WO2015136690A1 - 磁気式位置検出装置、磁気式位置検出方法 - Google Patents
磁気式位置検出装置、磁気式位置検出方法 Download PDFInfo
- Publication number
- WO2015136690A1 WO2015136690A1 PCT/JP2014/056912 JP2014056912W WO2015136690A1 WO 2015136690 A1 WO2015136690 A1 WO 2015136690A1 JP 2014056912 W JP2014056912 W JP 2014056912W WO 2015136690 A1 WO2015136690 A1 WO 2015136690A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic
- encoder
- pole
- magnetized
- magnetic field
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/16—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
- G01D5/165—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance by relative movement of a point of contact or actuation and a resistive track
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/245—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
- G01D5/2451—Incremental encoders
Definitions
- a Hall element In a magnetic position detection device, a Hall element, a magnetoresistive element, or the like is used as a magnetosensitive element.
- magnetosensitive elements are arranged opposite to a magnetic encoder in which N magnetic poles and S magnetic poles are alternately arranged at a constant pitch ⁇ / 2 ( ⁇ : pitch of one magnetic pole pair (NS pole)).
- ⁇ pitch of one magnetic pole pair (NS pole)
- the direction detection type magnetoresistive element whose resistance value changes according to the magnetic field direction as shown in the following Patent Document 1 is insensitive to the fluctuation noise of the magnetic field intensity by operating in a saturation magnetic field, and magnetic GAP. It is known that a very stable detection performance is exhibited because it reacts only in the direction of the magnetic field without increasing or decreasing the resistance value due to fluctuations in the magnetic field intensity caused by variations in (gap), temperature characteristics of the magnet, and the like. Therefore, if the direction detection type magnetoresistive element is applied to a motor control application, highly stable electrical angle detection can be realized.
- the present invention has been made to solve the above-described problems, and an object thereof is to provide a magnetic position detection device using a direction detection type magnetoresistive element and the like, which improves the position detection accuracy.
- the present invention includes a magnetic encoder in which N magnetic poles and S magnetic poles are alternately arranged in the moving direction, and a magnetic sensing unit that detects a magnetic field change accompanying the movement of the magnetic encoder in order to detect the moving position of the magnetic encoder,
- the magnetic sensitive part comprises a direction detection type magnetoresistive element whose resistance value changes depending on the applied magnetic field direction, and the magnetic encoder forms a magnetic field in the moving direction of the magnetic encoder formed at the position of the magnetic sensitive part.
- the magnetic position detecting device or the like is provided with a non-magnetized portion that is not magnetized at the boundary with the S magnetic pole.
- a magnetic position detection device using a direction detection type magnetoresistive element and the like that can improve the position detection accuracy can be provided.
- the magnetic position detector will be explained in a little more detail.
- the magnetic sensing unit 20 including a Hall element, a magnetoresistive element, and the like has a constant pitch ⁇ / 2 ( ⁇ : one magnetic pole pair (NS).
- ⁇ one magnetic pole pair
- the magnetic encoders 10 are alternately arranged at a pitch of the poles.
- the relative position between the magnetic encoder 10 and the magnetic sensing unit 20 can be detected by reading the output change of the magnetic sensing unit 20 at this time.
- the direction detection type magnetoresistive element whose resistance value changes depending on the magnetic field direction reacts only in the magnetic field direction by operating in a saturated magnetic field, and exhibits very stable detection performance. If the direction detection type magnetoresistive element is applied to a motor control application, highly stable electrical angle detection can be realized.
- the magnetic field angle ⁇ and the electrical angle ⁇ do not always coincide with each other due to superposition of harmonic components, and as a result, the detection accuracy of the electrical angle ⁇ is deteriorated.
- FIG. 9 shows a conventional magnetic encoder (for example, the number of poles: 4 pole pairs, the magnetization direction: radial direction, GAP (gap): 4 mm, magnet outer diameter: ⁇ 21, magnet thickness: 2 mm, magnet width: 4 mm).
- the result of calculating the value of the magnetic field direction (magnetic field angle) ⁇ by the finite element method is shown.
- FIG. 9A shows the magnetic field angle ⁇ at an arbitrary electrical angle ⁇ .
- (B) shows the difference between the magnetic field angle ⁇ and the electrical angle ⁇ as the deviation of the magnetic field angle ⁇ .
- the magnetic field angle ⁇ and the electrical angle ⁇ of the magnetic field do not coincide with each other, and as a result, the angle detection accuracy is deteriorated.
- the magnetic pole pitch length is large, that is, in the case of a motor having a large diameter and a small number of poles, the deviation of the magnetic field angle ⁇ becomes larger. Therefore, in order to avoid deterioration in angle detection accuracy, a magnetic gap (gap) is used. Treatments such as increasing the size, increasing the size of the apparatus, and increasing the size of the magnet so that the magnetosensitive part can react even with a large magnetic GAP are necessary and not practical.
- the magnetic position detection device for detecting a rotation angle (rotation position) a magnetic encoder in which N magnetic poles and S magnetic poles are alternately arranged in the rotation direction is opposed to the magnetic encoder via a predetermined gap. And an arranged magnetic sensing part. A magnetic field change due to the rotation of the magnetic encoder is detected by the magnetic sensing unit.
- the magnetic sensing part is composed of a direction detection type magnetoresistive element whose resistance value changes depending on the magnetic field direction.
- the radial (opposite) direction magnetic field component at the position of the magnetic sensing portion formed by the magnetic encoder is Br and the rotational (moving) direction magnetic field component is Bs
- Br and Bs are substantially sinusoidal or sinusoidal.
- a non-magnetized portion which is not substantially magnetized is provided at the boundary between the N magnetic pole and the S magnetic pole.
- the disturbance of the waveform of the magnetic field components Br and Bs can be reduced by increasing the magnetic GAP, the magnetic GAP can be increased by providing a non-magnetized part at the boundary between the N pole and the S pole. Therefore, the waveform disturbance of the magnetic field components Br and Bs can be reduced, and further, the waveform disturbance of the magnetic field components Br and Bs and the magnetic field angle ⁇ can be optimized by setting the non-magnetized portion dimension to an optimum value.
- (A) of FIG. 10 is a calculation result of the shift amount of the magnetic field angle ⁇ when the dimension (angle along the rotation direction) of the non-magnetized part is changed
- (b) is the dimension of the non-magnetized part
- (C) shows the correlation between the deviation of the magnetic field angle ⁇ and the waveform fringes of the magnetic field components Br and Bs when the angle along the rotation direction is changed.
- (b) shows the calculation result of the deviation of the magnetic field direction (magnetic field angle) ⁇ with respect to the electrical angle ⁇ at that time.
- the other conditions are the same as in FIG. 9.
- FIG. 1 is a configuration diagram of the main part of a magnetic position detection apparatus according to Embodiment 1 of the present invention, and shows an example of the arrangement of a magnetic encoder and a magnetic sensing part.
- the magnetic encoder 1 for detecting the rotation angle includes an N magnetic pole 1a magnetized at the N pole, a non-magnetized non-magnetized portion 1c, and an S magnetic pole 1b magnetized at the S pole, which are arranged in order.
- the N magnetic pole 1a, the S magnetic pole 1b, and the non-magnetized portion 1c may be formed of the same magnetic material, or the non-magnetized portion 1c may be formed of another nonmagnetic material.
- the magnetic field lines inside the magnetic encoder 1 are magnetized so as to go from the outer periphery to the inner periphery or from the inner periphery to the outer periphery.
- the width (length) along the rotation direction (movement direction) is ⁇ / 3 for the N magnetic pole 1a and the S magnetic pole 1b, and ⁇ / 6 for the non-magnetized portion 1c.
- the width of the non-magnetized portion 1c is not necessarily ⁇ / 6, but is preferably close to ⁇ / 6 (approximately ⁇ / 6).
- ⁇ in the present invention is a pair of N magnetic pole 1a and S magnetic pole 1b, a non-magnetized portion 1c between N magnetic pole 1a and S magnetic pole 1b, and a non-magnetized portion 1c of N magnetic pole 1a or S magnetic pole 1b. Is a pitch of one magnetic pole pair composed of the non-magnetized part 1c on the opposite side.
- the magnetic sensitive part 2 is arranged to face the magnetic encoder 1 through a gap, and the magnetic encoder 1 and the magnetic sensitive part 2 can be relatively moved (rotated).
- the gap is configured to be substantially constant.
- a magnetic field is applied to the magnetic sensing unit 2 by the magnetic encoder 1, and when a relative movement (rotation) occurs between the magnetic encoder 1 and the magnetic sensing unit 2, the direction of the magnetic field applied to the magnetic sensing unit 2 changes.
- the magnetosensitive part 2 is composed of direction detection type magnetoresistive elements 2a and 2b whose resistance value changes in accordance with the direction of the applied magnetic field, and the resistance value changes according to the change in the magnetic field direction.
- the direction detection type magnetoresistive element a tunnel magnetoresistive element, a spin valve type GMR element or the like is suitable. Due to the rotation of the magnetic encoder 1, a resistance value change in a substantially sinusoidal shape is generated in the magnetoresistive elements 2 a and 2 b.
- the magnetoresistive elements 2a and 2b are arranged so that the phase of the change in the resistance value in a substantially sinusoidal shape is shifted by 90 ° from each other.
- the magnetoresistive elements 2a and 2b are arranged so as to be inclined by 90 °, thereby realizing a resistance change whose phase is shifted by 90 °.
- the rotation direction is separated by ⁇ / 4 toward the same direction. You may arrange.
- each of the magnetoresistive elements 2a and 2b may be composed of a plurality of magnetoresistive elements.
- the direction detection type magnetoresistive elements (2a, 2b) exhibit a resistance value corresponding to the direction of the magnetic field determined by the ratio of the magnetic field components Br, Bs at the arrangement location.
- the element has a direction, and the resistance change with respect to the combination of the element direction and the magnetic field direction is, for example, as follows.
- ⁇ Magnetic field in the same direction as the arrow Bottom resistance value
- ⁇ Magnetic field in the opposite direction to the arrow Peak resistance value
- ⁇ Magnetic field oriented at 90 ° to the arrow Central resistance value Therefore, the two elements are tilted by 90 ° relative to each other at the same position If they are arranged, a resistance change with a 90 ° phase shift can be obtained.
- FIG. 2 shows the configuration of the signal processing unit of the magnetic position detection apparatus according to Embodiment 1 of the present invention.
- Changes in the resistance values of the magnetoresistive elements 2a and 2b are converted into voltage changes Vcos and Vsin by the voltage converters 3a and 3b and output. Thereafter, the voltage changes Vcos and Vsin are input to the angle calculation unit 4 inside or outside the apparatus, converted into an electrical angle or a rotation angle by the arc tangent of the voltage changes Vcos and Vsin, and supplied to a motor control unit (not shown), for example. And used for motor rotation control and the like.
- the motor control requires an electrical angle or a rotation angle within the pitch of the magnetic encoder that rotates with the rotor, and it is not always necessary to detect which pitch is present.
- FIG. 3 is a configuration diagram of a magnetic encoder of a magnetic position detection apparatus according to Embodiment 2 of the present invention.
- the magnetic encoder 1 for detecting the rotation angle includes an N magnetic pole 1a magnetized at the N pole, a non-magnetized non-magnetized portion 1c, and an S magnetic pole 1b magnetized at the S pole, which are arranged in order.
- the non-magnetized portion 1c is formed only in the vicinity of the outer peripheral surface and is magnetized so that the magnetic lines of force inside the magnetic encoder 1 are directed toward the outer peripheral surface of the adjacent magnetic pole.
- the N magnetic pole 1a, the S magnetic pole 1b, and the non-magnetized portion 1c may be formed of the same magnetic material, or the non-magnetized portion 1c may be formed of another nonmagnetic material.
- the widths along the rotation direction (movement direction) of the N magnetic pole 1a, the S magnetic pole 1b, and the non-magnetized portion 1c are the same as those in the first embodiment, and are ⁇ / 3, ⁇ / 3, and ⁇ / 6, respectively.
- the configurations of the magnetic sensing unit and the signal processing unit are the same as those in the first embodiment.
- FIG. 4 is a block diagram of a magnetic encoder of a magnetic position detecting apparatus according to Embodiment 3 of the present invention.
- the magnetic field strength at the outer peripheral portion of the non-magnetized portion 1c is reduced, and a substantially non-magnetized portion is formed.
- the magnetic field lines inside the magnetic encoder 1 are magnetized so as to go from the outer periphery to the inner periphery or from the inner periphery to the outer periphery.
- the widths along the rotation direction (movement direction) of the N magnetic pole 1a, the S magnetic pole 1b, and the non-magnetized portion 1c are the same as those in the first embodiment, and are ⁇ / 3, ⁇ / 3, and ⁇ / 6, respectively.
- the configurations of the magnetic sensing unit and the signal processing unit are the same as those in the first embodiment.
- FIG. FIG. 5 is a configuration diagram of a magnetic encoder of a magnetic position detection apparatus according to Embodiment 4 of the present invention.
- the magnetic field strength at the outer peripheral portion of the non-magnetized portion 1c is reduced, and a substantially non-magnetized portion is formed.
- the magnetic field lines inside the magnetic encoder 1 are magnetized so as to face the outer peripheral surface of the adjacent magnetic pole.
- the widths along the rotation direction (movement direction) of the N magnetic pole 1a, the S magnetic pole 1b, and the non-magnetized portion 1c are the same as those in the first embodiment, and are ⁇ / 3, ⁇ / 3, and ⁇ / 6, respectively.
- the structures of the magnetic sensing unit and the signal processing unit are the same as those in the first embodiment.
- the application of the present invention is not limited to the detection of the electrical angle of the motor, but may be applied to the detection of the rotational position of another device or the detection of the linear position.
- the magnetic encoder has a hollow cylindrical shape.
- the magnetic encoder does not necessarily have to be hollow, and may have a cylindrical shape.
- FIG. FIG. 6 is a partial configuration diagram of a magnetic position detection device according to Embodiment 5 of the present invention, and shows an example of the arrangement of a magnetic encoder and a magnetic sensing unit.
- the magnetic encoder 1 for detecting the position of the linear motion includes an N magnetic pole 1a magnetized on the N pole, a non-magnetized portion 1c, an S magnetic pole 1b magnetized on the S pole,
- the magnetic part 1c is a linear shape as a whole formed by repeatedly arranging the magnetic parts 1c as a set.
- the width (length) along the moving direction is set to ⁇ / 3 for the N magnetic pole 1a and the S magnetic pole 1b, and to ⁇ / 6 for the non-magnetized portion 1c.
- the width of the non-magnetized portion 1c is not necessarily ⁇ / 6, but is preferably close to ⁇ / 6 (approximately ⁇ / 6).
- the magnetic sensitive part 2 is disposed opposite to the magnetic encoder 1 through a gap, and the magnetic encoder 1 and the magnetic sensitive part 2 can be moved relative to each other. It is configured to be constant.
- a magnetic field is applied to the magnetic sensing part 2 by the magnetic encoder 1, and when a relative movement occurs between the magnetic encoder 1 and the magnetic sensing part 2, the direction of the magnetic field applied to the magnetic sensing part 2 changes.
- the magnetosensitive part 2 is composed of direction detection type magnetoresistive elements 2a and 2b whose resistance value changes in accordance with the direction of the applied magnetic field, and the resistance value changes according to the change in the magnetic field direction.
- As the direction detection type magnetoresistive element a tunnel magnetoresistive element, a spin valve type GMR element or the like is suitable. Due to the linear movement of the magnetic encoder 1 or the magnetic sensing part 2, the resistance values of the magnetoresistive elements 2a and 2b change in a substantially sinusoidal shape.
- the magnetoresistive elements 2a and 2b are arranged so that the phase of the change in the resistance value in a substantially sinusoidal shape is shifted by 90 ° from each other.
- the magnetoresistive elements 2a and 2b are arranged so as to be inclined by 90 °, thereby realizing a resistance change whose phase is shifted by 90 °.
- the moving direction is separated by ⁇ / 4 toward the same direction. You may arrange.
- each of the magnetoresistive elements 2a and 2b may be composed of a plurality of magnetoresistive elements.
- the non-magnetized portion 1c of the magnetic encoder 1 has n pole pairs, ⁇ is a rotation angle, A and B are constants (magnetic field amplitude).
- the size is set to -40 dB (1%) or less.
- the configuration of the signal processing unit is a position calculation unit in which the angle calculation unit 4 calculates the relative position of the magnetic encoder 1 and the magnetic sensing unit 2 in the configuration of FIG.
- the present invention is not limited to the above embodiments, and includes all possible combinations thereof.
- the magnetic position detection device according to the present invention can be applied to position detection in many fields.
- 1 magnetic encoder 1a N magnetic pole, 1b S magnetic pole, 1c non-magnetized part, 2 magnetic sensitive part, 2a, 2b direction detection type magnetoresistive element, 3a, 3b voltage conversion part, 4 angle (position) calculation part.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
Description
この発明による例えば回転角(回転位置)を検出する磁気式位置検出装置では、回転方向にN磁極、S磁極が交互に配列された磁気エンコーダと、磁気エンコーダに対して所定の空隙を介して対向配置された感磁部とを備える。磁気エンコーダの回転に伴う磁界変化を感磁部で検知する。感磁部を、磁界方向によって抵抗値が変化する方向検知型磁気抵抗素子で構成する。更には、磁気エンコーダによって形成された感磁部の位置での半径(対向)方向磁界成分をBr、回転(移動)方向磁界成分をBsとしたときに、Br、Bsが略正弦波状または正弦波状となるように、N磁極とS磁極との境界に実質的に磁化されていない無着磁部をそれぞれに設けた。
n:磁気エンコーダの磁極対の数、
φ:磁気エンコーダの回転角、
A、B:は定数(磁界振幅)
である。この磁界成分Br、Bsの波形乱れは磁気GAPを大きくすることで低減できるが、N極とS極の境界部に着磁されていない無着磁部を設けることで、磁気GAPを大きくすることなく、磁界成分Br、Bsの波形乱れを低減でき、更には無着磁部寸法を最適な値に設定すれば磁界成分Br、Bsの波形乱れおよび磁界角αを最良にできる。
図1はこの発明の実施の形態1による磁気式位置検出装置の主要部の構成図であり、磁気エンコーダと感磁部の配置の一例を示している。回転角を検出するための磁気エンコーダ1は、順番に配列された、N極に着磁されたN磁極1a、着磁されていない無着磁部1c、S極に着磁されたS磁極1b、着磁されていない無着磁部1cを1組として、回転方向にピッチλでn組(ここではn=4)繰返し配列して形成された、全体として中空円柱形状のものである。なお、N磁極1a、S磁極1b、無着磁部1cを同一の磁性材料で形成してもよいし、無着磁部1cを別の非磁性材料で形成してもよい。この実施の形態では磁気エンコーダ1の内部の磁力線が外周部から内周部または内周部から外周部に向かうように着磁されている。
ここで、方向検知型の磁気抵抗素子(2a、2b)は、配置場所での磁界成分Br、Bsの比率で決まる磁界の方向に応じた抵抗値を示す。素子には方向があり、素子の向きと磁界の向きの組合せに対する抵抗変化は、例えば以下となる。
・矢印と同じ向きの磁界:ボトム抵抗値
・矢印と反対向きの磁界:ピーク抵抗値
・矢印に対して90°を向いた磁界:中央抵抗値
従って、同じ位置に2つの素子を互いに90°傾けて配置すれば90°位相がずれた抵抗変化が得られる。
なお、モータ制御では回転子と共に回転する磁気エンコーダのピッチ内での電気角または回転角が必要であり、どのピッチにあるかは必ずしも検出する必要はない。
図3はこの発明の実施の形態2による磁気式位置検出装置の磁気エンコーダの構成図である。回転角を検出するための磁気エンコーダ1は、順番に配列された、N極に着磁されたN磁極1a、着磁されていない無着磁部1c、S極に着磁されたS磁極1b、着磁されていない無着磁部1cを1組として、回転方向にピッチλでn組(ここではn=4)繰返し配列して形成された、全体として中空円柱形状のものである。
図4はこの発明の実施の形態3による磁気式位置検出装置の磁気エンコーダの構成図である。回転角を検出するための磁気エンコーダ1は、順番に配列された、N極に着磁されたN磁極1a、無着磁部1c、S極に着磁されたS磁極1b、無着磁部1cを1組として、回転方向にピッチλでn組(ここではn=4)繰返し配列して形成された、全体として中空円柱形状のものである。
図5はこの発明の実施の形態4による磁気式位置検出装置の磁気エンコーダの構成図である。回転角を検出するための磁気エンコーダ1は、順番に配列された、N極に着磁されたN磁極1a、無着磁部1c、S極に着磁されたS磁極1b、無着磁部1cを1組として、回転方向にピッチλでn組(ここではn=4)繰返し配列して形成された、全体として中空円柱形状のものである。
また上記各実施の形態では、磁気エンコーダとして中空円柱形状のものを示したが、必ずしも中空である必要はなく、円柱形状のものであってもよい。
図6はこの発明の実施の形態5による磁気式位置検出装置の部分構成図であり、磁気エンコーダと感磁部の配置の一例を示している。直線運動の位置を検出するための磁気エンコーダ1は、順番に配列された、N極に着磁されたN磁極1a、無着磁部1c、S極に着磁されたS磁極1b、無着磁部1cを1組として、繰返し配列して形成された、全体として直線形状のものである。
また、信号処理部の構成は、図2の構成において角度演算部4が磁気エンコーダ1と感磁部2の相対位置を演算する位置演算部となる。
Claims (10)
- 移動方向にN磁極、S磁極が交互に配列された磁気エンコーダと、
前記磁気エンコーダの移動位置を検出するために前記磁気エンコーダの移動に伴う磁界変化を検知する感磁部と、
を備え、
前記感磁部が、印加された磁界方向により抵抗値が変化する方向検知型磁気抵抗素子からなり、
前記磁気エンコーダが、前記感磁部の位置で形成する前記磁気エンコーダの移動方向磁界成分をBs、前記感磁部と前記エンコーダの対向方向磁界成分をBrとしたときに、前記磁気エンコーダの移動による前記磁界成分Bs、Brの変遷がそれぞれ略正弦波状になるように前記N磁極と前記S磁極との境界に磁化されていない無着磁部をそれぞれに設けた磁気式位置検出装置。 - 前記磁気式位置検出装置が回転角を検出する装置であって、
前記磁気エンコーダが、回転方向に前記N磁極、S磁極、無着磁部が配列された円柱形状を有し、
前記感磁部が、前記磁気エンコーダにより形成された前記感磁部の位置での磁界方向を検出する前記方向検知型磁気抵抗素子を含み、
前記磁気エンコーダの前記無着磁部が、前記磁気エンコーダの極数をn極対、φを回転角、A、Bを磁界振幅としたときに、Br=A・COS(n*φ)、Bs=B・SIN(n*φ)で表される磁界変化に対して、双方のずれ量が前記磁界振幅A又はBの-40dB以下となる寸法を有する、請求項1に記載の磁気式位置検出装置。 - 前記N磁極とS磁極の対および前記N磁極とS磁極の間の前記無着磁部並びに前記N磁極またはS磁極の前記無着磁部と反対側の前記無着磁部からなる磁極対のピッチをλとしたときに、前記無着磁部の移動方向の長さがそれぞれ略λ/6である請求項1または2に記載の磁気式位置検出装置。
- 前記N磁極、S磁極および無着磁部が同一の磁性材料で形成され、前記N磁極がN極に着磁され、前記S磁極がS極に着磁され、前記無着磁部は着磁していない請求項1から3までのいずれか1項に記載の磁気式位置検出装置。
- 前記N磁極、S磁極が磁性材料で形成され、前記無着磁部が非磁性材料で形成されている請求項1から3までのいずれか1項に記載の磁気式位置検出装置。
- 前記N磁極、S磁極および無着磁部が同一の磁性材料で形成され、前記無着磁部が切欠き部となっている請求項1から3までのいずれか1項に記載の磁気式位置検出装置。
- 前記方向検知型磁気抵抗素子が、トンネル磁気抵抗素子である請求項1から6までのいずれか1項に記載の磁気式位置検出装置。
- 前記方向検知型磁気抵抗素子が、スピンバルブ型GMR素子である請求項1から6までのいずれか1項に記載の磁気式位置検出装置。
- 前記磁気エンコーダの代わりに前記感磁部が移動する請求項1から8までのいずれか1項に記載の磁気式位置検出装置。
- 移動方向にN磁極,S磁極が交互に配列された磁気エンコーダとの相互移動位置を感磁部で前記磁気エンコーダからの磁界変化として検出する磁気式位置検出方法であって、
前記感磁部として、印加された磁界方向により抵抗値が変化する方向検知型磁気抵抗素子を配置し、
前記磁気エンコーダに、前記感磁部の位置で形成する前記磁気エンコーダの移動方向磁界成分をBs、前記感磁部と前記エンコーダの対向方向磁界成分をBrとしたときに、前記磁気エンコーダの移動による前記磁界成分Bs、Brの変遷がそれぞれ略正弦波状になるように前記N磁極と前記S磁極との境界に磁化されていない無着磁部をそれぞれに設ける、磁気式位置検出方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/112,454 US10066966B2 (en) | 2014-03-14 | 2014-03-14 | Magnetic position detection device and magnetic position detection method |
PCT/JP2014/056912 WO2015136690A1 (ja) | 2014-03-14 | 2014-03-14 | 磁気式位置検出装置、磁気式位置検出方法 |
JP2016507226A JP6345235B2 (ja) | 2014-03-14 | 2014-03-14 | 磁気式位置検出装置、磁気式位置検出方法 |
CN201480077204.3A CN106104211B (zh) | 2014-03-14 | 2014-03-14 | 磁力式位置检测装置、磁力式位置检测方法 |
DE112014006465.3T DE112014006465B4 (de) | 2014-03-14 | 2014-03-14 | Magnetische Vorrichtung zur Positionserfassung und Verfahren zur magnetischen Positionserfassung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/056912 WO2015136690A1 (ja) | 2014-03-14 | 2014-03-14 | 磁気式位置検出装置、磁気式位置検出方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015136690A1 true WO2015136690A1 (ja) | 2015-09-17 |
Family
ID=54071167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/056912 WO2015136690A1 (ja) | 2014-03-14 | 2014-03-14 | 磁気式位置検出装置、磁気式位置検出方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10066966B2 (ja) |
JP (1) | JP6345235B2 (ja) |
CN (1) | CN106104211B (ja) |
DE (1) | DE112014006465B4 (ja) |
WO (1) | WO2015136690A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018024292A1 (de) * | 2016-08-05 | 2018-02-08 | Schaeffler Technologies AG & Co. KG | Kupplungs- / getriebebetätigungsvorrichtung und linearer wegsensor mit gekippter doppelmagnetanordnung |
JP2018133453A (ja) * | 2017-02-15 | 2018-08-23 | 内山工業株式会社 | 着磁方法、着磁装置及び磁気式エンコーダ用マグネット |
CN116488534A (zh) * | 2023-01-04 | 2023-07-25 | 哈尔滨理工大学 | 一种基于磁阻原理的磁电编码器角度解算方法及装置 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106533414B (zh) * | 2016-12-23 | 2023-05-26 | 宁波方太厨具有限公司 | 磁感应旋钮安装检验方法 |
CN106767955A (zh) * | 2016-12-27 | 2017-05-31 | 江西省智成测控技术研究所有限责任公司 | 一种基于磁编码器的离轴式绝对角度测量的实现方法 |
CN107015280B (zh) * | 2017-05-31 | 2020-05-05 | 广东美的制冷设备有限公司 | 空调器及空调器中运动部件的检测控制装置和方法 |
CN107045146B (zh) * | 2017-05-31 | 2020-10-02 | 广东美的制冷设备有限公司 | 空调器及空调器中运动部件的检测控制装置 |
CN107328016B (zh) * | 2017-05-31 | 2020-05-05 | 广东美的制冷设备有限公司 | 空调器以及空调器中运动部件的检测控制装置和方法 |
CN107015281B (zh) * | 2017-05-31 | 2020-09-25 | 广东美的制冷设备有限公司 | 空调器及空调器中运动部件的检测控制装置和方法 |
CN107015278B (zh) * | 2017-05-31 | 2020-09-25 | 广东美的制冷设备有限公司 | 空调器及空调器中运动部件的检测控制装置和方法 |
FR3078775B1 (fr) * | 2018-03-12 | 2020-04-03 | Ntn-Snr Roulements | Systeme de determination d'au moins un parametre de rotation d'un organe tournant |
CN110081874B (zh) * | 2019-03-29 | 2021-07-06 | 西人马联合测控(泉州)科技有限公司 | 车辆定位方法和系统 |
JP6647478B1 (ja) * | 2019-06-14 | 2020-02-14 | 三菱電機株式会社 | 回転数検出器 |
CN211346681U (zh) * | 2020-02-17 | 2020-08-25 | 江苏多维科技有限公司 | 一种直线位移绝对位置编码器 |
EP3907475B1 (en) * | 2020-05-08 | 2022-10-05 | Melexis Technologies SA | Magnetic position sensor system and method |
CN113607194A (zh) * | 2021-08-20 | 2021-11-05 | 美的威灵电机技术(上海)有限公司 | 磁编码器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007049639A1 (ja) * | 2005-10-25 | 2007-05-03 | Nikon Corporation | 位置検出装置および光学機器 |
JP2009192261A (ja) * | 2008-02-12 | 2009-08-27 | Aisin Seiki Co Ltd | 直線変位検出装置 |
JP2010078366A (ja) * | 2008-09-24 | 2010-04-08 | Aisin Seiki Co Ltd | 角度検出装置 |
WO2011111494A1 (ja) * | 2010-03-12 | 2011-09-15 | アルプス電気株式会社 | 磁気センサ及び磁気エンコーダ |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5461311A (en) * | 1992-12-24 | 1995-10-24 | Kayaba Kogyo Kabushiki Kaisha | Rod axial position detector including plural scales wherein nonmagnetized portions have differing spacing and differing depths and means for calculating the absolute position are provided |
JP3103266B2 (ja) | 1994-03-25 | 2000-10-30 | オークマ株式会社 | 絶対位置検出装置 |
JP3397026B2 (ja) | 1995-12-06 | 2003-04-14 | トヨタ自動車株式会社 | 磁気式回転検出装置 |
JP3004924B2 (ja) * | 1996-11-01 | 2000-01-31 | 株式会社ミツトヨ | 磁気エンコーダ |
JPH116744A (ja) | 1997-06-16 | 1999-01-12 | Sankyo Seiki Mfg Co Ltd | エンコーダ装置 |
TW540073B (en) * | 2001-10-19 | 2003-07-01 | Viewmove Technologies Inc | Electromagnetic mark device for a magnetism encoder |
CN1623268A (zh) * | 2002-03-29 | 2005-06-01 | 波峰实验室责任有限公司 | 具有同心环形部件的旋转电机 |
EP1761743B8 (en) * | 2004-06-25 | 2014-06-04 | Nxp B.V. | Arrangement comprising a magnetic field sensor |
JP2007199007A (ja) * | 2006-01-30 | 2007-08-09 | Alps Electric Co Ltd | 磁気エンコーダ |
CN101936750A (zh) * | 2006-03-06 | 2011-01-05 | 日本电产三协株式会社 | 磁尺的制造方法 |
FR2901019B1 (fr) * | 2006-05-15 | 2010-04-23 | Electricfil Automotive | Codeur pour capteur de position, a effet stabilisateur pour le passage a zero du champ magnetique |
US7863365B2 (en) * | 2006-12-20 | 2011-01-04 | Freudenberg-Nok General Partnership | Robust magnetizable elastomeric thermoplastic blends |
JP4897585B2 (ja) | 2007-06-22 | 2012-03-14 | ローム株式会社 | 磁気センサ回路及びこれを用いた電子機器 |
EP2009404A3 (de) | 2007-06-29 | 2014-12-24 | Melexis Technologies NV | Magnetstruktur zur Erfassung einer Relativbewegung zwischen der Magnetstruktur und einem Magnetfeldsensor |
WO2009060716A1 (ja) | 2007-11-06 | 2009-05-14 | Konica Minolta Opto, Inc. | 位置検出器および位置決め装置 |
US7530177B1 (en) * | 2007-11-08 | 2009-05-12 | Mitutoyo Corporation | Magnetic caliper with reference scale on edge |
JP5144373B2 (ja) | 2008-05-29 | 2013-02-13 | アルプス電気株式会社 | 磁気検知型エンコーダ |
JP2011111494A (ja) * | 2009-11-25 | 2011-06-09 | Suzuki Motor Corp | 材着樹脂成形用樹脂組成物および樹脂成形部品 |
JP5013146B2 (ja) * | 2009-12-03 | 2012-08-29 | Tdk株式会社 | 磁気式位置検出装置 |
JP5201493B2 (ja) | 2011-09-26 | 2013-06-05 | 日立金属株式会社 | 位置検出装置及び直線駆動装置 |
JP5759867B2 (ja) * | 2011-10-28 | 2015-08-05 | 山洋電気株式会社 | 磁気エンコーダ |
JP5973278B2 (ja) * | 2012-08-16 | 2016-08-23 | Ntn株式会社 | 磁気エンコーダの着磁装置 |
-
2014
- 2014-03-14 US US15/112,454 patent/US10066966B2/en active Active
- 2014-03-14 JP JP2016507226A patent/JP6345235B2/ja active Active
- 2014-03-14 DE DE112014006465.3T patent/DE112014006465B4/de active Active
- 2014-03-14 WO PCT/JP2014/056912 patent/WO2015136690A1/ja active Application Filing
- 2014-03-14 CN CN201480077204.3A patent/CN106104211B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007049639A1 (ja) * | 2005-10-25 | 2007-05-03 | Nikon Corporation | 位置検出装置および光学機器 |
JP2009192261A (ja) * | 2008-02-12 | 2009-08-27 | Aisin Seiki Co Ltd | 直線変位検出装置 |
JP2010078366A (ja) * | 2008-09-24 | 2010-04-08 | Aisin Seiki Co Ltd | 角度検出装置 |
WO2011111494A1 (ja) * | 2010-03-12 | 2011-09-15 | アルプス電気株式会社 | 磁気センサ及び磁気エンコーダ |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018024292A1 (de) * | 2016-08-05 | 2018-02-08 | Schaeffler Technologies AG & Co. KG | Kupplungs- / getriebebetätigungsvorrichtung und linearer wegsensor mit gekippter doppelmagnetanordnung |
JP2018133453A (ja) * | 2017-02-15 | 2018-08-23 | 内山工業株式会社 | 着磁方法、着磁装置及び磁気式エンコーダ用マグネット |
CN116488534A (zh) * | 2023-01-04 | 2023-07-25 | 哈尔滨理工大学 | 一种基于磁阻原理的磁电编码器角度解算方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
US10066966B2 (en) | 2018-09-04 |
CN106104211B (zh) | 2018-11-13 |
DE112014006465B4 (de) | 2022-03-03 |
DE112014006465T5 (de) | 2016-12-01 |
JP6345235B2 (ja) | 2018-06-20 |
JPWO2015136690A1 (ja) | 2017-04-06 |
US20160334243A1 (en) | 2016-11-17 |
CN106104211A (zh) | 2016-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6345235B2 (ja) | 磁気式位置検出装置、磁気式位置検出方法 | |
KR101597639B1 (ko) | 앱솔루트 인코더 장치 및 모터 | |
US10775200B2 (en) | Rotary encoder and absolute angular position detection method thereof | |
US9766095B2 (en) | Magnetic position detection device and magnetic position detection method | |
TWI392856B (zh) | 原點位置信號檢測器 | |
CN107735650B (zh) | 霍尔传感器 | |
TW201842299A (zh) | 旋轉角度檢測裝置及旋轉角度檢測方法 | |
JP2013257231A (ja) | 回転角センサ | |
JP2018132360A5 (ja) | ||
JP4319153B2 (ja) | 磁気センサ | |
US9400194B2 (en) | Magnetic detection device and on-vehicle rotation detection device equipped with the same | |
KR20220047181A (ko) | 모터 제어용 자기 센서 시스템 | |
JP2008267868A (ja) | 回転検出装置および回転検出装置付き軸受 | |
JP5201493B2 (ja) | 位置検出装置及び直線駆動装置 | |
JP4519750B2 (ja) | 回転角度検出装置 | |
JP4900838B2 (ja) | 位置検出装置及び直線駆動装置 | |
JP4992691B2 (ja) | 回転・直動複合型モータの位置検出装置および回転・直動複合型モータ | |
JP2015049046A (ja) | 角度検出装置 | |
JP6201910B2 (ja) | 回転検出センサ及びその製造方法 | |
JP2018201299A (ja) | 二軸一体型モータ | |
JP6064816B2 (ja) | 回転センサ | |
US10809097B2 (en) | Detector apparatus and detector system | |
JP6561393B2 (ja) | 角度センサ、及び、角度センサによる角度検出方法 | |
JP2006084416A (ja) | 移動体位置検出装置 | |
JP2005172441A (ja) | 角度および角速度一体型検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14885250 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016507226 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15112454 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112014006465 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14885250 Country of ref document: EP Kind code of ref document: A1 |