WO2015030230A1 - 保護膜、ならびにそれを用いたセパレータおよび二次電池 - Google Patents

保護膜、ならびにそれを用いたセパレータおよび二次電池 Download PDF

Info

Publication number
WO2015030230A1
WO2015030230A1 PCT/JP2014/072898 JP2014072898W WO2015030230A1 WO 2015030230 A1 WO2015030230 A1 WO 2015030230A1 JP 2014072898 W JP2014072898 W JP 2014072898W WO 2015030230 A1 WO2015030230 A1 WO 2015030230A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
polymer
lithium
porous
separator
Prior art date
Application number
PCT/JP2014/072898
Other languages
English (en)
French (fr)
Inventor
小林 康太郎
Original Assignee
日本ゴア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゴア株式会社 filed Critical 日本ゴア株式会社
Priority to EP14839310.1A priority Critical patent/EP3043402B1/en
Priority to KR1020167004413A priority patent/KR101923787B1/ko
Priority to CA2922834A priority patent/CA2922834C/en
Priority to US14/916,091 priority patent/US20160204476A1/en
Priority to CN201480048433.2A priority patent/CN105794018B/zh
Priority to JP2015534359A priority patent/JPWO2015030230A1/ja
Publication of WO2015030230A1 publication Critical patent/WO2015030230A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a protective film, and a separator and a secondary battery using the protective film.
  • the present invention relates to a protective film for protecting an anode comprising lithium, and a separator and a secondary battery using the protective film.
  • the positive electrode (cathode) and the negative electrode (anode) are usually separated by a porous polymer film containing an organic electrolyte, thereby preventing direct electrical contact between the anode and the cathode. It is structured.
  • V 2 O 5 , Cr 2 O 5 , MnO 2 , TiS 2 , and the like are known as positive electrode active materials of this non-aqueous electrolyte secondary battery.
  • LiCoO 2 , LiMn 2 O 4 , LiNiO 2 and the like are used as 4V-class positive electrode active materials in lithium ion batteries that are currently commercialized.
  • metallic lithium is considered to be an ideal negative electrode material because it has a very high theoretical energy density (weight capacity density 3861 mAh / g) and a low charge / discharge potential ( ⁇ 3.045 Vvs. SHE).
  • the electrolyte for example, a lithium salt dissolved in a non-aqueous organic solvent is used, which has good ionic conductivity and negligible electrical conductivity.
  • a lithium salt dissolved in a non-aqueous organic solvent is used, which has good ionic conductivity and negligible electrical conductivity.
  • lithium ions move from the positive electrode to the negative electrode (lithium).
  • lithium ions move to the positive electrode.
  • a negative electrode (anode) containing lithium has the following problems.
  • Dendritic lithium lithium dendrite precipitates on the lithium surface of the negative electrode during charging. When charging and discharging are repeated, dendritic lithium grows, causing peeling from the lithium metal and lowering cycle characteristics. In the worst case, it grows to the extent that it breaks through the separator, causing a short circuit of the battery and causing ignition of the battery. Therefore, in order to use a negative electrode (anode) containing lithium, it is necessary to solve the problem of lithium dendrite.
  • Non-Patent Document 1 studies the mechanism by which lithium dendrite is generated and grows on a lithium electrode.
  • Li + ions are deposited on the lithium electrode, the shape of the lithium electrode changes, cracks are generated on the surface, and dendrites grow from the cracks.
  • no specific means for preventing this dendrite growth is described.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-293518
  • a thin film electrolyte having high ionic conductivity and no electrolyte leakage, and a light weight using the thin film electrolyte A high energy density battery is disclosed.
  • an electrolyte separator having a porous membrane and an ion conductive solid polymer layer on both sides thereof has been proposed, and the ion conductive solid polymer layer plays a role of preventing leakage of the electrolytic solution.
  • no specific means for preventing the growth of lithium dendrite is described.
  • Patent Document 2 Japanese Patent Laid-Open No. 2008-300300 relates to a lithium ion secondary battery, and suppresses movement of substances other than lithium ions that cause deterioration of battery characteristics between positive and negative electrodes. Means are disclosed. Specifically, it has been proposed to provide a substantially non-porous lithium ion conductive layer on the porous separator membrane. The substantially non-porous lithium ion conductive layer suppresses the movement of various substances other than lithium ions that cause deterioration of battery characteristics between the positive and negative electrodes. However, no specific means for preventing lithium ion migration and accompanying lithium dendrite growth is described.
  • Lithium is considered to be an ideal negative electrode material because it has a very high theoretical energy density.
  • a negative electrode (anode) containing lithium has the following problems. Dendritic lithium (lithium dendrite) precipitates on the lithium surface of the negative electrode during charging. When charging and discharging are repeated, dendritic lithium grows, causing peeling from the lithium metal and lowering cycle characteristics. In the worst case, it grows to the extent that it breaks through the separator, causing a short circuit of the battery and causing ignition of the battery.
  • an object of the present invention is to provide an anode protective film, a separator using the same, and a secondary battery that can more reliably suppress the growth of dendrites that can occur in the anode.
  • a membrane for protecting an anode comprising lithium comprising a polymer porous membrane and a polymer material having lithium ion conductivity by itself; A protective film, wherein at least one surface of the porous polymer film is covered with the polymer material having lithium ion conductivity.
  • TFE tetrafluoroethylene
  • a protective film, a separator and a secondary battery using the same which can more reliably suppress the growth of dendrites that can occur in an anode containing lithium.
  • FIG. 1 is a diagram schematically showing the mechanism of dendrite growth.
  • FIG. 2 is a diagram schematically showing the uniform diffusion of lithium ions according to the present invention.
  • FIG. 3 is a diagram schematically showing a high form stability with respect to anode shape change according to the present invention.
  • FIG. 4 is a diagram schematically showing fibrils (small fibers) of expanded PTFE and nodes (nodules) connecting them.
  • FIG. 5 is a diagram schematically showing a nodeless structure.
  • FIG. 6 is a diagram schematically showing a coin cell.
  • the protective film of the present invention is a film for protecting an anode comprising lithium, and is a polymer porous film and a polymer material having lithium ion conductivity by itself even if it does not contain a lithium electrolyte salt Consists of At least one surface of the polymer porous membrane is covered with the polymer material having lithium ion conductivity.
  • a protective film for protecting the anode is provided.
  • a secondary battery is basically composed of a positive electrode (cathode), a negative electrode (anode), and a separator including an electrolyte serving as an ion conductive medium between the two electrodes.
  • the protective film of the present invention is added in a superimposed manner to these basic structures.
  • the anode contains lithium.
  • Lithium is considered an ideal negative electrode material because it has a very high theoretical energy density (weight capacity density 3861 mAh / g) and a low charge / discharge potential ( ⁇ 3.045 V vs. SHE).
  • FIG. 1 is a diagram schematically showing the mechanism of the generation and growth of this dendrite. According to FIG. 1, when a current is applied for charging, Li + ions are deposited on the lithium electrode, the form of the lithium electrode changes, cracks are generated on the surface, and dendrites grow from the cracks.
  • the present inventor paid attention to the fact that the precipitation of lithium ions was dispersed and thought that this was because the diffusion of lithium ions was uneven. Therefore, it is considered that the shape of the electrode surface changes non-uniformly, leading to the generation and growth of dendrites.
  • the present inventor is effective in suppressing dendrite by making the diffusion of lithium ions uniform and forming a stable (strong) coating (protective film) on the electrode surface that suppresses morphological changes on the electrode surface as much as possible. This led to a novel idea and completed the present invention.
  • At least one surface of the polymer porous film is covered with a polymer material having lithium ion conductivity.
  • a layer of a polymer material having lithium ion conductivity is formed on at least one surface of the polymer porous membrane.
  • Lithium ions that move from the cathode side to the anode side during charging always pass through the layer of polymer material having lithium ion conductivity, and at this time, the lithium ion layer of polymer material having lithium ion conductivity. It diffuses uniformly inside (in the plane direction). Thereby, it is suppressed that lithium on the anode surface is unevenly dispersed and locally deposited.
  • the polymer porous membrane may contain fluorine.
  • the polymer porous film may be a film made of a tetrafluoroethylene (TFE) polymer or copolymer.
  • Tetrafluoroethylene (TFE) polymer or copolymer is defluorinated (that is, carbonized) when the contained fluorine reacts with lithium, and voids are formed in the film, and when further progressed, pores are opened. The uniform diffusion of ions cannot be kept uniform.
  • this phenomenon is essentially due to the reaction between fluorine and lithium, it is not limited to tetrafluoroethylene (TFE) polymers or copolymers, and can occur in porous polymer materials containing fluorine.
  • a porous polymer film containing fluorine such as a film made of a tetrafluoroethylene (TFE) polymer or copolymer
  • a polymer material having lithium ion conductivity Therefore, a polymer material constituting the polymer porous membrane, such as a tetrafluoroethylene (TFE) polymer or a copolymer, may be in direct contact with lithium of the anode to be defluorinated (carbonized). And the soundness of the porous polymer membrane containing fluorine can be maintained.
  • the polymer porous membrane acts as a reinforcing layer and ensures the strength of the entire protective membrane. That is, high form stability can be obtained with respect to anode shape change. For example, even if lithium ions do not diffuse uniformly and lithium precipitates locally on the anode surface and the shape of the anode surface changes, the polymer porous membrane changes its shape. Will not lead to dendrite growth. (See Figure 3.)
  • the method of covering at least one surface of the polymer porous membrane with a polymer material having lithium ion conductivity is not particularly limited, and a conventional method according to the material can be appropriately used.
  • the material to be coated may be made into solution and impregnated. For example, any method such as vacuum pressure impregnation, vacuum impregnation, spraying, evaporation to dryness, metering bar method, die coating method, gravure method, reverse roll method, doctor blade method, knife coating method, bar coating method, etc. Good.
  • the polymer porous membrane may be completely impregnated with a polymer material having lithium ion conductivity.
  • the impregnated portion generates an anchor effect, and the robustness of the polymer material layer having lithium ion conductivity and the entire protective film can be enhanced.
  • the shape stability against the anode shape change is enhanced.
  • the uniform diffusibility of lithium ions in the unreinforced layer that is in direct contact with the metallic lithium is enhanced, and as a result, it is further suppressed that lithium on the anode surface is unevenly dispersed and locally deposited.
  • the thickness of the layer of lithium ion conductive material not impregnated in the polymer porous membrane (reinforcing layer) may be 0.65 ⁇ m or less. Since this non-impregnated layer is an unreinforced part, if the thickness of this layer is too large, the morphological stability against changes in the shape of the anode may decrease and the resistance to lithium ion conductivity may increase. is there. Therefore, the upper limit of the thickness may be 0.65 ⁇ m, 0.5 ⁇ m, 0.4 ⁇ m, and 0.35 ⁇ m. The lower limit of the thickness is not particularly limited as long as a thickness sufficient to diffuse lithium ions is secured in the layer of the material having lithium ion conductivity. It may be 1 ⁇ m, 0.15 ⁇ m, 0.25 ⁇ m, or 0.35 ⁇ m.
  • the polymer material constituting the protective film and having lithium ion conductivity by itself is, from the viewpoint of lithium ion conductivity and processability, a homopolymer of vinylidene fluoride (PVDF) or hexafluoropropylene (HFP). ) And a copolymer (PVDF-HFP).
  • PVDF and PVDF-HFP as polymer solid electrolytes are known, but they are actually formed by adding electrolyte salt and plasticizer in addition to PVDF and PVDF-HFP to function as a separator. It is a thing.
  • pores are formed and impregnated with an electrolytic solution to function as a solid electrolyte.
  • the protective film of the present invention consists essentially of a polymer porous film and a polymer material having lithium ion conductivity by itself, and does not require an electrolyte salt. Different from PVDF-HFP.
  • the polymer porous membrane (reinforcing layer) constituting the protective membrane will be described.
  • the polymer material for forming the polymer porous film is not particularly limited.
  • the polymer porous membrane may be a membrane made of a tetrafluoroethylene (TFE) polymer or a copolymer.
  • Tetrafluoroethylene (TFE) polymer or copolymer is a chemically very stable resin, and has excellent weather resistance, ultraviolet resistance, heat resistance, cold resistance, water resistance, etc. The porosity, density, specific surface area, mechanical strength, etc. can be adjusted.
  • tetrafluoroethylene (TFE) polymer or copolymer includes polytetrafluoroethylene, perfluoroalkoxyalkane (PFA), tetrafluoroethylene / hexafluoropropene copolymer (FEP), ethylene / tetrafluoroethylene copolymer.
  • PFA perfluoroalkoxyalkane
  • FEP tetrafluoroethylene / hexafluoropropene copolymer
  • EEP ethylene / tetrafluoroethylene copolymer
  • ETFE polymer
  • ECTFE ethylene / chlorotrifluoroethylene copolymer
  • ECTFE chlorotrifluoroethylene copolymer
  • the thickness of the polymer porous membrane may be 0.01 ⁇ m or more and 1 ⁇ m or less. This is because if the thickness is too small, the reinforcing effect is not sufficient, while if the thickness is too large, the ionic conductivity is lowered.
  • the polymer porous film constituting the protective film may be stretched or stretched porous.
  • TFE tetrafluoroethylene
  • a stretched porous membrane of tetrafluoroethylene (TFE) polymer or copolymer is suitable by stretching a precursor made by melting and fusing a fine powder of tetrafluoroethylene (TFE) polymer or copolymer.
  • TFE tetrafluoroethylene
  • the tetrafluoroethylene (TFE) polymer or copolymer has a high melting point and has an advantage that it does not melt even at 250 ° C. or higher.
  • a polymer porous membrane such as a stretched porous membrane of a tetrafluoroethylene (TFE) polymer or copolymer, is used to form a fine powder of a tetrafluoroethylene (TFE) polymer or copolymer. It is obtained by stretching after removing the molding aid from or without removing the molding aid from the molded article of the paste obtained by mixing with the agent, and firing as necessary.
  • TFE tetrafluoroethylene
  • the microstructure of the stretched porous membrane has a unique fibrous porous structure consisting of fibrils (small fibers) and nodes (nodules) connecting them both on the surface and inside. The appearance of this fibril / node structure changes depending on the stretching direction and the stretching ratio.
  • the specific surface area of the stretched porous membrane can be used as an indicator of the nodeless structure.
  • a film having a specific surface area of 15 m 2 / g or more, or 20 m 2 / g or more may be regarded as a film having a nodeless structure.
  • the porosity of the polymer porous membrane can be appropriately adjusted by stretching.
  • the lower limit of the porosity may be 30%, 35%, 40%, 45%, 50%, 55%, 60%.
  • the porosity is too large, the strength may not be sufficient.
  • the upper limit of the porosity is 98%, 95%, 90%, 85%, 80%, 75%, 70%, 65 % Or 60%.
  • the basis weight of the polymer porous membrane may be 0.1 g / m 2 or more, preferably 0.2 g / m 2 or more, more preferably 0.3 g / m 2 or more, and 0.5 g / m 2.
  • it may be preferably 0.4 g / m 2 or less, more preferably 0.3 g / m 2 or less. This is because if the basis weight is too small, the reinforcing effect is not sufficient, while if the basis weight is too large, the ionic conductivity is lowered.
  • the Gurley value of the protective film may be 5000 seconds or more. This means that the protective film is substantially non-porous. For this purpose, either or both of the polymer material having lithium ion conductivity and the polymer porous membrane may be non-porous. Since the protective film is non-porous, even if dendrites are generated, the growth of dendrites is physically suppressed by the protective film.
  • the Gurley value was evaluated based on JIS P 8117: 1998. The Gurley value is the time (seconds) in which 100 cm 3 of air passes through a sample having an area of 6.45 cm 2 in a vertical direction under a pressure of 1.29 kPa.
  • the present invention also relates to a separator using a protective film.
  • the separator is a separator in which at least one of the protective films is laminated, and a material having lithium ion conductivity is disposed between the protective film and the separator. Since the separator is provided with a protective film, generation of dendrites at the anode is suppressed, leading to protection of the separator. Since a material having lithium ion conductivity is disposed between the protective film and the separator, lithium ion conductivity is ensured, and the degree of uniform diffusion of lithium ions is further increased.
  • the material having lithium ion conductivity may be a polymer material having lithium ion conductivity used for forming the protective film.
  • the separator may include a membrane made of stretched porous tetrafluoroethylene (TFE) polymer or copolymer.
  • the film made of stretched porous tetrafluoroethylene (TFE) polymer or copolymer may be used for constituting a protective film.
  • the present invention also relates to a lithium secondary battery using a protective film.
  • This lithium secondary battery is a lithium secondary battery using the above protective film, and the surface of the protective film covered with the polymer material having lithium ion conductivity is in contact with the anode. That is, the anode and the polymer material having lithium ion conductivity are in contact. For this reason, lithium ions are uniformly dispersed immediately before reaching the anode surface, and local precipitation is reliably suppressed.
  • the polymer porous membrane contains fluorine
  • a membrane (reinforcing layer) made of a tetrafluoroethylene (TFE) polymer or a copolymer is in direct contact with lithium of the anode to be defluorinated (carbonized).
  • the lithium secondary battery may be formed by laminating an anode, a protective film, a separator, and a cathode in this order.
  • a PTFE membrane manufactured by Nippon Gore Co., Ltd.
  • TFE tetrafluoroethylene
  • the thickness of the reinforcing layer was 0.35 ⁇ m.
  • the specific surface area, porosity, and basis weight of the reinforcing layer before filling with the polymer material having lithium ion conductivity were adjusted to the values shown in Table 1.
  • Polymer material filling As polymer materials having lithium ion conductivity filled in the reinforcing layer, homopolymers of vinylidene fluoride (PVdF, Examples 1 to 9, 11, Comparative Example 1) and copolymers of vinylidene fluoride and hexafluoropropylene (PVdF-HFP, Example 10) was employed. In Comparative Example 2, the polymer material was not filled and only the reinforcing layer was used.
  • PVdF manufactured by ARKEMA specification: KYNAR710
  • PVdF-HFP manufactured by ARKEMA specification: KYNAR FLEX2820-20
  • a predetermined organic solvent to a predetermined concentration.
  • This solution was filled (impregnated) into the reinforcing layer.
  • the degree of filling (impregnation) is adjusted to obtain a protective film having the thickness of the layer not filled in the reinforcing layer shown in Table 1 (thickness of the unreinforced layer). It was.
  • the Gurley value of the obtained protective film was measured based on JIS P8117: 1998. The results were all 5,000 or more except for Comparative Example 2 (not filled with polymer).
  • separator As a separator used for a coin cell, a separator obtained by hydrophilizing a porous polyethylene (PE) film or a stretched porous polytetrafluoroethylene (PTFE) film was prepared.
  • PE polyethylene
  • PTFE polytetrafluoroethylene
  • a generally available thickness of 25 ⁇ m and a porosity of about 50% were used.
  • a PTFE separator As a PTFE separator (Example 11), BSP0102560-2 (thickness: 25 ⁇ m, porosity: 60%) manufactured by Japan Gore-Tex was used.
  • ⁇ Charge / discharge test> A charge / discharge test (a coin cell cycle using Li / Li) was performed using a coin cell. The charge / discharge measurement was performed using a battery charge / discharge device (HJ1001SM8A) manufactured by Hokuto Denko. A charge / discharge test (DOD: depth of discharge of about 25%) for 30 minutes was repeated at a current density of 10 mA / cm 2 (15.4 mA in terms of ⁇ 14 mm electrode). The number of cycles until an internal short circuit occurred due to dendrite was measured. The results are shown in Table 2.
  • the charge / discharge efficiency of the battery can be evaluated using an FOM ( Figure of Merit) defined by the following equation.
  • FOM Figure of Merit
  • a 10-cycle charge / discharge test was performed, the total amount of the electrochemically active lithium capacity remaining in the working electrode and the discharge capacity when the charge / discharge was repeated, and the lithium charge / discharge efficiency was calculated using the following formula. In short, it can be said that the higher the remaining lithium capacity and discharge capacity after 10 cycles of charge / discharge, the higher the charge / discharge efficiency.
  • Lithium charge / discharge efficiency (%) (1-1 / FOM) ⁇ 100 (1)
  • FOM total discharge capacity when charging / discharging is repeated) / ((capacity of charged lithium) ⁇ (remaining electrochemically active lithium capacity)) (2)
  • the charge / discharge efficiency was extremely low. Examples 1 to 11 all showed high charge / discharge efficiency.
  • Comparative Example 1 is a protective film having an unreinforced layer thickness of 0 ⁇ m, that is, the surface of the PTFE reinforcing film is not covered with a polymer material. Therefore, it is considered that the anode is in contact with PTFE, not the polymer material. In such a place, it is considered that PTFE of the reinforcing layer reacts with lithium of the anode, and the protective film can no longer function as the protective film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、アノードに発生し得るデンドライトの成長をより確実に抑制することができる、アノード保護膜、ならびにそれを用いるセパレータおよび二次電池を提供することを目的としている。 リチウムを含んでなるアノードを保護する膜であって、高分子多孔質膜、および それ自体でリチウムイオン伝導性を有する高分子材料からなり、 該高分子多孔質膜の少なくとも一方の表面が該リチウムイオン伝導性を有する高分子材料で覆われている、ことを特徴とする保護膜。

Description

保護膜、ならびにそれを用いたセパレータおよび二次電池
 本発明は、保護膜、ならびにそれを用いたセパレータおよび二次電池に関係する。特に、リチウムを含んでなるアノードを保護する保護膜、ならびにそれを用いたセパレータおよび二次電池に関係する。
 近年、CDプレーヤー、マルチメディアプレイヤー、携帯電話、スマートフォン、ノート型パーソナルコンピュータ、タブレット型デバイス、ビデオカメラなどの携帯型コードレス製品は益々小型化、ポータブル化が進んでいる。また、大気汚染や二酸化炭素の増加などの環境問題の観点から、ハイブリッド自動車、電気自動車の開発がすすめられ、実用化の段階となっている。これら電子機器や電気自動車などには、高効率、高出力、高エネルギー密度、軽量などの特徴を有する優れた二次電池が求められている。このような特性を有する二次電池として種々の二次電池の開発、研究が行われている。
 充放電可能な二次電池は、通常、正極(カソード)および負極(アノード)間を、有機電解液を含む多孔性ポリマー膜によって隔てることにより、陽極、陰極間の電気的な直接的接触を防ぐ構造とされている。
 これまでに、この非水電解質二次電池の正極活物質としてV2 O5 、Cr2 O5 、MnO2 、TiS2 、などが知られている。また、現在製品化されているリチウムイオン電池では、4V級の正極活物質としてLiCoO2 、LiMn2 O4 、LiNiO2 等が使用されている。
 一方、負極としては、金属リチウムをはじめとするアルカリ金属について多くの検討がされてきた。特に、金属リチウムは非常に高い理論エネルギー密度(重量容量密度3861mAh/g)および低い充放電電位(-3.045Vvs.SHE)を有するため理想的な負極材料と考えられているからである。
 そして、電解液としては、例えば、非水性有機溶媒に溶解されたリチウム塩が用いられ、これは良好なイオン伝導性と無視できる電気伝導性を有している。充電中、リチウムイオンは、正極から負極(リチウム)へと移動する。反対に、放電中は、リチウムイオンは、正極へ移動する。
 ただし、リチウムを含んでなる負極(アノード)を用いるには、次の問題がある。充電時に負極のリチウム表面に樹枝状のリチウム(リチウムデンドライト)が析出する。充放電を繰り返すとデンドライト状リチウムは成長していき、リチウム金属からの剥離などを生じてサイクル特性を低下させる。最悪の場合にはセパレータを突き破る程に成長し、電池の短絡を引き起こし、電池の発火の原因になる。
 そのためリチウムを含んでなる負極(アノード)を用いるためにはリチウムデンドライトの問題を解決する必要がある。
 そこで、リチウムを吸蔵、放出できる各種炭素材料やアルミニウムなどの金属、合金あるいは酸化物などの検討が多くなされている。
 しかしながら、これらの負極材料を用いることはリチウムデンドライトの成長を抑えることには効果的であるが、一方で、電池としての容量を低下させてしまう。
 したがって、リチウムを含んでなる負極(アノード)を用いる研究開発が依然、精力的に行われており、電池構成法の検討など数多くの改善がなされている。
 例えば、非特許文献1ではリチウム電極上にリチウムデンドライトが発生、成長していく機構について研究している。充電のために電流をかけると、Li+イオンがリチウム電極上に析出し、リチウム電極の形態が変化し、表面にクラックが生じ、クラックからデンドライトが成長している。ただし、このデンドライトの成長を防止する具体的手段については記載されていない。
 また、特許文献1(特開平9-293518号)は、リチウム電池に限ったものではないが、イオン伝導度が高く、電解液の漏出のない薄膜状電解質および該薄膜状電解質を用いた軽量、高エネルギー密度の電池を開示している。具体的には、多孔質膜とその両面にイオン伝導性の固体高分子層を有する電解質セパレータを提案しており、イオン伝導性の固体高分子層が電解液の漏出を防ぐ役割を果たしている。ただし、リチウムデンドライトの成長を防止する具体的手段については記載されていない。
 さらに、特許文献2(特開2008-300300号)は、リチウムイオン二次電池に関するものであり、電池特性の劣化を引き起こす原因となるリチウムイオン以外の物質が正負極間を移動することを抑制する手段を開示している。具体的には、多孔質セパレータ膜上に実質的に無孔性のリチウムイオン伝導層を設けることを提案している。この実質的に無孔性のリチウムイオン伝導層によって、リチウムイオン以外の物質であって、電池特性の劣化を引き起こす原因となる種々の物質が正負極間を移動することが抑制される。ただし、リチウムイオンの移動、これに伴うリチウムデンドライトの成長を防止する具体的手段については記載されていない。
 したがって、デンドライトの成長を確実に抑制する手段が必要とされる。
特開平9-293518号公報 特開2008-300300号公報
D. Aurbach et al, Solid State Ionics 148(2002), pp405-416
 リチウムは非常に高い理論エネルギー密度を有するため理想的な負極材料と考えられているが、リチウムを含んでなる負極(アノード)を用いるには、次の問題がある。充電時に負極のリチウム表面に樹枝状のリチウム(リチウムデンドライト)が析出する。充放電を繰り返すとデンドライト状リチウムは成長していき、リチウム金属からの剥離などを生じてサイクル特性を低下させる。最悪の場合にはセパレータを突き破る程に成長し、電池の短絡を引き起こし、電池の発火の原因になる。
 したがって、本発明は、アノードに発生し得るデンドライトの成長をより確実に抑制することができる、アノード保護膜、ならびにそれを用いるセパレータおよび二次電池を提供することを目的としている。
 本発明により、以下の態様が提供される。
[1]
 リチウムを含んでなるアノードを保護する膜であって、高分子多孔質膜、および
それ自体でリチウムイオン伝導性を有する高分子材料からなり、
該高分子多孔質膜の少なくとも一方の表面が該リチウムイオン伝導性を有する高分子材料で覆われている、ことを特徴とする保護膜。
[2]
 該高分子多孔質膜が、テトラフルオロエチレン(TFE)重合体または共重合体からなることを特徴とする、[1]に記載の保護膜。
[3]
 該高分子多孔質膜が該リチウムイオン伝導性を有する高分子材料で完全に含浸されていることを特徴とする、[1]または[2]に記載の保護膜。
[4]
 該高分子多孔質膜が延伸により作製されたことを特徴とする、[1]~[3]のいずれか1つに記載の保護膜。
[5]
 該高分子多孔質膜の厚みが0.01μm以上1μm以下であることを特徴とする、[1]~[4]のいずれか1つに記載の保護膜。
[6]
 該高分子多孔質膜に含浸していない該リチウムイオン伝導性を有する材料の層の厚みが0.65μm以下であることを特徴とする、[1]~[5]のいずれか1つに記載の保護膜。
[7]
 該リチウムイオン伝導性を有する材料がフッ化ビニリデンのホモポリマーもしくはヘキサフルオロプロピレン(HFP)とのコポリマーであることを特徴とする、[1]~[6]のいずれか1つに記載の保護膜。
[8]
 該高分子多孔質膜がノード(結束部)を持たないノードレス構造であることを特徴とする、[1]~[7]のいずれか1つに記載の保護膜。
[9]
 該高分子多孔質膜の空孔率が35%以上98%以下であることを特徴とする、[1]~[8]のいずれか1つに記載の保護膜。
[10]
 該高分子多孔質膜の目付け量が0.1g/m2以上0.5g/m2以下であることを特徴とする、[1]~[9]のいずれか1つに記載の保護膜。
[11]
 該保護膜のガーレー値が5000秒以上であることを特徴とする、[1]~[10]のいずれか1つに記載の保護膜。
[12]
 [1]~[11]のいずれか1つに記載の該保護膜を少なくとも1枚以上積層したセパレータであって、該保護膜と該セパレータの間にリチウムイオン伝導性を有する材料が配置されることを特徴とする、セパレータ。
[13]
 延伸多孔質のテトラフルオロエチレン(TFE)重合体または共重合体からなる膜を含んでなることを特徴とする、[12]に記載のセパレータ。
[14]
 [1]~[11]のいずれか1つに記載の該保護膜を用いたリチウム二次電池であって、該保護膜の該リチウムイオン伝導性を有する高分子材料で覆われている面が、該アノードに接触することを特徴とする、リチウム二次電池。
[15]
 少なくとも該アノード、該保護膜、セパレータ及びカソードをこの順序で積層してなる、[14]に記載のリチウム二次電池。
 本発明により、リチウムを含んでなるアノードに発生し得るデンドライトの成長をより確実に抑制することができる、保護膜、ならびにそれを用いたセパレータおよび二次電池が提供される。
図1は、デンドライトの成長の機構を模式的に表した図である。 図2は、本発明による、リチウムイオンの均一な拡散を模式的に表した図である。 図3は、本発明による、アノード形態変化に対する高い形態安定性を模式的に表した図である。 図4は、延伸PTFEのフィブリル(小繊維)とそれらを繋ぐノード(結節)を模式的に表した図である。 図5は、ノードレス構造を模式的に表した図である。 図6は、コインセルを模式的に表した図である。
 本願発明の保護膜は、リチウムを含んでなるアノードを保護する膜であって、高分子多孔質膜、および
 リチウム電解質塩を含有していなくてもそれ自体でリチウムイオン伝導性を有する高分子材料からなり、
 該高分子多孔質膜の少なくとも一方の表面が該リチウムイオン伝導性を有する高分子材料で覆われていることを特徴とする。
 本発明では、アノードを保護するための保護膜が提供される。2次電池は、正極(カソード)・負極(アノード)と、両極間のイオン伝導媒体となる電解質を含むセパレータで基本的に構成される。本発明の保護膜は、これらの基本構成に重畳的に付加されるものである。
 アノードは、リチウムを含んでなる。リチウムは非常に高い理論エネルギー密度(重量容量密度3861mAh/g)および低い充放電電位(-3.045Vvs.SHE)を有するため理想的な負極材料と考えられている。
 リチウムを含んでなるアノードでは、充電中、セパレータ等に含まれるリチウムイオンがカソード側からアノード側へと移動する。逆に、放電中は、リチウムイオンは、カソード側へと移動する。
 充電時に、リチウムを含んでなるアノードの表面に樹枝状のアルカリ金属(デンドライト)が析出する。充放電を繰り返すとデンドライトは成長していき、負極金属からの剥離などを生じて、サイクル特性を低下させる。最悪の場合にはデンドライトはセパレータを突き破る程に成長し、電池の短絡を引き起こし、電池の発火の原因になる。
 図1は、このデンドライトの発生、成長の機構を模式的に表した図である。図1によれば、充電のために電流をかけると、Liイオンがリチウム電極上に析出し、リチウム電極の形態が変化し、表面にクラックが生じ、クラックからデンドライトが成長している。
 本発明者は、リチウムイオンの析出が分散して発生している点に着目し、これはリチウムイオンの拡散が不均一であるためと考えた。そのため、電極表面の形態が不均一に変化して、デンドライトの発生、成長につながっていると考えられる。本発明者は、リチウムイオンの拡散を均一化すること、および電極表面の形態変化を極力抑制する安定(強固)な被膜(保護膜)を電極表面に形成することが、デンドライト抑制に有効であるとの、新奇な着想に至り、本発明を完成させた。
 本発明の保護膜では、高分子多孔質膜の少なくとも一方の表面がリチウムイオン伝導性を有する高分子材料で覆われている。
 言い換えると、高分子多孔質膜の少なくとも一方の表面上に、リチウムイオン伝導性を有する高分子材料の層が形成されている。充電時にカソード側からアノード側へと移動するリチウムイオンは、必ず、このリチウムイオン伝導性を有する高分子材料の層を通過し、このときにリチウムイオンがリチウムイオン伝導性を有する高分子材料の層内(平面方向)で均一に拡散する。これにより、アノード表面でのリチウムが不均一に分散して局所的に析出することが抑制される。(図2参照。)
 また、この高分子多孔質膜は、フッ素を含有してもよい。テトラフルオロエチレン(TFE)重合体または共重合体はフッ素を含有しているので、高分子多孔質膜を、テトラフルオロエチレン(TFE)重合体または共重合体からなる膜としてもよい。このフッ素は、下記の式に従って、リチウム(アノード)と反応することが知られている。
 -[CF-CF]- + 4nLi -> =[C=C]= + 4nLiF
テトラフルオロエチレン(TFE)重合体または共重合体は、含有されているフッ素がリチウムと反応すると、脱フッ素化(すなわち炭化)がおこり、膜に空隙が形成されたり、さらに進行すると孔が開きLiイオンの均一拡散を均一に保つことができない。この現象は、本質的にフッ素とリチウムの反応によるものなので、テトラフルオロエチレン(TFE)重合体または共重合体に限らず、フッ素を含有する高分子多孔質材料で生じ得る。しかし、本発明では、テトラフルオロエチレン(TFE)重合体または共重合体からなる膜のような、フッ素を含有する高分子多孔質膜の表面が、リチウムイオン伝導性を有する高分子材料で覆われているので、テトラフルオロエチレン(TFE)重合体または共重合体のような、高分子多孔質膜を構成する高分子材料がアノードのリチウムと直接接触して、脱フッ素化(炭化)することがなく、フッ素を含有する高分子多孔質膜の健全性を保つことができる。
 リチウムイオン伝導性を有する高分子材料自体の強度が高くない場合であっても、高分子多孔質膜が、補強層として働き、保護膜全体としての強度を確保する。すなわち、アノード形態変化に対して高い形態安定性が得られる。例えば、万一、リチウムイオンが均一に拡散せず、アノード表面において局所的にリチウムが析出して、アノード表面の形態が変化するような場合であっても、高分子多孔質膜がその形態変化を抑制し、デンドライトの成長につながらない。(図3参照。)
 高分子多孔質膜の少なくとも一方の表面を、リチウムイオン伝導性を有する高分子材料で覆う方法は特に限定されず、材料に応じた常法を適宜用いることができる。被覆する材料を溶液化して含浸させてもよい。例えば、真空加圧含浸、真空含浸、噴霧、蒸発乾固、メタリングバー方式、ダイコート方式、グラビア方式、リバースロール方式、ドクターブレード方式、ナイフコート方式、バーコート方式などいずれの方式であってもよい。
 高分子多孔質膜(補強層)は、リチウムイオン伝導性を有する高分子材料で完全に含浸されていてもよい。含浸した部分がアンカー効果を生じて、リチウムイオン伝導性を有する高分子材の層、および保護膜全体の堅牢性を高めることができ、結果として、アノード形態変化に対する形態安定性が高められる。また、金属リチウムに直接接触する補強されていない層でのリチウムイオンの均一拡散性が高められ、結果として、アノード表面でのリチウムが不均一に分散して局所的に析出することがさらに抑制される。
 高分子多孔質膜(補強層)に含浸していないリチウムイオン伝導性を有する材料の層の厚みは0.65μm以下であってもよい。
 この含浸していない層は、補強されていない部分であるので、この層の厚みが大きすぎると、アノードの形態変化に対する形態安定性が低下し、また、リチウムイオン伝導性の抵抗が高まるおそれがある。そのため、厚みの上限を、0.65μm、0.5μm、0.4μm、0.35μm、としてもよい。厚みの下限は、リチウムイオン伝導性を有する材料の層内で、リチウムイオンが十分に拡散されるだけの厚みが確保されていれば、特に制限されるものではなく、例えば0.05μm、0.1μm、0.15μm、0.25μm、0.35μmであってもよい。
 保護膜を構成する、それ自体でリチウムイオン伝導性を有する高分子材料は、具体的には、リチウムイオン伝導性および加工性の上からフッ化ビニリデンのホモポリマー(PVDF)もしくはヘキサフルオロプロピレン(HFP)とのコポリマー(PVDF-HFP)が好ましい。
 従来からポリマー固体電解質としてのPVDFやPVDF-HFPが知られているが、それらは、セパレータとして機能するように、実際にはPVDFやPVDF-HFPの他に電解質塩、可塑剤を添加して形成したものである。またゲル電解質として使用する場合も実際には孔を形成し、そこに電解液を含浸させることにより固体電解質として機能させている。
 本発明の保護膜は、本質的に高分子多孔質膜、およびそれ自体でリチウムイオン伝導性を有する高分子材料からなり、電解質塩を必要としない点で、従来のポリマー固体電解質としてのPVDFやPVDF-HFPとは異なる。
 保護膜を構成する、高分子多孔質膜(補強層)について説明する。
 高分子多孔質膜を形成する高分子材料としては、特に限定されず、例えばポリオレフィン、ポリエステル、ポリフッ化ビニリデン、ポリアミド、ポリアミドイミド、ポリイミド、ポリベンズイミダゾール、ポリエーテルイミド、ポリアクリロニトリル、ポリメチルメタクリレート、ポリエチレンオキサイド、ポリスルフォン、ポリエーテルスルフォン、ポリフェニルスルフォン、ポリフェニレンサルファイド、ポリテトラフルオロエチレン、ポリウレタン、シリコーン樹脂、スチレン系樹脂、ABS樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、アクリル樹脂、アセタール樹脂、ポリカーボネート樹脂、及びこれら単一重合体の単量体を含む共重合体から選択された1種類以上であってもよい。
 高分子多孔質膜は、テトラフルオロエチレン(TFE)重合体または共重合体からなる膜であってもよい。テトラフルオロエチレン(TFE)重合体または共重合体は、化学的に極めて安定な樹脂であり、耐候性、耐紫外線性、耐熱性、耐寒性、耐水性等に優れている上に、自在に空孔率、密度、比表面積および機械的強度等を調整できる。
 例えば、テトラフルオロエチレン(TFE)重合体または共重合体としては、ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン(PFA)、テトラフルオロエチレン・ヘキサフルオロプロペン共重合体(FEP)、エチレン・テトラフルオロエチレン共重合体(ETFE)、もしくはエチレン・クロロトリフルオロエチレン共重合体(ECTFE)またこれらの混合物であってもよい。
 高分子多孔質膜(補強層)の厚みが0.01μm以上1μm以下であってもよい。この厚みが小さすぎると、補強の効果が十分でなく、他方、厚みが大きすぎるとイオン伝導性が低下してしまうからである。
 保護膜を構成する高分子多孔質膜は、延伸または延伸多孔質であってもよい。
 テトラフルオロエチレン(TFE)重合体または共重合体の延伸多孔質膜は従来から多くの研究がなされており、高空孔率で高強度の膜が得られている。テトラフルオロエチレン(TFE)重合体または共重合体は結晶性が高く、それ自身が高い強度を持つことが知られている。テトラフルオロエチレン(TFE)重合体または共重合体の延伸多孔質膜は、テトラフルオロエチレン(TFE)重合体または共重合体の微粉末を溶融融着してできた前駆体を延伸することによって好適に得られる(特公昭56-45773号、同56-17216号、米国特許第4187390号各明細書参照)。テトラフルオロエチレン(TFE)重合体または共重合体の微粉末の融着条件あるいは前駆体の延伸条件を制御することにより高空孔率で高強度の膜を作製することができる。また、テトラフルオロエチレン(TFE)重合体または共重合体は融点が高く、250℃以上でも溶融しないという利点がある。
 より具体的には、高分子多孔質膜、例えばテトラフルオロエチレン(TFE)重合体または共重合体の延伸多孔質膜は、テトラフルオロエチレン(TFE)重合体または共重合体のファインパウダーを成形助剤と混合することにより得られるペーストの成形体から、成形助剤を除去した後または除去せずに延伸し、必要に応じて焼成することにより得られる。電子顕微鏡で観察すると、この延伸多孔質膜の微細構造は、表面及び内部ともフィブリル(小繊維)とそれらを繋ぐノード(結節)からなる独特の繊維質の多孔質体構造を有する。このフィブリル/ノード構造は延伸方向及び延伸倍率によって様相を変化する。例えば、1軸方向に延伸すると、フィブリルは延伸方向の1方向に配向しすだれ状になり、それらフィブリルを繋ぐノードは延伸方向に直角に細長い島状として観察される。一方、2軸方向に延伸すると、フィブリルは延伸方向の放射状に広がり、それらを繋ぐノードは島状というよりむしろ細かい粒子状として観察される(図4参照)。また、延伸倍率を大きくしていくと、延伸方向にかかわらず、一般にフィブリルは長くなり、相対的にノード形状は小さくなり、究極的にはフィブリルのみからなるいわゆるノードレス構造にまでなる(図5参照)。
 ノード部分はイオン拡散から見れば邪魔な部分であり、ノード部分がより小さいほうが膜内でのイオンの均一拡散に繋がる。ノードレス構造であることの指標として、延伸多孔質膜の比表面積を用いることができる。例えば、比表面積が15m/g以上、または20m/g以上の膜を、ノードレス構造の膜とみなしてもよい。
 高分子多孔質膜の空孔率は、延伸により適宜調整することができる。リチウムイオン導電性を確保するために、空孔内にリチウムイオン伝導性を有する高分子を保持(含浸)できるように、一定の空孔率を有するものであれば特に限定されない。例えば、空孔率の下限は、30%、35%、40%、45%、50%、55%、60%としてもよい。一方、空孔率が大きすぎると、強度が十分でないことがあるので、例えば、空孔率の上限は、98%、95%、90%、85%、80%、75%、70%、65%、60%としてもよい。なお、多孔質膜の空孔率は、JIS K 6885で定義されている見掛け密度の測定方法に準拠して測定した見掛け密度ρより、下記式から算出することができる。(下記式では、例として、PTFEの空孔率を求めるものである。そのため、PTFEの真密度として、2.2を用いている。多孔質膜を構成する材料に応じて、真密度の値は調整される。)
  空孔率(%)=[(2.2-ρ)/2.2]×100
 高分子多孔質膜の目付量としては0.1g/m以上、好ましくは0.2g/m以上、さらに好ましくは0.3g/m以上であってもよく、0.5g/m以下、好ましくは0.4g/m以下、さらに好ましくは0.3g/m以下であってもよい。
 目付量が小さすぎると補強の効果が十分でなく、他方、目付量が大きすぎるとイオン伝導性が低下してしまうからである。
 保護膜のガーレー値が5000秒以上であってもよい。これは、保護膜が実質的にほぼ無孔であることを意味する。そのためには、リチウムイオン伝導性を有する高分子材料、または高分子多孔質膜のいずれか、または両方が無孔であってもよい。保護膜が無孔であるので、デンドライトの発生があっても、デンドライトの成長は保護膜によって物理的に抑制される。
 ガーレー値はJIS P 8117:1998に基づき評価した。ガーレー値とは、1.29kPaの圧力下、100cm3の空気が6.45cm2の面積の試料を垂直方向に通過する時間(秒)をいう。
 本発明は、保護膜を用いたセパレータにも関する。そのセパレータは、前記の保護膜を少なくとも1枚以上積層したセパレータであって、保護膜とセパレータの間にリチウムイオン伝導性を有する材料が配置される。
 セパレータが、保護膜を備えているので、アノードでのデンドライトの発生が抑制され、セパレータの保護にもつながる。保護膜とセパレータの間にリチウムイオン伝導性を有する材料が配置されるため、リチウムイオン伝導性が確保され、また、リチウムイオンの均一な拡散の度合いがさらに高まる。
 リチウムイオン伝導性を有する材料は、保護膜を構成するために用いたリチウムイオン伝導性を有する高分子材料であってもよい。
 このセパレータは、延伸多孔質のテトラフルオロエチレン(TFE)重合体または共重合体からなる膜を含んでもよい。延伸多孔質のテトラフルオロエチレン(TFE)重合体または共重合体からなる膜は、保護膜を構成するために用いたものであってもよい。
 本発明は、保護膜を用いたリチウム二次電池にも関する。このリチウム二次電池は、前記の保護膜を用いたリチウム二次電池であって、保護膜のリチウムイオン伝導性を有する高分子材料で覆われている面が、アノードに接触する。つまり、アノードとリチウムイオン伝導性を有する高分子材料が接触している。このため、リチウムイオンがアノード表面に到達する直前に均一に分散され、局所的な析出が確実に抑制される。また、高分子多孔質膜がフッ素を含有する場合、例えば、テトラフルオロエチレン(TFE)重合体または共重合体からなる膜(補強層)がアノードのリチウムと直接接触して、脱フッ素化(炭化)することがなく、保護膜、ひいては二次電池の健全性を保つことができる。
 該リチウム二次電池は、アノード、保護膜、セパレータ及びカソードをこの順序で積層してなるものであってもよい。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれによって何ら限定されるものではない。
 本例では、表1に示した条件で、様々な保護膜を作製し、それらを用いてコインセルを作製した。保護膜とセパレータの合計電気抵抗(Ω)の測定と、コインセルの充放電試験(Li/Liによるコインセルサイクル)を実施した。充放電試験では、平均充放電効率と、Liデンドライトによる内部ショートが生じるまでのサイクル数を計測して、各コインセルのライフを評価した。以下、より詳細に説明する。
Figure JPOXMLDOC01-appb-T000001
<補強層の調整>
 保護膜を構成する補強層(高分子多孔質膜)として、テトラフルオロエチレン(TFE)重合体または共重合体からなる膜であるPTFE膜[日本ゴア(株)製]を採用した。すべての実施例、比較例において、補強層の膜厚は0.35μmとした。また、リチウムイオン伝導性を有する高分子材料を充填する前の、補強層の比表面積、空孔率、目付量を表1に示した値になるように調製した。
<高分子材料の充填>
 補強層に充填される、リチウムイオン伝導性を有する高分子材料として、フッ化ビニリデンのホモポリマー(PVdF、実施例1~9、11、比較例1)およびフッ化ビニリデンとヘキサフルオロプロピレンとのコポリマー(PVdF-HFP、実施例10)を採用した。比較例2では、高分子材料の充填を行わず、補強層のみとした。
 所定の有機溶媒にPVdF(メーカー:ARKEMA社 仕様:KYNAR710)またはPVdF-HFP(メーカー:ARKEMA社 仕様:KYNAR FLEX2820-20)を所定濃度になるよう溶解させた。この溶液を、上記の補強層に充填(含浸)させた。各実施例、比較例に応じて、充填(含浸)の度合いを調整し、表1に示した補強層に充填されていない層の厚み(補強されていない層の厚み)を有する保護膜を得た。
 得られた保護膜のガーレー値を、JIS P 8117:1998に基づき測定した。結果は、比較例2(高分子を充填しなかった)ものを除いて、全て5000以上であった。
<セパレータの用意>
 コインセルに用いるセパレータとして、多孔質ポリエチレン(PE)膜または延伸多孔質ポリテトラフルオロエチレン(PTFE)膜を親水化処理したセパレータを用意した。PEセパレータ(実施例1~10、比較例1~2)としては、一般的に入手可能な厚み25μm、空孔率50%程度のものを使用した。PTFEセパレータ(実施例11)としては、ジャパンゴアテックス社製,BSP0102560-2(厚み:25μm,空孔率:60%)を用いた。
<コインセルの作製>
 電極としてφ14mm、厚さ100umのLiを2枚用意した(8.05mg 31.8mAh)。電解液として、1moldm-3LiPF/EC:PC=1:1を用意した。これらの部材を、表1に示した保護膜とともに、セパレータグローブボックス中で、宝泉製2032コインセルに組み込むことで、図6のコインセルを作製した。
<抵抗値の測定>
 保護膜とセパレータをアセンブルした状態で、その抵抗値を測定した。セパレータには、コインセルに用いたものと同じ電解液を含ませている。抵抗は、所定の測定治具を使用し、1kHzのLCRメーターにて抵抗値を測定した。結果を表2に示す。補強されていない層の厚みが大きくなるにつれて(実施例1~5)、抵抗が上昇する傾向が見られた。しかし、比較例2(保護膜のない、セパレーターだけのもの)と比べて、いずれの実施例(保護膜を設けたセパレータ)でも抵抗が極端に増加することはなく、電池の作動に影響は無かった。
<充放電試験>
 コインセルを用いて、充放電試験(Li/Liによるコインセルサイクル)を実施した。充放電測定は、北斗電工製電池充放電装置(HJ1001SM8A)を用いて行った。電流密度10mA/cm(φ14mm電極換算15.4mA)で30分間の充放電試験(DOD:放電深度 約25%)を繰り返した。デンドライトによる内部ショートが生じるまでのサイクル数を計測した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 電池の充放電効率は、下記の式で定義されるFOM(Figure of Merit)を用いて評価できる。
 10サイクル充放電試験を行い、作用極に残った電気化学的に活性なリチウム容量および充放電を繰り返した時の放電容量の総和を測定し、次式を用いてリチウム充放電効率を算出した。要すれば、10サイクルの充放電を行った後で、残ったリチウム容量、放電容量が多いほど、充放電効率は高いと言える。
 リチウム充放電効率(%)=(1-1/FOM)×100    …(1)
 FOM=(充放電を繰り返した時の放電容量の総和)/((充填したリチウムの容量)-(残った電気化学的に活性なリチウム容量))         …(2)
 比較例2(保護膜のない、セパレーターだけのもの)では充放電効率が極端に低かった。実施例1~11はいずれも高い充放電効率を示した。
 デンドライトによる内部ショートが生じるまでのサイクル数を計測した。結果を表2に示す。本発明の保護膜を用いたコインセル(実施例1~11)では、いずれも1000サイクル以上でも内部ショートは発生しなかった。これに対して、比較例2(保護膜のない、セパレーターだけのもの)では、50サイクルでショートが発生した。また比較例1は250サイクルでショートが発生した。比較例1は、補強されていない層の厚みが0μmの保護膜であり、つまりPTFEの補強膜の表面が、高分子材料で覆われていない。したがって、アノードが、高分子材料ではなく、PTFEと接触していると考えられる。このような箇所では、補強層のPTFEがアノードのリチウムと反応してしまい、保護膜が保護膜として機能できなくなったことが考えられる。

Claims (15)

  1.  リチウムを含んでなるアノードを保護する膜であって、高分子多孔質膜、および
    それ自体でリチウムイオン伝導性を有する高分子材料からなり、
    該高分子多孔質膜の少なくとも一方の表面が該リチウムイオン伝導性を有する高分子材料で覆われている、ことを特徴とする保護膜。
  2.  該高分子多孔質膜が、テトラフルオロエチレン(TFE)重合体または共重合体からなることを特徴とする、請求項1に記載の保護膜。
  3.  該高分子多孔質膜が該リチウムイオン伝導性を有する高分子材料で完全に含浸されていることを特徴とする、請求項1または2に記載の保護膜。
  4.  該高分子多孔質膜が延伸により作製されたことを特徴とする、請求項1または2に記載の保護膜。
  5.  該高分子多孔質膜の厚みが0.01μm以上1μm以下であることを特徴とする、請求項1または2に記載の保護膜。
  6.  該高分子多孔質膜に含浸していない該リチウムイオン伝導性を有する材料の層の厚みが0.65μm以下であることを特徴とする、請求項3に記載の保護膜。
  7.  該リチウムイオン伝導性を有する材料がフッ化ビニリデンのホモポリマーもしくはヘキサフルオロプロピレン(HFP)とのコポリマーであることを特徴とする、請求項1~6のいずれか1項に記載の保護膜。
  8.  該高分子多孔質膜がノード(結束部)を持たないノードレス構造であることを特徴とする、請求項1~7のいずれか1項に記載の保護膜。
  9.  該高分子多孔質膜の空孔率が35%以上98%以下であることを特徴とする、請求項1~8のいずれか1項に記載の保護膜。
  10.  該高分子多孔質膜の目付け量が0.1g/m2以上0.5g/m2以下であることを特徴とする、請求項1~9のいずれか1項に記載の保護膜。
  11.  該保護膜のガーレー値が5000秒以上であることを特徴とする、請求項1~10のいずれか1項に記載の保護膜。
  12.  請求項1~11のいずれか1項に記載の該保護膜を少なくとも1枚以上積層したセパレータであって、該保護膜と該セパレータの間にリチウムイオン伝導性を有する材料が配置されることを特徴とする、セパレータ。
  13.  延伸多孔質のテトラフルオロエチレン(TFE)重合体または共重合体からなる膜を含んでなることを特徴とする、請求項12に記載のセパレータ。
  14.  請求項1~11のいずれか1項に記載の該保護膜を用いたリチウム二次電池であって、該保護膜の該リチウムイオン伝導性を有する高分子材料で覆われている面が、該アノードに接触することを特徴とする、リチウム二次電池。
  15.  少なくとも該アノード、該保護膜、セパレータ及びカソードをこの順序で積層してなる、請求項14に記載のリチウム二次電池。
PCT/JP2014/072898 2013-09-02 2014-09-01 保護膜、ならびにそれを用いたセパレータおよび二次電池 WO2015030230A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14839310.1A EP3043402B1 (en) 2013-09-02 2014-09-01 Protective film, separator using same, and secondary battery
KR1020167004413A KR101923787B1 (ko) 2013-09-02 2014-09-01 보호막 및 그것을 사용한 세퍼레이터 및 이차 전지
CA2922834A CA2922834C (en) 2013-09-02 2014-09-01 A protective film, and a separator and a secondary battery using the same
US14/916,091 US20160204476A1 (en) 2013-09-02 2014-09-01 Protective film, separator and secondary battery using the same
CN201480048433.2A CN105794018B (zh) 2013-09-02 2014-09-01 保护膜、使用该保护膜的间隔物以及充电电池
JP2015534359A JPWO2015030230A1 (ja) 2013-09-02 2014-09-01 保護膜、ならびにそれを用いたセパレータおよび二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013181316 2013-09-02
JP2013-181316 2013-09-02

Publications (1)

Publication Number Publication Date
WO2015030230A1 true WO2015030230A1 (ja) 2015-03-05

Family

ID=52586774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072898 WO2015030230A1 (ja) 2013-09-02 2014-09-01 保護膜、ならびにそれを用いたセパレータおよび二次電池

Country Status (7)

Country Link
US (1) US20160204476A1 (ja)
EP (1) EP3043402B1 (ja)
JP (2) JPWO2015030230A1 (ja)
KR (1) KR101923787B1 (ja)
CN (1) CN105794018B (ja)
CA (1) CA2922834C (ja)
WO (1) WO2015030230A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170099375A (ko) * 2016-02-23 2017-08-31 주식회사 엘지화학 다공성 보호층이 형성된 전극, 이의 제조방법 및 이를 적용한 리튬 이차전지
JP2017204468A (ja) * 2016-05-09 2017-11-16 三星電子株式会社Samsung Electronics Co., Ltd. リチウム金属電池用負極、及びそれを含むリチウム金属電池
JP2018116778A (ja) * 2017-01-16 2018-07-26 トヨタ自動車株式会社 電極の製造方法
EP3264500A4 (en) * 2015-12-17 2018-10-17 LG Chem, Ltd. Lithium secondary battery anode and lithium secondary battery including same
JP2019537224A (ja) * 2017-04-25 2019-12-19 エルジー・ケム・リミテッド リチウム二次電池用負極、この製造方法及びこれを含むリチウム二次電池
WO2020026705A1 (ja) 2018-07-30 2020-02-06 パナソニックIpマネジメント株式会社 リチウム二次電池
JP2020508550A (ja) * 2017-09-07 2020-03-19 エルジー・ケム・リミテッド リチウム電極とそれを含むリチウム二次電池、及びフレキシブル二次電池
WO2021039242A1 (ja) * 2019-08-30 2021-03-04 パナソニックIpマネジメント株式会社 リチウム二次電池
JP2021515962A (ja) * 2018-07-30 2021-06-24 エルジー・ケム・リミテッド リチウム電極及びこれを含むリチウム二次電池
WO2022265001A1 (ja) * 2021-06-17 2022-12-22 東レ株式会社 ポリマー膜、積層フィルム、二次電池用セパレータおよび二次電池
WO2023223064A1 (ja) * 2022-05-19 2023-11-23 日産自動車株式会社 全固体電池
WO2024071428A1 (ja) * 2022-09-29 2024-04-04 株式会社大阪ソーダ 蓄電デバイス用セパレータ、蓄電デバイスおよびそれらの製造方法
US11984616B2 (en) 2019-05-14 2024-05-14 Lg Energy Solution, Ltd. Lithium secondary battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102328253B1 (ko) * 2016-09-30 2021-11-18 주식회사 엘지에너지솔루션 전도성 직물로 형성된 보호층을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
CN109728249A (zh) * 2017-10-30 2019-05-07 中国科学院宁波材料技术与工程研究所 一种界面保护结构、制备方法以及包含该结构的电池
KR102038669B1 (ko) 2018-01-11 2019-10-30 주식회사 엘지화학 리튬 전극을 포함하는 리튬 금속 이차전지의 제조방법
KR102415166B1 (ko) 2019-01-11 2022-06-29 주식회사 엘지에너지솔루션 리튬 전극 및 이를 포함하는 리튬 이차전지
US11217781B2 (en) * 2019-04-08 2022-01-04 GM Global Technology Operations LLC Methods for manufacturing electrodes including fluoropolymer-based solid electrolyte interface layers
CN111599983B (zh) * 2020-05-18 2023-03-24 中山大学 一种具有亲疏锂梯度结构的锂金属复合负极及其制备方法
WO2022038670A1 (ja) * 2020-08-18 2022-02-24 TeraWatt Technology株式会社 リチウム2次電池
CN114325509B (zh) * 2021-12-30 2023-11-07 北京理工大学重庆创新中心 一种用于检测锂离子电池枝晶生长的智能隔膜及检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187390A (en) 1970-05-21 1980-02-05 W. L. Gore & Associates, Inc. Porous products and process therefor
JPS5645773B2 (ja) 1973-06-14 1981-10-28
JPH09293518A (ja) 1996-04-26 1997-11-11 Asahi Chem Ind Co Ltd 薄膜状電解質および該電解質を用いた電池
JP2001176482A (ja) * 1999-12-15 2001-06-29 Sanyo Electric Co Ltd 非水電解質二次電池
JP2003317719A (ja) * 2002-04-26 2003-11-07 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2007157571A (ja) * 2005-12-07 2007-06-21 Nitto Denko Corp 電解質用多孔質フィルム、これより得られる電解質及びこれを用いる電極/電解質素子の製造方法
JP2008270160A (ja) * 2007-03-28 2008-11-06 Sanyo Electric Co Ltd 非水電解質電池
JP2008300300A (ja) 2007-06-01 2008-12-11 Nitto Denko Corp 非水リチウムイオン二次電池

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987753A (ja) * 1982-11-10 1984-05-21 Sanyo Electric Co Ltd 有機電解質電池
JP3462722B2 (ja) * 1997-07-24 2003-11-05 三洋電機株式会社 高分子電解質電池
US6753114B2 (en) * 1998-04-20 2004-06-22 Electrovaya Inc. Composite electrolyte for a rechargeable lithium battery
JPH11335473A (ja) * 1998-05-26 1999-12-07 Tokuyama Corp イオン交換膜およびその用途
EP1191622B1 (en) * 2000-03-07 2011-01-19 Teijin Limited Lithium ion secondary cell, separator, cell pack, and charging method
JP5073144B2 (ja) * 2000-06-07 2012-11-14 三洋電機株式会社 リチウムイオン二次電池
JP2002042867A (ja) * 2000-07-31 2002-02-08 Sanyo Electric Co Ltd リチウムイオン二次電池
US20030049538A1 (en) * 2001-08-02 2003-03-13 Wolfgang Buerger Electrochemical energy storage device
US7282295B2 (en) * 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
JP4705334B2 (ja) * 2004-03-19 2011-06-22 株式会社巴川製紙所 電子部品用セパレータ及びその製造方法
JP4986009B2 (ja) * 2005-04-04 2012-07-25 ソニー株式会社 二次電池
JP2006344506A (ja) * 2005-06-09 2006-12-21 Tomoegawa Paper Co Ltd 電子部品用セパレータ
US7824806B2 (en) * 2005-08-09 2010-11-02 Polyplus Battery Company Compliant seal structures for protected active metal anodes
JP5545728B2 (ja) * 2010-05-07 2014-07-09 国立大学法人三重大学 リチウム二次電池及びリチウム二次電池用の複合負極
KR101191657B1 (ko) * 2010-07-19 2012-10-17 에스비리모티브 주식회사 전지 모듈
KR102004561B1 (ko) * 2011-10-18 2019-07-26 제이에스알 가부시끼가이샤 보호막 및 그것을 제조하기 위한 조성물, 슬러리, 및 축전 디바이스
TWI464939B (zh) * 2011-12-20 2014-12-11 Ind Tech Res Inst 鋰電池隔離膜
JPWO2013108510A1 (ja) 2012-01-18 2015-05-11 ソニー株式会社 セパレータ、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187390A (en) 1970-05-21 1980-02-05 W. L. Gore & Associates, Inc. Porous products and process therefor
JPS5617216B2 (ja) 1970-05-21 1981-04-21
JPS5645773B2 (ja) 1973-06-14 1981-10-28
JPH09293518A (ja) 1996-04-26 1997-11-11 Asahi Chem Ind Co Ltd 薄膜状電解質および該電解質を用いた電池
JP2001176482A (ja) * 1999-12-15 2001-06-29 Sanyo Electric Co Ltd 非水電解質二次電池
JP2003317719A (ja) * 2002-04-26 2003-11-07 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2007157571A (ja) * 2005-12-07 2007-06-21 Nitto Denko Corp 電解質用多孔質フィルム、これより得られる電解質及びこれを用いる電極/電解質素子の製造方法
JP2008270160A (ja) * 2007-03-28 2008-11-06 Sanyo Electric Co Ltd 非水電解質電池
JP2008300300A (ja) 2007-06-01 2008-12-11 Nitto Denko Corp 非水リチウムイオン二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. AURBACH ET AL., SOLID STATE IONICS, vol. 148, 2002, pages 405 - 416
See also references of EP3043402A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3264500A4 (en) * 2015-12-17 2018-10-17 LG Chem, Ltd. Lithium secondary battery anode and lithium secondary battery including same
US10633492B2 (en) 2015-12-17 2020-04-28 Lg Chem, Ltd. Lithium secondary battery anode and lithium secondary battery including same
KR102003291B1 (ko) * 2016-02-23 2019-07-24 주식회사 엘지화학 다공성 보호층이 형성된 전극, 이의 제조방법 및 이를 적용한 리튬 이차전지
KR20170099375A (ko) * 2016-02-23 2017-08-31 주식회사 엘지화학 다공성 보호층이 형성된 전극, 이의 제조방법 및 이를 적용한 리튬 이차전지
JP2017204468A (ja) * 2016-05-09 2017-11-16 三星電子株式会社Samsung Electronics Co., Ltd. リチウム金属電池用負極、及びそれを含むリチウム金属電池
JP7038488B2 (ja) 2016-05-09 2022-03-18 三星電子株式会社 リチウム金属電池用負極、及びそれを含むリチウム金属電池
JP2018116778A (ja) * 2017-01-16 2018-07-26 トヨタ自動車株式会社 電極の製造方法
JP2019537224A (ja) * 2017-04-25 2019-12-19 エルジー・ケム・リミテッド リチウム二次電池用負極、この製造方法及びこれを含むリチウム二次電池
US11264618B2 (en) 2017-09-07 2022-03-01 Lg Energy Solution, Ltd. Electrode including current collector with surface irregularity, lithium metal layer, insulating protective layer, lithium ion-isolating layer, and secondary battery having the same
JP7048841B2 (ja) 2017-09-07 2022-04-06 エルジー エナジー ソリューション リミテッド リチウム電極とそれを含むリチウム二次電池、及びフレキシブル二次電池
JP2020508550A (ja) * 2017-09-07 2020-03-19 エルジー・ケム・リミテッド リチウム電極とそれを含むリチウム二次電池、及びフレキシブル二次電池
JP2021515962A (ja) * 2018-07-30 2021-06-24 エルジー・ケム・リミテッド リチウム電極及びこれを含むリチウム二次電池
WO2020026705A1 (ja) 2018-07-30 2020-02-06 パナソニックIpマネジメント株式会社 リチウム二次電池
JP7050944B2 (ja) 2018-07-30 2022-04-08 エルジー エナジー ソリューション リミテッド リチウム電極及びこれを含むリチウム二次電池
US11862791B2 (en) 2018-07-30 2024-01-02 Lg Energy Solution, Ltd. Lithium electrode and lithium secondary battery comprising same
US12074318B2 (en) 2018-07-30 2024-08-27 Lg Energy Solution, Ltd. Lithium electrode and lithium secondary battery comprising same
US11984616B2 (en) 2019-05-14 2024-05-14 Lg Energy Solution, Ltd. Lithium secondary battery
WO2021039242A1 (ja) * 2019-08-30 2021-03-04 パナソニックIpマネジメント株式会社 リチウム二次電池
WO2022265001A1 (ja) * 2021-06-17 2022-12-22 東レ株式会社 ポリマー膜、積層フィルム、二次電池用セパレータおよび二次電池
WO2023223064A1 (ja) * 2022-05-19 2023-11-23 日産自動車株式会社 全固体電池
WO2024071428A1 (ja) * 2022-09-29 2024-04-04 株式会社大阪ソーダ 蓄電デバイス用セパレータ、蓄電デバイスおよびそれらの製造方法

Also Published As

Publication number Publication date
US20160204476A1 (en) 2016-07-14
CN105794018B (zh) 2020-07-17
JP2019133940A (ja) 2019-08-08
CA2922834A1 (en) 2015-03-05
EP3043402B1 (en) 2020-12-09
CA2922834C (en) 2018-11-20
KR20160032245A (ko) 2016-03-23
JP6899857B2 (ja) 2021-07-07
KR101923787B1 (ko) 2018-11-29
EP3043402A1 (en) 2016-07-13
JPWO2015030230A1 (ja) 2017-03-02
EP3043402A4 (en) 2017-03-01
CN105794018A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
JP6899857B2 (ja) 保護膜、ならびにそれを用いたセパレータおよび二次電池
JP4127989B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP4249607B2 (ja) 単イオン伝導体を含むリチウム2次電池用の複合高分子電解質およびその製造方法
US9515321B2 (en) Binder solution for anode, active material slurry for anode comprising the binder solution, anode using the slurry and electrochemical device comprising the anode
KR100633713B1 (ko) 전해액 담지 중합체 막, 이를 사용한 중합체 전해질 2차 전지 및 당해 전지의 제조방법
CN112424991B (zh) 用于电化学装置的隔板和制造该隔板的方法
EP2077594A1 (en) Composite separator films for lithium-ion batteries
KR20110139224A (ko) 나트륨 이온 전지
CN111435755B (zh) 硫化物固态电池及其制备方法
WO2002061872A1 (en) A multi-layered polymer electrolyte and lithium secondary battery comprising the same
JP2003007279A (ja) 非水系二次電池用セパレータ及び非水系二次電池
KR100381385B1 (ko) 가교화된 겔상 고분자 전해질을 이용한 리튬고분자이차전지의 제조방법
JP4952314B2 (ja) 非水系二次電池用セパレータおよびこれを備えた非水系二次電池
JP2004327422A (ja) 異性モルフォロジーを有するリチウム2次電池用複合高分子電解質およびその製造方法
KR101720445B1 (ko) 이차 전지 및 그것에 사용하는 세퍼레이터
KR20180042831A (ko) 비수 전해액 이차 전지용 적층 세퍼레이터, 비수 전해액 이차 전지용 부재 및 비수 전해액 이차 전지
JP4942249B2 (ja) リチウムイオン二次電池の製造方法
JP2001102089A (ja) 固体状電解質、電気化学素子、リチウムイオン二次電池および電気二重層キャパシタ
KR101742652B1 (ko) 분리막 및 이를 포함하는 전기 화학 전지
JP2006004873A (ja) 非水電解質二次電池
KR20200049649A (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
KR101812577B1 (ko) 분리막 및 이를 포함하는 전기 화학 전지
KR20040042749A (ko) 다공성 고분자가 코팅된 겔화 세퍼레이터 및 이들을이용한 전기화학셀
JPH11238525A (ja) シート状電解質およびリチウム2次電池
JP2003317802A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534359

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167004413

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2922834

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14916091

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014839310

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014839310

Country of ref document: EP