WO2015005397A1 - 炭化ケイ素半導体装置および炭化ケイ素半導体装置の製造方法 - Google Patents

炭化ケイ素半導体装置および炭化ケイ素半導体装置の製造方法 Download PDF

Info

Publication number
WO2015005397A1
WO2015005397A1 PCT/JP2014/068353 JP2014068353W WO2015005397A1 WO 2015005397 A1 WO2015005397 A1 WO 2015005397A1 JP 2014068353 W JP2014068353 W JP 2014068353W WO 2015005397 A1 WO2015005397 A1 WO 2015005397A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
insulating film
carbide semiconductor
gate insulating
semiconductor device
Prior art date
Application number
PCT/JP2014/068353
Other languages
English (en)
French (fr)
Inventor
巻渕 陽一
堤 岳志
幹 荒岡
岡本 光央
福田 憲司
Original Assignee
富士電機株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社, 独立行政法人産業技術総合研究所 filed Critical 富士電機株式会社
Priority to JP2015526381A priority Critical patent/JP6025007B2/ja
Priority to CN201480039085.2A priority patent/CN105531802A/zh
Priority to EP14822620.2A priority patent/EP3021353A4/en
Publication of WO2015005397A1 publication Critical patent/WO2015005397A1/ja
Priority to US14/991,887 priority patent/US9922822B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers
    • H01L29/94Metal-insulator-semiconductors, e.g. MOS

Definitions

  • the present invention relates to a silicon carbide semiconductor device using a silicon carbide substrate and a method for manufacturing the silicon carbide semiconductor device, and more particularly to a silicon carbide semiconductor device capable of reducing the interface state density and a method for manufacturing the silicon carbide semiconductor device.
  • Silicon carbide can form an insulating film by thermal oxidation like silicon, but a gate insulating film and a silicon carbide substrate that constitute a MOS gate (insulating gate made of metal-oxide film-semiconductor) by a crystal plane or an oxidation method
  • MOS interface The channel mobility near the junction interface (hereinafter referred to as the MOS interface) is different.
  • Silicon carbide oxidation methods include dry oxidation using dry oxygen (O 2 ) as an oxidizing species, wet oxidation using water vapor (H 2 O) as an oxidizing species, and the like.
  • the (000-1) plane and the (11-20) plane of the silicon carbide substrate are said to exhibit higher channel mobility than the (0001) plane when wet-oxidized.
  • the method includes annealing with hydrogen and annealing with an inert gas following thermal oxidation of the silicon carbide substrate in oxygen or humidified oxygen.
  • a method for improving a thermal oxide film of SiC on a silicon carbide substrate that reduces hysteresis and flat band shift is disclosed (see, for example, Patent Document 1 below).
  • the (000-1) plane of the silicon carbide substrate was oxidized in a wet atmosphere composed of H 2 O gas and oxygen gas, H 2 O gas, oxygen gas and inert gas, and then contained hydrogen (H 2 ) gas.
  • a method of reducing the interface state density by heat treatment in an atmosphere is disclosed (for example, see Patent Document 2 below).
  • As a method for generating water vapor (H 2 O) in wet oxidation pure water heating, pure water bubbling with oxygen gas, and the like are available.
  • a pyrogenic method using a combustion reaction of O 2 gas and H 2 gas is generally used. Is.
  • the flow rate ratio between O 2 gas and H 2 gas is explosive if the H 2 gas is excessive, so that it is generally used at a flow rate ratio rich in O 2 . Therefore, the oxidizing atmosphere is an atmosphere of H 2 O generated and H 2 O + O 2 of unreacted O 2 .
  • the (000-1) plane and (11-20) plane of the silicon carbide substrate are wet-oxidized in a gas containing H 2 O and O 2 and heat-treated in an atmosphere containing H 2 as hydrogen POA (Post Oxidation Annealing). By doing so, the interface state density is reduced because hydrogen or hydroxyl groups terminate dangling bonds of silicon atoms on the silicon carbide substrate surface forming the interface states. It is said.
  • the interface state density is very large, resulting in poor MOS interface characteristics. Further, when hydrogen POA is performed after dry oxidation, the interface state density is reduced, but it does not reach the interface characteristics combining wet oxidation and hydrogen POA.
  • hydrogen or a hydroxyl group introduced by gate oxidation and POA effectively terminates dangling bonds of silicon atoms on the surface of the silicon carbide substrate forming the interface states, and also in the gate insulating film. If present, it becomes a cause of electron trapping, and therefore it is desirable that segregation is performed in a narrow region including the MOS interface.
  • an object of the present invention is to more effectively reduce the interface state density of the (000-1) plane or the (11-20) plane of a silicon carbide semiconductor.
  • a silicon carbide semiconductor device of the present invention has a silicon carbide semiconductor device having one or more oxide films, nitride films, or oxynitride films as a gate insulating film on a silicon carbide semiconductor substrate.
  • hydrogen (H) or hydroxyl group (OH) is segregated in a region including the interface between the substrate and the gate insulating film, and the width of the region where the hydrogen or hydroxyl group is segregated is 0.5 nm to 10 nm. It is characterized by that.
  • hydrogen or a hydroxyl group of 1 ⁇ 10 21 atoms / cm 3 to 1 ⁇ 10 22 atoms / cm 3 is present in a region where hydrogen or hydroxyl group including the interface between the substrate and the gate insulating film is segregated.
  • the method for manufacturing a silicon carbide semiconductor device includes a carbonization in which heat treatment is performed after forming one or more of an oxide film, a nitride film, or an oxynitride film as a gate insulating film on a silicon carbide semiconductor substrate.
  • the atmosphere of the heat treatment after forming the gate insulating film is a gas atmosphere containing hydrogen (H 2 ) and water vapor (H 2 O) without containing dry oxygen (O 2 ). It is characterized by that.
  • the temperature of the heat treatment after the formation of the gate insulating film, both of the temperature drop, or one of the atmospheres is H 2 gas or diluted H 2 gas.
  • an inert gas of nitrogen, helium or argon at a predetermined temperature is used.
  • a heat treatment of the atmosphere is performed.
  • the step of forming the gate insulating film includes thermal oxidation with a gas containing O 2 not containing H 2 O.
  • the step of forming the gate insulating film includes thermal oxynitridation in a gas atmosphere containing at least nitrous oxide or nitric oxide.
  • the step of forming the gate insulating film includes thermal oxidation in a gas atmosphere containing at least O 2 and H 2 O.
  • the step of forming the gate insulating film includes a step of depositing an insulating film of an oxide film, a nitride film, or an oxynitride film.
  • the atmosphere of the heat treatment after forming the gate insulating film by a an atmosphere containing H 2 and H 2 O containing no O 2, as long containing a surface of the silicon carbide substrate and the gate insulating film Hydrogen or hydroxyl group can be segregated in the formed region, the interface state density can be reduced, and high channel mobility can be realized.
  • FIG. 1 is a cross-sectional view showing a silicon carbide semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a chart showing the interface state density obtained from the measurement results of the MOS capacitor according to the present invention and the MOS capacitor of the comparative example.
  • FIG. 3 is a chart showing the interface state density obtained from the measurement results of the MOS capacitor according to the present invention and the MOS capacitor of the comparative example.
  • FIG. 4 is a chart showing the interface state density obtained from the measurement results of the MOS capacitor according to the present invention and the MOS capacitor of the comparative example.
  • FIG. 3 is a cross-sectional view showing a silicon carbide semiconductor device according to an embodiment of the present invention.
  • FIG. 3 is a chart showing the interface state density obtained from the measurement results of the MOS capacitor according to the present invention and the MOS capacitor of the comparative example.
  • FIG. 4 is a chart showing the interface state density obtained from the measurement results of the MOS capacitor according to the present invention and the MOS capacitor of the
  • FIG. 5 is a chart showing the interface state density obtained from the measurement results of the MOS capacitor according to the present invention and the MOS capacitor of the comparative example.
  • FIG. 6 is a chart showing hydrogen concentration measurement results by secondary ion mass spectrometry near the SiO 2 / SiC interface in the semiconductor device of the present invention.
  • FIG. 7 is a cross-sectional view for explaining the manufacturing process of the MOSFET of the present invention.
  • FIG. 8 is a diagram showing an example of a semiconductor device having a complicated MOS gate structure according to the present invention.
  • FIG. 1 is a cross-sectional view showing a silicon carbide semiconductor device according to an embodiment of the present invention.
  • FIG. 1 shows the configuration of the MOS capacitor.
  • the MOS capacitor 1 shown in FIG. 1 is manufactured by the following steps.
  • Step 1 First, an n-type epitaxial film 2b having a donor density of about 1 ⁇ 10 16 cm ⁇ 3 is formed on an n-type 4H—SiC (000-1) substrate 2a (off substrate of 0 to 8 degrees from the (000-1) plane). Grow 10 ⁇ m.
  • the 4H—SiC substrate alone or the 4H—SiC substrate and the epitaxial film together are referred to as a 4H—SiC semiconductor 2.
  • Step 2 After cleaning the 4H—SiC semiconductor 2, dry oxidation is performed in a dry oxygen atmosphere at 1100 ° C. for 50 minutes to form an insulating film 3 having a thickness of 50 nm.
  • the insulating film 3 may be formed by thermal oxynitridation using wet oxidation, nitrous oxide, or nitric oxide. Alternatively, the insulating film 3 may be a deposited film.
  • a method for depositing the insulating film 3 includes a method using silane or TEOS (tetraethoxysilane) by chemical vapor deposition (CVD), but is not particularly limited.
  • the temperature was raised in a nitrogen atmosphere, and the temperature was lowered in a hydrogen atmosphere, and held for 30 minutes in a hydrogen atmosphere before the temperature was lowered. Both the temperature rise and fall may be a hydrogen atmosphere or an inert gas atmosphere, and hydrogen may be diluted with an inert gas. Further, while the atmosphere containing the same H 2 and between H 2 O POA, or may be cooled in an atmosphere containing H 2 and H 2 O diluted in an inert gas.
  • the insulating film 3 formed in the step 2 is thinned, or the step 2 is not performed, and the heat treatment is performed for a long time until the desired film thickness is obtained in an atmosphere containing H 2 and H 2 O.
  • the film 3 may be formed.
  • heat treatment in an atmosphere containing H 2 and H 2 O may be combined with heat treatment in a hydrogen or inert gas atmosphere at 800 to 1200 ° C.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-199497
  • Patent Document 2 Japanese Patent No. 4374437 discloses an atmosphere containing H 2 gas after thermal oxidation of H 2 O gas and oxygen gas or a mixed gas atmosphere consisting of H 2 O gas, oxygen gas and inert gas. The heat treatment is performed and is different from the POA in the atmosphere containing H 2 and H 2 O in Step 3 of the present invention.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-72405 describes that if silicon carbide is oxidized and subjected to hydrogen heat treatment at 1000 ° C., the temperature is too high and the oxide film is reduced by hydrogen. In the POA in the atmosphere containing H 2 and H 2 O in Step 3 of the invention, the reduction of the oxide film at 1000 ° C. has not been confirmed. This is probably because H 2 O is contained.
  • Step 4 A dot-shaped aluminum gate electrode 4 is deposited on the insulating film 3 at room temperature, and aluminum is deposited on the entire back surface to form an aluminum back electrode 5 to fabricate the MOS capacitor 1.
  • FIGS. 2 to 5 correspond to Experimental Examples 1 to 4, respectively, and are graphs showing interface state densities obtained from the measurement results of the MOS capacitor according to the present invention shown in FIG. 1 and the MOS capacitor of the comparative example. It is.
  • the horizontal axis is the energy from the conduction band, and the vertical axis is the interface state density.
  • Example 1 As Experimental Example 1 for verifying the control effect of the MOS interface according to the present invention, a MOS capacitor that does not perform the heat treatment of the atmosphere containing H 2 and H 2 O in the above-mentioned step 3, and the POA atmosphere in step 3 with hydrogen A fabricated MOS capacitor was produced. The completed MOS capacitor was measured with a CV meter 6, and the interface state density was calculated and compared.
  • FIG. 2 is a comparison result of Experimental Example 1.
  • step 3 a MOS capacitor was fabricated in which the temperature of the POA in an atmosphere containing H 2 and H 2 O was 800 ° C., 900 ° C., and 1000 ° C.
  • FIG. 3 is a comparison result of Experimental Example 2, where only the dry oxidation of (d) in which the POA of Step 3 is not performed (plot of x), the atmosphere containing H 2 and H 2 O of Step 3 In (c) 800 ° C. (rectangle plot) in which POA was performed, the interface state density was slightly reduced. Furthermore, compared with these (d) and (c), the POA in the atmosphere containing H 2 and H 2 O in the step 3 was performed (a) 1000 ° C. The unit density is reduced.
  • the temperature of the POA in the atmosphere containing H 2 and H 2 O in Step 3 terminates the dangling bonds of silicon atoms on the surface of the silicon carbide substrate in which the interface states are efficiently formed by hydrogen or hydroxyl groups.
  • 800 degreeC or more is preferable.
  • the temperature in step 3 is more preferably 900 ° C. or higher at which the interface state density is greatly reduced. Further, the temperature in step 3 is preferably 1200 ° C. or lower in order to prevent elimination of terminated hydrogen or hydroxyl group.
  • step 3 the flow rate ratio of H 2 and O 2 is adjusted, and the MOS capacitor in which the H 2 O concentration in the atmosphere composed of H 2 O and H 2 is 1%, 7%, 67%, 73% is obtained. Produced.
  • FIG. 4 is a comparison result of Experimental Example 3, in which the POA in the atmosphere containing H 2 and H 2 O in Step 3 is not performed (e) only in dry oxidation (plotted with x). H 2 and H H 2 O concentration in the atmosphere containing 2 O (d) 1% (triangular plot) slightly, the interface state density is reduced, (c) 7% (square plots) are more surfactants The level density is reduced. Further, the interface state density is greatly reduced in the H 2 O concentration (a) 73% and (b) 67% in the atmosphere containing H 2 and H 2 O in Step 3.
  • the H 2 O concentration in the atmosphere composed of H 2 O and H 2 is preferably 1% or more, and more preferably 7% or more.
  • the upper limit of the H 2 O concentration is not limited and may be 100% or less.
  • step 3 a MOS capacitor was fabricated in which the POA treatment time in an atmosphere containing H 2 and H 2 O was 5 min, 30 min, and 180 min.
  • FIG. 5 is a comparison result of Experimental Example 4, where only the dry oxidation of (d) in which the POA of Step 3 is not performed (plot of x), the atmosphere containing H 2 and H 2 O of Step 3 In the POA processing time (c) 5 min (square plot), the interface state density is reduced. Compared with these, the interface state density is greatly reduced in the processing time (a) 180 min and (b) 30 min of the POA in the atmosphere containing H 2 and H 2 O in Step 3.
  • the processing time may if dangling bonds of the silicon atoms of the silicon carbide substrate surface forming the interface state is sufficiently terminated with a hydroxyl group or hydrogen, the treatment temperature, H 2 O concentration in the H 2 O + H 2 It may be determined according to.
  • the treatment temperature and H 2 O concentration in step 3 are preferably 5 minutes or more, and more preferably 30 minutes or more, which greatly reduces the interface state density.
  • the interface state density greatly varies depending on the presence or absence of POA in the atmosphere containing H 2 and H 2 O in Step 3, and contains H 2 and H 2 O. It was confirmed that the interface state density can be significantly reduced by the POA in the atmosphere.
  • the secondary ion mass spectrometry shows the hydrogen concentration in the vicinity of the SiO 2 / SiC interface where the interface state density can be greatly reduced by the POA in the atmosphere containing H 2 and H 2 O of the present invention.
  • the result measured by Secondary Ion Mass Spectroscopy is shown.
  • the hydrogen concentration includes both hydrogen (H) and H from hydroxyl group (OH).
  • FIG. 6 is a chart showing hydrogen concentration measurement results by secondary ion mass spectrometry near the SiO 2 / SiC interface in the semiconductor device of the present invention.
  • FIG. 6 shows an SiO 2 film formed by performing dry oxidation and POA in an atmosphere containing H 2 and H 2 O on a (000-1) plane SiC substrate in accordance with the above-described Step 2 and Step 3. The results of SIMS analysis are shown.
  • the vertical axis represents the hydrogen ion, oxygen and carbon secondary ion intensity, and the horizontal axis represents the analysis depth with the hydrogen concentration peak position being zero.
  • Cesium (Cs) was used as the primary ion species of SIMS.
  • the left side of FIG. 6 has a high secondary ion intensity of O and is SiO 2
  • the right side has a high secondary ion intensity of C and is SiC.
  • the concentration of H has a sharp peak at a concentration of 1 ⁇ 10 21 atoms / cm 3 or more at the SiO 2 / SiC interface.
  • the half width of the peak was about 3 nm, and it was confirmed that hydrogen or a hydroxyl group was present in a limited region including the SiO 2 / SiC interface.
  • the hydrogen or hydroxyl group that terminates the dangling bonds of silicon atoms on the surface of the silicon carbide substrate forming the interface state is preferably segregated only at the SiO 2 / SiC interface (MOS interface), and the SiO 2 / SiC interface is The range of 0.5 nm to 10 nm is preferable. More preferably, it is the range of 0.5 nm to 5 nm. If hydrogen or a hydroxyl group is present in a range wider than 10 nm, the number of hydrogen and hydroxyl groups that do not contribute to the termination of dangling bonds of silicon atoms on the surface of the silicon carbide substrate forming the interface state increases, which causes electron trapping. It is.
  • 1 ⁇ 10 21 atoms / cm 3 to 1 ⁇ 10 22 atoms / cm 3 of hydrogen or hydroxyl group exist in the region where hydrogen or hydroxyl group including the SiO 2 / SiC interface is segregated.
  • the reason is that if it is less than 1 ⁇ 10 21 atoms / cm 3 , the interface state cannot be sufficiently terminated, and if it exceeds 1 ⁇ 10 22 atoms / cm 3 , the film quality of the oxide film is increased by excessive hydrogen. It is because it deteriorates.
  • FIG. 7 is a cross-sectional view for explaining the manufacturing process of the MOSFET of the present invention.
  • FIGS. 7A to 7I show steps 1 to 9 in manufacturing the MOSFET on the silicon carbide (000-1) surface according to this example.
  • Step 1 First, as shown in FIG. 7A, on a p-type 4H—SiC (000-1) substrate 7 (0 to 8 degrees off substrate from the (000-1) plane, preferably 0 to 4 degrees off substrate). Then, a p-type epitaxial film 8 having an acceptor density of 1 ⁇ 10 16 cm ⁇ 3 is grown.
  • Step 2 Next, as shown in FIG. 7B, a 1 ⁇ m thick SiO 2 film is deposited on the surface of the p-type epitaxial film 8 by low pressure CVD, and a mask 9 is formed by patterning by photolithography. Thereafter, for example, using the mask 9 as a mask, phosphorus ions 10 are ion-implanted at a substrate temperature of 500 ° C., in multiple stages with an acceleration energy of 40 keV to 250 keV, at an implantation amount of 2 ⁇ 10 20 cm ⁇ 3 .
  • Step 4 As shown in FIG. 7D, the mask 11 is removed, and activation annealing is performed at 1600 ° C. for 5 minutes in an argon atmosphere to form the drain region 13, the source region 14, and the ground region 15. .
  • a field oxide film 16 having a thickness of 0.5 ⁇ m is deposited by a low pressure CVD method, and a part of the field oxide film 16 is removed by photolithography and wet etching to thereby form an active region. 17 is formed.
  • Step 6 dry oxidation is performed in a dry oxygen atmosphere at 1100 ° C. for 50 minutes to form a gate insulating film 18 having a thickness of 50 nm.
  • As POA heat treatment is performed for 30 minutes in an atmosphere containing H 2 and H 2 O at 1000 ° C.
  • H 2 O concentration in the atmosphere consisting of between H 2 O and H 2 was 73% by adjusting the flow ratio of H 2 and O 2.
  • the temperature was raised in a nitrogen atmosphere, and the temperature was lowered in a hydrogen atmosphere, and held for 30 minutes in a hydrogen atmosphere before the temperature was lowered.
  • polycrystalline silicon is deposited to a thickness of 0.3 ⁇ m on the gate insulating film 18 by a low pressure CVD method, and patterned by photolithography to form the gate electrode 19.
  • Step 7 As shown in FIG. 7 (g), contact holes are formed on the drain region 13, the source region 14 and the ground region 15 by photolithography and hydrofluoric acid etching, and 10 nm thick aluminum and 60 nm are further formed thereon.
  • the contact metal 20 is formed by evaporating nickel and patterning it by lift-off.
  • Step 8 the ohmic contact annealing is performed by annealing at 950 ° C. for 2 minutes in an atmosphere of an inert gas or a mixed gas of inert gas and hydrogen.
  • a reaction layer (electrical contact portion) 21 is formed.
  • the inert gas is nitrogen, helium, or argon.
  • Step 9 Next, as shown in FIG. 7 (i), 300 nm of aluminum is deposited on the surface, pad electrode 22 is formed on gate electrode 19 and reaction layer 21 by photolithography and phosphoric acid etching, and aluminum is deposited on the back by 100 nm. Then, the back electrode 23 is formed.
  • the channel mobility was as high as about 75 cm 2 / Vs.
  • a silicon carbide MOSFET was manufactured by the same manufacturing method as in Example 1 except that POA in an atmosphere containing H 2 and H 2 O was not performed in the above step 6, and the characteristics were evaluated. The value was as low as about 18 cm 2 / Vs.
  • Step 6 a silicon carbide MOSFET was fabricated by the same manufacturing method as in Example 1 except that the temperature rise and fall of POA in an atmosphere containing H 2 and H 2 O were both performed in a hydrogen atmosphere. Similar characteristics were exhibited.
  • step 6 silicon carbide was produced in the same manner as in Example 1 except that POA in an atmosphere containing H 2 and H 2 O was followed by heat treatment at 900 ° C. for 30 minutes in a hydrogen atmosphere as the second POA.
  • the channel mobility showed a high value of about 77 cm 2 / Vs.
  • step 6 silicon carbide was produced in the same manner as in Example 1 except that POA in an atmosphere containing H 2 and H 2 O was followed by heat treatment at 900 ° C. for 30 minutes in a nitrogen atmosphere as the second POA.
  • the channel mobility was about 40 cm 2 / Vs, which was lower than that of Example 1, but higher than that of the comparative example.
  • step 6 the method for forming the gate insulating film 18 is the same manufacturing method as in Example 1 except that the flow rate ratio between nitrous oxide and nitrogen is 1300 ° C. and 120 minutes of thermal oxynitriding in an atmosphere.
  • the flow rate ratio between nitrous oxide and nitrogen is 1300 ° C. and 120 minutes of thermal oxynitriding in an atmosphere.
  • Step 6 when the silicon carbide MOSFET was manufactured by the same manufacturing method as in Example 1 except that the method of forming the gate insulating film 18 was thermal oxynitridation at 1250 ° C. for 90 minutes in a nitrogen monoxide atmosphere, the silicon carbide MOSFET was manufactured. The same characteristics as in Example 1 were exhibited.
  • step 6 the silicon carbide MOSFET is formed by the same manufacturing method as in Example 1 except that the formation method of the gate insulating film 18 is thermal oxidation at 1000 ° C. for 30 minutes in an atmosphere containing oxygen and moisture by pyrogenicity. When fabricated, the same characteristics as in Example 1 were exhibited.
  • step 6 a silicon carbide MOSFET was produced by the same production method as in Example 1 except that the gate insulating film 18 was formed by CVD using silane. The same characteristics as in Example 1 were obtained. showed that.
  • the method for manufacturing the silicon carbide semiconductor device according to the present invention has been described by taking the method for manufacturing a lateral MOSFET using a p + type semiconductor substrate as the silicon carbide MOSFET as an example, but the method is not limited thereto.
  • the present invention can be applied to a semiconductor device having a high breakdown voltage structure such as a vertical MOSFET using an n + type semiconductor substrate, a semiconductor device having a trench gate or a complicated MOS gate structure, and similar effects can be obtained. . Therefore, the present invention can be applied to various semiconductor device manufacturing methods without departing from the scope of the invention described in the claims. Further, the present invention is similarly achieved even when the conductivity type (n-type, p-type) of the semiconductor layer or semiconductor region is inverted.
  • the complex MOS gate structure is, for example, an element structure in which a channel is formed in the vicinity of the surface of the SiC epitaxial substrate in the on state.
  • FIG. 8 is a diagram showing an example of a semiconductor device having a complicated MOS gate structure according to the present invention. As shown in the sectional view of FIG. 8, in the vertical MOSFET, an n-type epitaxial layer 32 is formed on the front surface of an n + -type silicon carbide substrate 31. The impurity concentration of n type epitaxial layer 32 is lower than the impurity concentration of n + type silicon carbide substrate 31. A plurality of p-type regions 36 are selectively formed inside the n-type epitaxial layer 32.
  • P type region 36 is exposed on the surface of n type epitaxial layer 32 opposite to the n + type silicon carbide substrate 31 side.
  • a p-type SiC layer 37 having a lower concentration than p-type region 36 is formed over the surfaces of n-type epitaxial layer 32 and p-type region 36.
  • An n-type region 33 that penetrates the p-type SiC layer 37 in the depth direction and reaches the n-type epitaxial layer 32 is formed in the p-type SiC layer 37 on the n-type epitaxial layer 32 where the p-type region 36 is not formed. .
  • the n-type epitaxial layer 32 and the n-type region 33 are n-type drift regions.
  • the impurity concentration of the n-type region 33 is preferably higher than that of the n-type epitaxial layer 32.
  • an n + type source region 34 and a p + type contact region 35 are formed so as to be in contact with each other.
  • N + -type source region 34 and p + -type contact region 35 are exposed on the surface of p-type SiC layer 37 opposite to the p-type region 36 side.
  • the n + type source region 34 is formed apart from the n type region 33.
  • the p + type contact region 35 is located on the opposite side of the n + type source region 34 to the n type region 33 side.
  • the impurity concentration of p + -type contact region 35 is higher than the impurity concentration of p-type SiC layer 37.
  • a portion of the p-type SiC layer 37 excluding the n + -type source region 34, the p + -type contact region 35 and the n-type region 33 becomes a p-type base region together with the p-type region 36.
  • a source electrode 38 is formed on the surfaces of the n + type source region 34 and the p + type contact region 35.
  • a gate electrode 19 is formed on the surface of the p-type SiC layer 37 and the n-type region 33 between the adjacent n + -type source regions 34 via the gate insulating film 18. The gate electrode 19 is electrically insulated from the source electrode 38 by an interlayer insulating film (not shown). Further, on the back surface of the n + -type silicon carbide substrate 31, the drain electrode 39 in contact with the n + -type silicon carbide substrate 31 is formed.
  • the silicon carbide semiconductor device and the method for manufacturing the silicon carbide semiconductor device according to the present invention include, for example, a power silicon carbide semiconductor device such as a power device, and power used for industrial motor control and engine control. Useful for silicon carbide semiconductor devices.
  • Silicon carbide semiconductor device 2a n-type 4H-SiC (000-1) substrate 2b n-type epitaxial film 3 insulating film 4 aluminum gate electrode 5 aluminum back electrode 6 CV meter 7 p-type 4H-SiC (000-1) substrate 8 p-type epitaxial film 9, 11 Mask 10 Phosphorus ion 12 Aluminum ion 13 Drain region 14 Source region 15 Ground region 16 Field oxide film 17 Active region 18 Gate insulating film 19 Gate electrode 20 Contact metal 21 Reaction layer 22 Pad electrode 23 Back electrode 31 n + type silicon carbide Substrate 32 n-type epitaxial layer 33 n-type region 34 n + -type source region 35 p + -type contact region 36 p-type region 37 p-type SiC layer 38 source electrode 39 drain electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

 炭化ケイ素半導体の基板上に、ゲート絶縁膜として酸化膜あるいは窒化膜あるいは酸窒化膜の1層または2層以上を形成した後に熱処理を行う。ゲート絶縁膜を形成した後の熱処理は、O2を含まずH2とH2Oを含んだ雰囲気で所定時間行う。これにより、炭化ケイ素基板とゲート絶縁膜の界面を含む限られた領域に水素あるいは水酸基を偏析できる。水素あるいは水酸基が偏析している領域の幅は0.5nmから10nmであると良い。このようにすることで、界面準位密度を低減でき、高いチャネル移動度を実現できる。

Description

炭化ケイ素半導体装置および炭化ケイ素半導体装置の製造方法
 この発明は、炭化ケイ素基板を使用した炭化ケイ素半導体装置および炭化ケイ素半導体装置の製造方法に関し、特に界面準位密度を低減できる炭化ケイ素半導体装置および炭化ケイ素半導体装置の製造方法に関する。
 炭化ケイ素(SiC)基板を用いた次世代半導体デバイスの研究開発が進められている。炭化ケイ素は、シリコンと同様に熱酸化で絶縁膜を形成可能であるが、結晶面や酸化方法によってMOSゲート(金属-酸化膜-半導体からなる絶縁ゲート)を構成するゲート絶縁膜と炭化ケイ素基板との接合界面(以下、MOS界面とする)付近でのチャネル移動度が異なるという特性がある。炭化ケイ素の酸化方法には酸化種として乾燥酸素(O2)を用いるドライ酸化、酸化種として水蒸気(H2O)を用いるウェット酸化等がある。
 炭化ケイ素基板の(000-1)面、(11-20)面は、ウェット酸化すると、(0001)面に比べ高いチャネル移動度を示すとされている。なお、チャネル移動度を代替的に評価する指標として界面準位密度があり、一般的には、MOS界面付近での界面準位密度が小さい方がチャネル移動後は大きくなる傾向が知られている。
 このような炭化ケイ素基板を用いた半導体デバイスの製造方法に関し、炭化ケイ素基板の酸素または加湿酸素中での熱酸化に続き、水素によりアニールする工程と、不活性ガスによりアニールする工程を有し、ヒステリシスおよびフラットバンドシフトを低減する炭化ケイ素基板上のSiCの熱酸化膜の改善法が開示されている(例えば、下記特許文献1参照。)。
 また、炭化ケイ素基板の(000-1)面をH2Oガスと酸素ガス、H2Oガスと酸素ガスおよび不活性ガスからなるウェット雰囲気で酸化した後、水素(H2)ガスを含んだ雰囲気で熱処理することにより界面準位密度を低減する方法が開示されている(例えば、下記特許文献2参照。)。ウェット酸化における水蒸気(H2O)の生成法としては、純水加熱や酸素ガスによる純水バブリング等があるが、現在ではO2ガスとH2ガスの燃焼反応を用いたパイロジェニック方式が一般的である。この方式においてはO2ガスとH2ガスの流量比はH2ガスが過多となると爆発の危険性があるため、O2リッチの流量比での使用が一般的である。したがって、酸化雰囲気は生成したH2Oと未反応のO2のH2O+O2の雰囲気となる。
 また、白金触媒を用いて水素と酸素の反応性を高め、水素混合ガスの発火温度よりも低い温度下で反応させ、高温燃焼することなしに水分を生成する方法が開示されている(例えば、下記特許文献3参照。)。この方式においてはH2ガスが過多となって爆発の危険性がないため、H2リッチの流量比での使用が可能である。
特開平9-199497号公報 特許第4374437号公報 特開2000-72405号公報
 炭化ケイ素基板の(000-1)面、(11-20)面をH2OとO2を含んだガス中でウェット酸化し、水素POA(Post Oxidation Annealing)としてH2を含んだ雰囲気で熱処理することで、界面準位密度が低減されるのは、水素あるいは水酸基が界面準位を形成している炭化ケイ素基板表面のシリコン原子の未結合手(ダングリングボンド)を終端するためであるといわれている。
 炭化ケイ素基板の(000-1)面、(11-20)面に乾燥酸素のみの雰囲気でドライ酸化した場合の界面準位密度は非常に大きく、悪いMOS界面特性となる。また、ドライ酸化の後に水素POAを実施すると、界面準位密度は低減されるものの、ウェット酸化と水素POAを組み合わせた界面特性には及ばない。
 このため、炭化ケイ素基板の(000-1)面、(11-20)面上へのゲート絶縁膜形成のためのゲート酸化において、界面準位密度の低減にO2を用いることは有効ではなく、H2OとH2を用いることが有効である。
 ここで、ゲート酸化およびPOAで導入される水素あるいは水酸基は、界面準位を形成している炭化ケイ素基板表面のシリコン原子の未結合手を効率的に終端するため、また、ゲート絶縁膜中に存在すると電子トラップの要因となるため、MOS界面を含む狭い領域に偏析していることが望ましい。
 本発明は、上記課題に鑑み、炭化ケイ素半導体の(000-1)面あるいは(11-20)面の界面準位密度をより効果的に低減することを目的とする。
 上記目的を達成するため、本発明の炭化ケイ素半導体装置は、炭化ケイ素半導体の基板上に、ゲート絶縁膜として1層または2層以上の酸化膜あるいは窒化膜あるいは酸窒化膜を有する炭化ケイ素半導体装置において、前記基板と前記ゲート絶縁膜の界面を含む領域に水素(H)あるいは水酸基(OH)が偏析しており、その水素あるいは水酸基が偏析している領域の幅が0.5nmから10nmであることを特徴とする。
 また、前記基板と前記ゲート絶縁膜の界面を含む水素あるいは水酸基が偏析している領域に1×1021atoms/cm3から1×1022atoms/cm3の水素あるいは水酸基が存在することを特徴とする。
 また、本発明の炭化ケイ素半導体装置の製造方法は、炭化ケイ素半導体の基板上に、ゲート絶縁膜として酸化膜あるいは窒化膜あるいは酸窒化膜の1層または2層以上を形成した後に熱処理を行う炭化ケイ素半導体装置の製造方法において、前記ゲート絶縁膜を形成した後の熱処理の雰囲気が、乾燥酸素(O2)を含まず水素(H2)と水蒸気(H2O)を含んだガス雰囲気であることを特徴とする。
 また、前記ゲート絶縁膜を形成した後の熱処理の昇温、降温の両方、もしくは片方の雰囲気が、H2ガス、または希釈したH2ガスであることを特徴とする。
 また、前記ゲート絶縁膜を形成した後の熱処理の降温の前にH2ガス、または希釈したH2ガスで置換し、所定の時間保持することを特徴とする。
 また、前記ゲート絶縁膜を形成した後のO2を含まずH2とH2Oを含んだガス雰囲気での熱処理の後に、所定の温度でH2ガス、または希釈したH2ガスの雰囲気の熱処理を行うことを特徴とする。
 また、前記ゲート絶縁膜を形成した後のO2を含まずH2とH2Oを含んだガス雰囲気での熱処理の後に、所定の温度で窒素、ヘリウム、アルゴンのいずれかの不活性ガスの雰囲気の熱処理を行うことを特徴とする。
 また、前記ゲート絶縁膜を形成する工程に、H2Oを含まないO2を含んだガスでの熱酸化が含まれることを特徴とする。
 また、前記ゲート絶縁膜を形成する工程に、少なくとも亜酸化窒素または一酸化窒素を含むガス雰囲気での熱酸窒化が含まれることを特徴とする。
 また、前記ゲート絶縁膜を形成する工程に、少なくともO2とH2Oを含むガス雰囲気での熱酸化が含まれることを特徴とする。
 また、前記ゲート絶縁膜を形成する工程に、酸化膜あるいは窒化膜あるいは酸窒化膜の絶縁膜を堆積させる工程が含まれることを特徴とする。
 上記構成のように、ゲート絶縁膜を形成した後の熱処理の雰囲気が、O2を含まずH2とH2Oを含む雰囲気であることにより、炭化ケイ素基板とゲート絶縁膜の界面を含む限られた領域に水素あるいは水酸基を偏析でき、界面準位密度を低減でき、高いチャネル移動度を実現することができる。
 本発明によれば、炭化ケイ素半導体の(000-1)面あるいは(11-20)面の界面準位密度をより効果的に低減できるという効果を奏する。
図1は、本発明の実施の形態にかかる炭化ケイ素半導体装置を示す断面図である。 図2は、本発明にかかるMOSキャパシタと、比較例のMOSキャパシタそれぞれの測定結果から得られた界面準位密度を示す図表である。(実験例1) 図3は、本発明にかかるMOSキャパシタと、比較例のMOSキャパシタそれぞれの測定結果から得られた界面準位密度を示す図表である。(実験例2) 図4は、本発明にかかるMOSキャパシタと、比較例のMOSキャパシタそれぞれの測定結果から得られた界面準位密度を示す図表である。(実験例3) 図5は、本発明にかかるMOSキャパシタと、比較例のMOSキャパシタそれぞれの測定結果から得られた界面準位密度を示す図表である。(実験例4) 図6は、本発明の半導体装置におけるSiO2/SiC界面付近の二次イオン質量分析法による水素濃度測定結果を示す図表である。 図7は、本発明のMOSFETの製造工程を説明する断面図である。 図8は、本発明にかかる複雑なMOSゲート構造を有する半導体装置の一例を示す図である。
(実施の形態)
 以下に添付図面を参照して、この発明にかかる炭化ケイ素半導体装置および炭化ケイ素半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。また、ミラー指数の表記において、"-"はその直後の指数に付くバーを意味しており、指数の前に"-"を付けることで負の指数を表している。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
 図1は、本発明の実施の形態にかかる炭化ケイ素半導体装置を示す断面図である。図1には、MOSキャパシタの構成を示している。本発明により、界面準位密度がどのように低減されるかを検証するため、MOSキャパシタを用いた実験例について説明する。図1に示すMOSキャパシタ1は以下の工程を有して作製される。
(1)工程1
 まず、n型4H-SiC(000-1)基板2a((000-1)面から0~8度オフ基板)上にドナー密度1×1016cm-3程度のn型エピタキシャル膜2bを5~10μm成長させる。なお、4H-SiC基板単体、あるいは4H-SiC基板とエピタキシャル膜を併せて4H-SiC半導体2と呼ぶ。
(2)工程2
 4H-SiC半導体2を洗浄した後に、1100℃の乾燥酸素雰囲気でのドライ酸化を50分行い、厚さ50nmの絶縁膜3を形成する。絶縁膜3の形成は、ウェット酸化、亜酸化窒素、一酸化窒素による熱酸窒化でもよい。あるいは絶縁膜3は堆積膜でもよい。絶縁膜3の堆積方法は、化学気相成長法(CVD:Chemical Vapor Deposition)によってシランやTEOS(テトラエトキシシラン)を用いた方法があるが、特に限定されない。
(3)工程3
 POAとして、1000℃でH2を1slm、H2Oを2slm流した雰囲気で30分の熱処理を行った。熱処理の雰囲気は、3slmのH2と、1slmのO2を白金触媒を用いて反応させ、H2とO2の流量比をH2リッチとすることで、2H2+O2→2H2Oの反応において未反応のO2がない状態とし、未反応の1slmのH2と生成した2slmのH2Oの雰囲気とした。
 未反応のO2が発生しないようにH2とO2の流量比はH2/O2=2以上であればよい。また、反応に寄与しない窒素、ヘリウム、アルゴンのいずれかの不活性ガスで希釈してもよい。昇温は窒素雰囲気、降温は水素雰囲気で行い、降温前に水素雰囲気で30分保持した。昇降温ともに水素雰囲気あるいは不活性ガス雰囲気でもよく、水素を不活性ガスで希釈してもよい。また、POAと同じH2とH2Oを含んだ雰囲気のまま、あるいは不活性ガスで希釈したH2とH2Oを含んだ雰囲気で降温してもよい。
 また、工程2で形成する絶縁膜3の膜厚を薄くし、あるいは工程2を行わず、H2とH2Oを含んだ雰囲気で所望の膜厚となるまで長時間の熱処理を行い、絶縁膜3を形成してもよい。また、第二のPOAとして、H2とH2Oを含んだ雰囲気の熱処理の後に800~1200℃の水素や不活性ガス雰囲気の熱処理を組み合わせてもよい。
 ここで、上述した特許文献1(特開平9-199497号公報)は、炭化ケイ素基板の酸素または加湿酸素中での熱酸化後に不活性ガス雰囲気、水素雰囲気での熱処理を行うものであり、本発明の工程3のH2とH2Oを含んだ雰囲気のPOAとは異なる。また、特許文献2(特許第4374437号公報)はH2Oガスと酸素ガスあるいは、H2Oガスと酸素ガスおよび不活性ガスからなる混合ガス雰囲気の熱酸化後にH2ガスを含んだ雰囲気の熱処理を行うものであり、本発明の工程3のH2とH2Oを含んだ雰囲気のPOAとは異なる。さらに、特許文献3(特開2000-72405号公報)には炭化ケイ素を酸化後に1000℃の水素熱処理をすると温度が高すぎて水素により酸化膜が還元されてしまうとの記述があるが、本発明の工程3のH2とH2Oを含んだ雰囲気のPOAでは1000℃での酸化膜の還元は確認されていない。これは、H2Oを含んでいるためと考えられる。
(4)工程4
 絶縁膜3上に、室温でドット状のアルミゲート電極4を蒸着し、裏面全面にアルミを蒸着してアルミ裏面電極5を形成し、MOSキャパシタ1を作製する。
 次に、本発明にかかるMOSキャパシタを比較例のMOSキャパシタと比較し、界面準位密度の違いを実験した実験例1~4について説明する。図2~図5は、それぞれ実験例1~4に対応し、図1に示した本発明にかかるMOSキャパシタと、比較例のMOSキャパシタそれぞれの測定結果から得られた界面準位密度を示す図表である。横軸は伝導帯からのエネルギー、縦軸は界面準位密度である。
(実験例1)
 本発明によるMOS界面の制御効果を検証するための実験例1として、上記工程3によるH2とH2Oを含んだ雰囲気の熱処理を実施しないMOSキャパシタと、工程3においてPOAの雰囲気を水素としたMOSキャパシタを作製した。完成したMOSキャパシタをC-Vメーター6で測定し、界面準位密度を算出して比較した。
 図2は、実験例1の比較結果であり、(c)工程3のPOAを実施しないドライ酸化のみ(×印のプロット)に対し、(b)水素雰囲気のPOA(三角形のプロット)は若干、界面準位密度が低減されている。これらに比べて本発明の(a)H2とH2Oを含んだ雰囲気のPOAは大幅に界面準位密度が低減されている。
(実験例2)
 次に、H2とH2Oを含んだ雰囲気のPOAの条件によって界面準位密度がどのように低減されるか検証したMOSキャパシタを用いた実験例2について説明する。工程3においてH2とH2Oを含んだ雰囲気のPOAの温度を800℃、900℃、1000℃としたMOSキャパシタを作製した。
 図3は、実験例2の比較結果であり、工程3のPOAを実施しない(d)のドライ酸化のみ(×印のプロット)に対し、工程3のH2とH2Oを含んだ雰囲気のPOAを実施した(c)800℃(四角形のプロット)は若干、界面準位密度が低減されている。さらには、これら(d)、(c)に比べて、工程3のH2とH2Oを含んだ雰囲気のPOAを実施した(a)1000℃、および(b)900℃は大幅に界面準位密度が低減されている。
 以上により、工程3のH2とH2Oを含んだ雰囲気のPOAの温度は、水素あるいは水酸基によって効率的に界面準位を形成している炭化ケイ素基板表面のシリコン原子の未結合手を終端させるためには800℃以上が好ましい。工程3の温度は、界面準位密度が大幅に低減される900℃以上がさらに好ましい。また、工程3の温度は、終端した水素あるいは水酸基の脱離を防ぐため1200℃以下が好ましい。
(実験例3)
 次に、工程3においてH2とO2の流量比を調整し、H2OとH2からなる雰囲気中のH2O濃度を1%、7%、67%、73%としたMOSキャパシタを作製した。
 図4は、実験例3の比較結果であり、工程3のH2とH2Oを含んだ雰囲気のPOAを実施しない(e)のドライ酸化のみ(×印のプロット)に対し、工程3のH2とH2Oを含んだ雰囲気のH2O濃度(d)1%(三角形のプロット)は若干、界面準位密度が低減され、(c)7%(四角形のプロット)は、より界面準位密度が低減されている。さらに、工程3のH2とH2Oを含んだ雰囲気のH2O濃度(a)73%、(b)67%は大幅に界面準位密度が低減されている。
 以上より、H2OとH2からなる雰囲気中のH2O濃度は1%以上が好ましく、さらに好ましくは7%以上である。H2O濃度の上限に制約はなく100%以下であればよい。
(実験例4)
 次に、工程3においてH2とH2Oを含んだ雰囲気のPOAの処理時間を5min、30min、180minとしたMOSキャパシタを作製した。
 図5は、実験例4の比較結果であり、工程3のPOAを実施しない(d)のドライ酸化のみ(×印のプロット)に対し、工程3のH2とH2Oを含んだ雰囲気のPOAの処理時間(c)5min(四角形のプロット)は界面準位密度が低減されている。これらに比べ、工程3のH2とH2Oを含んだ雰囲気のPOAの処理時間(a)180min、(b)30minは大幅に界面準位密度が低減されている。
 以上より、処理時間は界面準位を形成している炭化ケイ素基板表面のシリコン原子の未結合手が水酸基や水素によって十分に終端されればよく、処理温度、H2O+H2におけるH2O濃度に応じて決定すればよい。工程3の処理温度、H2O濃度では5分以上が好ましく、大幅に界面準位密度が低減される30分以上がさらに好ましい。
 以上説明した実験例1~4のように、界面準位密度は工程3のH2とH2Oを含んだ雰囲気のPOAの有無や条件で大きく変化し、H2とH2Oを含んだ雰囲気のPOAによって、界面準位密度を大幅に低減できることが確認できた。
 次に、本発明のH2とH2Oを含んだ雰囲気のPOAによって、界面準位密度を大幅に低減できたSiO2/SiC界面付近における水素濃度を、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectroscopy)によって測定した結果を示す。このSIMS分析において水素(H)と水酸基(OH)は区別できないため、水素濃度には水素(H)と水酸基(OH)からのHの両方が含まれる。
 図6は、本発明の半導体装置におけるSiO2/SiC界面付近の二次イオン質量分析法による水素濃度測定結果を示す図表である。この図6は、上記の工程2、工程3に準じて(000-1)面のSiC基板にドライ酸化とH2とH2Oを含んだ雰囲気のPOAを実施することで形成したSiO2膜に対し、SIMS分析を行った結果を示す。縦軸は水素濃度、酸素、炭素の二次イオン強度であり、横軸は水素濃度のピーク位置を0とした分析深さである。SIMSの一次イオン種としては、セシウム(Cs)を用いた。
 図6の左側はOの二次イオン強度が高くSiO2であり、右側はCの二次イオン強度が高くSiCである。Hの濃度はSiO2/SiC界面で1×1021atoms/cm3以上の濃度の急峻なピークがある。ピークの半値幅は約3nmであり、SiO2/SiC界面を含む限られた領域に水素あるいは水酸基が存在していることが確認できた。
 界面準位を形成している炭化ケイ素基板表面のシリコン原子の未結合手を終端する水素あるいは水酸基は、SiO2/SiC界面(MOS界面)のみに偏析することが望ましく、SiO2/SiC界面を含む0.5nmから10nmの範囲であることが好ましい。さらに好ましくは0.5nmから5nmの範囲である。水素あるいは水酸基が10nmより広い範囲で存在すると界面準位を形成している炭化ケイ素基板表面のシリコン原子の未結合手の終端に寄与しない水素や水酸基が増え、電子トラップの原因となってしまうからである。また、水素あるいは水酸基が偏析する領域が0.5nmより狭い範囲となってしまうと十分に界面準位を形成している炭化ケイ素基板表面のシリコン原子の未結合手の終端にすることができず、安定なSiO2/SiC界面を形成できないからである。
 また、SiO2/SiC界面を含む水素あるいは水酸基が偏析している領域には、1×1021atoms/cm3から1×1022atoms/cm3の水素あるいは水酸基が存在することが好ましい。その理由は、1×1021atoms/cm3より少なくては十分に界面準位の終端にすることができなく、1×1022atoms/cm3を超えると過剰な水素により酸化膜の膜質が劣化するからである。
 次に、本発明の実施例1を説明する。図7は、本発明のMOSFETの製造工程を説明する断面図である。図7(a)~(i)には、本実施例にかかる炭化ケイ素(000-1)面上へMOSFETを製造する際の各工程1~9を示す。
(1)工程1
 まず、図7(a)に示すように、p型4H-SiC(000-1)基板7((000-1)面から0~8度オフ基板、好ましくは0~4度オフ基板)上に、アクセプター密度1×1016cm-3のp型エピタキシャル膜8を成長させる。
(2)工程2
 次に、図7(b)に示すように、p型エピタキシャル膜8の表面上に減圧CVD法により厚さ1μmのSiO2膜を堆積し、フォトリソグラフィによりパターン加工してマスク9を形成する。その後、例えば、マスク9をマスクとして、リンイオン10を基板温度500℃、加速エネルギー40keV~250keVの多段、注入量2×1020cm-3でイオン注入する。
(3)工程3
 次に、図7(c)に示すように、マスク9を除去し表面上に減圧CVD法により、厚さ1μmのSiO2膜を堆積し、フォトリソグラフィによりパターン加工してマスク11を形成する。その後、例えば、マスク11をマスクとして、アルミニウムイオン12を基板温度500℃、加速エネルギー40keV~200keVの多段、注入量2×1020cm-3でイオン注入する。
(4)工程4
 次に、図7(d)に示すように、マスク11を除去しアルゴン雰囲気中にて1600℃で5分間にわたる活性化アニールを行ってドレイン領域13、ソース領域14、およびグラウンド領域15を形成する。
(5)工程5
 次に、図7(e)に示すように、減圧CVD法により厚さ0.5μmのフィールド酸化膜16を堆積し、フォトリソグラフィとウェットエッチングによりフィールド酸化膜16の一部を除去してアクティブ領域17を形成する。
(6)工程6
 次に、図7(f)に示すように、1100℃の乾燥酸素雰囲気でのドライ酸化を50分行い、厚さ50nmのゲート絶縁膜18を形成する。POAとして、1000℃のH2とH2Oを含んだ雰囲気で30分の熱処理を行う。H2OとH2からなる雰囲気中のH2O濃度はH2とO2の流量比を調整し73%とした。昇温は窒素雰囲気、降温は水素雰囲気で行い降温前に水素雰囲気で30分保持を行った。その後、ゲート絶縁膜18上には、減圧CVD法によって多結晶シリコンを0.3μmの厚さで堆積し、フォトリソグラフィによりパターン加工してゲート電極19を形成する。
(7)工程7
 次に、図7(g)に示すように、フォトリソグラフィとフッ酸エッチングによりドレイン領域13、ソース領域14およびグラウンド領域15上にコンタクトホールを形成し、その上から厚さ10nmのアルミニウムとさらに60nmのニッケルが蒸着されリフトオフによりパターン加工されてコンタクトメタル20を形成する。
(8)工程8
 次に、図7(h)に示すように、オーミックコンタクトアニールとして不活性ガスまたは不活性ガスと水素の混合ガスの雰囲気で950℃、2分間保持でアニールし、コンタクトメタル20と炭化ケイ素との反応層(電気的接触部)21を形成する。不活性ガスは窒素、ヘリウム、アルゴンのいずれかである。
(9)工程9
 次に、図7(i)に示すように、表面にアルミニウムを300nm蒸着し、フォトリソグラフィとリン酸エッチングによりゲート電極19および反応層21上にパッド電極22を形成し、裏面にアルミニウムを100nm蒸着し裏面電極23を形成する。
 図7に示した炭化ケイ素MOSFETの製造方法によって作製された炭化ケイ素MOSFETの特性を評価したところ、チャネル移動度は約75cm2/Vsと高い値を示した。
比較例
 上記の工程6において、H2とH2Oを含んだ雰囲気でのPOAを行わない以外は実施例1と同様の製造方法で炭化ケイ素MOSFETを作製し、特性を評価したところ、チャネル移動度は約18cm2/Vsと低い値であった。
 工程6において、H2とH2Oを含んだ雰囲気でのPOAの昇温、降温ともに水素雰囲気で行った以外は実施例1と同様の製造方法で炭化ケイ素MOSFETを作製したところ実施例1と同様の特性を示した。
 工程6において、H2とH2Oを含んだ雰囲気でのPOAの後に、第二POAとして水素雰囲気で900℃、30分の熱処理を行った以外は実施例1と同様の製造方法で炭化ケイ素MOSFETを作製したところチャネル移動度は約77cm2/Vsと高い値を示した。
 工程6において、H2とH2Oを含んだ雰囲気でのPOAの後に、第二POAとして窒素雰囲気で900℃、30分の熱処理を行った以外は実施例1と同様の製造方法で炭化ケイ素MOSFETを作製したところチャネル移動度は約40cm2/Vsと実施例1よりは低い値を示したが比較例よりは高い値を示した。
 工程6において、ゲート絶縁膜18の形成方法が、亜酸化窒素と窒素の流量比が1:5の雰囲気の1300℃、120分の熱酸窒化であること以外は実施例1と同様の製造方法で炭化ケイ素MOSFETを作製したところ実施例1と同様の特性を示した。
 工程6において、ゲート絶縁膜18の形成方法が、一酸化窒素の雰囲気の1250℃、90分の熱酸窒化であること以外は実施例1と同様の製造方法で炭化ケイ素MOSFETを作製したところ実施例1と同様の特性を示した。
 工程6において、ゲート絶縁膜18の形成方法が、パイロジェニックによる酸素と水分を含んだ雰囲気の1000℃、30分の熱酸化であること以外は実施例1と同様の製造方法で炭化ケイ素MOSFETを作製したところ実施例1と同様の特性を示した。
 工程6において、ゲート絶縁膜18の形成方法が、シランを用いたCVD法による堆積膜であること以外は実施例1と同様の製造方法で炭化ケイ素MOSFETを作製したところ実施例1と同様の特性を示した。
 上記の実施例では、結晶構造が4H-SiCの(000-1)基板(0~8度オフ基板)を使用したが、結晶構造が4H-SiCの(0001)基板、(11-20)基板でも同様の効果を得ることができる。
 以上のように、本発明によれば、ゲート絶縁膜の形成方法によらず、ゲート絶縁膜の形成後に、POAをO2を含まずH2とH2Oを含んだ雰囲気で行うことにより、炭化ケイ素基板とゲート絶縁膜の界面を含む限られた領域に水素あるいは水酸基を偏析でき、界面準位密度を低減でき、高いチャネル移動度を実現することができる。
 以上のように、本発明にかかる炭化ケイ素半導体装置の製造方法は、炭化ケイ素MOSFETとしてp+型半導体基板を用いた横型MOSFETの製造方法を例にして説明したが、これに限定されるものではなく、n+型半導体基板を用いた縦型MOSFETなど高耐圧化構造を有する半導体装置、トレンチゲートや複雑なMOSゲート構造を有する半導体装置にも適用可能であり、同様の効果を奏することができる。したがって、特許請求の範囲に記載された本発明を逸脱しない範囲で、種々の半導体装置の製造方法に適用可能である。また、本発明は、半導体層または半導体領域の導電型(n型、p型)を反転させても同様に成り立つ。
 複雑なMOSゲート構造とは、例えば、オン状態のときにSiCエピタキシャル基板の表面近傍にチャネルを形成する素子構造である。図8は、本発明にかかる複雑なMOSゲート構造を有する半導体装置の一例を示す図である。この図8の断面図に示すように、縦型のMOSFETにおいて、n+型炭化ケイ素基板31のおもて面にはn型エピタキシャル層32が形成される。n型エピタキシャル層32の不純物濃度は、n+型炭化ケイ素基板31の不純物濃度よりも低い。n型エピタキシャル層32の内部には、複数のp型領域36が選択的に形成される。p型領域36は、n型エピタキシャル層32のn+型炭化ケイ素基板31側に対して反対側の面に露出する。n型エピタキシャル層32およびp型領域36の表面にわたってp型領域36より低濃度のp型SiC層37が形成される。p型領域36が形成されていないn型エピタキシャル層32上のp型SiC層37に、深さ方向にp型SiC層37を貫通しn型エピタキシャル層32に達するn型領域33が形成される。n型エピタキシャル層32およびn型領域33は、n型ドリフト領域である。n型領域33の不純物濃度は、n型エピタキシャル層32よりも高いのが望ましい。
 p型SiC層37の内部には、互いに接するようにn+型ソース領域34およびp+型コンタクト領域35が形成される。n+型ソース領域34およびp+型コンタクト領域35は、p型SiC層37のp型領域36側に対して反対側の面に露出する。n+型ソース領域34は、n型領域33と離れて形成される。p+型コンタクト領域35は、n+型ソース領域34のn型領域33側に対して反対側に位置する。p+型コンタクト領域35の不純物濃度は、p型SiC層37の不純物濃度よりも高い。p型SiC層37のn+型ソース領域34、p+型コンタクト領域35およびn型領域33を除く部分は、p型領域36と共にp型ベース領域となる。n+型ソース領域34とp+型コンタクト領域35との表面には、ソース電極38が形成される。隣り合うn+型ソース領域34の間のp型SiC層37とn型領域33との表面には、ゲート絶縁膜18を介してゲート電極19が形成される。ゲート電極19は、図示省略する層間絶縁膜によって、ソース電極38と電気的に絶縁される。また、n+型炭化ケイ素基板31の裏面には、n+型炭化ケイ素基板31に接するドレイン電極39が形成される。
 以上のように、本発明にかかる炭化ケイ素半導体装置および炭化ケイ素半導体装置の製造方法は、例えば、パワーデバイス等の電力用炭化ケイ素半導体装置や、産業用のモーター制御やエンジン制御に使用されるパワー炭化ケイ素半導体装置に有用である。
 1 炭化ケイ素半導体装置(MOSキャパシタ)
 2a n型4H-SiC(000-1)基板
 2b n型エピタキシャル膜
 3 絶縁膜
 4 アルミゲート電極
 5 アルミ裏面電極
 6 C-Vメーター
 7 p型4H-SiC(000-1)基板
 8 p型エピタキシャル膜
 9,11 マスク
 10 リンイオン
 12 アルミニウムイオン
 13 ドレイン領域
 14 ソース領域
 15 グラウンド領域
 16 フィールド酸化膜
 17 アクティブ領域
 18 ゲート絶縁膜
 19 ゲート電極
 20 コンタクトメタル
 21 反応層
 22 パッド電極
 23 裏面電極
 31 n+型炭化ケイ素基板
 32 n型エピタキシャル層
 33 n型領域
 34 n+型ソース領域
 35 p+型コンタクト領域
 36 p型領域
 37 p型SiC層
 38 ソース電極
 39 ドレイン電極

Claims (11)

  1.  炭化ケイ素半導体の基板上に、ゲート絶縁膜として1層または2層以上の酸化膜あるいは窒化膜あるいは酸窒化膜を有する炭化ケイ素半導体装置において、
     前記基板と前記ゲート絶縁膜の界面を含む領域に水素(H)あるいは水酸基(OH)が偏析しており、その水素あるいは水酸基が偏析している領域の幅が0.5nmから10nmであることを特徴とする炭化ケイ素半導体装置。
  2.  前記基板と前記ゲート絶縁膜の界面を含む水素あるいは水酸基が偏析している領域に1×1021atoms/cm3から1×1022atoms/cm3の水素あるいは水酸基が存在することを特徴とする請求項1に記載の炭化ケイ素半導体装置。
  3.  炭化ケイ素半導体の基板上に、ゲート絶縁膜として酸化膜あるいは窒化膜あるいは酸窒化膜の1層または2層以上を形成した後に熱処理を行う炭化ケイ素半導体装置の製造方法において、
     前記ゲート絶縁膜を形成した後の熱処理の雰囲気が、乾燥酸素(O2)を含まず水素(H2)と水蒸気(H2O)を含んだガス雰囲気であることを特徴とする炭化ケイ素半導体装置の製造方法。
  4.  前記ゲート絶縁膜を形成した後の熱処理の昇温、降温の両方、もしくは片方の雰囲気が、H2ガス、または希釈したH2ガスであることを特徴とする請求項3に記載の炭化ケイ素半導体装置の製造方法。
  5.  前記ゲート絶縁膜を形成した後の熱処理の降温の前にH2ガス、または希釈したH2ガスで置換し、所定の時間保持することを特徴とする請求項3に記載の炭化ケイ素半導体装置の製造方法。
  6.  前記ゲート絶縁膜を形成した後のO2を含まずH2とH2Oを含んだガス雰囲気での熱処理の後に、所定の温度でH2ガス、または希釈したH2ガスの雰囲気の熱処理を行うことを特徴とする請求項3に記載の炭化ケイ素半導体装置の製造方法。
  7.  前記ゲート絶縁膜を形成した後のO2を含まずH2とH2Oを含んだガス雰囲気での熱処理の後に、所定の温度で窒素、ヘリウム、アルゴンのいずれかの不活性ガスの雰囲気の熱処理を行うことを特徴とする請求項3に記載の炭化ケイ素半導体装置の製造方法。
  8.  前記ゲート絶縁膜を形成する工程に、H2Oを含まないO2を含んだガスでの熱酸化が含まれることを特徴とする請求項3~7のいずれか一つに記載の炭化ケイ素半導体装置の製造方法。
  9.  前記ゲート絶縁膜を形成する工程に、少なくとも亜酸化窒素または一酸化窒素を含むガス雰囲気での熱酸窒化が含まれることを特徴とする請求項3~7のいずれか一つに記載の炭化ケイ素半導体装置の製造方法。
  10.  前記ゲート絶縁膜を形成する工程に、少なくともO2とH2Oを含むガス雰囲気での熱酸化が含まれることを特徴とする請求項3~7のいずれか一つに記載の炭化ケイ素半導体装置の製造方法。
  11.  前記ゲート絶縁膜を形成する工程に、酸化膜あるいは窒化膜あるいは酸窒化膜の絶縁膜を堆積させる工程が含まれることを特徴とする請求項3~7のいずれか一つに記載の炭化ケイ素半導体装置の製造方法。
PCT/JP2014/068353 2013-07-11 2014-07-09 炭化ケイ素半導体装置および炭化ケイ素半導体装置の製造方法 WO2015005397A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015526381A JP6025007B2 (ja) 2013-07-11 2014-07-09 炭化ケイ素半導体装置の製造方法
CN201480039085.2A CN105531802A (zh) 2013-07-11 2014-07-09 碳化硅半导体装置及碳化硅半导体装置的制造方法
EP14822620.2A EP3021353A4 (en) 2013-07-11 2014-07-09 Silicon-carbide semiconductor device and method for manufacturing silicon-carbide semiconductor device
US14/991,887 US9922822B2 (en) 2013-07-11 2016-01-08 Silicon carbide semiconductor device and manufacturing method of silicon carbide semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-145927 2013-07-11
JP2013145927 2013-07-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/991,887 Continuation US9922822B2 (en) 2013-07-11 2016-01-08 Silicon carbide semiconductor device and manufacturing method of silicon carbide semiconductor device

Publications (1)

Publication Number Publication Date
WO2015005397A1 true WO2015005397A1 (ja) 2015-01-15

Family

ID=52280075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068353 WO2015005397A1 (ja) 2013-07-11 2014-07-09 炭化ケイ素半導体装置および炭化ケイ素半導体装置の製造方法

Country Status (5)

Country Link
US (1) US9922822B2 (ja)
EP (1) EP3021353A4 (ja)
JP (1) JP6025007B2 (ja)
CN (1) CN105531802A (ja)
WO (1) WO2015005397A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018098288A (ja) * 2016-12-09 2018-06-21 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2018129420A (ja) * 2017-02-09 2018-08-16 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP2019186545A (ja) * 2018-04-04 2019-10-24 インフィニオン テクノロジーズ アクチエンゲゼルシャフトInfineon Technologies AG ワイドバンドギャップ半導体デバイスおよびワイドバンドギャップ半導体デバイスを形成する方法
JP2020047665A (ja) * 2018-09-14 2020-03-26 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
WO2021246280A1 (ja) * 2020-06-05 2021-12-09 国立大学法人京都大学 SiC半導体素子の製造方法及びSiC半導体素子

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449392A (zh) * 2016-11-29 2017-02-22 东莞市广信知识产权服务有限公司 一种SiC表面钝化方法
WO2018138756A1 (ja) * 2017-01-24 2018-08-02 新電元工業株式会社 半導体装置の製造方法
CN109695014B (zh) * 2019-03-13 2021-03-16 海盐精斌五金制品有限公司 牙板表面氮化处理工艺
JP6648852B1 (ja) * 2019-04-26 2020-02-14 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US11393806B2 (en) 2019-09-23 2022-07-19 Analog Devices, Inc. Gallium nitride and silicon carbide hybrid power device
CN115732538A (zh) * 2022-09-08 2023-03-03 湖南三安半导体有限责任公司 一种半导体器件及其制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199497A (ja) 1996-01-22 1997-07-31 Nippon Steel Corp SiCの熱酸化膜の改善方法
JP2000072405A (ja) 1998-09-02 2000-03-07 Tadahiro Omi 水分発生用反応炉
JP2001210637A (ja) * 1999-11-18 2001-08-03 Denso Corp 炭化珪素半導体装置の製造方法
WO2004003989A1 (ja) * 2002-06-28 2004-01-08 National Institute Of Advanced Industrial Science And Technology 半導体装置及びその製造方法
JP2006269641A (ja) * 2005-03-23 2006-10-05 National Institute Of Advanced Industrial & Technology 半導体装置及びその製造方法
JP2007242744A (ja) * 2006-03-07 2007-09-20 National Institute Of Advanced Industrial & Technology 炭化ケイ素半導体装置の製造方法および炭化ケイ素半導体装置
JP2011199132A (ja) * 2010-03-23 2011-10-06 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
JP2012186490A (ja) * 2012-05-07 2012-09-27 National Institute Of Advanced Industrial & Technology 半導体装置及び半導体基板の重水素処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19612692C1 (de) * 1996-03-29 1997-11-20 Siemens Ag Verfahren zum Erzeugen einer Oxidschicht auf Siliciumcarbid und Verwendung des Verfahrens
JP2000349285A (ja) * 1999-06-04 2000-12-15 Hitachi Ltd 半導体集積回路装置の製造方法および半導体集積回路装置
JP4525958B2 (ja) * 2001-08-27 2010-08-18 独立行政法人産業技術総合研究所 半導体装置の製造方法
JP2003086792A (ja) * 2001-09-10 2003-03-20 National Institute Of Advanced Industrial & Technology 半導体装置の作製法
US7880173B2 (en) * 2002-06-28 2011-02-01 National Institute Of Advanced Industrial Science And Technology Semiconductor device and method of manufacturing same
JP2008244456A (ja) * 2007-02-28 2008-10-09 Denso Corp 炭化珪素半導体装置およびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199497A (ja) 1996-01-22 1997-07-31 Nippon Steel Corp SiCの熱酸化膜の改善方法
JP2000072405A (ja) 1998-09-02 2000-03-07 Tadahiro Omi 水分発生用反応炉
JP2001210637A (ja) * 1999-11-18 2001-08-03 Denso Corp 炭化珪素半導体装置の製造方法
WO2004003989A1 (ja) * 2002-06-28 2004-01-08 National Institute Of Advanced Industrial Science And Technology 半導体装置及びその製造方法
JP4374437B2 (ja) 2002-06-28 2009-12-02 独立行政法人産業技術総合研究所 半導体装置の製造方法
JP2006269641A (ja) * 2005-03-23 2006-10-05 National Institute Of Advanced Industrial & Technology 半導体装置及びその製造方法
JP2007242744A (ja) * 2006-03-07 2007-09-20 National Institute Of Advanced Industrial & Technology 炭化ケイ素半導体装置の製造方法および炭化ケイ素半導体装置
JP2011199132A (ja) * 2010-03-23 2011-10-06 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
JP2012186490A (ja) * 2012-05-07 2012-09-27 National Institute Of Advanced Industrial & Technology 半導体装置及び半導体基板の重水素処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3021353A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018098288A (ja) * 2016-12-09 2018-06-21 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2018129420A (ja) * 2017-02-09 2018-08-16 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
US10580874B2 (en) 2017-02-09 2020-03-03 Kabushiki Kaisha Toshiba Semiconductor device with silicon oxide layer having element double bonded to oxygen, semiconductor device manufacturing method, inverter circuit, driving device, vehicle, and elevator
JP2019186545A (ja) * 2018-04-04 2019-10-24 インフィニオン テクノロジーズ アクチエンゲゼルシャフトInfineon Technologies AG ワイドバンドギャップ半導体デバイスおよびワイドバンドギャップ半導体デバイスを形成する方法
US11295951B2 (en) 2018-04-04 2022-04-05 Infineon Technologies Ag Wide band gap semiconductor device and method for forming a wide band gap semiconductor device
JP2020047665A (ja) * 2018-09-14 2020-03-26 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP7005847B2 (ja) 2018-09-14 2022-01-24 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
WO2021246280A1 (ja) * 2020-06-05 2021-12-09 国立大学法人京都大学 SiC半導体素子の製造方法及びSiC半導体素子
JP2021192397A (ja) * 2020-06-05 2021-12-16 国立大学法人京都大学 SiC半導体素子の製造方法及びSiC半導体素子
JP7412765B2 (ja) 2020-06-05 2024-01-15 国立大学法人京都大学 SiC半導体素子の製造方法及びSiC半導体素子

Also Published As

Publication number Publication date
JP6025007B2 (ja) 2016-11-16
US9922822B2 (en) 2018-03-20
US20160126092A1 (en) 2016-05-05
EP3021353A1 (en) 2016-05-18
CN105531802A (zh) 2016-04-27
EP3021353A4 (en) 2017-02-15
JPWO2015005397A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6025007B2 (ja) 炭化ケイ素半導体装置の製造方法
JP6305294B2 (ja) 半導体装置及びその製造方法
US8222648B2 (en) Silicon carbide semiconductor device and method for producing the same
JP6505466B2 (ja) 半導体装置及びその製造方法
JP6189261B2 (ja) 半導体装置およびその製造方法
JP7074629B2 (ja) 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP2016058658A (ja) 炭化ケイ素半導体装置
JP2018186140A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
WO2015045626A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2006156478A (ja) 炭化珪素半導体装置およびその製造方法
WO2014024568A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2009212366A (ja) 半導体装置の製造方法
US9960040B2 (en) Manufacturing method of silicon carbide semiconductor device
JP2009043880A (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
JP2016201500A (ja) 炭化ケイ素mos型半導体装置およびその製造方法
JP2012151400A (ja) SiC半導体装置、SiC半導体装置の製造方法
JP2015142078A (ja) 炭化ケイ素半導体装置およびその製造方法
US10249497B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP6844176B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2017168600A (ja) 炭化珪素半導体素子および炭化珪素半導体素子の製造方法
US20230084127A1 (en) Semiconductor device manufacturing method
JP2017168601A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP6155553B2 (ja) 炭化珪素半導体装置の製造方法
JP2021086896A (ja) 絶縁ゲート型半導体装置及び絶縁ゲート型半導体装置の製造方法
JP2017168603A (ja) 炭化珪素半導体素子および炭化珪素半導体素子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480039085.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822620

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014822620

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015526381

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE