号を各フラッシュメモリ504に与えることとしている。図9(C)の真理値管理テーブル330で示すように、1対1信号であるCE信号と同じ論理値を有する信号を、バス信号として、各フラッシュメモリ504に与えることで、バス530は2ビット分増加するが、各フラッシュメモリ504で、CE信号用信号線540、550との接続に使用されるピンを、4ピンから2ピンに減らすことができる。 That is, when the bus 530 including DQ and DQS is used as a bus connecting the SSD controller 130 and each flash memory 504, each flash memory 504 asserts only one bit of a low-active CE (chip enable) signal at the same time. It is possible, and 2 bits out of 4 bits used for the CE signal can be used as a bus signal. Therefore, the CE signal is encoded by the encode circuit (OR logic components 509A to 509C), the encoded signal is decoded by the decode circuit (AND logic component 510), and the decoded signal is supplied to each flash memory 504. It is said. As shown in the truth value management table 330 in FIG. 9C, a signal having the same logical value as the CE signal, which is a one-to-one signal, is given to each flash memory 504 as a bus signal, so that the bus 530 has 2 Although the number of bits increases, the number of pins used for connection to the CE signal signal lines 540 and 550 in each flash memory 504 can be reduced from 4 pins to 2 pins.
 真理値管理テーブル330は、CE信号の真理値を管理するためのテーブルであって、入力側の真理値331、332、333、334と出力側の真理値335、336から構成される。入力側の真理値331は、エンコーダ回路入力側におけるCE信号用信号線540の真理値から構成され、入力側の真理値332は、エンコーダ回路入力側におけるCE信号用信号線550の真理値から構成される。入力側の真理値333は、デコード回路入力側(エンコード回路出力側)におけるCE信号用信号線540の真理値から構成され、入力側の真理値334は、デコード回路入力側(エンコード回路出力側)におけるCE信号用信号線550の真理値から構成される。出力側の真理値335は、デコード回路出力側におけるCE信号用信号線540の真理値から構成され、出力側の真理値336は、デコード回路出力側におけるCE信号用信号線550の真理値から構成される。 The truth value management table 330 is a table for managing the truth value of the CE signal, and is composed of input- side truth values 331, 332, 333, and 334 and output- side truth values 335 and 336. The truth value 331 on the input side is composed of the truth value of the CE signal signal line 540 on the encoder circuit input side, and the truth value 332 on the input side is composed of the truth value of the CE signal signal line 550 on the encoder circuit input side. Is done. The truth value 333 on the input side is composed of the truth value of the CE signal signal line 540 on the decode circuit input side (encode circuit output side), and the truth value 334 on the input side is the decode circuit input side (encode circuit output side). The CE signal line 550 in FIG. The truth value 335 on the output side is composed of the truth value of the CE signal signal line 540 on the output side of the decode circuit, and the truth value 336 on the output side is composed of the truth value of the CE signal signal line 550 on the output side of the decode circuit. Is done.
 図8に示す例では、バス(メモリバス)350の一部は、バス配線化された複数の信号線540A、540Bとして構成され、モジュールソケット124~126とCPUソケット(コントローラ用ソケット)122とを結ぶ複数の信号線のうち特定の2以上の信号線540、550と、バス配線化された複数の信号線540A、540Bには、特定の2以上の信号線540、550を伝送する信号を、この信号と同じ論理値を有する信号に変換し、変換された信号をバス信号としてフラッシュメモリ504又はSDRAM502に出力する複数の論理部品として、OR論理部品509A~509C及び複数のAND論理部品510が接続されているので、各フラッシュメモリ504で、CE信号用信号線540、550との接続に使用されるピンを、4ピンから2ピンに減らすことができる。なお、CPUソケット122にCPU131が搭載され、モジュールにSDRAM502が搭載される場合も、同様の構成を適用することができる。 In the example shown in FIG. 8, a part of the bus (memory bus) 350 is configured as a plurality of signal lines 540A and 540B wired as buses, and includes module sockets 124 to 126 and a CPU socket (controller socket) 122. Among the plurality of signal lines to be connected, a signal transmitted through the two or more specific signal lines 540 and 550 is transmitted to the two or more specific signal lines 540 and 550 and the plurality of signal lines 540A and 540B wired as buses. The OR logic components 509A to 509C and the plurality of AND logic components 510 are connected as a plurality of logic components that convert the signal to a signal having the same logical value and output the converted signal as a bus signal to the flash memory 504 or the SDRAM 502. Therefore, each flash memory 504 is used for connection with CE signal signal lines 540 and 550. The Lupine, can be reduced from 4 pin to 2 pin. The same configuration can be applied when the CPU 131 is mounted on the CPU socket 122 and the SDRAM 502 is mounted on the module.
 図9は、SSDコントローラとモジュール基板との接続関係を説明するための説明図であって、WP(ライト・プロテクト)信号線(書き込み禁止信号線)をバス配線化する場合の説明図である。図9(A)において、SSDコントローラ130に、2枚のフラッシュメモリ用モジュール基板505上の各フラッシュメモリ504を接続した場合、WP信号用信号線541、551が、1対1信号線として各フラッシュメモリ504に接続される。この場合、各フラッシュメモリ504には、CE信号用信号線541、551との接続に、それぞれ1ピンが使用される。 FIG. 9 is an explanatory diagram for explaining a connection relationship between the SSD controller and the module substrate, and is an explanatory diagram when a WP (write protect) signal line (write inhibit signal line) is formed as a bus wiring. In FIG. 9A, when each flash memory 504 on two flash memory module substrates 505 is connected to the SSD controller 130, the WP signal signal lines 541 and 551 are used as one-to-one signal lines. Connected to memory 504. In this case, each flash memory 504 uses one pin for connection with the CE signal signal lines 541 and 551.
 WP信号用信号線541、551をバス配線化するに際して、図9(B)に示すように、SSDコントローラ130に接続されるバス530の一部が、Low固定信号用信号線560とHigh固定信号用信号線561として用いられ、各フラッシュメモリ504には、それぞれセレクタ論理部品508が配置される。#0のセレクタ論理部品508の入力側は、WP信号用信号線541、554及びLow固定信号用信号線560に接続され、#1のセレクタ論理部品508は、WP信号用信号線541、554及びHigh固定信号用信号線561に接続され、各セレクタ論理部品508の出力側は、それぞれ各フラッシュメモリ504に接続される。 When the WP signal signal lines 541 and 551 are formed as bus wirings, as shown in FIG. 9B, a part of the bus 530 connected to the SSD controller 130 is connected to the Low fixed signal signal line 560 and the High fixed signal. A selector logic component 508 is disposed in each flash memory 504, which is used as a signal line 561 for a signal. The input side of the # 0 selector logic component 508 is connected to the WP signal signal lines 541 and 554 and the Low fixed signal signal line 560, and the # 1 selector logic component 508 includes the WP signal signal lines 541 and 554 and Connected to the high fixed signal signal line 561, the output side of each selector logic component 508 is connected to each flash memory 504.
 この際、WP信号は、レベル信号であって、モジュール基板505を識別するために用いられる。このため、WP信号の代わりに、High/Low固定信号を用い、バス配線化された信号線を、High/Low固定信号を伝送するための信号線として用いることで、WP信号を伝送するための1対1信号線を減らすことができる。即ち、図9(C)の真理値管理テーブル340で示すように、1対1信号であるWP信号と同じ論理値を有する信号を、バス信号として用い、各フラッシュメモリ504に与えることで、バス530は2ビット分増加するが、各フラッシュメモリ504で、WP信号用信号線541、551との接続に使用されるピンを、それぞれ1ピンから0に減らすことができる。 At this time, the WP signal is a level signal and is used to identify the module substrate 505. For this reason, a high / low fixed signal is used instead of the WP signal, and the signal line wired as a bus is used as a signal line for transmitting the high / low fixed signal, thereby transmitting the WP signal. One-to-one signal lines can be reduced. That is, as shown in the truth value management table 340 of FIG. 9C, a signal having the same logical value as that of the WP signal, which is a one-to-one signal, is used as a bus signal and is given to each flash memory 504, thereby providing a bus. Although 530 increases by 2 bits, in each flash memory 504, the pins used for connection to the WP signal signal lines 541 and 551 can be reduced from 1 pin to 0, respectively.
 真理値管理テーブル340は、WP信号の真理値を管理するためのテーブルであって、入力側の真理値341、342、343、344と出力側の真理値345、346から構成される。入力側の真理値341は、セレクタ論理部品508入力側におけるWP信号用信号線541の真理値から構成され、入力側の真理値342は、セレクタ論理部品508入力側におけるWP信号用信号線554の真理値から構成される。入力側の真理値343は、セレクタ論理部品508入力側におけるLow固定信号用信号線560の真理値から構成され、入力側の真理値344は、セレクタ論理部品508入力側におけるHigh固定信号用信号線561の真理値から構成される。出力側の真理値345は、セレクタ論理部品508出力側の真理値から構成され、出力側の真理値346は、セレクタ論理部品508出力側の真理値から構成される。 The truth value management table 340 is a table for managing the truth value of the WP signal, and is composed of input- side truth values 341, 342, 343, and 344 and output- side truth values 345 and 346. The truth value 341 on the input side is composed of the truth value of the WP signal signal line 541 on the input side of the selector logic component 508, and the truth value 342 on the input side is the WP signal signal line 554 on the input side of the selector logic component 508. Consists of truth values. The truth value 343 on the input side is constituted by the truth value of the Low fixed signal signal line 560 on the input side of the selector logic component 508, and the truth value 344 on the input side is the signal line for High fixed signal on the input side of the selector logic component 508. It is composed of 561 truth values. The truth value 345 on the output side is composed of the truth value on the output side of the selector logic component 508, and the truth value 346 on the output side is composed of the truth value on the output side of the selector logic component 508.
 図9に示す例では、バス(メモリバス)350の一部は、バス配線化された複数の信号線560、561として構成され、モジュールソケット124~126とCPUソケット(コントローラ用ソケット)122とを結ぶ複数の信号線のうち特定の2以上の信号線541、551と、バス配線化された複数の信号線560、561には、特定の2以上の信号線541、551を伝送する信号を、この信号と同じ論理値を有する信号に変換し、変換された信号をバス信号としてフラッシュメモリ504又はSDRAM502に出力する複数の論理部品として、セレクタ論理部品508が接続されているので、各フラッシュメモリ504で、WP信号用信号線541、551との接続に使用されるピンを、それぞれ1ピンから0に減らすことができる。なお、CPUソケット122にCPU131が搭載され、モジュールにSDRAM502が搭載される場合も、同様の構成を適用することができる。 In the example shown in FIG. 9, a part of the bus (memory bus) 350 is configured as a plurality of signal lines 560 and 561 wired as buses, and the module sockets 124 to 126 and the CPU socket (controller socket) 122 are connected to each other. Among the plurality of signal lines to be connected, a signal that transmits two or more specific signal lines 541 and 551 is transmitted to two or more specific signal lines 541 and 551 and a plurality of signal lines 560 and 561 that are wired as buses. Since the selector logic component 508 is connected as a plurality of logic components that convert this signal into a signal having the same logical value and output the converted signal as a bus signal to the flash memory 504 or the SDRAM 502, each flash memory 504 is connected. Therefore, the number of pins used for connection to the WP signal signal lines 541 and 551 can be reduced from 1 pin to 0 respectively. Kill. The same configuration can be applied when the CPU 131 is mounted on the CPU socket 122 and the SDRAM 502 is mounted on the module.
 図10は、SSDコントローラとモジュール基板との接続関係を説明するための説明図であって、R/B信号線をバス配線化する場合の説明図である。図10(A)において、SSDコントローラ130に、2枚のフラッシュメモリ用モジュール基板505上の各フラッシュメモリ504を接続した場合、実行完了信号或いは異常発生信号を意味するR/B(レディ/ビジィ)信号用信号線542、552が、1対1信号線として各フラッシュメモリ504に接続される。この場合、各フラッシュメモリ504は、R/B信号用信号線542、552との接続に、それぞれ2ピンが使用される。 FIG. 10 is an explanatory diagram for explaining a connection relationship between the SSD controller and the module substrate, and is an explanatory diagram in the case where the R / B signal line is formed as a bus wiring. In FIG. 10A, when each flash memory 504 on the two flash memory module substrates 505 is connected to the SSD controller 130, an R / B (ready / busy) meaning an execution completion signal or an abnormality occurrence signal. Signal signal lines 542 and 552 are connected to each flash memory 504 as one-to-one signal lines. In this case, each flash memory 504 uses two pins for connection to the R / B signal signal lines 542 and 552.
 R/B信号用信号線542、552をバス配線化するに際して、図10(B)に示すように、SSDコントローラ130に接続されるバス530の一部が、Low固定信号用信号線560とHigh固定信号用信号線561として用いられ、各フラッシュメモリ504には、それぞれ複数のAND論理部品512、513が配置される。 When the R / B signal signal lines 542 and 552 are connected to the bus, as shown in FIG. 10B, a part of the bus 530 connected to the SSD controller 130 is connected to the Low fixed signal signal line 560 and the High. A plurality of AND logic components 512 and 513 are arranged in each flash memory 504, which are used as fixed signal signal lines 561.
 #0のフラッシュメモリ504に配置されるAND論理部品512、513の各入力側は、Low固定信号用信号線560又は#0のフラッシュメモリ504のR/B信号用ピンに接続され、#0のフラッシュメモリ504に配置されるAND論理部品512の出力側は、R/B信号用信号線542に接続され、#0のフラッシュメモリ504に配置されるAND論理部品513の出力側はR/B信号用信号線552に接続される。#1のフラッシュメモリ504に配置される各AND論理部品512、513の各入力側は、High固定信号用信号線561又は#1のフラッシュメモリ504のR/B信号用ピンに接続され、#1のフラッシュメモリ504に配置されるAND論理部品512の出力側は、R/B信号用信号線542に接続され、#1のフラッシュメモリ504に配置されるAND論理部品513の出力側は、R/B信号用信号線552に接続される。 Each input side of the AND logic components 512 and 513 arranged in the # 0 flash memory 504 is connected to the Low fixed signal signal line 560 or the R / B signal pin of the # 0 flash memory 504, and # 0 The output side of the AND logic component 512 arranged in the flash memory 504 is connected to the R / B signal signal line 542, and the output side of the AND logic component 513 arranged in the # 0 flash memory 504 is the R / B signal. Connected to the signal line 552. Each input side of the AND logic components 512 and 513 arranged in the # 1 flash memory 504 is connected to the High fixed signal signal line 561 or the R / B signal pin of the # 1 flash memory 504, and # 1 The output side of the AND logic component 512 arranged in the flash memory 504 is connected to the R / B signal signal line 542, and the output side of the AND logic component 513 arranged in the # 1 flash memory 504 is connected to the R / B signal line 542. It is connected to the B signal signal line 552.
 この際、R/B信号は、出力信号を配線接続するワイアードオア信号である。このため、R/B信号の代わりに、High/Low固定信号を用い、バス配線化された信号線を、High/Low固定信号を伝送するための信号線として用い、R/B信号を伝送するための1対1信号線を減らすことができる。即ち、図10(C)の真理値管理テーブル350で示すように、1対1信号であるR/B信号と同じ論理値を有する信号を、バス信号として用い、各フラッシュメモリ504に与えることで、バス530は4ビット分増加するが、各フラッシュメモリ504で、R/B信号用信号線542、552との接続に使用されるピンを、それぞれ2ピンから0に減らすことができる。 At this time, the R / B signal is a wired OR signal for wiring the output signal. For this reason, instead of the R / B signal, a High / Low fixed signal is used, and the signal line wired as a bus is used as a signal line for transmitting the High / Low fixed signal to transmit the R / B signal. Therefore, the one-to-one signal line can be reduced. That is, as shown in the truth value management table 350 in FIG. 10C, a signal having the same logical value as the R / B signal, which is a one-to-one signal, is used as a bus signal and given to each flash memory 504. Although the bus 530 is increased by 4 bits, the pins used for connection to the R / B signal signal lines 542 and 552 in each flash memory 504 can be reduced from 2 pins to 0, respectively.
 真理値管理テーブル350は、R/B信号の真理値を管理するためのテーブルであって、入力側の真理値351、352、353、354と出力側の真理値355、356から構成される。入力側の真理値351は、#0のフラッシュメモリ504に配置された各AND論理部品512、513入力側の真理値から構成され、入力側の真理値352は、#1のフラッシュメモリ504に配置された各AND論理部品512、513入力側の真理値から構成される。入力側の真理値353は、#0のフラッシュメモリ504に配置された各AND論理部品512、513入力側におけるLow固定信号用信号線560の真理値から構成され、入力側の真理値354は、#1のフラッシュメモリ504に配置された各AND論理部品512、513入力側におけるHigh固定信号用信号線561の真理値から構成される。出力側の真理値355は、各フラッシュメモリ504に配置されたAND論理部品512出力側におけるR/B信号用信号線542の真理値から構成され、出力側の真理値356は、各フラッシュメモリ504に配置されたAND論理部品513出力側におけるR/B信号用信号線552の真理値から構成される。 The truth value management table 350 is a table for managing the truth values of the R / B signal, and is composed of input- side truth values 351, 352, 353, and 354 and output- side truth values 355 and 356. The truth value 351 on the input side is composed of the truth values on the input side of the AND logic components 512 and 513 arranged in the # 0 flash memory 504, and the truth value 352 on the input side is arranged in the # 1 flash memory 504. Each AND logic component 512, 513 is composed of truth values on the input side. The truth value 353 on the input side is composed of the truth values of the low fixed signal signal lines 560 on the input sides of the AND logic components 512 and 513 arranged in the # 0 flash memory 504, and the truth value 354 on the input side is It consists of the truth value of the high fixed signal signal line 561 on the input side of each AND logic component 512, 513 arranged in the # 1 flash memory 504. The truth value 355 on the output side is composed of the truth value of the R / B signal signal line 542 on the output side of the AND logic component 512 arranged in each flash memory 504, and the truth value 356 on the output side is composed of each flash memory 504. The R / B signal signal line 552 on the output side of the AND logic component 513 arranged at the truth value.
 図10に示す例では、バス(メモリバス)350の一部は、バス配線化された複数の信号線560、561として構成され、モジュールソケット124~126とCPUソケット(コントローラ用ソケット)122とを結ぶ複数の信号線のうち特定の2以上の信号線542、552と、バス配線化された複数の信号線560、561には、特定の2以上の信号線542、552を伝送する信号を、この信号と同じ論理値を有する信号に変換し、変換された信号をバス信号としてSSDコントローラ130又はCPU131に出力する複数の論理部品として、複数のAND論理部品512、513が接続されているので、各フラッシュメモリ504で、R/B信号用信号線542、552との接続に使用されるピンを、それぞれ2ピンから0に減らすことができる。なお、CPUソケット122にCPU131が搭載され、モジュールにSDRAM502が搭載される場合も、同様の構成を適用することができる。 In the example shown in FIG. 10, a part of the bus (memory bus) 350 is configured as a plurality of signal lines 560 and 561 wired as buses, and the module sockets 124 to 126 and the CPU socket (controller socket) 122 are connected. Among a plurality of signal lines to be connected, specific two or more signal lines 542 and 552 and a plurality of signal lines 560 and 561 wired as buses are signals transmitted through the two or more specific signal lines 542 and 552. Since a plurality of AND logic components 512 and 513 are connected as a plurality of logic components that convert this signal into a signal having the same logical value and output the converted signal to the SSD controller 130 or the CPU 131 as a bus signal. In each flash memory 504, the pins used for connection to the R / B signal signal lines 542 and 552 are changed from 2 pins to 0 respectively. It can be reduced. The same configuration can be applied when the CPU 131 is mounted on the CPU socket 122 and the SDRAM 502 is mounted on the module.
 図11は、SSDコントローラにモジュール基板を2枚バス接続した場合の構成図である。図11において、#0のフラッシュメモリ用モジュール基板505には、#0のメモリユニット511が搭載され、#1のモジュール基板505には、#1のメモリユニット511が搭載される。各メモリユニット511は、複数のAND論理部品510、512、513と、セレクタ論理部品508と、1パッケージのフラッシュメモリ504から構成される。SSDコントローラ130は、エンコード回路を構成する、複数のOR論理回路部品509A~509Cを有し、WE0、CLE0、ALE0、RE0、DQ0、DQS0を含むバス530を介して、各フラッシュメモリ用モジュール基板505上の各フラッシュメモリ504に接続され、WE1、CLE1、ALE1、RE1、DQ1、DQS1を含むバス531を介して各フラッシュメモリ用モジュール基板505上の各フラッシュメモリ504に接続される。 FIG. 11 is a configuration diagram when two module boards are connected to the SSD controller by a bus. In FIG. 11, a # 0 flash memory module substrate 505 is mounted with a # 0 memory unit 511, and a # 1 module substrate 505 is mounted with a # 1 memory unit 511. Each memory unit 511 includes a plurality of AND logic components 510, 512, and 513, a selector logic component 508, and a flash memory 504 in one package. The SSD controller 130 has a plurality of OR logic circuit components 509A to 509C constituting an encoding circuit, and each flash memory module substrate 505 via a bus 530 including WE0, CLE0, ALE0, RE0, DQ0, and DQS0. Each flash memory 504 is connected to each flash memory 504 and connected to each flash memory 504 on each flash memory module substrate 505 via a bus 531 including WE1, CLE1, ALE1, RE1, DQ1, and DQS1.
 また、SSDコントローラ130は、CE用信号線553、WP信号用信号線541、554、R/B信号用信号線552、542、545、555、CE用信号線550を介して、各フラッシュメモリ用モジュール基板505上の各フラッシュメモリ504に接続される。さらに、SSDコントローラ130は、CE用信号線543A、540A、WP信号用信号線544、Low固定信号用信号線560を介して、#0のフラッシュメモリ用モジュール基板505上のフラッシュメモリ504に接続され、CE用信号線543B、540B、WP信号用信号線551、High固定信号用信号線561を介して、#1のフラッシュメモリ用モジュール基板505上のフラッシュメモリ504に接続される。 Further, the SSD controller 130 is provided for each flash memory via the CE signal line 553, the WP signal signal lines 541 and 554, the R / B signal signal lines 552, 542, 545 and 555, and the CE signal line 550. It is connected to each flash memory 504 on the module substrate 505. Further, the SSD controller 130 is connected to the flash memory 504 on the # 0 flash memory module substrate 505 via the CE signal lines 543A, 540A, the WP signal signal line 544, and the Low fixed signal signal line 560. , The CE signal lines 543B and 540B, the WP signal signal line 551, and the high fixed signal signal line 561, are connected to the flash memory 504 on the # 1 flash memory module substrate 505.
 この際、#0のフラッシュメモリ用モジュール基板505上のフラッシュメモリ504は、バス530との接続に15ピンが使用され、バス531との接続に15ピンが使用され、バス配線化された信号線553、541、554、552、542、545、555との接続に14ピンが使用され、1対1の信号線543A、544、540A、560との接続に4ピンが使用される。#1のフラッシュメモリ用モジュール基板505上のフラッシュメモリ504は、バス530との接続に15ピンが使用され、バス531との接続に15ピンが使用され、バス配線化された信号線553、541、554、552、542、545、555との接続に14ピンが使用され、1対1の信号線543B、551、540B、561との接続に4ピンが使用される。 At this time, the flash memory 504 on the # 0 flash memory module substrate 505 has 15 pins used for connection to the bus 530 and 15 pins used for connection to the bus 531, and is a signal line formed as a bus wiring. 14 pins are used for connection to 553, 541, 554, 552, 542, 545, and 555, and 4 pins are used for connection to the one-to- one signal lines 543A, 544, 540A, and 560. The flash memory 504 on the # 1 flash memory module substrate 505 has 15 pins used for connection to the bus 530 and 15 pins used for connection to the bus 531, and signal lines 553 and 541 wired as buses. 14 pins are used for connection to 554, 552, 542, 545, 555, and 4 pins are used for connection to the one-to-one signal lines 543B, 551, 540B, 561.
 各フラッシュメモリ504は、バス530、531との接続に合計30ピンが使用され、バス配線化された信号線553、541、554、552、542、545、555との接続に合計14ピンが使用され、バス接続に合計44ピンが使用され、1対1の信号線543A、544、540A、560または信号線543B、551、540B、561との接続に合計4ピンが使用される。 Each flash memory 504 uses a total of 30 pins for connection to buses 530 and 531, and uses a total of 14 pins for connection to signal lines 553, 541, 554, 552, 542, 545, and 555 that are wired as buses. Thus, a total of 44 pins are used for the bus connection, and a total of 4 pins are used for the connection with the one-to- one signal lines 543A, 544, 540A, 560 or the signal lines 543B, 551, 540B, 561.
 即ち、各フラッシュメモリ504は、バス接続に合計44ピンが使用されるが、1対1の信号線との接続には4ピンのみが使用される。このため、1対1信号線の一部をバス配線化することで、各フラッシュメモリ504が、1対1の信号線との接続に要するピンの数を10ピンから4ピンに減らすことができ、2パッケージのフラッシュメモリ504を各モジュール132~134に搭載することができる。 That is, each flash memory 504 uses a total of 44 pins for bus connection, but uses only 4 pins for connection to a one-to-one signal line. For this reason, by forming a part of the one-to-one signal line as a bus wiring, each flash memory 504 can reduce the number of pins required for connection to the one-to-one signal line from 10 pins to 4 pins. Two packages of flash memory 504 can be mounted on each of the modules 132 to 134.
 図12は、信号数比較テーブルの構成図である。図12(A)において、信号数比較テーブル360には、モジュール132に、フラッシュメモリ504を1パッケージ搭載した場合の信号数について、信号線の一部がバス配線化されていない標準タイプと、信号線の一部がバス配線化された実施例との比較結果が記録されている。信号数比較テーブル360から、標準タイプの場合、フラッシュメモリ504には、1対1信号を伝送する信号線との接続に10ピンが使用され、バス信号を伝送するバスとの接続に30ピンが使用され、実施例の場合、フラッシュメモリ504には、1対1信号を伝送する信号線との接続に4ピンが使用され、バス信号を伝送するバスとの接続に44ピンが使用されることが分かる。 FIG. 12 is a configuration diagram of the signal number comparison table. In FIG. 12A, the signal number comparison table 360 includes a standard type in which a part of the signal line is not bus-wired and the signal number when the flash memory 504 is mounted on the module 132 in one package. A comparison result with an example in which a part of the line is bus-wired is recorded. From the signal number comparison table 360, in the case of the standard type, the flash memory 504 has 10 pins for connection to a signal line that transmits a one-to-one signal, and 30 pins for connection to a bus that transmits a bus signal. In the embodiment, the flash memory 504 uses 4 pins for connection to a signal line for transmitting a one-to-one signal, and 44 pins for connection to a bus for transmitting a bus signal. I understand.
 図12(B)において、信号数比較テーブル370には、モジュール132に、フラッシュメモリ504を3パッケージ搭載した場合の信号数について、信号線の一部がバス配線化されていない標準タイプと、信号線の一部がバス配線化された実施例との比較結果が記録されている。信号数比較テーブル370から、標準タイプの場合、各フラッシュメモリ504には、1対1信号を伝送する信号線との接続に合計30(30=10×3)ピンが使用され、バス信号を伝送するバスとの接続に合計90(90=30×3)ピンが使用され、実施例の場合、各フラッシュメモリ504には、1対1信号を伝送する信号線との接続に合計10ピンが使用され、バス信号を伝送するバスとの接続に合計132(132=44×3)ピンが使用されることが分かる。 In FIG. 12B, the signal number comparison table 370 includes a standard type in which a part of the signal line is not bus-wired with respect to the number of signals when three packages of the flash memory 504 are mounted on the module 132, and the signal. A comparison result with an example in which a part of the line is bus-wired is recorded. From the signal number comparison table 370, in the case of the standard type, each flash memory 504 uses a total of 30 (30 = 10 × 3) pins for connection with signal lines for transmitting one-to-one signals, and transmits bus signals. A total of 90 (90 = 30 × 3) pins are used for connection to the bus to be used, and in the case of the embodiment, each flash memory 504 uses a total of 10 pins for connection to the signal line for transmitting a one-to-one signal. Thus, it can be seen that a total of 132 (132 = 44 × 3) pins are used for connection with the bus for transmitting the bus signal.
 モジュール132に、フラッシュメモリ504を3パッケージ搭載した場合、実施例では、3パッケージのフラッシュメモリ504として、バス信号を伝送するバスとの接続に合計132(132=44×3)ピンが使用されるが、1対1信号を伝送する信号線との接続に合計10ピンのみが使用される。モジュール132~134には、1対1信号を伝送する信号線との接続に用いるピンが12個配置され、バス信号を伝送するバスとの接続に用いるピンが132個配置されているので、各モジュール132~134に、3パッケージのフラッシュメモリ504を搭載することができる。 When three packages of the flash memory 504 are mounted on the module 132, in the embodiment, a total of 132 (132 = 44 × 3) pins are used for connection with a bus that transmits bus signals as the flash memory 504 of three packages. However, only 10 pins in total are used for connection with a signal line for transmitting a one-to-one signal. Each of the modules 132 to 134 has 12 pins used for connection with a signal line for transmitting a one-to-one signal and 132 pins used for connection with a bus for transmitting a bus signal. Three packages of flash memory 504 can be mounted on the modules 132 to 134.
 図13は、SSDコントローラに、3パッケージのフラッシュメモリが搭載されたモジュール基板を2枚バス接続した場合の構成図である。図13において、#0のモジュール基板505には、#0のメモリユニット511が3個搭載され、SPDデバイス512が1個搭載され、#1のモジュール基板505には、#1のメモリユニット511が3個搭載され、SPDデバイス512が1個搭載される。各メモリユニット511は、複数のAND論理部品510、512、513と、セレクタ論理部品508と、1パッケージのフラッシュメモリ504から構成される。各SPD512は、各モジュール基板505の仕様を認識すると共に、各モジュール基板505でエラーが発生した場合、エラー信号をSSDコントローラ130に転送する。 FIG. 13 is a configuration diagram in the case where two module boards on which three packages of flash memory are mounted are connected to the SSD controller by a bus. In FIG. 13, three # 0 memory units 511 and three SPD devices 512 are mounted on the # 0 module board 505, and the # 1 memory unit 511 is mounted on the # 1 module board 505. Three SPD devices 512 are mounted. Each memory unit 511 includes a plurality of AND logic components 510, 512, and 513, a selector logic component 508, and a flash memory 504 in one package. Each SPD 512 recognizes the specification of each module substrate 505 and transfers an error signal to the SSD controller 130 when an error occurs in each module substrate 505.
 SSDコントローラ130は、バス570を介して、#0のメモリユニット511及び#1のメモリユニット511に接続され、バス571を介して、#0のメモリユニット511及び#1のメモリユニット511に接続され、バス572を介して、#0のメモリユニット511及び#1のメモリユニット511に接続される。また、SSDコントローラ130は、1対1の信号線580、581を介して、#0のメモリユニット511及び#1のメモリユニット511に接続され、1対1の信号線582、583を介して、#0のメモリユニット511及び#1のメモリユニット511に接続され、1対1の信号線584、585を介して、#0のメモリユニット511及び#1のメモリユニット511に接続される。さらに、SSDコントローラ130は、Low固定信号用信号線560を介して、#0の3個のメモリユニット511に接続され、High固定信号用信号線561を介して、#1の3個のメモリユニット511に接続される。また、SSDコントローラ130は、EVENT用信号線586を介して、#0のSPDデバイス512及び#1のSPDデバイス512に接続される。 The SSD controller 130 is connected to the # 0 memory unit 511 and the # 1 memory unit 511 via the bus 570, and is connected to the # 0 memory unit 511 and the # 1 memory unit 511 via the bus 571. Are connected to the # 0 memory unit 511 and the # 1 memory unit 511 via the bus 572. The SSD controller 130 is connected to the # 0 memory unit 511 and the # 1 memory unit 511 via the one-to- one signal lines 580 and 581, and is connected to the # 1 memory line 582 and 583 via the one-to- one signal lines 582 and 583. It is connected to the # 0 memory unit 511 and the # 1 memory unit 511 and is connected to the # 0 memory unit 511 and the # 1 memory unit 511 via the one-to- one signal lines 584 and 585. Further, the SSD controller 130 is connected to the three memory units 511 of # 0 via the Low fixed signal signal line 560, and is connected to the three memory units of # 1 via the High fixed signal signal line 561. 511 is connected. Further, the SSD controller 130 is connected to the # 0 SPD device 512 and the # 1 SPD device 512 via the EVENT signal line 586.
 この際、バス570は、例えば、バス530、531と、バス配線化された信号線553、541、554、552、542、545、555から構成され、信号線580は、例えば、信号線543A、544、540Aで構成され、信号線581は、例えば、信号線543B、551、540Bで構成される。 At this time, the bus 570 includes, for example, buses 530 and 531 and signal lines 553, 541, 554, 552, 542, 545, and 555 wired as buses, and the signal line 580 includes, for example, signal lines 543A, The signal line 581 includes, for example, signal lines 543B, 551, and 540B.
 この際、#0のフラッシュメモリ用モジュール基板505上のメモリユニット511のうちバス570に接続された#0のメモリユニット511は、信号線580との接続に3ピンが使用され、バス570との接続に44ピンが使用され、Low固定信号用信号線560との接続に1ピンが使用される。バス571に接続された#0のメモリユニット511は、信号線582との接続に3ピンが使用され、バス571との接続に44ピンが使用され、Low固定信号用信号線560との接続に1ピンが使用される。バス572に接続された#0のメモリユニット511は、信号線584との接続に3ピンが使用され、バス572との接続に44ピンが使用され、Low固定信号用信号線560との接続に1ピンが使用される。3個の#0のメモリユニット511全体で、1対1の信号を伝送する信号線との接続に10ピンが使用され、バス信号を伝送するバスとの接続に132ピンが使用される。 At this time, the # 0 memory unit 511 connected to the bus 570 among the memory units 511 on the # 0 flash memory module substrate 505 uses 3 pins for connection to the signal line 580, and is connected to the bus 570. 44 pins are used for connection, and 1 pin is used for connection to the low fixed signal signal line 560. The # 0 memory unit 511 connected to the bus 571 uses 3 pins for connection to the signal line 582, uses 44 pins for connection to the bus 571, and connects to the low fixed signal signal line 560. One pin is used. The # 0 memory unit 511 connected to the bus 572 uses 3 pins for connection to the signal line 584, uses 44 pins for connection to the bus 572, and connects to the low fixed signal signal line 560. One pin is used. In the entire three # 0 memory units 511, 10 pins are used for connection to signal lines for transmitting one-to-one signals, and 132 pins are used for connections to buses for transmitting bus signals.
 バス570に接続された#1のメモリユニット511は、信号線581との接続に3ピンが使用され、バス570との接続に44ピンが使用され、High固定信号用信号線561との接続に1ピンが使用される。バス571に接続された#1のメモリユニット511は、信号線583との接続に3ピンが使用され、バス571との接続に44ピンが使用され、High固定信号用信号線561との接続に1ピンが使用される。バス572に接続された#1のメモリユニット511は、信号線585との接続に3ピンが使用され、バス572との接続に44ピンが使用され、High固定信号用信号線561との接続に1ピンが使用される。#1の3個のメモリユニット511全体で、1対1の信号を伝送する信号線との接続に10ピンが使用され、バス信号を伝送するバスとの接続に132ピンが使用される。 The # 1 memory unit 511 connected to the bus 570 uses 3 pins for connection to the signal line 581, uses 44 pins for connection to the bus 570, and connects to the high fixed signal signal line 561. One pin is used. The # 1 memory unit 511 connected to the bus 571 uses 3 pins for connection to the signal line 583, uses 44 pins for connection to the bus 571, and connects to the high fixed signal signal line 561. One pin is used. The # 1 memory unit 511 connected to the bus 572 uses 3 pins for connection to the signal line 585, uses 44 pins for connection to the bus 572, and connects to the high fixed signal signal line 561. One pin is used. In the entire three # 1 memory units 511, 10 pins are used for connection with signal lines for transmitting one-to-one signals, and 132 pins are used for connection with buses for transmitting bus signals.
 各モジュール基板505には、1対1信号を伝送する信号線との接続に用いるピンが10個配置され、バス信号を伝送するバスとの接続に用いるピンが132個配置されるので、各モジュール基板505に、1パッケージのフラッシュメモリ504を有するメモリユニット511を3個ずつ搭載することができる。 Each module board 505 is provided with 10 pins used for connection with signal lines for transmitting one-to-one signals and 132 pins used for connection with buses for transmitting bus signals. Three memory units 511 each having one package of flash memory 504 can be mounted on the substrate 505.
 図14は、SDRAM用モジュールとフラッシュメモリ用モジュールのピン配置を示すテーブルの構成図である。図14において、テーブル600には、SDRAM用モジュール501のピン(#1~60、#121~180)と1対1信線又はバスとの関係を示す情報が記録され、テーブル610には、フラッシュメモリ用モジュール505のピン(#1~60、#121~180)と1対1信線又はバスとの関係を示す情報が記録され、テーブル620には、SDRAM用モジュール501のピン(#61~120、#181~240)と1対1信線又はバスとの関係を示す情報が記録され、テーブル630には、フラッシュメモリ用モジュール505のピン(#61~120、#181~240)と1対1信線又はバスとの関係を示す情報が記録される。 FIG. 14 is a configuration diagram of a table showing the pin arrangement of the SDRAM module and the flash memory module. In FIG. 14, information indicating the relationship between pins (# 1 to 60, # 121 to 180) of the SDRAM module 501 and one-to-one communication lines or buses is recorded in a table 600. Information indicating the relationship between the pins (# 1 to 60, # 121 to 180) of the memory module 505 and the one-to-one communication line or bus is recorded, and the pins (# 61 to # 61) of the SDRAM module 501 are recorded in the table 620. 120, # 181 to 240) and information indicating the relationship between the one-to-one communication line or the bus, and the table 630 includes the pins (# 61 to 120, # 181 to 240) and 1 of the flash memory module 505. Information indicating the relationship with the one-to-one communication line or bus is recorded.
 テーブル600、610、620、640には、SDRAM用モジュール501とフラッシュメモリ用モジュール505のピン配置を共通化した場合の情報が記録される。即ち、SDRAM用モジュール501とフラッシュメモリ用モジュール505において、1対1接続信号及びバス信号のピン配置が一致している。なお、差動配線やフラッシュメモリ504に要求される差動信号のピン配置も一致している。 In the tables 600, 610, 620, and 640, information when the pin arrangement of the SDRAM module 501 and the flash memory module 505 is shared is recorded. That is, in the SDRAM module 501 and the flash memory module 505, the one-to-one connection signal and the bus signal have the same pin arrangement. The pin arrangement of the differential signal required for the differential wiring and the flash memory 504 also matches.
 図15は、電圧制御切替レジスタマップの構成図である。図15において、電圧制御切替レジスタマップ380は、電源切替DC-DCコンバータ管理テーブル300、310、320に記録された情報を基に生成されたマップとして、電圧切替制御レジスタ103に格納され、オフセット380Aと、記述380Bと、ビット380Cと、データ380Dと、記述380Eから構成され、電圧制御切替レジスタマップ380には、システム基板101が2ソケット構成の場合の情報が記録される。 FIG. 15 is a configuration diagram of the voltage control switching register map. In FIG. 15, the voltage control switching register map 380 is stored in the voltage switching control register 103 as a map generated based on the information recorded in the power switching DC-DC converter management tables 300, 310, 320, and is offset 380A. 380B, bit 380C, data 380D, and description 380E. The voltage control switching register map 380 records information when the system board 101 has a 2-socket configuration.
 オフセット0x30の欄には、CPU31もしくはSSDコントローラ130を搭載することができるCPUソケット数の情報が格納される。CPUソケット単位で情報格納領域を確保するために、オフセット0x50の欄には、情報格納領域の範囲を定義した情報として、CPU1 Info Block lengthが格納される。オフセット0x51の欄には、各電圧切替DC-DCコンバータ108~114に印加されるEN信号(制御信号)に関する情報が格納され、オフセット0x52の欄には、各電圧切替DC-DCコンバータ108~114に印加されるSEL信号(制御信号)に関する情報及びモジュールソケット124~126に搭載されるモジュール132~134とCPUソケット(コントローラ用ソケット)122に搭載されるコントローラの種別をそれぞれ特定する種別情報が格納される。この種別情報は、例えば、CPUソケット122にCPU131が搭載される場合、「0」であり、CPUソケット122にSSDコントローラ130が搭載される場合、「1」である。また、モジュールソケット124~126にモジュール132~134として、SDRAM用モジュール501が搭載される場合、「0」であり、フラッシュメモリ用モジュール505が搭載される場合、「1」である。 In the column of offset 0x30, information on the number of CPU sockets on which the CPU 31 or the SSD controller 130 can be mounted is stored. In order to secure an information storage area for each CPU socket, CPU1 Info Block length is stored in the column of offset 0x50 as information defining the range of the information storage area. Information on the EN signal (control signal) applied to each voltage switching DC-DC converter 108 to 114 is stored in the offset 0x51 column, and each voltage switching DC-DC converter 108 to 114 is stored in the offset 0x52 column. Information relating to the SEL signal (control signal) applied to the module and type information for specifying the types of the controllers 132 to 134 mounted on the module sockets 124 to 126 and the controller mounted on the CPU socket (controller socket) 122 are stored. Is done. This type information is, for example, “0” when the CPU 131 is mounted on the CPU socket 122, and “1” when the SSD controller 130 is mounted on the CPU socket 122. Further, when the SDRAM module 501 is mounted as the modules 132 to 134 in the module sockets 124 to 126, it is “0”, and when the flash memory module 505 is mounted, it is “1”.
 図16は、I/Oエキスパンダレジスタマップの構成図である。図16において、I/Oエキスパンダレジスタマップ390は、制御マイコン104によって管理され、I/Oエキスパンダレジスタ105のレジスタに格納されるマップであって、オフセット390Aと、ビット390Bと、データ390Cと、記述390Dから構成される。 FIG. 16 is a configuration diagram of the I / O expander register map. In FIG. 16, an I / O expander register map 390 is a map managed by the control microcomputer 104 and stored in the register of the I / O expander register 105, and includes an offset 390A, a bit 390B, and data 390C. , 390D.
 オフセット0x02には、各電圧切替DC-DCコンバータ108~114に印加されるEN信号に関する情報が格納され、オフセット0x03の欄には、各電圧切替DC-DCコンバータ108~114に印加されるSEL信号に関する情報及びモジュールソケット124~126に搭載されるモジュール132~134とCPUソケット(コントローラ用ソケット)122に搭載されるコントローラの種別をそれぞれ特定する種別情報が格納される。この際、CPU131もしくはSSDコントローラ130を搭載することができるCPUソケット1つに対して、1つのI/Oエキスパンダ105が対応する。4CPUソケット構成の場合、即ち、1個のCPU131と3個のSSDコントローラ130の構成の場合、I/Oエキスパンダ105は、システム基板101に、3個配置されることになる。 The offset 0x02 stores information related to the EN signal applied to each voltage switching DC-DC converter 108-114, and the column of offset 0x03 stores the SEL signal applied to each voltage switching DC-DC converter 108-114. And the type information for specifying the types of the controllers mounted on the modules 132 to 134 and the CPU socket (controller socket) 122 mounted on the module sockets 124 to 126, respectively. At this time, one I / O expander 105 corresponds to one CPU socket in which the CPU 131 or the SSD controller 130 can be mounted. In the case of a 4-CPU socket configuration, that is, in the configuration of one CPU 131 and three SSD controllers 130, three I / O expanders 105 are arranged on the system board 101.
 図17は、制御マイコンの処理を説明するためのフローチャートである。この処理は、制御マイコン104内のCPUによって実行される。図17において、制御マイコン104は、電圧切替制御レジスタ103をアクセスして、電圧制御切替レジスタマップ380を参照し、電圧制御切替レジスタマップ380のオフセット0x30の欄に格納されているCPUソケット数を読込み(S1)、読込んだ値(CPUソケット数)を変数Xに代入し(S2)、変数Xの値から、CPU131もしくはSSDコントローラ130を搭載することができるCPUソケット数を判定する(S3)。 FIG. 17 is a flowchart for explaining the processing of the control microcomputer. This process is executed by the CPU in the control microcomputer 104. In FIG. 17, the control microcomputer 104 accesses the voltage switching control register 103, refers to the voltage control switching register map 380, and reads the number of CPU sockets stored in the offset 0x30 column of the voltage control switching register map 380. (S1) The read value (the number of CPU sockets) is substituted into a variable X (S2), and the number of CPU sockets on which the CPU 131 or the SSD controller 130 can be mounted is determined from the value of the variable X (S3).
 ステップS3で、変数X=0でないと判定した場合、制御マイコン104は、電圧制御切替レジスタマップ380のオフセット0x51の欄に格納されているEN信号に関する情報を読込み、読込んだ情報をI/Oエキスパンダ105のレジスタのうち、I/Oエキスパンダレジスタマップ390のオフセット0x02の欄に書き込む(S4)。 If it is determined in step S3 that the variable X is not 0, the control microcomputer 104 reads the information related to the EN signal stored in the offset 0x51 column of the voltage control switching register map 380, and reads the read information as I / O. Of the registers of the expander 105, the data is written into the offset 0x02 field of the I / O expander register map 390 (S4).
 次に、制御マイコン104は、電圧制御切替レジスタマップ380のオフセット0x52の欄に格納されているSEL信号に関する情報を読込み、読込んだ情報をI/Oエキスパンダ105のレジスタのうち、I/Oエキスパンダレジスタマップ390のオフセット0x03の欄に書き込む(S5)。この後、制御マイコン104は、変数X=X-1とし(S6)、ステップS3の処理に戻り、ステップS3~S7の処理を繰り返す。 Next, the control microcomputer 104 reads information on the SEL signal stored in the offset 0x52 field of the voltage control switching register map 380, and reads the read information in the I / O expander 105 registers. Write in the offset 0x03 field of the expander register map 390 (S5). Thereafter, the control microcomputer 104 sets the variable X = X−1 (S6), returns to the process of step S3, and repeats the processes of steps S3 to S7.
 一方、ステップS3で、変数X=0であると判定した場合、CPU131もしくはSSDコントローラ130を搭載することができるCPUソケット数が無いということを示しており、DC-DC電圧切替処理が必要ないので、制御マイコン104は、DC-DC電圧切替処理を終了すると共に、このルーチンでの処理を終了する。 On the other hand, if it is determined in step S3 that the variable X = 0, this indicates that there is no number of CPU sockets in which the CPU 131 or the SSD controller 130 can be mounted, and DC-DC voltage switching processing is not necessary. The control microcomputer 104 ends the DC-DC voltage switching process and the process in this routine.
 I/Oエキスパンダレジスタマップ390のオフセット0x02の欄及びオフセット0x03の欄にEN信号やSEL信号に関する情報が記録されると、I/Oエキスパンダ105から各電圧切替DC-DCコンバータ108~114に制御信号として、EN信号とSEL信号が出力される。これにより、各電圧切替DC-DCコンバータ108~114は、各電力供給先に、各電力供給先の電源電圧に適合する出力電圧を出力する。 When information about the EN signal or the SEL signal is recorded in the offset 0x02 column and the offset 0x03 column of the I / O expander register map 390, the I / O expander 105 sends the information to the voltage switching DC-DC converters 108 to 114. An EN signal and a SEL signal are output as control signals. As a result, each of the voltage switching DC-DC converters 108 to 114 outputs an output voltage suitable for the power supply voltage of each power supply destination to each power supply destination.
 この際、主電源106と、I/Oエキスパンダ105と、各電圧切替DC-DCコンバータ108~114は、電源部を構成し、I/Oエキスパンダ105のレジスタ(記憶部)に記憶された種別情報を判別し、複数の異なる出力電圧の中から判別結果に従って2以上の異なる出力電圧を選択し、選択した各出力電圧をそれぞれフラッシュメモリ用モジュール上のフラッシュメモリ504又はSDRAM用モジュール上のSDRAM502に印加すると共に、SSDコントローラ130又はCPU131に印加する。 At this time, the main power supply 106, the I / O expander 105, and the voltage switching DC-DC converters 108 to 114 constitute a power supply unit, and are stored in the register (storage unit) of the I / O expander 105. The type information is discriminated, two or more different output voltages are selected from a plurality of different output voltages according to the discrimination result, and the selected output voltages are respectively selected from the flash memory 504 on the flash memory module or the SDRAM 502 on the SDRAM module. And applied to the SSD controller 130 or the CPU 131.
 この場合、I/Oエキスパンダ105は、I/Oエキスパンダ105のレジスタ(記憶部)に記憶された種別情報を判別し、この判別結果に応じて制御情報が異なる複数の制御信号(EN信号とSEL信号)を出力する制御信号出力部を構成し、各電圧切替DC-DCコンバータ108~114は、I/Oエキスパンダ105から制御信号を受信した場合、複数の異なる出力電圧の中から、受信した制御信号の制御情報で指定された出力電圧であって、電力供給先の電源電圧に適合する2以上の異なる出力電圧を選択し、選択した各出力電圧をそれぞれフラッシュメモリ用モジュール上のフラッシュメモリ504又はSDRAM用モジュール上のSDRAM502に出力すると共に、SSDコントローラ130又はCPU131に出力する電圧切替部として構成される。 In this case, the I / O expander 105 determines the type information stored in the register (storage unit) of the I / O expander 105, and a plurality of control signals (EN signals) having different control information according to the determination result. SEL signal), and the voltage switching DC-DC converters 108 to 114 receive the control signal from the I / O expander 105. The output voltage specified by the control information of the received control signal is selected from two or more different output voltages that match the power supply voltage of the power supply destination, and each selected output voltage is flashed on the flash memory module. Output to SDRAM 502 on memory 504 or SDRAM module and output to SSD controller 130 or CPU 131 Configured as a pressure switch unit.
 より具体的には、電圧切替DC-DCコンバータ108は、I/Oエキスパンダ105から制御信号を受信した場合、複数の異なるコントローラ用出力電圧(0.9V及び1.0V)の中から、受信した制御信号の制御情報で指定されたコントローラ用出力電圧を選択し、選択したコントローラ用出力電圧をSSDコントローラ130又はCPU131の給電用コア部138に出力するコントローラ用電圧切替部として構成される。 More specifically, when the voltage switching DC-DC converter 108 receives a control signal from the I / O expander 105, the voltage switching DC-DC converter 108 receives the control signal from a plurality of different controller output voltages (0.9V and 1.0V). The controller output voltage selected by the control information of the control signal is selected, and the controller output voltage is output to the power supply core unit 138 of the SSD controller 130 or the CPU 131.
 電圧切替DC-DCコンバータ110、112、114は、I/Oエキスパンダ105から制御信号を受信した場合、複数の異なる記憶デバイス用出力電圧(1.35V及び3.3V)の中から、受信した制御信号の制御情報で指定された記憶デバイス用出力電圧を選択し、選択した記憶デバイス用出力電圧をフラッシュメモリ用モジュール上のフラッシュメモリ504の給電用コア部又はSDRAM用モジュール上のSDRAM502の給電用コア部に出力する記憶デバイス用電圧切替部として構成される。 When the voltage switching DC- DC converters 110, 112, 114 receive the control signal from the I / O expander 105, the voltage switching DC- DC converters 110, 112, 114 have received the output voltage from a plurality of different storage devices (1.35 V and 3.3 V). The storage device output voltage specified by the control information of the control signal is selected, and the selected storage device output voltage is used to supply power to the power supply core of the flash memory 504 on the flash memory module or to the SDRAM 502 on the SDRAM module. It is configured as a storage device voltage switching unit that outputs to the core unit.
 電圧切替DC-DCコンバータ109、111、113は、I/Oエキスパンダ105から制御信号を受信した場合、複数の異なる共用出力電圧(1.35V及び1.8V)の中から、受信した制御信号の制御情報で指定された共用出力電圧を選択し、選択した共用出力電圧をSSDコントローラ130及びフラッシュメモリ用モジュール上のフラッシュメモリ504の給電用I/0部又はCPU131及びSDRAM用モジュール上のSDRAM502の給電用I/0部にそれぞれ出力する共用電圧切替部として構成される。 When the voltage switching DC- DC converters 109, 111, 113 receive a control signal from the I / O expander 105, the control signal received from a plurality of different common output voltages (1.35V and 1.8V). The shared output voltage specified by the control information of the flash memory 504 on the SSD controller 130 and the flash memory module or the power supply I / O unit of the flash memory 504 on the SSD controller 130 or the SDRAM 502 on the SDRAM module on the SDRAM 131 is selected. It is configured as a shared voltage switching unit that outputs to the power feeding I / O unit.
 本実施例によれば、電力供給先の電圧の仕様が、電力供給先の種別によって切り替わっても、電力供給先に電力を供給する電源部を共用することできる。即ち、電圧切替DC-DCコンバータ108の出力電圧は、CPUソケット122に搭載される制御用デバイス(コントローラ)の種別によって管理され、電圧切替DC-DCコンバータ109、111、113の出力電圧は、モジュールソケット124~126に搭載されるモジュール132~134(或いはモジュール132~134に搭載される記憶デバイス)の種別によって管理され、電圧切替DC-DCコンバータ110、112、114の出力電圧は、モジュールソケット124~126に搭載されるモジュール132~134(或いはモジュール132~134に搭載される記憶デバイス)の種別によって管理されるので、CPUソケット122に、SSDコントローラ130又はCPU131が搭載されたり、モジュール132~134にフラッシュメモリ504又はSDRAM502が搭載されたりしても、各電圧切替DC-DCコンバータ108~114を共用することができる。このため、システム基板101の構成の簡素化を図ることができると共に、電圧切替DC-DCコンバータの数の低減に伴って消費電力を低減することができる。 According to the present embodiment, even if the voltage specification of the power supply destination is switched depending on the type of the power supply destination, the power supply unit that supplies power to the power supply destination can be shared. That is, the output voltage of the voltage switching DC-DC converter 108 is managed according to the type of control device (controller) mounted on the CPU socket 122, and the output voltage of the voltage switching DC- DC converters 109, 111, 113 is the module. The output voltages of the voltage switching DC- DC converters 110, 112, and 114 are managed according to the type of the modules 132 to 134 (or storage devices mounted to the modules 132 to 134) mounted in the sockets 124 to 126. Are managed according to the type of modules 132 to 134 (or storage devices mounted to the modules 132 to 134) mounted on the CPU 126, the SSD controller 130 or the CPU 131 is mounted on the CPU socket 122, or the module 1 Even or flash memory 504 or SDRAM502 is mounted from 2 to 134, may share the respective voltage switching DC-DC converters 108-114. Therefore, the configuration of the system board 101 can be simplified, and the power consumption can be reduced with the reduction in the number of voltage switching DC-DC converters.
 また、高速な揮発性メモリであるSDRAM502と、低速だが不揮発でビット単価が安価なフラッシュメモリ504をそれぞれシステム基板101上に搭載することができる共に、同一装置でSDRAM502とフラッシュメモリ504の容量を柔軟に変更することが可能となり、より低コストとなる情報処理装置或いは計算機システムを提供することができる。さらに、将来MRAMやFRAM(登録商標)の世代で実用化される可能性がある不揮発メモリ混載DIMMにも、本発明を適用することができる。 In addition, SDRAM 502, which is a high-speed volatile memory, and flash memory 504, which is low-speed but nonvolatile and inexpensive per bit, can be mounted on the system board 101, respectively, and the capacity of the SDRAM 502 and flash memory 504 can be flexibly increased with the same device. Therefore, it is possible to provide an information processing apparatus or a computer system that is lower in cost. Furthermore, the present invention can also be applied to a nonvolatile memory embedded DIMM that may be put to practical use in the future generations of MRAM and FRAM (registered trademark).
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、システム基板101を計算機システムとして用いる場合、SSDコントローラ130及びCPU131を、メモリに格納されたプログラムに従って演算処理を実行する演算装置として構成し、複数のフラッシュメモリ504及び複数のSDRAM502を、演算装置のアクセス対象のデータを記憶する記憶装置として構成することができる。また、SSDコントローラ130及びCPU131の一部を入出力インタフェースとして構成することもできる。さらに、CPUソケット122に搭載される制御用デバイス(コントローラ)とモジュール132~134に搭載される記憶デバイスに給電するための電圧切替DC-DCコンバータとしては、これら制御用デバイス(コントローラ)と記憶デバイスの電源電圧の仕様に応じて、出力電圧が異なる2種類の電圧切替DC-DCコンバータあるいは、3種類以上の電圧切替DC-DCコンバータで構成することもできる。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, when the system board 101 is used as a computer system, the SSD controller 130 and the CPU 131 are configured as an arithmetic device that executes arithmetic processing according to a program stored in the memory, and the plurality of flash memories 504 and the plurality of SDRAMs 502 are included in the arithmetic device. It can be configured as a storage device that stores data to be accessed. Also, part of the SSD controller 130 and the CPU 131 can be configured as an input / output interface. Further, as the voltage switching DC-DC converter for supplying power to the control device (controller) mounted on the CPU socket 122 and the storage device mounted on the modules 132 to 134, these control device (controller) and storage device Depending on the specifications of the power supply voltage, two types of voltage switching DC-DC converters having different output voltages or three or more types of voltage switching DC-DC converters may be used.
 上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能等は、それらの一部又は全部を、例えば、集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、IC(Integrated Circuit)カード、SD(Secure Digital)メモリカード、DVD(Digital Versatile Disc)等の記録媒体に記録して置くことができる。 Also, each of the above-described configurations, functions, etc. may be realized by hardware by designing a part or all of them, for example, by an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function is stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), an IC (Integrated Circuit) card, an SD (Secure Digital) memory card, a DVD ( It can be recorded on a recording medium such as Digital Versatile (Disc).
 また、メモリバスや1対1信号線或いは制御線は説明上必要と考えられるものを示しており、製品上必ずしも全てのメモリバスや1対1信号線或いは制御線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されている。 In addition, the memory bus, the one-to-one signal line, or the control line indicates what is considered necessary for the explanation, and not all memory buses, the one-to-one signal line, or the control line are necessarily shown in the product. . In practice, almost all the components are connected to each other.
101 システム基板、102 補助電源、103 電圧切替制御レジスタ、104 制御マイコン、105 I/Oエキスパンダ、106 主電源、108~121 電圧切替DC-DCコンバータ、122、123 CPUソケット、124~129 モジュールソケット、130 SSDコントローラ、131 CPU、132~137 モジュール、138、139 コア部、140~145 I/O部 146~151 コア部、152~157 I/O部、158 CPUバス、159~164 メモリバス、191 CPUバスコントローラ、192 フラッシュメモリコントローラ、194 内部バス、195 制御コア、201 DC-DC変換器、202 電圧調整回路、501 SDRAM用モジュール基板、502 SDRAM、504 フラッシュメモリ、505 フラッシュメモリ用モジュール基板、508 セレクタ論理部品、509A~509C OR論理部品、510、512、513 AND論理部品。 101 system board, 102 auxiliary power supply, 103 voltage switching control register, 104 control microcomputer, 105 I / O expander, 106 main power supply, 108-121 voltage switching DC-DC converter, 122, 123 CPU socket, 124-129 module socket , 130 SSD controller, 131 CPU, 132-137 module, 138, 139 core unit, 140-145 I / O unit, 146-151 core unit, 152-157 I / O unit, 158 CPU bus, 159-164 memory bus, 191 CPU bus controller, 192 flash memory controller, 194 internal bus, 195 control core, 201 DC-DC converter, 202 voltage regulator, 501 SDRAM module board, 502 SDRAM, 504 Flash memory, 505 flash memory module substrate, 508 selector logic components, 509A ~ 509C OR logic component, 510,512,513 the AND logic components.

Claims (15)

  1.  第1の記憶デバイスである複数のフラッシュメモリが配置されたフラッシュメモリ用モジュール又は第2の記憶デバイスである複数のSDRAMが配置されたSDRAM用モジュールを搭載する1以上のモジュールソケットと、
     前記モジュールソケットとメモリバスを介して接続され、前記フラッシュメモリに対するデータの入出力を制御する第1のコントローラ又は前記SDRAMに対するデータの入出力を制御する第2のコントローラを搭載するコントローラ用ソケットと、
     前記モジュールソケットを介して前記フラッシュメモリ用モジュール上のフラッシュメモリ又は前記SDRAM用モジュール上のSDRAMに電力を供給すると共に、前記コントローラ用ソケットを介して前記第1のコントローラ又は前記第2のコントローラに電力を供給する電源部と、
     前記モジュールソケットに搭載されるモジュールと前記コントローラ用ソケットに搭載されるコントローラの種別をそれぞれ特定する種別情報を記憶する記憶部と、を有し、
     前記電源部は、
     前記記憶部に記憶された前記種別情報を判別し、複数の異なる出力電圧の中から前記判別結果に従って2以上の異なる出力電圧を選択し、前記選択した各出力電圧をそれぞれ前記フラッシュメモリ用モジュール上のフラッシュメモリ又は前記SDRAM用モジュール上のSDRAMに印加すると共に、前記第1のコントローラ又は前記第2のコントローラに印加することを特徴とするメモリモジュール。
    One or more module sockets mounting a module for flash memory in which a plurality of flash memories as a first storage device are arranged or a module for SDRAM in which a plurality of SDRAMs as a second storage device are arranged;
    A controller socket that is connected to the module socket via a memory bus and includes a first controller that controls input / output of data to / from the flash memory or a second controller that controls input / output of data to / from the SDRAM;
    Power is supplied to the flash memory on the flash memory module or the SDRAM on the SDRAM module via the module socket, and power is supplied to the first controller or the second controller via the controller socket. A power supply for supplying
    A storage unit that stores type information for specifying a type of a module mounted on the module socket and a type of a controller mounted on the controller socket;
    The power supply unit is
    The type information stored in the storage unit is determined, two or more different output voltages are selected from a plurality of different output voltages according to the determination result, and the selected output voltages are respectively stored on the flash memory module. A memory module, wherein the memory module is applied to the first memory or the second controller as well as to the flash memory or the SDRAM on the SDRAM module.
  2.  請求項1に記載のメモリモジュールにおいて、
     前記電源部は、
     前記記憶部に記憶された前記種別情報を判別し、当該判別結果に応じて制御情報が異なる複数の制御信号を出力する制御信号出力部と、
     前記制御信号出力部から前記制御信号を受信した場合、複数の異なる出力電圧の中から前記受信した制御信号の制御情報で指定された出力電圧であって、電力供給先の電圧に適合する2以上の異なる出力電圧を選択し、選択した各出力電圧をそれぞれ前記フラッシュメモリ又は前記SDRAMに出力すると共に、前記第1のコントローラ又は前記第2のコントローラに出力する電圧切替部と、を有することを特徴とするメモリモジュール。
    The memory module according to claim 1,
    The power supply unit is
    A control signal output unit that determines the type information stored in the storage unit and outputs a plurality of control signals having different control information according to the determination result;
    When the control signal is received from the control signal output unit, the output voltage is specified by the control information of the received control signal from a plurality of different output voltages, and two or more that match the voltage of the power supply destination And a voltage switching unit that outputs each of the selected output voltages to the flash memory or the SDRAM and outputs to the first controller or the second controller. Memory module.
  3.  請求項1に記載のメモリモジュールにおいて、
     前記電源部は、
     前記記憶部に記憶された前記種別情報を判別し、当該判別結果に応じて制御情報が異なる複数の制御信号を出力する制御信号出力部と、
     前記制御信号出力部から前記制御信号を受信した場合、複数の異なるコントローラ用出力電圧の中から前記受信した制御信号の制御情報で指定されたコントローラ用出力電圧を選択し、前記選択したコントローラ用出力電圧を前記第1のコントローラ又は前記第2のコントローラの給電用コア部に出力するコントローラ用電圧切替部と、
     前記制御信号出力部から前記制御信号を受信した場合、複数の異なる記憶デバイス用出力電圧の中から前記受信した制御信号の制御情報で指定された記憶デバイス用出力電圧を選択し、前記選択した記憶デバイス用出力電圧を前記フラッシュメモリ用モジュール上のフラッシュメモリの給電用コア部又は前記SDRAM用モジュール上のSDRAMの給電用コア部に出力する記憶デバイス用電圧切替部と、
     前記制御信号出力部から前記制御信号を受信した場合、複数の異なる共用出力電圧の中から前記受信した制御信号の制御情報で指定された共用出力電圧を選択し、前記選択した共用出力電圧を前記第1のコントローラ及び前記フラッシュメモリ用モジュール上のフラッシュメモリの給電用I/0部又は前記第2のコントローラ及び前記SDRAM用モジュール上のSDRAMの給電用I/0部にそれぞれ出力する共用電圧切替部と、を有することを特徴とするメモリモジュール。
    The memory module according to claim 1,
    The power supply unit is
    A control signal output unit that determines the type information stored in the storage unit and outputs a plurality of control signals having different control information according to the determination result;
    When the control signal is received from the control signal output unit, the controller output voltage selected by the control information of the received control signal is selected from a plurality of different controller output voltages, and the selected controller output A controller voltage switching unit that outputs a voltage to the power supply core unit of the first controller or the second controller;
    When the control signal is received from the control signal output unit, the storage device output voltage specified by the control information of the received control signal is selected from a plurality of different storage device output voltages, and the selected storage device is selected. A storage device voltage switching unit for outputting a device output voltage to a power supply core unit of a flash memory on the flash memory module or a power supply core unit of an SDRAM on the SDRAM module;
    When the control signal is received from the control signal output unit, the shared output voltage specified by the control information of the received control signal is selected from a plurality of different shared output voltages, and the selected shared output voltage is A shared voltage switching unit that outputs to the power supply I / 0 unit of the flash memory on the first controller and the flash memory module or the power supply I / 0 unit of the SDRAM on the second controller and the SDRAM module, respectively. And a memory module.
  4.  請求項1~3のうちいずれか1項に記載のメモリモジュールにおいて、
     前記メモリバスの一部は、バス配線化された複数の信号線として構成され、
     前記モジュールソケットと前記コントローラ用ソケットとを結ぶ複数の信号線のうち特定の2以上の信号線と、前記バス配線化された複数の信号線には、前記特定の2以上の信号線を伝送する信号を、当該信号と同じ論理値を有する信号に変換し、当該変換された信号をバス信号として前記フラッシュメモリ又は前記SDRAMに出力する複数の論理部品が接続されてなることを特徴とするメモリモジュール。
    The memory module according to any one of claims 1 to 3,
    A part of the memory bus is configured as a plurality of signal lines wired into a bus,
    Two or more specific signal lines among a plurality of signal lines connecting the module socket and the controller socket, and the two or more specific signal lines are transmitted to the plurality of signal lines formed as bus wiring. A memory module comprising a plurality of logic components connected to each other, wherein the signal is converted into a signal having the same logical value as the signal, and the converted signal is output as a bus signal to the flash memory or the SDRAM. .
  5.  請求項1~3のうちいずれか1項に記載のメモリモジュールにおいて、
     前記メモリバスの一部は、バス配線化された複数の信号線として構成され、
     前記モジュールソケットと前記コントローラ用ソケットとを結ぶ複数の信号線のうち特定の2以上の信号線と、前記バス配線化された複数の信号線には、前記特定の2以上の信号線を伝送する信号を、当該信号と同じ論理値を有する信号に変換し、当該変換された信号をバス信号として前記第1のコントローラ又は前記第2のコントローラに出力する複数の論理部品が接続されてなることを特徴とするメモリモジュール。
    The memory module according to any one of claims 1 to 3,
    A part of the memory bus is configured as a plurality of signal lines wired into a bus,
    Two or more specific signal lines among a plurality of signal lines connecting the module socket and the controller socket, and the two or more specific signal lines are transmitted to the plurality of signal lines formed as bus wiring. A signal is converted into a signal having the same logical value as the signal, and a plurality of logic components that output the converted signal as a bus signal to the first controller or the second controller are connected. Features memory module.
  6.  第1の記憶デバイスである複数のフラッシュメモリに対するデータの入出力を制御する第1のコントローラと、
     第2の記憶デバイスである複数のSDRAMに対するデータの入出力を制御する第2のコントローラと、
     前記フラッシュメモリが配置されたフラッシュメモリ用モジュール又は前記SDRAMが配置されたSDRAM用モジュールを搭載する1以上の第1のモジュールソケットと、
     前記第1のモジュールソケットと第1のメモリバスを介して接続され、前記第1のコントローラ又は前記第2のコントローラを搭載する第1のコントローラ用ソケットと、
     前記SDRAMが配置されたSDRAM用モジュールを搭載する1以上の第2のモジュールソケットと、
     前記第2のモジュールソケットと第2のメモリバスを介して接続され、前記第2のコントローラが搭載される第2のコントローラ用ソケットと、
     前記第1のモジュールソケットを介して前記フラッシュメモリ用モジュール上のフラッシュメモリ又は前記SDRAM用モジュール上のSDRAMに電力を供給すると共に、前記第1のコントローラ用ソケットを介して前記第1のコントローラ又は前記第2のコントローラに電力を供給する第1の電源部と、
     前記第2のモジュールソケットを介して前記SDRAMに電力を供給すると共に、前記第2のコントローラ用ソケットを介して前記第2のコントローラに電力を供給する第2の電源部と、
     前記第1のモジュールソケットに搭載されるモジュールと前記第1のコントローラ用ソケットに搭載されるコントローラの種別をそれぞれ特定する種別情報を記憶する記憶部と、を有し、
     前記第1の電源部は、
     前記記憶部に記憶された前記種別情報を判別し、複数の異なる出力電圧の中から前記判別結果に従って2以上の異なる出力電圧を選択し、前記選択した各出力電圧をそれぞれ前記フラッシュメモリ用モジュール上のフラッシュメモリ又は前記SDRAM用モジュール上のSDRAMに印加すると共に、前記第1のコントローラ又は前記第2のコントローラに印加することを特徴とするメモリバスシステム。
    A first controller that controls input / output of data to / from a plurality of flash memories that are first storage devices;
    A second controller for controlling input / output of data to / from a plurality of SDRAMs as a second storage device;
    One or more first module sockets on which the flash memory module in which the flash memory is disposed or the SDRAM module in which the SDRAM is disposed;
    A first controller socket connected to the first module socket via a first memory bus and mounting the first controller or the second controller;
    One or more second module sockets mounting an SDRAM module in which the SDRAM is disposed;
    A second controller socket connected to the second module socket via a second memory bus and mounted with the second controller;
    Power is supplied to the flash memory on the flash memory module or the SDRAM on the SDRAM module via the first module socket, and the first controller or the power is supplied to the SDRAM on the first controller socket. A first power supply for supplying power to the second controller;
    A second power supply for supplying power to the SDRAM via the second module socket and for supplying power to the second controller via the second controller socket;
    A storage unit for storing type information for specifying a type of a module mounted on the first module socket and a type of a controller mounted on the first controller socket;
    The first power supply unit
    The type information stored in the storage unit is determined, two or more different output voltages are selected from a plurality of different output voltages according to the determination result, and the selected output voltages are respectively stored on the flash memory module. The memory bus system is applied to the first flash memory or the SDRAM on the SDRAM module and to the first controller or the second controller.
  7.  請求項6に記載のメモリバスシステムにおいて、
     前記第1の電源部は、
     前記記憶部に記憶された前記種別情報を判別し、当該判別結果に応じて制御情報が異なる複数の制御信号を出力する制御信号出力部と、
     前記制御信号出力部から前記制御信号を受信した場合、複数の異なる出力電圧の中から前記受信した制御信号の制御情報で指定された出力電圧であって、電力供給先の電圧に適合する2以上の異なる出力電圧を選択し、選択した各出力電圧をそれぞれ前記フラッシュメモリ又は前記SDRAMに出力すると共に、前記第1のコントローラ又は前記第2のコントローラに出力する電圧切替部と、を有することを特徴とするメモリバスシステム。
    The memory bus system according to claim 6.
    The first power supply unit
    A control signal output unit that determines the type information stored in the storage unit and outputs a plurality of control signals having different control information according to the determination result;
    When the control signal is received from the control signal output unit, the output voltage is specified by the control information of the received control signal from a plurality of different output voltages, and two or more that match the voltage of the power supply destination And a voltage switching unit that outputs each of the selected output voltages to the flash memory or the SDRAM and outputs to the first controller or the second controller. Memory bus system.
  8.  請求項6に記載のメモリバスシステムにおいて、
     前記第1の電源部は、
     前記記憶部に記憶された前記種別情報を判別し、当該判別結果に応じて制御情報が異なる複数の制御信号を出力する制御信号出力部と、
     前記制御信号出力部から前記制御信号を受信した場合、複数の異なるコントローラ用出力電圧の中から前記受信した制御信号の制御情報で指定されたコントローラ用出力電圧を選択し、前記選択したコントローラ用出力電圧を前記第1のコントローラ又は前記第2のコントローラの給電用コア部に出力するコントローラ用電圧切替部と、
     前記制御信号出力部から前記制御信号を受信した場合、複数の異なる記憶デバイス用出力電圧の中から前記受信した制御信号の制御情報で指定された記憶デバイス用出力電圧を選択し、前記選択した記憶デバイス用出力電圧を前記フラッシュメモリ用モジュール上のフラッシュメモリの給電用コア部又は前記SDRAM用モジュール上のSDRAMの給電用コア部に出力する記憶デバイス用電圧切替部と、
     前記制御信号出力部から前記制御信号を受信した場合、複数の異なる共用出力電圧の中から前記受信した制御信号の制御情報で指定された共用出力電圧を選択し、前記選択した共用出力電圧を前記第1のコントローラ及び前記フラッシュメモリ用モジュール上のフラッシュメモリの給電用I/0部又は前記第2のコントローラ及び前記SDRAM用モジュール上のSDRAMの給電用I/0部にそれぞれ出力する共用電圧切替部と、を有することを特徴とするメモリバスシステム。
    The memory bus system according to claim 6.
    The first power supply unit
    A control signal output unit that determines the type information stored in the storage unit and outputs a plurality of control signals having different control information according to the determination result;
    When the control signal is received from the control signal output unit, the controller output voltage selected by the control information of the received control signal is selected from a plurality of different controller output voltages, and the selected controller output A controller voltage switching unit that outputs a voltage to the power supply core unit of the first controller or the second controller;
    When the control signal is received from the control signal output unit, the storage device output voltage specified by the control information of the received control signal is selected from a plurality of different storage device output voltages, and the selected storage device is selected. A storage device voltage switching unit for outputting a device output voltage to a power supply core unit of a flash memory on the flash memory module or a power supply core unit of an SDRAM on the SDRAM module;
    When the control signal is received from the control signal output unit, the shared output voltage specified by the control information of the received control signal is selected from a plurality of different shared output voltages, and the selected shared output voltage is A shared voltage switching unit that outputs to the power supply I / 0 unit of the flash memory on the first controller and the flash memory module or the power supply I / 0 unit of the SDRAM on the second controller and the SDRAM module, respectively. And a memory bus system.
  9.  請求項6~8のうちいずれか1項に記載のメモリバスシステムにおいて、
     前記第1のメモリバスの一部は、バス配線化された複数の信号線として構成され、
     前記第1のモジュールソケットと前記第1のコントローラ用ソケットとを結ぶ複数の信号線のうち特定の2以上の信号線と、前記バス配線化された複数の信号線には、前記特定の2以上の信号線を伝送する信号を、当該信号と同じ論理値を有する信号に変換し、当該変換された信号をバス信号として前記フラッシュメモリ又は前記SDRAMに出力する複数の論理部品が接続されてなることを特徴とするメモリバスシステム。
    The memory bus system according to any one of claims 6 to 8,
    A part of the first memory bus is configured as a plurality of signal lines wired as a bus,
    Two or more specific signal lines out of a plurality of signal lines connecting the first module socket and the first controller socket, and the plurality of signal lines formed into the bus wiring include the two or more specific lines. A signal transmitted through the signal line is converted into a signal having the same logical value as the signal, and a plurality of logical components are connected to output the converted signal as a bus signal to the flash memory or the SDRAM. A memory bus system.
  10.  請求項6~8のうちいずれか1項に記載のメモリバスシステムにおいて、
     前記第1のメモリバスの一部は、バス配線化された複数の信号線として構成され、
     前記第1のモジュールソケットと前記第1のコントローラ用ソケットとを結ぶ複数の信号線のうち特定の2以上の信号線と、前記バス配線化された複数の信号線には、前記特定の2以上の信号線を伝送する信号を、当該信号と同じ論理値を有する信号に変換し、当該変換された信号をバス信号として前記第1のコントローラ又は前記第2のコントローラに出力する複数の論理部品が接続されてなることを特徴とするメモリバスシステム。
    The memory bus system according to any one of claims 6 to 8,
    A part of the first memory bus is configured as a plurality of signal lines wired as a bus,
    Two or more specific signal lines out of a plurality of signal lines connecting the first module socket and the first controller socket, and the plurality of signal lines formed into the bus wiring include the two or more specific lines. A plurality of logic components that convert a signal transmitted through the signal line into a signal having the same logical value as the signal and output the converted signal as a bus signal to the first controller or the second controller. A memory bus system characterized by being connected.
  11.  第1の記憶デバイスである複数のフラッシュメモリに対するデータの入出力を制御する第1のコントローラと、
     第2の記憶デバイスである複数のSDRAMに対するデータの入出力を制御する第2のコントローラと、
     前記フラッシュメモリが配置されたフラッシュメモリ用モジュール又は前記SDRAMが配置されたSDRAM用モジュールを搭載する1以上の第1のモジュールソケットと、
     前記第1のモジュールソケットと第1のメモリバスを介して接続され、前記第1のコントローラ又は前記第2のコントローラを搭載する第1のコントローラ用ソケットと、
     前記SDRAMが配置されたSDRAM用モジュールを搭載する1以上の第2のモジュールソケットと、
     前記第2のモジュールソケットと第2のメモリバスを介して接続され、前記第2のコントローラが搭載される第2のコントローラ用ソケットと、
     前記第1のモジュールソケットを介して前記フラッシュメモリ用モジュール上のフラッシュメモリ又は前記SDRAM用モジュール上のSDRAMに電力を供給すると共に、前記第1のコントローラ用ソケットを介して前記第1のコントローラ又は前記第2のコントローラに電力を供給する第1の電源部と、
     前記第2のモジュールソケットを介して前記SDRAMに電力を供給すると共に、前記第2のコントローラ用ソケットを介して前記第2のコントローラに電力を供給する第2の電源部と、
     前記第1のモジュールソケットに搭載されるモジュールと前記第1のコントローラ用ソケットに搭載されるコントローラの種別をそれぞれ特定する種別情報を記憶する記憶部と、を有し、
     前記第1のコントローラ及び前記第2のコントローラは、
     プログラムに従って演算処理を実行する演算装置として構成され、
     前記複数のフラッシュメモリ及び前記複数のSDRAMは、
     前記演算装置のアクセス対象のデータを記憶する記憶装置として構成され、
     前記第1の電源部は、
     前記記憶部に記憶された前記種別情報を判別し、複数の異なる出力電圧の中から前記判別結果に従って2以上の異なる出力電圧を選択し、前記選択した各出力電圧をそれぞれ前記フラッシュメモリ用モジュール上のフラッシュメモリ又は前記SDRAM用モジュール上のSDRAMに印加すると共に、前記第1のコントローラ又は前記第2のコントローラに印加することを特徴とする計算機システム。
    A first controller that controls input / output of data to / from a plurality of flash memories that are first storage devices;
    A second controller for controlling input / output of data to / from a plurality of SDRAMs as a second storage device;
    One or more first module sockets on which the flash memory module in which the flash memory is disposed or the SDRAM module in which the SDRAM is disposed;
    A first controller socket connected to the first module socket via a first memory bus and mounting the first controller or the second controller;
    One or more second module sockets mounting an SDRAM module in which the SDRAM is disposed;
    A second controller socket connected to the second module socket via a second memory bus and mounted with the second controller;
    Power is supplied to the flash memory on the flash memory module or the SDRAM on the SDRAM module via the first module socket, and the first controller or the power is supplied to the SDRAM on the first controller socket. A first power supply for supplying power to the second controller;
    A second power supply for supplying power to the SDRAM via the second module socket and for supplying power to the second controller via the second controller socket;
    A storage unit for storing type information for specifying a type of a module mounted on the first module socket and a type of a controller mounted on the first controller socket;
    The first controller and the second controller are:
    It is configured as an arithmetic device that executes arithmetic processing according to a program,
    The plurality of flash memories and the plurality of SDRAMs are:
    It is configured as a storage device that stores data to be accessed by the arithmetic device,
    The first power supply unit
    The type information stored in the storage unit is determined, two or more different output voltages are selected from a plurality of different output voltages according to the determination result, and the selected output voltages are respectively stored on the flash memory module. A computer system characterized by being applied to the first flash memory or the SDRAM on the SDRAM module and to the first controller or the second controller.
  12.  請求項11に記載の計算機システムにおいて、
     前記第1の電源部は、
     前記記憶部に記憶された前記種別情報を判別し、当該判別結果に応じて制御情報が異なる複数の制御信号を出力する制御信号出力部と、
     前記制御信号出力部から前記制御信号を受信した場合、複数の異なる出力電圧の中から前記受信した制御信号の制御情報で指定された出力電圧であって、電力供給先の電圧に適合する2以上の異なる出力電圧を選択し、選択した各出力電圧をそれぞれ前記フラッシュメモリ又は前記SDRAMに出力すると共に、前記第1のコントローラ又は前記第2のコントローラに出力する電圧切替部と、を有することを特徴とする計算機システム。
    The computer system according to claim 11, wherein
    The first power supply unit
    A control signal output unit that determines the type information stored in the storage unit and outputs a plurality of control signals having different control information according to the determination result;
    When the control signal is received from the control signal output unit, the output voltage is specified by the control information of the received control signal from a plurality of different output voltages, and two or more that match the voltage of the power supply destination And a voltage switching unit that outputs each of the selected output voltages to the flash memory or the SDRAM and outputs to the first controller or the second controller. A computer system.
  13.  請求項11に記載の計算機システムにおいて、
     前記第1の電源部は、
     前記記憶部に記憶された前記種別情報を判別し、当該判別結果に応じて制御情報が異なる複数の制御信号を出力する制御信号出力部と、
     前記制御信号出力部から前記制御信号を受信した場合、複数の異なるコントローラ用出力電圧の中から前記受信した制御信号の制御情報で指定されたコントローラ用出力電圧を選択し、前記選択したコントローラ用出力電圧を前記第1のコントローラ又は前記第2のコントローラの給電用コア部に出力するコントローラ用電圧切替部と、
     前記制御信号出力部から前記制御信号を受信した場合、複数の異なる記憶デバイス用出力電圧の中から前記受信した制御信号の制御情報で指定された記憶デバイス用出力電圧を選択し、前記選択した記憶デバイス用出力電圧を前記フラッシュメモリ用モジュール上のフラッシュメモリの給電用コア部又は前記SDRAM用モジュール上のSDRAMの給電用コア部に出力する記憶デバイス用電圧切替部と、
     前記制御信号出力部から前記制御信号を受信した場合、複数の異なる共用出力電圧の中から前記受信した制御信号の制御情報で指定された共用出力電圧を選択し、前記選択した共用出力電圧を前記第1のコントローラ及び前記フラッシュメモリ用モジュール上のフラッシュメモリの給電用I/0部又は前記第2のコントローラ及び前記SDRAM用モジュール上のSDRAMの給電用I/0部にそれぞれ出力する共用電圧切替部と、を有することを特徴とする計算機システム。
    The computer system according to claim 11, wherein
    The first power supply unit
    A control signal output unit that determines the type information stored in the storage unit and outputs a plurality of control signals having different control information according to the determination result;
    When the control signal is received from the control signal output unit, the controller output voltage selected by the control information of the received control signal is selected from a plurality of different controller output voltages, and the selected controller output A controller voltage switching unit that outputs a voltage to the power supply core unit of the first controller or the second controller;
    When the control signal is received from the control signal output unit, the storage device output voltage specified by the control information of the received control signal is selected from a plurality of different storage device output voltages, and the selected storage device is selected. A storage device voltage switching unit for outputting a device output voltage to a power supply core unit of a flash memory on the flash memory module or a power supply core unit of an SDRAM on the SDRAM module;
    When the control signal is received from the control signal output unit, the shared output voltage specified by the control information of the received control signal is selected from a plurality of different shared output voltages, and the selected shared output voltage is A shared voltage switching unit that outputs to the power supply I / 0 unit of the flash memory on the first controller and the flash memory module or the power supply I / 0 unit of the SDRAM on the second controller and the SDRAM module, respectively. And a computer system characterized by comprising:
  14.  請求項11~13のうちいずれか1項に記載の計算機システムにおいて、
     前記第1のメモリバスの一部は、バス配線化された複数の信号線として構成され、
     前記第1のモジュールソケットと前記第1のコントローラ用ソケットとを結ぶ複数の信号線のうち特定の2以上の信号線と、前記バス配線化された複数の信号線には、前記特定の2以上の信号線を伝送する信号を、当該信号と同じ論理値を有する信号に変換し、当該変換された信号をバス信号として前記フラッシュメモリ又は前記SDRAMに出力する複数の論理部品が接続されてなることを特徴とする計算機システム。
    The computer system according to any one of claims 11 to 13,
    A part of the first memory bus is configured as a plurality of signal lines wired as a bus,
    Two or more specific signal lines out of a plurality of signal lines connecting the first module socket and the first controller socket, and the plurality of signal lines formed into the bus wiring include the two or more specific lines. A signal transmitted through the signal line is converted into a signal having the same logical value as the signal, and a plurality of logical components are connected to output the converted signal as a bus signal to the flash memory or the SDRAM. A computer system characterized by
  15.  請求項11~13のうちいずれか1項に記載の計算機システムにおいて、
     前記第1のメモリバスの一部は、バス配線化された複数の信号線として構成され、
     前記第1のモジュールソケットと前記第1のコントローラ用ソケットとを結ぶ複数の信号線のうち特定の2以上の信号線と、前記バス配線化された複数の信号線には、前記特定の2以上の信号線を伝送する信号を、当該信号と同じ論理値を有する信号に変換し、当該変換された信号をバス信号として前記第1のコントローラ又は前記第2のコントローラに出力する複数の論理部品が接続されてなることを特徴とする計算機システム。
    The computer system according to any one of claims 11 to 13,
    A part of the first memory bus is configured as a plurality of signal lines wired as a bus,
    Two or more specific signal lines out of a plurality of signal lines connecting the first module socket and the first controller socket, and the plurality of signal lines formed into the bus wiring include the two or more specific lines. A plurality of logic components that convert a signal transmitted through the signal line into a signal having the same logical value as the signal and output the converted signal as a bus signal to the first controller or the second controller. A computer system characterized by being connected.
PCT/JP2014/064332 2014-05-29 2014-05-29 Memory module, memory bus system, and computer system WO2015181933A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064332 WO2015181933A1 (en) 2014-05-29 2014-05-29 Memory module, memory bus system, and computer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064332 WO2015181933A1 (en) 2014-05-29 2014-05-29 Memory module, memory bus system, and computer system

Publications (1)

Publication Number Publication Date
WO2015181933A1 true WO2015181933A1 (en) 2015-12-03

Family

ID=54698312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064332 WO2015181933A1 (en) 2014-05-29 2014-05-29 Memory module, memory bus system, and computer system

Country Status (1)

Country Link
WO (1) WO2015181933A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000020393A (en) * 1995-10-13 2000-01-21 Seigun Handotai Kofun Yugenkoshi Method for accessing memory device and memory accessing device
JP2004310700A (en) * 2003-04-01 2004-11-04 Ati Technologies Inc Method and device for inverting data in memory device
JP2008046989A (en) * 2006-08-18 2008-02-28 Fujitsu Ltd Memory control device
JP2008293096A (en) * 2007-05-22 2008-12-04 Shinko Electric Ind Co Ltd Memory interface and system
JP2011048550A (en) * 2009-08-26 2011-03-10 Nec Corp Method and program for memory relocation control of computer, and computer system
JP2012503835A (en) * 2008-09-26 2012-02-09 ネットアップ,インコーポレイテッド System and method for providing shared access to non-volatile solid state memory to multiple virtual machines using RDMA

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000020393A (en) * 1995-10-13 2000-01-21 Seigun Handotai Kofun Yugenkoshi Method for accessing memory device and memory accessing device
JP2004310700A (en) * 2003-04-01 2004-11-04 Ati Technologies Inc Method and device for inverting data in memory device
JP2008046989A (en) * 2006-08-18 2008-02-28 Fujitsu Ltd Memory control device
JP2008293096A (en) * 2007-05-22 2008-12-04 Shinko Electric Ind Co Ltd Memory interface and system
JP2012503835A (en) * 2008-09-26 2012-02-09 ネットアップ,インコーポレイテッド System and method for providing shared access to non-volatile solid state memory to multiple virtual machines using RDMA
JP2011048550A (en) * 2009-08-26 2011-03-10 Nec Corp Method and program for memory relocation control of computer, and computer system

Similar Documents

Publication Publication Date Title
US10917321B2 (en) Disaggregated physical memory resources in a data center
CN109074851B (en) Internal Error Checksum Correction (ECC) utilizing additional system bits
CN108538337B (en) Integrated Error Checking and Correction (ECC) in a memory device with a fixed bandwidth interface
KR101365827B1 (en) A daisy chain arrangement of non-volatile memories
JP6386460B2 (en) Flash memory controller with dual mode pinout
US11226766B2 (en) Buffer circuit with data bit inversion
US8694721B2 (en) Memory buffer with one or more auxiliary interfaces
CN109661654B (en) Extended application of error checking and correcting codes in memory
US20140122777A1 (en) Flash memory controller having multi mode pin-out
US11188264B2 (en) Configurable write command delay in nonvolatile memory
TW200818210A (en) Memory device and hub controller
US9460813B2 (en) Memory system
JP2022113100A (en) Distribution of error checking and correction (ecc) bits to allocate ecc bits to metadata
US20240161794A1 (en) Internal and external data transfer for stacked memory dies
US9910612B2 (en) Memory buffer with one or more auxiliary interfaces
JP2021111333A (en) Auto-increment write count for nonvolatile memory
JP2022151589A (en) Dynamic Random Access Memory (DRAM) with scalable metadata
US20220368047A1 (en) Adapter card with compression attached memory modules
WO2015181933A1 (en) Memory module, memory bus system, and computer system
CN115858438A (en) Enable logic for flexible configuration of memory module data width
TWI597728B (en) Appointing semiconductor dice to enable high stacking capability
US20220358072A1 (en) Memory module adapter card with multiplexer circuitry
US20210279128A1 (en) Buffer that supports burst transfers having parallel crc and data transmissions
CN118899021A (en) Storage and access of metadata within selective Dynamic Random Access Memory (DRAM) devices
TWI448901B (en) Nonvolatile memory system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP