WO2015136690A1 - 磁気式位置検出装置、磁気式位置検出方法 - Google Patents

磁気式位置検出装置、磁気式位置検出方法 Download PDF

Info

Publication number
WO2015136690A1
WO2015136690A1 PCT/JP2014/056912 JP2014056912W WO2015136690A1 WO 2015136690 A1 WO2015136690 A1 WO 2015136690A1 JP 2014056912 W JP2014056912 W JP 2014056912W WO 2015136690 A1 WO2015136690 A1 WO 2015136690A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
encoder
pole
magnetized
magnetic field
Prior art date
Application number
PCT/JP2014/056912
Other languages
English (en)
French (fr)
Inventor
京史 原
房子 富住
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/112,454 priority Critical patent/US10066966B2/en
Priority to PCT/JP2014/056912 priority patent/WO2015136690A1/ja
Priority to JP2016507226A priority patent/JP6345235B2/ja
Priority to CN201480077204.3A priority patent/CN106104211B/zh
Priority to DE112014006465.3T priority patent/DE112014006465B4/de
Publication of WO2015136690A1 publication Critical patent/WO2015136690A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • G01D5/165Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance by relative movement of a point of contact or actuation and a resistive track
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders

Definitions

  • a Hall element In a magnetic position detection device, a Hall element, a magnetoresistive element, or the like is used as a magnetosensitive element.
  • magnetosensitive elements are arranged opposite to a magnetic encoder in which N magnetic poles and S magnetic poles are alternately arranged at a constant pitch ⁇ / 2 ( ⁇ : pitch of one magnetic pole pair (NS pole)).
  • pitch of one magnetic pole pair (NS pole)
  • the direction detection type magnetoresistive element whose resistance value changes according to the magnetic field direction as shown in the following Patent Document 1 is insensitive to the fluctuation noise of the magnetic field intensity by operating in a saturation magnetic field, and magnetic GAP. It is known that a very stable detection performance is exhibited because it reacts only in the direction of the magnetic field without increasing or decreasing the resistance value due to fluctuations in the magnetic field intensity caused by variations in (gap), temperature characteristics of the magnet, and the like. Therefore, if the direction detection type magnetoresistive element is applied to a motor control application, highly stable electrical angle detection can be realized.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a magnetic position detection device using a direction detection type magnetoresistive element and the like, which improves the position detection accuracy.
  • the present invention includes a magnetic encoder in which N magnetic poles and S magnetic poles are alternately arranged in the moving direction, and a magnetic sensing unit that detects a magnetic field change accompanying the movement of the magnetic encoder in order to detect the moving position of the magnetic encoder,
  • the magnetic sensitive part comprises a direction detection type magnetoresistive element whose resistance value changes depending on the applied magnetic field direction, and the magnetic encoder forms a magnetic field in the moving direction of the magnetic encoder formed at the position of the magnetic sensitive part.
  • the magnetic position detecting device or the like is provided with a non-magnetized portion that is not magnetized at the boundary with the S magnetic pole.
  • a magnetic position detection device using a direction detection type magnetoresistive element and the like that can improve the position detection accuracy can be provided.
  • the magnetic position detector will be explained in a little more detail.
  • the magnetic sensing unit 20 including a Hall element, a magnetoresistive element, and the like has a constant pitch ⁇ / 2 ( ⁇ : one magnetic pole pair (NS).
  • one magnetic pole pair
  • the magnetic encoders 10 are alternately arranged at a pitch of the poles.
  • the relative position between the magnetic encoder 10 and the magnetic sensing unit 20 can be detected by reading the output change of the magnetic sensing unit 20 at this time.
  • the direction detection type magnetoresistive element whose resistance value changes depending on the magnetic field direction reacts only in the magnetic field direction by operating in a saturated magnetic field, and exhibits very stable detection performance. If the direction detection type magnetoresistive element is applied to a motor control application, highly stable electrical angle detection can be realized.
  • the magnetic field angle ⁇ and the electrical angle ⁇ do not always coincide with each other due to superposition of harmonic components, and as a result, the detection accuracy of the electrical angle ⁇ is deteriorated.
  • FIG. 9 shows a conventional magnetic encoder (for example, the number of poles: 4 pole pairs, the magnetization direction: radial direction, GAP (gap): 4 mm, magnet outer diameter: ⁇ 21, magnet thickness: 2 mm, magnet width: 4 mm).
  • the result of calculating the value of the magnetic field direction (magnetic field angle) ⁇ by the finite element method is shown.
  • FIG. 9A shows the magnetic field angle ⁇ at an arbitrary electrical angle ⁇ .
  • (B) shows the difference between the magnetic field angle ⁇ and the electrical angle ⁇ as the deviation of the magnetic field angle ⁇ .
  • the magnetic field angle ⁇ and the electrical angle ⁇ of the magnetic field do not coincide with each other, and as a result, the angle detection accuracy is deteriorated.
  • the magnetic pole pitch length is large, that is, in the case of a motor having a large diameter and a small number of poles, the deviation of the magnetic field angle ⁇ becomes larger. Therefore, in order to avoid deterioration in angle detection accuracy, a magnetic gap (gap) is used. Treatments such as increasing the size, increasing the size of the apparatus, and increasing the size of the magnet so that the magnetosensitive part can react even with a large magnetic GAP are necessary and not practical.
  • the magnetic position detection device for detecting a rotation angle (rotation position) a magnetic encoder in which N magnetic poles and S magnetic poles are alternately arranged in the rotation direction is opposed to the magnetic encoder via a predetermined gap. And an arranged magnetic sensing part. A magnetic field change due to the rotation of the magnetic encoder is detected by the magnetic sensing unit.
  • the magnetic sensing part is composed of a direction detection type magnetoresistive element whose resistance value changes depending on the magnetic field direction.
  • the radial (opposite) direction magnetic field component at the position of the magnetic sensing portion formed by the magnetic encoder is Br and the rotational (moving) direction magnetic field component is Bs
  • Br and Bs are substantially sinusoidal or sinusoidal.
  • a non-magnetized portion which is not substantially magnetized is provided at the boundary between the N magnetic pole and the S magnetic pole.
  • the disturbance of the waveform of the magnetic field components Br and Bs can be reduced by increasing the magnetic GAP, the magnetic GAP can be increased by providing a non-magnetized part at the boundary between the N pole and the S pole. Therefore, the waveform disturbance of the magnetic field components Br and Bs can be reduced, and further, the waveform disturbance of the magnetic field components Br and Bs and the magnetic field angle ⁇ can be optimized by setting the non-magnetized portion dimension to an optimum value.
  • (A) of FIG. 10 is a calculation result of the shift amount of the magnetic field angle ⁇ when the dimension (angle along the rotation direction) of the non-magnetized part is changed
  • (b) is the dimension of the non-magnetized part
  • (C) shows the correlation between the deviation of the magnetic field angle ⁇ and the waveform fringes of the magnetic field components Br and Bs when the angle along the rotation direction is changed.
  • (b) shows the calculation result of the deviation of the magnetic field direction (magnetic field angle) ⁇ with respect to the electrical angle ⁇ at that time.
  • the other conditions are the same as in FIG. 9.
  • FIG. 1 is a configuration diagram of the main part of a magnetic position detection apparatus according to Embodiment 1 of the present invention, and shows an example of the arrangement of a magnetic encoder and a magnetic sensing part.
  • the magnetic encoder 1 for detecting the rotation angle includes an N magnetic pole 1a magnetized at the N pole, a non-magnetized non-magnetized portion 1c, and an S magnetic pole 1b magnetized at the S pole, which are arranged in order.
  • the N magnetic pole 1a, the S magnetic pole 1b, and the non-magnetized portion 1c may be formed of the same magnetic material, or the non-magnetized portion 1c may be formed of another nonmagnetic material.
  • the magnetic field lines inside the magnetic encoder 1 are magnetized so as to go from the outer periphery to the inner periphery or from the inner periphery to the outer periphery.
  • the width (length) along the rotation direction (movement direction) is ⁇ / 3 for the N magnetic pole 1a and the S magnetic pole 1b, and ⁇ / 6 for the non-magnetized portion 1c.
  • the width of the non-magnetized portion 1c is not necessarily ⁇ / 6, but is preferably close to ⁇ / 6 (approximately ⁇ / 6).
  • ⁇ in the present invention is a pair of N magnetic pole 1a and S magnetic pole 1b, a non-magnetized portion 1c between N magnetic pole 1a and S magnetic pole 1b, and a non-magnetized portion 1c of N magnetic pole 1a or S magnetic pole 1b. Is a pitch of one magnetic pole pair composed of the non-magnetized part 1c on the opposite side.
  • the magnetic sensitive part 2 is arranged to face the magnetic encoder 1 through a gap, and the magnetic encoder 1 and the magnetic sensitive part 2 can be relatively moved (rotated).
  • the gap is configured to be substantially constant.
  • a magnetic field is applied to the magnetic sensing unit 2 by the magnetic encoder 1, and when a relative movement (rotation) occurs between the magnetic encoder 1 and the magnetic sensing unit 2, the direction of the magnetic field applied to the magnetic sensing unit 2 changes.
  • the magnetosensitive part 2 is composed of direction detection type magnetoresistive elements 2a and 2b whose resistance value changes in accordance with the direction of the applied magnetic field, and the resistance value changes according to the change in the magnetic field direction.
  • the direction detection type magnetoresistive element a tunnel magnetoresistive element, a spin valve type GMR element or the like is suitable. Due to the rotation of the magnetic encoder 1, a resistance value change in a substantially sinusoidal shape is generated in the magnetoresistive elements 2 a and 2 b.
  • the magnetoresistive elements 2a and 2b are arranged so that the phase of the change in the resistance value in a substantially sinusoidal shape is shifted by 90 ° from each other.
  • the magnetoresistive elements 2a and 2b are arranged so as to be inclined by 90 °, thereby realizing a resistance change whose phase is shifted by 90 °.
  • the rotation direction is separated by ⁇ / 4 toward the same direction. You may arrange.
  • each of the magnetoresistive elements 2a and 2b may be composed of a plurality of magnetoresistive elements.
  • the direction detection type magnetoresistive elements (2a, 2b) exhibit a resistance value corresponding to the direction of the magnetic field determined by the ratio of the magnetic field components Br, Bs at the arrangement location.
  • the element has a direction, and the resistance change with respect to the combination of the element direction and the magnetic field direction is, for example, as follows.
  • ⁇ Magnetic field in the same direction as the arrow Bottom resistance value
  • ⁇ Magnetic field in the opposite direction to the arrow Peak resistance value
  • ⁇ Magnetic field oriented at 90 ° to the arrow Central resistance value Therefore, the two elements are tilted by 90 ° relative to each other at the same position If they are arranged, a resistance change with a 90 ° phase shift can be obtained.
  • FIG. 2 shows the configuration of the signal processing unit of the magnetic position detection apparatus according to Embodiment 1 of the present invention.
  • Changes in the resistance values of the magnetoresistive elements 2a and 2b are converted into voltage changes Vcos and Vsin by the voltage converters 3a and 3b and output. Thereafter, the voltage changes Vcos and Vsin are input to the angle calculation unit 4 inside or outside the apparatus, converted into an electrical angle or a rotation angle by the arc tangent of the voltage changes Vcos and Vsin, and supplied to a motor control unit (not shown), for example. And used for motor rotation control and the like.
  • the motor control requires an electrical angle or a rotation angle within the pitch of the magnetic encoder that rotates with the rotor, and it is not always necessary to detect which pitch is present.
  • FIG. 3 is a configuration diagram of a magnetic encoder of a magnetic position detection apparatus according to Embodiment 2 of the present invention.
  • the magnetic encoder 1 for detecting the rotation angle includes an N magnetic pole 1a magnetized at the N pole, a non-magnetized non-magnetized portion 1c, and an S magnetic pole 1b magnetized at the S pole, which are arranged in order.
  • the non-magnetized portion 1c is formed only in the vicinity of the outer peripheral surface and is magnetized so that the magnetic lines of force inside the magnetic encoder 1 are directed toward the outer peripheral surface of the adjacent magnetic pole.
  • the N magnetic pole 1a, the S magnetic pole 1b, and the non-magnetized portion 1c may be formed of the same magnetic material, or the non-magnetized portion 1c may be formed of another nonmagnetic material.
  • the widths along the rotation direction (movement direction) of the N magnetic pole 1a, the S magnetic pole 1b, and the non-magnetized portion 1c are the same as those in the first embodiment, and are ⁇ / 3, ⁇ / 3, and ⁇ / 6, respectively.
  • the configurations of the magnetic sensing unit and the signal processing unit are the same as those in the first embodiment.
  • FIG. 4 is a block diagram of a magnetic encoder of a magnetic position detecting apparatus according to Embodiment 3 of the present invention.
  • the magnetic field strength at the outer peripheral portion of the non-magnetized portion 1c is reduced, and a substantially non-magnetized portion is formed.
  • the magnetic field lines inside the magnetic encoder 1 are magnetized so as to go from the outer periphery to the inner periphery or from the inner periphery to the outer periphery.
  • the widths along the rotation direction (movement direction) of the N magnetic pole 1a, the S magnetic pole 1b, and the non-magnetized portion 1c are the same as those in the first embodiment, and are ⁇ / 3, ⁇ / 3, and ⁇ / 6, respectively.
  • the configurations of the magnetic sensing unit and the signal processing unit are the same as those in the first embodiment.
  • FIG. FIG. 5 is a configuration diagram of a magnetic encoder of a magnetic position detection apparatus according to Embodiment 4 of the present invention.
  • the magnetic field strength at the outer peripheral portion of the non-magnetized portion 1c is reduced, and a substantially non-magnetized portion is formed.
  • the magnetic field lines inside the magnetic encoder 1 are magnetized so as to face the outer peripheral surface of the adjacent magnetic pole.
  • the widths along the rotation direction (movement direction) of the N magnetic pole 1a, the S magnetic pole 1b, and the non-magnetized portion 1c are the same as those in the first embodiment, and are ⁇ / 3, ⁇ / 3, and ⁇ / 6, respectively.
  • the structures of the magnetic sensing unit and the signal processing unit are the same as those in the first embodiment.
  • the application of the present invention is not limited to the detection of the electrical angle of the motor, but may be applied to the detection of the rotational position of another device or the detection of the linear position.
  • the magnetic encoder has a hollow cylindrical shape.
  • the magnetic encoder does not necessarily have to be hollow, and may have a cylindrical shape.
  • FIG. FIG. 6 is a partial configuration diagram of a magnetic position detection device according to Embodiment 5 of the present invention, and shows an example of the arrangement of a magnetic encoder and a magnetic sensing unit.
  • the magnetic encoder 1 for detecting the position of the linear motion includes an N magnetic pole 1a magnetized on the N pole, a non-magnetized portion 1c, an S magnetic pole 1b magnetized on the S pole,
  • the magnetic part 1c is a linear shape as a whole formed by repeatedly arranging the magnetic parts 1c as a set.
  • the width (length) along the moving direction is set to ⁇ / 3 for the N magnetic pole 1a and the S magnetic pole 1b, and to ⁇ / 6 for the non-magnetized portion 1c.
  • the width of the non-magnetized portion 1c is not necessarily ⁇ / 6, but is preferably close to ⁇ / 6 (approximately ⁇ / 6).
  • the magnetic sensitive part 2 is disposed opposite to the magnetic encoder 1 through a gap, and the magnetic encoder 1 and the magnetic sensitive part 2 can be moved relative to each other. It is configured to be constant.
  • a magnetic field is applied to the magnetic sensing part 2 by the magnetic encoder 1, and when a relative movement occurs between the magnetic encoder 1 and the magnetic sensing part 2, the direction of the magnetic field applied to the magnetic sensing part 2 changes.
  • the magnetosensitive part 2 is composed of direction detection type magnetoresistive elements 2a and 2b whose resistance value changes in accordance with the direction of the applied magnetic field, and the resistance value changes according to the change in the magnetic field direction.
  • As the direction detection type magnetoresistive element a tunnel magnetoresistive element, a spin valve type GMR element or the like is suitable. Due to the linear movement of the magnetic encoder 1 or the magnetic sensing part 2, the resistance values of the magnetoresistive elements 2a and 2b change in a substantially sinusoidal shape.
  • the magnetoresistive elements 2a and 2b are arranged so that the phase of the change in the resistance value in a substantially sinusoidal shape is shifted by 90 ° from each other.
  • the magnetoresistive elements 2a and 2b are arranged so as to be inclined by 90 °, thereby realizing a resistance change whose phase is shifted by 90 °.
  • the moving direction is separated by ⁇ / 4 toward the same direction. You may arrange.
  • each of the magnetoresistive elements 2a and 2b may be composed of a plurality of magnetoresistive elements.
  • the non-magnetized portion 1c of the magnetic encoder 1 has n pole pairs, ⁇ is a rotation angle, A and B are constants (magnetic field amplitude).
  • the size is set to -40 dB (1%) or less.
  • the configuration of the signal processing unit is a position calculation unit in which the angle calculation unit 4 calculates the relative position of the magnetic encoder 1 and the magnetic sensing unit 2 in the configuration of FIG.
  • the present invention is not limited to the above embodiments, and includes all possible combinations thereof.
  • the magnetic position detection device according to the present invention can be applied to position detection in many fields.
  • 1 magnetic encoder 1a N magnetic pole, 1b S magnetic pole, 1c non-magnetized part, 2 magnetic sensitive part, 2a, 2b direction detection type magnetoresistive element, 3a, 3b voltage conversion part, 4 angle (position) calculation part.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

 移動方向にN磁極、S磁極が交互に配列された磁気エンコーダとの相互移動位置を感磁部で前記磁気エンコーダからの磁界方向変化として検出し、前記感磁部として、印加された磁界方向により抵抗値が変化する方向検知型磁気抵抗素子を配置し、前記磁気エンコーダが、前記感磁部の位置で形成する前記磁気エンコーダの移動方向磁界成分Bs、前記感磁部と前記エンコーダの対向方向磁界成分Brの前記磁気エンコーダの移動による変遷がそれぞれ略正弦波状になるように前記N磁極と前記S磁極との境界に無着磁部をそれぞれ設けた磁気式位置検出装置を提供する。

Description

磁気式位置検出装置、磁気式位置検出方法
 この発明は、感磁素子と磁気エンコーダを用いた磁気式位置検出装置等に係り、特に、位置検出精度の向上に関するものである。
 磁気式位置検出装置では、感磁素子としてホール素子、磁気抵抗素子などが用いられる。N磁極とS磁極とが一定ピッチλ/2(λ:1つの磁極対(NS極)のピッチ)で交互に配置された磁気エンコーダに対して、感磁素子が対向配置されている例が多い。この場合、磁気エンコーダと感磁素子が相対的に移動すると感磁素子に加わる磁界が変化し、感磁素子の出力が変化する。このときの感磁素子の出力変化を読み取ることで磁気エンコーダと感磁素子の相対位置を検出できる。
 この検出方式の適用例として、ブラシレスモータの回転制御に必要な電気角の検出が挙げられる。電気角とは、モータのNS極一対に相当する回転角度を360°としたときの角度位置である。この用途では、モータの電気角360°を1周期として、電気角に対して正弦波状に出力が変化し、且つ、互いに位相が90°異なる2系統の感磁素子を配置し、この2系統の出力の逆正接を演算することで、電気角を検出している。
 ところで、下記特許文献1で示されているような磁界方向によって抵抗値が変化する方向検知型磁気抵抗素子は、飽和磁界で動作させることより、磁界強度の変動ノイズに対して鈍感で、磁気GAP(空隙)のばらつき、磁石の温度特性などに起因する磁界強度の変動によって抵抗値が増減することなく、磁界方向のみに反応するので非常に安定した検出性能を示すことが知られている。従って、方向検知型磁気抵抗素子をモータ制御用途に適用すれば、安定度の高い電気角検出を実現できる。
特許第5144373号明細書
 しかしながら、実際の磁気エンコーダでは、高調波成分の重畳などにより、必ずしも磁界角と電気角が一致せず、その結果、電気角の検出精度を悪化させるという課題があった。
 この発明は上記の課題を解決するためになされたもので、位置検出精度の向上を図った、方向検知型磁気抵抗素子を使用した磁気式位置検出装置等を提供することを目的とする。
 この発明は、移動方向にN磁極、S磁極が交互に配列された磁気エンコーダと、前記磁気エンコーダの移動位置を検出するために前記磁気エンコーダの移動に伴う磁界変化を検知する感磁部と、を備え、前記感磁部が、印加された磁界方向により抵抗値が変化する方向検知型磁気抵抗素子からなり、前記磁気エンコーダが、前記感磁部の位置で形成する前記磁気エンコーダの移動方向磁界成分をBs、前記感磁部と前記エンコーダの対向方向磁界成分をBrとしたときに、前記磁気エンコーダの移動による前記磁界成分Bs、Brの変遷がそれぞれ略正弦波状になるように前記N磁極と前記S磁極との境界に磁化されていない無着磁部をそれぞれに設けた磁気式位置検出装置等にある。
 この発明では、位置検出精度の向上を図った、方向検知型磁気抵抗素子を使用した磁気式位置検出装置等を提供できる。
この発明の実施の形態1による磁気式位置検出装置の主要部の構成図である。 この発明の実施の形態1による磁気式位置検出装置の信号処理部の構成である。 この発明の実施の形態2による磁気式位置検出装置の磁気エンコーダの構成図である。 この発明の実施の形態3による磁気式位置検出装置の磁気エンコーダの構成図である。 この発明の実施の形態4による磁気式位置検出装置の磁気エンコーダの構成図である。 この発明の実施の形態5による磁気式位置検出装置の主要部の構成図である。 従来の磁気式位置検出装置の磁気エンコーダと感磁部の配置を示す図である。 従来の磁気式位置検出装置における回転角φ、電気角θ、磁界角αの関係を示す図である。 従来の磁気式位置検出装置における磁界角αの挙動を例示する図である。 この発明に係る無着磁部による磁界角αの挙動改善効果を例示する図ある。 この発明に係る最適化された無着磁部寸法での磁界角αの挙動を例示する図である。
 最初に磁気式位置検出装置についてもう少し詳しく説明する。一般に磁気式位置検出装置では図7に示すように、ホール素子、磁気抵抗素子等からなる感磁部20が、N磁極とS磁極とが一定ピッチλ/2(λ:1つの磁極対(NS極)のピッチ)で交互に配置された磁気エンコーダ10に対して、対向配置されている例が多い。磁気エンコーダ10と感磁部20が相対的に移動すると感磁部20に加わる磁界が変化し、感磁部20の出力が変化する。このときの感磁部20の出力変化を読み取ることで磁気エンコーダ10と感磁部20の相対位置を検出できる。
 磁界方向によって抵抗値が変化する方向検知型磁気抵抗素子は上述のように、飽和磁界で動作させることより、磁界方向のみに反応するので非常に安定した検出性能を示す。方向検知型磁気抵抗素子をモータ制御用途に適用すれば、安定度の高い電気角検出を実現できる。
 この場合、図8の(a)(b)に示すように、N極、S極配列対の1ピッチと電気角360°に相当する回転角φとを適合させて、磁気エンコーダ10が形成する磁界角αと電気角θが略一致するように磁気エンコーダ10の磁極対数nを設定すればよい。図8は磁気エンコーダ10の回転角(φ)90°とモータ電気角(θ)360°および磁気エンコーダ10のNS対の1ピッチを適合させた、即ち、n=4の例を示す。図8の(a)は、回転により磁気エンコーダ10と感磁部20(図8の(b)参照)が相対移動した場合の磁気エンコーダ10に対する感磁部20の軌跡位置と、各軌跡位置での感磁部20に加わる磁界方向(磁界角)αを示す。また、図8の(b)では、回転角φ、電気角θ、磁界角αの関係を図示している。図8の通り、電気角360°の中で感磁部20に印加される磁界が1回転しており、電気角θと磁界角αは概ね一致する。
 ところが、実際の磁気エンコーダでは、高調波成分の重畳などにより、必ずしも磁界角αと電気角θが一致せず、その結果、電気角θの検出精度を悪化させている。
 図9は従来の磁気エンコーダ(例えば、極数:4極対、着磁方向:径方向、GAP(空隙):4mm、磁石外径:φ21、磁石厚み:2mm、磁石幅:4mmの場合)の磁界方向(磁界角)αの値を有限要素法により計算した結果を示している。図9の(a)は任意の電気角θの位置での磁界角αを示している。実線が従来の磁気エンコーダの磁界角α、破線が磁界角α=電気角θの場合の磁界角αを示している。そして(b)は磁界角αと電気角θの差分値を磁界角αのずれとして示している。
 このように従来例では磁界の磁界角αと電気角θが一致せず、その結果、角度検出精度の悪化を引き起こしていた。特に、磁極ピッチ長が大きい場合、すなわち、大径で極数が少ないモータの場合、より磁界角αのずれが大きくなるので、角度検出精度の悪化を回避するために、磁気GAP(空隙)を大きくする、装置を大型化する、更に、大きな磁気GAPでも感磁部が反応できるように磁石を大型化する、などの処置が必要であり、実用的ではなかった。
 この発明では、装置や磁石を大型化することなく、安価にモータ電気角の検出精度を向上させる。
 次にこの発明による磁気式位置検出装置の概要、理論について説明する。
 この発明による例えば回転角(回転位置)を検出する磁気式位置検出装置では、回転方向にN磁極、S磁極が交互に配列された磁気エンコーダと、磁気エンコーダに対して所定の空隙を介して対向配置された感磁部とを備える。磁気エンコーダの回転に伴う磁界変化を感磁部で検知する。感磁部を、磁界方向によって抵抗値が変化する方向検知型磁気抵抗素子で構成する。更には、磁気エンコーダによって形成された感磁部の位置での半径(対向)方向磁界成分をBr、回転(移動)方向磁界成分をBsとしたときに、Br、Bsが略正弦波状または正弦波状となるように、N磁極とS磁極との境界に実質的に磁化されていない無着磁部をそれぞれに設けた。
 図9の(b)に示した磁界角αのずれの原因は、磁界成分Br、Bsが理想波形Br=A・COS(n*φ)、Bs=B・SIN(n*φ)からずれることである。ここで、
 n:磁気エンコーダの磁極対の数、
 φ:磁気エンコーダの回転角、
 A、B:は定数(磁界振幅)
である。この磁界成分Br、Bsの波形乱れは磁気GAPを大きくすることで低減できるが、N極とS極の境界部に着磁されていない無着磁部を設けることで、磁気GAPを大きくすることなく、磁界成分Br、Bsの波形乱れを低減でき、更には無着磁部寸法を最適な値に設定すれば磁界成分Br、Bsの波形乱れおよび磁界角αを最良にできる。
 図10の(a)は、無着磁部の寸法(回転方向に沿った角度)を変えた場合の磁界角αのずれ量の計算結果であり、(b)は無着磁部の寸法(回転方向に沿った角度)を変えた場合の磁界成分Br、Bsの波形みだれの計算結果であり、(c)は磁界角αのずれ量と磁界成分Br、Bsの波形みだれとの相関を示している。その他の条件は、極数:4極対(λ=90°)、着磁方向:径方向、GAP(空隙):4mm、磁石外径:φ21、磁石厚み:2mm、磁石幅:4mm、である。
 図10より、磁界成分Br、Bsの波形みだれを抑制すれば磁界角αのずれを低減できることがわかる(特に図10の(c)参照)。また、磁極対ピッチλ=90°に対し、無着磁部寸法を15°、即ち、無着磁部寸法を磁極対ピッチの1/6(=λ/6)に設定したときに最も磁界角αずれが低減されている(特に図10の(a)参照)。なお、磁極数、磁石外径を変えた場合でも同様に、無着磁部寸法を磁極対ピッチの1/6に設定すれば最良の結果が得られた。
 図11の(a)は、後述するようにこの発明のように、磁極対ピッチλの1/6(=15°)だけ無着磁部を設けた場合の電気角θに対する磁界方向(磁界角)αの計算結果を示す。この発明の磁気エンコーダの磁界角αを示す実線が、磁界角α=電気角θの場合の磁界角αを示す破線に重なって、破線が見えない状態になっている。(b)はその際の電気角θに対する磁界方向(磁界角)αのずれの計算結果を示す。その他の条件は、図9の場合と同じ、極数:4極対(λ=90°)、着磁方向:径方向、GAP(空隙):4mm、磁石外径:φ21、磁石厚み:2mm、磁石幅:4mmである。移動方向の長さがλ/6の無着磁部の形成により、図9に示した無着磁部のない従来例に対して、磁界角αのずれが大幅に低減され、電気角θと磁界角αがほぼ一致している。
 このように、N極とS極の境界に無着磁部を設けることで、磁界成分Br、Bsが略正弦波状または正弦波状となって、磁界角α=Tan-1(Bs/Br)が検出すべき電気角θ(=φ・n)と安定的に一致するので、精度よく電気角θ(=φ・n)を検出できる。特に、無着磁部の寸法を磁極対ピッチλの1/6に近づけることにより、より大きな効果が得られる。
 ところで、ブラシレスモータの制御用途では回転角検出精度として電気角で1°程度を求められるのが一般的である。これを実現するためには磁界角αのずれを1°以下に抑えることが必要であるが、図10の(c)から、磁界成分Br、Bsと、各々の理想波形Br=A・COS(n*φ)、Bs=B・SIN(n*φ)とのずれ量(波形みだれ)を1%(-40dB)以下に抑えれば良いことがわかる。
 このように、この発明を適用することで、装置や磁石を大型化することなく、モータ電気角の検出精度を向上させることができ、安価に実用的なモータの磁気式回転位置検出装置を実現することができる。
 以下、上記の理論に基づいた、この発明による磁気式位置検出装置等を各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一もしくは相当部分は同一符号で示し、また重複する説明は省略する。
 実施の形態1.
 図1はこの発明の実施の形態1による磁気式位置検出装置の主要部の構成図であり、磁気エンコーダと感磁部の配置の一例を示している。回転角を検出するための磁気エンコーダ1は、順番に配列された、N極に着磁されたN磁極1a、着磁されていない無着磁部1c、S極に着磁されたS磁極1b、着磁されていない無着磁部1cを1組として、回転方向にピッチλでn組(ここではn=4)繰返し配列して形成された、全体として中空円柱形状のものである。なお、N磁極1a、S磁極1b、無着磁部1cを同一の磁性材料で形成してもよいし、無着磁部1cを別の非磁性材料で形成してもよい。この実施の形態では磁気エンコーダ1の内部の磁力線が外周部から内周部または内周部から外周部に向かうように着磁されている。
 更に、最も精度よく回転角を検出できる構成として、回転方向(移動方向)に沿った幅(長さ)が、N磁極1aとS磁極1bがλ/3、無着磁部1cがλ/6に設定されている。無着磁部1cの幅は必ずしもλ/6である必要はないがλ/6に近づける(略λ/6)のが望ましい。なおこの発明におけるλは上述のように、N磁極1aとS磁極1bの対およびN磁極1aとS磁極1bの間の無着磁部1c並びにN磁極1aまたはS磁極1bの無着磁部1cと反対側の無着磁部1cからなる1磁極対のピッチである。
 一方、感磁部2は、空隙を介して、磁気エンコーダ1に対して対向して配置され、磁気エンコーダ1と感磁部2とは相対移動(回転)が可能で、相対移動があっても空隙が略一定となるように構成されている。
 感磁部2には磁気エンコーダ1によって磁界が印加されており、磁気エンコーダ1と感磁部2の間に相対移動(回転)が生じると感磁部2に加わる磁界方向が変化する。感磁部2は印加された磁界の方向に応じて抵抗値が変化する方向検知型磁気抵抗素子2a、2bで構成されており、上記磁界方向の変化によって抵抗値が変化する。方向検知型磁気抵抗素子としては、トンネル磁気抵抗素子、スピンバルブ型GMR素子などが好適である。磁気エンコーダ1の回転により、磁気抵抗素子2a、2bには略正弦波状の抵抗値変化を生じる。なお、磁気抵抗素子2a、2bは、略正弦波状の抵抗値変化の位相が互いに90°ずれるように配置されている。図1では、磁気抵抗素子2a、2bを互いに90°傾けて配置することにより、位相が90°ずれた抵抗変化を実現しているが、回転方向にλ/4だけ離して同じ方向に向けて配置してもよい。また、磁気抵抗素子2a、2bを各々複数個の磁気抵抗素子で構成してもよい。
 ここで、方向検知型の磁気抵抗素子(2a、2b)は、配置場所での磁界成分Br、Bsの比率で決まる磁界の方向に応じた抵抗値を示す。素子には方向があり、素子の向きと磁界の向きの組合せに対する抵抗変化は、例えば以下となる。
・矢印と同じ向きの磁界:ボトム抵抗値
・矢印と反対向きの磁界:ピーク抵抗値
・矢印に対して90°を向いた磁界:中央抵抗値
 従って、同じ位置に2つの素子を互いに90°傾けて配置すれば90°位相がずれた抵抗変化が得られる。
 図2はこの発明の実施の形態1による磁気式位置検出装置の信号処理部の構成を示す。磁気抵抗素子2a、2bの抵抗値変化は電圧変換部3a、3bにより電圧変化Vcos、Vsinに変換されて出力される。その後、電圧変化Vcos、Vsinは装置内部あるいは外部の角度演算部4へ入力され、電圧変化VcosとVsinの逆正接により電気角または回転角に変換され、例えばモータ制御部(図示省略)等に供給され、モータの回転制御などに利用される。
 なお、モータ制御では回転子と共に回転する磁気エンコーダのピッチ内での電気角または回転角が必要であり、どのピッチにあるかは必ずしも検出する必要はない。
 実施の形態2.
 図3はこの発明の実施の形態2による磁気式位置検出装置の磁気エンコーダの構成図である。回転角を検出するための磁気エンコーダ1は、順番に配列された、N極に着磁されたN磁極1a、着磁されていない無着磁部1c、S極に着磁されたS磁極1b、着磁されていない無着磁部1cを1組として、回転方向にピッチλでn組(ここではn=4)繰返し配列して形成された、全体として中空円柱形状のものである。
 この実施の形態では無着磁部1cが外周表面近傍にのみ形成されており、磁気エンコーダ1の内部の磁力線が隣の磁極の外周表面に向かうように着磁されている。実施の形態1と同様、N磁極1a、S磁極1b、無着磁部1cを同一の磁性材料で形成してもよいし、無着磁部1cを別の非磁性材料で形成してもよい。N磁極1a、S磁極1b、無着磁部1cの回転方向(移動方向)に沿った幅は実施の形態1と同じで、それぞれλ/3、λ/3、λ/6としている。なお、図示していないが、感磁部、信号処理部の構成は実施の形態1と同じである。
 実施の形態3.
 図4はこの発明の実施の形態3による磁気式位置検出装置の磁気エンコーダの構成図である。回転角を検出するための磁気エンコーダ1は、順番に配列された、N極に着磁されたN磁極1a、無着磁部1c、S極に着磁されたS磁極1b、無着磁部1cを1組として、回転方向にピッチλでn組(ここではn=4)繰返し配列して形成された、全体として中空円柱形状のものである。
 この実施の形態では、無着磁部1cを切欠き形状で構成にすることにより、無着磁部1cの外周部での磁界強度を低下させ、実質的な無着磁部を形成している。また、磁気エンコーダ1の内部の磁力線が外周部から内周部または内周部から外周部に向かうように着磁されている。
 N磁極1a、S磁極1b、無着磁部1cの回転方向(移動方向)に沿った幅は実施の形態1と同じで、それぞれλ/3、λ/3、λ/6としている。なお、図示していないが、感磁部、信号処理部の構成は実施の形態1と同じである。
 実施の形態4.
 図5はこの発明の実施の形態4による磁気式位置検出装置の磁気エンコーダの構成図である。回転角を検出するための磁気エンコーダ1は、順番に配列された、N極に着磁されたN磁極1a、無着磁部1c、S極に着磁されたS磁極1b、無着磁部1cを1組として、回転方向にピッチλでn組(ここではn=4)繰返し配列して形成された、全体として中空円柱形状のものである。
 この実施の形態では、無着磁部1cを切欠き形状で構成にすることにより、無着磁部1cの外周部での磁界強度を低下させ、実質的な無着磁部を形成している。また、磁気エンコーダ1の内部の磁力線が隣の磁極の外周表面に向かうように着磁されている。
 N磁極1a、S磁極1b、無着磁部1cの回転方向(移動方向)に沿った幅は実施の形態1と同じで、それぞれλ/3、λ/3、λ/6としている。なお、図示していないが、感磁部、信号処理部の構造は実施の形態1と同じである。
 なお、この発明の用途はモータの電気角検出用途に限定されるものではなく、他の機器の回転位置検出、または直線位置検出に適用してもよい。
 また上記各実施の形態では、磁気エンコーダとして中空円柱形状のものを示したが、必ずしも中空である必要はなく、円柱形状のものであってもよい。
 実施の形態5.
 図6はこの発明の実施の形態5による磁気式位置検出装置の部分構成図であり、磁気エンコーダと感磁部の配置の一例を示している。直線運動の位置を検出するための磁気エンコーダ1は、順番に配列された、N極に着磁されたN磁極1a、無着磁部1c、S極に着磁されたS磁極1b、無着磁部1cを1組として、繰返し配列して形成された、全体として直線形状のものである。
 更に、最も精度よく回転角を検出できる構成として、移動方向に沿った幅(長さ)が、N磁極1aとS磁極1bがλ/3、無着磁部1cがλ/6に設定されている。無着磁部1cの幅は必ずしもλ/6である必要はないがλ/6に近づける(略λ/6)のが望ましい。
 一方、感磁部2は、空隙を介して、磁気エンコーダ1に対して対向して配置され、磁気エンコーダ1と感磁部2とは相対移動が可能で、相対移動があっても空隙が略一定となるように構成されている。
 感磁部2には磁気エンコーダ1によって磁界が印加されており、磁気エンコーダ1と感磁部2の間に相対移動が生じると感磁部2に加わる磁界方向が変化する。感磁部2は印加された磁界の方向に応じて抵抗値が変化する方向検知型磁気抵抗素子2a、2bで構成されており、上記磁界方向の変化によって抵抗値が変化する。方向検知型磁気抵抗素子としては、トンネル磁気抵抗素子、スピンバルブ型GMR素子などが好適である。磁気エンコーダ1または感磁部2の直線移動により、磁気抵抗素子2a、2bには略正弦波状の抵抗値変化を生じる。なお、磁気抵抗素子2a、2bは、略正弦波状の抵抗値変化の位相が互いに90°ずれるように配置されている。図6では、磁気抵抗素子2a、2bを互いに90°傾けて配置することにより、位相が90°ずれた抵抗変化を実現しているが、移動方向にλ/4だけ離して同じ方向に向けて配置してもよい。また、磁気抵抗素子2a、2bを各々複数個の磁気抵抗素子で構成してもよい。
 なお、回転運動の位置検出に係る上記各実施の形態では、磁気エンコーダ1の無着磁部1cが、磁気エンコーダの極数をn極対、φを回転角、A、Bを定数(磁界振幅)としたときに、Br=A・COS(n*φ)、Bs=B・SIN(n*φ)で表される理想的な磁界変化に対して、双方のずれ量が磁界振幅A又はBの-40dB(1%)以下となる、寸法を有するようにしている。
 また、磁気エンコーダ1の形成に関しては、上記各実施の形態に示したものが適用可能である。
 また、信号処理部の構成は、図2の構成において角度演算部4が磁気エンコーダ1と感磁部2の相対位置を演算する位置演算部となる。
 さらに各実施の形態では感磁部2に対して磁気エンコーダ1が移動する場合について説明したが、磁気エンコーダ1に対して感磁部2が移動する場合についてもこの発明は適用可能である。
 この発明は上記各実施の形態に限定されるものではなく、これらの可能な組み合わせを全て含む。
産業上の利用の可能性
 この発明による磁気式位置検出装置は、多くの分野の位置検出に適用可能である。
 1 磁気エンコーダ、1a N磁極、1b S磁極、1c 無着磁部、2 感磁部、2a,2b 方向検知型磁気抵抗素子、3a,3b 電圧変換部、4 角度(位置)演算部。

Claims (10)

  1.  移動方向にN磁極、S磁極が交互に配列された磁気エンコーダと、
     前記磁気エンコーダの移動位置を検出するために前記磁気エンコーダの移動に伴う磁界変化を検知する感磁部と、
     を備え、
     前記感磁部が、印加された磁界方向により抵抗値が変化する方向検知型磁気抵抗素子からなり、
     前記磁気エンコーダが、前記感磁部の位置で形成する前記磁気エンコーダの移動方向磁界成分をBs、前記感磁部と前記エンコーダの対向方向磁界成分をBrとしたときに、前記磁気エンコーダの移動による前記磁界成分Bs、Brの変遷がそれぞれ略正弦波状になるように前記N磁極と前記S磁極との境界に磁化されていない無着磁部をそれぞれに設けた磁気式位置検出装置。
  2.  前記磁気式位置検出装置が回転角を検出する装置であって、
     前記磁気エンコーダが、回転方向に前記N磁極、S磁極、無着磁部が配列された円柱形状を有し、
     前記感磁部が、前記磁気エンコーダにより形成された前記感磁部の位置での磁界方向を検出する前記方向検知型磁気抵抗素子を含み、
     前記磁気エンコーダの前記無着磁部が、前記磁気エンコーダの極数をn極対、φを回転角、A、Bを磁界振幅としたときに、Br=A・COS(n*φ)、Bs=B・SIN(n*φ)で表される磁界変化に対して、双方のずれ量が前記磁界振幅A又はBの-40dB以下となる寸法を有する、請求項1に記載の磁気式位置検出装置。
  3.  前記N磁極とS磁極の対および前記N磁極とS磁極の間の前記無着磁部並びに前記N磁極またはS磁極の前記無着磁部と反対側の前記無着磁部からなる磁極対のピッチをλとしたときに、前記無着磁部の移動方向の長さがそれぞれ略λ/6である請求項1または2に記載の磁気式位置検出装置。
  4.  前記N磁極、S磁極および無着磁部が同一の磁性材料で形成され、前記N磁極がN極に着磁され、前記S磁極がS極に着磁され、前記無着磁部は着磁していない請求項1から3までのいずれか1項に記載の磁気式位置検出装置。
  5.  前記N磁極、S磁極が磁性材料で形成され、前記無着磁部が非磁性材料で形成されている請求項1から3までのいずれか1項に記載の磁気式位置検出装置。
  6.  前記N磁極、S磁極および無着磁部が同一の磁性材料で形成され、前記無着磁部が切欠き部となっている請求項1から3までのいずれか1項に記載の磁気式位置検出装置。
  7.  前記方向検知型磁気抵抗素子が、トンネル磁気抵抗素子である請求項1から6までのいずれか1項に記載の磁気式位置検出装置。
  8.  前記方向検知型磁気抵抗素子が、スピンバルブ型GMR素子である請求項1から6までのいずれか1項に記載の磁気式位置検出装置。
  9.  前記磁気エンコーダの代わりに前記感磁部が移動する請求項1から8までのいずれか1項に記載の磁気式位置検出装置。
  10.  移動方向にN磁極,S磁極が交互に配列された磁気エンコーダとの相互移動位置を感磁部で前記磁気エンコーダからの磁界変化として検出する磁気式位置検出方法であって、
     前記感磁部として、印加された磁界方向により抵抗値が変化する方向検知型磁気抵抗素子を配置し、
     前記磁気エンコーダに、前記感磁部の位置で形成する前記磁気エンコーダの移動方向磁界成分をBs、前記感磁部と前記エンコーダの対向方向磁界成分をBrとしたときに、前記磁気エンコーダの移動による前記磁界成分Bs、Brの変遷がそれぞれ略正弦波状になるように前記N磁極と前記S磁極との境界に磁化されていない無着磁部をそれぞれに設ける、磁気式位置検出方法。
PCT/JP2014/056912 2014-03-14 2014-03-14 磁気式位置検出装置、磁気式位置検出方法 WO2015136690A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/112,454 US10066966B2 (en) 2014-03-14 2014-03-14 Magnetic position detection device and magnetic position detection method
PCT/JP2014/056912 WO2015136690A1 (ja) 2014-03-14 2014-03-14 磁気式位置検出装置、磁気式位置検出方法
JP2016507226A JP6345235B2 (ja) 2014-03-14 2014-03-14 磁気式位置検出装置、磁気式位置検出方法
CN201480077204.3A CN106104211B (zh) 2014-03-14 2014-03-14 磁力式位置检测装置、磁力式位置检测方法
DE112014006465.3T DE112014006465B4 (de) 2014-03-14 2014-03-14 Magnetische Vorrichtung zur Positionserfassung und Verfahren zur magnetischen Positionserfassung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/056912 WO2015136690A1 (ja) 2014-03-14 2014-03-14 磁気式位置検出装置、磁気式位置検出方法

Publications (1)

Publication Number Publication Date
WO2015136690A1 true WO2015136690A1 (ja) 2015-09-17

Family

ID=54071167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056912 WO2015136690A1 (ja) 2014-03-14 2014-03-14 磁気式位置検出装置、磁気式位置検出方法

Country Status (5)

Country Link
US (1) US10066966B2 (ja)
JP (1) JP6345235B2 (ja)
CN (1) CN106104211B (ja)
DE (1) DE112014006465B4 (ja)
WO (1) WO2015136690A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018024292A1 (de) * 2016-08-05 2018-02-08 Schaeffler Technologies AG & Co. KG Kupplungs- / getriebebetätigungsvorrichtung und linearer wegsensor mit gekippter doppelmagnetanordnung
JP2018133453A (ja) * 2017-02-15 2018-08-23 内山工業株式会社 着磁方法、着磁装置及び磁気式エンコーダ用マグネット
CN116488534A (zh) * 2023-01-04 2023-07-25 哈尔滨理工大学 一种基于磁阻原理的磁电编码器角度解算方法及装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106533414B (zh) * 2016-12-23 2023-05-26 宁波方太厨具有限公司 磁感应旋钮安装检验方法
CN106767955A (zh) * 2016-12-27 2017-05-31 江西省智成测控技术研究所有限责任公司 一种基于磁编码器的离轴式绝对角度测量的实现方法
CN107015280B (zh) * 2017-05-31 2020-05-05 广东美的制冷设备有限公司 空调器及空调器中运动部件的检测控制装置和方法
CN107045146B (zh) * 2017-05-31 2020-10-02 广东美的制冷设备有限公司 空调器及空调器中运动部件的检测控制装置
CN107328016B (zh) * 2017-05-31 2020-05-05 广东美的制冷设备有限公司 空调器以及空调器中运动部件的检测控制装置和方法
CN107015281B (zh) * 2017-05-31 2020-09-25 广东美的制冷设备有限公司 空调器及空调器中运动部件的检测控制装置和方法
CN107015278B (zh) * 2017-05-31 2020-09-25 广东美的制冷设备有限公司 空调器及空调器中运动部件的检测控制装置和方法
FR3078775B1 (fr) * 2018-03-12 2020-04-03 Ntn-Snr Roulements Systeme de determination d'au moins un parametre de rotation d'un organe tournant
CN110081874B (zh) * 2019-03-29 2021-07-06 西人马联合测控(泉州)科技有限公司 车辆定位方法和系统
JP6647478B1 (ja) * 2019-06-14 2020-02-14 三菱電機株式会社 回転数検出器
CN211346681U (zh) * 2020-02-17 2020-08-25 江苏多维科技有限公司 一种直线位移绝对位置编码器
EP3907475B1 (en) * 2020-05-08 2022-10-05 Melexis Technologies SA Magnetic position sensor system and method
CN113607194A (zh) * 2021-08-20 2021-11-05 美的威灵电机技术(上海)有限公司 磁编码器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049639A1 (ja) * 2005-10-25 2007-05-03 Nikon Corporation 位置検出装置および光学機器
JP2009192261A (ja) * 2008-02-12 2009-08-27 Aisin Seiki Co Ltd 直線変位検出装置
JP2010078366A (ja) * 2008-09-24 2010-04-08 Aisin Seiki Co Ltd 角度検出装置
WO2011111494A1 (ja) * 2010-03-12 2011-09-15 アルプス電気株式会社 磁気センサ及び磁気エンコーダ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461311A (en) * 1992-12-24 1995-10-24 Kayaba Kogyo Kabushiki Kaisha Rod axial position detector including plural scales wherein nonmagnetized portions have differing spacing and differing depths and means for calculating the absolute position are provided
JP3103266B2 (ja) 1994-03-25 2000-10-30 オークマ株式会社 絶対位置検出装置
JP3397026B2 (ja) 1995-12-06 2003-04-14 トヨタ自動車株式会社 磁気式回転検出装置
JP3004924B2 (ja) * 1996-11-01 2000-01-31 株式会社ミツトヨ 磁気エンコーダ
JPH116744A (ja) 1997-06-16 1999-01-12 Sankyo Seiki Mfg Co Ltd エンコーダ装置
TW540073B (en) * 2001-10-19 2003-07-01 Viewmove Technologies Inc Electromagnetic mark device for a magnetism encoder
CN1623268A (zh) * 2002-03-29 2005-06-01 波峰实验室责任有限公司 具有同心环形部件的旋转电机
EP1761743B8 (en) * 2004-06-25 2014-06-04 Nxp B.V. Arrangement comprising a magnetic field sensor
JP2007199007A (ja) * 2006-01-30 2007-08-09 Alps Electric Co Ltd 磁気エンコーダ
CN101936750A (zh) * 2006-03-06 2011-01-05 日本电产三协株式会社 磁尺的制造方法
FR2901019B1 (fr) * 2006-05-15 2010-04-23 Electricfil Automotive Codeur pour capteur de position, a effet stabilisateur pour le passage a zero du champ magnetique
US7863365B2 (en) * 2006-12-20 2011-01-04 Freudenberg-Nok General Partnership Robust magnetizable elastomeric thermoplastic blends
JP4897585B2 (ja) 2007-06-22 2012-03-14 ローム株式会社 磁気センサ回路及びこれを用いた電子機器
EP2009404A3 (de) 2007-06-29 2014-12-24 Melexis Technologies NV Magnetstruktur zur Erfassung einer Relativbewegung zwischen der Magnetstruktur und einem Magnetfeldsensor
WO2009060716A1 (ja) 2007-11-06 2009-05-14 Konica Minolta Opto, Inc. 位置検出器および位置決め装置
US7530177B1 (en) * 2007-11-08 2009-05-12 Mitutoyo Corporation Magnetic caliper with reference scale on edge
JP5144373B2 (ja) 2008-05-29 2013-02-13 アルプス電気株式会社 磁気検知型エンコーダ
JP2011111494A (ja) * 2009-11-25 2011-06-09 Suzuki Motor Corp 材着樹脂成形用樹脂組成物および樹脂成形部品
JP5013146B2 (ja) * 2009-12-03 2012-08-29 Tdk株式会社 磁気式位置検出装置
JP5201493B2 (ja) 2011-09-26 2013-06-05 日立金属株式会社 位置検出装置及び直線駆動装置
JP5759867B2 (ja) * 2011-10-28 2015-08-05 山洋電気株式会社 磁気エンコーダ
JP5973278B2 (ja) * 2012-08-16 2016-08-23 Ntn株式会社 磁気エンコーダの着磁装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049639A1 (ja) * 2005-10-25 2007-05-03 Nikon Corporation 位置検出装置および光学機器
JP2009192261A (ja) * 2008-02-12 2009-08-27 Aisin Seiki Co Ltd 直線変位検出装置
JP2010078366A (ja) * 2008-09-24 2010-04-08 Aisin Seiki Co Ltd 角度検出装置
WO2011111494A1 (ja) * 2010-03-12 2011-09-15 アルプス電気株式会社 磁気センサ及び磁気エンコーダ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018024292A1 (de) * 2016-08-05 2018-02-08 Schaeffler Technologies AG & Co. KG Kupplungs- / getriebebetätigungsvorrichtung und linearer wegsensor mit gekippter doppelmagnetanordnung
JP2018133453A (ja) * 2017-02-15 2018-08-23 内山工業株式会社 着磁方法、着磁装置及び磁気式エンコーダ用マグネット
CN116488534A (zh) * 2023-01-04 2023-07-25 哈尔滨理工大学 一种基于磁阻原理的磁电编码器角度解算方法及装置

Also Published As

Publication number Publication date
US10066966B2 (en) 2018-09-04
CN106104211B (zh) 2018-11-13
DE112014006465B4 (de) 2022-03-03
DE112014006465T5 (de) 2016-12-01
JP6345235B2 (ja) 2018-06-20
JPWO2015136690A1 (ja) 2017-04-06
US20160334243A1 (en) 2016-11-17
CN106104211A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
JP6345235B2 (ja) 磁気式位置検出装置、磁気式位置検出方法
KR101597639B1 (ko) 앱솔루트 인코더 장치 및 모터
US10775200B2 (en) Rotary encoder and absolute angular position detection method thereof
US9766095B2 (en) Magnetic position detection device and magnetic position detection method
TWI392856B (zh) 原點位置信號檢測器
CN107735650B (zh) 霍尔传感器
TW201842299A (zh) 旋轉角度檢測裝置及旋轉角度檢測方法
JP2013257231A (ja) 回転角センサ
JP2018132360A5 (ja)
JP4319153B2 (ja) 磁気センサ
US9400194B2 (en) Magnetic detection device and on-vehicle rotation detection device equipped with the same
KR20220047181A (ko) 모터 제어용 자기 센서 시스템
JP2008267868A (ja) 回転検出装置および回転検出装置付き軸受
JP5201493B2 (ja) 位置検出装置及び直線駆動装置
JP4519750B2 (ja) 回転角度検出装置
JP4900838B2 (ja) 位置検出装置及び直線駆動装置
JP4992691B2 (ja) 回転・直動複合型モータの位置検出装置および回転・直動複合型モータ
JP2015049046A (ja) 角度検出装置
JP6201910B2 (ja) 回転検出センサ及びその製造方法
JP2018201299A (ja) 二軸一体型モータ
JP6064816B2 (ja) 回転センサ
US10809097B2 (en) Detector apparatus and detector system
JP6561393B2 (ja) 角度センサ、及び、角度センサによる角度検出方法
JP2006084416A (ja) 移動体位置検出装置
JP2005172441A (ja) 角度および角速度一体型検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507226

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15112454

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014006465

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885250

Country of ref document: EP

Kind code of ref document: A1