WO2015052618A1 - Drawing device and drawing method - Google Patents
Drawing device and drawing method Download PDFInfo
- Publication number
- WO2015052618A1 WO2015052618A1 PCT/IB2014/064978 IB2014064978W WO2015052618A1 WO 2015052618 A1 WO2015052618 A1 WO 2015052618A1 IB 2014064978 W IB2014064978 W IB 2014064978W WO 2015052618 A1 WO2015052618 A1 WO 2015052618A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- inclination
- pattern
- substrate
- stage
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/06—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0284—Details of three-dimensional rigid printed circuit boards
Definitions
- the present invention relates to a drawing apparatus and a drawing method used in a photolithography process such as a liquid crystal display or a printed wiring board, and particularly to an inclined drawing area (drawing surface) of a drawing object (drawing object).
- the present invention relates to a direct drawing apparatus and a direct drawing method for drawing a pattern.
- the production process of a liquid crystal display, a printed wiring board, and the like that are components constituting an electronic device includes a photolithography process, and a drawing apparatus and a drawing method are used in the photolithography process.
- an object to be drawn by a drawing apparatus and a drawing method is a plate-like flat member, and its drawing area is a horizontal plane. For this reason, it was possible to perform suitable drawing only by scanning according to the focal length of the pattern light to be irradiated in accordance with the plate-like plane of the drawing object (the horizontal plane as the drawing region).
- the components such as the liquid crystal display and the printed wiring board described above are three-dimensionally shaped (for example, an inclined surface instead of a single plane) in order to improve portability or from the viewpoint of design.
- the demand to make a shape with) is increasing. That is, the drawing area of the drawing object is shifted from a conventional single plate-like plane (horizontal plane) to a three-dimensional shape such as an inclined plane inclined with respect to the horizontal plane (including a curved plane curved with respect to the horizontal plane).
- a conventional single plate-like plane horizontal plane
- a three-dimensional shape such as an inclined plane inclined with respect to the horizontal plane (including a curved plane curved with respect to the horizontal plane).
- the first problem is that, since the drawing area includes an inclined surface, there is a place where the focus of the pattern light is out of focus and in the out-of-focus state (front pin state, rear pin state) during scanning, and the resolution of the pattern is reduced. It is to do.
- the second problem is that the pattern is deformed (mainly stretched) when drawing on the inclined surface of the drawing area.
- the third problem is that the resolution of the pattern is lowered when light is incident obliquely on the resist film in the inclined drawing region.
- Patent Documents 1 and 2 disclose technologies that have been devised in consideration of the above three technical issues.
- Patent Document 1 when performing scanning exposure on a plate (object to be drawn) placed on a chuck (holding means), scanning is performed by adjusting the chuck in the Z direction (vertical direction) along the inclination of the plate. This prevents blurring of exposure. However, it is impossible to prevent a difference in focal position in the exposure area (pattern light area irradiated by the exposure unit), and it is also impossible to prevent deformation of the pattern in the exposure area.
- Patent Document 2 before performing exposure on a wafer (object to be drawn) fixed on a sample stage, the amount of deformation of the pattern due to the tilt of the wafer is calculated in advance and the pattern data drawn by the electron beam is corrected. Thus, deformation of the pattern in the exposure area is prevented.
- the focus of the pattern light is out of focus and in a defocused state (front pin state, rear pin state), and the resolution of the pattern is lowered.
- the present invention has been made on the basis of the above problem awareness.
- the pattern resolution is adjusted by focusing the pattern light on the inclined drawing area. It is an object of the present invention to provide a drawing apparatus and a drawing method that can improve pattern resolution by preventing pattern deformation and allowing pattern light to vertically enter a resist film in an inclined drawing region.
- the drawing apparatus of the present invention draws a pattern on the drawing object while irradiating the drawing object with a light modulation element and continuously scanning the drawing object with respect to the drawing light.
- the measuring means has at least three sensors for measuring a distance between a drawing surface and a reference position at a predetermined position of the drawing surface of the drawing object, and each of the predetermined positions is more relative to the drawing light than the drawing light. It can be on the scanning direction side.
- At least one of the sensors has a position that is inside a region of the drawing surface irradiated with the drawing light by the relative scanning, and the other sensors irradiate the drawing light by the relative scanning.
- the position near the boundary in the direction orthogonal to the relative scanning direction of the region to be set can be set as the predetermined position.
- the measuring unit includes an approximate plane calculating unit that calculates an approximate plane corresponding to a predetermined region of the drawing surface based on a distance measured by the plurality of sensors, and the tilt control unit includes the drawing light and the drawing light.
- the tilt adjusting means can be controlled so that the approximate plane is substantially perpendicular.
- a drawing method of the present invention is a drawing method in which drawing light is irradiated to a drawing object by a light modulation element, and a pattern is drawn on the drawing object while continuously scanning the drawing object with respect to the drawing light.
- a measuring step for measuring an inclination of a drawing surface of the drawing object held by holding means, and the drawing light is changed according to a measurement result in the measuring step.
- the pattern light when a pattern is drawn on an inclined drawing area of an object to be drawn, the pattern light is focused on the inclined drawing area to increase the resolution of the pattern, to prevent the pattern from being deformed. It is possible to obtain a drawing apparatus and a drawing method in which pattern light can be vertically incident on a resist film in a drawing region to increase the resolution of the pattern.
- FIGS. 1A and 1B are perspective views showing a structure (three-dimensional shape) of a substrate that is a drawing object by a drawing apparatus. It is a conceptual diagram which shows the state which divided the inclination drawing area
- 1 is a conceptual diagram illustrating an overall configuration of a drawing apparatus according to an embodiment of the present invention. It is a functional block diagram of the drawing apparatus which concerns on one Embodiment of this invention. It is a perspective view which shows the external appearance of the drawing apparatus which concerns on one Embodiment of this invention.
- 6A and 6B are diagrams showing the detailed structure and principle of the tilt sensor unit (tilt measuring means, approximate plane calculating means).
- FIG. 8A is a diagram showing a state in which pattern light is applied to the plane (horizontal plane) of the drawing region of the substrate in FIG. 1A, and FIG. ) Shows a state in which pattern light is irradiated to the inclined drawing region of the substrate.
- FIGS. 1 A drawing apparatus 1 according to an embodiment of the present invention will be described with reference to FIGS.
- substrate W is a liquid crystal display, a printed wiring board, etc. which are components which comprise an electronic device, for example.
- a substrate W has an inclined drawing area (surface to be drawn) extending in the scanning (relative scanning) direction (perpendicular to the paper surface in the drawing) (hereinafter referred to as “inclined drawing area”). 110).
- the switching portion from the drawing region extending in the left-right direction in FIG. 1 to the inclined drawing region 110 has a relatively acute angle
- FIG. 1B it extends in the left-right direction in FIG.
- a switching portion from the drawing area to the inclined drawing area 110 is a relatively gentle R surface.
- the “inclined drawing region (surface to be drawn) 110” means a three-dimensional shape including an inclined surface inclined with respect to a horizontal plane and a curved surface curved with respect to the horizontal plane.
- the inclined drawing region 110 of the substrate W may have an inclined surface or a curved surface whose cross-sectional shape changes depending on the position in the scanning direction.
- the inclined drawing area 110 of the substrate W has a shape in which the scanning direction (perpendicular to the paper surface in the figure) and the sub-scanning direction (the left-right direction in the figure) are interchanged. Also good.
- the shape of the inclined drawing area 110 of the substrate W shown in FIGS. 1A and 1B is merely an example, and the inclined drawing area 110 can have an arbitrary shape.
- the drawing apparatus 1 irradiates the substrate W with drawing light by a light modulation element, and draws a pattern on the substrate W while continuously scanning (relatively scanning) the substrate W with respect to the drawing light.
- the drawing apparatus 1 includes a plurality of divided inclined drawing areas (hereinafter referred to as “divided areas”) A1 in which the inclined drawing area 110 of the substrate W that is the drawing object is arranged in the scanning direction and the sub-scanning direction.
- a scanning type drawing apparatus that divides into ⁇ A7, B1 ⁇ B7, C1 ⁇ C7, D1 ⁇ D7, E1 ⁇ E7, and continuously irradiates each divided area A1 ⁇ E7 with pattern light.
- a case where the area is divided into areas A1 to E7 will be described as an example.
- the drawing apparatus 1 has a housing 1X, and each component of the drawing apparatus 1 is supported on a mounting table 1Y in the housing 1X.
- the drawing apparatus 1 includes a stage (holding means) 10 that holds a substrate W that is a drawing target.
- the stage 10 has a vacuum suction holding mechanism (not shown) that vacuum-sucks and holds the lower surface (stage contact surface) of the substrate W.
- a substrate holding mechanism corresponding to the special shape is mounted on the stage 10.
- the drawing apparatus 1 includes a stage moving mechanism 20 that continuously moves the stage 10 holding the substrate W in the X direction (scanning direction).
- the stage moving mechanism 20 includes two guide rails 21 (FIG. 5) formed side by side in the X direction (scanning direction) on the mounting table 1Y, and a guide member on the stage 10 side (FIG. 5) guided by the guide rails 21. And a driving means (not shown) for continuously driving the guide member with respect to the guide rail 21.
- the stage moving mechanism 20 may include a structure capable of moving the stage 10 in the Y direction (sub-scanning direction), the Z direction (height direction), and the ⁇ direction (rotation direction).
- the stage 10 is moved three-dimensionally in synchronism with the continuous movement of the stage 10 holding the substrate W in the X direction (scanning direction). 10 and an attitude adjusting device (inclination adjusting means) 30 for changing the attitude (inclination) of the inclined drawing area 110 (divided areas A1 to E7) of the substrate W held on the stage 10 continuously or stepwise. ing.
- the attitude adjustment device 30 is positioned above the bottom plate portion 31 and the bottom plate portion 31 guided by the guide rail 21 of the stage moving mechanism 20 via a guide member (not shown).
- the stage 10 is positioned further above the middle plate 32 (the stage 10 constitutes the top plate of the posture adjusting device 30).
- the upper surface of the bottom plate portion 31 and the lower surface of the middle plate portion 32 are provided with four guide members 31A and 32A each having a guide surface that forms part of a virtual arc drawn on the XZ plane and extends in the Y direction. ing.
- the guide surfaces of the guide member 31A and the guide member 32A are guided along a virtual arc drawn on the XZ plane, so that the stage 10 and the inclined drawing area 110 of the substrate W held on the stage 10 ( The posture (inclination) of the divided areas A1 to E7) can be changed.
- the guide member 31A and the guide member 32A are formed with an engaging portion 31B and an engaging portion 32B for preventing the guide surfaces of both guide members from being detached.
- the guide surfaces of the guide member 32C and the guide member 10A are guided along a virtual arc drawn on the YZ plane, whereby the stage 10 and the inclined drawing region 110 of the substrate W held on the stage 10 (in the YZ plane) ( The posture (inclination) of the divided areas A1 to E7) can be changed.
- the guide member 32C and the guide member 10A are formed with an engaging portion 32D and an engaging portion 10B for preventing the guide surfaces of both guide members from coming off.
- the drawing apparatus 1 includes a driving means (not shown) for driving the guide member 31A of the bottom plate portion 31 and the guide member 32A of the middle plate portion 32, and the guide member 32C of the middle plate portion 32 and the guide of the stage 10.
- Driving means for driving the member 10A so as to guide the member 10A is provided.
- the stage is adjusted by combining the posture adjustment mechanism in the XZ plane provided between the bottom plate portion 31 and the middle plate portion 32 and the posture adjustment mechanism in the YZ plane provided between the middle plate portion 32 and the stage 10.
- 10 is moved three-dimensionally to change the posture (inclination) of the stage 10 and the inclined drawing area 110 (divided areas A1 to E7) of the substrate W held on the stage 10 continuously or stepwise. it can.
- the specific mode of the posture adjustment device tilt adjustment device is not limited to that described here, and a known mechanism such as one using a linear motion linear slide or one using a wedge structure is employed. can do.
- the drawing apparatus 1 includes a gate-type exposure unit base (drawing unit base) 40 that straddles the stage 10, the stage moving mechanism 20, and the attitude adjustment device 30 in the Y direction (sub-scanning direction) on the mounting table 1Y.
- the exposure unit base 40 supports an exposure unit (drawing unit) 60 movably stepwise in the Y direction (sub-scanning direction) by an exposure unit moving mechanism (drawing unit moving mechanism) 50.
- the exposure unit 60 exposes (draws) a pattern by irradiating the inclined drawing area 110 of the substrate W held on the stage 10 with pattern light. More specifically, the exposure unit 60 moves the substrate W while continuously moving the stage 10 in the X direction (scanning direction) by the stage moving mechanism 20 from the initial state where the irradiation position of the pattern light is adjusted to the divided area A1. The pattern light is continuously applied to the divided areas A1 to A7. Thereafter, the stage moving mechanism 20 and the exposure unit moving mechanism 50 align the irradiation position of the pattern light by the exposure unit 60 with the divided region B1.
- the exposure unit 60 continuously irradiates the divided regions B1 to B7 of the substrate W with the pattern light while continuously moving the stage 10 in the X direction (scanning direction) by the stage moving mechanism 20. .
- the exposure unit 60 continuously irradiates the divided regions A1 to E7 of the substrate W with pattern light.
- the exposure unit 60 has a light source 61 for irradiating light (FIG. 3). Although not shown in the drawing, the exposure unit 60 makes the light quantity emitted from the light source 61 uniform and adjusts the light so that it becomes a parallel light beam, and the light adjusted by the illumination optical system is used as pattern light. And a projection optical system and a focus adjustment optical system for guiding the pattern light reflected by the DMD to the inclined drawing area 110 (divided areas A1 to E7) of the substrate W to form an image.
- a method of continuously drawing a pattern using DMD is described in detail in, for example, Japanese Patent Application Laid-Open No. 2003-057837, and drawing (exposure) is performed in the same manner in this embodiment.
- the exposure unit 60 measures an inclination of the inclined drawing area 110 (each divided area A1 to E7) of the substrate W held on the stage 10 and calculates an approximate plane based on this inclination (an inclination measuring unit).
- Approximate plane calculating means) 70 is provided.
- the tilt sensor unit 70 is provided at a position offset so as to precede the exposure unit 60 in the X direction (scanning direction). For this reason, the inclination sensor unit 70 is after the irradiation position of the current pattern light by the exposure unit 60 when the exposure unit 60 continuously irradiates the divided light of the same scanning line. An approximate plane of another divided region scheduled to be irradiated with the pattern light is calculated.
- the inclination sensor unit 70 calculates an approximate plane of the divided area A2 scheduled to be irradiated with the pattern light immediately after that. To do.
- the inclination sensor unit 70 is The approximate plane of any divided area is not calculated (cannot be calculated).
- the tilt sensor unit 70 obtains the tilts of the divided areas A1 to E7 of the substrate W. Specifically, the tilt sensor unit 70 calculates approximate planes of the divided areas A1 to E7 of the substrate W. As shown in FIGS. 6A and 6B, the tilt sensor unit 70 is formed by unitizing three sensors, a first sensor 71, a second sensor 72, and a third sensor 73. These three sensors 71 to 73 are sensors that measure distance, for example, and are preferably sensors that can measure without contact with the substrate W. For example, a laser displacement meter, an ultrasonic displacement meter, an air micrometer, or the like may be used. it can.
- the three sensors 71 to 73 correspond to a plurality of reference positions for the divided areas A1 to E7 of the substrate W in accordance with the scanning of the substrate W (when the divided areas have no inclination and coincide with the focal plane of the exposure unit 60). Position) and the measurement position on the drawing surface are obtained, and approximate planes of the divided regions A1 to E7 of the substrate W are calculated based on the plurality of distances. At this time, the plurality of distances are not acquired at once, and measurement is performed at least twice according to the scanning of the substrate W. By doing so, it is possible to measure the distance at a position that is appropriately separated in two directions, ie, the scanning direction and the direction orthogonal to the scanning direction.
- At least one of the sensors measures the distance in the region (irradiated region) where the drawing light is continuously irradiated by scanning in the tilted drawing region, and other tilt sensors. For, measure the distance near the boundary of the irradiated area. Note that the vicinity of the irradiated region may be on either the inner side of the irradiated region or the outer side of the irradiated region.
- the first sensor 71, the second sensor 72, and the third sensor 73 use commercially available displacement meters made of a known technique. The known technique is described in detail in, for example, Japanese Patent Application Laid-Open No. 2001-159516. When the substrate W is inclined in only one direction, the measurement by the three sensors 71 to 73 may be performed only once instead of a plurality of times, and the three measurement points at that time are on a straight line. Be placed.
- the drawing apparatus 1 includes an arithmetic device 80 to which an approximate plane of the inclined drawing area 110 (each divided area A1 to E7) of the substrate W calculated by the inclination sensor unit 70 is input. Based on the input information from the tilt sensor unit 70, the arithmetic device 80 causes the pattern light irradiated by the exposure unit 60 to enter the tilt drawing region 110 (divided regions A1 to E7) of the substrate W substantially perpendicularly. The posture (tilt) of the correct stage 10 is calculated.
- the arithmetic device 80 is based on the input information from the tilt sensor unit 70, and the pattern light irradiated by the exposure unit 60 is approximately with respect to the approximate plane of the tilt drawing area 110 of the substrate W calculated by the tilt sensor unit 70.
- the posture (tilt) of the stage 10 that enters perpendicularly is calculated. More specifically, the arithmetic device 80 inputs the pattern light continuously irradiated by the exposure unit 60 substantially perpendicularly to the approximate planes of the divided areas A1 to E7 of the substrate W calculated by the tilt sensor unit 70. Such a posture of the stage 10 is calculated.
- the drawing apparatus 1 includes a control device (tilt control means, posture control means) 90.
- the control device 90 causes the posture adjustment device 30 to move the stage 10 and the stage 10 during the scanning exposure to the inclined drawing area 110 (each divided area A1 to E7) of the substrate W.
- the posture (inclination) of the inclined drawing area 110 (divided areas A1 to E7) of the held substrate W is changed in real time.
- the control device 90 causes the posture adjustment device 30 and the stage 10 and the pattern light so that the pattern light irradiated by the exposure unit 60 is incident on the inclined drawing region 110 (divided regions A1 to E7) of the substrate W substantially perpendicularly.
- the posture (inclination) of the inclined drawing area 110 of the substrate W held on the stage 10 is changed. That is, the control device 90 uses the posture adjustment device 30 so that the pattern light irradiated by the exposure unit 60 is incident substantially perpendicular to the approximate plane of the tilt drawing area 110 of the substrate W calculated by the tilt sensor unit 70. Then, the posture (tilt) of the stage 10 and the tilted drawing area 110 of the substrate W held on the stage 10 is changed. More specifically, the control device 90 inputs the pattern light continuously irradiated by the exposure unit 60 substantially perpendicularly to the approximate planes of the divided areas A1 to E7 of the substrate W calculated by the tilt sensor unit 70. As described above, the posture adjustment device 30 changes the posture (tilt) of the stage 10 and the inclined drawing region 110 of the substrate W held on the stage 10 stepwise.
- FIG. 7 is a flowchart showing on-the-fly measurement processing by the drawing apparatus 1.
- the tilt sensor unit 70 is staged by the control device 90 and the attitude adjustment device 30 in parallel with the exposure unit 60 irradiating the divided light beams A1 to E7 on the substrate W continuously.
- the 10 postures are changed stepwise for each divided region (A1 to E7), the inclination and approximate plane for each divided region of the substrate W are calculated for each posture of the stage 10.
- step S1 the inclination sensor unit 70 measures the inclination of the divided area A1 of the substrate W, and calculates an approximate plane based on this inclination. At this time, the exposure unit 60 does not perform pattern light irradiation.
- step S2 the tilt sensor unit 70 calculates the tilt and approximate plane of the divided area A2 of the substrate W at the timing when the stage 10 is moved by one step in the X direction (scanning direction) by the stage moving mechanism 20. At the same time, the exposure unit 60 irradiates the divided area A1 with pattern light.
- the pattern light irradiated by the exposure unit 60 under the control of the controller 90 by the attitude adjustment device 30 is incident substantially perpendicular to the approximate plane of the divided area A1 of the substrate W calculated by the tilt sensor unit 70.
- the posture (tilt) of the stage 10 and the tilted drawing area 110 of the substrate W held on the stage 10 is changed.
- the tilt sensor unit 70 moves the divided area A3 to A7 of the substrate W while moving the stage 10 continuously in the X direction (scanning direction) by the stage moving mechanism 20 by the same method as in steps S1 and S2.
- the exposure unit 60 continuously irradiates the divided areas A2 to A7 with pattern light.
- the pattern light irradiated by the exposure unit 60 under the control of the controller 90 by the attitude adjustment device 30 is substantially perpendicular to the approximate plane of the divided areas A2 to A7 of the substrate W calculated by the tilt sensor unit 70.
- the posture (inclination) of the stage 10 and the inclined drawing area 110 of the substrate W held on the stage 10 is changed stepwise so as to be incident on the stage 10.
- the tilt sensor unit 70 calculates the inclinations and approximate planes of the divided areas B1 to E7 of the substrate W stepwise by the same method as in steps S1 to S3, and the exposure unit 60 calculates the divided areas B1 to E7. Is continuously irradiated with pattern light.
- the pattern light irradiated by the exposure unit 60 under the control of the control device 90 by the attitude adjustment device 30 is substantially perpendicular to the approximate plane of the divided regions B1 to E7 of the substrate W calculated by the tilt sensor unit 70.
- the posture (inclination) of the stage 10 and the inclined drawing area 110 of the substrate W held on the stage 10 is continuously changed so as to be incident on the stage 10.
- FIG. 8A shows a state in which pattern light is irradiated (shot) to the plane (horizontal plane) of the drawing region of the substrate W in FIG. 1A
- FIG. A state in which pattern light is irradiated (shot) to the inclined drawing region 110 of the substrate W of 1 (B) is shown.
- the posture adjustment device 30 adjusts the inclined drawing region 110 of the substrate W so as to be substantially coincident with the horizontal plane so that the pattern light is incident substantially perpendicularly to these approximate planes.
- the posture control device 30 performs the operation stepwise. However, the approximate plane of the second divided area and the approximate plane of the first divided area are measured, and the two approximate planes are measured. Therefore, it is possible to continuously change the posture (tilt) of the stage 10 by performing the posture change for the supplementary operation. In that case, the interval between the inclination sensor unit 70 and the exposure unit 60 is determined so that the inclination data of the two divided areas can be measured.
- the measurement of the inclination data and the drawing process are performed at the same time.
- the measurement method of the mapping method in which the measurement of the inclination data for all the divided regions is measured in advance and then the drawing process is performed is adopted. It is also possible to do.
- the attitude control device 30 can perform an interpolation operation between the divided areas and continuously change the attitude of the stage 10. It is also possible to average the approximate planes of one row of divided areas and perform the drawing process while maintaining the posture of the stage 10 constant.
- the tilt sensor unit 70 calculates the approximate plane of the tilt drawing area 110 (each divided area A1 to E7) of the substrate W held on the stage 10, and the control apparatus ( (Tilt control means, posture control means) 90 is substantially the same as the approximate plane of the tilted drawing area 110 (each divided area A1 to E7) of the substrate W calculated by the tilt sensor unit 70 with the pattern light irradiated by the exposure unit 60.
- the posture (tilt) of the stage 10 is changed so that the light enters perpendicularly.
- the pattern light is focused to increase the resolution of the pattern, prevent the pattern from being deformed, and Pattern light can be vertically incident on the resist film in the drawing region to increase the resolution of the pattern.
- the inclination sensor unit 70 is formed by unitizing the first sensor 71, the second sensor 72, and the third sensor 73 .
- the larger the number of sensors the better.
- a mode in which four or more sensors are unitized is also possible. It is.
- the case where the inclination sensor unit 70 is provided in the exposure unit 60 and the both are integrated has been described as an example.
- the inclination sensor unit 70 is not necessarily provided in the exposure unit 60, and the exposure unit is not necessarily provided. It is possible to adopt a mode separate from 60.
- the inclination sensor unit 70 is provided in the exposure unit 60 and integrated with each other in that the positional relationship between the inclination sensor unit 70 and the pattern light irradiated by the exposure unit 60 can be clearly defined.
- the case where one substrate W is held on the stage 10 is illustrated, but a plurality of small substrates W may be arranged and held on the stage 10.
- the posture of the stage 10 is controlled each time so that the exposure light is perpendicular to the plurality of inclined drawing regions 110 corresponding to the number of substrates W.
- the case where the pattern is drawn on the substrate (object to be drawn) W while continuously scanning the substrate (object to be drawn) W with respect to the drawing light has been described as an example.
- the drawing apparatus and drawing method of the present invention are suitable for application to a drawing apparatus and drawing method used in a photolithography process such as a liquid crystal display or a printed wiring board.
- 1 Drawing device (scanning drawing device) 1X housing 1Y mounting table 10 stage (holding means) 10A Guide member 10B Engagement part 20 Stage moving mechanism 21 Guide rail 30 Posture adjustment device (tilt adjustment means) 31 Bottom plate portion 31A Guide member 31B Engagement portion 32 Middle plate portion 32A Guide member 32B Engagement portion 32C Guide member 32D Engagement portion 40 Exposure unit base (drawing unit base) 50 Exposure unit moving mechanism (drawing unit moving mechanism) 60 Exposure unit (drawing unit) 61 Light source 70 Tilt sensor unit (tilt measuring means, approximate plane calculating means) 71 first sensor 72 second sensor 73 third sensor 80 arithmetic device 90 control device (tilt control means, posture control means) 110 Inclined drawing area (surface to be drawn) A1 to A7 B1 to B7 C1 to C7 D1 to D7 E1 to E7 Divided inclined drawing area (divided area) W substrate (object to be drawn)
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Liquid Crystal (AREA)
Abstract
Provided are a drawing device and drawing method which, when drawing a pattern on an inclined drawing region of an object to be drawn upon, are capable of: increasing the resolution of the pattern by aligning the focal point of patterning light with the inclined drawing region; preventing pattern deformation; and increasing the resolution of the pattern by irradiating the resist film on the inclined drawing region with orthogonal patterning light. Specifically provided is a drawing device for irradiating an object to be drawn upon with drawing light from a light-modulating element and drawing a pattern on the object to be drawn upon while continuously scanning the object to be drawn upon relative to the drawing light, said device being characterized by comprising a holding means for holding the object to be drawn upon, a measurement means for measuring the inclination of the surface to be drawn upon of the object to be drawn upon held by the holding means, an inclination adjustment means for adjusting the inclination of the holding means, and an inclination control means for controlling the inclination adjustment means according to the measurement results from the measurement means so that the surface to be drawn upon of the object to be drawn upon is irradiated with substantially orthogonal drawing light.
Description
本発明は、例えば液晶ディスプレイやプリント配線板等のフォトリソグラフィ工程に使用される描画装置及び描画方法に関し、特に描画対象物(被描画体)の傾斜面の描画領域(被描画面)に対してパターンを描画するダイレクト描画装置及びダイレクト描画方法に関する。
The present invention relates to a drawing apparatus and a drawing method used in a photolithography process such as a liquid crystal display or a printed wiring board, and particularly to an inclined drawing area (drawing surface) of a drawing object (drawing object). The present invention relates to a direct drawing apparatus and a direct drawing method for drawing a pattern.
電子機器を構成する部品である液晶ディスプレイやプリント配線板等の生産工程にはフォトリソグラフィ工程が含まれており、このフォトリソグラフィ工程中で描画装置及び描画方法が用いられる。
The production process of a liquid crystal display, a printed wiring board, and the like that are components constituting an electronic device includes a photolithography process, and a drawing apparatus and a drawing method are used in the photolithography process.
従来、描画装置及び描画方法による描画対象物は板状の平面な部材であり、その描画領域が水平面となっていた。このため、照射するパターン光の焦点距離を描画対象物の板状平面(描画領域である水平面)に合わせて走査するだけで、好適な描画を行うことが可能であった。
Conventionally, an object to be drawn by a drawing apparatus and a drawing method is a plate-like flat member, and its drawing area is a horizontal plane. For this reason, it was possible to perform suitable drawing only by scanning according to the focal length of the pattern light to be irradiated in accordance with the plate-like plane of the drawing object (the horizontal plane as the drawing region).
しかし近年、例えばモバイル電子機器等の発展に伴い、携行性向上の為あるいはデザインの観点から、上述した液晶ディスプレイやプリント配線板等の部品を立体的形状(例えば単一の平面ではなく傾斜した面を持つ形状)にする要求が高まっている。すなわち、描画対象物の描画領域が、従来の単一の板状平面(水平面)から、水平面に対して傾斜した傾斜面(水平面に対して湾曲した湾曲面を含む)といった立体的な形状にシフトしてきている。
However, in recent years, for example, with the development of mobile electronic devices, the components such as the liquid crystal display and the printed wiring board described above are three-dimensionally shaped (for example, an inclined surface instead of a single plane) in order to improve portability or from the viewpoint of design. The demand to make a shape with) is increasing. That is, the drawing area of the drawing object is shifted from a conventional single plate-like plane (horizontal plane) to a three-dimensional shape such as an inclined plane inclined with respect to the horizontal plane (including a curved plane curved with respect to the horizontal plane). Have been doing.
このような立体的形状の描画領域にパターンを描画する場合、次の3つの問題点が存在する。
第1の問題点は、描画領域が傾斜面を含んでいるため、走査時に、パターン光の焦点が外れてピンボケ状態(前ピン状態、後ピン状態)となる場所が生じ、パターンの解像度が低下してしまうことである。
第2の問題点は、描画領域の傾斜面に対して描画する際に、パターンが変形(主に伸長)してしまうことである。
第3の問題点は、傾斜する描画領域のレジスト膜に光が斜めに入射することにより、パターンの解像度が低下してしまうことである。 When a pattern is drawn in such a three-dimensional drawing area, there are the following three problems.
The first problem is that, since the drawing area includes an inclined surface, there is a place where the focus of the pattern light is out of focus and in the out-of-focus state (front pin state, rear pin state) during scanning, and the resolution of the pattern is reduced. It is to do.
The second problem is that the pattern is deformed (mainly stretched) when drawing on the inclined surface of the drawing area.
The third problem is that the resolution of the pattern is lowered when light is incident obliquely on the resist film in the inclined drawing region.
第1の問題点は、描画領域が傾斜面を含んでいるため、走査時に、パターン光の焦点が外れてピンボケ状態(前ピン状態、後ピン状態)となる場所が生じ、パターンの解像度が低下してしまうことである。
第2の問題点は、描画領域の傾斜面に対して描画する際に、パターンが変形(主に伸長)してしまうことである。
第3の問題点は、傾斜する描画領域のレジスト膜に光が斜めに入射することにより、パターンの解像度が低下してしまうことである。 When a pattern is drawn in such a three-dimensional drawing area, there are the following three problems.
The first problem is that, since the drawing area includes an inclined surface, there is a place where the focus of the pattern light is out of focus and in the out-of-focus state (front pin state, rear pin state) during scanning, and the resolution of the pattern is reduced. It is to do.
The second problem is that the pattern is deformed (mainly stretched) when drawing on the inclined surface of the drawing area.
The third problem is that the resolution of the pattern is lowered when light is incident obliquely on the resist film in the inclined drawing region.
特許文献1、2には、上記3つの技術課題を意識して工夫を施した技術が開示されている。
Patent Documents 1 and 2 disclose technologies that have been devised in consideration of the above three technical issues.
特許文献1では、チャック(保持手段)に載置したプレート(被描画体)へのスキャン露光を行う際に、プレートの傾斜に沿ってチャックをZ方向(上下方向)に調整することにより、スキャン露光の焦点ぼけを防いでいる。
しかし、露光エリア(露光ユニットが照射するパターン光のエリア)内において焦点位置の差が出ることを防止することはできず、また露光エリア内のパターンの変形を防止することもできない。 In Patent Document 1, when performing scanning exposure on a plate (object to be drawn) placed on a chuck (holding means), scanning is performed by adjusting the chuck in the Z direction (vertical direction) along the inclination of the plate. This prevents blurring of exposure.
However, it is impossible to prevent a difference in focal position in the exposure area (pattern light area irradiated by the exposure unit), and it is also impossible to prevent deformation of the pattern in the exposure area.
しかし、露光エリア(露光ユニットが照射するパターン光のエリア)内において焦点位置の差が出ることを防止することはできず、また露光エリア内のパターンの変形を防止することもできない。 In Patent Document 1, when performing scanning exposure on a plate (object to be drawn) placed on a chuck (holding means), scanning is performed by adjusting the chuck in the Z direction (vertical direction) along the inclination of the plate. This prevents blurring of exposure.
However, it is impossible to prevent a difference in focal position in the exposure area (pattern light area irradiated by the exposure unit), and it is also impossible to prevent deformation of the pattern in the exposure area.
特許文献2では、試料ステージ上に固定したウエハ(被描画体)への露光を行う前に、ウエハの傾斜によるパターンの変形量を予め計算し、電子線で描画するパターンのデータを補正することで、露光エリア内のパターンの変形を防止している。
しかし、ウエハの傾斜面を露光する際に、パターン光の焦点が外れてピンボケ状態(前ピン状態、後ピン状態)となる場所が生じ、パターンの解像度が低下してしまう。 In Patent Document 2, before performing exposure on a wafer (object to be drawn) fixed on a sample stage, the amount of deformation of the pattern due to the tilt of the wafer is calculated in advance and the pattern data drawn by the electron beam is corrected. Thus, deformation of the pattern in the exposure area is prevented.
However, when exposing the inclined surface of the wafer, there is a place where the focus of the pattern light is out of focus and in a defocused state (front pin state, rear pin state), and the resolution of the pattern is lowered.
しかし、ウエハの傾斜面を露光する際に、パターン光の焦点が外れてピンボケ状態(前ピン状態、後ピン状態)となる場所が生じ、パターンの解像度が低下してしまう。 In Patent Document 2, before performing exposure on a wafer (object to be drawn) fixed on a sample stage, the amount of deformation of the pattern due to the tilt of the wafer is calculated in advance and the pattern data drawn by the electron beam is corrected. Thus, deformation of the pattern in the exposure area is prevented.
However, when exposing the inclined surface of the wafer, there is a place where the focus of the pattern light is out of focus and in a defocused state (front pin state, rear pin state), and the resolution of the pattern is lowered.
本発明は、以上の問題意識に基づいてなされたものであり、被描画体の傾斜形状の描画領域に対してパターンを描画する際に、傾斜描画領域にパターン光の焦点を合わせてパターンの解像度を高め、パターンの変形を防止し、傾斜描画領域のレジスト膜にパターン光を垂直に入射させてパターンの解像度を高めることができる描画装置及び描画方法を得ることを目的とする。
The present invention has been made on the basis of the above problem awareness. When a pattern is drawn on the inclined drawing area of the drawing object, the pattern resolution is adjusted by focusing the pattern light on the inclined drawing area. It is an object of the present invention to provide a drawing apparatus and a drawing method that can improve pattern resolution by preventing pattern deformation and allowing pattern light to vertically enter a resist film in an inclined drawing region.
本発明の描画装置は、光変調素子により描画光を被描画体に照射し、前記被描画体を前記描画光に対して連続的に相対走査しながら前記被描画体にパターンを描画する描画装置であって、前記被描画体を保持する保持手段と、前記保持手段によって保持された前記被描画体の被描画面の傾きを測定する測定手段と、前記保持手段の傾きを調整する傾き調整手段と、前記測定手段の測定結果に応じて、前記描画光が前記被描画体の被描画面に略垂直に入射するように、前記傾き調整手段を制御する傾き制御手段と、を備えることを特徴としている。
The drawing apparatus of the present invention draws a pattern on the drawing object while irradiating the drawing object with a light modulation element and continuously scanning the drawing object with respect to the drawing light. The holding means for holding the drawing object, the measuring means for measuring the inclination of the drawing surface of the drawing object held by the holding means, and the inclination adjusting means for adjusting the inclination of the holding means. And an inclination control means for controlling the inclination adjusting means so that the drawing light is incident on the drawing surface of the drawing object substantially perpendicularly according to the measurement result of the measuring means. It is said.
前記測定手段は、前記被描画体の被描画面の所定位置において被描画面と基準位置との距離を測定するセンサを少なくとも3つ有し、前記所定位置はそれぞれ、前記描画光よりも前記相対走査の進行方向側とすることができる。
The measuring means has at least three sensors for measuring a distance between a drawing surface and a reference position at a predetermined position of the drawing surface of the drawing object, and each of the predetermined positions is more relative to the drawing light than the drawing light. It can be on the scanning direction side.
前記センサのうち少なくとも1つは、前記相対走査により前記被描画面の前記描画光が照射される領域の内側となる位置を所定位置とし、他のセンサは、前記相対走査により前記描画光が照射される領域の相対走査方向と直交する方向の境界近傍となる位置を所定位置とすることができる。
At least one of the sensors has a position that is inside a region of the drawing surface irradiated with the drawing light by the relative scanning, and the other sensors irradiate the drawing light by the relative scanning. The position near the boundary in the direction orthogonal to the relative scanning direction of the region to be set can be set as the predetermined position.
前記測定手段は、複数の前記センサが測定する距離に基づいて前記被描画面の所定の領域に対応する近似平面を算出する近似平面算出手段を備え、前記傾き制御手段は、前記描画光と前記近似平面とが略垂直になる様に前記傾き調整手段を制御することができる。
The measuring unit includes an approximate plane calculating unit that calculates an approximate plane corresponding to a predetermined region of the drawing surface based on a distance measured by the plurality of sensors, and the tilt control unit includes the drawing light and the drawing light. The tilt adjusting means can be controlled so that the approximate plane is substantially perpendicular.
本発明の描画方法は、光変調素子により描画光を被描画体に照射し、前記被描画体を前記描画光に対して連続的に相対走査しながら前記被描画体にパターンを描画する描画方法であって、描画期間において、保持手段によって保持された前記被描画体の被描画面の傾きを測定する測定ステップと、前記測定ステップでの測定結果に応じて、前記描画光が前記被描画体の被描画面に略垂直に入射するように、前記保持手段の傾きを調整する傾き調整制御ステップと、を複数回繰り返すことを特徴としている。
A drawing method of the present invention is a drawing method in which drawing light is irradiated to a drawing object by a light modulation element, and a pattern is drawn on the drawing object while continuously scanning the drawing object with respect to the drawing light. In the drawing period, a measuring step for measuring an inclination of a drawing surface of the drawing object held by holding means, and the drawing light is changed according to a measurement result in the measuring step. And an inclination adjustment control step of adjusting the inclination of the holding means so as to be incident substantially perpendicularly on the drawing surface of the image forming apparatus.
本発明によれば、被描画体の傾斜形状の描画領域に対してパターンを描画する際に、傾斜描画領域にパターン光の焦点を合わせてパターンの解像度を高め、パターンの変形を防止し、傾斜描画領域のレジスト膜にパターン光を垂直に入射させてパターンの解像度を高めることができる描画装置及び描画方法を得ることができる。
According to the present invention, when a pattern is drawn on an inclined drawing area of an object to be drawn, the pattern light is focused on the inclined drawing area to increase the resolution of the pattern, to prevent the pattern from being deformed. It is possible to obtain a drawing apparatus and a drawing method in which pattern light can be vertically incident on a resist film in a drawing region to increase the resolution of the pattern.
図1~図8を参照して、本発明の一実施形態に係る描画装置1について説明する。
A drawing apparatus 1 according to an embodiment of the present invention will be described with reference to FIGS.
<被描画体である基板Wの構成>
まず、図1(A)、(B)を参照して、描画装置1による被描画体である基板Wの構造(立体的形状)について説明する。基板Wは、例えば、電子機器を構成する部品である液晶ディスプレイやプリント配線板等である。 <Configuration of Substrate W as Drawing Object>
First, with reference to FIGS. 1A and 1B, the structure (three-dimensional shape) of the substrate W that is a drawing object by the drawing apparatus 1 will be described. The board | substrate W is a liquid crystal display, a printed wiring board, etc. which are components which comprise an electronic device, for example.
まず、図1(A)、(B)を参照して、描画装置1による被描画体である基板Wの構造(立体的形状)について説明する。基板Wは、例えば、電子機器を構成する部品である液晶ディスプレイやプリント配線板等である。 <Configuration of Substrate W as Drawing Object>
First, with reference to FIGS. 1A and 1B, the structure (three-dimensional shape) of the substrate W that is a drawing object by the drawing apparatus 1 will be described. The board | substrate W is a liquid crystal display, a printed wiring board, etc. which are components which comprise an electronic device, for example.
図1(A)、(B)において、基板Wは、その走査(相対走査)方向(同図中の紙面垂直方向)に延びる傾斜形状の描画領域(被描画面)(以下では「傾斜描画領域」と呼ぶ)110を有している。図1(A)では、同図中の左右方向に延びる描画領域から傾斜描画領域110への切り替わり部が比較的鋭角となっており、図1(B)では、同図中の左右方向に延びる描画領域から傾斜描画領域110への切り替わり部が比較的緩やかなR面となっている。
本明細書において、「傾斜描画領域(被描画面)110」は、水平面に対して傾斜した傾斜面のほか、水平面に対して湾曲した湾曲面を含む立体的な形状を意味している。 1A and 1B, a substrate W has an inclined drawing area (surface to be drawn) extending in the scanning (relative scanning) direction (perpendicular to the paper surface in the drawing) (hereinafter referred to as “inclined drawing area”). 110). In FIG. 1A, the switching portion from the drawing region extending in the left-right direction in FIG. 1 to theinclined drawing region 110 has a relatively acute angle, and in FIG. 1B, it extends in the left-right direction in FIG. A switching portion from the drawing area to the inclined drawing area 110 is a relatively gentle R surface.
In this specification, the “inclined drawing region (surface to be drawn) 110” means a three-dimensional shape including an inclined surface inclined with respect to a horizontal plane and a curved surface curved with respect to the horizontal plane.
本明細書において、「傾斜描画領域(被描画面)110」は、水平面に対して傾斜した傾斜面のほか、水平面に対して湾曲した湾曲面を含む立体的な形状を意味している。 1A and 1B, a substrate W has an inclined drawing area (surface to be drawn) extending in the scanning (relative scanning) direction (perpendicular to the paper surface in the drawing) (hereinafter referred to as “inclined drawing area”). 110). In FIG. 1A, the switching portion from the drawing region extending in the left-right direction in FIG. 1 to the
In this specification, the “inclined drawing region (surface to be drawn) 110” means a three-dimensional shape including an inclined surface inclined with respect to a horizontal plane and a curved surface curved with respect to the horizontal plane.
基板Wの傾斜描画領域110は、走査方向位置に依存して断面形状が変化する傾斜面や湾曲面を有していてもよい。例えば、図1(A)、(B)において、基板Wの傾斜描画領域110を、走査方向(同図中の紙面垂直方向)と副走査方向(同図中の左右方向)を入れ替えた形状としてもよい。
すなわち、図1(A)、(B)に示した基板Wの傾斜描画領域110の形状はあくまで一例にすぎず、傾斜描画領域110は任意の形状とすることができる。 Theinclined drawing region 110 of the substrate W may have an inclined surface or a curved surface whose cross-sectional shape changes depending on the position in the scanning direction. For example, in FIGS. 1A and 1B, the inclined drawing area 110 of the substrate W has a shape in which the scanning direction (perpendicular to the paper surface in the figure) and the sub-scanning direction (the left-right direction in the figure) are interchanged. Also good.
In other words, the shape of theinclined drawing area 110 of the substrate W shown in FIGS. 1A and 1B is merely an example, and the inclined drawing area 110 can have an arbitrary shape.
すなわち、図1(A)、(B)に示した基板Wの傾斜描画領域110の形状はあくまで一例にすぎず、傾斜描画領域110は任意の形状とすることができる。 The
In other words, the shape of the
<描画装置1の構成>
続いて、図2~図6を参照して、描画装置1の構成について説明する。描画装置1は、光変調素子により描画光を基板Wに照射し、基板Wを描画光に対して連続的に走査(相対走査)しながら基板Wにパターンを描画するものである。同図においては、描画装置1による被描画体として、図1(A)に示した傾斜描画領域110を持つ基板Wを例示して説明する。 <Configuration of the drawing apparatus 1>
Next, the configuration of the drawing apparatus 1 will be described with reference to FIGS. The drawing apparatus 1 irradiates the substrate W with drawing light by a light modulation element, and draws a pattern on the substrate W while continuously scanning (relatively scanning) the substrate W with respect to the drawing light. In the figure, as an object to be drawn by the drawing apparatus 1, a substrate W having theinclined drawing region 110 shown in FIG.
続いて、図2~図6を参照して、描画装置1の構成について説明する。描画装置1は、光変調素子により描画光を基板Wに照射し、基板Wを描画光に対して連続的に走査(相対走査)しながら基板Wにパターンを描画するものである。同図においては、描画装置1による被描画体として、図1(A)に示した傾斜描画領域110を持つ基板Wを例示して説明する。 <Configuration of the drawing apparatus 1>
Next, the configuration of the drawing apparatus 1 will be described with reference to FIGS. The drawing apparatus 1 irradiates the substrate W with drawing light by a light modulation element, and draws a pattern on the substrate W while continuously scanning (relatively scanning) the substrate W with respect to the drawing light. In the figure, as an object to be drawn by the drawing apparatus 1, a substrate W having the
図2に示すように、描画装置1は、被描画体である基板Wの傾斜描画領域110を走査方向と副走査方向に並ぶ複数の分割傾斜描画領域(以下では「分割領域」と呼ぶ)A1~A7、B1~B7、C1~C7、D1~D7、E1~E7に区画し、各分割領域A1~E7に対して連続的にパターン光を照射する走査型描画装置である。
基板Wの傾斜描画領域110は、実際には、例えば8(分割)×25(列)=200(分割領域)といったような多数の分割領域に区画される。パターン描画の解像度を高めるためには、分割領域の区画数は多ければ多い程良い。
しかし本実施形態では、発明の理解を容易にするために(上記多数の分割領域を全て示すのは現実的に不可能である)、基板Wの傾斜描画領域110を7×5=35の分割領域A1~E7に区画した場合を例示して説明する。 As shown in FIG. 2, the drawing apparatus 1 includes a plurality of divided inclined drawing areas (hereinafter referred to as “divided areas”) A1 in which theinclined drawing area 110 of the substrate W that is the drawing object is arranged in the scanning direction and the sub-scanning direction. A scanning type drawing apparatus that divides into ~ A7, B1 ~ B7, C1 ~ C7, D1 ~ D7, E1 ~ E7, and continuously irradiates each divided area A1 ~ E7 with pattern light.
Theinclined drawing area 110 of the substrate W is actually divided into a large number of divided areas, for example, 8 (divided) × 25 (columns) = 200 (divided areas). In order to increase the resolution of pattern drawing, it is better that the number of divisions is larger.
However, in this embodiment, in order to facilitate the understanding of the invention (it is practically impossible to show all the above-mentioned many divided areas), theinclined drawing area 110 of the substrate W is divided by 7 × 5 = 35. A case where the area is divided into areas A1 to E7 will be described as an example.
基板Wの傾斜描画領域110は、実際には、例えば8(分割)×25(列)=200(分割領域)といったような多数の分割領域に区画される。パターン描画の解像度を高めるためには、分割領域の区画数は多ければ多い程良い。
しかし本実施形態では、発明の理解を容易にするために(上記多数の分割領域を全て示すのは現実的に不可能である)、基板Wの傾斜描画領域110を7×5=35の分割領域A1~E7に区画した場合を例示して説明する。 As shown in FIG. 2, the drawing apparatus 1 includes a plurality of divided inclined drawing areas (hereinafter referred to as “divided areas”) A1 in which the
The
However, in this embodiment, in order to facilitate the understanding of the invention (it is practically impossible to show all the above-mentioned many divided areas), the
描画装置1は筐体1Xを有しており、この筐体1X内の載置台1Y上に、描画装置1の各構成要素が支持されている。
The drawing apparatus 1 has a housing 1X, and each component of the drawing apparatus 1 is supported on a mounting table 1Y in the housing 1X.
描画装置1は、被描画体である基板Wを保持するステージ(保持手段)10を備えている。ステージ10は、基板Wの下面(ステージ接触面)を真空吸着してこれを保持する真空吸着保持機構(図示せず)を有している。また、基板Wの下面(ステージ接触面)が平面ではない特殊な形状である場合には、その特殊形状に応じた基板保持機構がステージ10に搭載される。
The drawing apparatus 1 includes a stage (holding means) 10 that holds a substrate W that is a drawing target. The stage 10 has a vacuum suction holding mechanism (not shown) that vacuum-sucks and holds the lower surface (stage contact surface) of the substrate W. When the lower surface (stage contact surface) of the substrate W has a special shape that is not a flat surface, a substrate holding mechanism corresponding to the special shape is mounted on the stage 10.
描画装置1は、基板Wを保持したステージ10をX方向(走査方向)に連続的に移動させるステージ移動機構20を備えている。ステージ移動機構20は、載置台1Y上にX方向(走査方向)に2本並んで形成されたガイドレール21(図5)と、このガイドレール21にガイドされるステージ10側のガイド部材(図示せず)と、このガイド部材をガイドレール21に対して連続的に駆動する駆動手段(図示せず)を有している。また、ステージ移動機構20は、ステージ10をY方向(副走査方向)、Z方向(高さ方向)、θ方向(回転方向)に移動可能な構造を備えていてもよい。
The drawing apparatus 1 includes a stage moving mechanism 20 that continuously moves the stage 10 holding the substrate W in the X direction (scanning direction). The stage moving mechanism 20 includes two guide rails 21 (FIG. 5) formed side by side in the X direction (scanning direction) on the mounting table 1Y, and a guide member on the stage 10 side (FIG. 5) guided by the guide rails 21. And a driving means (not shown) for continuously driving the guide member with respect to the guide rail 21. Further, the stage moving mechanism 20 may include a structure capable of moving the stage 10 in the Y direction (sub-scanning direction), the Z direction (height direction), and the θ direction (rotation direction).
ステージ10とステージ移動機構20との間には、基板Wを保持したステージ10をX方向(走査方向)に連続的に移動させるのと同期して、ステージ10を三次元的に移動させてステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110(分割領域A1~E7)の姿勢(傾き)を連続的、あるいはステップワイズに変化させる姿勢調整装置(傾き調整手段)30が設けられている。
Between the stage 10 and the stage moving mechanism 20, the stage 10 is moved three-dimensionally in synchronism with the continuous movement of the stage 10 holding the substrate W in the X direction (scanning direction). 10 and an attitude adjusting device (inclination adjusting means) 30 for changing the attitude (inclination) of the inclined drawing area 110 (divided areas A1 to E7) of the substrate W held on the stage 10 continuously or stepwise. ing.
図5に示すように、姿勢調整装置30は、ステージ移動機構20のガイドレール21にガイド部材(図示せず)を介してガイドされる底板部31と、この底板部31よりも上方に位置する中板部32とを有しており、中板部32のさらに上方にステージ10が位置している(ステージ10が姿勢調整装置30の天板部を構成している)。
底板部31の上面と中板部32の下面には、XZ平面に描いた仮想円弧の一部をなし且つY方向に延びるガイド面を有する各4つのガイド部材31Aとガイド部材32Aがそれぞれ設けられている。ガイド部材31Aとガイド部材32Aのガイド面がXZ平面に描いた仮想円弧に沿っでガイドされることで、XZ平面内において、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110(分割領域A1~E7)の姿勢(傾き)を変化させることができる。ガイド部材31Aとガイド部材32Aには、両ガイド部材のガイド面が外れるのを防止するための係合部31Bと係合部32Bが形成されている。
中板部32の上面とステージ10の下面には、YZ平面に描いた仮想円弧の一部をなし且つX方向に延びるガイド面を有する各4つのガイド部材32Cとガイド部材10Aがそれぞれ設けられている。ガイド部材32Cとガイド部材10Aのガイド面がYZ平面に描いた仮想円弧に沿ってガイドされることで、YZ平面内において、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110(分割領域A1~E7)の姿勢(傾き)を変化させることができる。ガイド部材32Cとガイド部材10Aには、両ガイド部材のガイド面が外れるのを防止するための係合部32Dと係合部10Bが形成されている。
描画装置1には、底板部31のガイド部材31Aと中板部32のガイド部材32Aをガイドするように駆動する駆動手段(図示せず)および中板部32のガイド部材32Cとステージ10のガイド部材10Aをガイドするように駆動する駆動手段(図示せず)が設けられている。
このように、底板部31と中板部32の間に設けたXZ平面内の姿勢調整機構および中板部32とステージ10の間に設けたYZ平面内の姿勢調整機構を組み合わせることにより、ステージ10を三次元的に移動させてステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110(分割領域A1~E7)の姿勢(傾き)を連続的、あるいはステップワイズに変化させることができる。
なお、姿勢調整装置(傾き調整装置)の具体的態様は、ここで説明したものに限定されず、例えば直動のリニアスライドを利用したものやクサビ構造を利用したもの等の周知の機構を採用することができる。 As shown in FIG. 5, theattitude adjustment device 30 is positioned above the bottom plate portion 31 and the bottom plate portion 31 guided by the guide rail 21 of the stage moving mechanism 20 via a guide member (not shown). The stage 10 is positioned further above the middle plate 32 (the stage 10 constitutes the top plate of the posture adjusting device 30).
The upper surface of thebottom plate portion 31 and the lower surface of the middle plate portion 32 are provided with four guide members 31A and 32A each having a guide surface that forms part of a virtual arc drawn on the XZ plane and extends in the Y direction. ing. The guide surfaces of the guide member 31A and the guide member 32A are guided along a virtual arc drawn on the XZ plane, so that the stage 10 and the inclined drawing area 110 of the substrate W held on the stage 10 ( The posture (inclination) of the divided areas A1 to E7) can be changed. The guide member 31A and the guide member 32A are formed with an engaging portion 31B and an engaging portion 32B for preventing the guide surfaces of both guide members from being detached.
On the upper surface of theintermediate plate portion 32 and the lower surface of the stage 10, four guide members 32C and guide members 10A each having a guide surface that forms part of a virtual arc drawn on the YZ plane and extends in the X direction are provided. Yes. The guide surfaces of the guide member 32C and the guide member 10A are guided along a virtual arc drawn on the YZ plane, whereby the stage 10 and the inclined drawing region 110 of the substrate W held on the stage 10 (in the YZ plane) ( The posture (inclination) of the divided areas A1 to E7) can be changed. The guide member 32C and the guide member 10A are formed with an engaging portion 32D and an engaging portion 10B for preventing the guide surfaces of both guide members from coming off.
The drawing apparatus 1 includes a driving means (not shown) for driving theguide member 31A of the bottom plate portion 31 and the guide member 32A of the middle plate portion 32, and the guide member 32C of the middle plate portion 32 and the guide of the stage 10. Driving means (not shown) for driving the member 10A so as to guide the member 10A is provided.
Thus, the stage is adjusted by combining the posture adjustment mechanism in the XZ plane provided between thebottom plate portion 31 and the middle plate portion 32 and the posture adjustment mechanism in the YZ plane provided between the middle plate portion 32 and the stage 10. 10 is moved three-dimensionally to change the posture (inclination) of the stage 10 and the inclined drawing area 110 (divided areas A1 to E7) of the substrate W held on the stage 10 continuously or stepwise. it can.
The specific mode of the posture adjustment device (tilt adjustment device) is not limited to that described here, and a known mechanism such as one using a linear motion linear slide or one using a wedge structure is employed. can do.
底板部31の上面と中板部32の下面には、XZ平面に描いた仮想円弧の一部をなし且つY方向に延びるガイド面を有する各4つのガイド部材31Aとガイド部材32Aがそれぞれ設けられている。ガイド部材31Aとガイド部材32Aのガイド面がXZ平面に描いた仮想円弧に沿っでガイドされることで、XZ平面内において、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110(分割領域A1~E7)の姿勢(傾き)を変化させることができる。ガイド部材31Aとガイド部材32Aには、両ガイド部材のガイド面が外れるのを防止するための係合部31Bと係合部32Bが形成されている。
中板部32の上面とステージ10の下面には、YZ平面に描いた仮想円弧の一部をなし且つX方向に延びるガイド面を有する各4つのガイド部材32Cとガイド部材10Aがそれぞれ設けられている。ガイド部材32Cとガイド部材10Aのガイド面がYZ平面に描いた仮想円弧に沿ってガイドされることで、YZ平面内において、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110(分割領域A1~E7)の姿勢(傾き)を変化させることができる。ガイド部材32Cとガイド部材10Aには、両ガイド部材のガイド面が外れるのを防止するための係合部32Dと係合部10Bが形成されている。
描画装置1には、底板部31のガイド部材31Aと中板部32のガイド部材32Aをガイドするように駆動する駆動手段(図示せず)および中板部32のガイド部材32Cとステージ10のガイド部材10Aをガイドするように駆動する駆動手段(図示せず)が設けられている。
このように、底板部31と中板部32の間に設けたXZ平面内の姿勢調整機構および中板部32とステージ10の間に設けたYZ平面内の姿勢調整機構を組み合わせることにより、ステージ10を三次元的に移動させてステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110(分割領域A1~E7)の姿勢(傾き)を連続的、あるいはステップワイズに変化させることができる。
なお、姿勢調整装置(傾き調整装置)の具体的態様は、ここで説明したものに限定されず、例えば直動のリニアスライドを利用したものやクサビ構造を利用したもの等の周知の機構を採用することができる。 As shown in FIG. 5, the
The upper surface of the
On the upper surface of the
The drawing apparatus 1 includes a driving means (not shown) for driving the
Thus, the stage is adjusted by combining the posture adjustment mechanism in the XZ plane provided between the
The specific mode of the posture adjustment device (tilt adjustment device) is not limited to that described here, and a known mechanism such as one using a linear motion linear slide or one using a wedge structure is employed. can do.
描画装置1は、載置台1Y上に、ステージ10、ステージ移動機構20及び姿勢調整装置30をY方向(副走査方向)に跨ぐ門型の露光ユニットベース(描画ユニットベース)40を備えている。この露光ユニットベース40には、露光ユニット移動機構(描画ユニット移動機構)50によって、露光ユニット(描画ユニット)60がY方向(副走査方向)にステップワイズに移動可能に支持されている。
The drawing apparatus 1 includes a gate-type exposure unit base (drawing unit base) 40 that straddles the stage 10, the stage moving mechanism 20, and the attitude adjustment device 30 in the Y direction (sub-scanning direction) on the mounting table 1Y. The exposure unit base 40 supports an exposure unit (drawing unit) 60 movably stepwise in the Y direction (sub-scanning direction) by an exposure unit moving mechanism (drawing unit moving mechanism) 50.
露光ユニット60は、ステージ10に保持された基板Wの傾斜描画領域110に対してパターン光を照射することによりパターンを露光(描画)する。
より具体的に、露光ユニット60は、パターン光の照射位置を分割領域A1に合わせた初期状態から、ステージ移動機構20によってステージ10をX方向(走査方向)に連続的に移動させながら、基板Wの分割領域A1~A7に対して連続的にパターン光を照射していく。その後、ステージ移動機構20と露光ユニット移動機構50によって、露光ユニット60によるパターン光の照射位置を分割領域B1に合わせる。そして、露光ユニット60は、ステージ移動機構20によってステージ10をX方向(走査方向)に連続的に移動させながら、基板Wの分割領域B1~B7に対して連続的にパターン光を照射していく。以上の動作を繰り返すことで、露光ユニット60は、基板Wの分割領域A1~E7に対して連続的にパターン光を照射する。 Theexposure unit 60 exposes (draws) a pattern by irradiating the inclined drawing area 110 of the substrate W held on the stage 10 with pattern light.
More specifically, theexposure unit 60 moves the substrate W while continuously moving the stage 10 in the X direction (scanning direction) by the stage moving mechanism 20 from the initial state where the irradiation position of the pattern light is adjusted to the divided area A1. The pattern light is continuously applied to the divided areas A1 to A7. Thereafter, the stage moving mechanism 20 and the exposure unit moving mechanism 50 align the irradiation position of the pattern light by the exposure unit 60 with the divided region B1. Then, the exposure unit 60 continuously irradiates the divided regions B1 to B7 of the substrate W with the pattern light while continuously moving the stage 10 in the X direction (scanning direction) by the stage moving mechanism 20. . By repeating the above operation, the exposure unit 60 continuously irradiates the divided regions A1 to E7 of the substrate W with pattern light.
より具体的に、露光ユニット60は、パターン光の照射位置を分割領域A1に合わせた初期状態から、ステージ移動機構20によってステージ10をX方向(走査方向)に連続的に移動させながら、基板Wの分割領域A1~A7に対して連続的にパターン光を照射していく。その後、ステージ移動機構20と露光ユニット移動機構50によって、露光ユニット60によるパターン光の照射位置を分割領域B1に合わせる。そして、露光ユニット60は、ステージ移動機構20によってステージ10をX方向(走査方向)に連続的に移動させながら、基板Wの分割領域B1~B7に対して連続的にパターン光を照射していく。以上の動作を繰り返すことで、露光ユニット60は、基板Wの分割領域A1~E7に対して連続的にパターン光を照射する。 The
More specifically, the
露光ユニット60は光を照射する光源61を有している(図3)。また図示は省略しているが、露光ユニット60は、光源61が照射した光の光量を均一化し、平行光束になるように調整する照明光学系、この照明光学系で調整された光をパターン光とするDMD、並びにこのDMDで反射されたパターン光を基板Wの傾斜描画領域110(分割領域A1~E7)に導いて結像させる投影光学系及び焦点調整光学系を有している。DMDを用いて連続的にパターンを描画する方法は、例えば特開2003−057837号公報に詳しく説明されており、本実施形態においても同様の方法にて描画(露光)を行っている。
The exposure unit 60 has a light source 61 for irradiating light (FIG. 3). Although not shown in the drawing, the exposure unit 60 makes the light quantity emitted from the light source 61 uniform and adjusts the light so that it becomes a parallel light beam, and the light adjusted by the illumination optical system is used as pattern light. And a projection optical system and a focus adjustment optical system for guiding the pattern light reflected by the DMD to the inclined drawing area 110 (divided areas A1 to E7) of the substrate W to form an image. A method of continuously drawing a pattern using DMD is described in detail in, for example, Japanese Patent Application Laid-Open No. 2003-057837, and drawing (exposure) is performed in the same manner in this embodiment.
露光ユニット60には、ステージ10に保持された基板Wの傾斜描画領域110(各分割領域A1~E7)の傾きを測定し、この傾きに基づいた近似平面を算出する傾斜センサユニット(傾き測定手段、近似平面算出手段)70が設けられている。
傾斜センサユニット70は、露光ユニット60よりもX方向(走査方向)に先行するようにオフセットした位置に設けられている。このため、傾斜センサユニット70は、露光ユニット60が同一の走査ラインの分割領域に対して連続的にパターン光を照射している場合において、露光ユニット60による現在のパターン光の照射位置よりも後にパターン光の照射を予定している別の分割領域の近似平面を算出する。
本実施形態では、傾斜センサユニット70は、露光ユニット60が分割領域A1に対してパターン光を照射している場合、その直後にパターン光の照射を予定している分割領域A2の近似平面を算出する。一方、露光ユニット60が分割領域A7に対してパターン光を照射している場合、走査ライン上には、その後にパターン光の照射を予定している分割領域が存在しないので、傾斜センサユニット70は、いずれの分割領域の近似平面も算出しない(算出できない)。 Theexposure unit 60 measures an inclination of the inclined drawing area 110 (each divided area A1 to E7) of the substrate W held on the stage 10 and calculates an approximate plane based on this inclination (an inclination measuring unit). , Approximate plane calculating means) 70 is provided.
Thetilt sensor unit 70 is provided at a position offset so as to precede the exposure unit 60 in the X direction (scanning direction). For this reason, the inclination sensor unit 70 is after the irradiation position of the current pattern light by the exposure unit 60 when the exposure unit 60 continuously irradiates the divided light of the same scanning line. An approximate plane of another divided region scheduled to be irradiated with the pattern light is calculated.
In the present embodiment, when theexposure unit 60 irradiates the divided area A1 with pattern light, the inclination sensor unit 70 calculates an approximate plane of the divided area A2 scheduled to be irradiated with the pattern light immediately after that. To do. On the other hand, when the exposure unit 60 irradiates the divided region A7 with the pattern light, since there is no divided region on the scanning line that is scheduled to be irradiated with the pattern light thereafter, the inclination sensor unit 70 is The approximate plane of any divided area is not calculated (cannot be calculated).
傾斜センサユニット70は、露光ユニット60よりもX方向(走査方向)に先行するようにオフセットした位置に設けられている。このため、傾斜センサユニット70は、露光ユニット60が同一の走査ラインの分割領域に対して連続的にパターン光を照射している場合において、露光ユニット60による現在のパターン光の照射位置よりも後にパターン光の照射を予定している別の分割領域の近似平面を算出する。
本実施形態では、傾斜センサユニット70は、露光ユニット60が分割領域A1に対してパターン光を照射している場合、その直後にパターン光の照射を予定している分割領域A2の近似平面を算出する。一方、露光ユニット60が分割領域A7に対してパターン光を照射している場合、走査ライン上には、その後にパターン光の照射を予定している分割領域が存在しないので、傾斜センサユニット70は、いずれの分割領域の近似平面も算出しない(算出できない)。 The
The
In the present embodiment, when the
傾斜センサユニット70は基板Wの各分割領域A1~E7の傾きを求める。具体的には、傾斜センサユニット70は基板Wの各分割領域A1~E7の近似平面を算出する。
図6(A)、(B)に示すように、傾斜センサユニット70は、第1センサ71、第2センサ72、第3センサ73の3つをユニット化してなる。これら3つのセンサ71~73は、例えば距離を測定するセンサであり、基板Wに非接触で測定できるセンサが望ましく、例えば、レーザ変位計、超音波変位計、空気マイクロメータ等を使用することができる。
3つのセンサ71~73は、基板Wの走査に合わせて、基板Wの各分割領域A1~E7についてそれぞれ複数の基準位置(分割領域に傾きが無く、露光ユニット60の焦点面に一致するときの位置)と被描画面上の測定位置との距離を求め、この複数の距離に基づいて、基板Wの各分割領域A1~E7の近似平面を算出する。
このとき、この複数の距離は一度に取得せず、基板Wの走査に応じて少なくとも2回に分けて計測を行う。こうすることで、走査方向及び走査方向と直交する方向の2方向に適度に離間した位置における距離を測定することができる。
傾斜データの測地位置(所定位置)については、センサのうち少なくとも1つが傾斜描画領域内の走査によって描画光が連続的に照射される領域(被照射領域)における距離を測定し、他の傾斜センサについては被照射領域の境界近傍における距離を測定する。なお、被照射領域の近傍は、被照射領域内側と被照射領域外側の、どちら側であってもよい。
第1センサ71、第2センサ72、第3センサ73は、既知の技術によってなる市販の変位計を使用する。既知の技術については、例えば特開2001−159516号公報に詳しく説明されている。
なお、基板Wの傾斜方向が一方向のみである場合には、3つのセンサ71~73による測定は、複数回ではなく1回のみでも良く、その際の3点の測定箇所は、直線上に配置される。 Thetilt sensor unit 70 obtains the tilts of the divided areas A1 to E7 of the substrate W. Specifically, the tilt sensor unit 70 calculates approximate planes of the divided areas A1 to E7 of the substrate W.
As shown in FIGS. 6A and 6B, thetilt sensor unit 70 is formed by unitizing three sensors, a first sensor 71, a second sensor 72, and a third sensor 73. These three sensors 71 to 73 are sensors that measure distance, for example, and are preferably sensors that can measure without contact with the substrate W. For example, a laser displacement meter, an ultrasonic displacement meter, an air micrometer, or the like may be used. it can.
The threesensors 71 to 73 correspond to a plurality of reference positions for the divided areas A1 to E7 of the substrate W in accordance with the scanning of the substrate W (when the divided areas have no inclination and coincide with the focal plane of the exposure unit 60). Position) and the measurement position on the drawing surface are obtained, and approximate planes of the divided regions A1 to E7 of the substrate W are calculated based on the plurality of distances.
At this time, the plurality of distances are not acquired at once, and measurement is performed at least twice according to the scanning of the substrate W. By doing so, it is possible to measure the distance at a position that is appropriately separated in two directions, ie, the scanning direction and the direction orthogonal to the scanning direction.
For the geodetic position (predetermined position) of the tilt data, at least one of the sensors measures the distance in the region (irradiated region) where the drawing light is continuously irradiated by scanning in the tilted drawing region, and other tilt sensors. For, measure the distance near the boundary of the irradiated area. Note that the vicinity of the irradiated region may be on either the inner side of the irradiated region or the outer side of the irradiated region.
Thefirst sensor 71, the second sensor 72, and the third sensor 73 use commercially available displacement meters made of a known technique. The known technique is described in detail in, for example, Japanese Patent Application Laid-Open No. 2001-159516.
When the substrate W is inclined in only one direction, the measurement by the threesensors 71 to 73 may be performed only once instead of a plurality of times, and the three measurement points at that time are on a straight line. Be placed.
図6(A)、(B)に示すように、傾斜センサユニット70は、第1センサ71、第2センサ72、第3センサ73の3つをユニット化してなる。これら3つのセンサ71~73は、例えば距離を測定するセンサであり、基板Wに非接触で測定できるセンサが望ましく、例えば、レーザ変位計、超音波変位計、空気マイクロメータ等を使用することができる。
3つのセンサ71~73は、基板Wの走査に合わせて、基板Wの各分割領域A1~E7についてそれぞれ複数の基準位置(分割領域に傾きが無く、露光ユニット60の焦点面に一致するときの位置)と被描画面上の測定位置との距離を求め、この複数の距離に基づいて、基板Wの各分割領域A1~E7の近似平面を算出する。
このとき、この複数の距離は一度に取得せず、基板Wの走査に応じて少なくとも2回に分けて計測を行う。こうすることで、走査方向及び走査方向と直交する方向の2方向に適度に離間した位置における距離を測定することができる。
傾斜データの測地位置(所定位置)については、センサのうち少なくとも1つが傾斜描画領域内の走査によって描画光が連続的に照射される領域(被照射領域)における距離を測定し、他の傾斜センサについては被照射領域の境界近傍における距離を測定する。なお、被照射領域の近傍は、被照射領域内側と被照射領域外側の、どちら側であってもよい。
第1センサ71、第2センサ72、第3センサ73は、既知の技術によってなる市販の変位計を使用する。既知の技術については、例えば特開2001−159516号公報に詳しく説明されている。
なお、基板Wの傾斜方向が一方向のみである場合には、3つのセンサ71~73による測定は、複数回ではなく1回のみでも良く、その際の3点の測定箇所は、直線上に配置される。 The
As shown in FIGS. 6A and 6B, the
The three
At this time, the plurality of distances are not acquired at once, and measurement is performed at least twice according to the scanning of the substrate W. By doing so, it is possible to measure the distance at a position that is appropriately separated in two directions, ie, the scanning direction and the direction orthogonal to the scanning direction.
For the geodetic position (predetermined position) of the tilt data, at least one of the sensors measures the distance in the region (irradiated region) where the drawing light is continuously irradiated by scanning in the tilted drawing region, and other tilt sensors. For, measure the distance near the boundary of the irradiated area. Note that the vicinity of the irradiated region may be on either the inner side of the irradiated region or the outer side of the irradiated region.
The
When the substrate W is inclined in only one direction, the measurement by the three
図4に示すように、描画装置1は、傾斜センサユニット70が算出した基板Wの傾斜描画領域110(各分割領域A1~E7)の近似平面が入力される演算装置80を有している。
演算装置80は、傾斜センサユニット70からの入力情報に基づいて、露光ユニット60が照射したパターン光が、基板Wの傾斜描画領域110(分割領域A1~E7)に対して略垂直に入射するようなステージ10の姿勢(傾き)を演算する。
すなわち、演算装置80は、傾斜センサユニット70からの入力情報に基づいて、露光ユニット60が照射したパターン光が、傾斜センサユニット70が算出した基板Wの傾斜描画領域110の近似平面に対して略垂直に入射するようなステージ10の姿勢(傾き)を演算する。
より具体的に、演算装置80は、露光ユニット60が連続的に照射したパターン光が、傾斜センサユニット70が算出した基板Wの各分割領域A1~E7の近似平面に対して略垂直に入力するようなステージ10の姿勢を演算する。 As shown in FIG. 4, the drawing apparatus 1 includes anarithmetic device 80 to which an approximate plane of the inclined drawing area 110 (each divided area A1 to E7) of the substrate W calculated by the inclination sensor unit 70 is input.
Based on the input information from thetilt sensor unit 70, the arithmetic device 80 causes the pattern light irradiated by the exposure unit 60 to enter the tilt drawing region 110 (divided regions A1 to E7) of the substrate W substantially perpendicularly. The posture (tilt) of the correct stage 10 is calculated.
In other words, thearithmetic device 80 is based on the input information from the tilt sensor unit 70, and the pattern light irradiated by the exposure unit 60 is approximately with respect to the approximate plane of the tilt drawing area 110 of the substrate W calculated by the tilt sensor unit 70. The posture (tilt) of the stage 10 that enters perpendicularly is calculated.
More specifically, thearithmetic device 80 inputs the pattern light continuously irradiated by the exposure unit 60 substantially perpendicularly to the approximate planes of the divided areas A1 to E7 of the substrate W calculated by the tilt sensor unit 70. Such a posture of the stage 10 is calculated.
演算装置80は、傾斜センサユニット70からの入力情報に基づいて、露光ユニット60が照射したパターン光が、基板Wの傾斜描画領域110(分割領域A1~E7)に対して略垂直に入射するようなステージ10の姿勢(傾き)を演算する。
すなわち、演算装置80は、傾斜センサユニット70からの入力情報に基づいて、露光ユニット60が照射したパターン光が、傾斜センサユニット70が算出した基板Wの傾斜描画領域110の近似平面に対して略垂直に入射するようなステージ10の姿勢(傾き)を演算する。
より具体的に、演算装置80は、露光ユニット60が連続的に照射したパターン光が、傾斜センサユニット70が算出した基板Wの各分割領域A1~E7の近似平面に対して略垂直に入力するようなステージ10の姿勢を演算する。 As shown in FIG. 4, the drawing apparatus 1 includes an
Based on the input information from the
In other words, the
More specifically, the
図4に示すように、描画装置1は、制御装置(傾き制御手段、姿勢制御手段)90を有している。
制御装置90は、演算装置80の演算結果に基づいて、基板Wの傾斜描画領域110(各分割領域A1~E7)への走査露光中に、姿勢調整装置30によって、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110(分割領域A1~E7)の姿勢(傾き)をリアルタイムで変化させる。
制御装置90は、露光ユニット60が照射したパターン光が、基板Wの傾斜描画領域110(分割領域A1~E7)に対して略垂直に入射するように、姿勢調整装置30によって、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110の姿勢(傾き)を変化させる。
すなわち、制御装置90は、露光ユニット60が照射したパターン光が、傾斜センサユニット70が算出した基板Wの傾斜描画領域110の近似平面に対して略垂直に入射するように、姿勢調整装置30によって、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110の姿勢(傾き)を変化させる。
より具体的に、制御装置90は、露光ユニット60が連続的に照射したパターン光が、傾斜センサユニット70が算出した基板Wの各分割領域A1~E7の近似平面に対して略垂直に入力するように、姿勢調整装置30によって、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110の姿勢(傾き)をステップワイズに変化させる。 As shown in FIG. 4, the drawing apparatus 1 includes a control device (tilt control means, posture control means) 90.
Based on the calculation result of thecalculation device 80, the control device 90 causes the posture adjustment device 30 to move the stage 10 and the stage 10 during the scanning exposure to the inclined drawing area 110 (each divided area A1 to E7) of the substrate W. The posture (inclination) of the inclined drawing area 110 (divided areas A1 to E7) of the held substrate W is changed in real time.
Thecontrol device 90 causes the posture adjustment device 30 and the stage 10 and the pattern light so that the pattern light irradiated by the exposure unit 60 is incident on the inclined drawing region 110 (divided regions A1 to E7) of the substrate W substantially perpendicularly. The posture (inclination) of the inclined drawing area 110 of the substrate W held on the stage 10 is changed.
That is, thecontrol device 90 uses the posture adjustment device 30 so that the pattern light irradiated by the exposure unit 60 is incident substantially perpendicular to the approximate plane of the tilt drawing area 110 of the substrate W calculated by the tilt sensor unit 70. Then, the posture (tilt) of the stage 10 and the tilted drawing area 110 of the substrate W held on the stage 10 is changed.
More specifically, thecontrol device 90 inputs the pattern light continuously irradiated by the exposure unit 60 substantially perpendicularly to the approximate planes of the divided areas A1 to E7 of the substrate W calculated by the tilt sensor unit 70. As described above, the posture adjustment device 30 changes the posture (tilt) of the stage 10 and the inclined drawing region 110 of the substrate W held on the stage 10 stepwise.
制御装置90は、演算装置80の演算結果に基づいて、基板Wの傾斜描画領域110(各分割領域A1~E7)への走査露光中に、姿勢調整装置30によって、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110(分割領域A1~E7)の姿勢(傾き)をリアルタイムで変化させる。
制御装置90は、露光ユニット60が照射したパターン光が、基板Wの傾斜描画領域110(分割領域A1~E7)に対して略垂直に入射するように、姿勢調整装置30によって、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110の姿勢(傾き)を変化させる。
すなわち、制御装置90は、露光ユニット60が照射したパターン光が、傾斜センサユニット70が算出した基板Wの傾斜描画領域110の近似平面に対して略垂直に入射するように、姿勢調整装置30によって、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110の姿勢(傾き)を変化させる。
より具体的に、制御装置90は、露光ユニット60が連続的に照射したパターン光が、傾斜センサユニット70が算出した基板Wの各分割領域A1~E7の近似平面に対して略垂直に入力するように、姿勢調整装置30によって、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110の姿勢(傾き)をステップワイズに変化させる。 As shown in FIG. 4, the drawing apparatus 1 includes a control device (tilt control means, posture control means) 90.
Based on the calculation result of the
The
That is, the
More specifically, the
<描画装置1による基板Wへの描画(露光)方法>
続いて、主に図7、図8を参照して、描画装置1による描画(露光)動作について説明する。 <Drawing (exposure) method on the substrate W by the drawing apparatus 1>
Next, a drawing (exposure) operation by the drawing apparatus 1 will be described mainly with reference to FIGS.
続いて、主に図7、図8を参照して、描画装置1による描画(露光)動作について説明する。 <Drawing (exposure) method on the substrate W by the drawing apparatus 1>
Next, a drawing (exposure) operation by the drawing apparatus 1 will be described mainly with reference to FIGS.
図7は、描画装置1によるオンザフライ方式の計測処理を示すフローチャートである。オンザフライ方式では、傾斜センサユニット70が、露光ユニット60が基板Wの各分割領域A1~E7に対して連続的にパターン光を照射するのと並行して、制御装置90と姿勢調整装置30によってステージ10の姿勢を分割領域(A1~E7)毎にステップワイズに変化させる際に、ステージ10の姿勢毎に、基板Wの各分割領域毎の傾き及び近似平面を算出する。
FIG. 7 is a flowchart showing on-the-fly measurement processing by the drawing apparatus 1. In the on-the-fly method, the tilt sensor unit 70 is staged by the control device 90 and the attitude adjustment device 30 in parallel with the exposure unit 60 irradiating the divided light beams A1 to E7 on the substrate W continuously. When the 10 postures are changed stepwise for each divided region (A1 to E7), the inclination and approximate plane for each divided region of the substrate W are calculated for each posture of the stage 10.
ステップS1において、傾斜センサユニット70が、基板Wの分割領域A1の傾きを測定し、この傾きに基づいた近似平面を算出する。このとき露光ユニット60はパターン光の照射を行わない。
ステップS2において、ステージ移動機構20によってステージ10をX方向(走査方向)に1ステップ分だけ移動させたタイミングで、傾斜センサユニット70が、基板Wの分割領域A2の傾き及び近似平面を算出し、同時に、露光ユニット60が、分割領域A1に対してパターン光を照射する。このとき、姿勢調整装置30が、制御装置90による制御の下、露光ユニット60が照射したパターン光が、傾斜センサユニット70が算出した基板Wの分割領域A1の近似平面に対して略垂直に入射するように、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110の姿勢(傾き)を変化させる。
ステップS3において、ステップS1~S2と同様の手法により、ステージ移動機構20によってステージ10をX方向(走査方向)に連続的に移動させながら、傾斜センサユニット70が、基板Wの分割領域A3~A7の傾き及び近似平面をステップワイズに算出し、露光ユニット60が、分割領域A2~A7に対して連続的にパターン光を照射する。このとき、姿勢調整装置30が、制御装置90による制御の下、露光ユニット60が照射したパターン光が、傾斜センサユニット70が算出した基板Wの分割領域A2~A7の近似平面に対して略垂直に入射するように、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110の姿勢(傾き)をステップワイズに変化させる。
ステップS4において、ステップS1~S3と同様の手法により、傾斜センサユニット70が、基板Wの分割領域B1~E7の傾き及び近似平面をステップワイズに算出し、露光ユニット60が、分割領域B1~E7に対して連続的にパターン光を照射する。このとき、姿勢調整装置30が、制御装置90による制御の下、露光ユニット60が照射したパターン光が、傾斜センサユニット70が算出した基板Wの分割領域B1~E7の近似平面に対して略垂直に入射するように、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110の姿勢(傾き)を連続的に変化させる。 In step S1, theinclination sensor unit 70 measures the inclination of the divided area A1 of the substrate W, and calculates an approximate plane based on this inclination. At this time, the exposure unit 60 does not perform pattern light irradiation.
In step S2, thetilt sensor unit 70 calculates the tilt and approximate plane of the divided area A2 of the substrate W at the timing when the stage 10 is moved by one step in the X direction (scanning direction) by the stage moving mechanism 20. At the same time, the exposure unit 60 irradiates the divided area A1 with pattern light. At this time, the pattern light irradiated by the exposure unit 60 under the control of the controller 90 by the attitude adjustment device 30 is incident substantially perpendicular to the approximate plane of the divided area A1 of the substrate W calculated by the tilt sensor unit 70. As described above, the posture (tilt) of the stage 10 and the tilted drawing area 110 of the substrate W held on the stage 10 is changed.
In step S3, thetilt sensor unit 70 moves the divided area A3 to A7 of the substrate W while moving the stage 10 continuously in the X direction (scanning direction) by the stage moving mechanism 20 by the same method as in steps S1 and S2. And the exposure unit 60 continuously irradiates the divided areas A2 to A7 with pattern light. At this time, the pattern light irradiated by the exposure unit 60 under the control of the controller 90 by the attitude adjustment device 30 is substantially perpendicular to the approximate plane of the divided areas A2 to A7 of the substrate W calculated by the tilt sensor unit 70. The posture (inclination) of the stage 10 and the inclined drawing area 110 of the substrate W held on the stage 10 is changed stepwise so as to be incident on the stage 10.
In step S4, thetilt sensor unit 70 calculates the inclinations and approximate planes of the divided areas B1 to E7 of the substrate W stepwise by the same method as in steps S1 to S3, and the exposure unit 60 calculates the divided areas B1 to E7. Is continuously irradiated with pattern light. At this time, the pattern light irradiated by the exposure unit 60 under the control of the control device 90 by the attitude adjustment device 30 is substantially perpendicular to the approximate plane of the divided regions B1 to E7 of the substrate W calculated by the tilt sensor unit 70. The posture (inclination) of the stage 10 and the inclined drawing area 110 of the substrate W held on the stage 10 is continuously changed so as to be incident on the stage 10.
ステップS2において、ステージ移動機構20によってステージ10をX方向(走査方向)に1ステップ分だけ移動させたタイミングで、傾斜センサユニット70が、基板Wの分割領域A2の傾き及び近似平面を算出し、同時に、露光ユニット60が、分割領域A1に対してパターン光を照射する。このとき、姿勢調整装置30が、制御装置90による制御の下、露光ユニット60が照射したパターン光が、傾斜センサユニット70が算出した基板Wの分割領域A1の近似平面に対して略垂直に入射するように、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110の姿勢(傾き)を変化させる。
ステップS3において、ステップS1~S2と同様の手法により、ステージ移動機構20によってステージ10をX方向(走査方向)に連続的に移動させながら、傾斜センサユニット70が、基板Wの分割領域A3~A7の傾き及び近似平面をステップワイズに算出し、露光ユニット60が、分割領域A2~A7に対して連続的にパターン光を照射する。このとき、姿勢調整装置30が、制御装置90による制御の下、露光ユニット60が照射したパターン光が、傾斜センサユニット70が算出した基板Wの分割領域A2~A7の近似平面に対して略垂直に入射するように、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110の姿勢(傾き)をステップワイズに変化させる。
ステップS4において、ステップS1~S3と同様の手法により、傾斜センサユニット70が、基板Wの分割領域B1~E7の傾き及び近似平面をステップワイズに算出し、露光ユニット60が、分割領域B1~E7に対して連続的にパターン光を照射する。このとき、姿勢調整装置30が、制御装置90による制御の下、露光ユニット60が照射したパターン光が、傾斜センサユニット70が算出した基板Wの分割領域B1~E7の近似平面に対して略垂直に入射するように、ステージ10及び該ステージ10に保持された基板Wの傾斜描画領域110の姿勢(傾き)を連続的に変化させる。 In step S1, the
In step S2, the
In step S3, the
In step S4, the
図8(A)は、図1(A)の基板Wの描画領域の平面(水平面)に対してパターン光を照射(ショット)している状態を示しており、図8(B)は、図1(B)の基板Wの傾斜描画領域110に対してパターン光を照射(ショット)している状態を示している。図8(B)において、姿勢調整装置30は、基板Wの傾斜描画領域110を水平面と略一致させて、これらの近似平面に対してパターン光が略垂直に入射するように調整している。
FIG. 8A shows a state in which pattern light is irradiated (shot) to the plane (horizontal plane) of the drawing region of the substrate W in FIG. 1A, and FIG. A state in which pattern light is irradiated (shot) to the inclined drawing region 110 of the substrate W of 1 (B) is shown. In FIG. 8B, the posture adjustment device 30 adjusts the inclined drawing region 110 of the substrate W so as to be substantially coincident with the horizontal plane so that the pattern light is incident substantially perpendicularly to these approximate planes.
なお、前述の実施形態では姿勢制御装置30がステップワイズに動作を行ったが、2つ先の分割領域の近似平面と1つ先の分割領域の近似平面とを測定し、2つの近似平面のための姿勢変更を補完動作にて行うことで、ステージ10の姿勢(傾き)を連続的に変化させることも可能である。その場合には、2つ先の分割領域の傾斜データを測定できる様に、傾斜センサユニット70と露光ユニット60の間隔を定めることになる。
In the above-described embodiment, the posture control device 30 performs the operation stepwise. However, the approximate plane of the second divided area and the approximate plane of the first divided area are measured, and the two approximate planes are measured. Therefore, it is possible to continuously change the posture (tilt) of the stage 10 by performing the posture change for the supplementary operation. In that case, the interval between the inclination sensor unit 70 and the exposure unit 60 is determined so that the inclination data of the two divided areas can be measured.
また、前述の実施形態では傾斜データの計測と描画処理を同時に行ったが、全ての分割領域に対する傾斜データの測定を先行して一括計測し、その後に描画処理を行うマッピング方式の計測処理を採用することも可能である。マッピング方式では、描画処理に先んじて全ての傾斜データを得ることで、姿勢制御装置30が分割領域間で補間動作を行い、ステージ10の姿勢を連続的に変化させることが可能である。また、1列の分割領域の近似平面を平均化し、ステージ10の姿勢を一定に維持したままで描画処理を行うことも可能である。
In the above-described embodiment, the measurement of the inclination data and the drawing process are performed at the same time. However, the measurement method of the mapping method in which the measurement of the inclination data for all the divided regions is measured in advance and then the drawing process is performed is adopted. It is also possible to do. In the mapping method, by obtaining all the inclination data prior to the drawing process, the attitude control device 30 can perform an interpolation operation between the divided areas and continuously change the attitude of the stage 10. It is also possible to average the approximate planes of one row of divided areas and perform the drawing process while maintaining the posture of the stage 10 constant.
このように、本実施形態の描画装置1は、傾斜センサユニット70が、ステージ10に保持された基板Wの傾斜描画領域110(各分割領域A1~E7)の近似平面を算出し、制御装置(傾き制御手段、姿勢制御手段)90が、露光ユニット60が照射したパターン光が、傾斜センサユニット70が算出した基板Wの傾斜描画領域110(各分割領域A1~E7)の近似平面に対して略垂直に入射するように、ステージ10の姿勢(傾き)を変化させる。
As described above, in the drawing apparatus 1 of the present embodiment, the tilt sensor unit 70 calculates the approximate plane of the tilt drawing area 110 (each divided area A1 to E7) of the substrate W held on the stage 10, and the control apparatus ( (Tilt control means, posture control means) 90 is substantially the same as the approximate plane of the tilted drawing area 110 (each divided area A1 to E7) of the substrate W calculated by the tilt sensor unit 70 with the pattern light irradiated by the exposure unit 60. The posture (tilt) of the stage 10 is changed so that the light enters perpendicularly.
これにより、基板Wの傾斜描画領域110(各分割領域A1~E7)に対して描画(露光)する際に、パターン光の焦点を合わせてパターンの解像度を高め、パターンの変形を防止し、傾斜描画領域のレジスト膜にパターン光を垂直に入射させてパターンの解像度を高めることができる。
Accordingly, when drawing (exposure) is performed on the inclined drawing area 110 (each divided area A1 to E7) of the substrate W, the pattern light is focused to increase the resolution of the pattern, prevent the pattern from being deformed, and Pattern light can be vertically incident on the resist film in the drawing region to increase the resolution of the pattern.
以上の実施形態では、傾斜センサユニット70が、第1センサ71、第2センサ72、第3センサ73の3つをユニット化してなる場合を例示して説明した。しかし、算出する近似平面の高精度化を狙う観点からは、センサの数は多ければ多いほど好ましく、配置スペースやコストとの兼ね合いを考慮して、4つ以上のセンサをユニット化する態様も可能である。
In the above embodiment, the case where the inclination sensor unit 70 is formed by unitizing the first sensor 71, the second sensor 72, and the third sensor 73 has been described. However, from the viewpoint of increasing the accuracy of the approximate plane to be calculated, the larger the number of sensors, the better. In consideration of the arrangement space and cost, a mode in which four or more sensors are unitized is also possible. It is.
以上の実施形態では、傾斜センサユニット70を露光ユニット60に設けて両者を一体化している場合を例示して説明したが、傾斜センサユニット70は、必ずしも露光ユニット60に設ける必要はなく、露光ユニット60と別体とする態様も可能である。但し、傾斜センサユニット70を露光ユニット60に設けて両者を一体化した方が、傾斜センサユニット70と露光ユニット60が照射するパターン光との位置関係を明確に規定できる点で有利である。
In the above embodiment, the case where the inclination sensor unit 70 is provided in the exposure unit 60 and the both are integrated has been described as an example. However, the inclination sensor unit 70 is not necessarily provided in the exposure unit 60, and the exposure unit is not necessarily provided. It is possible to adopt a mode separate from 60. However, it is advantageous that the inclination sensor unit 70 is provided in the exposure unit 60 and integrated with each other in that the positional relationship between the inclination sensor unit 70 and the pattern light irradiated by the exposure unit 60 can be clearly defined.
また、以上の実施形態では、ステージ10上に基板Wが1枚保持される場合を例示したが、ステージ10上に小型の基板Wが複数配列され保持されるようにしてもよい。その場合、基板Wの枚数に応じた複数の傾斜描画領域110に対して、それぞれ露光光が垂直になる様に、ステージ10の姿勢を都度、制御する。
In the above embodiment, the case where one substrate W is held on the stage 10 is illustrated, but a plurality of small substrates W may be arranged and held on the stage 10. In that case, the posture of the stage 10 is controlled each time so that the exposure light is perpendicular to the plurality of inclined drawing regions 110 corresponding to the number of substrates W.
以上の実施形態では、基板(被描画体)Wを描画光に対して連続的に走査しながら基板(被描画体)Wにパターンを描画する場合を例示して説明したが、両者は連続的に相対走査できればよく、例えば、描画光を基板(被描画体)Wに対して連続的に走査しながら基板(被描画体)Wにパターンを描画することも可能である。
In the above embodiment, the case where the pattern is drawn on the substrate (object to be drawn) W while continuously scanning the substrate (object to be drawn) W with respect to the drawing light has been described as an example. For example, it is also possible to draw a pattern on the substrate (object to be drawn) W while continuously scanning the drawing light with respect to the substrate (object to be drawn) W.
本発明の描画装置及び描画方法は、例えば液晶ディスプレイやプリント配線板等のフォトリソグラフィ工程に使用される描画装置及び描画方法に適用して好適である。
The drawing apparatus and drawing method of the present invention are suitable for application to a drawing apparatus and drawing method used in a photolithography process such as a liquid crystal display or a printed wiring board.
1 描画装置(走査型描画装置)
1X 筐体
1Y 載置台
10 ステージ(保持手段)
10A ガイド部材
10B 係合部
20 ステージ移動機構
21 ガイドレール
30 姿勢調整装置(傾き調整手段)
31 底板部
31A ガイド部材
31B 係合部
32 中板部
32A ガイド部材
32B 係合部
32C ガイド部材
32D 係合部
40 露光ユニットベース(描画ユニットベース)
50 露光ユニット移動機構(描画ユニット移動機構)
60 露光ユニット(描画ユニット)
61 光源
70 傾斜センサユニット(傾き測定手段、近似平面算出手段)
71 第1センサ
72 第2センサ
73 第3センサ
80 演算装置
90 制御装置(傾き制御手段、姿勢制御手段)
110 傾斜描画領域(被描画面)
A1~A7 B1~B7 C1~C7 D1~D7 E1~E7 分割傾斜描画領域(分割領域)
W 基板(被描画体) 1 Drawing device (scanning drawing device)
1X housing 1Y mounting table 10 stage (holding means)
10A Guide member 10B Engagement part 20 Stage moving mechanism 21 Guide rail 30 Posture adjustment device (tilt adjustment means)
31Bottom plate portion 31A Guide member 31B Engagement portion 32 Middle plate portion 32A Guide member 32B Engagement portion 32C Guide member 32D Engagement portion 40 Exposure unit base (drawing unit base)
50 Exposure unit moving mechanism (drawing unit moving mechanism)
60 Exposure unit (drawing unit)
61Light source 70 Tilt sensor unit (tilt measuring means, approximate plane calculating means)
71first sensor 72 second sensor 73 third sensor 80 arithmetic device 90 control device (tilt control means, posture control means)
110 Inclined drawing area (surface to be drawn)
A1 to A7 B1 to B7 C1 to C7 D1 to D7 E1 to E7 Divided inclined drawing area (divided area)
W substrate (object to be drawn)
1X 筐体
1Y 載置台
10 ステージ(保持手段)
10A ガイド部材
10B 係合部
20 ステージ移動機構
21 ガイドレール
30 姿勢調整装置(傾き調整手段)
31 底板部
31A ガイド部材
31B 係合部
32 中板部
32A ガイド部材
32B 係合部
32C ガイド部材
32D 係合部
40 露光ユニットベース(描画ユニットベース)
50 露光ユニット移動機構(描画ユニット移動機構)
60 露光ユニット(描画ユニット)
61 光源
70 傾斜センサユニット(傾き測定手段、近似平面算出手段)
71 第1センサ
72 第2センサ
73 第3センサ
80 演算装置
90 制御装置(傾き制御手段、姿勢制御手段)
110 傾斜描画領域(被描画面)
A1~A7 B1~B7 C1~C7 D1~D7 E1~E7 分割傾斜描画領域(分割領域)
W 基板(被描画体) 1 Drawing device (scanning drawing device)
31
50 Exposure unit moving mechanism (drawing unit moving mechanism)
60 Exposure unit (drawing unit)
61
71
110 Inclined drawing area (surface to be drawn)
A1 to A7 B1 to B7 C1 to C7 D1 to D7 E1 to E7 Divided inclined drawing area (divided area)
W substrate (object to be drawn)
Claims (5)
- 光変調素子により描画光を被描画体に照射し、前記被描画体を前記描画光に対して連続的に相対走査しながら前記被描画体にパターンを描画する描画装置であって、
前記被描画体を保持する保持手段と、
前記保持手段によって保持された前記被描画体の被描画面の傾きを測定する測定手段と、
前記保持手段の傾きを調整する傾き調整手段と、
前記測定手段の測定結果に応じて、前記描画光が前記被描画体の被描画面に略垂直に入射するように、前記傾き調整手段を制御する傾き制御手段と、
を備えることを特徴とする描画装置。 A drawing apparatus that irradiates a drawing object with a light modulation element and draws a pattern on the drawing object while continuously scanning the drawing object with respect to the drawing light.
Holding means for holding the drawing object;
Measuring means for measuring an inclination of a drawing surface of the drawing object held by the holding means;
An inclination adjusting means for adjusting the inclination of the holding means;
An inclination control means for controlling the inclination adjustment means so that the drawing light is incident on the drawing surface of the drawing object substantially perpendicularly according to the measurement result of the measuring means;
A drawing apparatus comprising: - 請求項1記載の描画装置において、
前記測定手段は、前記被描画体の被描画面の所定位置において被描画面と基準位置との距離を測定するセンサを少なくとも3つ有し、
前記所定位置はそれぞれ、前記描画光よりも前記相対走査の進行方向側であることを特徴とする描画装置。 The drawing apparatus according to claim 1,
The measuring means has at least three sensors for measuring the distance between the drawing surface and a reference position at a predetermined position of the drawing surface of the drawing object,
Each of the predetermined positions is on the side of the relative scanning direction with respect to the drawing light. - 請求項2記載の描画装置において、
前記センサのうち少なくとも1つは、前記相対走査により前記被描画面の前記描画光が照射される領域の内側となる位置を所定位置とし、
他のセンサは、前記相対走査により前記描画光が照射される領域の相対走査方向と直交する方向の境界近傍となる位置を所定位置とすることを特徴とする描画装置。 The drawing apparatus according to claim 2, wherein
At least one of the sensors has a position that is inside a region irradiated with the drawing light on the drawing surface by the relative scanning as a predetermined position,
The other sensor sets a position near a boundary in a direction orthogonal to a relative scanning direction of an area irradiated with the drawing light by the relative scanning as a predetermined position. - 請求項2または3記載の描画装置において、
前記測定手段は、複数の前記センサが測定する距離に基づいて前記被描画面の所定の領域に対応する近似平面を算出する近似平面算出手段を備え、
前記傾き制御手段は、前記描画光と前記近似平面とが略垂直になる様に前記傾き調整手段を制御することを特徴とする描画装置。 The drawing apparatus according to claim 2 or 3,
The measuring unit includes an approximate plane calculating unit that calculates an approximate plane corresponding to a predetermined region of the drawing surface based on distances measured by the plurality of sensors.
The inclination control means controls the inclination adjustment means so that the drawing light and the approximate plane are substantially perpendicular to each other. - 光変調素子により描画光を被描画体に照射し、前記被描画体を前記描画光に対して連続的に相対走査しながら前記被描画体にパターンを描画する描画方法であって、
描画期間において、
保持手段によって保持された前記被描画体の被描画面の傾きを測定する測定ステップと、
前記測定ステップでの測定結果に応じて、前記描画光が前記被描画体の被描画面に略垂直に入射するように、前記保持手段の傾きを調整する傾き調整制御ステップと、
を複数回繰り返すことを特徴とする描画方法。 A drawing method in which drawing light is irradiated to a drawing object by a light modulation element, and a pattern is drawn on the drawing object while continuously scanning the drawing object with respect to the drawing light.
During the drawing period,
A measuring step for measuring an inclination of a drawing surface of the drawing object held by holding means;
An inclination adjustment control step for adjusting the inclination of the holding means so that the drawing light is incident on the drawing surface of the drawing object substantially perpendicularly according to the measurement result in the measurement step;
A drawing method characterized by repeating a plurality of times.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013209839A JP6306312B2 (en) | 2013-10-07 | 2013-10-07 | Drawing apparatus and drawing method |
JP2013-209839 | 2013-10-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015052618A1 true WO2015052618A1 (en) | 2015-04-16 |
Family
ID=52812562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2014/064978 WO2015052618A1 (en) | 2013-10-07 | 2014-10-01 | Drawing device and drawing method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6306312B2 (en) |
TW (1) | TWI638237B (en) |
WO (1) | WO2015052618A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101695867B1 (en) * | 2009-03-26 | 2017-01-13 | 코닌클리케 필립스 엔.브이. | Data acquisition |
CN106527057B (en) * | 2016-12-30 | 2018-09-28 | 江苏九迪激光装备科技有限公司 | A kind of laser direct writing method suitable for curved surface mobile phone glass |
JP6837633B2 (en) * | 2019-03-19 | 2021-03-03 | 学校法人近畿大学 | Exposure device and exposure method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0845813A (en) * | 1994-07-27 | 1996-02-16 | Nikon Corp | Scanning exposure method and device |
JP2000031016A (en) * | 1998-07-13 | 2000-01-28 | Nikon Corp | Exposure method and aligner thereof |
JP2003173960A (en) * | 2001-12-06 | 2003-06-20 | Nikon Corp | Exposure device |
JP2006234959A (en) * | 2005-02-22 | 2006-09-07 | Fuji Photo Film Co Ltd | Exposure method and exposure apparatus |
JP2009145494A (en) * | 2007-12-12 | 2009-07-02 | Orc Mfg Co Ltd | Focal position detection method and drawing device |
JP2011007974A (en) * | 2009-06-25 | 2011-01-13 | Hitachi High-Technologies Corp | Exposure device, exposure method, and method of manufacturing display panel substrate |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7440081B2 (en) * | 2004-11-05 | 2008-10-21 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method, and substrate table |
US7298455B2 (en) * | 2005-06-17 | 2007-11-20 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP2011060790A (en) * | 2009-09-04 | 2011-03-24 | Canon Inc | Exposure apparatus, and method for correcting inclination of substrate |
JP5637771B2 (en) * | 2010-08-17 | 2014-12-10 | 株式会社Screenホールディングス | Direct drawing method and direct drawing apparatus |
-
2013
- 2013-10-07 JP JP2013209839A patent/JP6306312B2/en active Active
-
2014
- 2014-09-03 TW TW103130345A patent/TWI638237B/en active
- 2014-10-01 WO PCT/IB2014/064978 patent/WO2015052618A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0845813A (en) * | 1994-07-27 | 1996-02-16 | Nikon Corp | Scanning exposure method and device |
JP2000031016A (en) * | 1998-07-13 | 2000-01-28 | Nikon Corp | Exposure method and aligner thereof |
JP2003173960A (en) * | 2001-12-06 | 2003-06-20 | Nikon Corp | Exposure device |
JP2006234959A (en) * | 2005-02-22 | 2006-09-07 | Fuji Photo Film Co Ltd | Exposure method and exposure apparatus |
JP2009145494A (en) * | 2007-12-12 | 2009-07-02 | Orc Mfg Co Ltd | Focal position detection method and drawing device |
JP2011007974A (en) * | 2009-06-25 | 2011-01-13 | Hitachi High-Technologies Corp | Exposure device, exposure method, and method of manufacturing display panel substrate |
Also Published As
Publication number | Publication date |
---|---|
JP6306312B2 (en) | 2018-04-04 |
TW201514639A (en) | 2015-04-16 |
TWI638237B (en) | 2018-10-11 |
JP2015075512A (en) | 2015-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008249958A (en) | Reference position measuring instrument and method, and drawing device | |
JP6516453B2 (en) | Image measuring device and measuring device | |
WO2006090914A1 (en) | Calibration method for image rendering device and image rendering device | |
TWI430052B (en) | A drawing system, a correction device for a tracing data, a method of manufacturing the substrate, a computer program product | |
JP5032821B2 (en) | Substrate moving device | |
WO2015052618A1 (en) | Drawing device and drawing method | |
TWI260155B (en) | Method and device for graph image recording | |
JP2006268032A (en) | Drawing device and calibrating method for drawing device | |
KR101588946B1 (en) | Drawing device and drawing method | |
JP4676205B2 (en) | Exposure apparatus and exposure method | |
JP2005331542A (en) | Exposure apparatus, exposure method and method for manufacturing substrate | |
JP2009074849A (en) | Inspection method of line width measuring device | |
JP2012133122A (en) | Proximity exposing device and gap measuring method therefor | |
JP2009169255A (en) | Exposure device, method of manufacturing substrate, and mask | |
TW201802609A (en) | Mask manufacturing apparatus and method for controlling mask manufacturing apparatus | |
JP4583827B2 (en) | Image forming apparatus and image forming method | |
JP2007041244A (en) | Method and device for acquiring positional fluctuation information of stage | |
JP6879484B2 (en) | Image acquisition device, exposure device, and image acquisition method | |
JP2007033202A (en) | Visual inspection apparatus and visual inspection method | |
JP4487688B2 (en) | Step-type proximity exposure system | |
JP2006226719A (en) | Surface shape measuring method, attitude measuring method, and exposure method | |
WO2019049732A1 (en) | Exposure device | |
JP2024121091A (en) | Drawing device and drawing method | |
KR102477736B1 (en) | Proximity exposure device and method for proximity exposure | |
JP2007298656A (en) | Proximity exposure apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14851780 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14851780 Country of ref document: EP Kind code of ref document: A1 |