WO2014084275A1 - Conductive paste and method for producing same - Google Patents
Conductive paste and method for producing same Download PDFInfo
- Publication number
- WO2014084275A1 WO2014084275A1 PCT/JP2013/081958 JP2013081958W WO2014084275A1 WO 2014084275 A1 WO2014084275 A1 WO 2014084275A1 JP 2013081958 W JP2013081958 W JP 2013081958W WO 2014084275 A1 WO2014084275 A1 WO 2014084275A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive paste
- acid
- carboxylic acid
- mass
- fine particles
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/056—Submicron particles having a size above 100 nm up to 300 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Definitions
- the present invention relates to a conductive paste containing silver fine particles and a method for producing the same.
- silver fine particles have been widely used as a raw material for conductive paste for forming electrodes and circuit patterns of electronic components.
- a conductive paste containing silver fine particles is printed on a substrate, a pattern with a wiring width of about 100 ⁇ m is printed by screen printing or the like, and then fired at a high temperature of 500 ° C. or higher to form a conductive film. Is done.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- the conductive paste that can be fired at a low temperature contains fine metal particles.
- the metal fine particles are produced, for example, by a chemical reduction method in which a reducing agent is added to an aqueous solution containing a metal compound, the metal is reduced in the aqueous solution, and the metal fine particles are precipitated (Patent Document 1).
- the metal fine particles produced by the chemical reduction method are almost monodisperse and are independent spherical particles.
- the particle diameter of the silver fine particles specifically produced in the examples is as large as about 1 ⁇ m, and it is difficult to fire at a low temperature. Even if silver particles having a particle size of about 1 ⁇ m are used for the conductive paste, it is difficult to form a circuit pattern that is further refined because the particle size is large.
- the present applicant has (i) an average primary particle size of 40 to 350 nm, (ii) a crystallite size of 20 to 70 nm, and (iii) a crystallite.
- Silver fine particles having a ratio of the average particle diameter of primary particles to the diameter of 1.5 to 5 have been proposed (Patent Document 2).
- a conductive paste As the conductive paste containing silver fine particles, a conductive paste has been proposed that can form a conductive film having sufficient conductivity even at a low temperature of 200 ° C. or less, specifically 180 ° C. or less (Patent Document 2).
- the object of the present invention is to satisfy the above-mentioned situation and satisfy the requirement for forming a fine circuit pattern, while having sufficient conductivity at a heat treatment temperature of 300 ° C. or lower, more preferably 200 ° C. or lower.
- An object is to provide a conductive paste capable of forming a film and a method of manufacturing the same.
- Invention 1 includes (i) an average primary particle size of 40 to 350 nm, (ii) a crystallite size of 20 to 70 nm, and (iii) an average primary particle size with respect to the crystallite size. 100 parts by weight of silver fine particles (A) having a ratio of 1 to 5, 1 to 40 parts by weight of aliphatic primary amine (B), and 1 carboxylic acid (C) having a molecular weight of 75 to 200
- the present invention relates to a conductive paste containing about 20 parts by mass.
- the present invention 2 is a reaction comprising silver fine particles (A) obtained by mixing a silver salt of a carboxylic acid (a) and an aliphatic primary amine (B) and then adding a reducing agent (c) and reacting them.
- the present invention relates to a conductive paste obtained by mixing 1 to 20 parts by mass of a carboxylic acid (C) having a molecular weight of 75 to 200 with 100 parts by mass of silver fine particles (A) in the reaction mixture.
- the present invention 3 relates to the conductive paste according to the present invention 1 or 2, wherein the carboxylic acid (C) is a carboxylic acid having a molecular weight of 75 to 160.
- Invention 4 is a carboxylic acid (C) comprising an aliphatic monocarboxylic acid containing a linear or branched hydrocarbon group having 6 to 9 carbon atoms and an aliphatic hydroxy acid having 2 to 6 carbon atoms.
- the present invention relates to the conductive paste according to any one of the first to third aspects, which is at least one carboxylic acid selected.
- the invention 5 is characterized in that the carboxylic acid (C) is at least one carboxylic acid selected from the group consisting of hexanoic acid, 2-ethylhexanoic acid, octanoic acid, 4-methyl-n-octanoic acid, lactic acid and glycolic acid.
- the present invention relates to the conductive paste according to any one of the present inventions 1 to 4.
- Invention 6 relates to Inventions 1 to 3, wherein the aliphatic primary amine (B) is at least one aliphatic primary amine selected from the group consisting of 3-methoxypropylamine and 1,2-diaminocyclohexane. 5.
- the conductive paste according to any one of 5 above.
- the present invention 7 relates to the conductive paste according to any one of the present inventions 2 to 6, wherein the reducing agent (c) is at least one reducing agent selected from the group consisting of formic acid, formaldehyde, ascorbic acid and hydrazine.
- the present invention 8 is the conductive paste according to any one of the present inventions 2 to 7, wherein the silver salt (a) of the carboxylic acid is a silver salt of at least one carboxylic acid selected from the group consisting of acetic acid and propionic acid.
- the present invention 9 relates to the conductive paste according to any one of the present inventions 1 to 8, further comprising 1 to 20 parts by mass of a binder resin (D).
- the present invention 10 is the present invention, wherein the binder resin (D) is at least one binder resin selected from the group consisting of a phthalic acid-based glycidyl type epoxy resin, an oxetane resin, a thermosetting phenol resin, a urethane resin, and an acrylic resin.
- the binder resin (D) is at least one binder resin selected from the group consisting of a phthalic acid-based glycidyl type epoxy resin, an oxetane resin, a thermosetting phenol resin, a urethane resin, and an acrylic resin.
- the present invention relates to the conductive paste according to the ninth aspect.
- the present invention 11 includes (1) a step of mixing a silver salt of a carboxylic acid (a) and an aliphatic primary amine (B), (2) adding a reducing agent (c), and a reaction temperature of 20 to 80 ° C. (3) The step of separating the reaction product into layers and recovering the layer containing silver fine particles (A), (4) 100 parts by mass of silver fine particles (A) contained in the recovered layer
- the present invention relates to a method for producing a conductive paste including a step of mixing 1 to 20 parts by mass of a carboxylic acid (C) having a molecular weight of 75 to 200.
- the present invention 12 includes (1) a step of mixing a silver salt of a carboxylic acid (a) and an aliphatic primary amine (B) in the presence of an organic solvent, and (2) adding a reducing agent (c). A step of reacting at a reaction temperature of 20 to 80 ° C., (3) a step of separating the reaction product into layers and collecting a layer containing silver fine particles (A), and (4) a silver fine particle contained in the collected layer (A)
- the present invention relates to a method for producing a conductive paste, comprising a step of mixing 1 to 20 parts by mass of a carboxylic acid (C) having a molecular weight of 75 to 200 with respect to 100 parts by mass.
- the denseness and surface smoothness of the conductive film are ensured at a heat treatment temperature of 300 ° C. or less, preferably 200 ° C. or less, for example, 120 to 180 ° C., and sufficient conductivity (for example, volume resistivity 5.5 ⁇ ⁇ cm or less, more preferably a level of less than 5 ⁇ ⁇ cm) can be formed.
- sufficient conductivity for example, volume resistivity 5.5 ⁇ ⁇ cm or less, more preferably a level of less than 5 ⁇ ⁇ cm
- the conductive paste containing silver fine particles of the present invention has a small average particle size of silver fine particles, it can meet the demand for forming a circuit pattern that is further refined.
- the state of the surface of the conductive film of Example 2 and Comparative Example 1 after heat-treating each conductive paste of Example 2 and Comparative Example 1 at 100 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 200 ° C. for 30 minutes is defined as FE.
- FE Field Emission-Scanning Electron Microscope, magnification 80,000 to 200,000 times
- ⁇ ⁇ cm volume resistivity
- the graph which shows the relationship with the volume resistivity (ohm * cm) of a subsequent electrically conductive film.
- the average particle diameter of primary particles is 40 to 350 nm
- the crystallite diameter is 20 to 70 nm
- the average particle diameter of the primary particles relative to the crystallite diameter 100 parts by mass of silver fine particles (A) having a ratio of 1 to 5, 1 to 40 parts by mass of aliphatic primary amine (B), and 1 to 1 of carboxylic acid (C) having a molecular weight of 75 to 200
- a conductive paste containing 20 parts by mass is 40 to 350 nm
- the crystallite diameter is 20 to 70 nm
- the average particle diameter of the primary particles relative to the crystallite diameter 100 parts by mass of silver fine particles (A) having a ratio of 1 to 5, 1 to 40 parts by mass of aliphatic primary amine (B), and 1 to 1 of carboxylic acid (C) having a molecular weight of 75 to 200
- a conductive paste containing 20 parts by mass 100 parts by mass of silver fine particles (A) having a ratio of 1 to 5, 1 to 40 parts by mass of aliphatic primary amine
- the average particle diameter of the silver fine particles (A) is measured by FE-SEM (JSM7500F) manufactured by JEOL Ltd., and an arithmetic average value of the diameters of 300 arbitrarily selected particles is obtained. The particle diameter was taken. Further, in this specification, the crystallite diameter is obtained by measuring the half width of the plane index (1,1,1) plane peak from the measurement by the powder X-ray diffraction method using Cu K ⁇ ray as the source, and the Scherrer equation. This is the value of the result calculated.
- the silver fine particles (A) have (i) an average primary particle diameter of 40 to 350 nm, preferably 50 to 200 nm, more preferably 60 to 180 nm.
- the silver fine particles (A) used in the present invention are usually almost spherical.
- Silver fine particles (A) whose primary particles have an average particle size of 40 to 350 nm have good storage stability when they are pasted, because aggregation of silver fine particles is suppressed.
- Silver fine particles (A) having an average primary particle size of 40 to 350 nm are suitable as a raw material for a conductive paste for printing a fine circuit pattern.
- the silver fine particles (A) have a (ii) crystallite diameter of 20 to 70 nm, preferably 20 to 50 nm.
- the conductive paste using the silver fine particles (A) having a crystallite diameter of 20 to 70 nm suppresses volume shrinkage during the heat treatment, and has high density and surface smoothness of the conductive film formed after the heat treatment. Secured.
- the conductive film is a silver film.
- the silver fine particles (A) having a crystallite diameter of 20 to 70 nm are also suitable as a raw material for a conductive paste for printing a fine circuit pattern of a precise electronic circuit.
- the silver fine particles (A) have (iii) the ratio of the average primary particle diameter to the crystallite diameter (average particle diameter / crystallite diameter) of 1 to 5, preferably 1.5 to 4.5. More preferably, it is 2-4.
- the conductive paste using silver fine particles (A) having a ratio of the average particle diameter of primary particles to the crystallite diameter (average particle diameter of primary particles / crystallite diameter) of 1 to 5 is 300 ° C. or lower. It is possible to form a conductive film that ensures denseness and smoothness at the heat treatment temperature.
- the heat treatment temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, still more preferably 120 to 180 ° C., and particularly preferably 120 to 150 ° C.
- Silver fine particles (A) having a ratio of the average particle diameter of primary particles to the crystallite diameter (average particle diameter of primary particles / crystallite diameter) of 1 to 5 are conductive films having sufficient conductivity. It is suitable as a raw material for the conductive paste capable of forming the film.
- the silver fine particles (A) are prepared by mixing a silver salt of a carboxylic acid (a) and an aliphatic primary amine (B), and then adding a reducing agent (c) at a reaction temperature of 20 to 80 ° C. Can be produced by precipitating silver fine particles.
- a silver salt of carboxylic acid (a) and an aliphatic primary amine (B) are mixed to obtain a solution in which the silver salt of carboxylic acid is dissolved.
- an aliphatic primary amine is coordinated to a silver salt of carboxylic acid to form a kind of amine complex.
- the silver salt (a) of carboxylic acid is preferably silver acetate or silver propionate, particularly preferably silver acetate. These may be used alone or in combination of two.
- the aliphatic primary amine (B) may be a chain aliphatic primary amine or a cyclic aliphatic primary amine.
- the aliphatic primary amine (B) may be a monoamine compound or a polyamine compound such as a diamine compound.
- the aliphatic primary amine (B) includes those in which an aliphatic hydrocarbon group is substituted with an alkoxy group such as a hydroxyl group, a methoxy group, an ethoxy group, or a propoxy group.
- the aliphatic primary amine (B) is preferably at least one aliphatic primary amine selected from the group consisting of 3-methoxypropylamine, 3-aminopropanol and 1,2-diaminocyclohexane.
- the aliphatic primary amine (B) is more preferably at least one selected from the group consisting of 3-methoxypropylamine and 1,2-diaminocyclohexane.
- An aliphatic primary amine (B) may be used individually by 1 type, or may use 2 or more types together.
- the amount of the aliphatic primary amine (B) used is determined depending on the process requirements such as the post-treatment of the silver fine particles to be generated and the conditions of the equipment to be used.
- the amount of the aliphatic primary amine (B) used is preferably 1 equivalent or more with respect to 1 equivalent of the carboxylic acid silver salt (a) in order to obtain silver fine particles having a controlled particle size. Moreover, even if an excessive amount of the aliphatic primary amine (B) is present, stable production of silver fine particles is possible.
- the amount of the aliphatic primary amine (B) used is preferably not more than 3.0 equivalents relative to 1 equivalent of the carboxylic acid silver salt (a) so as not to increase the amount of amine released to the environment.
- the amount of the aliphatic primary amine (B) used is 1 to 3 equivalents relative to 1 equivalent of the silver salt of the carboxylic acid (a) so that the aliphatic primary amine (B) is not excessive. Preferably there is.
- the mixing of the carboxylic acid silver salt (a) and the aliphatic primary amine (B) can be carried out in the absence or presence of an organic solvent.
- an organic solvent used, the silver salt of carboxylic acid (a) and the aliphatic primary amine (B) can be easily mixed.
- the organic solvent include alcohols such as ethanol, propanol and butanol, ethers such as propylene glycol dibutyl ether, and aromatic hydrocarbons such as toluene.
- An organic solvent may be used individually by 1 type, or may use 2 or more types together.
- the amount of the organic solvent used can be set to an arbitrary amount from the viewpoint of convenience of mixing and productivity of silver fine particles in the subsequent steps.
- the mixture of the silver salt of carboxylic acid (a) and the aliphatic primary amine (B) is, for example, a primary aliphatic amine (B) or a mixture of a primary aliphatic amine (B) and an organic solvent. While stirring, the silver salt (a) of carboxylic acid is added. Stirring can be continued as necessary even after the addition of the silver salt (a) of carboxylic acid is completed.
- the temperature during the mixing of the carboxylic acid silver salt (a) and the aliphatic primary amine (B) is preferably maintained at 20 to 80 ° C., more preferably 20 to 60 ° C.
- a reducing agent (c) is added to the mixture of the silver salt of carboxylic acid (a) and the aliphatic primary amine (B) to precipitate silver fine particles.
- the reducing agent is preferably at least one selected from the group consisting of formic acid, formaldehyde, ascorbic acid and hydrazine from the viewpoint of controlling the reaction.
- the reducing agent is more preferably formic acid.
- a reducing agent may be used individually by 1 type, or may use 2 or more types together.
- the amount of the reducing agent (c) used is usually not less than the redox equivalent relative to the silver salt of the carboxylic acid (a), and the redox equivalent is preferably 0.5 to 5 times, more preferably 1 to 3 times.
- the silver salt of carboxylic acid (a) is a silver salt of monocarboxylic acid and formic acid is used as the reducing agent (c)
- the amount of formic acid used in terms of mole is 1 mol of silver salt of carboxylic acid (a).
- the amount is preferably from 0.25 to 2.5 mol, more preferably from 0.5 to 1.5 mol, still more preferably from 0.5 to 1.0 mol.
- the reaction temperature is maintained at 20 to 80 ° C.
- the reaction temperature is preferably 20 to 70 ° C, more preferably 20 to 60 ° C.
- the reaction temperature is 20 to 80 ° C.
- the time required for the addition of the reducing agent and the subsequent reaction depends on the size of the reaction apparatus, but is usually 10 minutes to 10 hours.
- an organic solvent such as an alcohol such as ethanol, propanol or butanol, an ether such as propylene glycol dibutyl ether, or an aromatic hydrocarbon such as toluene is added as necessary. can do.
- the layer containing silver fine particles (A) precipitated by the reaction can be used as it is as a conductive paste.
- the layer containing silver fine particles (A) precipitated by the reaction can be used as a conductive paste after the silver fine particles (A) are precipitated and the supernatant is removed by decantation or the like.
- alcohols such as methanol and ethanol can be added to the layer containing the silver fine particles (A) to accelerate the precipitation of the silver fine particles (A).
- the layer containing silver fine particles (A) can also raise the silver content contained in a layer by distilling off methanol which remains with an evaporator as needed.
- the silver fine particles (A) immediately before the solvent contained in the layer is distilled off by an evaporator in order to adjust the viscosity of the paste.
- a solvent such as dihydroterpineol or benzyl alcohol can be added to the layer containing.
- the silver content of the conductive paste thus obtained is preferably 30 to 95% by mass, more preferably 50 to 92% by mass.
- the aliphatic primary amine (B) is coordinated around the silver fine particles (A) to form a kind of amine complex.
- the amines present around the silver fine particles prevent aggregation of silver fine particles having a particle size of submicron or less.
- amines coordinated with silver fine particles hinder the fusion of silver fine particles when the conductive paste is heat-treated, and become a factor of lowering conductivity.
- a layer containing silver fine particles containing 100 parts by mass of silver fine particles (A) and 1 to 40 parts by mass of aliphatic primary amine (B) is further added to a carboxylic acid (C ) Was added to 1 to 20 parts by mass to obtain a conductive paste.
- the amines coordinated to the silver fine particles that hindered the fusion of the silver fine particles during the heat treatment are removed from the periphery of the silver fine particles, and the silver fine particles are fused by the low-temperature heat treatment. Can be promoted.
- the conductive paste of the present invention has a low heat treatment temperature of 300 ° C.
- the heat treatment temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, still more preferably 120 to 180 ° C., and particularly preferably 120 to 150 ° C.
- the molecular weight of the carboxylic acid (C) is 75 to 200, more preferably 75 to 160. Since carboxylic acids having a molecular weight of less than 75, such as acetic acid and propionic acid, have a low boiling point, the amines coordinated to the silver fine particles (A) at the time of the heat treatment are removed before the silver fine particles (A) are removed from the surroundings. The amines that have prevented the fusion of the silver fine particles due to the volatilization of the acid cannot be removed from the periphery of the silver fine particles.
- the carboxylic acid having a molecular weight exceeding 200 has a high boiling point or a high thermal decomposition temperature, the carboxylic acid remains between the silver fine particles during the heat treatment at a low temperature of 200 ° C. or lower. May prevent fusion.
- the carboxylic acid (C) having a molecular weight of 75 to 200 is 1 to 20 with respect to a mixture containing 100 parts by mass of the silver fine particles (A) and 1 to 40 parts by mass of the aliphatic primary amine (B). Part by mass, preferably 2 to 18 parts by mass, more preferably 3 to 15 parts by mass, and particularly preferably 4 to 12 parts by mass are added.
- the amount of the carboxylic acid (C) having a molecular weight of 75 to 200 is less than 1 part by mass, the amount added is too small and the silver fine particles are subjected to heat treatment at a low temperature of 300 ° C. or lower, preferably 200 ° C. or lower (A)
- the amines that hindered the fusion between each other cannot be removed.
- the amount of the carboxylic acid (C) having a molecular weight of 75 to 200 exceeds 20 parts by mass, the silver fine particles (A) tend to aggregate with each other and the stability as a conductive paste is impaired.
- Examples of the carboxylic acid (C) having a molecular weight of 75 to 200 include an aliphatic monocarboxylic acid containing a linear or branched hydrocarbon group having 6 to 9 carbon atoms, and an aliphatic hydroxy acid having 2 to 6 carbon atoms. It is preferably at least one carboxylic acid selected from the group consisting of The melting point of the aliphatic hydroxy acid having 2 to 6 carbon atoms is preferably 120 ° C. or lower, and more preferably 80 ° C. or lower. These may be used individually by 1 type, or may use 2 or more types together.
- Examples of the aliphatic monocarboxylic acid containing a linear or branched hydrocarbon group having 6 to 9 carbon atoms include hexanoic acid, 3-methylpentanoic acid, heptanoic acid, 2-methylhexanoic acid, 3-methylhexanoic acid, 2-ethylpentanoic acid, octanoic acid, 2-methylheptanoic acid, 6-methylheptanoic acid, 2-ethylhexanoic acid, nonanoic acid, 2-methyl-n-octanoic acid, 4-methyl-n-octanoic acid, 7- And methyl-n-octanoic acid.
- Aliphatic hydroxy acids having 2 to 6 carbon atoms include glycolic acid, lactic acid, tartronic acid, glyceric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, ⁇ -hydroxybutyric acid, malic acid, tartaric acid, citramalic acid, and citric acid , Isocitric acid, leucine acid, mevalonic acid and the like.
- the carboxylic acid (C) having a molecular weight of 75 to 200 is at least one carboxylic acid selected from the group consisting of hexanoic acid, 2-ethylhexanoic acid, octanoic acid, 4-methyl-n-octanoic acid, lactic acid and glycolic acid. It is preferable that Of these, 2-ethylhexanoic acid is preferable. These may be used alone or in combination of two.
- the conductive paste of the present invention comprises a layer containing silver fine particles containing 100 parts by mass of silver fine particles (A) and 1 to 40 parts by mass of an aliphatic primary amine (B), and further adding 1 to 1 binder resin (D). It is preferable to include 20 parts by mass.
- the content of the binder resin (D) in the conductive paste is more preferably 1 to 15 parts by mass, still more preferably 2 to 12 parts by mass, and particularly preferably 3 to 10 parts by mass.
- the binder resin (D) preferably contains an epoxy resin containing an ester bond.
- the epoxy resin containing an ester bond is not particularly limited as long as it is an epoxy resin containing one or more ester bonds in the molecule.
- the number of ester bonds in the molecule is preferably 2 so as not to inhibit the sintering of the silver fine particles.
- the binder resin is preferably, for example, a phthalic acid glycidyl ester type epoxy resin in order to obtain good conductivity.
- Phthalic acid-based glycidyl ester type epoxy resins are phthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester and alkyl substitution products thereof; for example, dimethyl glycidyl phthalate, methyl glycidyl glycidyl phthalate, diethyl Examples thereof include glycidyl phthalate, dipropyl glycidyl phthalate, and dibutyl glycidyl phthalate. Among these, hexahydrophthalic acid diglycidyl ester is particularly preferable. These may be used individually by 1 type, or may use 2 or more types together.
- the binder resin (D) is not limited to an epoxy resin containing an ester bond such as a phthalic acid-based glycidyl ester type epoxy resin, and other oxetane resins, thermosetting phenol resins, urethane resins, acrylic resins.
- Thermosetting resins such as these can also be used, and these may be used alone or in combination of two or more.
- the conductive paste may further contain a curing agent.
- the curing agent is not particularly limited as long as it cures the epoxy resin.
- a cationic polymerization initiator an amine curing agent, an acid An anhydride curing agent, a phenolic curing agent, and the like can be used.
- a cationic polymerization initiator is particularly preferable in order that fusion between silver particles proceeds and good conductivity is obtained. These may be used individually by 1 type, or may use 2 or more types together.
- cationic polymerization initiators include Lewis acid salts, onium salts, and fatty acid metals.
- the cation salt is preferably an onium salt.
- the onium salt is particularly preferably a diaryliodonium tetrakis (pentafluorophenyl) boron salt such as 4-methylphenyl [4- (1-methylethyl) phenyl] iodonium tetrakis (pentafluorophenyl) borate.
- the content of the curing agent in the conductive paste is not particularly limited because it varies greatly depending on the type of the curing agent and the combination with the binder resin.
- the curing agent is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the binder resin. More preferably, 2.5 to 8 parts by mass are added.
- the conductive paste of the present invention includes titanium coupling agents (for example, titanate esters such as isopropyl triisostearoyl titanate), silane coupling agents, flame retardants, leveling agents, thixotropic agents, antifoaming agents, ion A scavenger and the like can be contained.
- titanium coupling agents for example, titanate esters such as isopropyl triisostearoyl titanate
- silane coupling agents for example, silane coupling agents, flame retardants, leveling agents, thixotropic agents, antifoaming agents, ion A scavenger and the like can be contained.
- the method for producing a conductive paste of the present invention comprises (1) a step of mixing a silver salt of carboxylic acid (a) and an aliphatic primary amine (B), and (2) adding a reducing agent (c) to react.
- the method for producing a conductive paste of the present invention comprises (1) a step of mixing a silver salt of a carboxylic acid (a) and an aliphatic primary amine (B) in the presence of an organic solvent, (2) a reducing agent ( c) adding and reacting at a reaction temperature of 20 to 80 ° C., (3) separating the reaction product into layers and recovering the layer containing silver fine particles (A), and (4) the recovered layer.
- an organic solvent may be added as necessary during the addition of the reducing agent and the subsequent reaction. Examples of the organic solvent include alcohols such as ethanol, propanol, and butanol, ethers such as propylene glycol dibutyl ether, and aromatic hydrocarbons such as toluene.
- the conductive paste of the present invention contains (D) a binder resin and other additives such as a curing agent, simultaneously with the step of mixing the carboxylic acid (C) having a molecular weight of 75 to 200, the (D) binder Resins, curing agents, and the like can be added.
- (D) a binder resin, a curing agent, or the like can be added before or after the step of mixing the carboxylic acid (C) having a molecular weight of 75 to 200.
- a conductive film can be formed by printing or coating on a substrate or the like by a conventionally known method such as screen printing, followed by heat treatment.
- the heat treatment temperature is preferably 60 to 300 ° C, more preferably 100 to 250 ° C, still more preferably 120 to 200 ° C, particularly preferably 120 to 180 ° C, and most preferably 120 to 150 ° C.
- the silver fine particles contained in the conductive paste have a small average particle diameter, and can meet the demand for forming a circuit pattern that is further refined.
- the upper layer was a clear yellow liquid, and black silver fine particles (AI) were precipitated in the lower layer.
- the upper layer liquid is removed by decantation, and methanol is added and allowed to stand, and the decantation is repeated until 0.3 kg of dihydroterpineol is added and mixed, and the remaining methanol is distilled off by an evaporator.
- a conductive paste having a silver content of 90% by mass containing silver fine particles (AI) was obtained.
- the silver fine particles were measured and evaluated as follows.
- Average particle diameter Measured by FE-SEM (JSM7500F) manufactured by JEOL Ltd., an arithmetic average value of 300 arbitrarily selected diameters was obtained, and the value was used as the average particle diameter.
- Crystallite diameter The half-value width of the plane index (1,1,1) plane peak using Cu K ⁇ ray as the radiation source was determined by measurement with an X-ray diffraction measurement device (M18XHF22) manufactured by Mac Science, and the Scherrer equation was used. The crystallite size was calculated.
- Example 1 Comparative Examples 1 to 3
- a paste containing silver fine particles (AI) (silver content 90 mass%) was used as it was as a conductive paste.
- paste containing silver fine particles (AI) (silver content: 90% by mass) was added to hexanoic acid, 2-ethylhexanoic acid, octanoic acid, 4-methyl-n-octanoic acid, lactic acid, Glycolic acid was added in an amount of 5.6 parts by mass with respect to 100 parts by mass of silver fine particles to obtain a conductive paste.
- each conductive paste was 10 mm wide, 50 mm long, and thick on a slide glass having a width of 26 mm, a length of 76 mm, and a thickness of 1.2 to 1.5 mm. It apply
- the thickness and resistance value of the conductive film obtained from the conductive paste were measured as follows. The thickness of the thin film was measured using a surface roughness shape measuring machine (manufactured by Tokyo Seimitsu Co., Ltd., SURFCOM 1500SD2-12).
- volume resistivity ( ⁇ ⁇ cm) R ⁇ W ⁇ t / (L ⁇ 10000) (1) R: resistance [ ⁇ ], t: thickness [ ⁇ m] W: Pattern width 10 mm, L: Pattern length 50 mm
- Table 2 shows the measurement results of volume resistivity of the conductive pastes of Examples 1 to 6 and Comparative Examples 1 to 3.
- the volume resistivity is expressed by using a power of 10 (for example, 2.7 ⁇ 10 ⁇ 6 in Example 1) and E (for example, 2.7E-06 in Example 1). Shall.
- the conductive paste of the present invention contains a carboxylic acid (C) having a molecular weight of 75 to 200, so that it has an excellent volume resistivity of less than 3 ⁇ ⁇ cm at a heat treatment temperature of 200 ° C.
- a conductive film with improved conductivity could be formed.
- the conductive film is a silver film.
- the conductive paste of Comparative Example 1 not containing carboxylic acid (C) and the conductive pastes of Comparative Examples 2 and 3 containing carboxylic acid having a molecular weight of less than 75 all had a volume resistivity exceeding 3 ⁇ ⁇ cm. .
- Example 2 For the conductive pastes of Example 2 and Comparative Example 1, a plurality of test pieces were prepared by applying a pattern on a slide glass in the same manner as in Example 1, and each test piece was 30 to 90 ° C. at 30 to 300 ° C., respectively. After heat-treating for minutes, the resistance value and film thickness were measured in the same manner as in Example 1 to determine the volume resistivity. The results are shown in Table 3.
- FIG. 1 shows a test piece coated with a conductive paste (Comparative Example 1) using a layer containing silver fine particles (AI) as it is and a conductive paste (Example 2) to which 2-ethylhexanoic acid is added.
- FE-SEM photographs after heat treatment at 100 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 200 ° C. for 30 minutes, and numerical values of volume resistivity ( ⁇ ⁇ cm) are shown.
- FIG. 2 is a graph showing the relationship between the heat treatment temperature of the conductive paste of Example 2 or Comparative Example 1 and the volume resistivity ( ⁇ ⁇ cm) of the conductive film obtained by heat-treating each conductive paste.
- the conductive paste of Example 2 can form a conductive film having excellent conductivity with a volume resistivity of 4 ⁇ ⁇ cm or less at a heat treatment temperature of 150 ° C. It was. Further, the conductive paste of Example 2 was able to form a conductive film having excellent conductivity with a volume resistivity of 5 ⁇ ⁇ cm or less at a heat treatment temperature of 120 ° C. The conductive paste of Example 2 could form a conductive film having a volume resistivity of about 30 ⁇ ⁇ cm at a heat treatment temperature of 100 ° C.
- the conductive paste of Example 2 forms a conductive film with improved conductivity by progressing fusion of silver fine particles contained in the conductive paste even at a low heat treatment temperature of 180 ° C. or lower, preferably 150 ° C. or lower. We were able to.
- the conductive paste of Example 2 is preferably a conductive film excellent in denseness and smoothness at a heat treatment temperature of 120 to 180 ° C., more preferably 120 to 150 ° C. It was confirmed that it could be formed.
- the conductive film of Example 2 is a silver film.
- Example 7 In addition to the conductive paste of Example 2, 3.3 parts by mass of hexahydrophthalic acid diglycidyl ester as a binder resin and 4-methylphenyl [4- (1-methylethyl) phenyl] iodonium tetrakis (pentafluoro) as a curing agent 0.17 parts by mass of phenyl) borate was added to obtain a conductive paste of Example 7.
- Table 4 shows the composition of the conductive pastes of Example 7 and Comparative Example 1.
- each conductive paste was 10 mm wide, 50 mm long, and about 0.0 mm thick on a slide glass having a width of 26 mm, a length of 76 mm, and a thickness of 1.2 to 1.5 mm. It apply
- the test piece thus coated was heat-treated at 80 to 200 ° C. for 30 minutes, then the thickness and resistance value of the thin film obtained from the conductive paste were measured, and the volume resistivity was obtained in the same manner as in Example 2. It was. The results are shown in Table 4.
- the conductive paste of Example 7 has excellent conductivity with a volume resistivity of 4 ⁇ ⁇ cm or less at a heat treatment temperature of 150 ° C. even when it contains a binder resin and a curing agent. A film could be formed. Even when the conductive paste of Example 7 includes a binder resin and a curing agent, a conductive film having excellent conductivity with a volume resistivity of 5.5 ⁇ ⁇ cm or less is formed at a heat treatment temperature of 120 ° C. I was able to. Even when the conductive paste of Example 7 contained a binder resin and a curing agent, a conductive film having a conductivity of 20 ⁇ ⁇ cm or less could be formed even at a low heat treatment temperature of 100 ° C.
- the conductive film of Example 7 is a silver film.
- the denseness and surface smoothness of the conductive film are ensured at a low heat treatment temperature of 300 ° C. or less, preferably 200 ° C. or less, for example, 120 to 180 ° C., and sufficient conductivity (for example, , A volume resistivity of 5.5 ⁇ ⁇ cm or less, more preferably a level of less than 5 ⁇ ⁇ cm) can be formed.
- the conductive paste of the present invention can meet the demand for forming a circuit pattern that is further miniaturized.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Conductive Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Provided are: a conductive paste which is capable of forming a conductive film having excellent conductivity at a heat treatment temperature of 300°C or less; and a method for producing the conductive paste.
A conductive paste which contains: 100 parts by mass of (A) fine silver particles which have (i) an average particle diameter of the primary particles of 40-350 nm, (ii) a crystallite diameter of 20-70 nm and (iii) a ratio of the average particle diameter to the crystallite diameter of 1-5; 1-40 parts by mass of (B) an aliphatic primary amine; and 1-20 parts by mass of (C) a carboxylic acid having a molecular weight of 75-200. A method for producing a conductive paste, which comprises: (1) a step wherein (a) a silver salt of a carboxylic acid and (B) an aliphatic primary amine are mixed with each other; (2) a step wherein (c) a reducing agent is added thereto and a reaction is caused at a reaction temperature of 20-80°C; (3) a step wherein the reaction product is separated into layers and a layer containing (A) fine silver particles is recovered; and (4) a step wherein 1-20 parts by mass of (C) a carboxylic acid having a molecular weight of 75-200 is mixed thereinto per 100 parts by mass of (A) fine silver particles contained in the recovered layer.
Description
本発明は、銀微粒子を含有する導電ペースト及びその製造方法に関する。
The present invention relates to a conductive paste containing silver fine particles and a method for producing the same.
近年、銀微粒子は、電子部品の電極や回路パターンを形成するための導電ペーストの原料として多用されている。例えば、回路パターンは、基板に、銀微粒子を含有する導電ペーストを使用して、スクリーン印刷などで配線幅100μm程度のパターンを印刷した後、通常500℃以上の高温で焼成して導電膜が形成される。
In recent years, silver fine particles have been widely used as a raw material for conductive paste for forming electrodes and circuit patterns of electronic components. For example, for a circuit pattern, a conductive paste containing silver fine particles is printed on a substrate, a pattern with a wiring width of about 100 μm is printed by screen printing or the like, and then fired at a high temperature of 500 ° C. or higher to form a conductive film. Is done.
最近、携帯電話をはじめとする分野で、ポリイミド製フレキシブル回路基板が使用される他に、より安価なPET(ポリエチレンテレフタレート)フィルムやPEN(ポリエチレンナフタレート)フィルム等が使用される動きがある。これらの基板に使用される導電ペーストは、200℃以下の低温で焼成可能であることが要求される。
Recently, in addition to the use of polyimide flexible circuit boards in the field of mobile phones, there is a movement to use cheaper PET (polyethylene terephthalate) films, PEN (polyethylene naphthalate) films, and the like. The conductive paste used for these substrates is required to be baked at a low temperature of 200 ° C. or lower.
低温で焼成可能な導電ペーストは、金属微粒子が含まれる。金属微粒子は、例えば、金属化合物を含む水溶液中に還元剤を添加して、水溶液中で金属を還元し、金属微粒子を析出させる化学的還元法により製造される(特許文献1)。化学的還元法により製造される金属微粒子は、ほぼ単分散に近く、それぞれ独立した球状の粒子である。しかしながら、特許文献1に記載されている化学的還元法は、具体的に実施例で製造される銀微粒子の粒径が、約1μmと大きく、低温で焼成することが難しい。また、粒径が約1μmの銀粒子を導電ペーストに用いても、粒径が大きいため、より微細化する回路パターンを形成することが難しい。
The conductive paste that can be fired at a low temperature contains fine metal particles. The metal fine particles are produced, for example, by a chemical reduction method in which a reducing agent is added to an aqueous solution containing a metal compound, the metal is reduced in the aqueous solution, and the metal fine particles are precipitated (Patent Document 1). The metal fine particles produced by the chemical reduction method are almost monodisperse and are independent spherical particles. However, in the chemical reduction method described in Patent Document 1, the particle diameter of the silver fine particles specifically produced in the examples is as large as about 1 μm, and it is difficult to fire at a low temperature. Even if silver particles having a particle size of about 1 μm are used for the conductive paste, it is difficult to form a circuit pattern that is further refined because the particle size is large.
低温で熱処理可能な金属微粒子として、本出願人は、(i)1次粒子の平均粒子径が40~350nmであり、(ii)結晶子径が20~70nmであり、かつ(iii)結晶子径に対する1次粒子の平均粒子径の比が1.5~5である銀微粒子を提案した(特許文献2)。この銀微粒子を含む導電ペーストは、200℃以下、具体的には180℃以下の低温の熱処理でも、十分な導電性を有する導電膜を形成できる導電ペーストを提案している(特許文献2)。
As metal fine particles that can be heat-treated at low temperature, the present applicant has (i) an average primary particle size of 40 to 350 nm, (ii) a crystallite size of 20 to 70 nm, and (iii) a crystallite. Silver fine particles having a ratio of the average particle diameter of primary particles to the diameter of 1.5 to 5 have been proposed (Patent Document 2). As the conductive paste containing silver fine particles, a conductive paste has been proposed that can form a conductive film having sufficient conductivity even at a low temperature of 200 ° C. or less, specifically 180 ° C. or less (Patent Document 2).
本発明の目的は、上記のような状況に対応して、微細な回路パターンを形成する要求を満たしつつ、300℃以下、より好ましくは200℃以下の熱処理温度で、十分な導電性を有する導電膜を形成可能な導電ペースト及びその製造方法を提供することである。
The object of the present invention is to satisfy the above-mentioned situation and satisfy the requirement for forming a fine circuit pattern, while having sufficient conductivity at a heat treatment temperature of 300 ° C. or lower, more preferably 200 ° C. or lower. An object is to provide a conductive paste capable of forming a film and a method of manufacturing the same.
本発明1は、(i)1次粒子の平均粒子径が40~350nmであり、(ii)結晶子径が20~70nmであり、かつ(iii)結晶子径に対する1次粒子の平均粒子径の比が1~5である銀微粒子(A)を100質量部と、脂肪族第一級アミン(B)を1~40質量部と、75~200の分子量を有するカルボン酸(C)を1~20質量部とを含む、導電ペーストに関する。
Invention 1 includes (i) an average primary particle size of 40 to 350 nm, (ii) a crystallite size of 20 to 70 nm, and (iii) an average primary particle size with respect to the crystallite size. 100 parts by weight of silver fine particles (A) having a ratio of 1 to 5, 1 to 40 parts by weight of aliphatic primary amine (B), and 1 carboxylic acid (C) having a molecular weight of 75 to 200 The present invention relates to a conductive paste containing about 20 parts by mass.
本発明2は、カルボン酸の銀塩(a)と脂肪族第一級アミン(B)を混合し、次いで還元剤(c)を添加し、反応させて得られる銀微粒子(A)を含む反応混合物に、該反応混合物中の銀微粒子(A)100質量部に対して、75~200の分子量を有するカルボン酸(C)1~20質量部を混合して得られる、導電ペーストに関する。
The present invention 2 is a reaction comprising silver fine particles (A) obtained by mixing a silver salt of a carboxylic acid (a) and an aliphatic primary amine (B) and then adding a reducing agent (c) and reacting them. The present invention relates to a conductive paste obtained by mixing 1 to 20 parts by mass of a carboxylic acid (C) having a molecular weight of 75 to 200 with 100 parts by mass of silver fine particles (A) in the reaction mixture.
本発明3は、カルボン酸(C)が、75~160の分子量を有するカルボン酸である、本発明1又は2記載の導電ペーストに関する。
本発明4は、カルボン酸(C)が、炭素数6~9の直鎖又は分岐鎖の炭化水素基を含む脂肪族モノカルボン酸、及び炭素数2~6の脂肪族ヒドロキシ酸からなる群より選ばれる少なくとも1種のカルボン酸である、本発明1~3のいずれかに記載の導電ペーストに関する。
本発明5は、カルボン酸(C)が、ヘキサン酸、2-エチルへキサン酸、オクタン酸、4-メチル-n-オクタン酸、乳酸及びグリコール酸からなる群より選ばれる少なくとも1種のカルボン酸である、本発明1~4のいずれかに記載の導電ペーストに関する。
本発明6は、脂肪族第一級アミン(B)が、3-メトキシプロピルアミン及び1,2-ジアミノシクロヘキサンからなる群より選ばれる少なくとも1種の脂肪族第一級アミンである本発明1~5のいずれかに記載の導電ペーストに関する。
本発明7は、還元剤(c)が、ギ酸、ホルムアルデヒド、アスコルビン酸及びヒドラジンからなる群より選ばれる少なくとも1種の還元剤である、本発明2~6のいずれかに記載の導電ペーストに関する。
本発明8は、カルボン酸の銀塩(a)が、酢酸及びプロピオン酸からなる群より選ばれる少なくとも1種のカルボン酸の銀塩である、本発明2~7のいずれかに記載の導電ペーストに関する。
本発明9は、更にバインダ樹脂(D)を1~20質量部を含む、本発明1~8のいずれかに記載の導電ペーストに関する。
本発明10は、バインダ樹脂(D)が、フタル酸系グリシジル型エポキシ樹脂、オキセタン樹脂、熱硬化性フェノール樹脂、ウレタン樹脂及びアクリル樹脂からなる群より選ばれる少なくとも1種のバインダ樹脂である、本発明9記載の導電ペーストに関する。 The present invention 3 relates to the conductive paste according to the present invention 1 or 2, wherein the carboxylic acid (C) is a carboxylic acid having a molecular weight of 75 to 160.
Invention 4 is a carboxylic acid (C) comprising an aliphatic monocarboxylic acid containing a linear or branched hydrocarbon group having 6 to 9 carbon atoms and an aliphatic hydroxy acid having 2 to 6 carbon atoms. The present invention relates to the conductive paste according to any one of the first to third aspects, which is at least one carboxylic acid selected.
The invention 5 is characterized in that the carboxylic acid (C) is at least one carboxylic acid selected from the group consisting of hexanoic acid, 2-ethylhexanoic acid, octanoic acid, 4-methyl-n-octanoic acid, lactic acid and glycolic acid. The present invention relates to the conductive paste according to any one of the present inventions 1 to 4.
Invention 6 relates to Inventions 1 to 3, wherein the aliphatic primary amine (B) is at least one aliphatic primary amine selected from the group consisting of 3-methoxypropylamine and 1,2-diaminocyclohexane. 5. The conductive paste according to any one of 5 above.
The present invention 7 relates to the conductive paste according to any one of the present inventions 2 to 6, wherein the reducing agent (c) is at least one reducing agent selected from the group consisting of formic acid, formaldehyde, ascorbic acid and hydrazine.
The present invention 8 is the conductive paste according to any one of the present inventions 2 to 7, wherein the silver salt (a) of the carboxylic acid is a silver salt of at least one carboxylic acid selected from the group consisting of acetic acid and propionic acid. About.
The present invention 9 relates to the conductive paste according to any one of the present inventions 1 to 8, further comprising 1 to 20 parts by mass of a binder resin (D).
The present invention 10 is the present invention, wherein the binder resin (D) is at least one binder resin selected from the group consisting of a phthalic acid-based glycidyl type epoxy resin, an oxetane resin, a thermosetting phenol resin, a urethane resin, and an acrylic resin. The present invention relates to the conductive paste according to the ninth aspect.
本発明4は、カルボン酸(C)が、炭素数6~9の直鎖又は分岐鎖の炭化水素基を含む脂肪族モノカルボン酸、及び炭素数2~6の脂肪族ヒドロキシ酸からなる群より選ばれる少なくとも1種のカルボン酸である、本発明1~3のいずれかに記載の導電ペーストに関する。
本発明5は、カルボン酸(C)が、ヘキサン酸、2-エチルへキサン酸、オクタン酸、4-メチル-n-オクタン酸、乳酸及びグリコール酸からなる群より選ばれる少なくとも1種のカルボン酸である、本発明1~4のいずれかに記載の導電ペーストに関する。
本発明6は、脂肪族第一級アミン(B)が、3-メトキシプロピルアミン及び1,2-ジアミノシクロヘキサンからなる群より選ばれる少なくとも1種の脂肪族第一級アミンである本発明1~5のいずれかに記載の導電ペーストに関する。
本発明7は、還元剤(c)が、ギ酸、ホルムアルデヒド、アスコルビン酸及びヒドラジンからなる群より選ばれる少なくとも1種の還元剤である、本発明2~6のいずれかに記載の導電ペーストに関する。
本発明8は、カルボン酸の銀塩(a)が、酢酸及びプロピオン酸からなる群より選ばれる少なくとも1種のカルボン酸の銀塩である、本発明2~7のいずれかに記載の導電ペーストに関する。
本発明9は、更にバインダ樹脂(D)を1~20質量部を含む、本発明1~8のいずれかに記載の導電ペーストに関する。
本発明10は、バインダ樹脂(D)が、フタル酸系グリシジル型エポキシ樹脂、オキセタン樹脂、熱硬化性フェノール樹脂、ウレタン樹脂及びアクリル樹脂からなる群より選ばれる少なくとも1種のバインダ樹脂である、本発明9記載の導電ペーストに関する。 The present invention 3 relates to the conductive paste according to the present invention 1 or 2, wherein the carboxylic acid (C) is a carboxylic acid having a molecular weight of 75 to 160.
Invention 4 is a carboxylic acid (C) comprising an aliphatic monocarboxylic acid containing a linear or branched hydrocarbon group having 6 to 9 carbon atoms and an aliphatic hydroxy acid having 2 to 6 carbon atoms. The present invention relates to the conductive paste according to any one of the first to third aspects, which is at least one carboxylic acid selected.
The invention 5 is characterized in that the carboxylic acid (C) is at least one carboxylic acid selected from the group consisting of hexanoic acid, 2-ethylhexanoic acid, octanoic acid, 4-methyl-n-octanoic acid, lactic acid and glycolic acid. The present invention relates to the conductive paste according to any one of the present inventions 1 to 4.
Invention 6 relates to Inventions 1 to 3, wherein the aliphatic primary amine (B) is at least one aliphatic primary amine selected from the group consisting of 3-methoxypropylamine and 1,2-diaminocyclohexane. 5. The conductive paste according to any one of 5 above.
The present invention 7 relates to the conductive paste according to any one of the present inventions 2 to 6, wherein the reducing agent (c) is at least one reducing agent selected from the group consisting of formic acid, formaldehyde, ascorbic acid and hydrazine.
The present invention 8 is the conductive paste according to any one of the present inventions 2 to 7, wherein the silver salt (a) of the carboxylic acid is a silver salt of at least one carboxylic acid selected from the group consisting of acetic acid and propionic acid. About.
The present invention 9 relates to the conductive paste according to any one of the present inventions 1 to 8, further comprising 1 to 20 parts by mass of a binder resin (D).
The present invention 10 is the present invention, wherein the binder resin (D) is at least one binder resin selected from the group consisting of a phthalic acid-based glycidyl type epoxy resin, an oxetane resin, a thermosetting phenol resin, a urethane resin, and an acrylic resin. The present invention relates to the conductive paste according to the ninth aspect.
本発明11は、(1)カルボン酸の銀塩(a)と脂肪族第一級アミン(B)を混合する工程、(2)還元剤(c)を添加して、反応温度20~80℃で反応させる工程、(3)反応生成物を層分離させて、銀微粒子(A)を含有する層を回収する工程、(4)回収した層中に含まれる銀微粒子(A)100質量部に対して、75~200の分子量を有するカルボン酸(C)1~20質量部を混合する工程を含む、導電ペーストの製造方法に関する。
The present invention 11 includes (1) a step of mixing a silver salt of a carboxylic acid (a) and an aliphatic primary amine (B), (2) adding a reducing agent (c), and a reaction temperature of 20 to 80 ° C. (3) The step of separating the reaction product into layers and recovering the layer containing silver fine particles (A), (4) 100 parts by mass of silver fine particles (A) contained in the recovered layer On the other hand, the present invention relates to a method for producing a conductive paste including a step of mixing 1 to 20 parts by mass of a carboxylic acid (C) having a molecular weight of 75 to 200.
本発明12は、(1)有機溶媒の存在下に、カルボン酸の銀塩(a)と脂肪族第一級アミン(B)を混合する工程、(2)還元剤(c)を添加して、反応温度20~80℃で反応させる工程、(3)反応生成物を層分離させて、銀微粒子(A)を含有する層を回収する工程、(4)回収した層中に含まれる銀微粒子(A)100質量部に対して、75~200の分子量を有するカルボン酸(C)1~20質量部を混合する工程を含む、導電ペーストの製造方法に関する。
The present invention 12 includes (1) a step of mixing a silver salt of a carboxylic acid (a) and an aliphatic primary amine (B) in the presence of an organic solvent, and (2) adding a reducing agent (c). A step of reacting at a reaction temperature of 20 to 80 ° C., (3) a step of separating the reaction product into layers and collecting a layer containing silver fine particles (A), and (4) a silver fine particle contained in the collected layer (A) The present invention relates to a method for producing a conductive paste, comprising a step of mixing 1 to 20 parts by mass of a carboxylic acid (C) having a molecular weight of 75 to 200 with respect to 100 parts by mass.
本発明は、300℃以下、好ましく200℃以下、例えば120~180℃の熱処理温度で、導電膜の緻密性や表面平滑性が確保され、十分な導電性(例えば、体積抵抗率5.5μΩ・cm以下、より好ましくは5μΩ・cm未満レベル)を有する導電膜を形成することができる。また、本発明の銀微粒子を含有する導電ペーストは、銀微粒子の平均粒子径が小さいため、より微細化する回路パターンを形成する要求に応え得るものである。
In the present invention, the denseness and surface smoothness of the conductive film are ensured at a heat treatment temperature of 300 ° C. or less, preferably 200 ° C. or less, for example, 120 to 180 ° C., and sufficient conductivity (for example, volume resistivity 5.5 μΩ · cm or less, more preferably a level of less than 5 μΩ · cm) can be formed. Moreover, since the conductive paste containing silver fine particles of the present invention has a small average particle size of silver fine particles, it can meet the demand for forming a circuit pattern that is further refined.
本発明は、(i)1次粒子の平均粒子径が40~350nmであり、(ii)結晶子径が20~70nmであり、かつ(iii)結晶子径に対する1次粒子の平均粒子径の比が1~5である銀微粒子(A)を100質量部と、脂肪族第一級アミン(B)を1~40質量部と、75~200の分子量を有するカルボン酸(C)を1~20質量部とを含む、導電ペーストである。
In the present invention, (i) the average particle diameter of primary particles is 40 to 350 nm, (ii) the crystallite diameter is 20 to 70 nm, and (iii) the average particle diameter of the primary particles relative to the crystallite diameter 100 parts by mass of silver fine particles (A) having a ratio of 1 to 5, 1 to 40 parts by mass of aliphatic primary amine (B), and 1 to 1 of carboxylic acid (C) having a molecular weight of 75 to 200 A conductive paste containing 20 parts by mass.
本明細書において、銀微粒子(A)の平均粒子径は、日本電子社製FE-SEM(JSM7500F)により計測し、任意に選んだ粒子300個の直径の算術平均値を求め、その値をもって平均粒子径とした。また、本明細書において、結晶子径は、CuのKα線を線源とした粉末X線回折法による測定から、面指数(1,1,1)面ピークの半値幅を求め、Scherrerの式より計算した結果の値をいう。
In the present specification, the average particle diameter of the silver fine particles (A) is measured by FE-SEM (JSM7500F) manufactured by JEOL Ltd., and an arithmetic average value of the diameters of 300 arbitrarily selected particles is obtained. The particle diameter was taken. Further, in this specification, the crystallite diameter is obtained by measuring the half width of the plane index (1,1,1) plane peak from the measurement by the powder X-ray diffraction method using Cu Kα ray as the source, and the Scherrer equation. This is the value of the result calculated.
銀微粒子(A)は、(i)1次粒子の平均粒子径が40~350nmであり、好ましくは50~200nmであり、より好ましくは60~180nmである。なお、本発明に用いる銀微粒子(A)は、通常、ほぼ球状である。1次粒子の平均粒子径が40~350nmである銀微粒子(A)は、銀微粒子の凝集が抑制され、ペースト化した場合に保存安定性がよい。(i)1次粒子の平均粒子径が40~350nmである銀微粒子(A)は、微細な回路パターン印刷用の導電ペーストの原料として好適である。
The silver fine particles (A) have (i) an average primary particle diameter of 40 to 350 nm, preferably 50 to 200 nm, more preferably 60 to 180 nm. The silver fine particles (A) used in the present invention are usually almost spherical. Silver fine particles (A) whose primary particles have an average particle size of 40 to 350 nm have good storage stability when they are pasted, because aggregation of silver fine particles is suppressed. (I) Silver fine particles (A) having an average primary particle size of 40 to 350 nm are suitable as a raw material for a conductive paste for printing a fine circuit pattern.
銀微粒子(A)は、(ii)結晶子径が20~70nmであり、好ましくは20~50nmである。(ii)結晶子径が20~70nmである銀微粒子(A)を用いた導電ペーストは、熱処理時の体積収縮が抑制されるとともに、熱処理後に形成される導電膜の緻密性や表面平滑性が確保される。導電膜は、銀膜である。(ii)結晶子径が20~70nmである銀微粒子(A)は、精密な電子回路の微細な回路パターン印刷用の導電ペーストの原料としても好適である。
The silver fine particles (A) have a (ii) crystallite diameter of 20 to 70 nm, preferably 20 to 50 nm. (Ii) The conductive paste using the silver fine particles (A) having a crystallite diameter of 20 to 70 nm suppresses volume shrinkage during the heat treatment, and has high density and surface smoothness of the conductive film formed after the heat treatment. Secured. The conductive film is a silver film. (Ii) The silver fine particles (A) having a crystallite diameter of 20 to 70 nm are also suitable as a raw material for a conductive paste for printing a fine circuit pattern of a precise electronic circuit.
銀微粒子(A)は、(iii)結晶子径に対する1次粒子の平均粒子径の比(平均粒子径/結晶子径)が1~5であり、好ましくは1.5~4.5であり、より好ましくは2~4である。(iii)結晶子径に対する1次粒子の平均粒子径の比(1次粒子の平均粒子径/結晶子径)が1~5である銀微粒子(A)を用いた導電ペーストは、300℃以下の熱処理温度で緻密性及び平滑性を確保した導電膜が形成できる。熱処理温度は、好ましくは200℃以下、より好ましくは180℃以下、更に好ましくは120~180℃、特に好ましくは120~150℃である。(iii)結晶子径に対する1次粒子の平均粒子径の比(1次粒子の平均粒子径/結晶子径)が1~5である銀微粒子(A)は、十分な導電性を有する導電膜を形成可能な導電ペーストの原料として好適である。
The silver fine particles (A) have (iii) the ratio of the average primary particle diameter to the crystallite diameter (average particle diameter / crystallite diameter) of 1 to 5, preferably 1.5 to 4.5. More preferably, it is 2-4. (Iii) The conductive paste using silver fine particles (A) having a ratio of the average particle diameter of primary particles to the crystallite diameter (average particle diameter of primary particles / crystallite diameter) of 1 to 5 is 300 ° C. or lower. It is possible to form a conductive film that ensures denseness and smoothness at the heat treatment temperature. The heat treatment temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, still more preferably 120 to 180 ° C., and particularly preferably 120 to 150 ° C. (Iii) Silver fine particles (A) having a ratio of the average particle diameter of primary particles to the crystallite diameter (average particle diameter of primary particles / crystallite diameter) of 1 to 5 are conductive films having sufficient conductivity. It is suitable as a raw material for the conductive paste capable of forming the film.
銀微粒子(A)は、カルボン酸の銀塩(a)と脂肪族第一級アミン(B)とを混合し、次いで還元剤(c)を添加して、反応温度20~80℃で各成分を反応させ、銀微粒子を析出させることにより製造することができる。
The silver fine particles (A) are prepared by mixing a silver salt of a carboxylic acid (a) and an aliphatic primary amine (B), and then adding a reducing agent (c) at a reaction temperature of 20 to 80 ° C. Can be produced by precipitating silver fine particles.
はじめに、カルボン酸の銀塩(a)と脂肪族第一級アミン(B)とを混合して、カルボン酸の銀塩を溶解させた溶液を得る。溶液中では、カルボン酸の銀塩に脂肪族第一級アミンが配位し、一種のアミン錯体を形成していると考えられる。
First, a silver salt of carboxylic acid (a) and an aliphatic primary amine (B) are mixed to obtain a solution in which the silver salt of carboxylic acid is dissolved. In solution, it is considered that an aliphatic primary amine is coordinated to a silver salt of carboxylic acid to form a kind of amine complex.
カルボン酸の銀塩(a)は、酢酸銀又はプロピオン酸銀が好ましく、酢酸銀が特に好ましい。これらは、1種を単独で使用してもよく、又は2種を併用してもよい。
The silver salt (a) of carboxylic acid is preferably silver acetate or silver propionate, particularly preferably silver acetate. These may be used alone or in combination of two.
脂肪族第一級アミン(B)は、鎖状脂肪族第一級アミンであっても、環状脂肪族第一級アミンであってもよい。また、脂肪族第一級アミン(B)は、モノアミン化合物であっても、ジアミン化合物等の多価アミン化合物であってもよい。脂肪族第一級アミン(B)は、脂肪族炭化水素基が、ヒドロキシル基、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、で置換されたものも含む。脂肪族第一級アミン(B)は、好ましくは、3-メトキシプロピルアミン、3-アミノプロパノール及び1,2-ジアミノシクロヘキサンからなる群より選ばれる少なくとも1種の脂肪族第一級アミンである。脂肪族第一級アミン(B)は、より好ましくは、3-メトキシプロピルアミン及び1,2-ジアミノシクロヘキサンからなる群から選ばれる少なくとも1種である。脂肪族第一級アミン(B)は、1種を単独で使用してもよく、又は2種以上を併用してもよい。
The aliphatic primary amine (B) may be a chain aliphatic primary amine or a cyclic aliphatic primary amine. The aliphatic primary amine (B) may be a monoamine compound or a polyamine compound such as a diamine compound. The aliphatic primary amine (B) includes those in which an aliphatic hydrocarbon group is substituted with an alkoxy group such as a hydroxyl group, a methoxy group, an ethoxy group, or a propoxy group. The aliphatic primary amine (B) is preferably at least one aliphatic primary amine selected from the group consisting of 3-methoxypropylamine, 3-aminopropanol and 1,2-diaminocyclohexane. The aliphatic primary amine (B) is more preferably at least one selected from the group consisting of 3-methoxypropylamine and 1,2-diaminocyclohexane. An aliphatic primary amine (B) may be used individually by 1 type, or may use 2 or more types together.
脂肪族第一級アミン(B)の使用量は、生成する銀微粒子の後処理等プロセス上の要請や使用する装置等の条件によって決められる。脂肪族第一級アミン(B)の使用量は、制御された粒子径の銀微粒子を得るために、カルボン酸の銀塩(a)1当量に対して、1当量以上であることが好ましい。また、過剰量の脂肪族第一級アミン(B)が存在したとしても安定した銀微粒子の製造は可能である。脂肪族第一級アミン(B)の使用量は、環境へのアミンの放出量を増加させないために、カルボン酸の銀塩(a)1当量に対して、好ましくは3.0当量以下、より好ましくは2.0当量以下、特に好ましくは1.6当量以下である。特に、後続の工程で、還元剤によって銀微粒子を析出させた液をそのまま、導電ペーストとして使用する場合、過剰量の脂肪族第一級アミンは加熱により気化する可能性がある。脂肪族第一級アミン(B)が過剰量とならないように、脂肪族第一級アミン(B)の使用量は、カルボン酸の銀塩(a)1当量に対して、1~3当量であることが好ましい。
The amount of the aliphatic primary amine (B) used is determined depending on the process requirements such as the post-treatment of the silver fine particles to be generated and the conditions of the equipment to be used. The amount of the aliphatic primary amine (B) used is preferably 1 equivalent or more with respect to 1 equivalent of the carboxylic acid silver salt (a) in order to obtain silver fine particles having a controlled particle size. Moreover, even if an excessive amount of the aliphatic primary amine (B) is present, stable production of silver fine particles is possible. The amount of the aliphatic primary amine (B) used is preferably not more than 3.0 equivalents relative to 1 equivalent of the carboxylic acid silver salt (a) so as not to increase the amount of amine released to the environment. Preferably it is 2.0 equivalent or less, Most preferably, it is 1.6 equivalent or less. In particular, when a liquid in which silver fine particles are precipitated by a reducing agent is used as a conductive paste as it is in a subsequent step, an excessive amount of an aliphatic primary amine may be vaporized by heating. The amount of the aliphatic primary amine (B) used is 1 to 3 equivalents relative to 1 equivalent of the silver salt of the carboxylic acid (a) so that the aliphatic primary amine (B) is not excessive. Preferably there is.
カルボン酸の銀塩(a)と脂肪族第一級アミン(B)との混合は、有機溶媒の非存在下又は存在下で行うことができる。有機溶媒を使用した場合は、カルボン酸の銀塩(a)と脂肪族第一級アミン(B)を容易に混合することができる。有機溶媒は、エタノール、プロパノール、ブタノール等のアルコール類、プロピレングリコールジブチルエーテル等のエーテル類、トルエン等の芳香族炭化水素等が挙げられる。有機溶媒は、1種を単独で使用してもよく、又は2種以上を併用してもよい。有機溶媒の使用量は、混合の利便性、後続の工程での銀微粒子の生産性の点から、任意の量とすることができる。
The mixing of the carboxylic acid silver salt (a) and the aliphatic primary amine (B) can be carried out in the absence or presence of an organic solvent. When an organic solvent is used, the silver salt of carboxylic acid (a) and the aliphatic primary amine (B) can be easily mixed. Examples of the organic solvent include alcohols such as ethanol, propanol and butanol, ethers such as propylene glycol dibutyl ether, and aromatic hydrocarbons such as toluene. An organic solvent may be used individually by 1 type, or may use 2 or more types together. The amount of the organic solvent used can be set to an arbitrary amount from the viewpoint of convenience of mixing and productivity of silver fine particles in the subsequent steps.
カルボン酸の銀塩(a)と脂肪族第一級アミン(B)との混合は、例えば、第一級脂肪族アミン(B)、又は第一級脂肪族アミン(B)と有機溶媒の混合物を撹拌しながら、カルボン酸の銀塩(a)を添加して行う。カルボン酸の銀塩(a)の添加が終了した後も、必要に応じて、撹拌を続けることができる。カルボン酸の銀塩(a)と脂肪族第一級アミン(B)とを混合している間の温度は、好ましくは20~80℃、より好ましくは20~60℃に維持する。
The mixture of the silver salt of carboxylic acid (a) and the aliphatic primary amine (B) is, for example, a primary aliphatic amine (B) or a mixture of a primary aliphatic amine (B) and an organic solvent. While stirring, the silver salt (a) of carboxylic acid is added. Stirring can be continued as necessary even after the addition of the silver salt (a) of carboxylic acid is completed. The temperature during the mixing of the carboxylic acid silver salt (a) and the aliphatic primary amine (B) is preferably maintained at 20 to 80 ° C., more preferably 20 to 60 ° C.
その後、カルボン酸の銀塩(a)と脂肪族第一級アミン(B)の混合物に、還元剤(c)を添加して、銀微粒子を析出させる。還元剤は、反応の制御の点から、ギ酸、ホルムアルデヒド、アスコルビン酸及びヒドラジンからなる群より選ばれる少なくとも1種であることが好ましい。還元剤は、より好ましくはギ酸である。還元剤は、1種を単独で使用してもよく、又は2種以上を併用してもよい。
Thereafter, a reducing agent (c) is added to the mixture of the silver salt of carboxylic acid (a) and the aliphatic primary amine (B) to precipitate silver fine particles. The reducing agent is preferably at least one selected from the group consisting of formic acid, formaldehyde, ascorbic acid and hydrazine from the viewpoint of controlling the reaction. The reducing agent is more preferably formic acid. A reducing agent may be used individually by 1 type, or may use 2 or more types together.
還元剤(c)の使用量は、通常、カルボン酸の銀塩(a)に対して酸化還元当量以上であり、酸化還元当量が、0.5~5倍であることが好ましく、より好ましくは1~3倍である。カルボン酸の銀塩(a)がモノカルボン酸の銀塩であり、還元剤(c)としてギ酸を使用する場合、ギ酸のモル換算での使用量は、カルボン酸の銀塩(a)1モルに対して、好ましくは0.25~2.5モル、より好ましくは0.5~1.5モル、更に好ましくは0.5~1.0モルである。
The amount of the reducing agent (c) used is usually not less than the redox equivalent relative to the silver salt of the carboxylic acid (a), and the redox equivalent is preferably 0.5 to 5 times, more preferably 1 to 3 times. When the silver salt of carboxylic acid (a) is a silver salt of monocarboxylic acid and formic acid is used as the reducing agent (c), the amount of formic acid used in terms of mole is 1 mol of silver salt of carboxylic acid (a). The amount is preferably from 0.25 to 2.5 mol, more preferably from 0.5 to 1.5 mol, still more preferably from 0.5 to 1.0 mol.
還元剤(c)の添加時及びその後の反応においては、反応温度を20~80℃に維持する。反応温度は、好ましくは20~70℃であり、より好ましくは20~60℃である。反応温度が20~80℃であると、銀微粒子は、粒子成長が十分であり、生産性も高く、また二次凝集も抑制される。還元剤の添加時及びその後の反応に要する時間は、反応装置の大きさに依存するが、通常、10分~10時間である。なお、還元剤の添加時及びその後の反応に際して、必要に応じて、エタノール、プロパノール、ブタノール等のアルコール類、プロピレングリコールジブチルエーテル等のエーテル類、トルエン等の芳香族炭化水素等の有機溶媒を添加することができる。
During the addition of the reducing agent (c) and in the subsequent reaction, the reaction temperature is maintained at 20 to 80 ° C. The reaction temperature is preferably 20 to 70 ° C, more preferably 20 to 60 ° C. When the reaction temperature is 20 to 80 ° C., the silver fine particles have sufficient particle growth, high productivity, and secondary aggregation is suppressed. The time required for the addition of the reducing agent and the subsequent reaction depends on the size of the reaction apparatus, but is usually 10 minutes to 10 hours. In addition, during the addition of the reducing agent and in the subsequent reaction, an organic solvent such as an alcohol such as ethanol, propanol or butanol, an ether such as propylene glycol dibutyl ether, or an aromatic hydrocarbon such as toluene is added as necessary. can do.
反応により析出した銀微粒子(A)を含む層は、そのまま導電ペーストとして使用することができる。反応により析出した銀微粒子(A)を含む層は、銀微粒子(A)を沈降させてデカンテーション等により上澄みを除去してから導電ペーストとして使用することもできる。銀微粒子(A)を沈降させる際、メタノールやエタノール等のアルコール類を、銀微粒子(A)を含む層に添加して銀微粒子(A)の沈降を早めることもできる。また、銀微粒子(A)を含む層は、必要に応じてエバポレーターによって残存するメタノールを留去して層に含まれる銀含有率を高めることもできる。反応により析出した銀微粒子(A)を含む層を導電ペーストとして使用する場合には、ペーストの粘度を調整するために、エバポレーターで層に含まれる溶媒を留去する直前に、銀微粒子(A)を含む層にジヒドロターピネオールやベンジルアルコール等の溶剤を加えておくこともできる。このようにして得られた導電ペーストの銀含有率は、好ましくは30~95質量%であり、より好ましくは50~92質量%である。
The layer containing silver fine particles (A) precipitated by the reaction can be used as it is as a conductive paste. The layer containing silver fine particles (A) precipitated by the reaction can be used as a conductive paste after the silver fine particles (A) are precipitated and the supernatant is removed by decantation or the like. When the silver fine particles (A) are precipitated, alcohols such as methanol and ethanol can be added to the layer containing the silver fine particles (A) to accelerate the precipitation of the silver fine particles (A). Moreover, the layer containing silver fine particles (A) can also raise the silver content contained in a layer by distilling off methanol which remains with an evaporator as needed. When a layer containing silver fine particles (A) precipitated by the reaction is used as a conductive paste, the silver fine particles (A) immediately before the solvent contained in the layer is distilled off by an evaporator in order to adjust the viscosity of the paste. A solvent such as dihydroterpineol or benzyl alcohol can be added to the layer containing. The silver content of the conductive paste thus obtained is preferably 30 to 95% by mass, more preferably 50 to 92% by mass.
銀微粒子(A)の周囲には、脂肪族第一級アミン(B)が配位し、一種のアミン錯体を形成していると考えられる。銀微粒子の周囲に存在するアミン類は、サブミクロン以下の粒径を有する銀微粒子同士の凝集を防いでいる。一方、銀微粒子に配位しているアミン類は、導電ペーストを熱処理した際に、銀微粒子同士の融着を妨げ、導電性を低下する要因になると考えられる。
It is considered that the aliphatic primary amine (B) is coordinated around the silver fine particles (A) to form a kind of amine complex. The amines present around the silver fine particles prevent aggregation of silver fine particles having a particle size of submicron or less. On the other hand, it is considered that amines coordinated with silver fine particles hinder the fusion of silver fine particles when the conductive paste is heat-treated, and become a factor of lowering conductivity.
本発明は、銀微粒子(A)を100質量部及び脂肪族第一級アミン(B)を1~40質量部を含む銀微粒子を含む層に、更に75~200の分子量を有するカルボン酸(C)を1~20質量部を加えて、導電ペーストとした。本発明の導電ペーストは、熱処理時に銀微粒子同士の融着の妨げとなっていた銀微粒子に配位しているアミン類を銀微粒子の周囲から除き、低温域の熱処理によって銀微粒子同士の融着を促進することができる。本発明の導電ペーストは、熱処理温度が300℃以下の低温の熱処理温度で、導電ペースト中に含まれる銀微粒子(A)同士の融着が進み、緻密性及び平滑性を確保しつつ、導電性がより改善された導電膜を形成することができる。熱処理温度は、好ましくは200℃以下、より好ましくは180℃以下、更に好ましくは120~180℃、特に好ましくは120~150℃である。
In the present invention, a layer containing silver fine particles containing 100 parts by mass of silver fine particles (A) and 1 to 40 parts by mass of aliphatic primary amine (B) is further added to a carboxylic acid (C ) Was added to 1 to 20 parts by mass to obtain a conductive paste. In the conductive paste of the present invention, the amines coordinated to the silver fine particles that hindered the fusion of the silver fine particles during the heat treatment are removed from the periphery of the silver fine particles, and the silver fine particles are fused by the low-temperature heat treatment. Can be promoted. The conductive paste of the present invention has a low heat treatment temperature of 300 ° C. or less, and the fusion of the silver fine particles (A) contained in the conductive paste proceeds to ensure the denseness and smoothness, while maintaining the conductivity. It is possible to form a conductive film with improved resistance. The heat treatment temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, still more preferably 120 to 180 ° C., and particularly preferably 120 to 150 ° C.
導電ペーストとして使用可能な銀微粒子(A)を含む層には、未反応の脂肪族第一級アミン(B)、カルボン酸の銀塩(a)と還元剤(c)が反応して生じたカルボン酸、このカルボン酸と脂肪族第一級アミンが反応して生じた塩等が残存している。銀微粒子(A)を含む層に酢酸やプロピオン酸のような分子量の小さいカルボン酸が存在しても、このような分子量の小さいカルボン酸は、銀微粒子(A)に配位しているアミン類を銀微粒子(A)の周囲から除くことはできない。
In the layer containing silver fine particles (A) that can be used as a conductive paste, unreacted aliphatic primary amine (B), silver salt of carboxylic acid (a), and reducing agent (c) were reacted. Carboxylic acid, a salt produced by the reaction of this carboxylic acid and an aliphatic primary amine, etc. remain. Even if a carboxylic acid having a low molecular weight such as acetic acid or propionic acid is present in the layer containing the silver fine particles (A), such a low carboxylic acid is coordinated with the silver fine particles (A). Cannot be removed from the periphery of the silver fine particles (A).
カルボン酸(C)の分子量は、75~200であり、より好ましくは75~160である。酢酸やプロピオン酸のような75未満の分子量を有するカルボン酸は、沸点が低いため、熱処理時に銀微粒子(A)に配位しているアミン類を銀微粒子(A)の周囲から除く前にカルボン酸が揮発してしまい、銀微粒子同士の融着の妨げとなっていたアミン類を銀微粒子の周囲から除くことができない。200を超える分子量を有するカルボン酸では、沸点が高いか、又は熱分解温度が高いため、200℃以下の低温での熱処理時に、カルボン酸が銀微粒子同士の間に残存し、却って銀微粒子同士の融着を妨げる場合がある。
The molecular weight of the carboxylic acid (C) is 75 to 200, more preferably 75 to 160. Since carboxylic acids having a molecular weight of less than 75, such as acetic acid and propionic acid, have a low boiling point, the amines coordinated to the silver fine particles (A) at the time of the heat treatment are removed before the silver fine particles (A) are removed from the surroundings. The amines that have prevented the fusion of the silver fine particles due to the volatilization of the acid cannot be removed from the periphery of the silver fine particles. Since the carboxylic acid having a molecular weight exceeding 200 has a high boiling point or a high thermal decomposition temperature, the carboxylic acid remains between the silver fine particles during the heat treatment at a low temperature of 200 ° C. or lower. May prevent fusion.
75~200の分子量を有するカルボン酸(C)は、銀微粒子(A)を100質量部と、脂肪族第一級アミン(B)1~40質量部とを含む混合物に対して、1~20質量部、好ましくは2~18質量部、より好ましくは3~15質量部、特に好ましくは4~12質量部添加する。75~200の分子量を有するカルボン酸(C)の使用量が、1質量部未満であると、加える量が少なすぎて、300℃以下、好ましくは200℃以下の低温で熱処理する際に銀微粒子(A)同士の融着の妨げとなっていたアミン類を除くことができない。75~200の分子量を有するカルボン酸(C)の使用量が、20質量部を超えると、銀微粒子(A)同士が凝集しやすくなり、導電ペーストとしての安定性が損なわれる。
The carboxylic acid (C) having a molecular weight of 75 to 200 is 1 to 20 with respect to a mixture containing 100 parts by mass of the silver fine particles (A) and 1 to 40 parts by mass of the aliphatic primary amine (B). Part by mass, preferably 2 to 18 parts by mass, more preferably 3 to 15 parts by mass, and particularly preferably 4 to 12 parts by mass are added. When the amount of the carboxylic acid (C) having a molecular weight of 75 to 200 is less than 1 part by mass, the amount added is too small and the silver fine particles are subjected to heat treatment at a low temperature of 300 ° C. or lower, preferably 200 ° C. or lower (A) The amines that hindered the fusion between each other cannot be removed. When the amount of the carboxylic acid (C) having a molecular weight of 75 to 200 exceeds 20 parts by mass, the silver fine particles (A) tend to aggregate with each other and the stability as a conductive paste is impaired.
75~200の分子量を有するカルボン酸(C)としては、炭素数が6~9の直鎖又は分岐鎖の炭化水素基を含む脂肪族モノカルボン酸、及び炭素数2~6の脂肪族ヒドロキシ酸からなる群より選ばれる少なくとも1種のカルボン酸であることが好ましい。炭素数が2~6の脂肪族ヒドロキシ酸の融点は、120℃以下のものであることが好ましく、80℃以下のものであることが更に好ましい。これらは、1種を単独で使用してもよく、又は2種以上を併用してもよい。
Examples of the carboxylic acid (C) having a molecular weight of 75 to 200 include an aliphatic monocarboxylic acid containing a linear or branched hydrocarbon group having 6 to 9 carbon atoms, and an aliphatic hydroxy acid having 2 to 6 carbon atoms. It is preferably at least one carboxylic acid selected from the group consisting of The melting point of the aliphatic hydroxy acid having 2 to 6 carbon atoms is preferably 120 ° C. or lower, and more preferably 80 ° C. or lower. These may be used individually by 1 type, or may use 2 or more types together.
炭素数が6~9の直鎖又は分岐鎖の炭化水素基を含む脂肪族モノカルボン酸としては、ヘキサン酸、3-メチルペンタン酸、ヘプタン酸、2-メチルヘキサン酸、3-メチルヘキサン酸、2-エチルペンタン酸、オクタン酸、2-メチルヘプタン酸、6-メチルヘプタン酸、2-エチルヘキサン酸、ノナン酸、2-メチル-n-オクタン酸、4-メチル-n-オクタン酸、7-メチル-n-オクタン酸等が挙げられる。
Examples of the aliphatic monocarboxylic acid containing a linear or branched hydrocarbon group having 6 to 9 carbon atoms include hexanoic acid, 3-methylpentanoic acid, heptanoic acid, 2-methylhexanoic acid, 3-methylhexanoic acid, 2-ethylpentanoic acid, octanoic acid, 2-methylheptanoic acid, 6-methylheptanoic acid, 2-ethylhexanoic acid, nonanoic acid, 2-methyl-n-octanoic acid, 4-methyl-n-octanoic acid, 7- And methyl-n-octanoic acid.
炭素数が2~6の脂肪族ヒドロキシ酸としては、グリコール酸、乳酸、タルトロン酸、グリセリン酸、2-ヒドロキシ酪酸、3-ヒドロキシ酪酸、γ-ヒドロキシ酪酸、リンゴ酸、酒石酸、シトラマル酸、クエン酸、イソクエン酸、ロイシン酸、メバロン酸等が挙げられる。
Aliphatic hydroxy acids having 2 to 6 carbon atoms include glycolic acid, lactic acid, tartronic acid, glyceric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, γ-hydroxybutyric acid, malic acid, tartaric acid, citramalic acid, and citric acid , Isocitric acid, leucine acid, mevalonic acid and the like.
分子量が75~200のカルボン酸(C)は、ヘキサン酸、2-エチルヘキサン酸、オクタン酸、4-メチル-n―オクタン酸、乳酸及びグリコール酸からなる群より選ばれる少なくとも1種のカルボン酸であることが好ましい。中でも、2-エチルヘキサン酸が好ましい。これらは、1種を単独で使用してもよく、又は2種を併用してもよい。
The carboxylic acid (C) having a molecular weight of 75 to 200 is at least one carboxylic acid selected from the group consisting of hexanoic acid, 2-ethylhexanoic acid, octanoic acid, 4-methyl-n-octanoic acid, lactic acid and glycolic acid. It is preferable that Of these, 2-ethylhexanoic acid is preferable. These may be used alone or in combination of two.
本発明の導電ペーストは、銀微粒子(A)を100質量部及び脂肪族第一級アミン(B)を1~40質量部を含む銀微粒子を含む層に、更にバインダ樹脂(D)を1~20質量部含むことが好ましい。導電ペースト中のバインダ樹脂(D)の含有量は、より好ましくは1~15質量部、更に好ましくは2~12質量部、特に好ましくは3~10質量部である。導電ペースト中にバインダ樹脂(D)を含有することにより、基板への印刷性や密着性を向上させることができる。
The conductive paste of the present invention comprises a layer containing silver fine particles containing 100 parts by mass of silver fine particles (A) and 1 to 40 parts by mass of an aliphatic primary amine (B), and further adding 1 to 1 binder resin (D). It is preferable to include 20 parts by mass. The content of the binder resin (D) in the conductive paste is more preferably 1 to 15 parts by mass, still more preferably 2 to 12 parts by mass, and particularly preferably 3 to 10 parts by mass. By containing the binder resin (D) in the conductive paste, the printability and adhesion to the substrate can be improved.
バインダ樹脂(D)は、エステル結合を含有するエポキシ樹脂を含むことが好ましい。エステル結合を含有するエポキシ樹脂は、分子内にエステル結合を1個以上含有するエポキシ樹脂であれば、特に限定されない。分子内のエステル結合の個数は、銀微粒子の焼結を阻害しないようにするために、好ましくは2個である。バインダ樹脂は、例えば、良好な導電性を得るために、フタル酸系グリシジルエステル型エポキシ樹脂が好ましい。フタル酸系グリシジルエステル型エポキシ樹脂は、フタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル及びこれらのアルキル置換体;例えば、ジメチルグリシジルフタレート、メチルグリシジル・グリシジルフタレート、ジエチルグリシジルフタレート、ジプロピルグリシジルフタレート、ジブチルグリシジルフタレート等が挙げられる。中でも、特にヘキサヒドロフタル酸ジグリシジルエステルが好ましい。これらは、1種を単独で使用してもよく、又は2種以上を併用してもよい。
The binder resin (D) preferably contains an epoxy resin containing an ester bond. The epoxy resin containing an ester bond is not particularly limited as long as it is an epoxy resin containing one or more ester bonds in the molecule. The number of ester bonds in the molecule is preferably 2 so as not to inhibit the sintering of the silver fine particles. The binder resin is preferably, for example, a phthalic acid glycidyl ester type epoxy resin in order to obtain good conductivity. Phthalic acid-based glycidyl ester type epoxy resins are phthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester and alkyl substitution products thereof; for example, dimethyl glycidyl phthalate, methyl glycidyl glycidyl phthalate, diethyl Examples thereof include glycidyl phthalate, dipropyl glycidyl phthalate, and dibutyl glycidyl phthalate. Among these, hexahydrophthalic acid diglycidyl ester is particularly preferable. These may be used individually by 1 type, or may use 2 or more types together.
バインダ樹脂(D)は、例えばフタル酸系グリシジルエステル型エポキシ樹脂等のエステル結合を含有するエポキシ樹脂に限定されるものではなく、他にもオキセタン樹脂、熱硬化性フェノール樹脂、ウレタン樹脂、アクリル樹脂などの熱硬化型樹脂を使用することもでき、これらは、1種を単独で使用してもよく、又は2種以上を併用してもよい。
The binder resin (D) is not limited to an epoxy resin containing an ester bond such as a phthalic acid-based glycidyl ester type epoxy resin, and other oxetane resins, thermosetting phenol resins, urethane resins, acrylic resins. Thermosetting resins such as these can also be used, and these may be used alone or in combination of two or more.
導電ペーストにバインダ樹脂(D)を含む場合には、更に硬化剤を含んでいてもよい。硬化剤は、バインダ樹脂(D)がエステル結合を有するエポキシ樹脂である場合には、エポキシ樹脂を硬化させるものであれば、特に限定されず、例えば、カチオン重合開始剤、アミン系硬化剤、酸無水物硬化剤、フェノール系硬化剤などを使用することができる。硬化剤は、銀粒子同士の融着が進行し、良好な導電性を得るために、カチオン重合開始剤が特に好ましい。これらは、1種を単独で使用してもよく、又は2種以上を併用してもよい。
In the case where the conductive paste contains the binder resin (D), it may further contain a curing agent. When the binder resin (D) is an epoxy resin having an ester bond, the curing agent is not particularly limited as long as it cures the epoxy resin. For example, a cationic polymerization initiator, an amine curing agent, an acid An anhydride curing agent, a phenolic curing agent, and the like can be used. As the curing agent, a cationic polymerization initiator is particularly preferable in order that fusion between silver particles proceeds and good conductivity is obtained. These may be used individually by 1 type, or may use 2 or more types together.
カチオン重合開始剤としては、ルイス酸塩、オニウム塩、脂肪酸金属等が挙げられる。中でも、カチオン重合開始剤は、オニウム塩が好ましい。オニウム塩は、例えば、4-メチルフェニル[4-(1-メチルエチル)フェニル]ヨードニウム・テトラキス(ペンタフルオロフェニル)ボラート、のようなジアリールヨードニウムテトラキス(ペンタフルオロフェニル)ボロン塩が特に好ましい。
Examples of cationic polymerization initiators include Lewis acid salts, onium salts, and fatty acid metals. Among them, the cation salt is preferably an onium salt. The onium salt is particularly preferably a diaryliodonium tetrakis (pentafluorophenyl) boron salt such as 4-methylphenyl [4- (1-methylethyl) phenyl] iodonium tetrakis (pentafluorophenyl) borate.
導電ペースト中の硬化剤の含有量は、硬化剤の種類やバインダ樹脂との組合せによって大きく変わるため、特には制限されない。例えば導電ペースト中のバインダ樹脂がエステル結合を含有するエポキシ樹脂で、硬化剤がカチオン重合開始剤の場合、硬化剤は、バインダ樹脂100質量部に対して、好ましくは0.5~10質量部、より好ましくは2.5~8質量部添加する。
The content of the curing agent in the conductive paste is not particularly limited because it varies greatly depending on the type of the curing agent and the combination with the binder resin. For example, when the binder resin in the conductive paste is an epoxy resin containing an ester bond and the curing agent is a cationic polymerization initiator, the curing agent is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the binder resin. More preferably, 2.5 to 8 parts by mass are added.
本発明の導電ペーストは、その他に、チタンカップリング剤(例えば、イソプロピルトリイソステアロイルチタナート等のチタン酸エステル)、シランカップリング剤、難燃剤、レベリング剤、チキソトロピック剤、消泡剤、イオン捕捉剤等を含有することができる。
In addition, the conductive paste of the present invention includes titanium coupling agents (for example, titanate esters such as isopropyl triisostearoyl titanate), silane coupling agents, flame retardants, leveling agents, thixotropic agents, antifoaming agents, ion A scavenger and the like can be contained.
本発明の導電ペーストの製造方法は、(1)カルボン酸の銀塩(a)と脂肪族第一級アミン(B)を混合する工程、(2)還元剤(c)を添加して、反応温度20~80℃で反応させる工程、(3)反応生成物を層分離させて、銀微粒子(A)を含有する層を回収する工程、(4)回収した層中に含まれる銀微粒子(A)100質量部に対して、75~200の分子量を有するカルボン酸(C)1~20質量部を混合する工程を含む。
The method for producing a conductive paste of the present invention comprises (1) a step of mixing a silver salt of carboxylic acid (a) and an aliphatic primary amine (B), and (2) adding a reducing agent (c) to react. A step of reacting at a temperature of 20 to 80 ° C., (3) a step of separating the reaction product into layers and recovering a layer containing silver fine particles (A), and (4) a silver fine particle contained in the recovered layer (A ) 1 to 20 parts by weight of a carboxylic acid (C) having a molecular weight of 75 to 200 is mixed with 100 parts by weight.
本発明の導電性ペーストの製造方法は、(1)有機溶媒の存在下に、カルボン酸の銀塩(a)と脂肪族第一級アミン(B)を混合する工程、(2)還元剤(c)を添加して、反応温度20~80℃で反応させる工程、(3)反応生成物を層分離させて、銀微粒子(A)を含有する層を回収する工程、(4)回収した層中に含まれる銀微粒子(A)100質量部に対して、75~200の分子量を有するカルボン酸(C)1~20質量部を混合する工程を含む。なお、(1)~(4)工程において、還元剤の添加及びその後の反応に際して、必要に応じて、有機溶媒を添加してもよい。有機溶媒は、エタノール、プロパノール、ブタノール等のアルコール類、プロピレングリコールジブチルエーテル等のエーテル類、トルエン等の芳香族炭化水素類等が挙げられる。
The method for producing a conductive paste of the present invention comprises (1) a step of mixing a silver salt of a carboxylic acid (a) and an aliphatic primary amine (B) in the presence of an organic solvent, (2) a reducing agent ( c) adding and reacting at a reaction temperature of 20 to 80 ° C., (3) separating the reaction product into layers and recovering the layer containing silver fine particles (A), and (4) the recovered layer. A step of mixing 1 to 20 parts by mass of a carboxylic acid (C) having a molecular weight of 75 to 200 with 100 parts by mass of silver fine particles (A) contained therein. In the steps (1) to (4), an organic solvent may be added as necessary during the addition of the reducing agent and the subsequent reaction. Examples of the organic solvent include alcohols such as ethanol, propanol, and butanol, ethers such as propylene glycol dibutyl ether, and aromatic hydrocarbons such as toluene.
本発明の導電ペーストが(D)バインダ樹脂や、硬化剤等のその他の添加剤を含む場合には、75~200の分子量を有するカルボン酸(C)を混合する工程と同時に、(D)バインダ樹脂や硬化剤等を添加することができる。又は、75~200の分子量を有するカルボン酸(C)を混合する工程の前若しくは後に、(D)バインダ樹脂や硬化剤等を添加することができる。
When the conductive paste of the present invention contains (D) a binder resin and other additives such as a curing agent, simultaneously with the step of mixing the carboxylic acid (C) having a molecular weight of 75 to 200, the (D) binder Resins, curing agents, and the like can be added. Alternatively, (D) a binder resin, a curing agent, or the like can be added before or after the step of mixing the carboxylic acid (C) having a molecular weight of 75 to 200.
上記方法により製造された導電ペーストを用いて、基材等に、スクリーン印刷等の従来公知の方法で印刷又は塗布した後、熱処理することにより導電膜を形成することができる。熱処理温度は、好ましくは60~300℃であり、より好ましくは100~250℃、更に好ましくは120~200℃、特に好ましくは120~180℃、最も好ましくは120~150℃である。また、導電ペースト中に含まれる銀微粒子は、平均粒子径が小さく、より微細化する回路パターンを形成する要求に応えることができる。
Using a conductive paste produced by the above method, a conductive film can be formed by printing or coating on a substrate or the like by a conventionally known method such as screen printing, followed by heat treatment. The heat treatment temperature is preferably 60 to 300 ° C, more preferably 100 to 250 ° C, still more preferably 120 to 200 ° C, particularly preferably 120 to 180 ° C, and most preferably 120 to 150 ° C. Further, the silver fine particles contained in the conductive paste have a small average particle diameter, and can meet the demand for forming a circuit pattern that is further refined.
以下、実施例及び比較例によって、本発明を更に詳細に説明する。本発明は、これらの実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to these examples.
〔銀微粒子(AI)を含有するペースト〕
反応容器に3-メトキシプロピルアミン4kg(45mol)を入れ、撹拌しながら反応温度を40℃以下に保持しつつ、酢酸銀5kg(30mol)を添加すると、酢酸銀は微黄色澄明な溶液となって溶解した。そこへ95重量%のギ酸0.7kg(15mol)をゆっくり滴下し、その間、反応温度を30~40℃に保持すると、ギ酸の添加とともに銀微粒子が生成していき、微黄色澄明な溶液が次第に黒色へと変化した。ギ酸を全量滴下して反応を終了させた後、得られた反応混合物に撹拌しながらメタノールを添加し、その後25℃で静置すると二層に分かれた。上層は黄色澄明な液であり、下層には黒色の銀微粒子(AI)が沈降した。上層の液をデカンテーションで除去し、更にメタノール添加と静置、そしてデカンテーションを繰り返して得られたペーストに、ジヒドロターピネオール0.3kgを加えて混合し、エバポレーターによって残存するメタノールを留去して、銀微粒子(AI)を含む銀含有率90質量%の導電ペーストを得た。 [Paste containing silver fine particles (AI)]
When 4 kg (45 mol) of 3-methoxypropylamine is put into a reaction vessel and 5 kg (30 mol) of silver acetate is added while maintaining the reaction temperature at 40 ° C. or lower while stirring, the silver acetate becomes a slightly yellow clear solution. Dissolved. To this, 0.7 kg (15 mol) of 95% by weight of formic acid was slowly added dropwise, and while maintaining the reaction temperature at 30 to 40 ° C., silver fine particles were formed with the addition of formic acid, and a slightly yellow and clear solution was gradually formed. It changed to black. After formic acid was added dropwise to complete the reaction, methanol was added to the resulting reaction mixture while stirring, and then allowed to stand at 25 ° C. to separate into two layers. The upper layer was a clear yellow liquid, and black silver fine particles (AI) were precipitated in the lower layer. The upper layer liquid is removed by decantation, and methanol is added and allowed to stand, and the decantation is repeated until 0.3 kg of dihydroterpineol is added and mixed, and the remaining methanol is distilled off by an evaporator. A conductive paste having a silver content of 90% by mass containing silver fine particles (AI) was obtained.
反応容器に3-メトキシプロピルアミン4kg(45mol)を入れ、撹拌しながら反応温度を40℃以下に保持しつつ、酢酸銀5kg(30mol)を添加すると、酢酸銀は微黄色澄明な溶液となって溶解した。そこへ95重量%のギ酸0.7kg(15mol)をゆっくり滴下し、その間、反応温度を30~40℃に保持すると、ギ酸の添加とともに銀微粒子が生成していき、微黄色澄明な溶液が次第に黒色へと変化した。ギ酸を全量滴下して反応を終了させた後、得られた反応混合物に撹拌しながらメタノールを添加し、その後25℃で静置すると二層に分かれた。上層は黄色澄明な液であり、下層には黒色の銀微粒子(AI)が沈降した。上層の液をデカンテーションで除去し、更にメタノール添加と静置、そしてデカンテーションを繰り返して得られたペーストに、ジヒドロターピネオール0.3kgを加えて混合し、エバポレーターによって残存するメタノールを留去して、銀微粒子(AI)を含む銀含有率90質量%の導電ペーストを得た。 [Paste containing silver fine particles (AI)]
When 4 kg (45 mol) of 3-methoxypropylamine is put into a reaction vessel and 5 kg (30 mol) of silver acetate is added while maintaining the reaction temperature at 40 ° C. or lower while stirring, the silver acetate becomes a slightly yellow clear solution. Dissolved. To this, 0.7 kg (15 mol) of 95% by weight of formic acid was slowly added dropwise, and while maintaining the reaction temperature at 30 to 40 ° C., silver fine particles were formed with the addition of formic acid, and a slightly yellow and clear solution was gradually formed. It changed to black. After formic acid was added dropwise to complete the reaction, methanol was added to the resulting reaction mixture while stirring, and then allowed to stand at 25 ° C. to separate into two layers. The upper layer was a clear yellow liquid, and black silver fine particles (AI) were precipitated in the lower layer. The upper layer liquid is removed by decantation, and methanol is added and allowed to stand, and the decantation is repeated until 0.3 kg of dihydroterpineol is added and mixed, and the remaining methanol is distilled off by an evaporator. A conductive paste having a silver content of 90% by mass containing silver fine particles (AI) was obtained.
〔銀微粒子(AII)を含有するペースト〕
反応容器にトルエン1.5kgを入れ、1,2-ジアミノシクロヘキサン0.9kg(8.0mol)を添加した後、撹拌しながら、反応温度を45℃以下に保持しつつ、酢酸銀2.5kg(15.0mol)を添加した。反応系がほぼ均一になったことを確認した後、撹拌しながら、ギ酸0.5kg(10.5mol)を少量ずつ添加した。その間、反応温度を40~45℃に保持した。ギ酸を全量滴下して反応を終了させた後、得られた反応混合物に撹拌しながらメタノールを添加し、その後20℃で静置すると二層に分かれた。上層の液をデカンテーションで除去したペーストに、ジヒドロターピネオール40gを加えて混合し、エバポレーターで残存するメタノールを留去して、銀含有率52質量%の銀微粒子(AII)を含む導電ペーストを得た。 [Paste containing silver fine particles (AII)]
After putting 1.5 kg of toluene in a reaction vessel and adding 0.9 kg (8.0 mol) of 1,2-diaminocyclohexane, 2.5 kg of silver acetate (while maintaining the reaction temperature at 45 ° C. or lower with stirring) 15.0 mol) was added. After confirming that the reaction system was almost uniform, 0.5 kg (10.5 mol) of formic acid was added little by little while stirring. Meanwhile, the reaction temperature was kept at 40-45 ° C. After formic acid was added dropwise to complete the reaction, methanol was added to the resulting reaction mixture while stirring, and then allowed to stand at 20 ° C. to separate into two layers. 40 g of dihydroterpineol was added to and mixed with the paste from which the upper layer liquid was removed by decantation, and the remaining methanol was distilled off with an evaporator to obtain a conductive paste containing silver fine particles (AII) with a silver content of 52 mass%. It was.
反応容器にトルエン1.5kgを入れ、1,2-ジアミノシクロヘキサン0.9kg(8.0mol)を添加した後、撹拌しながら、反応温度を45℃以下に保持しつつ、酢酸銀2.5kg(15.0mol)を添加した。反応系がほぼ均一になったことを確認した後、撹拌しながら、ギ酸0.5kg(10.5mol)を少量ずつ添加した。その間、反応温度を40~45℃に保持した。ギ酸を全量滴下して反応を終了させた後、得られた反応混合物に撹拌しながらメタノールを添加し、その後20℃で静置すると二層に分かれた。上層の液をデカンテーションで除去したペーストに、ジヒドロターピネオール40gを加えて混合し、エバポレーターで残存するメタノールを留去して、銀含有率52質量%の銀微粒子(AII)を含む導電ペーストを得た。 [Paste containing silver fine particles (AII)]
After putting 1.5 kg of toluene in a reaction vessel and adding 0.9 kg (8.0 mol) of 1,2-diaminocyclohexane, 2.5 kg of silver acetate (while maintaining the reaction temperature at 45 ° C. or lower with stirring) 15.0 mol) was added. After confirming that the reaction system was almost uniform, 0.5 kg (10.5 mol) of formic acid was added little by little while stirring. Meanwhile, the reaction temperature was kept at 40-45 ° C. After formic acid was added dropwise to complete the reaction, methanol was added to the resulting reaction mixture while stirring, and then allowed to stand at 20 ° C. to separate into two layers. 40 g of dihydroterpineol was added to and mixed with the paste from which the upper layer liquid was removed by decantation, and the remaining methanol was distilled off with an evaporator to obtain a conductive paste containing silver fine particles (AII) with a silver content of 52 mass%. It was.
銀微粒子を含有するペースト中の銀微粒子(AI)及び(AII)について、粒子特性を測定・評価した。結果を表1に示す。
The particle characteristics of the silver fine particles (AI) and (AII) in the paste containing silver fine particles were measured and evaluated. The results are shown in Table 1.
銀微粒子の測定・評価は、次のようにして行った。
The silver fine particles were measured and evaluated as follows.
平均粒子径:日本電子社製FE-SEM(JSM7500F)により計測し、任意に選んだ粒子300個の直径の算術平均値を求め、その値をもって平均粒子径とした。
Average particle diameter: Measured by FE-SEM (JSM7500F) manufactured by JEOL Ltd., an arithmetic average value of 300 arbitrarily selected diameters was obtained, and the value was used as the average particle diameter.
結晶子径:マックサイエンス社製X線回折測定装置(M18XHF22)による測定によって、CuのKα線を線源とした面指数(1,1,1)面ピークの半値幅を求め、Scherrerの式より結晶子径を計算した。
Crystallite diameter: The half-value width of the plane index (1,1,1) plane peak using Cu Kα ray as the radiation source was determined by measurement with an X-ray diffraction measurement device (M18XHF22) manufactured by Mac Science, and the Scherrer equation was used. The crystallite size was calculated.
(実施例1~6、比較例1~3)
比較例1は、銀微粒子(AI)を含むペースト(銀含有率90質量%)をそのまま導電ペーストとした。
また、実施例1~6は、銀微粒子(AI)を含むペースト(銀含有率90質量%)に、ヘキサン酸、2-エチルヘキサン酸、オクタン酸、4-メチル-n-オクタン酸、乳酸、グリコール酸を、銀微粒子100質量部に対して各々5.6質量部ずつ添加して、導電ペーストを得た。尚、この銀微粒子(AI)を含む銀含有率90質量%の導電ペースト中には、3-メトキシプロピルアミンが銀微粒子100質量部に対して2.2部、溶剤としてジヒドロターピネオールが銀微粒子100質量部に対して9部含まれる。
比較例2は、銀微粒子(AI)を含むペースト(銀含有率90質量%)に、ギ酸(分子量:46)を5.6質量部添加し、導電ペーストを得た。
比較例3は、銀微粒子(AI)を含むペースト(銀含有率90質量%)に、酢酸(分子量:60)を5.6質量部添加し、導電ペーストを得た。
表2に、実施例1~6及び比較例1~3の導電ペーストの配合を示す。表2~4中、単位の記載のない数値は、質量部を示す。 (Examples 1 to 6, Comparative Examples 1 to 3)
In Comparative Example 1, a paste containing silver fine particles (AI) (silver content 90 mass%) was used as it was as a conductive paste.
In Examples 1 to 6, paste containing silver fine particles (AI) (silver content: 90% by mass) was added to hexanoic acid, 2-ethylhexanoic acid, octanoic acid, 4-methyl-n-octanoic acid, lactic acid, Glycolic acid was added in an amount of 5.6 parts by mass with respect to 100 parts by mass of silver fine particles to obtain a conductive paste. In the conductive paste containing 90% by mass of silver containing silver fine particles (AI), 3-methoxypropylamine is 2.2 parts with respect to 100 parts by mass of silver fine particles, and dihydroterpineol is used as the solvent. 9 parts are included with respect to parts by mass.
In Comparative Example 2, 5.6 parts by mass of formic acid (molecular weight: 46) was added to a paste containing silver fine particles (AI) (silver content 90 mass%) to obtain a conductive paste.
In Comparative Example 3, 5.6 parts by mass of acetic acid (molecular weight: 60) was added to a paste (silver content 90 mass%) containing silver fine particles (AI) to obtain a conductive paste.
Table 2 shows the blends of the conductive pastes of Examples 1 to 6 and Comparative Examples 1 to 3. In Tables 2 to 4, numerical values without unit description indicate parts by mass.
比較例1は、銀微粒子(AI)を含むペースト(銀含有率90質量%)をそのまま導電ペーストとした。
また、実施例1~6は、銀微粒子(AI)を含むペースト(銀含有率90質量%)に、ヘキサン酸、2-エチルヘキサン酸、オクタン酸、4-メチル-n-オクタン酸、乳酸、グリコール酸を、銀微粒子100質量部に対して各々5.6質量部ずつ添加して、導電ペーストを得た。尚、この銀微粒子(AI)を含む銀含有率90質量%の導電ペースト中には、3-メトキシプロピルアミンが銀微粒子100質量部に対して2.2部、溶剤としてジヒドロターピネオールが銀微粒子100質量部に対して9部含まれる。
比較例2は、銀微粒子(AI)を含むペースト(銀含有率90質量%)に、ギ酸(分子量:46)を5.6質量部添加し、導電ペーストを得た。
比較例3は、銀微粒子(AI)を含むペースト(銀含有率90質量%)に、酢酸(分子量:60)を5.6質量部添加し、導電ペーストを得た。
表2に、実施例1~6及び比較例1~3の導電ペーストの配合を示す。表2~4中、単位の記載のない数値は、質量部を示す。 (Examples 1 to 6, Comparative Examples 1 to 3)
In Comparative Example 1, a paste containing silver fine particles (AI) (silver content 90 mass%) was used as it was as a conductive paste.
In Examples 1 to 6, paste containing silver fine particles (AI) (silver content: 90% by mass) was added to hexanoic acid, 2-ethylhexanoic acid, octanoic acid, 4-methyl-n-octanoic acid, lactic acid, Glycolic acid was added in an amount of 5.6 parts by mass with respect to 100 parts by mass of silver fine particles to obtain a conductive paste. In the conductive paste containing 90% by mass of silver containing silver fine particles (AI), 3-methoxypropylamine is 2.2 parts with respect to 100 parts by mass of silver fine particles, and dihydroterpineol is used as the solvent. 9 parts are included with respect to parts by mass.
In Comparative Example 2, 5.6 parts by mass of formic acid (molecular weight: 46) was added to a paste containing silver fine particles (AI) (silver content 90 mass%) to obtain a conductive paste.
In Comparative Example 3, 5.6 parts by mass of acetic acid (molecular weight: 60) was added to a paste (silver content 90 mass%) containing silver fine particles (AI) to obtain a conductive paste.
Table 2 shows the blends of the conductive pastes of Examples 1 to 6 and Comparative Examples 1 to 3. In Tables 2 to 4, numerical values without unit description indicate parts by mass.
体積抵抗率:各実施例及び比較例の導電ペーストを用い、幅26mm、長さ76mm、厚さ1.2~1.5mmのスライドガラスに、各導電ペーストを幅10mm、長さ50mm、厚さ約0.05mmのパターンに塗布した。導電ペーストを塗布した試験片を200℃で30分熱処理した後、導電ペーストから得られた導電膜の厚さと抵抗値を以下のように測定した。
表面粗さ形状測定機(東京精密社製、SURFCOM 1500SD2-12)を用いて、薄膜の厚みを測定した。また、デジタルマルチメーター(東陽テクニカ社製、2001型)を用いて抵抗値を測定した。測定結果から、下記式(1)により、体積低効率を求めた。
体積抵抗率(Ω・cm)=R×W×t/(L×10000) (1)
R:抵抗値〔Ω〕, t:厚み〔μm〕
W:パターン幅 10mm, L:パターン長さ50mm Volume resistivity: Using the conductive paste of each example and comparative example, each conductive paste was 10 mm wide, 50 mm long, and thick on a slide glass having a width of 26 mm, a length of 76 mm, and a thickness of 1.2 to 1.5 mm. It apply | coated to the pattern of about 0.05 mm. After heat-treating the test piece coated with the conductive paste at 200 ° C. for 30 minutes, the thickness and resistance value of the conductive film obtained from the conductive paste were measured as follows.
The thickness of the thin film was measured using a surface roughness shape measuring machine (manufactured by Tokyo Seimitsu Co., Ltd., SURFCOM 1500SD2-12). Moreover, resistance value was measured using the digital multimeter (Toyo Technica company make, 2001 type). From the measurement results, the volume low efficiency was determined by the following formula (1).
Volume resistivity (Ω · cm) = R × W × t / (L × 10000) (1)
R: resistance [Ω], t: thickness [μm]
W: Pattern width 10 mm, L:Pattern length 50 mm
表面粗さ形状測定機(東京精密社製、SURFCOM 1500SD2-12)を用いて、薄膜の厚みを測定した。また、デジタルマルチメーター(東陽テクニカ社製、2001型)を用いて抵抗値を測定した。測定結果から、下記式(1)により、体積低効率を求めた。
体積抵抗率(Ω・cm)=R×W×t/(L×10000) (1)
R:抵抗値〔Ω〕, t:厚み〔μm〕
W:パターン幅 10mm, L:パターン長さ50mm Volume resistivity: Using the conductive paste of each example and comparative example, each conductive paste was 10 mm wide, 50 mm long, and thick on a slide glass having a width of 26 mm, a length of 76 mm, and a thickness of 1.2 to 1.5 mm. It apply | coated to the pattern of about 0.05 mm. After heat-treating the test piece coated with the conductive paste at 200 ° C. for 30 minutes, the thickness and resistance value of the conductive film obtained from the conductive paste were measured as follows.
The thickness of the thin film was measured using a surface roughness shape measuring machine (manufactured by Tokyo Seimitsu Co., Ltd., SURFCOM 1500SD2-12). Moreover, resistance value was measured using the digital multimeter (Toyo Technica company make, 2001 type). From the measurement results, the volume low efficiency was determined by the following formula (1).
Volume resistivity (Ω · cm) = R × W × t / (L × 10000) (1)
R: resistance [Ω], t: thickness [μm]
W: Pattern width 10 mm, L:
実施例1~6及び比較例1~3の導電ペーストについて、体積抵抗率の測定結果を表2に示す。なお、表2中、体積抵抗率は、10のべき乗数(例えば、実施例1の2.7×10-6)を、E(例えば、実施例1の2.7E-06)を用いて表すものとする。
Table 2 shows the measurement results of volume resistivity of the conductive pastes of Examples 1 to 6 and Comparative Examples 1 to 3. In Table 2, the volume resistivity is expressed by using a power of 10 (for example, 2.7 × 10 −6 in Example 1) and E (for example, 2.7E-06 in Example 1). Shall.
表2に示すように、本発明の導電ペーストは、75~200の分子量を有するカルボン酸(C)を含むことにより、200℃の熱処理温度で、体積抵抗率が3μΩ・cm未満となり、優れた導電性を改善した導電膜が形成できた。導電膜は銀膜である。一方、カルボン酸(C)を含んでいない比較例1の導電ペースト、及び75未満の分子量を有するカルボン酸を含む比較例2及び3の導電ペーストは全て体積抵抗率が3μΩ・cmを超えていた。
As shown in Table 2, the conductive paste of the present invention contains a carboxylic acid (C) having a molecular weight of 75 to 200, so that it has an excellent volume resistivity of less than 3 μΩ · cm at a heat treatment temperature of 200 ° C. A conductive film with improved conductivity could be formed. The conductive film is a silver film. On the other hand, the conductive paste of Comparative Example 1 not containing carboxylic acid (C) and the conductive pastes of Comparative Examples 2 and 3 containing carboxylic acid having a molecular weight of less than 75 all had a volume resistivity exceeding 3 μΩ · cm. .
更に、実施例2及び比較例1の導電ペーストについて、実施例1と同様にして、スライドガラス上にパターンを塗布して複数の試験片を作製し、各試験片をそれぞれ90~300℃で30分間熱処理した後、実施例1と同様にして、抵抗値と膜厚を測定し、体積抵抗率を求めた。結果を表3に示す。
Further, for the conductive pastes of Example 2 and Comparative Example 1, a plurality of test pieces were prepared by applying a pattern on a slide glass in the same manner as in Example 1, and each test piece was 30 to 90 ° C. at 30 to 300 ° C., respectively. After heat-treating for minutes, the resistance value and film thickness were measured in the same manner as in Example 1 to determine the volume resistivity. The results are shown in Table 3.
図1は、銀微粒子(AI)を含有する層を、そのまま使用した導電ペースト(比較例1)と、これに2-エチルヘキサン酸を添加した導電ペースト(実施例2)を塗布した試験片を、100℃で30分間、150℃で30分間、200℃で30分間熱処理した後のFE-SEM写真と、体積抵抗率(Ω・cm)の数値とを示す。また、図2は、実施例2または比較例1の導電ペーストの熱処理温度と、各導電ペーストを熱処理して得られた導電膜の体積抵抗率(Ω・cm)の関係を示すグラフである。
FIG. 1 shows a test piece coated with a conductive paste (Comparative Example 1) using a layer containing silver fine particles (AI) as it is and a conductive paste (Example 2) to which 2-ethylhexanoic acid is added. FE-SEM photographs after heat treatment at 100 ° C. for 30 minutes, 150 ° C. for 30 minutes, and 200 ° C. for 30 minutes, and numerical values of volume resistivity (Ω · cm) are shown. FIG. 2 is a graph showing the relationship between the heat treatment temperature of the conductive paste of Example 2 or Comparative Example 1 and the volume resistivity (Ω · cm) of the conductive film obtained by heat-treating each conductive paste.
表3、図1及び図2に示すとおり、実施例2の導電ペーストは、150℃の熱処理温度で、体積抵抗率が4μΩ・cm以下の優れた導電性を有する導電膜を形成することができた。また、実施例2の導電ペーストは、120℃の熱処理温度で、体積抵抗率が5μΩ・cm以下の優れた導電性を有する導電膜を形成することができた。実施例2の導電ペーストは、100℃の熱処理温度で、体積抵抗率が30μΩ・cm程度の導電性を有する導電膜を形成することができた。実施例2の導電ペーストは、180℃以下、好ましくは150℃以下の低温の熱処理温度でも、導電ペースト中に含まれる銀微粒子同士の融着が進み、導電性がより改善された導電膜を形成することができた。実施例2の導電ペーストは、図1のFE-SEM写真に示すように、好ましくは120~180℃、より好ましくは120~150℃の熱処理温度で、緻密性及び平滑性に優れた導電膜を形成できることが確認できた。実施例2の導電膜は、銀膜である。
As shown in Table 3, FIG. 1 and FIG. 2, the conductive paste of Example 2 can form a conductive film having excellent conductivity with a volume resistivity of 4 μΩ · cm or less at a heat treatment temperature of 150 ° C. It was. Further, the conductive paste of Example 2 was able to form a conductive film having excellent conductivity with a volume resistivity of 5 μΩ · cm or less at a heat treatment temperature of 120 ° C. The conductive paste of Example 2 could form a conductive film having a volume resistivity of about 30 μΩ · cm at a heat treatment temperature of 100 ° C. The conductive paste of Example 2 forms a conductive film with improved conductivity by progressing fusion of silver fine particles contained in the conductive paste even at a low heat treatment temperature of 180 ° C. or lower, preferably 150 ° C. or lower. We were able to. As shown in the FE-SEM photograph of FIG. 1, the conductive paste of Example 2 is preferably a conductive film excellent in denseness and smoothness at a heat treatment temperature of 120 to 180 ° C., more preferably 120 to 150 ° C. It was confirmed that it could be formed. The conductive film of Example 2 is a silver film.
(実施例7)
実施例2の導電ペーストに、更にバインダ樹脂としてヘキサヒドロフタル酸ジグリシジルエステルを3.3質量部、硬化剤として4-メチルフェニル[4-(1-メチルエチル)フェニル]ヨードニウム・テトラキス(ペンタフルオロフェニル)ボラートを0.17質量部添加して、実施例7の導電ペーストを得た。表4に、実施例7及び比較例1の導電ペーストの配合を示す。 (Example 7)
In addition to the conductive paste of Example 2, 3.3 parts by mass of hexahydrophthalic acid diglycidyl ester as a binder resin and 4-methylphenyl [4- (1-methylethyl) phenyl] iodonium tetrakis (pentafluoro) as a curing agent 0.17 parts by mass of phenyl) borate was added to obtain a conductive paste of Example 7. Table 4 shows the composition of the conductive pastes of Example 7 and Comparative Example 1.
実施例2の導電ペーストに、更にバインダ樹脂としてヘキサヒドロフタル酸ジグリシジルエステルを3.3質量部、硬化剤として4-メチルフェニル[4-(1-メチルエチル)フェニル]ヨードニウム・テトラキス(ペンタフルオロフェニル)ボラートを0.17質量部添加して、実施例7の導電ペーストを得た。表4に、実施例7及び比較例1の導電ペーストの配合を示す。 (Example 7)
In addition to the conductive paste of Example 2, 3.3 parts by mass of hexahydrophthalic acid diglycidyl ester as a binder resin and 4-methylphenyl [4- (1-methylethyl) phenyl] iodonium tetrakis (pentafluoro) as a curing agent 0.17 parts by mass of phenyl) borate was added to obtain a conductive paste of Example 7. Table 4 shows the composition of the conductive pastes of Example 7 and Comparative Example 1.
<体積抵抗率の測定>
実施例7及び比較例1の導電ペーストを用い、幅26mm、長さ76mm、厚さ1.2~1.5mmのスライドガラスに、各導電ペーストを幅10mm、長さ50mm、厚さ約0.05mmのパターンに塗布した。そのようにして塗布した試験片を80~200℃で30分間熱処理した後、導電ペーストから得られた薄膜の厚さと抵抗値を測定し、更に実施例2と同様にして、体積抵抗率を求めた。結果を表4に示す。 <Measurement of volume resistivity>
Using the conductive pastes of Example 7 and Comparative Example 1, each conductive paste was 10 mm wide, 50 mm long, and about 0.0 mm thick on a slide glass having a width of 26 mm, a length of 76 mm, and a thickness of 1.2 to 1.5 mm. It apply | coated to the pattern of 05 mm. The test piece thus coated was heat-treated at 80 to 200 ° C. for 30 minutes, then the thickness and resistance value of the thin film obtained from the conductive paste were measured, and the volume resistivity was obtained in the same manner as in Example 2. It was. The results are shown in Table 4.
実施例7及び比較例1の導電ペーストを用い、幅26mm、長さ76mm、厚さ1.2~1.5mmのスライドガラスに、各導電ペーストを幅10mm、長さ50mm、厚さ約0.05mmのパターンに塗布した。そのようにして塗布した試験片を80~200℃で30分間熱処理した後、導電ペーストから得られた薄膜の厚さと抵抗値を測定し、更に実施例2と同様にして、体積抵抗率を求めた。結果を表4に示す。 <Measurement of volume resistivity>
Using the conductive pastes of Example 7 and Comparative Example 1, each conductive paste was 10 mm wide, 50 mm long, and about 0.0 mm thick on a slide glass having a width of 26 mm, a length of 76 mm, and a thickness of 1.2 to 1.5 mm. It apply | coated to the pattern of 05 mm. The test piece thus coated was heat-treated at 80 to 200 ° C. for 30 minutes, then the thickness and resistance value of the thin film obtained from the conductive paste were measured, and the volume resistivity was obtained in the same manner as in Example 2. It was. The results are shown in Table 4.
表4に示すとおり、実施例7の導電ペーストは、バインダ樹脂及び硬化剤を含む場合であっても、150℃の熱処理温度で、体積抵抗率が4μΩ・cm以下の優れた導電性を有する導電膜を形成することができた。実施例7の導電ペーストは、バインダ樹脂及び硬化剤を含む場合であっても、120℃の熱処理温度で、体積抵抗率が5.5μΩ・cm以下の優れた導電性を有する導電膜を形成することができた。実施例7の導電ペーストは、バインダ樹脂及び硬化剤を含む場合であっても、100℃の低温の熱処理温度でも、20μΩ・cm以下の導電性を有する導電膜を形成することができた。実施例7の導電膜は、銀膜である。
As shown in Table 4, the conductive paste of Example 7 has excellent conductivity with a volume resistivity of 4 μΩ · cm or less at a heat treatment temperature of 150 ° C. even when it contains a binder resin and a curing agent. A film could be formed. Even when the conductive paste of Example 7 includes a binder resin and a curing agent, a conductive film having excellent conductivity with a volume resistivity of 5.5 μΩ · cm or less is formed at a heat treatment temperature of 120 ° C. I was able to. Even when the conductive paste of Example 7 contained a binder resin and a curing agent, a conductive film having a conductivity of 20 μΩ · cm or less could be formed even at a low heat treatment temperature of 100 ° C. The conductive film of Example 7 is a silver film.
本発明の導電ペーストによれば、300℃以下、好ましくは200℃以下、例えば120~180℃の低温の熱処理温度で、導電膜の緻密性や表面平滑性が確保され、十分な導電性(例えば、体積抵抗率5.5μΩ・cm以下、より好ましくは5μΩ・cm未満レベル)を示す導電膜を形成することができる。本発明の導電ペーストは、より微細化する回路パターンを形成する要求に応えることができる。更に、現在、携帯電話をはじめとする分野で、基板として、ポリイミド製フレキシブル回路基板から、更により安価なPET(ポリエチレンテレフタレート)フィルムやPEN(ポリエチレンナフタレート)フィルム等に変更したいという市場要求に、本発明の導電ペーストは応えることができ、産業上の極めて有用である。
According to the conductive paste of the present invention, the denseness and surface smoothness of the conductive film are ensured at a low heat treatment temperature of 300 ° C. or less, preferably 200 ° C. or less, for example, 120 to 180 ° C., and sufficient conductivity (for example, , A volume resistivity of 5.5 μΩ · cm or less, more preferably a level of less than 5 μΩ · cm) can be formed. The conductive paste of the present invention can meet the demand for forming a circuit pattern that is further miniaturized. Furthermore, in the field of mobile phones and other fields, as a substrate, market demands to change from a polyimide flexible circuit board to a more inexpensive PET (polyethylene terephthalate) film, PEN (polyethylene naphthalate) film, etc. The electrically conductive paste of this invention can respond and is very useful industrially.
Claims (12)
- (i)1次粒子の平均粒子径が40~350nmであり、(ii)結晶子径が20~70nmであり、かつ(iii)結晶子径に対する1次粒子の平均粒子径の比が1~5である銀微粒子(A)を100質量部と、脂肪族第一級アミン(B)を1~40質量部と、75~200の分子量を有するカルボン酸(C)を1~20質量部とを含む、導電ペースト。 (I) The average particle diameter of primary particles is 40 to 350 nm, (ii) the crystallite diameter is 20 to 70 nm, and (iii) the ratio of the average particle diameter of the primary particles to the crystallite diameter is 1 to 100 parts by mass of silver fine particles (A) 5, 1 to 40 parts by mass of aliphatic primary amine (B), and 1 to 20 parts by mass of carboxylic acid (C) having a molecular weight of 75 to 200 A conductive paste.
- カルボン酸の銀塩(a)と脂肪族第一級アミン(B)を混合し、次いで還元剤(c)を添加し、反応させて得られる銀微粒子(A)を含む反応混合物に、該反応混合物中の銀微粒子(A)100質量部に対して、75~200の分子量を有するカルボン酸(C)1~20質量部を混合して得られる、導電ペースト。 A reaction mixture containing silver fine particles (A) obtained by mixing a silver salt of a carboxylic acid (a) and an aliphatic primary amine (B) and then adding a reducing agent (c) and reacting the mixture is added to the reaction mixture. A conductive paste obtained by mixing 1 to 20 parts by mass of a carboxylic acid (C) having a molecular weight of 75 to 200 with 100 parts by mass of silver fine particles (A) in the mixture.
- カルボン酸(C)が、75~160の分子量を有するカルボン酸である、請求項1又は2記載の導電ペースト。 The conductive paste according to claim 1 or 2, wherein the carboxylic acid (C) is a carboxylic acid having a molecular weight of 75 to 160.
- カルボン酸(C)が、炭素数6~9の直鎖又は分岐鎖の炭化水素基を含む脂肪族モノカルボン酸、及び炭素数2~6の脂肪族ヒドロキシ酸からなる群より選ばれる少なくとも1種のカルボン酸である、請求項1~3のいずれか1項記載の導電ペースト。 The carboxylic acid (C) is at least one selected from the group consisting of an aliphatic monocarboxylic acid containing a linear or branched hydrocarbon group having 6 to 9 carbon atoms and an aliphatic hydroxy acid having 2 to 6 carbon atoms. The conductive paste according to any one of claims 1 to 3, which is a carboxylic acid of
- カルボン酸(C)が、ヘキサン酸、2-エチルへキサン酸、オクタン酸、4-メチル-n-オクタン酸、乳酸及びグリコール酸からなる群より選ばれる少なくとも1種のカルボン酸である、請求項1~4のいずれか1項記載の導電ペースト。 The carboxylic acid (C) is at least one carboxylic acid selected from the group consisting of hexanoic acid, 2-ethylhexanoic acid, octanoic acid, 4-methyl-n-octanoic acid, lactic acid and glycolic acid. 5. The conductive paste according to any one of 1 to 4.
- 脂肪族第一級アミン(B)が、3-メトキシプロピルアミン及び1,2-ジアミノシクロヘキサンからなる群より選ばれる少なくとも1種の脂肪族第一級アミンである請求項1~5のいずれか1項記載の導電ペースト。 The aliphatic primary amine (B) is at least one aliphatic primary amine selected from the group consisting of 3-methoxypropylamine and 1,2-diaminocyclohexane. The conductive paste according to item.
- 還元剤(c)が、ギ酸、ホルムアルデヒド、アスコルビン酸及びヒドラジンからなる群より選ばれる少なくとも1種の還元剤である、請求項2~6のいずれか1項記載の導電ペースト。 The conductive paste according to any one of claims 2 to 6, wherein the reducing agent (c) is at least one reducing agent selected from the group consisting of formic acid, formaldehyde, ascorbic acid and hydrazine.
- カルボン酸の銀塩(a)が、酢酸及びプロピオン酸からなる群より選ばれる少なくとも1種のカルボン酸の銀塩である、請求項2~7のいずれか1項記載の導電ペースト。 The conductive paste according to any one of claims 2 to 7, wherein the silver salt (a) of the carboxylic acid is a silver salt of at least one carboxylic acid selected from the group consisting of acetic acid and propionic acid.
- 更にバインダ樹脂(D)を1~20質量部を含む、請求項1~8のいずれか1項記載の導電ペースト。 The conductive paste according to any one of claims 1 to 8, further comprising 1 to 20 parts by mass of a binder resin (D).
- バインダ樹脂(D)が、フタル酸系グリシジル型エポキシ樹脂、オキセタン樹脂、熱硬化性フェノール樹脂、ウレタン樹脂及びアクリル樹脂からなる群より選ばれる少なくとも1種のバインダ樹脂である、請求項9記載の導電ペースト。 The conductive resin according to claim 9, wherein the binder resin (D) is at least one binder resin selected from the group consisting of a phthalic acid-based glycidyl type epoxy resin, an oxetane resin, a thermosetting phenol resin, a urethane resin, and an acrylic resin. paste.
- (1)カルボン酸の銀塩(a)と脂肪族第一級アミン(B)を混合する工程、
(2)還元剤(c)を添加して、反応温度20~80℃で反応させる工程、
(3)反応生成物を層分離させて、銀微粒子(A)を含有する層を回収する工程、
(4)回収した層中に含まれる銀微粒子100質量部に対して、75~200の分子量を有するカルボン酸(C)1~20質量部を混合する工程を含む、導電ペーストの製造方法。 (1) A step of mixing a silver salt of carboxylic acid (a) and an aliphatic primary amine (B),
(2) adding a reducing agent (c) and reacting at a reaction temperature of 20 to 80 ° C .;
(3) Step of recovering a layer containing silver fine particles (A) by separating the reaction product into layers;
(4) A method for producing a conductive paste, comprising a step of mixing 1 to 20 parts by mass of a carboxylic acid (C) having a molecular weight of 75 to 200 with respect to 100 parts by mass of silver fine particles contained in the collected layer. - (1)有機溶媒の存在下に、カルボン酸の銀塩(a)と脂肪族第一級アミン(B)を混合する工程、
(2)還元剤(c)を添加して、反応温度20~80℃で反応させる工程、
(3)反応生成物を層分離させて、銀微粒子(A)を含有する層を回収する工程、
(4)回収した層中に含まれる銀微粒子(A)100質量部に対して、75~200の分子量を有するカルボン酸(C)1~20質量部を混合する工程を含む、導電ペーストの製造方法。 (1) mixing a carboxylic acid silver salt (a) and an aliphatic primary amine (B) in the presence of an organic solvent;
(2) adding a reducing agent (c) and reacting at a reaction temperature of 20 to 80 ° C .;
(3) Step of recovering a layer containing silver fine particles (A) by separating the reaction product into layers;
(4) Production of a conductive paste comprising a step of mixing 1 to 20 parts by mass of a carboxylic acid (C) having a molecular weight of 75 to 200 with 100 parts by mass of silver fine particles (A) contained in the recovered layer. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014549873A JP6140189B2 (en) | 2012-11-30 | 2013-11-27 | Conductive paste and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-262874 | 2012-11-30 | ||
JP2012262874 | 2012-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014084275A1 true WO2014084275A1 (en) | 2014-06-05 |
Family
ID=50827907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/081958 WO2014084275A1 (en) | 2012-11-30 | 2013-11-27 | Conductive paste and method for producing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6140189B2 (en) |
WO (1) | WO2014084275A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015122430A1 (en) * | 2014-02-13 | 2015-08-20 | ダイソー株式会社 | Method for producing metal nanoparticles |
WO2016166948A1 (en) * | 2015-04-17 | 2016-10-20 | バンドー化学株式会社 | Silver fine particle composition |
WO2017022191A1 (en) * | 2015-08-03 | 2017-02-09 | Namics Corporation | High performance, thermally conductive surface mount (die attach) adhesives |
JPWO2016052292A1 (en) * | 2014-09-29 | 2017-07-13 | トッパン・フォームズ株式会社 | Metal silver, metal silver production method and laminate |
CN107614164A (en) * | 2015-06-15 | 2018-01-19 | 株式会社大阪曹达 | Metallic nano-particle manufacture composition |
WO2018062040A1 (en) * | 2016-09-29 | 2018-04-05 | トッパン・フォームズ株式会社 | Silver ink composition and laminate |
JP2018154806A (en) * | 2017-03-15 | 2018-10-04 | Dic株式会社 | Metal fine particle dispersion, conductive ink, and electronic device |
KR20190054095A (en) | 2016-09-16 | 2019-05-21 | 가부시키가이샤 노리타케 캄파니 리미티드 | Silver paste for flexible substrate |
KR20190055118A (en) | 2016-09-16 | 2019-05-22 | 가부시키가이샤 노리타케 캄파니 리미티드 | Silver paste for resin substrate |
CN112771628A (en) * | 2018-09-28 | 2021-05-07 | 纳美仕有限公司 | Conductive paste |
WO2021166627A1 (en) * | 2020-02-19 | 2021-08-26 | 株式会社ダイセル | Dispersion medium for metal particle sintering, and electroconductive paste |
TWI744372B (en) * | 2016-08-10 | 2021-11-01 | 日商阪東化學股份有限公司 | Bonding composition and production method thereof, bonding laminate, and cladded silver nanoparticle |
EP3812063A4 (en) * | 2018-06-25 | 2022-02-23 | Mitsubishi Materials Corporation | Silver paste and joined body production method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1072673A (en) * | 1996-04-30 | 1998-03-17 | Nippon Terupen Kagaku Kk | Production of metallic paste and metallic coating |
WO1998050601A1 (en) * | 1997-04-30 | 1998-11-12 | Takamatsu Research Laboratory | Metal paste and method for production of metal film |
JP2006183072A (en) * | 2004-12-27 | 2006-07-13 | Namics Corp | Silver particulate, method for producing the same and conductive paste containing silver particulate |
JP2009097074A (en) * | 2007-09-27 | 2009-05-07 | Mitsuboshi Belting Ltd | Metal nanoparticle paste, and pattern forming method |
-
2013
- 2013-11-27 WO PCT/JP2013/081958 patent/WO2014084275A1/en active Application Filing
- 2013-11-27 JP JP2014549873A patent/JP6140189B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1072673A (en) * | 1996-04-30 | 1998-03-17 | Nippon Terupen Kagaku Kk | Production of metallic paste and metallic coating |
WO1998050601A1 (en) * | 1997-04-30 | 1998-11-12 | Takamatsu Research Laboratory | Metal paste and method for production of metal film |
EP0989205A1 (en) * | 1997-04-30 | 2000-03-29 | Takamatsu Research Laboratory | Metal paste and method for production of metal film |
JP2006183072A (en) * | 2004-12-27 | 2006-07-13 | Namics Corp | Silver particulate, method for producing the same and conductive paste containing silver particulate |
JP2009097074A (en) * | 2007-09-27 | 2009-05-07 | Mitsuboshi Belting Ltd | Metal nanoparticle paste, and pattern forming method |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015122430A1 (en) * | 2014-02-13 | 2015-08-20 | ダイソー株式会社 | Method for producing metal nanoparticles |
JPWO2015122430A1 (en) * | 2014-02-13 | 2017-03-30 | 株式会社大阪ソーダ | Method for producing metal nanoparticles |
JPWO2016052292A1 (en) * | 2014-09-29 | 2017-07-13 | トッパン・フォームズ株式会社 | Metal silver, metal silver production method and laminate |
WO2016166948A1 (en) * | 2015-04-17 | 2016-10-20 | バンドー化学株式会社 | Silver fine particle composition |
JPWO2016166948A1 (en) * | 2015-04-17 | 2017-04-27 | バンドー化学株式会社 | Silver fine particle composition |
CN107530782A (en) * | 2015-04-17 | 2018-01-02 | 阪东化学株式会社 | Fine silver particle composition |
CN107614164A (en) * | 2015-06-15 | 2018-01-19 | 株式会社大阪曹达 | Metallic nano-particle manufacture composition |
CN107849356A (en) * | 2015-08-03 | 2018-03-27 | 纳美仕有限公司 | High-performance, heat-transfer surface installation (chip stickup) binding agent |
CN107849356B (en) * | 2015-08-03 | 2021-05-07 | 纳美仕有限公司 | High performance, thermally conductive surface mount adhesives, articles and methods using the same |
WO2017022191A1 (en) * | 2015-08-03 | 2017-02-09 | Namics Corporation | High performance, thermally conductive surface mount (die attach) adhesives |
JP2018528998A (en) * | 2015-08-03 | 2018-10-04 | ナミックス株式会社 | High performance thermal conductive surface mount (die attach) adhesive |
US10590319B2 (en) | 2015-08-03 | 2020-03-17 | Namics Corporation | High performance, thermally conductive surface mount (die attach) adhesives |
TWI744372B (en) * | 2016-08-10 | 2021-11-01 | 日商阪東化學股份有限公司 | Bonding composition and production method thereof, bonding laminate, and cladded silver nanoparticle |
KR20190054095A (en) | 2016-09-16 | 2019-05-21 | 가부시키가이샤 노리타케 캄파니 리미티드 | Silver paste for flexible substrate |
KR20190055118A (en) | 2016-09-16 | 2019-05-22 | 가부시키가이샤 노리타케 캄파니 리미티드 | Silver paste for resin substrate |
WO2018062040A1 (en) * | 2016-09-29 | 2018-04-05 | トッパン・フォームズ株式会社 | Silver ink composition and laminate |
JP2018154806A (en) * | 2017-03-15 | 2018-10-04 | Dic株式会社 | Metal fine particle dispersion, conductive ink, and electronic device |
EP3812063A4 (en) * | 2018-06-25 | 2022-02-23 | Mitsubishi Materials Corporation | Silver paste and joined body production method |
CN112771628A (en) * | 2018-09-28 | 2021-05-07 | 纳美仕有限公司 | Conductive paste |
CN112771628B (en) * | 2018-09-28 | 2022-09-13 | 纳美仕有限公司 | Conductive paste |
WO2021166627A1 (en) * | 2020-02-19 | 2021-08-26 | 株式会社ダイセル | Dispersion medium for metal particle sintering, and electroconductive paste |
Also Published As
Publication number | Publication date |
---|---|
JP6140189B2 (en) | 2017-05-31 |
JPWO2014084275A1 (en) | 2017-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6140189B2 (en) | Conductive paste and manufacturing method thereof | |
JP4487143B2 (en) | Silver fine particles and method for producing the same, conductive paste and method for producing the same | |
JP6174106B2 (en) | Conductive paste and method for producing conductive film | |
JP6343041B2 (en) | Thermally conductive paste and use thereof | |
TWI675891B (en) | Silver paste and conductive forming workpiece obtained therefrom | |
JP6241908B2 (en) | Coated fine metal particles and production method thereof | |
KR100895192B1 (en) | Organic silver complex compound used in paste for conductive pattern forming | |
WO2010032841A1 (en) | Conductive filler, conductive paste and article having conductive film | |
JP5880441B2 (en) | Conductive paste and substrate with conductive film | |
EP2305402A1 (en) | Silver-containing powder, method for producing the same, conductive paste using the same, and plastic substrate | |
CN107112249B (en) | Heat-conducting paste and preparation method thereof | |
JPWO2002035554A1 (en) | Conductive metal paste and method for producing the same | |
JP5320962B2 (en) | Conductive composition, method for forming conductive film, and conductive film | |
TW201247859A (en) | Thermal conductive composition and thermal conductive body | |
JP2013140687A (en) | Conductive paste, base material with conductive film and method for manufacturing base material with conductive film | |
JP2010118168A (en) | Manufacturing method of conductive mold product, conductive mold product, and silver paste used for the same | |
WO2012161201A1 (en) | Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film | |
JP2006032165A (en) | Conductive metal particles and conductive resin composition using them, and conductive adhesive | |
JP5693253B2 (en) | Conductive composition and conductive film | |
JP5320974B2 (en) | Conductive composition, substrate with conductive film, and method for producing the same | |
JP5293581B2 (en) | Conductive composition, method for forming conductive wiring, and conductive wiring | |
JP7147488B2 (en) | conductive composition | |
JP2016046136A (en) | Conductive paste and substrate with conductive film | |
JP2007335194A (en) | Forming method of conductive composition and conductive film, and conductive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13859171 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014549873 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13859171 Country of ref document: EP Kind code of ref document: A1 |