WO2015068509A1 - Magnetoresistive effect element, magnetic memory and magnetic storage method - Google Patents

Magnetoresistive effect element, magnetic memory and magnetic storage method Download PDF

Info

Publication number
WO2015068509A1
WO2015068509A1 PCT/JP2014/076643 JP2014076643W WO2015068509A1 WO 2015068509 A1 WO2015068509 A1 WO 2015068509A1 JP 2014076643 W JP2014076643 W JP 2014076643W WO 2015068509 A1 WO2015068509 A1 WO 2015068509A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
leakage magnetic
layer
field generation
generation layer
Prior art date
Application number
PCT/JP2014/076643
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 深見
路彦 山ノ内
大野 英男
Original Assignee
日本電気株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, 国立大学法人東北大学 filed Critical 日本電気株式会社
Priority to JP2015546565A priority Critical patent/JP6414754B2/en
Publication of WO2015068509A1 publication Critical patent/WO2015068509A1/en
Priority to US15/144,715 priority patent/US10020039B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1655Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods

Definitions

  • the present invention relates to a magnetoresistive effect element, a magnetic memory (Magnetic Random Access Memory) using the magnetoresistive effect element, and a magnetic storage method.
  • a magnetic memory, a magnetic random access memory (Magnetic Random Access Memory), or a magnetoresistive random access memory (Magnetic Resistive Random Access Memory) is a non-volatile memory with no limit on the number of rewrites, and a static random access memory (SRAM) (Static Random Access Memory). (Dynamic Random Access Memory) and NOR-Flash are expected as alternatives.
  • SRAM Static Random Access Memory
  • NOR-Flash are expected as alternatives.
  • Non-Patent Document 1 discloses that, among magnetic memories, a three-terminal magnetic memory having a three-terminal cell structure has a circuit configuration suitable for high-speed operation and can operate at a high speed equivalent to that of current SRAM. It is described that it is.
  • Non-Patent Document 2 discloses that among three-terminal magnetic memories, a three-terminal domain wall motion type magnetic memory using current-induced domain wall motion reduces the writing current and the writing speed with respect to miniaturization of the element size. It is described as being suitable for application to the LSI generation.
  • Non-Patent Document 3 provides a magnetic memory having a small write current and excellent thermal stability by applying a material having perpendicular magnetic anisotropy to a layer to be written by current-induced domain wall motion.
  • Non-Patent Document 4 Non-Patent Document 5, and Non-Patent Document 6, from the layer adjacent to the domain wall (DW) in which the swirlability is defined by the Dzyaloshinskii-Moriya (Jaroshinsky-Moriya) interaction, It has been experimentally and theoretically shown that when a spin current flows due to the spin Hall effect, the domain wall can move at a high speed with a low current.
  • the magnetic memory according to the present invention includes a magnetoresistive element.
  • the magnetoresistive element includes a magnetization free layer composed of a ferromagnetic material having perpendicular magnetic anisotropy, a spin current generation layer provided adjacent to the magnetization free layer, and the magnetization adjacent layer to the magnetization free layer.
  • a tunnel barrier layer provided on the side opposite to the spin current generation layer, a reference layer provided on the side opposite to the magnetization free layer adjacent to the tunnel barrier layer, and a first leakage magnetic field composed of a ferromagnetic material
  • a generation layer and a second leakage magnetic field generation layer and the longitudinal direction of the magnetization free layer is determined by an in-plane component of the leakage magnetic field generated from the first leakage magnetic field generation layer and the second leakage magnetic field generation layer at the position of the magnetization free layer.
  • a domain wall having a magnetization component in the direction is formed.
  • the data retention characteristic and the write current can be designed independently, and the high data retention characteristic, A small write current can be achieved.
  • FIG. 1 is a diagram for explaining a magnetoresistive element according to a first embodiment of the present invention.
  • A is a schematic diagram which shows an example of the magnetoresistive effect element which concerns on the 1st Embodiment of this invention
  • (b) is a magnetoresistive effect element which concerns on the 1st Embodiment of this invention.
  • It is a schematic diagram which shows the structure of a magnetization free layer.
  • FIG. 2 is a diagram for explaining the magnetization structure of the magnetoresistive element according to the first embodiment of the invention.
  • FIG. 3 is a diagram for explaining a domain wall formed in the magnetoresistive element according to the first embodiment of the present invention.
  • (A) is a schematic diagram of the right-turning domain wall of the magnetoresistive effect element according to the first embodiment of the present invention, and (b) is a magnetoresistive according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining the relationship between the domain wall formed in the magnetoresistive element according to the first embodiment of the present invention and the leakage magnetic field.
  • A is a schematic diagram which shows the relationship between the turning direction of the domain wall in the "0" state of the magnetoresistive effect element based on the 1st Embodiment of this invention, and the leakage magnetic field from a leakage magnetic field production
  • B is a schematic diagram showing the relationship between the turning direction of the domain wall in the “1” state of the magnetoresistive effect element according to the first embodiment of the present invention and the leakage magnetic field from the leakage magnetic field generation layer.
  • FIG. 5 is a diagram for explaining a write operation to the magnetoresistive element according to the first embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a read operation from the magnetoresistive element according to the first embodiment of the present invention.
  • FIG. 7 is a cell circuit diagram of a magnetic memory cell according to the present invention.
  • FIG. 8 is a circuit block diagram of a magnetic memory according to the present invention.
  • FIG. 9 is a diagram for explaining parameters used for numerical calculation.
  • FIG. 10 is a calculation result of time evolution of the domain wall position q and the domain wall magnetization angle ⁇ when escaped from the constrained place derived from the local x-direction leakage magnetic field.
  • FIG. 11 shows the local x-direction magnetic field and the dependence of the current density necessary for the domain wall constrained by the local energy potential to escape from the constrained position on the x-direction magnetic field and the pin potential depth.
  • the calculation result of FIG. 12 shows the calculation result of the leakage magnetic field from the leakage magnetic field generation layer.
  • FIG. 13 is a diagram for explaining the magnetization state of the magnetoresistive element of the first modified example according to the first embodiment of the invention.
  • A is a schematic diagram which shows the "0" state of the magnetoresistive effect element of the 1st modification which concerns on the 1st Embodiment of this invention.
  • B is a schematic diagram showing a “1” state of the magnetoresistive effect element of the first modified example according to the first exemplary embodiment of the present invention.
  • C is a schematic diagram which shows the "0" state of the magnetoresistive element of the 1st modification which concerns on the 1st Embodiment of this invention.
  • FIG. 14 is a diagram for explaining the magnetization state of the magnetoresistive element of the second modified example according to the first embodiment of the invention.
  • (A) is a schematic diagram which shows the "0" state of the magnetoresistive effect element of the 2nd modification which concerns on the 1st Embodiment of this invention
  • (b) is 1st Embodiment of this invention
  • It is a schematic diagram which shows the "1" state of the magnetoresistive effect element of the 2nd modification which concerns on a form.
  • FIG. 15 is a diagram for explaining the magnetization state of the magnetoresistive element of the third modified example according to the first embodiment of the invention.
  • (A) is a schematic diagram which shows the "0" state of the magnetoresistive effect element of the 3rd modification based on the 1st Embodiment of this invention
  • (b) is 1st Embodiment of this invention
  • It is a schematic diagram which shows the "1" state of the magnetoresistive effect element of the 3rd modification which concerns on a form.
  • FIG. 16 is a diagram for explaining the magnetization state of the magnetoresistive element of the fourth modification example according to the first embodiment of the invention.
  • FIG. 17 is a schematic diagram showing an example of a magnetoresistive element of a fifth modified example according to the first embodiment of the present invention.
  • FIG. 18 is a diagram for explaining the magnetization state of the magnetoresistive element of the sixth modified example according to the first embodiment of the invention.
  • FIG. 19 is a diagram for explaining the magnetization state of the magnetoresistive element of the seventh modified example according to the first embodiment of the invention.
  • FIG. 20 is a diagram for explaining the magnetization state of the magnetoresistive element according to the eighth modified example of the first embodiment of the invention.
  • FIG. 21 is a diagram for explaining the magnetization state of the magnetoresistive element according to the second embodiment of the invention.
  • (A) is a schematic diagram which shows the "0" state of the magnetoresistive effect element which concerns on the 2nd Embodiment of this invention
  • (b) is the magnetoresistive effect which concerns on the 2nd Embodiment of this invention.
  • FIG. 22 is a diagram for explaining the state of magnetization of the magnetoresistive element of the first modification example according to the second embodiment of the invention.
  • (A) is a schematic diagram which shows the "0" state of the magnetoresistive effect element of the 1st modification concerning the 2nd Embodiment of this invention
  • (b) is the 2nd Embodiment of this invention.
  • FIG. 1A is a schematic diagram showing an example of the structure of the magnetoresistive element 100 according to the first exemplary embodiment of the present invention.
  • the z axis is the substrate vertical direction and the xy axis is parallel to the substrate plane.
  • the definition of this xyz coordinate system is common to the following figures.
  • the magnetoresistance effect element 100 includes at least a magnetization free layer 10, a spin current generation layer 20, a tunnel barrier layer 30, a reference layer 40, and a leakage magnetic field generation layer (first field).
  • FIG. 1A an example in which a spacer layer (a first spacer layer 61 and a second spacer layer 62) is further provided is illustrated.
  • the magnetization free layer 10, the reference layer 40, and the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) have a ferromagnetic material at least in part.
  • FIG. 1A is a plan view of the structure of the magnetization free layer 10 as viewed from the z-axis, and the magnetization direction is indicated by an arrow as in FIG.
  • the magnetization free layer 10 is made of a ferromagnetic material having perpendicular magnetic anisotropy.
  • the perpendicular magnetic anisotropy may be derived from the magnetocrystalline anisotropy of the crystal or may be derived from the interfacial magnetic anisotropy generated by the interaction with the interface.
  • the magnetization free layer 10 includes a first magnetization fixed region 11, a second magnetization fixed region 12, and a magnetization free region 13, as shown in the plan view of FIG. Yes.
  • the magnetization free layer 10 is formed to extend in the x-axis direction, and the magnetization free region 13 is provided between the first magnetization fixed region 11 and the second magnetization fixed region 12.
  • the positional relationship between the first magnetization fixed region 11, the second magnetization fixed region 12, and the magnetization free region 13 in the present invention is not limited to this.
  • the first magnetization fixed region 11 and the second magnetization fixed region 12 have magnetization fixed in the z ⁇ direction, and they are antiparallel to each other. It is fixed in the direction. In the example of FIG.
  • the magnetization of the first magnetization fixed region 11 is fixed in the + z direction
  • the magnetization of the second magnetization fixed region 12 is fixed in the ⁇ z direction.
  • the magnetization of the magnetization free region 13 can face either the + z direction or the ⁇ z direction.
  • a single domain wall is formed in the magnetization free layer 10.
  • the domain wall is formed at either the boundary between the first magnetization fixed region 11 and the magnetization free region 13 or the boundary between the second magnetization fixed region 12 and the magnetization free region 13 according to the magnetization direction of the magnetization free region 13. .
  • the spin current generation layer 20 is made of a nonmagnetic conductor.
  • the spin current generation layer 20 is preferably formed of an element having a large spin orbit interaction or contains an element having a large spin initiation interaction.
  • the spin current generation layer 20 is provided adjacent to the magnetization free layer 10.
  • the spin current generation layer 20 is formed so as to cover the entire ⁇ z side surface of the magnetization free layer 10.
  • the spin current generation layer 20 only needs to be adjacent to the magnetization free region 13 of the magnetization free layer 10 and does not necessarily have to be adjacent to the entire surface on one side.
  • the tunnel barrier layer 30 is made of a nonmagnetic material. The tunnel barrier layer 30 is provided adjacent to the magnetization free layer 10 on the surface opposite to the spin current generation layer 20.
  • the tunnel barrier layer 30 is formed so as to cover the entire one surface of the magnetization free layer 10.
  • the tunnel barrier layer 30 is formed so as to cover the entire surface of the magnetization free layer 10 on the + z side.
  • the reference layer 40 is provided adjacent to the tunnel barrier layer 30 on the surface of the tunnel barrier layer 30 opposite to the magnetization free layer 10.
  • the reference layer 40 has a perpendicular magnetic anisotropy and has a ferromagnetic material whose magnetization direction is fixed.
  • FIG. 1A shows an example in which the reference layer 40 is constituted by a laminated body made of ferromagnetic material / nonmagnetic material / ferromagnetic material. Further, in the example of FIG.
  • the reference layer 40 is provided so as to overlap at least the magnetization free region 13 of the magnetization free layer 10 in the xy plane.
  • the reference layer 40 is disposed immediately above the magnetization free region 13 and is provided so as to be accommodated in the magnetization free region 13 in the xy plane.
  • the reference layer 40 only needs to overlap with the magnetization free region 13 at least partially in the xy plane, and the size of the reference layer 40 may be larger than that of the magnetization free region 13.
  • the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) has a ferromagnetic material having perpendicular magnetic anisotropy at least partially.
  • the first leakage magnetic field generation layer 51 is provided above or below the first magnetization fixed region 11 of the magnetization free layer 10.
  • the second leakage magnetic field generation layer 52 is provided above or below the second magnetization fixed region 12 of the magnetization free layer 10.
  • the magnetizations of the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52 are fixed in antiparallel directions. In the example of FIG.
  • the magnetization of the first leakage magnetic field generation layer 51 is fixed in the + z direction
  • the magnetization of the second leakage magnetic field generation layer 52 is fixed in the ⁇ z direction.
  • the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52 cause the magnetizations of the first magnetization fixed region 11 and the second magnetization fixed region 12 of the magnetization free layer 10 to be antiparallel to each other by the leakage magnetic field generated from each. It has a role of fixing and fixing a domain wall formed in the first magnetization free layer 10.
  • a first spacer layer 61 and a second spacer layer 62 are provided in addition to the above.
  • the first spacer layer 61 is provided between the spin current generation layer 20 and the first leakage magnetic field generation layer 51, and the second spacer layer 62 is the spin current generation layer 20 and the second leakage magnetic field generation layer 52. It is provided between.
  • the spacer layers (the first spacer layer 61 and the second spacer layer 62) are made of a conductor.
  • the magnetoresistive effect element 100 is preferably provided with a contact layer made of a conductor for connection to external wiring, but the contact layer is omitted in FIG. Yes. [2. Memory state of magnetoresistive effect element] Next, the memory state of the magnetoresistive effect element 100 according to the first exemplary embodiment of the present invention will be described with reference to FIG.
  • the magnetoresistive effect element 100 includes at least the magnetization free layer 10, the spin current generation layer 20, the tunnel barrier layer 30, the reference layer 40, the leakage magnetic field.
  • a generation layer (a first leakage magnetic field generation layer 51 and a second leakage magnetic field generation layer 52), and the magnetization free layer 10 has a ferromagnetic material at least partially.
  • the magnetization free layer 10 includes a first magnetization fixed region 11 whose magnetization directions are fixed in antiparallel directions, a second magnetization fixed region 12, and a magnetization free region 13 whose magnetization direction is variable. .
  • the magnetization state of the magnetization free layer 10 is associated with stored information.
  • FIG. 2B show the magnetization structures in a state where “0” is stored as memory information and a state where “1” is stored in the magnetoresistive effect element 100 according to the present invention, respectively. It is a schematic diagram shown.
  • the magnetization of the magnetization free region 13 in the magnetization free layer 10 is in the ⁇ z direction.
  • the first magnetization fixed region 11 faces the + z direction
  • the second magnetization fixed region 12 faces the -z direction.
  • a domain wall DW Domain Wall
  • the magnetization of the magnetization free region 13 in the magnetization free layer 10 is in the + z direction.
  • a domain wall (DW) is formed at the boundary between the magnetization free region 13 and the second magnetization fixed region 12. Is formed.
  • the magnetization direction of the magnetization free region 13 of the magnetization free layer 10 corresponds to stored information when viewed as a memory element, in other words, a domain wall.
  • the position of (DW) corresponds to the stored information.
  • the definition of the memory state in the magnetoresistive effect element 100 according to the present invention is not limited to the above, and the magnetization direction and memory of the first magnetization fixed region 11, the second magnetization fixed region 12, and the magnetization free region 13. It is self-evident that state associations are arbitrary. Further, in the magnetoresistive effect element 100 according to the present invention, the magnetization direction (swing direction) of the domain wall (DW), the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52), , Is related to the direction of magnetization. Hereinafter, these will be described with reference to FIGS.
  • FIG. 3 is a schematic diagram showing the turning direction of the domain wall (DW).
  • the turning direction of the domain wall will be described with reference to FIG.
  • the Dzyaloshinskii-Moriya interaction works, the ferromagnetic layer has perpendicular magnetic anisotropy, and a domain wall is formed in it.
  • the turning direction of the magnetization of the domain wall is defined by the Dzyaloshinskii-Moriya interaction.
  • the turning direction of the domain wall changes depending on the sign of the Dzyaloshinskii-Moriya interaction (see Non-Patent Document 4).
  • FIG. 3A shows a right-turning domain wall.
  • FIG. 3B shows a left-turning type domain wall (DW).
  • the magnetization in the domain wall changes counterclockwise from left to right in the order of ⁇ ⁇ ⁇ ⁇ ⁇ or ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ .
  • FIG. 4 shows the magnetization direction of the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) when the magnetization free layer 10 has a right-turning type domain wall (DW). The relationship is shown.
  • the leakage magnetic field generation layers (first leakage magnetic field generation layer 51 and second leakage magnetic field generation layer 52) in the “0” state and “1” state, respectively,
  • the spacer layers (first spacer layer 61 and second spacer layer 62), the spin current generation layer 20, and the magnetization free layer 10 are shown.
  • the leakage magnetic field H from the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52).
  • str Is indicated by a broken line.
  • the leakage magnetic field H from the first leakage magnetic field generation layer 51 having magnetization fixed in the + z direction.
  • 4C and 4D the magnetization of the first leakage magnetic field generation layer 51 is fixed in the ⁇ z direction, and the magnetization of the second leakage magnetic field generation layer 52 is fixed in the + z direction. In this case, the magnetization arrangement and the direction of the leakage magnetic field are shown.
  • the magnetization of the first magnetization fixed region 11 of the magnetization free layer 10 is fixed in the ⁇ z direction
  • the magnetization of the second magnetization fixed region 12 is fixed in the + z direction.
  • the domain wall (DW) that is preferentially formed by the Dzyaloshinskii-Moriya interaction in the magnetization free layer 10 is clockwise
  • the magnetization of the domain wall (DW) faces the ⁇ x direction.
  • the leakage magnetic field H generated from the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52 str
  • the direction at the position of the domain wall (DW) of the x component coincides with the direction of magnetization of the domain wall.
  • the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) is By arranging the magnetic field at the lower side of the magnetization free layer 10, the magnetization of the domain wall and the leakage magnetic field H generated from the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52). str Can be matched with the in-plane component.
  • An embodiment in which the domain wall (DW) formed in the magnetization free layer 10 has a left-turning property will be described later as a first modification.
  • the magnetization in the domain wall (DW) is a thin line. It does not matter what mechanism is fixed in the longitudinal direction ( ⁇ x direction).
  • the present invention can be implemented if the magnetization free layer 10 is designed to have unidirectional anisotropy in the plane. Further, if the line width in the y direction of the magnetization free layer 10 is sufficiently narrower than the domain wall width, the nail domain wall is formed preferentially and stably. In this case, the present invention is implemented. Is possible.
  • the moving mechanism of the domain wall may be whatever, but the case where the domain wall (DW) is driven by the spin Hall effect and the Dzyaloshinskii-Moriya interaction will be described as an example.
  • a current in the x direction is introduced into the spin current generation layer 20
  • a spin current is generated in the z direction due to the spin Hall effect, and electrons polarized in the + y direction or the ⁇ y direction flow into the magnetization free layer 10.
  • Non-Patent Document 4 when conduction electrons in + y or -y direction flow into a domain wall (DW) whose turning direction is defined in the + x direction or the -x direction by the Dzyalloshinskii-Moriya interaction, The domain wall (DW) moves in the same direction as or opposite to the current flowing in the flow generation layer 20.
  • the moving direction of the domain wall (DW) is determined by the sign of the Dzyaloshinskii-Moriya interaction and the sign of the spin Hall effect.
  • each of the “1” write operation and the “0” write operation will be described by taking as an example the case where the domain wall (DW) moves in the current direction.
  • FIG. 5B are schematic diagrams showing an operation method when writing “1” as memory information and writing “0” in the magnetoresistive effect element 100 according to the present invention, respectively. It is.
  • a “1” write current I is generated in the spin current generation layer 20.
  • w1 Is flowed in the + x direction.
  • a spin current is generated in the z direction in the spin current generation layer 20, and electrons polarized in the y direction flow into the magnetization free layer 10.
  • spin transfer torque acts on the domain wall (DW) formed at the boundary between the magnetization free region 13 and the first magnetization fixed region 11.
  • DW domain wall
  • a domain wall (DW) is formed at the boundary between the magnetization free region 13 and the second magnetization fixed region 12. Therefore, the domain wall (DW) moves from the boundary between the magnetization free region 13 and the first magnetization fixed region 11 to the boundary between the magnetization free region 13 and the second magnetization fixed region 12.
  • the domain wall (DW) stops at the boundary between the magnetization free region 13 and the second magnetization fixed region 12 because the magnetization of the second magnetization fixed region 12 is fixed by the leakage magnetic field from the second leakage magnetic field generation layer 52.
  • the direction of the domain wall (DW) after receiving the spin transfer torque can be represented by the torque from the electron spin-polarized in the ⁇ y direction to the domain wall (DW) facing the + x direction.
  • the domain wall (DW) that has received the spin transfer torque faces the -z direction.
  • the adjacent magnetizations are more stable if they are directed in the same direction. Therefore, the magnetization adjacent to the ⁇ z direction due to the spin transfer torque is also directed to the ⁇ z direction.
  • a domain wall (DW) is formed at the boundary between the magnetization free region 13 and the first magnetization fixed region 11.
  • the domain wall (DW) moves from the boundary between the magnetization free region 13 and the second magnetization fixed region 12 to the boundary between the magnetization free region 13 and the first magnetization fixed region 11.
  • the domain wall (DW) stops at the boundary between the magnetization free region 13 and the first magnetization fixed region 11 because the magnetization of the first magnetization fixed region 11 is fixed by the leakage magnetic field from the first leakage magnetic field generation layer 51. Due to As a result, the realized magnetization state is nothing but the “0” state shown in FIG. Thus, “0” write current I w0 Can be rewritten from the “1” state to the “0” state.
  • the stored information can be rewritten between the “0” state and the “1” state.
  • the write current I w1 And I w0 Is written so as to pass through the first leakage magnetic field generation layer 51, the first spacer layer 61, the second spacer layer 62, and the second leakage magnetic field generation layer 52.
  • the path of this write current is It is not limited to this. The writing current may follow any path as long as it passes through the spin current generation layer 20.
  • the magnetoresistive effect element 100 according to the present invention information can be overwritten.
  • a method for reading information from the magnetoresistive effect element 100 according to the first exemplary embodiment of the present invention will be described with reference to FIG.
  • the magnetization direction of the magnetization free region 13 of the magnetization free layer 10 corresponds to stored information stored therein.
  • information is read using the tunnel magnetoresistive effect generated by the relative angle of magnetization between the magnetization free region 13 and the reference layer 40.
  • FIGS 6B are schematic diagrams of operation methods when reading “0” and “1” as memory information in the magnetoresistive effect element 100 according to the present invention, respectively.
  • the read current I R Is introduced so as to penetrate the reference layer 40, the tunnel barrier layer 30, and the magnetization free layer 10.
  • the memory information is discriminated between the “0” state and the “1” state according to the magnitude of the tunnel magnetoresistance due to the tunnel magnetoresistance effect when the current is introduced.
  • the tunnel magnetoresistive effect is obtained when, for example, when a current is introduced into an element composed of the ferromagnetic layer 1 / insulating layer / ferromagnetic layer 2, the magnetization of the ferromagnetic layer 1 and the ferromagnetic layer 2 This is a phenomenon in which the electrical resistance changes depending on the relative angle to magnetization.
  • the tunnel magnetoresistance is minimum, and when the relative angle is 180 °, the tunnel magnetoresistance is maximum.
  • the magnetoresistive effect element according to the present invention In the case of reading “0” shown in FIG.
  • the magnetization direction of the ferromagnetic layer adjacent to the nonmagnetic layer 20 in the reference layer 40 is in the ⁇ z direction, and the magnetization free layer.
  • the magnetization of the magnetization free region 13 out of 10 is also in the ⁇ z direction.
  • the relative angle between the two magnetizations is 0 °. Therefore, when a current is introduced in a direction penetrating the reference layer 40, the tunnel barrier layer 30, and the magnetization free layer 10, a low resistance state is observed due to the tunnel magnetoresistance effect.
  • the magnetization of the ferromagnetic layer adjacent to the tunnel barrier layer 30 in the reference layer 40 is in the ⁇ z direction, and the magnetization is The magnetization of the magnetization free region 13 in the free layer 10 is in the + z direction.
  • the relative angle between the two magnetizations is 180 °. Therefore, when a current is introduced in a direction penetrating the reference layer 40, the tunnel barrier layer 30, and the magnetization free layer 10, a high resistance state is observed due to the tunnel magnetoresistance effect.
  • the resistance in the magnetoresistive effect element 100 changes depending on the relative angle between the magnetization of the magnetization free region 13 and the magnetization of the reference layer 40. The information can be read out. In FIG.
  • the read current I R Includes a leakage magnetic field generation layer (first leakage magnetic field generation layer 51 / second leakage magnetic field generation layer 52), a spacer layer (first spacer layer 61 / second spacer layer 62), a spin current generation layer 20, and a magnetization.
  • first leakage magnetic field generation layer 51 / second leakage magnetic field generation layer 52 the spacer layer (first spacer layer 61 / second spacer layer 62), a spin current generation layer 20, and a magnetization.
  • the route is not limited to this. That is, as long as a current flows in a direction penetrating the reference layer 40, the tunnel barrier layer 30, and the magnetization free region 13 of the magnetization free layer 10, other paths may be used. It is self-evident that there is nothing. [5.
  • the circuit configuration and circuit operation method of the magnetic memory 300 according to the first embodiment of the present invention will be described with reference to FIGS.
  • the circuit configuration described here is an example for forming the magnetic memory 300 by using the magnetoresistive effect element 100 according to the present invention, and the same effect as that of the present invention can be obtained by using other circuit configurations. Can be provided.
  • the magnetic memory 300 according to the present invention includes a plurality of magnetic memory cells 200 arranged in an array, and each magnetic memory cell 200 includes the magnetoresistive effect element 100.
  • FIG. 7 is a schematic diagram showing an example of a circuit configuration of one magnetic memory cell 200 constituting the magnetic memory 300 according to the present invention.
  • the magnetoresistive effect element 100 is connected to the first bit line 102a, the second bit line 102b, the word line 103, and the ground line 104.
  • a terminal connected to the reference layer 40 is connected to the ground line 104.
  • the first magnetization fixed region 11 is connected to the source / drain of the first cell transistor 101a via the first spacer layer 61 and the first leakage magnetic field generation layer 51.
  • the second magnetization fixed region 12 is connected to the source / drain of the second cell transistor 101b via the second spacer layer 62 and the second leakage magnetic field generation layer 52.
  • the gate electrodes of the first cell transistor 101 a and the second cell transistor 101 b are connected to the word line 103.
  • the terminals of the source / drain of the first cell transistor 101a and the second cell transistor 101b opposite to the side connected to the magnetoresistive effect element 100 are the first bit line 102a and the second bit, respectively. It is connected to the bit line 102b.
  • the word line 103 is set to a high level, whereby the first cell transistor 101a and the second cell transistor 101b are turned on.
  • Information can be written to the magnetoresistive effect element 100 by setting either the first bit line 102a or the second bit line 102b to High.
  • the word line 103 is set to a high level, whereby the first cell transistor 101a and the second cell transistor 101b are turned on.
  • FIG. 8 is a schematic diagram showing an example of a circuit block showing the configuration of the magnetic memory 300 according to the present invention.
  • the magnetic memory 300 includes a memory cell array 110, an X driver 120, a Y driver 130, and a controller 140.
  • the memory cell array 110 has a plurality of magnetic memory cells 200 arranged in an array. Each magnetic memory cell 200 is connected to the first bit line 102 a, the second bit line 102 b, the word line 103, and the ground line 104.
  • the X driver 120 is connected to a plurality of word lines 103 and drives a word line 103 connected to the access target magnetic memory cell 200 among the plurality of word lines 103.
  • the Y driver 130 is connected to the plurality of first bit lines 102a and the plurality of second bit lines 102b, and the plurality of first bit lines 102a and the plurality of second bit lines 102b are connected to desired data. Set to write / read state.
  • the controller 140 controls each of the X driver 120 and the Y driver 130 in accordance with data writing or data reading.
  • the ground line 104 connected to the reference layer 30 of the magnetoresistive effect element 100 is connected to the X driver 120, but this may be replaced by a read bit line connected to the Y driver 130. Is possible. [6.
  • the material of the magnetization free layer 10 preferably includes at least one 3d ferromagnetic transition metal element such as Fe, Co, Ni (however, although it does not include the 3d ferromagnetic transition metal element, Mn—Al, Mn—Ga). Are also suitable as the material of the magnetization free layer 10). Further, as described above, the magnetization free layer 10 has perpendicular magnetic anisotropy. This perpendicular magnetic anisotropy may be derived from crystalline magnetic anisotropy or from interfacial magnetic anisotropy.
  • alloy materials such as Fe-Pt, Co-Pt, Fe-Pd, Fe-Ni, Sm-Co, Co-Cr-Pt, Co / Pt, Co / Pd, Co / Alternating films such as Ni and Fe / Au can be used.
  • various materials including Fe, Co, and Ni can be used. Specifically, Fe-Co, Fe-Co-Ni, Co-Ni, etc. are illustrated. Further, elements such as B, C, N, O, F, Si, Al, P, and S may be added thereto. For example, Co—Fe—B is exemplified.
  • the thickness of the magnetization free layer 10 is preferably thin in order to increase the influence of the Dzyaloshinskii-Moriya interaction and efficiently move the domain wall with a small current. Since the lower limit on the low film thickness side is a monoatomic layer, it is about 0.2 nm. Although the upper limit of the film thickness is arbitrary, it is preferably 5 nm or less, more preferably 2 nm or less. In particular, when interfacial magnetic anisotropy is used, the upper limit of the film thickness is set in consideration of the magnitude of interfacial magnetic anisotropy and saturation magnetization.
  • the spin current generation layer 20 is made of a nonmagnetic conductor.
  • the spin current generation layer 20 is composed of an element having a large spin-initiated interaction or a material containing an element having a large spin-initiated interaction.
  • W, Ta, Hf, Re, Os, Ir, Pt, Bi, etc. are illustrated.
  • another element can be added to these elements to control the magnitude and sign of the spin Hall effect and the Dzyaloshinskii-Moriya interaction.
  • elements added for this purpose include B, O, N, C, Al, Si, and P.
  • the lower limit of the film thickness of the spin current generation layer 20 is set as the lower limit of the film thickness at which the spin Hall effect appears.
  • the lower limit of the film thickness at which the spin Hall effect appears is about two atomic layers, and is about 0.2 nm.
  • the upper limit of the film thickness of the spin current generation layer 20 is determined by the spin diffusion length of the material. Although this varies greatly depending on the material, it is about several nanometers in the case of heavy elements such as Ta, W, and Pt. On the other hand, in Cu etc., it is several hundred nm. However, since the write current increases if it is too thick, the film thickness is preferably designed in consideration of the write current.
  • the upper limit of the film thickness of the spin current generation layer 20 is preferably 10 nm, and more preferably 5 nm.
  • the tunnel barrier layer 30 is made of an insulator containing any one of N, O, and C.
  • the film thickness of the tunnel barrier layer 30 is designed so as to obtain desired readout characteristics. Specifically, a film thickness of about 0.5 nm to 2 nm can be used.
  • Various ferromagnetic materials having perpendicular magnetic anisotropy can be used for the reference layer 40. Therefore, it is desirable to contain any element of Fe, Co, and Ni (however, although ferromagnetic material is not included, Mn—Al, Mn—Ga, etc. can be used as the reference layer 40).
  • the reference layer 40 may be a laminate of different ferromagnetic layers and nonmagnetic layers. As described above, in the examples shown so far, the reference layer 40 has a structure in which ferromagnetic / non-magnetic / ferromagnetic materials are stacked, and the magnetizations of the two ferromagnetic layers are antiparallel. It is fixed. Further, a layer adjacent to the tunnel barrier layer 30 in the reference layer 40 is made of a material having a high spin polarization rate so as to obtain a high tunnel magnetoresistive effect ratio, or a high tunnel by combining with the tunnel barrier layer 30.
  • examples of the laminated structure used for the reference layer 40 include a Co—Fe—B / [Co / Pt] laminated film / Ru / [Co / Pt] laminated film in order from the tunnel barrier layer 30 side. .
  • the thickness of the reference layer 40 is arbitrarily designed.
  • the leakage magnetic field generated from the reference layer 40 is desirably small at the height of the magnetization free layer 10. Therefore, it is desirable that the laminated structure of the reference layer 40 is designed so that the leakage magnetic field becomes small at the height of the magnetization free layer 10.
  • various ferromagnetic materials having perpendicular magnetic anisotropy are used for the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52). be able to. Therefore, it is desirable to contain any element of Fe, Co, and Ni (however, although a ferromagnetic material is not included, Mn—Al, Mn—Ga, etc. can be used as a leakage magnetic field generation layer). Since the material specifically used overlaps with the case of the magnetization free layer 10, it is omitted.
  • the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) is preferably made of a material having a large saturation magnetization in order to generate a large leakage magnetic field. Specifically, Fe-Pt, Co / Pt, Co-Fe / Pt, etc. are exemplified.
  • the film thickness of the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) can be arbitrarily designed. For example, the thickness of the leakage magnetic field generation layer is set in a range of 1 nm or more and 30 nm or less.
  • the leakage magnetic field generation layers are the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52, and it is necessary to direct the magnetization in an antiparallel direction. Therefore, the first magnetic field generation layer 51 and the second leakage magnetic field generation layer It is desirable to make the magnetic characteristics of 52 different. This can be realized by changing the material, film configuration, film thickness, manufacturing method, and the like.
  • the spacer layer (the first spacer layer 61 and the second spacer layer 62), any conductive material can be used. Specifically, Ta, W, Au, Ag, Cu, Ti, V, Cr, Al and the like are exemplified.
  • the thickness of the spacer layer is such that the magnitude of the leakage magnetic field from the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) at the position of the magnetization free layer 10 is optimized. Designed to. A suitable film thickness range of the spacer layer will be described later. [7. principle] Next, the principle of the magnetoresistive effect element 100 according to the present invention will be described with reference to the calculation results shown in FIGS. In the magnetization free layer 10, the inventors have defined a domain wall (DW) having a swirl direction defined by a Dzyaloshinskii-Moriya interaction, that is, a domain wall when driven by a spin current from an adjacent spin current generation layer 20.
  • DW domain wall having a swirl direction defined by a Dzyaloshinskii-Moriya interaction
  • the present inventors incorporated a constraint mechanism of two domain walls (DW) into the calculation. They are shown in FIG.
  • the first is a case where a local x-direction magnetic field is present (in the longitudinal direction of the thin line) as shown in FIG.
  • a quadratic function was assumed as the shape of the local x-direction magnetic field.
  • -q x0 To + q x0 In the range, the x-direction magnetic field is given by Equation 1 below.
  • q represents the position of the domain wall (DW) in the x direction
  • (q) 0 was assumed.
  • FIG. 10 shows the calculation results of the time evolution of the collective coordinates q and ⁇ when only the former of the two domain wall (DW) constraint mechanisms described above is present.
  • the broken line, solid line, and dotted line are ⁇ 0 H x0 Represents calculation results in the case of ⁇ 100 mT, 0 mT, and 100 mT.
  • the time evolution of the magnetization angle ⁇ in the domain wall (DW) is H in any case.
  • x0 It can be seen that there is little effect on the time evolution of the domain wall (DW) position q.
  • FIG. 11 shows the threshold current density H that is not necessary for the domain wall (DW) to escape from the restrained position when both of the restraining mechanisms for the two domain walls (DW) described above are present.
  • x0 Dependency, H c0 Dependencies are shown.
  • FIG. 11 is different from FIG. 10 in that the finite threshold current density j c Is present.
  • the threshold current density j c Is H x0 And H c0 The dependency is different. That is, H x0 Is not dependent on H c0 It can be seen that is dependent on linearity.
  • H x0 And H c0 In both cases, it is found that there is a linear dependence on the threshold magnetic field that is not necessary when the magnetic wall (DW) is escaped from the restrained position by a magnetic field. That is, the threshold magnetic field is H x0 Whereas there is a linear dependence on the threshold current density j c Is H x0 Is not dependent on.
  • the leakage magnetic field generated from the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) has an x component as large as possible at the position of the magnetization free layer 10, while z Component (z component of the leakage magnetic field is H c0 It should be small enough.
  • FIG. 12 shows the calculation result of the leakage magnetic field from the leakage magnetic field generation layer performed by the present inventors.
  • the leakage magnetic field generation layer a rectangular parallelepiped having a length in the x direction and the y direction of 100 nm and a film thickness in the z direction of 10 nm was assumed, and the saturation magnetization was assumed to be 1000 emu / cc.
  • the graph shows the result of calculation using the x component and z component of the leakage magnetic field formed at the height of h from the upper surface of the magnetic body as the horizontal axis. It can be seen that a large leakage magnetic field appears in both the x direction and the z direction at the edge portion of the leakage magnetic field generation layer. Where z-direction leakage magnetic field H z Paying attention to the enlarged view of 0 H z It can be seen that when the height h from the leakage magnetic field generation layer is increased, the height decreases rapidly.
  • the distance between the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) and the height direction of the magnetization free layer 10 is 10 nm or more, more preferably 15 nm or more. Is desirable.
  • FIGS. 13A to 13D are cross-sectional views schematically showing the structure of a first modification of the magnetoresistance effect element 100 according to the first exemplary embodiment of the present invention.
  • the first modification is an embodiment in which the domain wall (DW) formed in the magnetization free layer 10 has a left-turning property.
  • the domain wall (DW) formed in the magnetization free layer 10 has a left-turning property, as shown in FIGS.
  • the first magnetization fixed region is in the + z direction
  • the magnetization of the domain wall (DW) faces the ⁇ x direction.
  • the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) on the upper side (+ z side) with respect to the magnetization free layer 10
  • the domain wall ( DW) can be restrained.
  • 13A shows the magnetization arrangement in the “0” state
  • FIG. 13B shows the magnetization arrangement in the “1” state.
  • the leakage magnetic field from the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) has a ⁇ x direction component.
  • FIG. 13C and FIG. 13D show a “0” state and a “1” state when the first magnetization fixed region has magnetization fixed in the + z direction and the second magnetization fixed region in ⁇ z direction. The magnetization arrangement at is shown.
  • the leakage magnetic field from the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) has a + x direction component at the position of the domain wall (DW), and again the domain wall (DW).
  • the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) is provided electrically separated from the magnetization free layer 10. In this way, it may be arranged in any way as long as the leakage magnetic field is applied even if it is not electrically connected. 12, the distance between the upper surface of the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) and the center height of the magnetization free layer 10 is more preferably 10 nm or more. However, the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) as shown in FIG.
  • FIG. 14A and FIG. 14B are cross-sectional views schematically showing the structure of a second modification of the magnetoresistance effect element 100 according to the first exemplary embodiment of the present invention. 14A corresponds to the “0” state, and FIG. 14B corresponds to the “1” state.
  • a first leakage magnetic field generation layer 51, a second leakage magnetic field generation layer 52, a third leakage magnetic field generation layer 53, and a fourth leakage magnetic field generation layer 54 are provided as the leakage magnetic field generation layer. It has been.
  • the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52 are below the magnetization free layer 10 ( ⁇ z side), and the third leakage magnetic field generation layer 53 and the fourth leakage magnetic field generation layer 54 Is provided above the magnetization free layer 10 (+ z side).
  • the first leakage magnetic field generation layer 51 is provided below the first magnetization fixed region 11 and the third leakage magnetic field generation layer 53 is provided above.
  • FIG. 15A and 15B are cross-sectional views schematically showing the structure of a third modification of the magnetoresistance effect element 100 according to the first exemplary embodiment of the present invention.
  • FIG. 15A corresponds to the “0” state
  • FIG. 15B corresponds to the “1” state.
  • the reference layer 40 and the leakage magnetic field generation layer are formed of the same material in the same layer.
  • FIGS. 16A and 16B are cross-sectional views schematically showing the structure of the fourth modification example of the magnetoresistive effect element 100 according to the first exemplary embodiment of the present invention. 16A corresponds to the “0” state, and FIG. 16B corresponds to the “1” state.
  • the fourth modification is a modification in which the technical ideas of both the second modification and the third modification are combined.
  • FIG. 17 is a perspective view schematically showing the structure of the fifth modification example of the magnetoresistance effect element 100 according to the first exemplary embodiment of the present invention.
  • the reference layer 40, the tunnel barrier layer 30, the magnetization free layer 10, and the spin current generation layer 20 are stacked in this order from the substrate side.
  • the reference layer 40 is processed into the same shape as the magnetization free layer 10.
  • FIG. 18A and FIG. 18B are cross-sectional views schematically showing the structure of a sixth modification of the magnetoresistance effect element 100 according to the first exemplary embodiment of the present invention. 18A corresponds to the “0” state, and FIG. 18B corresponds to the “1” state.
  • an in-plane magnetization leakage magnetic field generation layer (first in-plane magnetization leakage magnetic field generation layer 71 and second in-plane magnetization leakage magnetic field generation layer 72) having in-plane magnetic anisotropy is provided.
  • the in-plane magnetization leakage magnetic field generation layer (the first in-plane magnetization leakage magnetic field generation layer 71 and the second in-plane magnetization leakage magnetic field generation layer 72) increases the leakage magnetic field in the ⁇ x direction at the position of the domain wall (DW). Provided.
  • DW domain wall
  • the magnetization of the first magnetization fixed region 11 and the first leakage magnetic field generation layer 51 is upward (+ z direction), and the magnetization of the second magnetization fixed region 12 and the second leakage magnetic field generation layer 52 is downward ( ⁇ z). Direction).
  • the case where the domain wall (DW) is right-turning is shown.
  • the magnetization directions of the first in-plane magnetization leakage magnetic field generation layer 71 and the second in-plane magnetization leakage magnetic field generation layer 72 at this time are fixed in the ⁇ x direction in FIG.
  • the position of the domain wall (DW) is such that the magnetization is fixed in the + x direction according to the position where the first in-plane magnetization leakage magnetic field generation layer 71 and the second in-plane magnetization leakage magnetic field generation layer 72 are provided.
  • the magnitude of the leakage magnetic field in the x direction at can be increased.
  • the in-plane magnetization leakage magnetic field generation layer includes the spin current generation layer 20 and the spacer layer (first spacer).
  • the in-plane magnetization leakage magnetic field generation layer (first in-plane magnetization leakage magnetic field generation layer 71, second in-plane magnetization leakage magnetic field generation layer) is formed between the layer 61 and the second spacer layer 62).
  • the position where 72) is provided is not limited to this. For example, it may be between the leakage magnetic field generation layer (first leakage magnetic field generation layer 51 / second leakage magnetic field generation layer 52) and the spacer layer (first spacer layer 61 / second spacer layer 62), or the leakage magnetic field. It may be below the generation layers (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) or may be above the magnetization free layer 10. [14. Seventh Modification] FIG. 19A and FIG.
  • FIG. 19B are cross-sectional views schematically showing the structure of the seventh modification example of the magnetoresistance effect element 100 according to the first exemplary embodiment of the present invention.
  • FIG. 19A corresponds to the “0” state
  • FIG. 19B corresponds to the “1” state.
  • the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) is formed to have a taper.
  • the leakage magnetic field generation layer the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52
  • the x direction at the position of the domain wall (DW). It is possible to adjust the magnitude of the leakage magnetic field in the z direction.
  • FIG. 19A corresponds to the “0” state
  • FIG. 19B corresponds to the “1” state.
  • the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) is formed to have a taper.
  • the leakage magnetic field generation layer (the first leakage
  • the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) is processed into a trapezoidal shape having a lower bottom than the upper bottom.
  • the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) is disposed on the upper side of the magnetization free layer 10.
  • Examples of the method of processing the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) so as to have a taper include adjustment of the shape of the hard mask, etching gas, etching conditions, and the like.
  • [15. Eighth Modification] 20 (a) and 20 (b) are cross-sectional views schematically showing the structure of an eighth modification of the magnetoresistance effect element 100 according to the first exemplary embodiment of the present invention.
  • the reference layer 40 and the magnetization free layer 10 are formed in the same shape.
  • the reference layer 40 only needs to overlap the magnetization free region 13 in the magnetization free layer 10 in the xy plane, and the shape thereof may be any.
  • the reference layer 40 also generates a leakage magnetic field, and the magnetic field is also applied to the magnetization free layer 10. However, the reference layer 40 is magnetized by forming the reference layer 40 with a larger area than the magnetization free region 13 as in the eighth modification. The magnitude of the leakage magnetic field applied to the free region 13 can be reduced.
  • the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) has a ferromagnetic material having perpendicular magnetic anisotropy at least partially. .
  • the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) is made of a ferromagnetic material having in-plane magnetic anisotropy at least partially. It is characterized by having.
  • FIGS. 21A and 21B show a state in which “0” is stored as memory information in the magnetoresistive effect element 100 according to the second embodiment of the present invention, and “1” is stored, respectively. It is a schematic diagram which shows the magnetized structure in the state.
  • the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52 have magnetization fixed in the in-plane direction, and they are directed in the ⁇ x direction.
  • the first embodiment The domain wall can be driven in the direction of current or electrons by the spin Hall effect described above, and the moving direction is determined by the sign of the spin hole angle.
  • the information writing method, reading method, circuit configuration, and the like in the second embodiment are the same as those in the first embodiment, and a description thereof will be omitted.
  • a magnetic field is applied in the in-plane direction from the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) even if the Dzyaloshinskii-Moriya interaction does not work. Therefore, the domain wall can be moved by the spin Hall effect.
  • the magnetizations of the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52 may be fixed in parallel directions. This is preferable to the first embodiment from the viewpoint of ease of manufacture.
  • the materials that can be used for each layer in the second embodiment are the same as those in the first embodiment except for the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52). Description is omitted.
  • a ferromagnetic material having in-plane magnetic anisotropy can be used for the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52). Specifically, Fe, Co, Ni, Fe—Co, Fe—Co—Ni and the like are exemplified.
  • FIG. 22A and FIG. 72B schematically show the structure of the first modification of the magnetoresistive element 100 according to the second exemplary embodiment of the present invention, respectively.
  • FIGS. 22A and 22B are schematic diagrams of a magnetization structure in a state where “0” is stored as memory information and a state where “1” is stored, respectively.
  • the leakage magnetic field generation layers are provided electrically separated from the magnetization free layer 10. Even when the leakage magnetic field generation layer (the third leakage magnetic field generation layer 53 and the fourth leakage magnetic field generation layer 54) is provided electrically separated from the magnetization free layer 10, it is sufficient for the magnetization free layer 10. As long as a leakage magnetic field having a magnitude is applied, the position of the leakage magnetic field generation layer (the third leakage magnetic field generation layer 53 and the fourth leakage magnetic field generation layer 54) may be arbitrary.
  • a first plug layer 81 and a second plug layer 82 are provided adjacent to both ends of the spin current generation layer 20 as layers for introducing a write current.
  • the first plug layer 81 and the second plug layer 82 are electrically connected to the write cell transistor.
  • the magnetoresistive element 100 and the magnetic memory 300 according to the present invention are provided not only in a large-scale memory array of megabit and gigabit classes, but also in a logic area of a cache memory or system LSI that operates at a high speed of kilobits or megabits class.
  • the present invention can also be applied to a single-bit or several-bit temporary storage element such as a register, or a storage element in a logic-in-memory architecture.
  • Industrial applicability of the present invention includes a non-volatile semiconductor memory device used in mobile devices such as mobile phones and personal computers, and a memory portion in a microcomputer incorporating a non-volatile memory used in automobiles and game machines, And temporary storage elements such as a cache memory and a register connected to the logic portion.
  • This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2013-229971 for which it applied on November 6, 2013, and takes in those the indications of all here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

This magnetic memory is provided with a magnetoresistive effect element. This magnetoresistive effect element is provided with: a magnetization free layer that is configured of a ferromagnetic body having a perpendicular magnetic anisotropy; a spin current generation layer that is arranged adjacent to the magnetization free layer; a tunnel barrier layer that is arranged adjacent to the magnetization free layer on the side opposite to the side of the spin current generation layer; a reference layer that is arranged adjacent to the tunnel barrier layer on the side opposite to the side of the magnetization free layer; and a first leakage magnetic field generation layer and a second leakage magnetic field generation layer, which are configured of a ferromagnetic body. A magnetic wall having a magnetization component in the longitudinal direction of the magnetization free layer is formed of the in-plane component of the leakage magnetic field in the position of the magnetization free layer, said leakage magnetic field being generated by the first leakage magnetic field generation layer and the second leakage magnetic field generation layer.

Description

磁気抵抗効果素子、磁気メモリ、及び磁気記憶方法Magnetoresistive element, magnetic memory, and magnetic storage method
 本発明は、磁気抵抗効果素子、その磁気抵抗効果素子を利用した磁気メモリ(Magnetic Random Access Memory)、及び磁気記憶方法に関する。 The present invention relates to a magnetoresistive effect element, a magnetic memory (Magnetic Random Access Memory) using the magnetoresistive effect element, and a magnetic storage method.
 磁気メモリ、または、磁気ランダムアクセスメモリ(Magnetic Random Access Memory)、磁気抵抗ランダムアクセスメモリ(Magnetoresistive Random Access Memory)は、書き換えの回数制限がない不揮発性メモリであり、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、NOR−Flash等の代替として期待されている。SRAM、DRAMなどを磁気メモリで置き換えた場合、磁気メモリは情報を不揮発に保存するため消費電力の低減が可能となる。
 非特許文献1には、磁気メモリの中でも3端子型のセル構造を有する3端子型磁気メモリは、高速動作に適した回路構成を有しており、現行のSRAMと同等レベルの高速動作が可能であると記載されている。
 非特許文献2には、3端子型磁気メモリの中でも、電流誘起磁壁移動を利用した3端子磁壁移動型磁気メモリは、書き込み電流や書き込み速度が素子寸法の微細化に対して低減するため、先端LSI世代への適用に好適であると記載されている。
 非特許文献3には、電流誘起磁壁移動による書き込みを行う層に、垂直磁気異方性を有する材料を適用することによって、書き込み電流が小さく、かつ、熱安定性に優れた磁気メモリが提供されることが記載されている。
 3端子磁壁移動型磁気メモリにおいては、磁壁を電流で駆動するために必要な電流は小さく、磁壁の移動速度は高速であることが望ましい。
 非特許文献4と、非特許文献5と、非特許文献6とには、Dzyalloshinskii−Moriya(ジャロシンスキー−モリヤ)相互作用によって、旋回性の規定された磁壁(DW)に隣接する層から、スピンホール効果によってスピン流が流入した場合には、磁壁は低電流で高速に移動できることが実験的、理論的に示されている。
A magnetic memory, a magnetic random access memory (Magnetic Random Access Memory), or a magnetoresistive random access memory (Magnetic Resistive Random Access Memory) is a non-volatile memory with no limit on the number of rewrites, and a static random access memory (SRAM) (Static Random Access Memory). (Dynamic Random Access Memory) and NOR-Flash are expected as alternatives. When SRAM, DRAM, or the like is replaced with a magnetic memory, the magnetic memory stores information in a nonvolatile manner, so that power consumption can be reduced.
Non-Patent Document 1 discloses that, among magnetic memories, a three-terminal magnetic memory having a three-terminal cell structure has a circuit configuration suitable for high-speed operation and can operate at a high speed equivalent to that of current SRAM. It is described that it is.
Non-Patent Document 2 discloses that among three-terminal magnetic memories, a three-terminal domain wall motion type magnetic memory using current-induced domain wall motion reduces the writing current and the writing speed with respect to miniaturization of the element size. It is described as being suitable for application to the LSI generation.
Non-Patent Document 3 provides a magnetic memory having a small write current and excellent thermal stability by applying a material having perpendicular magnetic anisotropy to a layer to be written by current-induced domain wall motion. It is described that.
In the three-terminal domain wall motion type magnetic memory, it is desirable that the current required to drive the domain wall with current is small and the domain wall moving speed is high.
In Non-Patent Document 4, Non-Patent Document 5, and Non-Patent Document 6, from the layer adjacent to the domain wall (DW) in which the swirlability is defined by the Dzyaloshinskii-Moriya (Jaroshinsky-Moriya) interaction, It has been experimentally and theoretically shown that when a spin current flows due to the spin Hall effect, the domain wall can move at a high speed with a low current.
 電流誘起磁壁移動を利用した3端子磁壁移動型磁気メモリを実用化するためには十分な不揮発性、例えば、10年間情報が安定して保持されることが必要となる。このためには非動作時において、磁壁は、拘束機構によって拘束され、その拘束機構は熱や外乱磁場などの擾乱にも十分に打ち勝てるような強さを有していることが必要となる。一方で、磁壁を電流で駆動する際には、小さな電流で拘束機構から脱出できることが望ましい。これまでの研究では、十分なデータ保持特性を維持しながら、小さな電流で駆動できるような方式については調べられていなかった。 In order to put the three-terminal domain wall motion type magnetic memory using current-induced domain wall motion into practical use, it is necessary to have sufficient non-volatility, for example, to stably hold information for 10 years. For this purpose, the domain wall is restrained by a restraining mechanism during non-operation, and the restraining mechanism needs to have a strength that can sufficiently overcome disturbances such as heat and a disturbance magnetic field. On the other hand, when driving the domain wall with an electric current, it is desirable to be able to escape from the restraining mechanism with a small electric current. In previous studies, a method that can be driven with a small current while maintaining sufficient data retention characteristics has not been investigated.
 本発明に係る磁気メモリは磁気抵抗効果素子を具備する。その磁気抵抗効果素子は垂直磁気異方性を有する強磁性体から構成される磁化自由層と、上記磁化自由層に隣接して設けられるスピン流生成層と、上記磁化自由層に隣接して上記スピン流生成層とは反対側に設けられるトンネルバリア層と、上記トンネルバリア層に隣接して上記磁化自由層とは反対側に設けられるリファレンス層と、強磁性体から構成される第1漏洩磁場生成層と第2漏洩磁場生成層を具備し、上記第1漏洩磁場生成層と上記第2漏洩磁場生成層から生ずる漏洩磁場の上記磁化自由層の位置における面内成分によって上記磁化自由層の長手方向に磁化成分を有する磁壁が形成される。 The magnetic memory according to the present invention includes a magnetoresistive element. The magnetoresistive element includes a magnetization free layer composed of a ferromagnetic material having perpendicular magnetic anisotropy, a spin current generation layer provided adjacent to the magnetization free layer, and the magnetization adjacent layer to the magnetization free layer. A tunnel barrier layer provided on the side opposite to the spin current generation layer, a reference layer provided on the side opposite to the magnetization free layer adjacent to the tunnel barrier layer, and a first leakage magnetic field composed of a ferromagnetic material A generation layer and a second leakage magnetic field generation layer, and the longitudinal direction of the magnetization free layer is determined by an in-plane component of the leakage magnetic field generated from the first leakage magnetic field generation layer and the second leakage magnetic field generation layer at the position of the magnetization free layer. A domain wall having a magnetization component in the direction is formed.
 本発明によれば、Dzyalloshinskii−Moriya相互作用と、スピンホール効果によって駆動される磁壁移動を利用した磁気メモリにおいて、データ保持特性と書き込み電流を独立に設計することができ、高いデータ保持特性と、小さな書き込み電流を両立することができる。 According to the present invention, in the magnetic memory using the Dzyalloshinskii-Moriya interaction and the domain wall motion driven by the spin Hall effect, the data retention characteristic and the write current can be designed independently, and the high data retention characteristic, A small write current can be achieved.
 図1は、本発明の第1の実施の形態に係る磁気抵抗素子を説明するための図である。(a)は、本発明の第1の実施の形態に係る磁気抵抗効果素子の一例を示す模式図であり、(b)は、本発明の第1の実施の形態に係る磁気抵抗効果素子の磁化自由層の構造を示す模式図である。
 図2は、本発明の第1の実施の形態に係る磁気抵抗素子の磁化構造を説明するための図である。(a)は、本発明の第1の実施の形態に係る磁気抵抗効果素子に、「0」が格納された状態の磁化構造を示す模式図であり、(b)は、本発明の第1の実施の形態に係る磁気抵抗効果素子に、「1」が格納された状態の磁化構造を示す模式図である。
 図3は、本発明の第1の実施の形態に係る磁気抵抗素子に形成される磁壁を説明するための図である。(a)は、本発明の第1の実施の形態に係る磁気抵抗効果素子の右旋回性磁壁の模式図であり、(b)は、本発明の第1の実施の形態に係る磁気抵抗効果素子の左旋回性磁壁の模式図である。
 図4は、本発明の第1の実施の形態に係る磁気抵抗素子に形成される磁壁と、漏洩磁場との関係を説明するための図である。(a)は、本発明の第1の実施の形態に係る磁気抵抗効果素子の「0」状態における磁壁の旋回方向と、漏洩磁場生成層からの漏洩磁場の関係を示す模式図である。(b)は、本発明の第1の実施の形態に係る磁気抵抗効果素子の「1」状態における磁壁の旋回方向と、漏洩磁場生成層からの漏洩磁場の関係を示す模式図である。(c)は、本発明の第1の実施の形態に係る磁気抵抗効果素子の「0」状態における磁壁の旋回方向と、漏洩磁場生成層からの漏洩磁場の関係を示す模式図である。(d)は、本発明の第1の実施の形態に係る磁気抵抗効果素子の「1」状態における磁壁の旋回方向と、漏洩磁場生成層からの漏洩磁場の関係を示す模式図である。
 図5は、本発明の第1の実施の形態に係る磁気抵抗素子への書き込み動作を説明するための図である。(a)は、本発明の第1の実施の形態に係る磁気抵抗効果素子に「1」を書き込む時の動作方法を示した模式図であり、(b)は、本発明の第1の実施の形態に係る磁気抵抗効果素子に「0」を書き込む時の動作方法を示した模式図である。
 図6は、本発明の第1の実施の形態に係る磁気抵抗素子からの読み出し動作を説明するための図である。(a)は、本発明の第1の実施の形態に係る磁気抵抗効果素子から「0」状態の情報の読み出し方法を示した模式図であり、(b)は、本発明の第1の実施の形態に係る磁気抵抗効果素子から「1」状態の情報の読み出し方法を表した模式図である。
 図7は、本発明に係る磁気メモリセルのセル回路図である。
 図8は、本発明に係る磁気メモリの回路ブロック図である。
 図9は、数値計算に用いるパラメータを説明するための図である。(a)は、数値計算に用いた局所的なx方向の漏洩磁場の分布を示す模式図であり、(b)は、数値計算に用いた磁壁が感じる局所的なピンポテンシャルの形状を示す模式図である。
 図10は、局所的なx方向の漏洩磁場に由来した拘束場所から脱出する際の磁壁位置qと、磁壁内磁化角度Фの時間発展の計算結果である。
 図11は、局所的なx方向の磁場と、局所的なエネルギーポテンシャルによって拘束された磁壁が、拘束位置から脱出するのに必要な電流密度のx方向磁場依存性、及びピンポテンシャル深さ依存性の計算結果である。
 図12は、漏洩磁場生成層からの漏洩磁場の計算結果である。
 図13は、本発明の第1の実施の形態に係る第1変形例の磁気抵抗素子の磁化の状態を説明するための図である。(a)は、本発明の第1の実施の形態に係る第1変形例の磁気抵抗効果素子の「0」状態を示す模式図である。(b)は、本発明の第1の実施の形態に係る第1変形例の磁気抵抗効果素子の「1」状態を示す模式図である。(c)は、本発明の第1の実施の形態に係る第1変形例の磁気抵抗素子の「0」状態を示す模式図である。(d)は、本発明の第1の実施の形態に係る第1変形例の磁気抵抗素子の「1」状態を示す模式図である。
 図14は、本発明の第1の実施の形態に係る第2変形例の磁気抵抗素子の磁化の状態を説明するための図である。(a)は、本発明の第1の実施の形態に係る第2変形例の磁気抵抗効果素子の「0」状態を示す模式図であり、(b)は、本発明の第1の実施の形態に係る第2変形例の磁気抵抗効果素子の「1」状態を示す模式図である。
 図15は、本発明の第1の実施の形態に係る第3変形例の磁気抵抗素子の磁化の状態を説明するための図である。(a)は、本発明の第1の実施の形態に係る第3変形例の磁気抵抗効果素子の「0」状態を示す模式図であり、(b)は、本発明の第1の実施の形態に係る第3変形例の磁気抵抗効果素子の「1」状態を示す模式図である。
 図16は、本発明の第1の実施の形態に係る第4変形例の磁気抵抗素子の磁化の状態を説明するための図である。(a)は、本発明の第1の実施の形態に係る第4変形例の磁気抵抗効果素子の「0」状態を示す模式図であり、(b)は、本発明の第1の実施の形態に係る第4変形例の磁気抵抗効果素子の「1」状態を示す模式図である。
 図17は、本発明に第1の実施の形態に係る第5変形例の磁気抵抗素子の一例を示す模式図である。
 図18は、本発明の第1の実施の形態に係る第6変形例の磁気抵抗素子の磁化の状態を説明するための図である。(a)は、本発明の第1の実施の形態に係る第6変形例の磁気抵抗効果素子の「0」状態を示す模式図であり、(b)は、本発明の第1の実施の形態に係る第6変形例の磁気抵抗効果素子の「1」状態を示す模式図である。
 図19は、本発明の第1の実施の形態に係る第7変形例の磁気抵抗素子の磁化の状態を説明するための図である。(a)は、本発明の第1の実施の形態に係る第7変形例の磁気抵抗効果素子の「0」状態を示す模式図であり、(b)は、本発明の第1の実施の形態に係る第7変形例の磁気抵抗効果素子の「1」状態を示す模式図である。
 図20は、本発明の第1の実施の形態に係る第8変形例の磁気抵抗素子の磁化の状態を説明するための図である。(a)は、本発明の第1の実施の形態に係る第8変形例の磁気抵抗効果素子の「0」状態を示す模式図であり、(b)は、本発明の第1の実施の形態に係る第7変形例の磁気抵抗効果素子の「1」状態を示す模式図である。
 図21は、本発明の第2の実施の形態に係る磁気抵抗素子の磁化の状態を説明するための図である。(a)は、本発明の第2の実施の形態に係る磁気抵抗効果素子の「0」状態を示す模式図であり、(b)は、本発明の第2の実施形態に係る磁気抵抗効果素子の「1」状態を示す模式図である。
 図22は、本発明の第2の実施の形態に係る第1変形例の磁気抵抗素子の磁化の状態を説明するための図である。(a)は、本発明の第2の実施の形態に係る第1変形例の磁気抵抗効果素子の「0」状態を示す模式図であり、(b)は、本発明の第2の実施形態に係る第1変形例の磁気抵抗効果素子の「1」状態を示す模式図である。
FIG. 1 is a diagram for explaining a magnetoresistive element according to a first embodiment of the present invention. (A) is a schematic diagram which shows an example of the magnetoresistive effect element which concerns on the 1st Embodiment of this invention, (b) is a magnetoresistive effect element which concerns on the 1st Embodiment of this invention. It is a schematic diagram which shows the structure of a magnetization free layer.
FIG. 2 is a diagram for explaining the magnetization structure of the magnetoresistive element according to the first embodiment of the invention. (A) is a schematic diagram which shows the magnetization structure of the state in which "0" was stored in the magnetoresistive effect element based on the 1st Embodiment of this invention, (b) is 1st of this invention. It is a schematic diagram which shows the magnetization structure in the state where "1" was stored in the magnetoresistive effect element based on this embodiment.
FIG. 3 is a diagram for explaining a domain wall formed in the magnetoresistive element according to the first embodiment of the present invention. (A) is a schematic diagram of the right-turning domain wall of the magnetoresistive effect element according to the first embodiment of the present invention, and (b) is a magnetoresistive according to the first embodiment of the present invention. It is a schematic diagram of the left turning domain wall of an effect element.
FIG. 4 is a diagram for explaining the relationship between the domain wall formed in the magnetoresistive element according to the first embodiment of the present invention and the leakage magnetic field. (A) is a schematic diagram which shows the relationship between the turning direction of the domain wall in the "0" state of the magnetoresistive effect element based on the 1st Embodiment of this invention, and the leakage magnetic field from a leakage magnetic field production | generation layer. (B) is a schematic diagram showing the relationship between the turning direction of the domain wall in the “1” state of the magnetoresistive effect element according to the first embodiment of the present invention and the leakage magnetic field from the leakage magnetic field generation layer. (C) is a schematic diagram showing the relationship between the turning direction of the domain wall in the “0” state of the magnetoresistive effect element according to the first embodiment of the present invention and the leakage magnetic field from the leakage magnetic field generation layer. (D) is a schematic diagram showing the relationship between the turning direction of the domain wall in the “1” state of the magnetoresistive effect element according to the first embodiment of the present invention and the leakage magnetic field from the leakage magnetic field generation layer.
FIG. 5 is a diagram for explaining a write operation to the magnetoresistive element according to the first embodiment of the present invention. (A) is the schematic diagram which showed the operation | movement method at the time of writing "1" in the magnetoresistive effect element based on the 1st Embodiment of this invention, (b) is 1st implementation of this invention It is the schematic diagram which showed the operation | movement method at the time of writing "0" in the magnetoresistive effect element based on this form.
FIG. 6 is a diagram for explaining a read operation from the magnetoresistive element according to the first embodiment of the present invention. (A) is the schematic diagram which showed the reading method of the information of "0" state from the magnetoresistive effect element based on the 1st Embodiment of this invention, (b) is 1st implementation of this invention It is the schematic diagram showing the reading method of the information of a "1" state from the magnetoresistive effect element which concerns on a form.
FIG. 7 is a cell circuit diagram of a magnetic memory cell according to the present invention.
FIG. 8 is a circuit block diagram of a magnetic memory according to the present invention.
FIG. 9 is a diagram for explaining parameters used for numerical calculation. (A) is a schematic diagram showing the local distribution of the leakage magnetic field in the x direction used for the numerical calculation, and (b) is a schematic diagram showing the shape of the local pin potential sensed by the domain wall used for the numerical calculation. FIG.
FIG. 10 is a calculation result of time evolution of the domain wall position q and the domain wall magnetization angle Ф when escaped from the constrained place derived from the local x-direction leakage magnetic field.
FIG. 11 shows the local x-direction magnetic field and the dependence of the current density necessary for the domain wall constrained by the local energy potential to escape from the constrained position on the x-direction magnetic field and the pin potential depth. Is the calculation result of
FIG. 12 shows the calculation result of the leakage magnetic field from the leakage magnetic field generation layer.
FIG. 13 is a diagram for explaining the magnetization state of the magnetoresistive element of the first modified example according to the first embodiment of the invention. (A) is a schematic diagram which shows the "0" state of the magnetoresistive effect element of the 1st modification which concerns on the 1st Embodiment of this invention. (B) is a schematic diagram showing a “1” state of the magnetoresistive effect element of the first modified example according to the first exemplary embodiment of the present invention. (C) is a schematic diagram which shows the "0" state of the magnetoresistive element of the 1st modification which concerns on the 1st Embodiment of this invention. (D) is a schematic diagram which shows the "1" state of the magnetoresistive element of the 1st modification which concerns on the 1st Embodiment of this invention.
FIG. 14 is a diagram for explaining the magnetization state of the magnetoresistive element of the second modified example according to the first embodiment of the invention. (A) is a schematic diagram which shows the "0" state of the magnetoresistive effect element of the 2nd modification which concerns on the 1st Embodiment of this invention, (b) is 1st Embodiment of this invention It is a schematic diagram which shows the "1" state of the magnetoresistive effect element of the 2nd modification which concerns on a form.
FIG. 15 is a diagram for explaining the magnetization state of the magnetoresistive element of the third modified example according to the first embodiment of the invention. (A) is a schematic diagram which shows the "0" state of the magnetoresistive effect element of the 3rd modification based on the 1st Embodiment of this invention, (b) is 1st Embodiment of this invention It is a schematic diagram which shows the "1" state of the magnetoresistive effect element of the 3rd modification which concerns on a form.
FIG. 16 is a diagram for explaining the magnetization state of the magnetoresistive element of the fourth modification example according to the first embodiment of the invention. (A) is a schematic diagram which shows the "0" state of the magnetoresistive effect element of the 4th modification based on the 1st Embodiment of this invention, (b) is 1st Embodiment of this invention It is a schematic diagram which shows the "1" state of the magnetoresistive effect element of the 4th modification which concerns on a form.
FIG. 17 is a schematic diagram showing an example of a magnetoresistive element of a fifth modified example according to the first embodiment of the present invention.
FIG. 18 is a diagram for explaining the magnetization state of the magnetoresistive element of the sixth modified example according to the first embodiment of the invention. (A) is a schematic diagram which shows the "0" state of the magnetoresistive effect element of the 6th modification based on the 1st Embodiment of this invention, (b) is 1st Embodiment of this invention It is a schematic diagram which shows the "1" state of the magnetoresistive effect element of the 6th modification which concerns on a form.
FIG. 19 is a diagram for explaining the magnetization state of the magnetoresistive element of the seventh modified example according to the first embodiment of the invention. (A) is a schematic diagram which shows the "0" state of the magnetoresistive effect element of the 7th modification based on the 1st Embodiment of this invention, (b) is 1st Embodiment of this invention It is a schematic diagram which shows the "1" state of the magnetoresistive effect element of the 7th modification which concerns on a form.
FIG. 20 is a diagram for explaining the magnetization state of the magnetoresistive element according to the eighth modified example of the first embodiment of the invention. (A) is a schematic diagram which shows the "0" state of the magnetoresistive effect element of the 8th modification based on the 1st Embodiment of this invention, (b) is 1st Embodiment of this invention It is a schematic diagram which shows the "1" state of the magnetoresistive effect element of the 7th modification which concerns on a form.
FIG. 21 is a diagram for explaining the magnetization state of the magnetoresistive element according to the second embodiment of the invention. (A) is a schematic diagram which shows the "0" state of the magnetoresistive effect element which concerns on the 2nd Embodiment of this invention, (b) is the magnetoresistive effect which concerns on the 2nd Embodiment of this invention. It is a schematic diagram showing a “1” state of the element.
FIG. 22 is a diagram for explaining the state of magnetization of the magnetoresistive element of the first modification example according to the second embodiment of the invention. (A) is a schematic diagram which shows the "0" state of the magnetoresistive effect element of the 1st modification concerning the 2nd Embodiment of this invention, (b) is the 2nd Embodiment of this invention. It is a schematic diagram which shows the "1" state of the magnetoresistive effect element of the 1st modification concerning this.
 以下、添付図面を参照して本発明に係る磁気抵抗効果素子100、及び磁気メモリ300を実施するための形態に関して説明する。本発明に係る磁気メモリ300は、アレイ状に配置された複数の磁気メモリセル200を有しており、各磁気メモリセル200は、磁気抵抗効果素子100を有している。
[1.磁気抵抗効果素子の構造]
 図1(a)は、本発明の第1の実施の形態に係る磁気抵抗効果素子100の構造の一例を示す模式図である。なお、図に示されているx−y−z座標系において、z軸は基板垂直方向であり、x−y軸は基板平面に平行であるものとする。このx−y−z座標系の定義は、以下の図においても共通である。
 本発明の第1の実施の形態に係る磁気抵抗効果素子100は、少なくとも磁化自由層10と、スピン流生成層20と、トンネルバリア層30と、リファレンス層40と、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)と、を具備する。また、図1(a)を参照すると、更に、スペーサー層(第1スペーサー層61・第2スペーサー層62)が設けられる例が図示されている。
 磁化自由層10と、リファレンス層40と、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)は、少なくとも一部分に強磁性体を有する。図1(a)では、磁化自由層10と、リファレンス層40と、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)と、を構成する強磁性体の磁化方向を矢印で示している。また、図1(b)は、磁化自由層10の構造をz軸から見た平面図であり、図1(a)と同様に、磁化方向を矢印で示している。
 磁化自由層10は、垂直磁気異方性を有する強磁性体から構成される。垂直磁気異方性は、結晶が有する結晶磁気異方性に由来していてもよいし、界面との相互作用により生ずる界面磁気異方性に由来していてもよい。
 また、磁化自由層10は、図1(b)の平面図で示されているように、第1磁化固定領域11と、第2磁化固定領域12と、磁化自由領域13と、を有している。なお、図1では磁化自由層10は、x軸方向に延伸して形成され、磁化自由領域13は第1磁化固定領域11と第2磁化固定領域12に挟まれて設けられている。しかしながら、本発明における第1磁化固定領域11と、第2磁化固定領域12と、磁化自由領域13と、の位置関係はこれに限定されるものではない。
 本発明の第1の実施の形態においては、第1磁化固定領域11と、第2磁化固定領域12とは、z蚰方向に固定された磁化を有しており、かつ、それらは互いに反平行方向に固定されている。図1の例では、第1磁化固定領域11の磁化は+z方向に固定されており、第2磁化固定領域12の磁化は−z方向に固定されている。磁化自由領域13の磁化は、+z方向、または、−z方向のいずれかを向くことができる。
 磁化自由層10内の磁化が、図1に示すような磁化配置にあるとき磁化自由層10内には単一の磁壁が形成される。その磁壁は、磁化自由領域13の磁化方向に応じて、第1磁化固定領域11と磁化自由領域13の境界、あるいは第2磁化固定領域12と磁化自由領域13の境界のいずれかに形成される。
 スピン流生成層20は、非磁性の導電体から構成される。スピン流生成層20は、スピン軌道相互作用の大きな元素から形成されるか、あるいは、スピン起動相互作用の大きな元素を含有していることが望ましい。スピン流生成層20は、磁化自由層10に隣接して設けられる。図1の例では、スピン流生成層20は、磁化自由層10の−z側の面の全面を覆うように形成されている。しかしながら、より一般的にスピン流生成層20は、磁化自由層10のうちの磁化自由領域13に隣接していればよく、必ずしも片側の一面において全面で隣接している必要はない。
 トンネルバリア層30は、非磁性体から構成される。また、トンネルバリア層30は、スピン流生成層20とは反対側の面に磁化自由層10に隣接して設けられる。好適には、トンネルバリア層30は、磁化自由層10の一方の面の全体を覆うようにして形成される。図1の例では、トンネルバリア層30は、磁化自由層10の+z側の面の全面を覆うようにして形成されている。
 リファレンス層40は、トンネルバリア層30の磁化自由層10とは反対側の面にトンネルバリア層30に隣接して設けられる。リファレンス層40は、垂直磁気異方性を有し、磁化方向の固定された強磁性体を有する。図1(a)においては、リファレンス層40は、強磁性体/非磁性体/強磁性体からなる積層体により構成される例が示されている。また、図1(a)の例においては、二つの強磁性体は、その間に挟まれた非磁性体により反強磁性的に結合した例が示されている。また、リファレンス層40は、x−y平面において、少なくとも磁化自由層10のうちの磁化自由領域13にオーバーラップするようにして設けられる。図1(a)に示された例では、リファレンス層40は、磁化自由領域13の直上に配置され、x−y平面において、磁化自由領域13に収まるようにして設けられている。但し、実際にはリファレンス層40は、磁化自由領域13に対してx−y平面において少なくとも一部分でオーバーラップしていればよく、その大きさも磁化自由領域13よりも大きく形成されても構わない。
 本発明の第1の実施の形態においては、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)は、少なくとも一部分に垂直磁気異方性を有する強磁性体を有する。また、第1漏洩磁場生成層51は、磁化自由層10の第1磁化固定領域11の上部、または下部に設けられる。第2漏洩磁場生成層52は、磁化自由層10の第2磁化固定領域12の上部、または下部に設けられる。
 また、第1漏洩磁場生成層51と、第2漏洩磁場生成層52との磁化は、互いに反平行方向に固定されている。図1(a)の例では、第1漏洩磁場生成層51の磁化は+z方向に固定されており、第2漏洩磁場生成層52の磁化は−z方向に固定されている。
 第1漏洩磁場生成層51と、第2漏洩磁場生成層52は、それぞれから生ずる漏洩磁場によって磁化自由層10の第1磁化固定領域11と、第2磁化固定領域12の磁化を反平行方向に固定し、かつ第1磁化自由層10内に形成される磁壁を固定する役割を有する。
 また、図1の例では、上記に加えて第1スペーサー層61と、第2スペーサー層62とが設けられている。第1スペーサー層61は、スピン流生成層20と、第1漏洩磁場生成層51との間に設けられており、第2スペーサー層62は、スピン流生成層20と第2漏洩磁場生成層52の間に設けられている。スペーサー層(第1スペーサー層61・第2スペーサー層62)は導電体から構成される。
 また、上記の層の他に、磁気抵抗効果素子100には外部の配線との接続のために導電体から構成されるコンタクト層が設けられることが好ましいが、図1ではコンタクト層は省略されている。
[2.磁気抵抗効果素子のメモリ状態]
 次に、本発明の第1の実施の形態に係る磁気抵抗効果素子100のメモリ状態に関して図2を参照して説明する。
 上述のように、本発明の第1の実施の形態に係る磁気抵抗効果素子100は、少なくとも磁化自由層10と、スピン流生成層20と、トンネルバリア層30と、リファレンス層40と、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)と、を有し、磁化自由層10は少なくとも一部分に強磁性体を有する。また、磁化自由層10は、磁化方向が互いに反平行方向に固定された第1磁化固定領域11と、第2磁化固定領域12と、磁化方向が可変な磁化自由領域13と、から構成される。
 本発明に係る磁気抵抗効果素子100においては、この磁化自由層10の磁化状態が記憶情報に関連付けられる。
 図2(a)と、図2(b)は、それぞれ本発明に係る磁気抵抗効果素子100にメモリ情報として「0」が格納された状態と、「1」が格納された状態における磁化構造を示す模式図である。
 図2(a)に示されている「0」状態においては、磁化自由層10のうちの磁化自由領域13の磁化は−z方向を向いている。このとき、第1磁化固定領域11は+z方向、第2磁化固定領域12は−z方向を向いている。この状態では、磁化自由領域13と第1磁化固定領域11の境界に磁壁DW(Domain Wall)が形成される。
 一方、図2(b)に示されている「1」状態においては、磁化自由層10のうちの磁化自由領域13の磁化は+z方向を向いている。このとき、磁化は、第1磁化固定領域11において+z方向、第2磁化固定領域12において−z方向を向いているため、磁化自由領域13と第2磁化固定領域12の境界に磁壁(DW)が形成される。
 このように、本発明に係る磁気抵抗効果素子100においては、磁化自由層10のうちの磁化自由領域13の磁化方向がメモリ素子として見たときの記憶情報に対応しており、言い換えると、磁壁(DW)の位置が記憶情報に対応している。なお、本発明に係る磁気抵抗効果素子100におけるメモリ状態の定義は上述の限りではなく、第1磁化固定領域11と、第2磁化固定領域12と、磁化自由領域13と、の磁化方向とメモリ状態の関連付けには任意性があることは自明である。
 また、本発明に係る磁気抵抗効果素子100においては、磁壁(DW)の磁化の方向(旋回方向)と、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)と、の磁化の方向に関連性がある。以下、それらについて図3、図4を参照して説明する。
 図3は、磁壁(DW)の旋回方向を示す模式図である。はじめに、図3を用いて磁壁の旋回方向について説明する。
 積層方向に非対称性のある極薄の強磁性層においては、Dzyalloshinskii−Moriya相互作用が働き、強磁性層が垂直磁気異方性を有しており、その中に磁壁が形成される場合には、磁壁の磁化の旋回方向がDzyalloshinskii−Moriya相互作用により規定されることが知られている。具体的には、Dzyalloshinskii−Moriya相互作用の符号によって磁壁(DW)の旋回方向が変化する(非特許文献4参照)。
 図3(a)には右旋回型の磁壁が示されている。右旋回型の磁壁(DW)においては磁壁(DW)内の磁化は左から右に、↑・→・↓、または、↓・←・↑という順に時計回りに変化している。
 一方、図3(b)には、左旋回型の磁壁(DW)が示されている。左旋回型の磁壁(DW)においては、磁壁内の磁化は左から右に、↑・←・↓、または、↓・→・↑という順に反時計回りに変化している。
 次に図4には、磁化自由層10が右旋回型の磁壁(DW)を有する場合の漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)の磁化方向との関係が示されている。
 図4(a)と、図4(b)には、それぞれ「0」状態、「1」状態での漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)と、スペーサー層(第1スペーサー層61・第2スペーサー層62)と、スピン流生成層20と、磁化自由層10とが、示されている。
 また、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)からの漏洩磁場Hstrが破線で示されている。図4(a)からわかるように、「0」状態においては、+z方向に固定された磁化を有する第1漏洩磁場生成層51からの漏洩磁場Hstrは、磁壁(DW)の位置において+x方向成分を有している。また図4(b)からわかるように、「1」状態においても、−z方向に固定された磁化を有する第2漏洩磁場生成層52からの漏洩磁場Hstrは、磁壁(DW)の位置において+x方向の成分を有している。これらはいずれも磁壁(DW)の磁化方向と一致している。
 また、図4(c)、図4(d)には、第1漏洩磁場生成層51の磁化が−z方向に固定され、第2漏洩磁場生成層52の磁化が+z方向に固定されていた場合の磁化配置と漏洩磁場の方向が図示されている。この場合には、磁化自由層10の第1磁化固定領域11の磁化は−z方向に、第2磁化固定領域12の磁化は+z方向に固定される。そして、磁化自由層10においてDzyalloshinskii−Moriya相互作用により優先的に形成される磁壁(DW)が右旋回である場合、磁壁(DW)の磁化は−x方向を向く。この場合も、第1漏洩磁場生成層51と、第2漏洩磁場生成層52とから生ずる漏洩磁場Hstrのx成分の磁壁(DW)の位置における方向は、磁壁の磁化の方向と一致している。
 このように磁化自由層10において、優先的に形成される磁壁(DW)が右旋回性を持つ場合、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)は、磁化自由層10の下側に配置することで、磁壁の磁化と、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)から生ずる漏洩磁場Hstrの面内成分と、を一致させることができる。なお、磁化自由層10において形成される磁壁(DW)が、左旋回性を持つ場合の実施の形態については、第1変形例として後述される。
 ここでは、磁化自由層10内において形成される磁壁(DW)の旋回性が、Dzyalloshinskii‐Moriya相互作用により規定される場合を例にとって説明したが、実際には磁壁(DW)内の磁化が細線長手方向(±x方向)に固定されるメカニズムはいかようであっても構わない。例えば、本発明は、磁化自由層10が面内において、一方向異方性を有するように設計していれば、実施が可能である。また、磁化自由層10のy方向の線幅が、磁壁幅と比べて十分に細くなれば、優先的かつ安定的にネール磁壁が形成されるようになり、その場合にも本発明は実施が可能である。すなわち本質的には、磁化自由層10内において形成される磁壁(DW)内の磁化が優先的に細線長手方向(±x方向)を向くように設計されていれば、それがどのような効果によるものであったとしても本発明の効果を得ることが可能である。
[3.磁気抵抗効果素子への情報の書き込み方法]
 次に、本発明の第1の実施の形態に係る磁気抵抗効果素子100への情報の書き込み方法に関して、図5を参照して説明する。
 前述のように本発明に係る磁気抵抗効果素子100においては、磁壁の位置が、記憶情報に対応している。本発明に係る磁気抵抗効果素子100においては、この磁壁を電流により移動させることによって情報の書き込みを行う。磁壁の移動メカニズムは、いかようであっても構わないが、スピンホール効果とDzyalloshinskii−Moriya相互作用によって磁壁(DW)が駆動する場合を例にとって説明する。
 スピン流生成層20にx方向の電流を導入した場合、スピンホール効果によってz方向にスピン流が生じ、+y方向、または−y方向にスピン偏極した電子が磁化自由層10に流入することになる。流入したスピン偏極した電子は、磁壁(DW)の磁化と相互作用をする。
 ここで非特許文献4によれば、Dzyalloshinskii−Moriya相互作用によって+x方向、または−x方向に旋回方向が規定された磁壁(DW)に、+yまたは−y方向の伝導電子が流入した場合、スピン流生成層20中を流れる電流と同方向または逆方向に磁壁(DW)が移動する。磁壁(DW)の移動方向は、Dzyalloshinskii−Moriya相互作用の符号、及びスピンホール効果の符号によって決定される。
 以下では、磁壁(DW)が電流方向に移動する場合を例にとって、「1」書き込み動作、「0」書き込み動作のそれぞれについて説明する。
 図5(a)と、図5(b)は、それぞれ本発明に係る磁気抵抗効果素子100における、メモリ情報として「1」を書き込む場合と、「0」を書き込む場合の動作方法を示す模式図である。
 図5(a)に示されている「1」書き込みの動作においては、スピン流生成層20内に、「1」書き込み電流Iw1が+x方向に流される。このとき、スピン流生成層20において、z方向にスピン流が生じ、y方向にスピン偏極した電子が、磁化自由層10に流入する。これによって、磁化自由領域13と、第1磁化固定領域11との境界に形成された磁壁(DW)には、スピントランスファートルクが働く。スピントランスファートルクとは、スピン偏極した電子から、磁壁(DW)へスピン角運動量が移行する現象である。したがって、スピントランスファートルクを受けた磁壁(DW)は、磁化自由領域13内を移動し、結果として磁化自由層13の磁化方向を変化させる。
 図5(a)の例で言うと、スピントランスファートルクを受けた磁壁(DW)の向きは、+y方向にスピン偏極した電子から、+x方向に向いている磁壁(DW)へのトルクで表すことができる。トルクは、2つのベクトルの外積で表すことができるため、スピントランスファートルクを受けた磁壁(DW)は+z方向を向く。すると、磁化自由領域13内では、隣接する磁化は同じ向きを向いたほうが安定するため、スピントランスファートルクを受け+z方向を向いた磁化と隣接する磁化も+z方向を向く。そして、磁化自由領域13と、第2磁化固定領域12の境界で、磁壁(DW)が形成される。したがって、磁壁(DW)は、磁化自由領域13と第1磁化固定領域11との境界から、磁化自由領域13と第2磁化固定領域12との境界へと移動する。
 磁化自由領域13と、第2磁化固定領域12との境界で磁壁(DW)が止まるのは、第2磁化固定領域12の磁化が、第2漏洩磁場生成層52からの漏洩磁場によって固定されていることに起因している。これによって実現される磁化状態は、図2(b)で示されている「1」状態に他ならない。かくして「1」書き込み電流Iw1を磁気抵抗効果素子100に導入することによって、「0」状態から「1」状態への格納情報の書き換えを行うことができる。
 一方、図5(b)に示されている「0」書き込みの動作においては、スピン流生成層20内に、「0」書き込み電流Iw0が−x方向に流される。このとき、スピン流生成層20において、+z方向にスピン流が生じ、−y方向にスピン偏極した電子が、磁化自由層10に流入する。これによって磁化自由領域13と、第2磁化固定領域12との境界に形成された磁壁(DW)には、スピントランスファートルクが働く。スピントランスファートルクを受けた後の磁壁(DW)の向きは、−y方向にスピン偏極した電子から、+x方向を向いている磁壁(DW)へのトルクで表すことができる。この場合、スピントランスファートルクを受けた磁壁(DW)は−z方向を向く。すると、磁化自由領域13内では、隣接する磁化は同じ向きを向いたほうが安定するため、スピントランスファートルクを受け‐z方向を向いた磁化と隣接する磁化も−z方向を向く。そして、磁化自由領域13と、第1磁化固定領域11の境界で、磁壁(DW)が形成される。したがって、磁壁(DW)は磁化自由領域13と第2磁化固定領域12との境界から、磁化自由領域13と第1磁化固定領域11との境界へと移動する。
 磁化自由領域13と第1磁化固定領域11との境界で磁壁(DW)が止まるのは、第1漏洩磁場生成層51からの漏洩磁場によって第1磁化固定領域11の磁化が固定されていることに起因している。これによって、実現される磁化状態は図2(3)で示されている「0」状態に他ならない。かくして「0」書き込み電流Iw0を磁気抵抗効果素子100に導入することによって、「1」状態から「0」状態への格納情報の書き換えを行うことができる。
 このように、磁化自由層10に双方向の書き込み電流を導入することによって、「0」状態と「1」状態の間での格納情報の書き換えが可能である。なお、図5においては、書き込み電流Iw1、及びIw0は第1漏洩磁場生成層51と、第1スペーサー層61と、第2スペーサー層62と、第2漏洩磁場生成層52と、を経由するように書かれているが、この書き込み電流の経路はこれに限定されるものではない。書き込み電流は、スピン流生成層20を通りさえすれば、どのような経路をたどっても構わない。
 また、「0」状態において「0」書き込み電流Iw0が導入された場合、及び「1」状態において「1」書き込み電流Iw1が導入された場合には、メモリ状態の変化は起こらない。すなわち、本発明に係る磁気抵抗効果素子100においては、情報のオーバーライトも可能である。
[4.磁気抵抗効果素子からの情報の読み出し方法]
 次に、本発明の第1の実施の形態に係る磁気抵抗効果素子100からの情報の読み出し方法に関して、図6を参照して説明する。
 上述のように本発明に係る磁気抵抗効果素子100においては、磁化自由層10のうちの磁化自由領域13の磁化方向が、格納されている記憶情報に対応している。本発明に係る磁気抵抗効果素子100においては、この磁化自由領域13と、リファレンス層40との磁化の相対角によって生ずるトンネル磁気抵抗効果を利用して情報の読み出しを行う。
 図6(a)と図6(b)は、それぞれ本発明に係る磁気抵抗効果素子100における、メモリ情報として「0」を読み出す場合と「1」を読み出す場合の動作方法の模式図である。いずれの場合においても読み出し電流Iをリファレンス層40と、トンネルバリア層30と、磁化自由層10とを貫通するように導入する。
 ここで、メモリ情報は、電流を導入した際のトンネル磁気抵抗効果によるトンネル磁気抵抗の大きさの大小によって、「0」状態と、「1」状態とが判別される。トンネル磁気抵抗効果は、例えば、強磁性体層1/絶縁層/強磁性体層2で構成される素子に電流を導入した際に、強磁性体層1の磁化と、強磁性体層2の磁化との相対角度によって、電気抵抗が変化する現象である。強磁性体層1と、強磁性体層2との、相対角度が0°の時にトンネル磁気抵抗は最小となり、相対角度が180°の時にトンネル磁気抵抗は最大となる。このことは、本発明の係る磁気抵抗効果素子においても同様である。
 図6(a)に示された「0」を読み出す場合には、リファレンス層40のうちの非磁性層20に隣接した強磁性層の磁化方向は−z方向を向いており、また磁化自由層10のうちの磁化自由領域13の磁化も−z方向を向いている。この場合の、2つの磁化の相対角度は0°である。したがって、リファレンス層40と、トンネルバリア層30と、磁化自由層10と、を貫通する方向に電流を導入すると、トンネル磁気抵抗効果によって低抵抗状態が観測される。
 一方で、図6(b)に示された「1」を読み出す場合には、リファレンス層40のうちのトンネルバリア層30に隣接した強磁性層の磁化は−z方向を向いており、また磁化自由層10のうちの磁化自由領域13の磁化は+z方向を向いている。この場合の、2つの磁化の相対角度は180°である。したがって、リファレンス層40と、トンネルバリア層30と、磁化自由層10と、を貫通する方向に電流を導入すると、トンネル磁気抵抗効果によって高抵抗状態が観測される。
 このように、磁化自由領域13の磁化と、リファレンス層40の磁化との相対角によって当該磁気抵抗効果素子100における抵抗が変化するので、この抵抗の差を利用することで磁気抵抗効果素子100からの情報の読み出しを行うことができる。
 なお、図4では、読み出し電流Iは、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)と、スペーサー層(第1スペーサー層61・第2スペーサー層62)と、スピン流生成層20と、磁化自由層10と、トンネルバリア層30と、リファレンス層40という経路で導入されているが、上述の説明からわかるように読み出し電流Iの経路はこれに限定されるものではない。すなわち、リファレンス層40と、トンネルバリア層30と、磁化自由層10のうちの磁化自由領域13と、を貫通する方向に電流が流れさえすれば、それ以外の経路がいかようであっても構わないことは自明である。
[5.磁気メモリの回路構成]
 次に、本発明の第1の実施の形態に係る磁気メモリ300の回路構成と回路動作方法に関して、図7、図8を参照して説明する。なお、ここで説明される回路構成は、本発明に係る磁気抵抗効果素子100を用いて磁気メモリ300を形成する上での一例であり、他の回路構成を用いても本発明と同等の効果を有する磁気メモリを提供することができる。
 前述のように本発明に係る磁気メモリ300は、アレイ状に配置された複数の磁気メモリセル200を有しており、各磁気メモリセル200は磁気抵抗効果素子100を有している。
 図7は、本発明に係る磁気メモリ300を構成する一つの磁気メモリセル200の回路構成の一例を示す模式図である。この磁気メモリセル200では、磁気抵抗効果素子100は第1ビット線102aと、第2ビット線102bと、ワード線103と、グラウンド線104とに接続されている。リファレンス層40に繋がる端子は、グラウンド線104に接続されている。
 第1磁化固定領域11は、第1スペーサー層61と、第1漏洩磁場生成層51と、を経由して、第1セルトランジスタ101aのソース/ドレインに接続されている。
 第2磁化固定領域12は、第2スペーサー層62と、第2漏洩磁場生成層52と、を経由して、第2セルトランジスタ101bのソース/ドレインに接続されている。
 第1セルトランジスタ101aと、第2セルトランジスタ101bとのゲート電極は、ワード線103に接続されている。
 また、第1セルトランジスタ101aと、第2セルトランジスタ101bとのソース/ドレインのうちの磁気抵抗効果素子100に接続される側とは反対側の端子は、それぞれ第1ビット線102aと、第2ビット線102bへと接続されている。
 情報を書き込む際には、ワード線103はHighレベルに設定され、これによって第1セルトランジスタ101a、第2セルトランジスタ101bはON状態になる。そして、第1ビット線102aと、第2ビット線102bと、のいずれかをHighに設定することによって磁気抵抗効果素子100への情報の書き込みが可能となる。
 情報を読み出す際には、ワード線103はHighレベルに設定され、これによって第1セルトランジスタ101aと、第2セルトランジスタ101bはON状態になる。そして、第1ビット線102aと、第2ビット線102bの両方をHighに設定する、あるいは、一方をHighに、他方をOpenに設定することによって、磁気抵抗効果素子100からの情報の読み出しが可能となる。
 図8は、本発明に係る磁気メモリ300の構成を表した回路ブロックの一例を示す模式図である。磁気メモリ300は、メモリセルアレイ110と、Xドライバ120と、Yドライバ130と、コントローラ140とを備えている。
 メモリセルアレイ110は、アレイ状に配置された複数の磁気メモリセル200を有している。
 各磁気メモリセル200は、第1ビット線102aと、第2ビット線102bと、ワード線103と、グランド線104とに接続されている。
 Xドライバ120は、複数のワード線103に接続されており、それら複数のワード線103のうちの、アクセス対象の磁気メモリセル200に繋がるワード線103を駆動する。
 Yドライバ130は、複数の第1ビット線102aと、複数の第2ビット線102bとに接続されており、それら複数の第1ビット線102aと、複数の第2ビット線102bとを所望のデータ書き込み、読み出し状態に設定する。
 コントローラ140は、データ書き込み、あるいはデータ読み出しに応じて、Xドライバ120とYドライバ130のそれぞれを制御する。なお、磁気抵抗効果素子100のリファレンス層30へと接続されるグラウンド線104は、Xドライバ120へと接続されているが、これは、Yドライバ130に接続される読み出しビット線によって代用することも可能である。
[6.材料と膜厚]
 次に、本発明の第1の実施の形態に係る磁気抵抗効果素子100に用いることのできる材料とその好適な膜厚範囲について説明する。
 磁化自由層10の材料は、Fe,Co,Niなどの3d強磁性遷移金属元素を少なくとも一つ含むことが望ましい(但し、3d強磁性遷移金属元素を含まないが、Mn−Al、Mn−Gaなども磁化自由層10の材料として適している)。また、前述の通り磁化自由層10は垂直磁気異方性を有する。この垂直磁気異方性は、結晶磁気異方性に由来してもよいし、界面磁気異方性に由来してよい。結晶磁気異方性を利用する場合、Fe−Pt、Co−Pt、Fe−Pd、Fe−Ni、Sm−Co、Co−Cr−Ptなどの合金材料、Co/Pt、Co/Pd、Co/Ni、Fe/Auなどの交互積層膜などを用いることができる。
 一方、界面磁気異方性を利用する場合、Fe、Co、Niを含む様々な材料を用いることができる。具体的には、Fe−Co、Fe−Co−Ni、Co−Niなどが例示される。またこれらにはB、C、N、O、F、Si、Al、P、Sなどの元素を添加してもよい。例えば、Co−Fe−Bなどが例示される。
 磁化自由層10の膜厚は、Dzyalloshinskii−Moriya相互作用の影響を大きくし、かつ磁壁を少ない電流で効率的に動かすためには薄い方が好ましい。低膜厚側の下限は一原子層であるので、約0.2nmである。膜厚の上限には任意性があるが、5nm以下、より好適には2nm以下が好ましい。特に界面磁気異方性を利用する場合には、界面磁気異方性の大きさと飽和磁化の兼ね合いで膜厚の上限が設定される。
 スピン流生成層20は、非磁性の導電体から構成される。好適にはスピン起動相互作用の大きい元素から構成されるか、あるいは、スピン起動相互作用の大きい元素を含有する材料から構成される。具体的には、W、Ta、Hf、Re、Os、Ir、Pt、Biなどが例示される。また、これらの元素に別の元素を添加して、スピンホール効果や、Dzyalloshinskii−Moriya相互作用の大きさや符号を制御することができる。このために添加する元素としては、B、O、N、C、Al、Si、Pなどが挙げられる。また、Cu、Alなどの軽元素を母相としてこれらの重元素をドープしてもよい。
 スピン流生成層20の膜厚の下限は、スピンホール効果が発現する膜厚の下限として設定される。一般的には、スピンホール効果が発現する膜厚の下限は、2原子層程度となるので、0.2nm程度となる。
 スピン流生成層20の膜厚の上限は、材料のスピン拡散長が目安となる。これは材料によって大きく異なるが、Ta、W、Ptなどの重元素の場合には数nm程度である。一方で、Cuなどでは数100nmである。ただし、あまり厚すぎると書き込み電流が増大してしまうので、膜厚は書き込み電流との兼ね合いで設計することが好ましい。好適にはスピン流生成層20の膜厚上限は10nm、より好適には5nmである。
 トンネルバリア層30は、N、O、Cのうちのいずれか一つを含んだ絶縁体で構成される。具体的にはMg−O、Al−O、Si−O、Si−N、Si−C−N、Mg−N、Al−N、Zn−O、Zn−Nなどが例示される。トンネルバリア層30の膜厚は所望の読み出し特性が得られるように設計される。具体的には0.5nmから2nm程度の膜厚を用いることができる。
 リファレンス層40には、垂直磁気異方性を有する様々な強磁性体を用いることができる。従ってFe、Co、Niのうちのいずれかの元素を含むことが望ましい(但し、強磁性体を含まないが、Mn−Al、Mn−Gaなどはリファレンス層40として用いることができる。)。具体的に用いることのできる材料は磁化自由層10の場合と重複するので省略する。
 また、リファレンス層40は、異なる強磁性層と非磁性層の積層体となっていてもよい。前述の通り、これまで図示された例ではリファレンス層40は、強磁性体/非磁性体/強磁性体が積層された構造を有しており、二つの強磁性層の磁化は反平行方向に固定されている。また、リファレンス層40のうちのトンネルバリア層30に隣接する層には、高いトンネル磁気抵抗効果比が得られるように高いスピン偏極率を有する材料、あるいはトンネルバリア層30との組み合わせにより高いトンネル磁気抵抗効果比が得られるような材料を用いることが望ましい。以上を踏まえると、リファレンス層40に用いる積層構造としては、トンネルバリア層30側から順にCo−Fe−B/[Co/Pt]積層膜/Ru/[Co/Pt]積層膜などが例示される。
 また、リファレンス層40の膜厚は任意に設計される。但し、リファレンス層40から生ずる漏洩磁場は磁化自由層10の高さにおいて小さいことが望ましい。従って、リファレンス層40の積層構造は磁化自由層10の高さにおいて漏洩磁場が小さくなるように設計されることが望ましい。
 本発明の第1の実施の形態においては、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)には、垂直磁気異方性を有する様々な強磁性体を用いることができる。従ってFe、Co、Niのうちのいずれかの元素を含むことが望ましい(但し、強磁性体を含まないが、Mn−Al、Mn−Gaなどは漏洩磁場生成層として用いることができる。)。具体的に用いることの材料は磁化自由層10の場合と重複するので省略する。また、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)は、大きな漏洩磁場を発生させるために飽和磁化の大きな材料を用いることが好ましい。具体的には、Fe−Pt、Co/Pt、Co−Fe/Ptなどが例示される。
 漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)の膜厚は、任意に設計することができる。例えば、漏洩磁場生成層の膜厚は1nm以上、30nm以下の範囲に設定される。なお、漏洩磁場生成層は、第1漏洩磁場生成層51と第2漏洩磁場生成層52で、磁化を反平行方向に向ける必要があるので、第1磁場生成層51と第2漏洩磁場生成層52の磁気特性を異ならしめることが望ましい。これは材料、膜構成、膜厚、製造方法などを変えることで実現することができる。
 スペーサー層(第1スペーサー層61・第2スペーサー層62)は、導電性のあるあらゆる材料を用いることができる。具体的には、Ta、W、Au、Ag、Cu、Ti、V、Cr、Alなどが例示される。
 また、スペーサー層の膜厚は、磁化自由層10の位置における漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)からの漏洩磁場の大きさが、最適になるように設計される。スペーサー層の好適な膜厚範囲については後述される。
[7.原理]
 次に本発明に係る磁気抵抗効果素子100の原理について、図9乃至図12に示された計算結果を参照しながら説明する。
 本発明者らは、磁化自由層10内において、Dzyalloshinskii−Moriya相互作用によって旋回方向の規定された磁壁(DW)、即ち、隣接するスピン流生成層20からのスピン流によって駆動される際の磁壁(DW)のダイナミクスを、集団座標を用いたLandau−Lifshitz−Gilbert方程式によって数値的に計算した(非特許文献4参照)。また、磁壁(DW)の状態を記述する集団座標としては磁壁(DW)の位置を表すqと、磁壁(DW)の磁化の角度を表すφを用いた。ここでφは細線長手方向を向いた場合を0とした。
 Dzyalloshinskii−Moriya相互作用によって旋回方向の規定された磁壁(DW)が、隣接するスピン流生成層20からのスピン流によって駆動される際、細線に一切の磁壁(DW)を拘束する機構が存在しない場合には、磁壁(DW)を駆動するためのしきい電流は存在しない。そこで、本発明者らは2つの磁壁(DW)の拘束機構を計算に取り入れた。それらが図9に示されている。1つ目は図9(a)に示されているような(細線の長手方向)に局所的なx方向磁場が存在する場合である。局所的なx方向磁場の形状としては二次関数を仮定した。具体的には−qx0から+qx0の範囲内において、x方向磁場は以下の式1で与えられる。
Figure JPOXMLDOC01-appb-I000001
 ここで、qは磁壁(DW)のx方向の位置を表し、−qx0から+qx0の外側では、H(q)=0となるような関数を仮定した。
 2つ目は磁壁(DW)の感じる単位面積当たりのエネルギーεが二次関数で与えられる場合であり、具体的には、−qから+qの範囲内においては、以下の式2で与えられる。
Figure JPOXMLDOC01-appb-I000002
 −qから+qの外側ではε(q)=MHc0となるような関数を仮定した。
 図10には、上述の2つの磁壁(DW)の拘束機構のうちの前者のみがある場合の、集団座標qとφの時間発展の計算結果が示されている。破線、実線、点線はそれぞれμx0が、−100mT、0mT、100mTの場合の計算結果を表している。図10からわかるようにいずれの場合も磁壁(DW)内磁化角度φの時間発展はHx0に依存して大きく変化しているが、磁壁(DW)位置qの時間発展にはほとんど影響を及ぼしていないことが分かる。印加する電流密度を変えて計算を行ったところ、x方向の局所的な漏洩磁場によって拘束された磁壁(DW)を電流で駆動する場合のしきい電流は存在しないことが分かった。
 図11には、上述の2つの磁壁(DW)の拘束機構の両方がある場合に磁壁(DW)が拘束位置から脱出するのに必要なしきい電流密度のHx0依存性、Hc0依存性が示されている。図11は、図10とは異なり有限なしきい電流密度jが存在している。ここで注目すべきは、しきい電流密度jはHx0とHc0に対して依存性が異なる点である。すなわち、Hx0には一切依存していないのに対して、Hc0には線形に依存していることがわかる。
 一方で、系のエネルギーをもとにした解析計算からは、Hx0と、Hc0はいずれも磁場で磁壁(DW)を拘束位置から脱出させる場合に必要なしきい磁場に対しては、線形の依存関係があることがわかった。すなわち、しきい磁場はHx0に対して線形な依存関係があるのに対して、しきい電流密度jはHx0には依存しないということである。これは、Hx0を大きくすることで熱安定性はいくらでも大きくでき、一方で、しきい電流密度は増大しないことを意味している。これは磁気メモリの熱安定性と低電流特性を両立する上で非常に重要な特性である。
 本発明においては、情報保持状態においては、このx方向の局所的な漏洩磁場を用いて磁壁(DW)を拘束し、この磁壁(DW)を小さな電流によって駆動することが一番のポイントである。言い換えると、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)から生成される漏洩磁場は、磁化自由層10の位置において、x成分はなるべく大きく、一方で、z成分(漏洩磁場のz成分は上述のHc0と同様に振る舞う)は十分に小さいことが望ましい。
 図12には、本発明者らが行った漏洩磁場生成層からの漏洩磁場の計算結果が示されている。漏洩磁場生成層としてはx方向、およびy方向の長さが100nmでz方向の膜厚が10nmの直方体を考え、飽和磁化は1000emu/ccを仮定した。
 この磁性体の上面からhの高さにおいて形成される漏洩磁場のx成分と、z成分を横軸として計算した結果がグラフに示されている。漏洩磁場生成層のエッジ部分において、大きな漏洩磁場がx方向と、z方向との両方に出ていることが分かる。ここでz方向の漏洩磁場Hの拡大図に着目すると、エッジ部分におけるμは、漏洩磁場生成層からの高さhが離れると急激に小さくなっていることが分かる。特に漏洩磁場生成からの高さhが10nm以上ではμは20mT以下、さらに漏洩磁場生成からの高さhが15nm以上ではμは10mT以下となっており、これはしきい電流密度jに及ぼす影響としては問題のないレベルと考えられる。このことから、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)と、磁化自由層10の高さ方向との間隔は、10nm以上、より好適には15nm以上離すことが望ましいと言える。従ってスペーサー層(第1スペーサー層61、第2スペーサー層62)とスピン流生成層20の合計膜厚は10nm以上、より好適には15nm以上とすることが望ましい。
[8.第1変形例]
 図13(a)乃至図13(d)は、本発明の第1の実施の形態に係る磁気抵抗効果素子100の第1変形例の構造を模式的に示した断面図である。第1変形例は、磁化自由層10内に形成される磁壁(DW)が左旋回性を持つ場合の実施の形態である。
 磁化自由層10内に形成される磁壁(DW)が左旋回性を持つ場合、図13(a)と、図13(b)に示しているように、第1磁化固定領域が+z方向、第2磁化固定領域が−z方向に固定された磁化を有する場合、磁壁(DW)の磁化は−x方向を向く。この場合には、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)を磁化自由層10に対して上側(+z側)に配置することによって、漏洩磁場によって磁壁(DW)を拘束することができる。なお、図13(a)は「0」状態、図13(b)は「1」状態での磁化配置を示している。図からわかるように、磁壁(DW)の位置においては漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)からの漏洩磁場は−x方向成分を持つことが分かる。
 図13(c)と、図13(d)は、第1磁化固定領域が+z方向、第2磁化固定領域が−z方向に固定された磁化を有する場合の「0」状態、「1」状態での磁化配置が示されている。この場合は、磁壁(DW)の位置において漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)からの漏洩磁場は+x方向成分を持っており、やはり磁壁(DW)の磁化方向と一致していることが分かる。
なお、図13に示された例では漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)は、磁化自由層10から電気的に分離して設けられているが、このように電気的に接続されていなくても漏洩磁場が印加される範囲であればどのように配置しても構わない。
 なお、図12を用いて漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)の上面と磁化自由層10の中心高さの間の距離は10nm以上、より好適には15nm以上であることが望ましいことを述べたが、図13に示されたような漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)が磁化自由層10の上側に配置される場合には、この距離は磁化自由層10の中心高さと漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)の下面の距離として規定されることは明らかである。
[9.第2変形例]
 図14(a)と、図14(b)は、本発明の第1の実施の形態に係る磁気抵抗効果素子100の第2変形例の構造を模式的に示した断面図である。
 図14(a)は「0」状態、図14(b)は「1」状態に対応する。第2変形例においては、漏洩磁場生成層として第1漏洩磁場生成層51と、第2漏洩磁場生成層52と、第3漏洩磁場生成層53と、第4漏洩磁場生成層54と、が設けられている。
 第1漏洩磁場生成層51と第2漏洩磁場生成層52とは、磁化自由層10に対して下側(−z側)に、第3漏洩磁場生成層53と第4漏洩磁場生成層54とは、磁化自由層10に対して上側(+z側)に設けられている。
 第2変形例においては、例えば、第1磁化固定領域11の下側に第1漏洩磁場生成層51が設けられ、上側に第3漏洩磁場生成層53が設けられている。これによって、磁壁(DW)の位置におけるz方向の漏洩磁場の大きさを小さくし、同時にx方向の漏洩磁場を大きくすることができる。図11において、z方向の漏洩磁場は、磁壁(DW)の電流での駆動に必要なしきい電流密度を増大させるのに対して、x方向の漏洩磁場は、影響を及ぼさないという実験結果が示された。しかしながら、第2変形例を用いることによって、x方向の漏洩磁場の増加によって素子の熱安定性を増大させると同時に、z方向の漏洩磁場の減少によって書き込み電流を低減することができる。
[10.第3変形例]
 図15(a)、図15(b)は、本発明の第1の実施の形態に係る磁気抵抗効果素子100の第3変形例の構造を模式的に示した断面図である。
 図15(a)は「0」状態、図15(b)は「1」状態に対応する。第3変形例においては、リファレンス層40と、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)と、が同一レイヤーに同一材料にて形成される。リファレンス層40と、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)とを同一レイヤーに形成することによって、漏洩磁場生成層を形成するための成膜プロセスが不要となるため、工程数を低減することが可能となる。なお、図15では第1漏洩磁場生成層51と、第2漏洩磁場生成層52のそれぞれで上面の高さが変わっており、これによって磁気特性を異ならしめている例が示されている。
[11.第4変形例]
 図16(a)と、図16(b)は、本発明の第1の実施の形態に係る磁気抵抗効果素子100の第4変形例の構造を模式的に示した断面図である。
 図16(a)は「0」状態、図16(b)は「1」状態に対応する。第4変形例は、第2変形例と、第3変形例との両方の技術思想を合わせた変形例である。磁化自由層10の下側(−z側)には第1漏洩磁場生成層51、第2漏洩磁場生成層52が形成され、上側(+z側)にはリファレンス層40と同一レイヤーに同一材料にて第3漏洩磁場生成層53、第4漏洩磁場生成層54が形成されている。
[12.第5変形例]
 図17は、本発明の第1の実施の形態に係る磁気抵抗効果素子100の第5変形例の構造を模式的に示した斜視図である。
 第5変形例においては、基板側から順にリファレンス層40と、トンネルバリア層30と、磁化自由層10と、スピン流生成層20との順に積層されている。またリファレンス層40は磁化自由層10と同形状に加工されている。図17に示されているように、本発明に係る磁気抵抗効果素子100においては、リファレンス層40、トンネルバリア層30、磁化自由層10、スピン流生成層20の積層順には任意性があり、また、リファレンス層40の大きさにも任意性がある。
[13.第6変形例]
 図18(a)と、図18(b)は、本発明の第1の実施の形態に係る磁気抵抗効果素子100の第6変形例の構造を模式的に示した断面図である。
 図18(a)は「0」状態、図18(b)は「1」状態に対応する。第6変形例においては、面内磁気異方性を有する面内磁化漏洩磁場生成層(第1面内磁化漏洩磁場生成層71・第2面内磁化漏洩磁場生成層72)が設けられる。
 面内磁化漏洩磁場生成層(第1面内磁化漏洩磁場生成層71・第2面内磁化漏洩磁場生成層72)は、磁壁(DW)の位置における±x方向の漏洩磁場を大きくするように設けられる。図18では、第1磁化固定領域11と、第1漏洩磁場生成層51の磁化は上向き(+z方向)、第2磁化固定領域12と、第2漏洩磁場生成層52の磁化は下向き(−z方向)に固定されている。また、磁壁(DW)は右旋回性の場合が示されている。
 このときの第1面内磁化漏洩磁場生成層71と、第2面内磁化漏洩磁場生成層72の磁化の向きは、図18では−x方向に固定されている。しかし、実際には第1面内磁化漏洩磁場生成層71と、第2面内磁化漏洩磁場生成層72が設けられる位置に応じて+x方向に磁化を固定した方が、磁壁(DW)の位置におけるx方向の漏洩磁場の大きさを大きくできる場合もある。これらは製造者において適宜設計されうる。
 また、図18では面内磁化漏洩磁場生成層(第1面内磁化漏洩磁場生成層71・第2面内磁化漏洩磁場生成層72)は、スピン流生成層20と、スペーサー層(第1スペーサー層61・第2スペーサー層62)との間に形成されているが、実際には面内磁化漏洩磁場生成層(第1面内磁化漏洩磁場生成層71・第2面内磁化漏洩磁場生成層72)の設けられる位置はこれに限定されるものではない。例えば、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)とスペーサー層(第1スペーサー層61・第2スペーサー層62)の間であってもよいし、漏洩磁場生成層(第1漏洩磁場生成層51、第2漏洩磁場生成層52)の下側であってもよいし、或いは磁化自由層10の上側であってもよい。
[14.第7変形例]
 図19(a)と、図19(b)は、本発明の第1の実施の形態に係る磁気抵抗効果素子100の第7変形例の構造を模式的に示した断面図である。
 図19(a)は「0」状態、図19(b)は「1」状態に対応する。第7変形例においては、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)がテーパーを有するように形成されている。図19に示されているように漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)をテーパーを有するように形成することによって、磁壁(DW)の位置におけるx方向と、z方向の漏洩磁場の大きさを調整することが可能である。なお、図19では漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)は、上底よりも下底の長い台形状の形状に加工された例が示されているが、実際には上底よりも下底が短い台形状に加工されていても構わない。また、本変形例は、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)が磁化自由層10の上側に配置される場合においても用いることができる。
テーパーを有するように漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)を加工する方法としては、ハードマスクの形状、エッチングガス、エッチング条件などの調整が挙げられる。
[15.第8変形例]
 図20(a)と、図20(b)は、本発明の第1の実施の形態に係る磁気抵抗効果素子100の第8変形例の構造を模式的に示した断面図である。
 第8変形例においては、リファレンス層40と磁化自由層10が同一の形状で形成されている。一般にはリファレンス層40は磁化自由層10内の磁化自由領域13とx−y平面においてオーバーラップしていればよく、その形状はいかようであっても構わない。またリファレンス層40も漏洩磁場を生成し、その磁場は磁化自由層10にも印加されるが、第8変形例のように磁化自由領域13よりも大きな面積でリファレンス層40を形成することで磁化自由領域13に印加される漏洩磁場の大きさを低減することができる。
[16.第2の実施の形態]
 次に本発明の第2の実施の形態に関わる磁気抵抗効果素子100の構造と動作方法を説明する。第1の実施の形態において、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)は、少なくとも一部分に垂直磁気異方性を有する強磁性体を有することを述べた。それに対して、第2の実施の形態においては漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)は、少なくとも一部分に面内磁気異方性を有する強磁性体を有することを特徴とする。
 図21(a)と図21(b)は、それぞれ本発明の第2の実施の形態に係る磁気抵抗効果素子100にメモリ情報として「0」が格納された状態と、「1」が格納された状態における磁化構造を示す模式図である。
 図21に示された例では、第1漏洩磁場生成層51と第2漏洩磁場生成層52は面内方向に固定された磁化を有しており、それらは−x方向を向いている。この場合には、第1漏洩磁場生成層51の上に形成される第1磁化固定領域11と、第2漏洩磁場生成層52の上に形成される第2磁化固定領域12においては+x方向の漏洩磁場が印加され、結果として第1磁化固定領域11と第2磁化固定領域12の磁化は+x方向に固定される。
 そして第1の実施の形態においては、磁化自由層10内には180度磁壁が形成されていたのに対して、第2の実施の形態においては、90度磁壁が形成される。形成される磁壁が90度磁壁であっても、その磁壁が磁化自由層10内の長手方向に磁化成分を有していれば(図21の例では+x方向)、第1の実施の形態で述べたスピンホール効果によってこの磁壁を電流または電子の方向に駆動することができ、その移動方向はスピンホール角の符号によって決定される。
 第2の実施の形態における情報の書き込み方法、読み出し方法、及び回路構成などに関しては第1の実施の形態と同様であるので説明を省略する。
 また第2の実施の形態の場合にはDzyalloshinskii−Moriya相互作用が働かなくても漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)から面内方向に磁場が印加されるので、スピンホール効果によって磁壁を移動させることができる。また第2の実施の形態においては、第1漏洩磁場生成層51と第2漏洩磁場生成層52は平行方向に磁化が固定されていてもよい。これは製造容易性の観点で第1の実施の形態よりも好ましい。
 第2の実施の形態において各層に用いることのできる材料は、漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)以外は第1の実施の形態と同様であるので説明を省略する。漏洩磁場生成層(第1漏洩磁場生成層51・第2漏洩磁場生成層52)には面内磁気異方性を有する強磁性体を用いることができる。具体的には、Fe、Co、Ni、Fe−Co、Fe−Co−Niなどが例示される。また保磁力を高めるために他の元素を添加してもよい。さらには、磁化の固定をより安定化させるために、反強磁性体を隣接させてもよい。用いる反強磁性体としては、Pt−Mn、Ir−Mn、Fe−Mn、Ni−Mnなどが例示される。
 図22(a)と図72(b)は、それぞれ本発明の第2の実施の形態に係る磁気抵抗効果素子100の第1の変形例の構造を模式的に示している。図22(a)と図22(b)はそれぞれメモリ情報として「0」が格納された状態と、「1」が格納された状態における磁化構造の模式図である。
 本変形例においては、漏洩磁場生成層(第3漏洩磁場生成層53・第4漏洩磁場生成層54)は磁化自由層10に対して電気的には分離して設けられている。漏洩磁場生成層(第3漏洩磁場生成層53・第4漏洩磁場生成層54)が磁化自由層10に対して電気的に分離して設けられた場合でも、磁化自由層10に対して十分な大きさの漏洩磁場が印加されさえすれば、漏洩磁場生成層(第3漏洩磁場生成層53・第4漏洩磁場生成層54)の位置はいかようであっても構わない。また本変形例の場合、スピン流生成層20に対して書き込み電流を導入するための層として第1プラグ層81と第2プラグ層82がそれぞれその両端部に隣接して設けられている。第1プラグ層81と第2プラグ層82は書き込み用のセルトランジスタに電気的に接続される。
 本発明は上記各実施の形態に限定されず、本発明の技術思想の範囲内において、各実施の形態は適宜変形又は変更されうることは明らかである。
Hereinafter, embodiments for implementing a magnetoresistive element 100 and a magnetic memory 300 according to the present invention will be described with reference to the accompanying drawings. A magnetic memory 300 according to the present invention has a plurality of magnetic memory cells 200 arranged in an array, and each magnetic memory cell 200 has a magnetoresistive element 100.
[1. Structure of magnetoresistive effect element]
FIG. 1A is a schematic diagram showing an example of the structure of the magnetoresistive element 100 according to the first exemplary embodiment of the present invention. In the xyz coordinate system shown in the figure, it is assumed that the z axis is the substrate vertical direction and the xy axis is parallel to the substrate plane. The definition of this xyz coordinate system is common to the following figures.
The magnetoresistance effect element 100 according to the first exemplary embodiment of the present invention includes at least a magnetization free layer 10, a spin current generation layer 20, a tunnel barrier layer 30, a reference layer 40, and a leakage magnetic field generation layer (first field). A leakage magnetic field generation layer 51 and a second leakage magnetic field generation layer 52). Further, referring to FIG. 1A, an example in which a spacer layer (a first spacer layer 61 and a second spacer layer 62) is further provided is illustrated.
The magnetization free layer 10, the reference layer 40, and the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) have a ferromagnetic material at least in part. In FIG. 1A, the magnetization direction of the ferromagnetic material constituting the magnetization free layer 10, the reference layer 40, and the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52). Is indicated by an arrow. FIG. 1B is a plan view of the structure of the magnetization free layer 10 as viewed from the z-axis, and the magnetization direction is indicated by an arrow as in FIG.
The magnetization free layer 10 is made of a ferromagnetic material having perpendicular magnetic anisotropy. The perpendicular magnetic anisotropy may be derived from the magnetocrystalline anisotropy of the crystal or may be derived from the interfacial magnetic anisotropy generated by the interaction with the interface.
The magnetization free layer 10 includes a first magnetization fixed region 11, a second magnetization fixed region 12, and a magnetization free region 13, as shown in the plan view of FIG. Yes. In FIG. 1, the magnetization free layer 10 is formed to extend in the x-axis direction, and the magnetization free region 13 is provided between the first magnetization fixed region 11 and the second magnetization fixed region 12. However, the positional relationship between the first magnetization fixed region 11, the second magnetization fixed region 12, and the magnetization free region 13 in the present invention is not limited to this.
In the first embodiment of the present invention, the first magnetization fixed region 11 and the second magnetization fixed region 12 have magnetization fixed in the z 蚰 direction, and they are antiparallel to each other. It is fixed in the direction. In the example of FIG. 1, the magnetization of the first magnetization fixed region 11 is fixed in the + z direction, and the magnetization of the second magnetization fixed region 12 is fixed in the −z direction. The magnetization of the magnetization free region 13 can face either the + z direction or the −z direction.
When the magnetization in the magnetization free layer 10 is in the magnetization arrangement as shown in FIG. 1, a single domain wall is formed in the magnetization free layer 10. The domain wall is formed at either the boundary between the first magnetization fixed region 11 and the magnetization free region 13 or the boundary between the second magnetization fixed region 12 and the magnetization free region 13 according to the magnetization direction of the magnetization free region 13. .
The spin current generation layer 20 is made of a nonmagnetic conductor. The spin current generation layer 20 is preferably formed of an element having a large spin orbit interaction or contains an element having a large spin initiation interaction. The spin current generation layer 20 is provided adjacent to the magnetization free layer 10. In the example of FIG. 1, the spin current generation layer 20 is formed so as to cover the entire −z side surface of the magnetization free layer 10. However, more generally, the spin current generation layer 20 only needs to be adjacent to the magnetization free region 13 of the magnetization free layer 10 and does not necessarily have to be adjacent to the entire surface on one side.
The tunnel barrier layer 30 is made of a nonmagnetic material. The tunnel barrier layer 30 is provided adjacent to the magnetization free layer 10 on the surface opposite to the spin current generation layer 20. Preferably, the tunnel barrier layer 30 is formed so as to cover the entire one surface of the magnetization free layer 10. In the example of FIG. 1, the tunnel barrier layer 30 is formed so as to cover the entire surface of the magnetization free layer 10 on the + z side.
The reference layer 40 is provided adjacent to the tunnel barrier layer 30 on the surface of the tunnel barrier layer 30 opposite to the magnetization free layer 10. The reference layer 40 has a perpendicular magnetic anisotropy and has a ferromagnetic material whose magnetization direction is fixed. FIG. 1A shows an example in which the reference layer 40 is constituted by a laminated body made of ferromagnetic material / nonmagnetic material / ferromagnetic material. Further, in the example of FIG. 1A, an example is shown in which two ferromagnetic materials are antiferromagnetically coupled by a nonmagnetic material sandwiched between them. The reference layer 40 is provided so as to overlap at least the magnetization free region 13 of the magnetization free layer 10 in the xy plane. In the example illustrated in FIG. 1A, the reference layer 40 is disposed immediately above the magnetization free region 13 and is provided so as to be accommodated in the magnetization free region 13 in the xy plane. However, in practice, the reference layer 40 only needs to overlap with the magnetization free region 13 at least partially in the xy plane, and the size of the reference layer 40 may be larger than that of the magnetization free region 13.
In the first embodiment of the present invention, the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) has a ferromagnetic material having perpendicular magnetic anisotropy at least partially. . In addition, the first leakage magnetic field generation layer 51 is provided above or below the first magnetization fixed region 11 of the magnetization free layer 10. The second leakage magnetic field generation layer 52 is provided above or below the second magnetization fixed region 12 of the magnetization free layer 10.
The magnetizations of the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52 are fixed in antiparallel directions. In the example of FIG. 1A, the magnetization of the first leakage magnetic field generation layer 51 is fixed in the + z direction, and the magnetization of the second leakage magnetic field generation layer 52 is fixed in the −z direction.
The first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52 cause the magnetizations of the first magnetization fixed region 11 and the second magnetization fixed region 12 of the magnetization free layer 10 to be antiparallel to each other by the leakage magnetic field generated from each. It has a role of fixing and fixing a domain wall formed in the first magnetization free layer 10.
In addition, in the example of FIG. 1, a first spacer layer 61 and a second spacer layer 62 are provided in addition to the above. The first spacer layer 61 is provided between the spin current generation layer 20 and the first leakage magnetic field generation layer 51, and the second spacer layer 62 is the spin current generation layer 20 and the second leakage magnetic field generation layer 52. It is provided between. The spacer layers (the first spacer layer 61 and the second spacer layer 62) are made of a conductor.
In addition to the above layers, the magnetoresistive effect element 100 is preferably provided with a contact layer made of a conductor for connection to external wiring, but the contact layer is omitted in FIG. Yes.
[2. Memory state of magnetoresistive effect element]
Next, the memory state of the magnetoresistive effect element 100 according to the first exemplary embodiment of the present invention will be described with reference to FIG.
As described above, the magnetoresistive effect element 100 according to the first exemplary embodiment of the present invention includes at least the magnetization free layer 10, the spin current generation layer 20, the tunnel barrier layer 30, the reference layer 40, the leakage magnetic field. A generation layer (a first leakage magnetic field generation layer 51 and a second leakage magnetic field generation layer 52), and the magnetization free layer 10 has a ferromagnetic material at least partially. The magnetization free layer 10 includes a first magnetization fixed region 11 whose magnetization directions are fixed in antiparallel directions, a second magnetization fixed region 12, and a magnetization free region 13 whose magnetization direction is variable. .
In the magnetoresistive element 100 according to the present invention, the magnetization state of the magnetization free layer 10 is associated with stored information.
FIG. 2A and FIG. 2B show the magnetization structures in a state where “0” is stored as memory information and a state where “1” is stored in the magnetoresistive effect element 100 according to the present invention, respectively. It is a schematic diagram shown.
In the “0” state shown in FIG. 2A, the magnetization of the magnetization free region 13 in the magnetization free layer 10 is in the −z direction. At this time, the first magnetization fixed region 11 faces the + z direction, and the second magnetization fixed region 12 faces the -z direction. In this state, a domain wall DW (Domain Wall) is formed at the boundary between the magnetization free region 13 and the first magnetization fixed region 11.
On the other hand, in the “1” state shown in FIG. 2B, the magnetization of the magnetization free region 13 in the magnetization free layer 10 is in the + z direction. At this time, since the magnetization is directed in the + z direction in the first magnetization fixed region 11 and in the −z direction in the second magnetization fixed region 12, a domain wall (DW) is formed at the boundary between the magnetization free region 13 and the second magnetization fixed region 12. Is formed.
Thus, in the magnetoresistive effect element 100 according to the present invention, the magnetization direction of the magnetization free region 13 of the magnetization free layer 10 corresponds to stored information when viewed as a memory element, in other words, a domain wall. The position of (DW) corresponds to the stored information. The definition of the memory state in the magnetoresistive effect element 100 according to the present invention is not limited to the above, and the magnetization direction and memory of the first magnetization fixed region 11, the second magnetization fixed region 12, and the magnetization free region 13. It is self-evident that state associations are arbitrary.
Further, in the magnetoresistive effect element 100 according to the present invention, the magnetization direction (swing direction) of the domain wall (DW), the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52), , Is related to the direction of magnetization. Hereinafter, these will be described with reference to FIGS.
FIG. 3 is a schematic diagram showing the turning direction of the domain wall (DW). First, the turning direction of the domain wall will be described with reference to FIG.
In an ultrathin ferromagnetic layer that is asymmetric in the stacking direction, the Dzyaloshinskii-Moriya interaction works, the ferromagnetic layer has perpendicular magnetic anisotropy, and a domain wall is formed in it. It is known that the turning direction of the magnetization of the domain wall is defined by the Dzyaloshinskii-Moriya interaction. Specifically, the turning direction of the domain wall (DW) changes depending on the sign of the Dzyaloshinskii-Moriya interaction (see Non-Patent Document 4).
FIG. 3A shows a right-turning domain wall. In the right-turning domain wall (DW), the magnetization in the domain wall (DW) changes clockwise from left to right in the order of ↑ · → · ↓ or ↓ · ← · ↑.
On the other hand, FIG. 3B shows a left-turning type domain wall (DW). In the left-turning domain wall (DW), the magnetization in the domain wall changes counterclockwise from left to right in the order of ↑ · ← · ↓ or ↓ · → · ↑.
Next, FIG. 4 shows the magnetization direction of the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) when the magnetization free layer 10 has a right-turning type domain wall (DW). The relationship is shown.
In FIG. 4A and FIG. 4B, the leakage magnetic field generation layers (first leakage magnetic field generation layer 51 and second leakage magnetic field generation layer 52) in the “0” state and “1” state, respectively, The spacer layers (first spacer layer 61 and second spacer layer 62), the spin current generation layer 20, and the magnetization free layer 10 are shown.
Further, the leakage magnetic field H from the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52). str Is indicated by a broken line. As can be seen from FIG. 4A, in the “0” state, the leakage magnetic field H from the first leakage magnetic field generation layer 51 having magnetization fixed in the + z direction. str Has a + x direction component at the position of the domain wall (DW). 4B, the leakage magnetic field H from the second leakage magnetic field generation layer 52 having magnetization fixed in the −z direction even in the “1” state. str Has a component in the + x direction at the position of the domain wall (DW). All of these coincide with the magnetization direction of the domain wall (DW).
4C and 4D, the magnetization of the first leakage magnetic field generation layer 51 is fixed in the −z direction, and the magnetization of the second leakage magnetic field generation layer 52 is fixed in the + z direction. In this case, the magnetization arrangement and the direction of the leakage magnetic field are shown. In this case, the magnetization of the first magnetization fixed region 11 of the magnetization free layer 10 is fixed in the −z direction, and the magnetization of the second magnetization fixed region 12 is fixed in the + z direction. When the domain wall (DW) that is preferentially formed by the Dzyaloshinskii-Moriya interaction in the magnetization free layer 10 is clockwise, the magnetization of the domain wall (DW) faces the −x direction. Also in this case, the leakage magnetic field H generated from the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52 str The direction at the position of the domain wall (DW) of the x component coincides with the direction of magnetization of the domain wall.
Thus, in the magnetization free layer 10, when the domain wall (DW) formed preferentially has a right-turning property, the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) is By arranging the magnetic field at the lower side of the magnetization free layer 10, the magnetization of the domain wall and the leakage magnetic field H generated from the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52). str Can be matched with the in-plane component. An embodiment in which the domain wall (DW) formed in the magnetization free layer 10 has a left-turning property will be described later as a first modification.
Here, the case where the pivoting property of the domain wall (DW) formed in the magnetization free layer 10 is defined by the Dzyaloshinskii-Moriya interaction has been described as an example, but actually, the magnetization in the domain wall (DW) is a thin line. It does not matter what mechanism is fixed in the longitudinal direction (± x direction). For example, the present invention can be implemented if the magnetization free layer 10 is designed to have unidirectional anisotropy in the plane. Further, if the line width in the y direction of the magnetization free layer 10 is sufficiently narrower than the domain wall width, the nail domain wall is formed preferentially and stably. In this case, the present invention is implemented. Is possible. In other words, essentially, if the magnetization in the domain wall (DW) formed in the magnetization free layer 10 is designed to preferentially face in the longitudinal direction of the fine wire (± x direction), what kind of effect does it have? Even if it is based on, it is possible to acquire the effect of this invention.
[3. Method of writing information to magnetoresistive element]
Next, a method of writing information to the magnetoresistive effect element 100 according to the first embodiment of the present invention will be described with reference to FIG.
As described above, in the magnetoresistive effect element 100 according to the present invention, the position of the domain wall corresponds to the stored information. In the magnetoresistive effect element 100 according to the present invention, information is written by moving the domain wall by an electric current. The moving mechanism of the domain wall may be whatever, but the case where the domain wall (DW) is driven by the spin Hall effect and the Dzyaloshinskii-Moriya interaction will be described as an example.
When a current in the x direction is introduced into the spin current generation layer 20, a spin current is generated in the z direction due to the spin Hall effect, and electrons polarized in the + y direction or the −y direction flow into the magnetization free layer 10. Become. The spin-polarized electrons that flow in interact with the magnetization of the domain wall (DW).
Here, according to Non-Patent Document 4, when conduction electrons in + y or -y direction flow into a domain wall (DW) whose turning direction is defined in the + x direction or the -x direction by the Dzyalloshinskii-Moriya interaction, The domain wall (DW) moves in the same direction as or opposite to the current flowing in the flow generation layer 20. The moving direction of the domain wall (DW) is determined by the sign of the Dzyaloshinskii-Moriya interaction and the sign of the spin Hall effect.
In the following, each of the “1” write operation and the “0” write operation will be described by taking as an example the case where the domain wall (DW) moves in the current direction.
FIG. 5A and FIG. 5B are schematic diagrams showing an operation method when writing “1” as memory information and writing “0” in the magnetoresistive effect element 100 according to the present invention, respectively. It is.
In the “1” write operation shown in FIG. 5A, a “1” write current I is generated in the spin current generation layer 20. w1 Is flowed in the + x direction. At this time, a spin current is generated in the z direction in the spin current generation layer 20, and electrons polarized in the y direction flow into the magnetization free layer 10. Thereby, spin transfer torque acts on the domain wall (DW) formed at the boundary between the magnetization free region 13 and the first magnetization fixed region 11. Spin transfer torque is a phenomenon in which spin angular momentum shifts from spin-polarized electrons to a domain wall (DW). Therefore, the domain wall (DW) that has received the spin transfer torque moves in the magnetization free region 13 and consequently changes the magnetization direction of the magnetization free layer 13.
In the example of FIG. 5A, the direction of the domain wall (DW) subjected to the spin transfer torque is represented by the torque from the electron spin-polarized in the + y direction to the domain wall (DW) oriented in the + x direction. be able to. Since the torque can be expressed by the outer product of two vectors, the domain wall (DW) subjected to the spin transfer torque faces the + z direction. Then, in the magnetization free region 13, since the adjacent magnetizations are more stable if they are directed in the same direction, the magnetizations adjacent to the + z direction subjected to the spin transfer torque are also directed to the + z direction. A domain wall (DW) is formed at the boundary between the magnetization free region 13 and the second magnetization fixed region 12. Therefore, the domain wall (DW) moves from the boundary between the magnetization free region 13 and the first magnetization fixed region 11 to the boundary between the magnetization free region 13 and the second magnetization fixed region 12.
The domain wall (DW) stops at the boundary between the magnetization free region 13 and the second magnetization fixed region 12 because the magnetization of the second magnetization fixed region 12 is fixed by the leakage magnetic field from the second leakage magnetic field generation layer 52. This is due to the fact that The magnetization state realized by this is nothing but the “1” state shown in FIG. Thus, “1” write current I w1 Can be rewritten from “0” state to “1” state.
On the other hand, in the “0” write operation shown in FIG. 5B, the “0” write current I is generated in the spin current generation layer 20. w0 Is flowed in the -x direction. At this time, a spin current is generated in the + z direction in the spin current generation layer 20, and electrons that are spin-polarized in the −y direction flow into the magnetization free layer 10. As a result, spin transfer torque acts on the domain wall (DW) formed at the boundary between the magnetization free region 13 and the second magnetization fixed region 12. The direction of the domain wall (DW) after receiving the spin transfer torque can be represented by the torque from the electron spin-polarized in the −y direction to the domain wall (DW) facing the + x direction. In this case, the domain wall (DW) that has received the spin transfer torque faces the -z direction. Then, in the magnetization free region 13, the adjacent magnetizations are more stable if they are directed in the same direction. Therefore, the magnetization adjacent to the −z direction due to the spin transfer torque is also directed to the −z direction. A domain wall (DW) is formed at the boundary between the magnetization free region 13 and the first magnetization fixed region 11. Therefore, the domain wall (DW) moves from the boundary between the magnetization free region 13 and the second magnetization fixed region 12 to the boundary between the magnetization free region 13 and the first magnetization fixed region 11.
The domain wall (DW) stops at the boundary between the magnetization free region 13 and the first magnetization fixed region 11 because the magnetization of the first magnetization fixed region 11 is fixed by the leakage magnetic field from the first leakage magnetic field generation layer 51. Due to As a result, the realized magnetization state is nothing but the “0” state shown in FIG. Thus, “0” write current I w0 Can be rewritten from the “1” state to the “0” state.
In this way, by introducing a bidirectional write current into the magnetization free layer 10, the stored information can be rewritten between the “0” state and the “1” state. In FIG. 5, the write current I w1 And I w0 Is written so as to pass through the first leakage magnetic field generation layer 51, the first spacer layer 61, the second spacer layer 62, and the second leakage magnetic field generation layer 52. The path of this write current is It is not limited to this. The writing current may follow any path as long as it passes through the spin current generation layer 20.
Further, in the “0” state, the “0” write current I w0 And “1” write current I in the “1” state. w1 When is introduced, the memory state does not change. That is, in the magnetoresistive effect element 100 according to the present invention, information can be overwritten.
[4. Method of reading information from magnetoresistive element]
Next, a method for reading information from the magnetoresistive effect element 100 according to the first exemplary embodiment of the present invention will be described with reference to FIG.
As described above, in the magnetoresistive effect element 100 according to the present invention, the magnetization direction of the magnetization free region 13 of the magnetization free layer 10 corresponds to stored information stored therein. In the magnetoresistive effect element 100 according to the present invention, information is read using the tunnel magnetoresistive effect generated by the relative angle of magnetization between the magnetization free region 13 and the reference layer 40.
FIG. 6A and FIG. 6B are schematic diagrams of operation methods when reading “0” and “1” as memory information in the magnetoresistive effect element 100 according to the present invention, respectively. In any case, the read current I R Is introduced so as to penetrate the reference layer 40, the tunnel barrier layer 30, and the magnetization free layer 10.
Here, the memory information is discriminated between the “0” state and the “1” state according to the magnitude of the tunnel magnetoresistance due to the tunnel magnetoresistance effect when the current is introduced. The tunnel magnetoresistive effect is obtained when, for example, when a current is introduced into an element composed of the ferromagnetic layer 1 / insulating layer / ferromagnetic layer 2, the magnetization of the ferromagnetic layer 1 and the ferromagnetic layer 2 This is a phenomenon in which the electrical resistance changes depending on the relative angle to magnetization. When the relative angle between the ferromagnetic layer 1 and the ferromagnetic layer 2 is 0 °, the tunnel magnetoresistance is minimum, and when the relative angle is 180 °, the tunnel magnetoresistance is maximum. The same applies to the magnetoresistive effect element according to the present invention.
In the case of reading “0” shown in FIG. 6A, the magnetization direction of the ferromagnetic layer adjacent to the nonmagnetic layer 20 in the reference layer 40 is in the −z direction, and the magnetization free layer. The magnetization of the magnetization free region 13 out of 10 is also in the −z direction. In this case, the relative angle between the two magnetizations is 0 °. Therefore, when a current is introduced in a direction penetrating the reference layer 40, the tunnel barrier layer 30, and the magnetization free layer 10, a low resistance state is observed due to the tunnel magnetoresistance effect.
On the other hand, when “1” shown in FIG. 6B is read, the magnetization of the ferromagnetic layer adjacent to the tunnel barrier layer 30 in the reference layer 40 is in the −z direction, and the magnetization is The magnetization of the magnetization free region 13 in the free layer 10 is in the + z direction. In this case, the relative angle between the two magnetizations is 180 °. Therefore, when a current is introduced in a direction penetrating the reference layer 40, the tunnel barrier layer 30, and the magnetization free layer 10, a high resistance state is observed due to the tunnel magnetoresistance effect.
As described above, the resistance in the magnetoresistive effect element 100 changes depending on the relative angle between the magnetization of the magnetization free region 13 and the magnetization of the reference layer 40. The information can be read out.
In FIG. 4, the read current I R Includes a leakage magnetic field generation layer (first leakage magnetic field generation layer 51 / second leakage magnetic field generation layer 52), a spacer layer (first spacer layer 61 / second spacer layer 62), a spin current generation layer 20, and a magnetization. Although introduced through the path of the free layer 10, the tunnel barrier layer 30, and the reference layer 40, as can be seen from the above description, the read current I R However, the route is not limited to this. That is, as long as a current flows in a direction penetrating the reference layer 40, the tunnel barrier layer 30, and the magnetization free region 13 of the magnetization free layer 10, other paths may be used. It is self-evident that there is nothing.
[5. Circuit configuration of magnetic memory]
Next, the circuit configuration and circuit operation method of the magnetic memory 300 according to the first embodiment of the present invention will be described with reference to FIGS. The circuit configuration described here is an example for forming the magnetic memory 300 by using the magnetoresistive effect element 100 according to the present invention, and the same effect as that of the present invention can be obtained by using other circuit configurations. Can be provided.
As described above, the magnetic memory 300 according to the present invention includes a plurality of magnetic memory cells 200 arranged in an array, and each magnetic memory cell 200 includes the magnetoresistive effect element 100.
FIG. 7 is a schematic diagram showing an example of a circuit configuration of one magnetic memory cell 200 constituting the magnetic memory 300 according to the present invention. In the magnetic memory cell 200, the magnetoresistive effect element 100 is connected to the first bit line 102a, the second bit line 102b, the word line 103, and the ground line 104. A terminal connected to the reference layer 40 is connected to the ground line 104.
The first magnetization fixed region 11 is connected to the source / drain of the first cell transistor 101a via the first spacer layer 61 and the first leakage magnetic field generation layer 51.
The second magnetization fixed region 12 is connected to the source / drain of the second cell transistor 101b via the second spacer layer 62 and the second leakage magnetic field generation layer 52.
The gate electrodes of the first cell transistor 101 a and the second cell transistor 101 b are connected to the word line 103.
Further, the terminals of the source / drain of the first cell transistor 101a and the second cell transistor 101b opposite to the side connected to the magnetoresistive effect element 100 are the first bit line 102a and the second bit, respectively. It is connected to the bit line 102b.
When information is written, the word line 103 is set to a high level, whereby the first cell transistor 101a and the second cell transistor 101b are turned on. Information can be written to the magnetoresistive effect element 100 by setting either the first bit line 102a or the second bit line 102b to High.
When reading information, the word line 103 is set to a high level, whereby the first cell transistor 101a and the second cell transistor 101b are turned on. Then, information can be read from the magnetoresistive effect element 100 by setting both the first bit line 102a and the second bit line 102b to High, or setting one to High and the other to Open. It becomes.
FIG. 8 is a schematic diagram showing an example of a circuit block showing the configuration of the magnetic memory 300 according to the present invention. The magnetic memory 300 includes a memory cell array 110, an X driver 120, a Y driver 130, and a controller 140.
The memory cell array 110 has a plurality of magnetic memory cells 200 arranged in an array.
Each magnetic memory cell 200 is connected to the first bit line 102 a, the second bit line 102 b, the word line 103, and the ground line 104.
The X driver 120 is connected to a plurality of word lines 103 and drives a word line 103 connected to the access target magnetic memory cell 200 among the plurality of word lines 103.
The Y driver 130 is connected to the plurality of first bit lines 102a and the plurality of second bit lines 102b, and the plurality of first bit lines 102a and the plurality of second bit lines 102b are connected to desired data. Set to write / read state.
The controller 140 controls each of the X driver 120 and the Y driver 130 in accordance with data writing or data reading. The ground line 104 connected to the reference layer 30 of the magnetoresistive effect element 100 is connected to the X driver 120, but this may be replaced by a read bit line connected to the Y driver 130. Is possible.
[6. Material and film thickness]
Next, materials that can be used for the magnetoresistive effect element 100 according to the first embodiment of the present invention and preferred film thickness ranges thereof will be described.
The material of the magnetization free layer 10 preferably includes at least one 3d ferromagnetic transition metal element such as Fe, Co, Ni (however, although it does not include the 3d ferromagnetic transition metal element, Mn—Al, Mn—Ga). Are also suitable as the material of the magnetization free layer 10). Further, as described above, the magnetization free layer 10 has perpendicular magnetic anisotropy. This perpendicular magnetic anisotropy may be derived from crystalline magnetic anisotropy or from interfacial magnetic anisotropy. When utilizing magnetocrystalline anisotropy, alloy materials such as Fe-Pt, Co-Pt, Fe-Pd, Fe-Ni, Sm-Co, Co-Cr-Pt, Co / Pt, Co / Pd, Co / Alternating films such as Ni and Fe / Au can be used.
On the other hand, when interfacial magnetic anisotropy is utilized, various materials including Fe, Co, and Ni can be used. Specifically, Fe-Co, Fe-Co-Ni, Co-Ni, etc. are illustrated. Further, elements such as B, C, N, O, F, Si, Al, P, and S may be added thereto. For example, Co—Fe—B is exemplified.
The thickness of the magnetization free layer 10 is preferably thin in order to increase the influence of the Dzyaloshinskii-Moriya interaction and efficiently move the domain wall with a small current. Since the lower limit on the low film thickness side is a monoatomic layer, it is about 0.2 nm. Although the upper limit of the film thickness is arbitrary, it is preferably 5 nm or less, more preferably 2 nm or less. In particular, when interfacial magnetic anisotropy is used, the upper limit of the film thickness is set in consideration of the magnitude of interfacial magnetic anisotropy and saturation magnetization.
The spin current generation layer 20 is made of a nonmagnetic conductor. Preferably, it is composed of an element having a large spin-initiated interaction or a material containing an element having a large spin-initiated interaction. Specifically, W, Ta, Hf, Re, Os, Ir, Pt, Bi, etc. are illustrated. In addition, another element can be added to these elements to control the magnitude and sign of the spin Hall effect and the Dzyaloshinskii-Moriya interaction. Examples of elements added for this purpose include B, O, N, C, Al, Si, and P. Moreover, you may dope these heavy elements by making light elements, such as Cu and Al, into a parent phase.
The lower limit of the film thickness of the spin current generation layer 20 is set as the lower limit of the film thickness at which the spin Hall effect appears. Generally, the lower limit of the film thickness at which the spin Hall effect appears is about two atomic layers, and is about 0.2 nm.
The upper limit of the film thickness of the spin current generation layer 20 is determined by the spin diffusion length of the material. Although this varies greatly depending on the material, it is about several nanometers in the case of heavy elements such as Ta, W, and Pt. On the other hand, in Cu etc., it is several hundred nm. However, since the write current increases if it is too thick, the film thickness is preferably designed in consideration of the write current. The upper limit of the film thickness of the spin current generation layer 20 is preferably 10 nm, and more preferably 5 nm.
The tunnel barrier layer 30 is made of an insulator containing any one of N, O, and C. Specifically, Mg-O, Al-O, Si-O, Si-N, Si-CN, Mg-N, Al-N, Zn-O, Zn-N and the like are exemplified. The film thickness of the tunnel barrier layer 30 is designed so as to obtain desired readout characteristics. Specifically, a film thickness of about 0.5 nm to 2 nm can be used.
Various ferromagnetic materials having perpendicular magnetic anisotropy can be used for the reference layer 40. Therefore, it is desirable to contain any element of Fe, Co, and Ni (however, although ferromagnetic material is not included, Mn—Al, Mn—Ga, etc. can be used as the reference layer 40). Since the material which can be used specifically overlaps with the case of the magnetization free layer 10, it is omitted.
The reference layer 40 may be a laminate of different ferromagnetic layers and nonmagnetic layers. As described above, in the examples shown so far, the reference layer 40 has a structure in which ferromagnetic / non-magnetic / ferromagnetic materials are stacked, and the magnetizations of the two ferromagnetic layers are antiparallel. It is fixed. Further, a layer adjacent to the tunnel barrier layer 30 in the reference layer 40 is made of a material having a high spin polarization rate so as to obtain a high tunnel magnetoresistive effect ratio, or a high tunnel by combining with the tunnel barrier layer 30. It is desirable to use a material that can provide a magnetoresistive effect ratio. Based on the above, examples of the laminated structure used for the reference layer 40 include a Co—Fe—B / [Co / Pt] laminated film / Ru / [Co / Pt] laminated film in order from the tunnel barrier layer 30 side. .
Further, the thickness of the reference layer 40 is arbitrarily designed. However, the leakage magnetic field generated from the reference layer 40 is desirably small at the height of the magnetization free layer 10. Therefore, it is desirable that the laminated structure of the reference layer 40 is designed so that the leakage magnetic field becomes small at the height of the magnetization free layer 10.
In the first embodiment of the present invention, various ferromagnetic materials having perpendicular magnetic anisotropy are used for the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52). be able to. Therefore, it is desirable to contain any element of Fe, Co, and Ni (however, although a ferromagnetic material is not included, Mn—Al, Mn—Ga, etc. can be used as a leakage magnetic field generation layer). Since the material specifically used overlaps with the case of the magnetization free layer 10, it is omitted. The leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) is preferably made of a material having a large saturation magnetization in order to generate a large leakage magnetic field. Specifically, Fe-Pt, Co / Pt, Co-Fe / Pt, etc. are exemplified.
The film thickness of the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) can be arbitrarily designed. For example, the thickness of the leakage magnetic field generation layer is set in a range of 1 nm or more and 30 nm or less. The leakage magnetic field generation layers are the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52, and it is necessary to direct the magnetization in an antiparallel direction. Therefore, the first magnetic field generation layer 51 and the second leakage magnetic field generation layer It is desirable to make the magnetic characteristics of 52 different. This can be realized by changing the material, film configuration, film thickness, manufacturing method, and the like.
As the spacer layer (the first spacer layer 61 and the second spacer layer 62), any conductive material can be used. Specifically, Ta, W, Au, Ag, Cu, Ti, V, Cr, Al and the like are exemplified.
Further, the thickness of the spacer layer is such that the magnitude of the leakage magnetic field from the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) at the position of the magnetization free layer 10 is optimized. Designed to. A suitable film thickness range of the spacer layer will be described later.
[7. principle]
Next, the principle of the magnetoresistive effect element 100 according to the present invention will be described with reference to the calculation results shown in FIGS.
In the magnetization free layer 10, the inventors have defined a domain wall (DW) having a swirl direction defined by a Dzyaloshinskii-Moriya interaction, that is, a domain wall when driven by a spin current from an adjacent spin current generation layer 20. (DW) dynamics were numerically calculated by the Landau-Lifshitz-Gilbert equation using collective coordinates (see Non-Patent Document 4). As collective coordinates describing the state of the domain wall (DW), q representing the position of the domain wall (DW) and φ representing the magnetization angle of the domain wall (DW) were used. Here, φ is 0 when facing the longitudinal direction of the fine wire.
When the domain wall (DW) defined in the swirl direction by the Dzyaloshinskii-Moriya interaction is driven by the spin current from the adjacent spin current generation layer 20, there is no mechanism for constraining any domain wall (DW) to the thin line. In some cases, there is no threshold current to drive the domain wall (DW). Therefore, the present inventors incorporated a constraint mechanism of two domain walls (DW) into the calculation. They are shown in FIG. The first is a case where a local x-direction magnetic field is present (in the longitudinal direction of the thin line) as shown in FIG. A quadratic function was assumed as the shape of the local x-direction magnetic field. Specifically, -q x0 To + q x0 In the range, the x-direction magnetic field is given by Equation 1 below.
Figure JPOXMLDOC01-appb-I000001
Here, q represents the position of the domain wall (DW) in the x direction, and −q x0 To + q x0 Outside of H x A function such that (q) = 0 was assumed.
The second is a case where the energy ε per unit area felt by the domain wall (DW) is given by a quadratic function, specifically, −q 0 To + q 0 Is given by the following formula 2.
Figure JPOXMLDOC01-appb-I000002
-Q 0 To + q 0 Outside of ε (q) = MH c0 q 0 We assumed a function such that
FIG. 10 shows the calculation results of the time evolution of the collective coordinates q and φ when only the former of the two domain wall (DW) constraint mechanisms described above is present. The broken line, solid line, and dotted line are μ 0 H x0 Represents calculation results in the case of −100 mT, 0 mT, and 100 mT. As can be seen from FIG. 10, the time evolution of the magnetization angle φ in the domain wall (DW) is H in any case. x0 It can be seen that there is little effect on the time evolution of the domain wall (DW) position q. When the calculation was performed while changing the applied current density, it was found that there was no threshold current when the domain wall (DW) constrained by the local leakage magnetic field in the x direction was driven by the current.
FIG. 11 shows the threshold current density H that is not necessary for the domain wall (DW) to escape from the restrained position when both of the restraining mechanisms for the two domain walls (DW) described above are present. x0 Dependency, H c0 Dependencies are shown. FIG. 11 is different from FIG. 10 in that the finite threshold current density j c Is present. It should be noted here that the threshold current density j c Is H x0 And H c0 The dependency is different. That is, H x0 Is not dependent on H c0 It can be seen that is dependent on linearity.
On the other hand, from analytical calculations based on the energy of the system, H x0 And H c0 In both cases, it is found that there is a linear dependence on the threshold magnetic field that is not necessary when the magnetic wall (DW) is escaped from the restrained position by a magnetic field. That is, the threshold magnetic field is H x0 Whereas there is a linear dependence on the threshold current density j c Is H x0 Is not dependent on. This is H x0 By increasing, the thermal stability can be increased as much as possible, while the threshold current density does not increase. This is a very important characteristic in achieving both the thermal stability and the low current characteristic of the magnetic memory.
In the present invention, in the information holding state, it is the most important point that the domain wall (DW) is constrained by using the local leakage magnetic field in the x direction and the domain wall (DW) is driven by a small current. . In other words, the leakage magnetic field generated from the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) has an x component as large as possible at the position of the magnetization free layer 10, while z Component (z component of the leakage magnetic field is H c0 It should be small enough.
FIG. 12 shows the calculation result of the leakage magnetic field from the leakage magnetic field generation layer performed by the present inventors. As the leakage magnetic field generation layer, a rectangular parallelepiped having a length in the x direction and the y direction of 100 nm and a film thickness in the z direction of 10 nm was assumed, and the saturation magnetization was assumed to be 1000 emu / cc.
The graph shows the result of calculation using the x component and z component of the leakage magnetic field formed at the height of h from the upper surface of the magnetic body as the horizontal axis. It can be seen that a large leakage magnetic field appears in both the x direction and the z direction at the edge portion of the leakage magnetic field generation layer. Where z-direction leakage magnetic field H z Paying attention to the enlarged view of 0 H z It can be seen that when the height h from the leakage magnetic field generation layer is increased, the height decreases rapidly. Especially when the height h from the generation of the leakage magnetic field is 10 nm or more 0 H z Is 20 mT or less, and when the height h from the generation of the leakage magnetic field is 15 nm or more, μ 0 H z Is less than 10 mT, which is the threshold current density j c It is considered that there is no problem as an effect on For this reason, the distance between the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) and the height direction of the magnetization free layer 10 is 10 nm or more, more preferably 15 nm or more. Is desirable. Accordingly, the total film thickness of the spacer layers (first spacer layer 61 and second spacer layer 62) and the spin current generating layer 20 is desirably 10 nm or more, and more desirably 15 nm or more.
[8. First Modification]
FIGS. 13A to 13D are cross-sectional views schematically showing the structure of a first modification of the magnetoresistance effect element 100 according to the first exemplary embodiment of the present invention. The first modification is an embodiment in which the domain wall (DW) formed in the magnetization free layer 10 has a left-turning property.
When the domain wall (DW) formed in the magnetization free layer 10 has a left-turning property, as shown in FIGS. 13 (a) and 13 (b), the first magnetization fixed region is in the + z direction, When the two magnetization fixed regions have magnetization fixed in the −z direction, the magnetization of the domain wall (DW) faces the −x direction. In this case, by arranging the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) on the upper side (+ z side) with respect to the magnetization free layer 10, the domain wall ( DW) can be restrained. 13A shows the magnetization arrangement in the “0” state, and FIG. 13B shows the magnetization arrangement in the “1” state. As can be seen, at the position of the domain wall (DW), the leakage magnetic field from the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) has a −x direction component.
FIG. 13C and FIG. 13D show a “0” state and a “1” state when the first magnetization fixed region has magnetization fixed in the + z direction and the second magnetization fixed region in −z direction. The magnetization arrangement at is shown. In this case, the leakage magnetic field from the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) has a + x direction component at the position of the domain wall (DW), and again the domain wall (DW). It can be seen that this coincides with the magnetization direction.
In the example shown in FIG. 13, the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) is provided electrically separated from the magnetization free layer 10. In this way, it may be arranged in any way as long as the leakage magnetic field is applied even if it is not electrically connected.
12, the distance between the upper surface of the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) and the center height of the magnetization free layer 10 is more preferably 10 nm or more. However, the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) as shown in FIG. In this case, this distance is defined as the distance between the center height of the magnetization free layer 10 and the lower surface of the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52). it is obvious.
[9. Second Modification]
FIG. 14A and FIG. 14B are cross-sectional views schematically showing the structure of a second modification of the magnetoresistance effect element 100 according to the first exemplary embodiment of the present invention.
14A corresponds to the “0” state, and FIG. 14B corresponds to the “1” state. In the second modification, a first leakage magnetic field generation layer 51, a second leakage magnetic field generation layer 52, a third leakage magnetic field generation layer 53, and a fourth leakage magnetic field generation layer 54 are provided as the leakage magnetic field generation layer. It has been.
The first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52 are below the magnetization free layer 10 (−z side), and the third leakage magnetic field generation layer 53 and the fourth leakage magnetic field generation layer 54 Is provided above the magnetization free layer 10 (+ z side).
In the second modification, for example, the first leakage magnetic field generation layer 51 is provided below the first magnetization fixed region 11 and the third leakage magnetic field generation layer 53 is provided above. Thereby, the magnitude of the leakage magnetic field in the z direction at the position of the domain wall (DW) can be reduced, and at the same time, the leakage magnetic field in the x direction can be increased. In FIG. 11, the leakage magnetic field in the z direction is not necessary for driving with the domain wall (DW) current, and the threshold current density is increased, whereas the leakage magnetic field in the x direction has no effect. It was done. However, by using the second modification, it is possible to increase the thermal stability of the element by increasing the leakage magnetic field in the x direction and simultaneously reduce the write current by decreasing the leakage magnetic field in the z direction.
[10. Third Modification]
FIGS. 15A and 15B are cross-sectional views schematically showing the structure of a third modification of the magnetoresistance effect element 100 according to the first exemplary embodiment of the present invention.
FIG. 15A corresponds to the “0” state, and FIG. 15B corresponds to the “1” state. In the third modification, the reference layer 40 and the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) are formed of the same material in the same layer. By forming the reference layer 40 and the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) in the same layer, a film forming process for forming the leakage magnetic field generation layer is unnecessary. Therefore, the number of steps can be reduced. Note that FIG. 15 shows an example in which the height of the upper surface is changed in each of the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52, thereby making the magnetic characteristics different.
[11. Fourth Modification]
FIGS. 16A and 16B are cross-sectional views schematically showing the structure of the fourth modification example of the magnetoresistive effect element 100 according to the first exemplary embodiment of the present invention.
16A corresponds to the “0” state, and FIG. 16B corresponds to the “1” state. The fourth modification is a modification in which the technical ideas of both the second modification and the third modification are combined. A first leakage magnetic field generation layer 51 and a second leakage magnetic field generation layer 52 are formed on the lower side (−z side) of the magnetization free layer 10, and the same material as the reference layer 40 is formed on the upper side (+ z side) with the same material. Thus, a third leakage magnetic field generation layer 53 and a fourth leakage magnetic field generation layer 54 are formed.
[12. Fifth Modification]
FIG. 17 is a perspective view schematically showing the structure of the fifth modification example of the magnetoresistance effect element 100 according to the first exemplary embodiment of the present invention.
In the fifth modification, the reference layer 40, the tunnel barrier layer 30, the magnetization free layer 10, and the spin current generation layer 20 are stacked in this order from the substrate side. The reference layer 40 is processed into the same shape as the magnetization free layer 10. As shown in FIG. 17, in the magnetoresistive effect element 100 according to the present invention, the stacking order of the reference layer 40, the tunnel barrier layer 30, the magnetization free layer 10 and the spin current generation layer 20 is arbitrary, Further, the size of the reference layer 40 is also arbitrary.
[13. Sixth Modification]
FIG. 18A and FIG. 18B are cross-sectional views schematically showing the structure of a sixth modification of the magnetoresistance effect element 100 according to the first exemplary embodiment of the present invention.
18A corresponds to the “0” state, and FIG. 18B corresponds to the “1” state. In the sixth modification, an in-plane magnetization leakage magnetic field generation layer (first in-plane magnetization leakage magnetic field generation layer 71 and second in-plane magnetization leakage magnetic field generation layer 72) having in-plane magnetic anisotropy is provided.
The in-plane magnetization leakage magnetic field generation layer (the first in-plane magnetization leakage magnetic field generation layer 71 and the second in-plane magnetization leakage magnetic field generation layer 72) increases the leakage magnetic field in the ± x direction at the position of the domain wall (DW). Provided. In FIG. 18, the magnetization of the first magnetization fixed region 11 and the first leakage magnetic field generation layer 51 is upward (+ z direction), and the magnetization of the second magnetization fixed region 12 and the second leakage magnetic field generation layer 52 is downward (−z). Direction). Moreover, the case where the domain wall (DW) is right-turning is shown.
The magnetization directions of the first in-plane magnetization leakage magnetic field generation layer 71 and the second in-plane magnetization leakage magnetic field generation layer 72 at this time are fixed in the −x direction in FIG. However, in practice, the position of the domain wall (DW) is such that the magnetization is fixed in the + x direction according to the position where the first in-plane magnetization leakage magnetic field generation layer 71 and the second in-plane magnetization leakage magnetic field generation layer 72 are provided. In some cases, the magnitude of the leakage magnetic field in the x direction at can be increased. These can be appropriately designed by the manufacturer.
In FIG. 18, the in-plane magnetization leakage magnetic field generation layer (the first in-plane magnetization leakage magnetic field generation layer 71 and the second in-plane magnetization leakage magnetic field generation layer 72) includes the spin current generation layer 20 and the spacer layer (first spacer). The in-plane magnetization leakage magnetic field generation layer (first in-plane magnetization leakage magnetic field generation layer 71, second in-plane magnetization leakage magnetic field generation layer) is formed between the layer 61 and the second spacer layer 62). The position where 72) is provided is not limited to this. For example, it may be between the leakage magnetic field generation layer (first leakage magnetic field generation layer 51 / second leakage magnetic field generation layer 52) and the spacer layer (first spacer layer 61 / second spacer layer 62), or the leakage magnetic field. It may be below the generation layers (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) or may be above the magnetization free layer 10.
[14. Seventh Modification]
FIG. 19A and FIG. 19B are cross-sectional views schematically showing the structure of the seventh modification example of the magnetoresistance effect element 100 according to the first exemplary embodiment of the present invention.
FIG. 19A corresponds to the “0” state, and FIG. 19B corresponds to the “1” state. In the seventh modification, the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) is formed to have a taper. As shown in FIG. 19, by forming the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) to have a taper, the x direction at the position of the domain wall (DW). It is possible to adjust the magnitude of the leakage magnetic field in the z direction. FIG. 19 shows an example in which the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) is processed into a trapezoidal shape having a lower bottom than the upper bottom. However, in practice, it may be processed into a trapezoidal shape in which the lower base is shorter than the upper base. This modification can also be used when the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) is disposed on the upper side of the magnetization free layer 10.
Examples of the method of processing the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) so as to have a taper include adjustment of the shape of the hard mask, etching gas, etching conditions, and the like.
[15. Eighth Modification]
20 (a) and 20 (b) are cross-sectional views schematically showing the structure of an eighth modification of the magnetoresistance effect element 100 according to the first exemplary embodiment of the present invention.
In the eighth modification, the reference layer 40 and the magnetization free layer 10 are formed in the same shape. In general, the reference layer 40 only needs to overlap the magnetization free region 13 in the magnetization free layer 10 in the xy plane, and the shape thereof may be any. The reference layer 40 also generates a leakage magnetic field, and the magnetic field is also applied to the magnetization free layer 10. However, the reference layer 40 is magnetized by forming the reference layer 40 with a larger area than the magnetization free region 13 as in the eighth modification. The magnitude of the leakage magnetic field applied to the free region 13 can be reduced.
[16. Second Embodiment]
Next, the structure and operation method of the magnetoresistive element 100 according to the second embodiment of the present invention will be described. In the first embodiment, it has been described that the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) has a ferromagnetic material having perpendicular magnetic anisotropy at least partially. . On the other hand, in the second embodiment, the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) is made of a ferromagnetic material having in-plane magnetic anisotropy at least partially. It is characterized by having.
FIGS. 21A and 21B show a state in which “0” is stored as memory information in the magnetoresistive effect element 100 according to the second embodiment of the present invention, and “1” is stored, respectively. It is a schematic diagram which shows the magnetized structure in the state.
In the example shown in FIG. 21, the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52 have magnetization fixed in the in-plane direction, and they are directed in the −x direction. In this case, in the first magnetization fixed region 11 formed on the first leakage magnetic field generation layer 51 and the second magnetization fixed region 12 formed on the second leakage magnetic field generation layer 52, A leakage magnetic field is applied, and as a result, the magnetizations of the first magnetization fixed region 11 and the second magnetization fixed region 12 are fixed in the + x direction.
In the first embodiment, a 180-degree domain wall is formed in the magnetization free layer 10, whereas in the second embodiment, a 90-degree domain wall is formed. Even if the domain wall to be formed is a 90-degree domain wall, if the domain wall has a magnetization component in the longitudinal direction in the magnetization free layer 10 (in the + x direction in the example of FIG. 21), the first embodiment The domain wall can be driven in the direction of current or electrons by the spin Hall effect described above, and the moving direction is determined by the sign of the spin hole angle.
The information writing method, reading method, circuit configuration, and the like in the second embodiment are the same as those in the first embodiment, and a description thereof will be omitted.
In the case of the second embodiment, a magnetic field is applied in the in-plane direction from the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52) even if the Dzyaloshinskii-Moriya interaction does not work. Therefore, the domain wall can be moved by the spin Hall effect. In the second embodiment, the magnetizations of the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52 may be fixed in parallel directions. This is preferable to the first embodiment from the viewpoint of ease of manufacture.
The materials that can be used for each layer in the second embodiment are the same as those in the first embodiment except for the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52). Description is omitted. A ferromagnetic material having in-plane magnetic anisotropy can be used for the leakage magnetic field generation layer (the first leakage magnetic field generation layer 51 and the second leakage magnetic field generation layer 52). Specifically, Fe, Co, Ni, Fe—Co, Fe—Co—Ni and the like are exemplified. Other elements may be added to increase the coercive force. Furthermore, an antiferromagnetic material may be adjacent to stabilize the magnetization fixation. Examples of the antiferromagnetic material used include Pt—Mn, Ir—Mn, Fe—Mn, and Ni—Mn.
FIG. 22A and FIG. 72B schematically show the structure of the first modification of the magnetoresistive element 100 according to the second exemplary embodiment of the present invention, respectively. FIGS. 22A and 22B are schematic diagrams of a magnetization structure in a state where “0” is stored as memory information and a state where “1” is stored, respectively.
In the present modification, the leakage magnetic field generation layers (the third leakage magnetic field generation layer 53 and the fourth leakage magnetic field generation layer 54) are provided electrically separated from the magnetization free layer 10. Even when the leakage magnetic field generation layer (the third leakage magnetic field generation layer 53 and the fourth leakage magnetic field generation layer 54) is provided electrically separated from the magnetization free layer 10, it is sufficient for the magnetization free layer 10. As long as a leakage magnetic field having a magnitude is applied, the position of the leakage magnetic field generation layer (the third leakage magnetic field generation layer 53 and the fourth leakage magnetic field generation layer 54) may be arbitrary. In the case of this modification, a first plug layer 81 and a second plug layer 82 are provided adjacent to both ends of the spin current generation layer 20 as layers for introducing a write current. The first plug layer 81 and the second plug layer 82 are electrically connected to the write cell transistor.
The present invention is not limited to the above-described embodiments, and it is obvious that each embodiment can be appropriately modified or changed within the scope of the technical idea of the present invention.
 本発明に係る磁気抵抗効果素子100、及び磁気メモリ300は、メガビット、ギガビットクラスの大規模なメモリアレイのみならず、キロビット、メガビットクラスの高速で動作するキャッシュメモリやシステムLSIのロジック領域に設けられるレジスタのような単ビットや数ビットの一時的な記憶素子、さらにはロジックインメモリアーキテクチャにおける記憶素子にも適用できる。
 本発明の産業上の利用可能性として、携帯電話などのモバイル機器やパソコンに使用される不揮発性の半導体メモリ装置や、自動車やゲーム機などに使用される不揮発性メモリ内蔵のマイコンにおけるメモリ部分、及びロジック部分に接続されるキャッシュメモリやレジスタなどの一時記憶素子が挙げられる。
 この出願は、2013年11月6日に出願された日本出願特願第2013−229971号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
The magnetoresistive element 100 and the magnetic memory 300 according to the present invention are provided not only in a large-scale memory array of megabit and gigabit classes, but also in a logic area of a cache memory or system LSI that operates at a high speed of kilobits or megabits class. The present invention can also be applied to a single-bit or several-bit temporary storage element such as a register, or a storage element in a logic-in-memory architecture.
Industrial applicability of the present invention includes a non-volatile semiconductor memory device used in mobile devices such as mobile phones and personal computers, and a memory portion in a microcomputer incorporating a non-volatile memory used in automobiles and game machines, And temporary storage elements such as a cache memory and a register connected to the logic portion.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2013-229971 for which it applied on November 6, 2013, and takes in those the indications of all here.
 10   磁化自由層
 11   第1磁化固定領域
 12   第2磁化固定領域
 13   磁化自由領域
 20   スピン流生成層
 30   トンネルバリア層
 40   リファレンス層
 51   第1漏洩磁場生成層
 52   第2漏洩磁場生成層
 53   第3漏洩磁場生成層
 54   第4漏洩磁場生成層
 61   第1スペーサー層
 62   第2スペーサー層
 71   第1面内磁化漏洩磁場生成層
 72   第2面内磁化漏洩磁場生成層
 81   第1プラグ層
 82   第2プラグ層
100   磁気抵抗効果素子
101a  第1セルトランジスタ
101b  第2セルトランジスタ
102a  第1ビット線
102b  第2ビット線
103   ワード線
104   グラウンド線
110   メモリセルアレイ
120   Xドライバ
130   Yドライバ
140   コントローラ
200   磁気メモリセル
300   磁気メモリ
DESCRIPTION OF SYMBOLS 10 Magnetization free layer 11 1st magnetization fixed area | region 12 2nd magnetization fixed area | region 13 Magnetization free area | region 20 Spin current generation layer 30 Tunnel barrier layer 40 Reference layer 51 1st leakage magnetic field generation layer 52 2nd leakage magnetic field generation layer 53 3rd leakage Magnetic field generation layer 54 Fourth leakage magnetic field generation layer 61 First spacer layer 62 Second spacer layer 71 First in-plane magnetization leakage magnetic field generation layer 72 Second in-plane magnetization leakage magnetic field generation layer 81 First plug layer 82 Second plug layer 100 magnetoresistive effect element 101a first cell transistor 101b second cell transistor 102a first bit line 102b second bit line 103 word line 104 ground line 110 memory cell array 120 X driver 130 Y driver 140 controller 200 magnetic memory cell 300 magnetic Mori

Claims (14)

  1. 垂直磁気異方性を有する強磁性体から構成される磁化自由層と、
    前記磁化自由層に隣接して設けられるスピン流生成層と、
    前記磁化自由層に隣接して前記スピン流生成層とは反対側に設けられるトンネルバリア層と、
    前記トンネルバリア層に隣接して前記磁化自由層とは反対側に設けられるリファレンス層と、
    強磁性体から構成される第1漏洩磁場生成層と、第2漏洩磁場生成層とを具備し、
    前記第1漏洩磁場生成層と前記第2漏洩磁場生成層から生ずる漏洩磁場の前記磁化自由層の位置における面内成分によって前記磁化自由層の長手方向に磁化成分を有する磁壁が形成される、
    ことを特徴とする磁気抵抗効果素子。
    A magnetization free layer composed of a ferromagnetic material having perpendicular magnetic anisotropy;
    A spin current generation layer provided adjacent to the magnetization free layer;
    A tunnel barrier layer provided adjacent to the magnetization free layer and on the opposite side of the spin current generation layer;
    A reference layer provided adjacent to the tunnel barrier layer and on the opposite side of the magnetization free layer;
    A first leakage magnetic field generation layer composed of a ferromagnetic material and a second leakage magnetic field generation layer;
    A domain wall having a magnetization component in a longitudinal direction of the magnetization free layer is formed by an in-plane component of the leakage magnetic field generated from the first leakage magnetic field generation layer and the second leakage magnetic field generation layer at the position of the magnetization free layer.
    A magnetoresistive effect element.
  2. 請求項1に記載の磁気抵抗効果素子であって、
    前記第1漏洩磁場生成層と前記第2漏洩磁場生成層は垂直磁気異方性を有する強磁性体から構成され、
    前記第1漏洩磁場生成層と前記第2漏洩磁場生成層は互いに反平行方向に固定された磁化を有し、
    前記第1漏洩磁場生成層と、前記漏洩磁場生成層から生ずる漏洩磁場の前記磁化自由層の位置における面内成分は、前記磁化自由層において優先的に形成される磁壁の磁化方向と一致する、
    ことを特徴とする磁気抵抗効果素子。
    The magnetoresistive element according to claim 1,
    The first leakage magnetic field generation layer and the second leakage magnetic field generation layer are composed of a ferromagnetic material having perpendicular magnetic anisotropy,
    The first leakage magnetic field generation layer and the second leakage magnetic field generation layer have magnetizations fixed in antiparallel directions to each other;
    The in-plane component at the position of the magnetization free layer of the leakage magnetic field generated from the first leakage magnetic field generation layer and the leakage magnetic field generation layer coincides with the magnetization direction of the domain wall formed preferentially in the magnetization free layer.
    A magnetoresistive effect element.
  3. 請求項1または2に記載の磁気抵抗効果素子であって、
    前記磁化自由層は、第1磁化固定領域と、第2磁化固定領域と、磁化自由領域とからなり、
    前記第1磁場漏洩磁場生成層は、前記第1磁化固定領域の鉛直面上に配置され、
    前記第2磁場漏洩磁場生成層は、前記第2磁化固定領域の鉛直面上に配置される、
    ことを特徴とする磁気抵抗効果素子。
    The magnetoresistive element according to claim 1 or 2,
    The magnetization free layer includes a first magnetization fixed region, a second magnetization fixed region, and a magnetization free region,
    The first magnetic field leakage magnetic field generation layer is disposed on a vertical plane of the first magnetization fixed region,
    The second magnetic field leakage magnetic field generation layer is disposed on a vertical plane of the second magnetization fixed region;
    A magnetoresistive effect element.
  4. 請求項2または3に記載の磁気抵抗効果素子であって、
    前記第1及び第2漏洩磁場生成層が前記磁化自由層の下側に形成される場合には、前記第1及び第2漏洩磁場生成層の上面と、前記磁化自由層の中心高さとの間の距離、
    前記第1及び第2漏洩磁場生成層が前記磁化自由層の上側に形成される場合には、前記第1及び第2漏洩磁場生成層の下面と、前記磁化自由層の中心高さとの間の距離が10nm以上である、
    ことを特徴とする磁気抵抗効果素子。
    The magnetoresistive effect element according to claim 2 or 3,
    When the first and second leakage magnetic field generation layers are formed below the magnetization free layer, the distance between the upper surfaces of the first and second leakage magnetic field generation layers and the center height of the magnetization free layer. Distance,
    When the first and second leakage magnetic field generation layers are formed on the upper side of the magnetization free layer, between the lower surfaces of the first and second leakage magnetic field generation layers and the center height of the magnetization free layer. The distance is 10 nm or more,
    A magnetoresistive effect element.
  5. 請求項4に記載の磁気抵抗効果素子であって、
    前記第1及び第2漏洩磁場生成層が前記磁化自由層の下側に形成される場合には、前記第1及び第2漏洩磁場生成層の上面と、前記磁化自由層の中心高さとの間の距離、
    前記第1及び第2漏洩磁場生成層が前記磁化自由層の上側に形成される場合には、前記第1及び第2漏洩磁場生成層の下面と、前記磁化自由層の中心高さとの間の距離が15nm以上である、
    ことを特徴とする磁気抵抗効果素子。
    The magnetoresistive effect element according to claim 4,
    When the first and second leakage magnetic field generation layers are formed below the magnetization free layer, the distance between the upper surfaces of the first and second leakage magnetic field generation layers and the center height of the magnetization free layer. Distance,
    When the first and second leakage magnetic field generation layers are formed on the upper side of the magnetization free layer, between the lower surfaces of the first and second leakage magnetic field generation layers and the center height of the magnetization free layer. The distance is 15 nm or more,
    A magnetoresistive effect element.
  6. 請求項1乃至5のいずれか1項に記載の磁気抵抗効果素子であって、
    前記漏洩磁場生成層に隣接し、前記磁化自由層側の面にスペーサー層が設けられる、
    ことを特徴とする磁気抵抗効果素子。
    The magnetoresistive effect element according to any one of claims 1 to 5,
    A spacer layer is provided adjacent to the leakage magnetic field generation layer and on the surface of the magnetization free layer side.
    A magnetoresistive effect element.
  7. 請求項1乃至6のいずれか1項に記載の磁気抵抗効果素子であって、
    更に、第3漏洩磁場生成層と、第4漏洩磁場生成層とを具備し、
    前記第1漏洩磁場生成層と前記第2漏洩磁場生成層は、前記磁化自由層の下側に配置され、
    前記第3漏洩磁場生成層と前記第4磁場生成層は、前記磁化自由層の上側に配置される、
    ことを特徴とする磁気抵抗効果素子。
    The magnetoresistive effect element according to any one of claims 1 to 6,
    Furthermore, it comprises a third leakage magnetic field generation layer and a fourth leakage magnetic field generation layer,
    The first leakage magnetic field generation layer and the second leakage magnetic field generation layer are disposed below the magnetization free layer,
    The third leakage magnetic field generation layer and the fourth magnetic field generation layer are disposed above the magnetization free layer,
    A magnetoresistive effect element.
  8. 請求項2乃至7のいずれか1項に記載の磁気抵抗効果素子であって、
    前記漏洩磁場生成層が、前記リファレンス層と同一レイヤーに形成される、
    ことを特徴とする磁気抵抗効果素子。
    The magnetoresistive effect element according to any one of claims 2 to 7,
    The leakage magnetic field generation layer is formed in the same layer as the reference layer.
    A magnetoresistive effect element.
  9. 請求項2乃至8のいずれか1項に記載の磁気抵抗効果素子であって、
    更に、第1面内磁化漏洩磁場生成層と、第2面内磁化漏洩磁場生成層とを具備する、
    ことを特徴とする磁気抵抗効果素子。
    The magnetoresistive effect element according to any one of claims 2 to 8,
    Furthermore, it comprises a first in-plane magnetization leakage magnetic field generation layer and a second in-plane magnetization leakage magnetic field generation layer,
    A magnetoresistive effect element.
  10. 請求項1乃至9のいずれか1項に記載の磁気抵抗効果素子であって、
    前記漏洩磁場生成層がテーパーを有するように形成される、
    ことを特徴とする磁気抵抗効果素子。
    The magnetoresistive effect element according to any one of claims 1 to 9,
    The leakage magnetic field generation layer is formed to have a taper.
    A magnetoresistive effect element.
  11. 請求項1に記載の磁気抵抗効果素子であって、
    前記第1漏洩磁場生成層と前記第2漏洩磁場生成層は面内磁気異方性を有する強磁性体から構成される、
    ことを特徴とする磁気抵抗効果素子
    The magnetoresistive element according to claim 1,
    The first leakage magnetic field generation layer and the second leakage magnetic field generation layer are composed of a ferromagnetic material having in-plane magnetic anisotropy,
    Magnetoresistive effect element
  12. 請求項1乃至11のいずれか1項に記載の磁気抵抗効果素子と、
    第1ビット線と、
    第2ビット線と、
    ワード線と、
    第1セルトランジスタと、
    第2セルトランジスタと、を具備する、
    ことを特徴とする磁気メモリ。
    The magnetoresistive effect element according to any one of claims 1 to 11,
    A first bit line;
    A second bit line;
    A word line,
    A first cell transistor;
    A second cell transistor;
    A magnetic memory characterized by that.
  13. スピン流生成層に電流を流すことでスピン流を生じさせ、前記スピン流によって磁化自由層内の磁壁を移動させると共に、移動した前記磁壁を漏洩磁場生成層から生じる漏洩磁場で固定し、前記磁壁の位置を情報として対応付ける、
    ことを特徴とする磁気記憶方法。
    A spin current is generated by causing a current to flow through the spin current generation layer, the domain wall in the magnetization free layer is moved by the spin current, and the moved domain wall is fixed by a leakage magnetic field generated from the leakage magnetic field generation layer. Associating the location of
    A magnetic storage method.
  14. 磁化自由層と、
    前記磁化自由層に隣接して設けられるスピン流生成層と、を備え、
    前記磁化自由層内の磁壁を固定する漏洩磁場を生成する漏洩磁場生成層を有する、
    ことを特徴とする磁気抵抗効果素子。
    A magnetization free layer;
    A spin current generation layer provided adjacent to the magnetization free layer,
    A leakage magnetic field generation layer for generating a leakage magnetic field for fixing a domain wall in the magnetization free layer;
    A magnetoresistive effect element.
PCT/JP2014/076643 2013-11-06 2014-09-30 Magnetoresistive effect element, magnetic memory and magnetic storage method WO2015068509A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015546565A JP6414754B2 (en) 2013-11-06 2014-09-30 Magnetoresistive element and magnetic memory
US15/144,715 US10020039B2 (en) 2013-11-06 2016-05-02 Three terminal magnetoresistive devices, magnetoresistive random access memory and magnetic recording method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013229971 2013-11-06
JP2013-229971 2013-11-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/144,715 Continuation US10020039B2 (en) 2013-11-06 2016-05-02 Three terminal magnetoresistive devices, magnetoresistive random access memory and magnetic recording method

Publications (1)

Publication Number Publication Date
WO2015068509A1 true WO2015068509A1 (en) 2015-05-14

Family

ID=53041292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076643 WO2015068509A1 (en) 2013-11-06 2014-09-30 Magnetoresistive effect element, magnetic memory and magnetic storage method

Country Status (3)

Country Link
US (1) US10020039B2 (en)
JP (1) JP6414754B2 (en)
WO (1) WO2015068509A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021468A1 (en) * 2014-08-08 2016-02-11 国立大学法人東北大学 Magnetoresistance effect element and magnetic memory device
US10102894B2 (en) 2016-12-02 2018-10-16 Kabushiki Kaisha Toshiba Magnetic memory
WO2018189964A1 (en) * 2017-04-14 2018-10-18 Tdk株式会社 Magnetic domain wall utilizing analog memory element, magnetic domain wall utilizing analog memory, non-volatile logic circuit and magnetic neuro-element
US10211394B1 (en) 2017-09-20 2019-02-19 Kabushiki Kaisha Toshiba Magnetic memory
JPWO2017213261A1 (en) * 2016-06-10 2019-04-04 Tdk株式会社 Magnetization reversal element using exchange bias, magnetoresistance effect element using exchange bias, magnetic memory using exchange bias, nonvolatile logic circuit, and magnetic neuron element
US10276224B2 (en) 2017-03-02 2019-04-30 Toshiba Memory Corporation Magnetic memory having metal portions and magnetic memory array including same
US10374150B2 (en) 2017-06-16 2019-08-06 Kabushiki Kaisha Toshiba Magnetic memory device
US10424724B2 (en) 2017-07-11 2019-09-24 Toshiba Memory Corporation Magnetic element and magnetic memory
JP2020150113A (en) * 2019-03-13 2020-09-17 Tdk株式会社 Domain wall moving element, magnetic recording array, and semiconductor device
JP2021145078A (en) * 2020-03-13 2021-09-24 国立大学法人京都大学 Magnetic memory element
US11417831B2 (en) 2019-03-19 2022-08-16 Kioxia Corporation Magnetic memory
WO2022185410A1 (en) * 2021-03-02 2022-09-09 Tdk株式会社 Domain wall displacement element, magnetic array, and method for manufacturing domain wall displacement element
US11563169B2 (en) 2015-11-18 2023-01-24 Tohoku University Magnetic tunnel junction element and magnetic memory
JP7520673B2 (en) 2020-10-02 2024-07-23 Tdk株式会社 Integrated Devices and Neuromorphic Devices

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11374166B2 (en) 2015-11-27 2022-06-28 Tdk Corporation Spin current magnetization rotational element, magnetoresistance effect element, and magnetic memory
KR101844128B1 (en) * 2016-01-29 2018-04-02 서울대학교산학협력단 Magnetic Domain Wall Motion Device based on the Modulation of the Spin-Orbit Torque
US10418545B2 (en) 2016-07-29 2019-09-17 Tdk Corporation Spin current magnetization reversal element, element assembly, and method for producing spin current magnetization reversal element
US10885960B2 (en) * 2016-10-25 2021-01-05 Industry-University Cooperation Foundation Hanyang University Spin device, and operating method therefor and manufacturing method therefor
US10319901B2 (en) 2016-10-27 2019-06-11 Tdk Corporation Spin-orbit torque type magnetization reversal element, magnetic memory, and high frequency magnetic device
US10439130B2 (en) * 2016-10-27 2019-10-08 Tdk Corporation Spin-orbit torque type magnetoresistance effect element, and method for producing spin-orbit torque type magnetoresistance effect element
US11276815B2 (en) 2016-10-27 2022-03-15 Tdk Corporation Spin-orbit torque type magnetization reversal element, magnetic memory, and high frequency magnetic device
CN108666339B (en) * 2017-03-28 2020-11-13 中芯国际集成电路制造(上海)有限公司 Magnetic random access memory and manufacturing method of memory cell thereof
US10229722B2 (en) * 2017-08-01 2019-03-12 International Business Machines Corporation Three terminal spin hall MRAM
JP2019047120A (en) * 2017-09-01 2019-03-22 Tdk株式会社 Spin current magnetization reversal element, spin orbit torque type magnetoresistive element, magnetic memory, and high frequency magnetic element
US10741318B2 (en) * 2017-09-05 2020-08-11 Tdk Corporation Spin current magnetization rotational element, spin-orbit-torque magnetoresistance effect element, magnetic memory, and high-frequency magnetic element
JP2019047030A (en) * 2017-09-05 2019-03-22 Tdk株式会社 Spin current magnetization reversal element, magnetoresistance effect element, magnetic memory, and high frequency magnetic element
JP2019054191A (en) * 2017-09-19 2019-04-04 東芝メモリ株式会社 Magnetic storage device
JP2019068012A (en) * 2017-10-05 2019-04-25 東京エレクトロン株式会社 Workpiece processing method
US10734052B2 (en) * 2017-10-24 2020-08-04 Purdue Research Foundation Buffered spin-torque sensing device for global interconnect circuits
TWI688130B (en) * 2017-11-28 2020-03-11 財團法人工業技術研究院 Spin-orbit torque mrams and method for fabricating the same
US10762917B1 (en) 2018-05-21 2020-09-01 Western Digital Technologies, Inc. Reversed mode spin torque oscillator with shaped field generation layer
US10720572B1 (en) 2019-02-12 2020-07-21 Northrop Grumman Systems Corporation Skyrmion stack memory device
CN111613721B (en) * 2019-02-22 2023-08-01 Tdk株式会社 Magnetic domain wall moving element and magnetic recording array
KR102657583B1 (en) 2019-07-19 2024-04-15 삼성전자주식회사 variable resistance memory device
KR20210032591A (en) * 2019-09-16 2021-03-25 삼성전자주식회사 Magnetic memory devices
JP7419729B2 (en) * 2019-10-01 2024-01-23 Tdk株式会社 Domain wall displacement element and magnetic recording array
US11895928B2 (en) * 2019-10-03 2024-02-06 Headway Technologies, Inc. Integration scheme for three terminal spin-orbit-torque (SOT) switching devices
US11348627B2 (en) 2020-08-31 2022-05-31 Samsung Electronics Co., Ltd. Race-track memory with improved domain wall motion control
KR20220052392A (en) * 2020-10-20 2022-04-28 삼성전자주식회사 Magnetic memory device
KR20220127581A (en) * 2021-03-11 2022-09-20 삼성전자주식회사 Memristor, synapse element and neuromorphic processor including the memristor
KR20230040533A (en) 2021-09-16 2023-03-23 삼성전자주식회사 A magnetoresistive random access memory device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026861A1 (en) * 2008-09-02 2010-03-11 日本電気株式会社 Magnetic memory and method for manufacturing same
JP2011119537A (en) * 2009-12-04 2011-06-16 Nec Corp Memory cell, and magnetic random access memory
WO2013025994A2 (en) * 2011-08-18 2013-02-21 Cornell University Spin hall effect magnetic apparatus, method and applications

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303159A (en) * 2005-04-20 2006-11-02 Fuji Electric Holdings Co Ltd Spin injection magnetic domain moving element and device using this
WO2009001706A1 (en) * 2007-06-25 2008-12-31 Nec Corporation Magnetoresistive element and magnetic random access memory
US20130075847A1 (en) * 2010-03-23 2013-03-28 Nec Corporation Magnetic memory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026861A1 (en) * 2008-09-02 2010-03-11 日本電気株式会社 Magnetic memory and method for manufacturing same
JP2011119537A (en) * 2009-12-04 2011-06-16 Nec Corp Memory cell, and magnetic random access memory
WO2013025994A2 (en) * 2011-08-18 2013-02-21 Cornell University Spin hall effect magnetic apparatus, method and applications

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016021468A1 (en) * 2014-08-08 2017-05-25 国立大学法人東北大学 Magnetoresistive element and magnetic memory device
US9941468B2 (en) 2014-08-08 2018-04-10 Tohoku University Magnetoresistance effect element and magnetic memory device
WO2016021468A1 (en) * 2014-08-08 2016-02-11 国立大学法人東北大学 Magnetoresistance effect element and magnetic memory device
US11563169B2 (en) 2015-11-18 2023-01-24 Tohoku University Magnetic tunnel junction element and magnetic memory
JPWO2017213261A1 (en) * 2016-06-10 2019-04-04 Tdk株式会社 Magnetization reversal element using exchange bias, magnetoresistance effect element using exchange bias, magnetic memory using exchange bias, nonvolatile logic circuit, and magnetic neuron element
US10672446B2 (en) 2016-06-10 2020-06-02 Tdk Corporation Exchange bias utilization type magnetization rotational element, exchange bias utilization type magnetoresistance effect element, exchange bias utilization type magnetic memory, non-volatile logic circuit, and magnetic neuron element
US10102894B2 (en) 2016-12-02 2018-10-16 Kabushiki Kaisha Toshiba Magnetic memory
US10276224B2 (en) 2017-03-02 2019-04-30 Toshiba Memory Corporation Magnetic memory having metal portions and magnetic memory array including same
JPWO2018189964A1 (en) * 2017-04-14 2020-02-20 Tdk株式会社 Domain wall-based analog memory device, domain wall-based analog memory, nonvolatile logic circuit, and magnetic neuro device
WO2018189964A1 (en) * 2017-04-14 2018-10-18 Tdk株式会社 Magnetic domain wall utilizing analog memory element, magnetic domain wall utilizing analog memory, non-volatile logic circuit and magnetic neuro-element
JP7003991B2 (en) 2017-04-14 2022-01-21 Tdk株式会社 Domain wall-based analog memory element, domain wall-based analog memory, non-volatile logic circuit and magnetic neuro element
US10374150B2 (en) 2017-06-16 2019-08-06 Kabushiki Kaisha Toshiba Magnetic memory device
US10424724B2 (en) 2017-07-11 2019-09-24 Toshiba Memory Corporation Magnetic element and magnetic memory
US10211394B1 (en) 2017-09-20 2019-02-19 Kabushiki Kaisha Toshiba Magnetic memory
JP7196701B2 (en) 2019-03-13 2022-12-27 Tdk株式会社 domain wall motion element, magnetic recording array and semiconductor device
JP2020150113A (en) * 2019-03-13 2020-09-17 Tdk株式会社 Domain wall moving element, magnetic recording array, and semiconductor device
US11417831B2 (en) 2019-03-19 2022-08-16 Kioxia Corporation Magnetic memory
JP2021145078A (en) * 2020-03-13 2021-09-24 国立大学法人京都大学 Magnetic memory element
JP7518524B2 (en) 2020-03-13 2024-07-18 国立大学法人京都大学 Magnetic Memory Device
JP7520673B2 (en) 2020-10-02 2024-07-23 Tdk株式会社 Integrated Devices and Neuromorphic Devices
WO2022185410A1 (en) * 2021-03-02 2022-09-09 Tdk株式会社 Domain wall displacement element, magnetic array, and method for manufacturing domain wall displacement element
JP7211564B1 (en) * 2021-03-02 2023-01-24 Tdk株式会社 Domain wall motion element, magnetic array, and method for manufacturing domain wall motion element

Also Published As

Publication number Publication date
US20160247550A1 (en) 2016-08-25
JP6414754B2 (en) 2018-10-31
JPWO2015068509A1 (en) 2017-03-09
US10020039B2 (en) 2018-07-10

Similar Documents

Publication Publication Date Title
JP6414754B2 (en) Magnetoresistive element and magnetic memory
KR102080631B1 (en) Magnetoresistance effect element and magnetic memory device
CN108376736B (en) Magnetic device and method for setting up a magnetic device
US11600768B2 (en) Magnetic memory
US20240008370A1 (en) Spin-orbit torque type magnetoresistance effect element, and method for producing spin-orbit torque type magnetoresistance effect element
EP1600977B1 (en) Multi-bit magnetic random acces memory device
US11056641B2 (en) Spin-orbit-torque magnetization rotational element, spin-orbit-torque magnetoresistance effect element, and magnetic memory
US9105831B2 (en) Nonvolatile magnetic element and nonvolatile magnetic device
WO2016182085A1 (en) Magnetoresistive effect element and magnetic memory device
EP1579231A1 (en) Synthetic antiferromagnetic structure for magnetoelectronic devices
EP1653475A1 (en) Multi-bit magnetic random access memory device and method for writing the same
US7336528B2 (en) Advanced multi-bit magnetic random access memory device
US20170062700A1 (en) Tilted synthetic antiferromagnet polarizer/reference layer for stt-mram bits
WO2019138778A1 (en) Magnetoresistance effect element and magnetic memory
WO2024090370A1 (en) Magnetic domain wall moving element, memory device, and data writing method
US20230189663A1 (en) Magnetic memory
JP2008084950A (en) Storage element, and memory
EP1890296B1 (en) Multi-bit magnetic random access memory device and methods of operating and sensing the same
Fang Micromagnetic analysis of magnetic memory
Prince Magnetic RAMs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546565

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861057

Country of ref document: EP

Kind code of ref document: A1